131 research outputs found

    A 12-b 50Msample/s Pipeline Analog to Digital Converter

    Get PDF
    This thesis focuses on the performace of pipeline converters and their integration on mixed signal processes. With this in mind, a 12-b 50MHz pipeline ADC has been realized in a 0.6um digital CMOS process. The architecture is based on a 1.5-b per stage structure utilizing digital correction for the first six stages. A differeintial switched capacitor circuit consisting of a cascode gm-c op-amp with 250MHz of bandwidth is used for sampling and amplification in each stage. Comparators with an internal offset voltage are used to implement the decision levels required for the 1.5-b per stage structure. Correction of the pipeline is accomplished by measuring the offset and gain of each of the first six stages using subsequent stages. The measured values are used to calculate digtal values the compensate for the inaccuracies of the analog pipeline. Corrected digital values for each stage are stored in the pipeline and used to create corrected output codes. Errors caused by measuring the first six stages using uncalibrated stages are minimized by using extra switching circuitry during calibration

    A 12-bit pseudo-differential current-source resistor-string hybrid digital-to-analogue converter with low pass rc filter.

    Get PDF
    Major concern in a high speed digital to analogue converter (DAC) is the occurrence of glitches which limiting the performance of the converter. As technology moving toward higher speed and smaller sizes, eliminating glitches is very important to ensure maximum performance of a DAC. Glitches limit maximum performance of a DAC especially in term of switching speed where it restrict the high speed performance of DAC. In some cases glitches can cause the converter to be unusable. This work discusses the design methodology to further improve glitches in the existing hybrid DAC with current-limited swing reduced driver circuit. The 12 bit hybrid DAC architectures is composed of 8-LSB binary-weighted resistor and 4-MSB thermometer coding in order to have optimize performance. The improved DAC design is accomplished by incorporating a Low Pass RC filter which function to attenuate the amplitude of the glitch that exceed the cutoff frequency, Fc . Simulation results shows that glitch impulse area was 9.1046pVs while peak glitch is only 1.08mV. This results indicates that this design achieves 70% improvement in glitch impulse area reduction compared with original version DAC and showing improvement of 47.71% compared to DAC with only current limited SRD. Overall, this project have successfully achieves lower glitch impulse ar

    Self-calibrating random access logarithmic pixel for on chip camera

    Get PDF
    CMOS active pixel sensors (APS) have shown competitive performance with charge-coupled device (CCD) and offer many advantages in cost, system power reduction and on-chip integration of VLSI electronics. Among CMOS image sensors, sensors with logarithmic pixels are particularly applicable for outdoor environment where the light intensity varies over a wide range. They are also randomly accessible in both time and space. A major drawback comes from process variations during fabrication. This gives rise to a considerable fixed pattern noise (FPN) which deteriorates the image quality. In this thesis, a technique that greatly reduces FPN using on-chip calibration is introduced. An image sensor that consists of 64x64 active pixels has been designed, fabricated and tested. Pixel pitch is 18um x 19.2um? and is fabricated in a 0.5-um? CMOS process. The proposed pixel circuit considerably reduces the FPN as predicted in theoretical analysis. The measured FPN value is 2.29% of output voltage swing and column-wise FPN is 1.49% of mean output voltage over each column

    Utilizing Magnetic Tunnel Junction Devices in Digital Systems

    Get PDF
    The research described in this dissertation is motivated by the desire to effectively utilize magnetic tunnel junctions (MTJs) in digital systems. We explore two aspects of this: (1) a read circuit useful for global clocking and magnetologic, and (2) hardware virtualization that utilizes the deeply-pipelined nature of magnetologic. In the first aspect, a read circuit is used to sense the state of an MTJ (low or high resistance) and produce a logic output that represents this state. With global clocking, an external magnetic field combined with on-chip MTJs is used as an alternative mechanism for distributing the clock signal across the chip. With magnetologic, logic is evaluated with MTJs that must be sensed by a read circuit and used to drive downstream logic. For these two uses, we develop a resistance-to-voltage (R2V) read circuit to sense MTJ resistance and produce a logic voltage output. We design and fabricate a prototype test chip in the 3 metal 2 poly 0.5 um process for testing the R2V read circuit and experimentally validating its correctness. Using a clocked low/high resistor pair, we show that the read circuit can correctly detect the input resistance and produce the desired square wave output. The read circuit speed is measured to operate correctly up to 48 MHz. The input node is relatively insensitive to node capacitance and can handle up to 10s of pF of capacitance without changing the bandwidth of the circuit. In the second aspect, hardware virtualization is a technique by which deeply-pipelined circuits that have feedback can be utilized. MTJs have the potential to act as state in a magnetologic circuit which may result in a deep pipeline. Streams of computation are then context switched into the hardware logic, allowing them to share hardware resources and more fully utilize the pipeline stages of the logic. While applicable to magnetologic using MTJs, virtualization is also applicable to traditional logic technologies like CMOS. Our investigation targets MTJs, FPGAs, and ASICs. We develop M/D/1 and M/G/1 queueing models of the performance of virtualized hardware with secondary memory using a fixed, hierarchical, round-robin schedule that predict average throughput, latency, and queue occupancy in the system. We develop three C-slow applications and calibrate them to a clock and resource model for FPGA and ASIC technologies. Last, using the M/G/1 model, we predict throughput, latency, and resource usage for MTJ, FPGA, and ASIC technologies. We show three design scenarios illustrating ways in which to use the model

    A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS

    Get PDF
    This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal feedback loop. A frequency detector guarantees PLL locking without degenerating jitter performance. The clock multiplier is implemented in a standard 0.18-μm CMOS process and achieves a jitter generation of 0.22 ps while consuming 100 mW power from a 1.8-V supply

    DESIGN AND CHARACTERIZATION OF AN ULTRA-LOW POWER INTERFACE CIRCUIT FOR OPTICAL SENSORS

    Get PDF
    Sensors are one of the most ubiquitous devices in our day to day life. The ever increasing demand for insitu environmental monitoring has created a continuing research endeavor to produce a low-cost, low power, fast sensor systems. Optical sensors are preferred for various applications due to their non-intrusive nature and are commonly used to monitor the environment. Dedicated interface electronics are needed to interpret the output ofthese sensors accurately into a usable form to a user or subsequent systems. In this work, an interface circuit arrhitppfnre for nptirnl r^n-.nr is proposed that is suitable for integration in a single chip

    IEEE Trans Biomed Circuits Syst

    Get PDF
    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental \uce\ua3\ue2\u2c6\u2020 ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.R01 ES022302/ES/NIEHS NIH HHS/United StatesR01 OH009644/OH/NIOSH CDC HHS/United States2017-08-01T00:00:00Z27352395PMC505675

    Fractional-N DLL for clock synchronization

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore