

FRACTIONAL-N DLL FOR CLOCK
SYNCHRONIZATION

QIU LIN

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48646627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FRACTIONAL-N DLL FOR CLOCK
SYNCHRONIZATION

QIU LIN

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

ACKNOWLEDGEMENTS

I would like to thank the National University of Singapore for the support they

had given, which led to the success of this project.

I would also like to thank my project supervisor, Assistant Professor Heng

Chun Huat, for his guidance on research and this thesis.

Besides, many thanks should be given to my colleagues in the Signal

Processing and VLSI Design Laboratory, for their kind advice during these two years.

Last but not least, I would like to thank everyone who had helped, in one way

or another, towards the completion of this project.

i

TABLE OF CONTENTS

TABLE OF CONTENTS... i

LIST OF FIGUERS ... iii

LIST OF TABLES... vi

LIST OF SYMBOLS AND ABBREVIATIONS ...vii

ABSTRACT...viii

CHAPTER 1 INTRDUCTION ... 1

1.1 Motivation of Fractional-N DLL .. 1

1.1.1 PLL and DLL Comparison ... 1

1.1.2 Fractional-N PLL Technology.. 2

1.1.3 Motivation of Fractional-N DLL .. 3

1.2 Thesis Contributions ... 4

1.3 Thesis Organization .. 5

CHAPTER 2 EXSITING DLL ARCHITECTURES.. 6

2.1 DLL Fundamental ... 6

2.2 Phase Interpolation DLL... 11

2.3 Dual Loop DLL... 14

CHAPTER 3 FRACTIONAL-N DLL ARCHITECTURE..................................... 17

3.1 System Architecture.. 17

3.2 Sub-block Models ... 18

ii

3.2.1 Voltage Control Delay Line.. 18

3.2.2 Coarse Loop Control... 21

3.2.3 Delta-sigma Modulator ... 23

3.2.4 Fine Loop Control... 26

3.3 System Integration and Simulation... 29

CHAPTER 4 CMOS IMPLEMENTATION .. 34

4.1 Analog Circuit Design .. 34

4.1.1 Delay Cell ... 34

4.1.2 Replica Bias .. 38

4.1.3 Phase Detector .. 41

4.1.4 Charge Pump... 43

4.1.5 Adaptive Filter .. 47

4.1.6 Other Analog Blocks... 49

4.2 Digital Synthesis ... 49

4.2.1 Finite State Machine ... 49

4.2.2 Delta-sigma Modulator ... 52

CHAPTER 5 CONCLUSION... 56

REFERENCES ... 58

LIST OF FIGUERS

Figure 1-1: Block diagram of PLL.. 2

Figure 1-2: Block diagram of DLL... 2

Figure 1-3: fractional-N PLL ... 3 ΔΣ

Figure 1-4: Block diagram of fractional-N DLL .. 4

Figure 2-1: Linearized model of conventional DLL... 6

Figure 2-2: Conventional DLL architecture ... 8

Figure 2-3: DLL locking range ... 9

Figure 2-4: False locking problem.. 9

Figure 2-5: The first type of DLL ... 10

Figure 2-6: The second type of DLL .. 10

Figure 2-7: Phase interpolation DLL architecture .. 11

Figure 2-8: Linearized model of dual loop DLL .. 12

Figure 2-9: Design of phase interpolator .. 14

Figure 2-10: Dual loop DLL architecture ... 15

Figure 2-11: Phase selection of dual loop DLL .. 16

Figure 2-12: Coarse tuning and fine tuning .. 16

Figure 3-1: System architecture of fractional-N DLL .. 17

Figure 3-2: Design of the VCDL .. 19

Figure 3-3: Design of the coarse loop PD... 21

Figure 3-4: Timing of the coarse loop PD .. 22

Figure 3-5: Flow chart of the coarse loop FSM.. 23

Figure 3-6: Discrete model of ΔΣ modulator.. 23

Figure 3-7: Waveform of output .. 24 ΔΣ

iii

Figure 3-8: Frequency response of ΔΣ output ... 24

Figure 3-9: Frequency response of dithered ΔΣ output ... 25

Figure 3-10: Waveform of dithered ΔΣ output .. 25

Figure 3-11: Fine loop DLL.. 26

Figure 3-12: Flow chart of the fine loop FSM.. 28

Figure 3-13: Design of the quantizer in ΔΣ modulator.. 29

Figure 3-14: Simulation of coarse loop .. 31

Figure 3-15: Simulation of fine loop .. 32

Figure 3-16: DLL clock before synchronization .. 32

Figure 3-17: DLL clock after synchronization ... 33

Figure 4-1: Other VCDL delay cells... 35

Figure 4-2: Differential delay cell with diode loads and triode loads........................... 35

Figure 4-3: Differential delay cell with symmetric loads ... 36

Figure 4-4: Simulation of delay cell at 200MHz .. 37

Figure 4-5: Nonlinear relationship of vs. BPV DT ... 38

Figure 4-6: Schematic of replica bias ... 39

Figure 4-7: Desired timing of PD in DLL .. 41

Figure 4-8: False comparison of conventional PD ... 42

Figure 4-9: Schematic of PD with start-up function... 42

Figure 4-10: Simulation of PD with start-up function .. 43

Figure 4-11: Schematic of charge pump... 44

Figure 4-12: Schematic of cascode biasing .. 45

Figure 4-13: Simulation of adaptive bandwidth ... 46

Figure 4-14: Schematic of charge pump current generator .. 46

iv

v

Figure 4-15: Schematic of adaptive filter ... 48

Figure 4-16: Schematic of FSM.. 50

Figure 4-17: View of FSM layout... 51

Figure 4-18: Simulation of FSM... 52

Figure 4-19: Schematic of modulator ... 53

Figure 4-20: View of modulator layout .. 54

Figure 4-21: Simulation of modulator .. 55

LIST OF TABLES

Table 3-1: Comparison of different coarse phase selection scenarios 20

Table 3-2: The coarse loop PD output signals .. 22

Table 3-3: Testing cases of the system ... 31

Table 4-1: Simulation results of DT and .. 38 BPV

Table 4-2: Simulation results of range .. 40 CTRLV

Table 4-3: Comparison of programmable CPI .. 47

Table 4-4: Comparison of variable resistor in adaptive filter 49

Table 4-5: Synthesis constraints for the FSM... 50

Table 5-1: Performance comparison... 56

vi

LIST OF SYMBOLS AND ABBREVIATIONS

CP Charge pump

DLL Delay-Locked Loop

FSM Finite State Machine

LP Low-pass Filter

PD Phase Detector

PLL Phase-Locked Loop

VCDL Voltage Control Delay Line

MUX Multiplexer

RTL Register Transfer Level

REFf Reference frequency

ΔΣ Delta sigma

PDK The phase detector gain

CPI The charge pump current

DLK Gain of the delay line

Nω The loop bandwidth

CV The control voltage

X̂ Fractional division ratio

mg Transconductance

dsr Output resistance

vii

ABSTRACT

This thesis presents on the design of a fractional-N delay locked loop (DLL)

circuit for clock synchronization in the transceiver system. A delta-sigma modulator is

integrated into the DLL design to achieve low noise and low jitter performance. It is

verified through the behavior model simulation that this DLL can provide fine phase

resolution, wide operation range and low jitter performance. The whole architecture is

implemented in 0.35 mμ CMOS and is able to handle input clock frequency range

from 10MHz~200MHz. This novel technique can also be used for a variety of

applications which requires accurate timing delay or fine tuning resolution.

viii

1

1.1

CHAPTER 1 INTRDUCTION

As the speed performance of the VLSI systems increases rapidly, more

emphasis is placed on suppressing the clock skew and jitter. Phase-locked loop (PLL)

and delay-locked loop (DLL) have been typically applied to microprocessors, memory

interface or communication IC, where the external signal is required to be

synchronized to the local reference clock. However, the clock skew and jitter reduces

the resolution of clock synchronization, especially in high speed system. In this chapter,

a novel DLL architecture is introduced for low noise and low jitter purpose.

 Motivation of Fractional-N DLL

1.1.1 PLL and DLL Comparison

Many applications requires accurate phase placement of clock or data signal.

Although phase shift can be done by simply delaying the signal, it is not robust to

variations of processing, voltage or temperature. For more precise control, a feedback

loop is used to lock the output phase with respect to an input reference signal, which is

the essence of PLL. Recently, DLL has emerged as an alternative to the traditional

oscillator-based PLL.

Compared with PLL, phase is the only state variable for DLL. With its first

order loop characteristic, DLL has better stability and no cycle-to-cycle jitter

accumulation.[1] The basic building blocks for both PLL and DLL are similar. This

includes phase detector, charge pump and loop filter. The oscillator and divider in PLL

are replaced with the variable-delay line, which are shown in Figure 1-1 and Figure 1-2,

respectively. Obviously, DLL has simpler structure than PLL

Figure 1-1: Block diagram of PLL

Figure 1-2: Block diagram of DLL

DLL is preferred for clock synchronization due to fine phase resolution and

low jitter performance. Recently, it has been commonly employed in the ultra-

wideband (UWB) system, because the signals consist of short pulses with typical pulse

width around nanoseconds and the phase resolution is very critical.

1.1.2 Fractional-N PLL Technology

The development of fractional-N PLL becomes an important area of PLL study.

As shown in Figure 1-1, the basic integer-N PLL has a limitation that the output

frequency is fixed to integer multiples of the reference frequency, reff . In other word,

finer tuning resolution can only be achieved with lower reff .[2] Moreover, the

reference frequency also determines the loop bandwidth of PLL, which is

approximately reff /10. Thus, reducing reff tends to decrease the maximum loop

bandwidth, thereby increasing the settling time of PLL, the noise contributed by VCO,

and so on.

2

To solve the problem caused by this fundamental tradeoff between bandwidth

and tuning resolution in integer-N PLL, fractional-N PLL is created by incorporating

additional digital circuitry, which allows accurate interpolation between integer

multiples of reference frequency. In this way, tuning resolution depends on the design

and algorithm of the digital circuitry, so considerable flexibility and programmability

can be achieved.[3] The ΔΣ fractional-N PLL, illustrated in Figure 1-3, takes the idea

one step further by randomizing the division ratio to eliminate the spurious tones. [4]

 Figure 1-3: ΔΣ fractional-N PLL

The success of PLL has spurred our interest in incorporating similar idea to

the DLL architecture to achieve the objective of fine tuning resolution and better jitter

performance.

ΔΣ

1.1.3 Motivation of Fractional-N DLL

The previous discussion indicates that the high speed transceiver design

triggers study and research on precise clock synchronization, which targets low jitter

performance. DLL is considered as a proper structure because of its inherited

characteristic with no cycle-to-cycle jitter accumulation. In addition, to further reduce

3

phase noise while improve tuning resolution, ΔΣ fractional-N technology is applied to

the DLL design in the form of using a delta-sigma modulator.

The proposed DLL block diagram is shown in Figure 1-4. A delta-sigma

modulator and some digital control circuit (finite state machine) are added to realize

the concept of fractional-N DLL.

Figure 1-4: Block diagram of fractional-N DLL

The digital control circuit is implemented as finite state machine (FSM), which

could be described in Verilog language and synthesized into digital circuits. The

function of FSM and how it achieves programmable tuning resolution will be

discussed in Chapter 3.

1.2 Thesis Contributions

The major contributions of this thesis include:

1. A novel approach to design DLL by incorporating a delta-sigma modulator

to achieve low jitter performance.

2. A novel FSM algorithm for controlling the coarse tuning and the fine

tuning. This simplifies the overall system architecture by sharing one delay line, and

also helps achieving programmable tuning resolution.

4

5

1.3

3. A novel circuit design of adaptive loop filter with programmable bandwidth

and phase margin.

 Thesis Organization

The rest of this thesis is organized in the following manner.

Conventional DLL architecture and its development are reviewed and studied

in Chapter 2. This is followed by detailed discussion on the proposed fractional-N

DLL architecture in Chapter 3. Chapter 4 presents the CMOS implementation on both

the analog and digital circuitry. The final conclusion is summarized in Chapter 5.

CHAPTER 2 EXSITING DLL ARCHITECTURES

For clock synchronization, DLL performs better stability and lower jitter

performance than PLL in the applications with no frequency variation. However,

conventional DLL suffers from the problem of limited operating frequency range. A

few works have been proposed to solve this problem. This chapter begins with the

basic analysis of conventional DLL, such as the operation principle, design parameters

and the origin of its limitation. Two most common architectures, phase interpolation

DLL and dual loop DLL, targeting wide frequency range, precise delay control and

low jitter performance would then be discussed.

6

2.1 DLL Fundamental

To demonstrate the operation principle of DLL, the linearized model is shown

in Figure 2-1. It is characterized by the phase detector gain PDK (rad), charge pump

current CPI (A), loop filter transfer function , and the gain of delay line ()F s

DLK (rad/V). The input and output delay time are denoted as and , respectively.

The input clock period is .

ID OD

REFT [5]

PDK CP
CP

REF

IK
T

= ()F s DLK
ID

OD

−

()N s

Figure 2-1: Linearized model of conventional DLL

7

LFCConventional DLL employs a single capacitor as the loop filter, which has

the first-order transfer function

 1()
LF

F s
sC

= . (2.1)

The close-loop behavior can be expressed by the following first-order transfer

function, with low-pass characteristic.

 ()()
1 1 ()

G sH s
G s

=
+

1
1 Ns ω

=
+

 (2.2)

In this equation, () ()PD CP DLG s K K F s K= is the open-loop transfer function, and Nω is

the bandwidth of close-loop response. The loop is unconditionally stable since there is

only one pole which contributes to 90 degree of phase lag.

Assume a noise source introduced at the delay line output, so the noise transfer

function is a high-pass response.

 1()
1 1 () 1

N

N

sN s
G s s

ω
ω

= =
+ +

 (2.3)

Compared with the signal transfer function which is low-pass response, the noise due

to delay line is high-pass filtered.

It should be pointed out that the loop bandwidth Nω tracks the operation

frequency REFω , which is derived below.

2
PD DL CP

N REF
LF

K K I
C

ω ω
π

= ⋅ (2.4)

The loop bandwidth is a critical design parameter. To achieve fast loop locking speed,

Nω should be set as high as possible. On the other hand, high frequency noise cannot

8

Nbe suppressed if ω increases. The design guideline suggests a typical ratio of 1/10 for

/N REFω ω . [6]

Although conventional DLL is preferred for its unconditional stability, low

phase error accumulation and fast locking time, it encounters operation range problem.

[7] The architecture of conventional DLL is shown in Figure 2-2. Assume the

reference clock (REF_CLK) origins from the first rising edge, and the output of delay

line (DLL_CLK) is the output clock through delay line.

Figure 2-2: Conventional DLL architecture

The normal operation of conventional DLL is illustrated in Figure 2-3. The 1st

rising edge of the reference clock (REF_CLK) and its delay version (DLL_CLK) are

indicated by the circle. The rising edge of DLL_CLK is then compared with the 2nd

rising edge of the REF_CLK, which is indicated by the dark upward arrow. Depending

on whether there is a phase lag or phase lead, an UP or DOWN control signal is

generated correspondingly. Once DLL is locked, the DLL_CLK is delayed by exact

one clock period from the REF_CLK.

However, this normal operation is only guaranteed when the initial DLL_CLK

appears within the dotted line regions. When the initial DLL_CLK is outside this

region, it is no longer locked by one clock period from the REF_CLK. The false

locking problem is shown in Figure 2-4.

Figure 2-3: DLL locking range

Figure 2-4: False locking problem

9

To avoid false locking problem, the delay range is found as follows.

,min
1
2 CLK DL CLKT T T< <

 ,max
3
2CLK DL CLKT T T< < (2.5)

Or, it can be expressed in terms of , CLKT

 ,min ,max ,min ,max
2(,) (2 ,
3DL DL CLK DL DLMax T T T Min T T< <) (2.6)

The above inequality indicates that the operating frequency can only be satisfied over a

very limited range.

The application of DLL always depends on its basic structure. In the first type,

the input clock REF_CLK is compared with the delayed version of itself, as shown in

Figure 2-5. Usually, the output DLL_CLK is used for clock generation and frequency

synthesis. [8]

Figure 2-5: The first type of DLL

Figure 2-6: The second type of DLL

10

The second type of structure is shown in Figure 2-6, where the reference clock

REF_CLK is compared with the delayed version of another external clock, EXT_CLK.

There are often two input clocks, and the output clock, DLL_CLK, is used for clock

synchronization or signal recovery. [9]

11

2.2 Phase Interpolation DLL

Phase interpolation DLL architecture, shown in Figure 2-7, is proposed to

overcome the false locking problem and attain wide operation range. Instead of only

using the clock phase at the end of the delay line, multiple coarse clock phases are

tapped from the middle of the delay line. The phase interpolator then produces a clock

phase which is interpolated from the tapped coarse clock phases.

• • •

Figure 2-7: Phase interpolation DLL architecture

There are two loops commonly known as the core loop and the peripheral loop,

The core loop is a conventional DLL which locks the delay line with one cycle period

to generate accurate multiple phases. The peripheral loop generates the phase

interpolated DLL_CLK to align with REF_CLK. The phase selection and interpolation

are controlled by the finite state machine (FSM).

The linearized model is shown in Figure 2-8. [10] Each of the two loops is

modeled as a single pole system, in which the input, output and error variables are

represented in delay (in seconds), similar to the analysis in chapter 2.1. and

are the input clocks, while and are the output clocks for the core loop and the

peripheral loop, respectively. So represents delay errors related to the supply and

substrate noise. and are delay errors seen by the phase detector in each loop.

EXTD REFD

OCD OD

ND

ECD ED

EXTD ECD
cp

s

ND

ND

REFD

OCD

ED OD
pp

s

Figure 2-8: Linearized model of dual loop DLL

For the core loop, the input-to-output transfer function can be derived as

 1
1

OC

EXT c

D
D s p

=
+

 (2.7)

where cp (in rad/s) is the pole of the core loop determined by the charge pump current,

the phase detector and the delay line gain, as well as the loop filter capacitor. The

noise-to-error transfer function is given as

1

EC c

N c

D s p
D s p

=
+

 (2.8)

This indicates that the delay errors () related to supply and substrate noise ()

can be tracked up to the loop bandwidth.

ECD ND

12

 For the peripheral loop, the input-to-output transfer function is similarly

derived as

 1
1

O

REF p

D
D s p

=
+

, (2.9)

To understand the effect of external clock disturbance () on the delay error of the

peripheral loop (), the following expression can be attained.

EXTD

ED

(1) (1)

pE

EXT c p

s pD
D s p s p

=
+ ⋅ +

 (2.10)

The delay error related to supply and substrate noise is given as follows. ED ND

(1 2)

(1) (1)
c pE

N c

s p s pD
D s p s

+

pp
⋅

=
+ ⋅ +

 (2.11)

This equation establishes that there is no overshoot in the dual loop step

response when the peripheral loop bandwidth is less than half of the core loop

bandwidth. [10]

The design of phase interpolator in [8] performs a weighted average of the

input phases. As shown in Figure 2-9, ideally, the FSM controls multiplexers to select

two input phases, both of which drive an integrator and their output currents join in to

charge a capacitor. For example, when α = 1, the integrator output depends only on

CLK0; when α = 0.5, the current is split equally between two integrators and the

output phase is at the middle of CLK0 and CLK1. By varying α , the phase

interpolator produces a programmable DLL_CLK.

13

0Iα

1(1)Iα−
Figure 2-9: Design of phase interpolator

This phase interpolation architecture effectively solves the false locking

problem of conventional DLL. Since the DLL_CLK is able to switch smoothly

between clock phases tapped from the delay line, it can increase or decrease a wide

range of delay to gradually track the reference clock. In other word, DLL covers a

larger operation frequency range. Besides, programmable tuning resolution can be

obtained by proper design of the FSM algorithm and the weighted factor and so on.

However, the digital phase interpolation limits the tuning resolution, because

α could only be a finite number of fractions between 0 and 1. In addition, more delay

cells are needed to avoid slew rate problem in the phase interpolation. Both issues

impact the jitter performance, the area and the power consumption of phase

interpolation DLL.

2.3 Dual Loop DLL

Dual loop DLL is developed to improve jitter performance. In dual loop DLL,

the digital controlled phase interpolation is replaced with another analog mode DLL to

achieve continuous phase adjustment.

14

• • •
1P 2P NP

Figure 2-10: Dual loop DLL architecture

The architecture of dual loop DLL is displayed in Figure 2-10. [11] It involves

two loops, the coarse loop and the fine loop, to synchronize the external clock

(EXT_CLK) with the reference clock (REF_CLK). The coarse loop provides the

closest clock phase (DLL_CLK) to the REF_CLK. The fine loop is only activated once

the coarse loop has finished the phase selection. Then, the selected clock is aligned

with the reference clock through the fine loop, which consists of anther analog DLL.

 The phase selection is shown in Figure 2-11. For example, if the size of the

coarse DLL is 10, the rising edges of multiple clocks (dashed lines) are equally spaced

in one cycle of EXT_CLK. Thus, for the displayed phase error between EXT_CLK

and REF_CLK, is selected as the DLL_CLK, which is the closest clock to

REF_CLK.

4P

15

0P 1P 2P 3P 4P 10P• • •
Figure 2-11: Phase selection of dual loop DLL

The step response of the coarse tuning and the fine tuning are shown in Figure

2-12. The left figure illustrates that the coarse tuning is digital mode, while the right

figure illustrates that the fine tuning is analog mode.

Figure 2-12: Coarse tuning and fine tuning

The dual loop DLL overcomes the finite phase problem of the phase

interpolation DLL. It also significantly reduces the settling time. However, the

additional delay line in the fine loop deteriorates the phase jitter, and it costs area and

power penalty too.

In next chapter, the proposed architecture will be introduced to reduce the

above limitation.

16

CHAPTER 3 FRACTIONAL-N DLL ARCHITECTURE

This chapter presents the proposed fractional-N DLL architecture. The system

is designed and proven through behavioral simulation using Matlab/Simulink.

17

3.1 System Architecture

The fractional-N DLL employs a delta-sigma modulator to improve the jitter

performance. Compared with the exiting DLL architectures, it doesn’t introduce the

phase interpolator or the additional delay line. The structure is very similar to the dual

loop DLL, as illustrated in Figure 3-1.

Figure 3-1: System architecture of fractional-N DLL

Initially, the core DLL is running at some pre-defined delay interval and

generating multiple clock phases for the coarse loop. The coarse loop will select the

clock phase that is closest to the reference clock (REF_CLK). During this period, the

finite state machine and the Δ∑ modulator in the fine loop are disabled. Once the

coarse loop acquires the closest clock phase (Coarse_CLK), it will enable the fine loop.

This is realized by the digital block, Coarse FSM, to hold the state of Coarse_CLK

selection, and send out logic control signal. The fine loop will then start adjusting the

initial pre-defined delay interval through the delta-sigma modulator. This is based on

the principle that the modulator controls the feedback signal, DLL_CLK, from the

VCDL, thus the effective number of delay cells. Another digital block, Fine FSM is

designed to update the input of the

Δ∑

Δ∑ modulator, then the DLL_CLK selection as

well. It will stop when the Coarse_CLK, aligns with the REF_CLK, being locked with

new delay interval. So the Coarse_CLK is the final output clock.

The main advantage of this proposed DLL is that the selected clock phase is

derived directly from the core delay line without additional phase interpolator or

second delay line. This saves extra power consumption and chip area. Besides, the

jitter accumulation mostly comes from the delay line, which can be reduced by sharing

the delay line for both the coarse loop and the fine loop. In the next few sections, each

block will be discussed in detail.

3.2 Sub-block Models

The main sub-blocks could be divided into the following categories: voltage

control delay line (VCDL) and other coarse loop components, delta-sigma (Δ∑)

modulator and other fine loop components. Design specifications are described for

each sub-block, with behavioral models built to verify their functions.

3.2.1 Voltage Control Delay Line

VCDL is the essential part of all DLL structures. It consists of a chain of delay

cells which has one cycle of phase shift from the input to output.

18

The consideration about the size of delay line is the tradeoff between tuning

resolution and power consumption. The phase interpolation based architecture in [12]

uses up to 128 taps, which means 128 delay cells in the delay line. Later works ([11],

[13]) count on finite state machine to control fine tuning resolution, and hence

significantly reduce the size of delay line. This work moderately chooses 13 delay cells

and 10 taps of the delay line, as shown in Figure 3-2. The delay is the same for each

cell, which is controlled by the voltage from the loop filter.

10
T

10
T

10
T

10
T

10
T

• • •1P 2P

4P

10
T

10
T

10
T

10
T

9P 10P 11P 12P

10
T

10
T

8P7P 13P

3P

Figure 3-2: Design of the VCDL

The relationship between control voltage () and delay time for each cell (CV DT)

is designed as follows:

20 10
REF REF

D C
T TT V= − ⋅ + (3.1)

where
10
REFT is the nominal delay, and DT can change through which ranges from

-1 to 1.

CV

Initially, all the delay cells are delayed by
10
REFT , and the output of the 10th

delay cell, , is feedback to compare with the delay line input () to form a

conventional DLL. This will pre-define each delay cell with a delay time of

10P 0P

10
REFT for

the coarse loop adjustment.

Although 10 delay cells are needed to cover one clock period, ~ are

designed for coarse phase selection rather than ~ . This will relax the performance

4P 13P

1P 10P

19

requirement of the delay cell and also simplify the fine loop control. The design trade-

off is explained with the two worst case considerations.

For the first scenario, where ~ is chosen for coarse phase selection, the

worst case occurs when is selected as the coarse phase. In order for the fine loop to

cover the whole tuning range (

1P 10P

1P

10
REFT), the delay needs to be varied from

10
REFT to 2

10
REFT ,

which is 100% delay variation. In addition, the amount of delay cells required in the

core loop will reduce from 10 to 5 through fine loop tuning. Both of the above

conditions pose stringent design requirements on the delay cell and the fine loop

control.

For the second scenario, where ~ is chosen for coarse phase selection, the

worse case happens when is selected. Now, the delay cell only needs to vary from

4P 13P

4P

10
REFT to 1.25

10
REFT

× in order to cover the whole tuning interval, which is only 25%

delay variation. Furthermore, the size of delay line after fine tuning will reduce from

10 to 8, which costs less drastic change.

Similarly, the ~ scenario is also analyzed. 9P 18P Table 3-1 compares the

performance of different scenarios, and the ~ scenario is the best option for our

design.

4P 13P

Table 3-1: Comparison of different coarse phase selection scenarios

Coarse phase
selection

Amount of delay cells in
the core loop

Total length of
VCDL Delay variation

1P ~ 10P 5~10 10 100%

4P ~ 13P 8~10 13 25%

9P ~ 18P 9~10 18 11.1%

20

3.2.2 Coarse Loop Control

The coarse loop detector (PD) compares the VCDL output (Coarse_CLK) one

by one with the reference clock, until the closest clock phase (leading the REF_CLK

by less than
10
REFT) is found. Figure 3-3 is the design of the coarse loop phase detector

(PD). The delay cells are duplicated from the VCDL. The output signals are updn and

hold.

10
T

10
T

10
T

10
T

10
T

10
T

Figure 3-3: Design of the coarse loop PD

If the rising edge of the Coarse_CLK leads that of the REF_CLK, the updn

signal is set to high; otherwise, it is set to low. The timing relationship of the

Coarse_CLK and the REF_CLK and the corresponding signals can be categorized into

10 regions, illustrated as A~J in Figure 3-4 and Table 3-2. When the Coarse_CLK

locates in region E, which means the Coarse_CLK leads the REF_CLK by less than

10
REFT , the hold signal goes to high. This indicates that the closest clock phase to the

REF_CLK has been selected.

21

A B C D E F G H JIREF_CLK

DLL_CLK

Figure 3-4: Timing of the coarse loop PD

Table 3-2: The coarse loop PD output signals

region updn hold

A 0 0

B 0 0

C 0 0

D 0 0

E 0 1

F 1 0

G 1 0

H 1 0

I 1 0

J 1 0

The function of the coarse loop FSM is to dispose the updn and hold signal.

The updn signal will control the multiplexer for coarse phase selection; whereas the

hold signal will freeze the coarse loop and kick start the fine loop. The whole operation

is best illustrated with the flow chart shown in Figure 3-5. The variable mux controls

the coarse loop multiplexer. The en signal will be sent to enable the fine FSM.

22

mux=0, en=0,
counter=0.

en

hold counter

updn

mux+1mux-1

mux=mux,
counter+1.

en=1

counter=0

0
0

0

1

1

1 N

Figure 3-5: Flow chart of the coarse loop FSM

3.2.3 Delta-sigma Modulator

 This work employs a ΔΣ modulator to generate an average clock (DLL_CLK)

for phase comparison in the core DLL, with the similar idea of fractional-N PLLs. [14]

Higher order ΔΣ modulator offers better noise shaping but suffers from stability issue.

So, a second order digital ΔΣ modulator is designed, with the discrete model in Figure

3-6. [15] Integer arithmetic is developed with a 2-bit quantizer, and its output switches

among four taps from the VCDL. The quantizer threshold, input and output range,

quantized level, will be discussed later on, together with the fine loop design.

1
z

z −
1

1z −

Figure 3-6: Discrete model of ΔΣ modulator

Based on the model, the following transfer functions can be obtained,

23

 1()
()

Y z z
X z

−= (3.2)

 1 2() (1)
()

Y z z
Q z

−= − (3.3)

Simulation results verify that the output of the ΔΣ modulator is an array of

integers, as shown in Figure 3-7. The data array is collected and analyzed, with the

average value very close to the input value. However, it is observed that the waveform

is repeated in some pattern, which converts to spurious tones and degrades jitter

performance. This can be seen from the spikes in spectrum waveform of frequency

response. (Figure 3-8)

Figure 3-7: Waveform of ΔΣ output

Figure 3-8: Frequency response of ΔΣ output

Dithering topology is introduced to solve this problem.[16] In this work, a

pseudo random sequence is added to the quantizer to provide better randomness. The

24

gain needs to be carefully adjusted to produce sufficient dithering without affecting the

desired average value. Figure 3-9 shows the dithered output frequency spectrum.

Figure 3-10 is the corresponding output of the ΔΣ modulator with dithering. The

dither amount can be characterized by the gain and the length of the pseudo random

sequence. In this figure, a 22-bit shift register is placed in feedback connection to

generate pseudo random sequence, with the gain of one unit of quantization level

Figure 3-9: Frequency response of dithered ΔΣ output

Figure 3-10: Waveform of dithered ΔΣ output

The modulator output controls the fine loop MUX to switch among ~ .

Because the quantizer is 2-bit, it requires a control signal to change the switching

group between ~ and ~ . Similarly, the trigger clock for ΔΣ modulator also

needs to be changed for each switching group. is used for the switching group

~ , whereas is used for the switching group ~ .

ΔΣ 7P 11P

7P 10P 8P 11P

7P

8P 11P 6P 7P 10P

25

3.2.4 Fine Loop Control

After the coarse loop selects the correct Coarse_CLK, the fine loop is enabled

to synchronize the Coarse_CLK with the REF_CLK. This is achieved by changing the

input of modulator, which in turns modify the delay of the Coarse_CLK. ΔΣ

Figure 3-11: Fine loop DLL

Figure 3-11 shows the structure of the fine loop. The whole loop functions

very similarly to the conventional DLL, but with one critical difference. The ΔΣ

modulator controls the MUX to generate an average feedback clock, DLL_CLK. The

feedback clock may not be exactly one clock period delayed. However, on the average,

this DLL_CLK will have exactly one clock interval delay.

The fine loop phase detector is a traditional phase frequency detector (PFD).

[17] But this work requires higher order low-pass filter to suppress the high frequency

noise introduced by the ΔΣ modulator. In Figure 3-11, a 2nd order loop filter is

designed with two capacitors and one resistor, and the transfer function is

 2
1 2 1 2

1()
()

C

CP

VF s
I s C C R s C C

= =
+ +

. (3.4)

This in turns give rise to the following close loop transfer function,

26

 2
1 2 1 2

()
()

O REF CP DL

I REF CP DL

D F I KH s
D s C C R s C C F I K

= =
+ + +

. (3.5)

The above equation can be further simplified into

 1 2

1 2

/()
(/)(1)

k C C RH s
s k C s C R

=
+ +

, (3.6)

where k is , and the two poles are respectively designed as REF CP DLF I K 1 1/P k Cω = and

2 21P C Rω = .

By assuming 2Pω >> 1Pω , which means the loop parameters, bandwidth (BW)

and phase margin (PM) can be estimated as follows,

 BW = 1 /P k C1ω = (3.7)

 PM = 1 1

2

90 tan ()P

P

ω
ω

−°− . (3.8)

For the stability and settling time concern, it is required that the BW to be

approximately 1
10

 of the reference frequency, and the PM to be around 65

(

°

2Pω ≈2.2 1Pω) to avoid overshooting problem. So, 1Pω ≈20MHz and 2Pω ≈45MHz at

200MHz are estimated in behavior simulation.

The fine loop FSM realizes the following working principle to adjust the

DLL_CLK towards the REF_CLK. It increases DLL_CLK delay in small steps. The

maximum delay interval for the fine loop (
10
REFT) is further divided by N, so the tuning

resolution becomes
10

REFT
N×

, where N is programmable depending on the operating

clock frequency.

27

Figure 3-12: Flow chart of the fine loop FSM

As illustrated in the flow chart of the fine loop FSM (Figure 3-11), the variable

delay_step represents this tuning resolution, within the range from
2
N to -

2
N . It is

updated according to the hold signal. Once the hold signal jumps down, which means

the Coarse_CLK becomes lag to the REF_CLK, the state of the delay_step stays fixed.

If the delay_step variable reaches -
2
N without the hold signal being low, the switching

group needs to be changed by the signal, adr_ctrl and trgr_ctrl. After the fine tuning is

finished, FSM starts an internal timer to check the hold signal every M clock cycles.

This is used to release the fine tuning in case that the synchronized clock becomes

28

misaligned due to environmental variation. This waiting period can be estimated by

assuming that the synchronized clock drifts away by 100ppm. For example, it takes at

least 100 clock cycles for the locked clock edges to differ by 0.0001 at 200MHz.

The tuning resolution of the fine loop FSM also determines the input and

output range of the ΔΣ modulator. The input comes from the delay_step variable in

the fine loop FSM, which are digits from
2
N to -

2
N . It will be scaled to 0~3 through

the quatnizer, and then added with the adr_ctrl signal (0 or 1) to control the fine loop

phase selection among ~ . 7P 11P Figure 3-13 indicates the design of the 2-bit quantizer,

of which the threshold values and the quantized feedback values are also

programmable.

2
N

2
N

Figure 3-13: Design of the quantizer in ΔΣ modulator

3.3 System Integration and Simulation

The whole system behavior can be best illustrated through an example shown

below. In general, assuming the REF_CLK is initially lagging the EXT_CLK by

10
REFTDΔ + ⋅N , where

10
REFT is the delay of each delay cell, the coarse loop will select

 as the Coarse_CLK. This will reduce the phase difference between the final output NP

29

clock and the REF_CLK down to DΔ . The fine loop is then activated to modify the

delay of each cell from
10
REFT to REFT

X
, in order to absorb this difference of . This

is achieved through the delta-sigma modulator, which is able to generate fractional

division ratio X with fine delay resolution. The total delay needed for clock

synchronization is best described by the following equation,

DΔ

 (
10 20 10
REF REF REF REF

C
T T T TD N N V) N

X
Δ + ⋅ = ⋅ = − ⋅ + ⋅ (3.9)

where the total delay can also be expressed in terms of the control voltage, . CV

The number of steps required to acquire synchronization in the fine loop

depends on the operating clock frequency. For 200MHz clock frequency, 10 steps are

needed with each step finely adjusting the clock phase by 50ps. When the fine loop is

first activated, the input to the delta-sigma modulator (the delay_step variable) is first

reset to 5 and reduced by 1 subsequently. The phase difference between the output

clock and the REF_CLK is examined after every adjustment of the delta-sigma input to

determine whether there is any phase change. If the phase difference changes from

phase lagging to phase leading, clock synchronization is achieved and the subsequent

adjustment is stopped. Otherwise, the fine loop continues its operation.

The required fractional division ratio X determines the expected value of the

delay_step variable. However, due to the finite value of the delay_step, it will result in

quantized fractional division ratio X̂ . The relationship between the input variable

delay_step, the fractional division ratio (X), and the quantized fractional division ratio

(X̂) is shown as follows,

 _ ˆ0.5
10B

delay stepX P X≈ + + = (3.10)

30

where is 8 if the 4 feedback phases in the DLL is ~ , and is 9 if the 4

feedback phases in the DLL is ~ .

BP 7P 10P BP

8P 11P

Table 3-3 shows the desired values of the different variables for different initial

phase difference with operating clock frequency of 200MHz.

Table 3-3: Testing cases of the system
Initial

delay error
(ns)

Coarse
selection

(N)
NP

Required
division ratio

X

Quantized
division
ratio X̂

Final state of
the delay_step

variable
Vc

2.25 4 8.88 9 4 -0.25

2.75 5 9.09 9.1 -4 -0.2

3.25 6 9.23 9.3 -2 -0.17

3.75 7 9.33 9.4 -1 -0.14

4.25 8 9.41 9.5 0 -0.12

4.75 9 9.47 9.5 1 -0.11

0.25 10 9.52 9.6 1 -0.1

0.75 11 9.56 9.6 0 -0.09
1.25 12 9.6 9.6 0 -0.08
1.75 13 9.63 9.7 0 -0.07

As an example, if the initial delay error is set to 3.75ns, the system simulation

shows that is chosen as the Coarse_CLK. This is verified by the mux variable

shown in

7P

Figure 3-14. It should be pointed out that the mux value of 0~9 corresponds

to clock phase of ~ respectively. 4P 13P

Figure 3-14: Simulation of coarse loop

The operation of the fine loop is verified through the simulated delay_step and

Vc, as illustrated in Figure 3-15. It was shown that and the delay_step variable and Vc

31

lock to -1 and -0.13 respectively once clock synchronization is achieved. In addition,

the simulated X̂ can be obtained by averaging out the output of the delta-sigma

modulator, and is found to be 9.43 from the simulation. This is comparable to the

estimated X̂ and Vc of 9.4 and -0.14 respectively from Table 3-3 .

-0.05
-0.1

-0.15
-0.2

0

5

0

-5

Figure 3-15: Simulation of fine loop

The various clock phases before and after clock synchronization are displayed

in Figure 3-16 and Figure 3-17 respectively. It is demonstrated that the desired output

clock locked to the REF_CLK after clock synchronization. 7P

P10

P7

EXT_ CLK

REF_ CLK
Figure 3-16: DLL clock before synchronization

32

P10

P7

EXT_ CLK

REF_ CLK
Figure 3-17: DLL clock after synchronization

In next chapter, the CMOS implementation of this fractional-N DLL

architecture will be discussed in detail.

33

CHAPTER 4 CMOS IMPLEMENTATION

This fractional-N DLL is implemented in 0.35 mμ CMOS technology. The

implementation includes both analog circuit design and digital synthesis. The operating

frequency range covers from 10MHz to 200MHz, with 3V power supply.

4.1 Analog Circuit Design

4.1.1 Delay Cell

Voltage controlled delay line consists of cascoded delay cells, which is one of

the most critical blocks in DLL system, because the performance of the VCDL

considerably affects the stability and jitter performance. Unlike in all-digital DLL

system where basic inverters are simply used as the delay cell, analog DLLs employ

many different configurations for their delay cells. Generally, it can be divided into

single-ended type and differential type. For example, Figure 4-1 shows a digital RC

delay cell [18] and a current starved single-ended delay cell [19], respectively. But

differential delay cells are more widely used because of their inherent advantages, such

as better immunity to common-mode noise and improved spectral purity.

Typically, the differential delay cell involves a source coupled differential pair

with two load elements and a biasing tail current source. An ideal tail current source

would be highly immune to static supply noise and cost small voltage headroom. The

load element determines the relationship between delay time, control voltage, the range

of output swing, and so on. It can be implemented either in a diode-connected

configuration or in a triode-connected configuration, as shown in Figure 4-2. The

diode loads have simple structure but consume voltage headroom, so the output

34

voltage swing is limited. In addition, the load transistors work in saturation region, so

the output DC voltage is not controllable. The triode loads work in linear region, thus

provide wider output voltage swing. However, the drawback is the difficulty to

maintain the load transistors in linear region.

Figure 4-1: Other VCDL delay cells

Vin+ Vin-

Vout+

Vctrl

Vbias

Vctrl

Vout-

Vin+

Vout+

Vin-

Figure 4-2: Differential delay cell with diode loads and triode loads

The schematic of differential delay cells in this work is a source coupled pair

with symmetric loads, which is an improvement of the above two configurations. In

Figure 4-3, the load element is comprised of an equal-sized PMOS pair in shunt, one

being diode-connected (M3) and the other one being active load (M4) controlled by

. The delay is proportional to its RC time constant, of which the effective load

resistance can be adjusted by . It has been proved that this symmetrical load can

provide good control over the cell delay as well as high dynamic supply noise rejection.

The simple NMOS current source is biased by , which is less susceptible to static

supply and substrate noise.

BPV

BPV

BNV

[6]

35

BPV

BNV

Figure 4-3: Differential delay cell with symmetric loads

The load resistance can be calculated as

 2 4
3 3

1
L ds ds

m m

R r r
g g

=
1

≈ , (4.1)

where =3mg (/) ()p ox P DD BP TPu C W L V V V− − .

Thus, the relationship of delay time for each stage with respect to is BPV

 1
(/) ()

L
D L L L

mp p ox P DD BP TP

CT R C C
g u C W L V V V

= = ⋅ =
− −

. (4.2)

Notice that is the effective load capacitance which combines all the parasitic

capacitance of M2, M3 and M4, also including gate capacitance from other load

components, such as the next delay stage and multiplexer.

LC

Another consideration is the gain of this differential pair. Since the VCDL is a

cascode chain of delay cells, the gain of each stage must satisfy A>1, to guarantee no

signal loss. However, if the gain is too high, the thermal noise from previous stage is

also amplified, and hence the timing error. Therefore, the gain is kept as small as

possible with a sufficient safety margin, including some process variation tolerance.

It is considerably designed that A=1.5, which can be derived as

36

(/)1
(/)

n ox N DN
mn

mp p ox P DP

u C W L I
A g

g u C W L I
= ⋅ = . (4.3)

where, DNI = 2 DPI . When the differential pair is fully switched, the output voltage

swing for each cell is

 2()SW DD BPV V V= − (4.4)

The delay time is simulated at 200MHz in typical case, as shown in Figure 4-4.

By adjusting , the delay time BPV
10
REFT (500ps) is achieved at =1.8V. The output

voltage swing (peak to peak) is 2.35V.

BPV

Figure 4-4: Simulation of delay cell at 200MHz

Since the relationship of DT and is nonlinear, simulation results are shown

in

BPV

Table 4-1. For different operating frequency, the related nominal delay (DT =
10
REFT)

can be achieved by varying . In BPV Figure 4-5, DT increases dramatically when

goes close to

BPV

DD TPV V− .

37

Table 4-1: Simulation results of DT and BPV

CLKF (MHz) Nominal DT (ns) BPV (V)

10 10.4 2.235

50 1.98 2.1

100 1.02 2

200 0.5 1.8

400 0.25 1.48

BPV

DT

Figure 4-5: Nonlinear relationship of vs. BPV DT

Since is the loop filter output voltage, its variation will transfer to the jitter

noise of the delay cell. The minimum delay tuning resolution should be larger than this

clock jitter. From the system simulation, the peak-peak variation of is 0.02V. So

the peak-peak jitter which per delay cell can tolerate is around 20ps (multiplied by the

delay gain, 1ns/V)

BPV

BPV

4.1.2 Replica Bias

Replica bias technique is employed to provide the control voltage and the

bias current for the delay cells. As shown in

BPV

Figure 4-6, the main structure is two

duplicated circuits of half the delay cell, one as replica stage and the other as CTRLV

38

buffer stage. A differential op-amp keeps tracking the voltage at the load element to

 with feedback, which keeps the PMOS pair (M1) in saturation region.

Meanwhile, the output of op-amp set biasing voltage to NMOS current source

(M3) so that the buffer stage and all the following delay cells have the same

operation condition. Rather than directly using for delay cells, the control

voltage is buffered as to isolate replica stage from the load effect by delay cells.

Another advantage is that this simple current source is independent of the supply

voltage and hence has high static supply noise rejection.

CTRLV

BNV

CTRLV

CTRLV

BPV

BPV

BNV
+

-

CTRLV
M1

M2

SSI M3

Replica
Stage

 Buffer
 Stage

CTRLV

VDD

Figure 4-6: Schematic of replica bias

To achieve wide tuning range of , a wide-swing differential op-amp is

used to extend the allowable input voltage range.

CTRLV

[20] It uses two complementary input

differential amplifier stages in parallel, to ensure sufficient gain when the input DC

voltage is either too high or too low. The minimum gain is designed to be 40dB for

offset consideration.

39

40

CTRLPractically, for a specific reference frequency, V should cover certain range

to fulfill the required delay, REFT
X

, where X is 8~10 as calculated before. Taking

= 200MHz as an example, the desired delay time for each stage is 500ps~625ps. From

Equation

REFF

(4.2), have to reach 1.8V~1.91V. The control voltage may need minor

adjustment because the load effective capacitance is not a constant for the whole

frequency range, which is finally simulated in

CTRLV

Table 4-2. The table also shows the

current that flows through the replica stage, which is mirrored to all the delay cells.

Theoretically, the current satisfies the following equation as long as the PMOS load

(M1) stays in saturation region.

 2
32 2 () ()SS DP p ox DD CTRL TP

WI I u C V V V
L

= = − − (4.5)

When gets quite close to CTRLV DD TPV V− , the PMOS load will fall into sub-threshold

region, consuming very little current.

Table 4-2: Simulation results of range CTRLV

REFF (MHz) N DT (ns) CTRLV (V) SSI (Aμ)

10 0.25 1.47 546
400 8 0.31 1.62 374

10 0.49 1.8 198
200 8 0.63 1.9 127

10 1.02 2 74.4
100 8 1.22 2.03 60

10 1.98 2.1 32.6
50 8 2.55 2.14 21.3

10 10.5 2.233 5.09
10 8 12.5 2.242 4.3

In addition, 20% design margin is included for the delay cell for process

variation consideration.

4.1.3 Phase Detector

In the fine loop, phase detector compares the phase error of the REF_CLK and

the DLL_CLK, therefore produces pulse signal to control the charge pump. The

conventional structure, as modeled in behavior level, has the limitation of initial

condition.[21] For both input clocks, the rising edge generates a short pulse (UP or

DN), and the difference between their pulse widths determines the leading or lagging

relationship. However, in DLL system, the first rising edge of the DLL_CLK is

feedback to compare with the second rising edge of the REF_CLK, as shown in Figure

4-7. To avoid that PD falsely compares the DLL_CLK with the original rising edge of

the REF_CLK, as illustrated in Figure 4-8, a modified PD structure is introduced with

a start-up circuit.

Figure 4-7: Desired timing of PD in DLL

41

Figure 4-8: False comparison of conventional PD

In Figure 4-9, an additional D flip-flop is placed at the first stage of a

conventional phase detector, and this configuration functions correctly for any initial

condition. When the START signal is low, the PD is disabled and the RDY signal is

low too. Once the START signal goes high, the PD is enabled. At the 1st rising edge of

the REF_CLK, the RDY signal will be latched to high. It should be pointed out that the

whole PD works similarly to the conventional PD once the RDY signal is high.

Therefore, this start-up structure successfully hides the 1st rising edge of the REF_CLK

for false comparison.

Figure 4-9: Schematic of PD with start-up function

Figure 4-10 shows the simulation result when pre-defined delay error is set

between the REF_CLK and the DLL_CLK.

42

Figure 4-10: Simulation of PD with start-up function

When the REF_CLK and the DLL_CLK are in phase, the pulse width of UP

and DN are the same, which is also the shortest pulse that UP or DN could have. This

pulse width is designed to be around
5
REFT to avoid deadzone problem.

4.1.4 Charge Pump

Charge pump is the block following phase detector to convert the phase

difference to current. Figure 4-11 illustrates the schematic of the charge pump. The UP

and DN signal from the phase detector switch on or off the charge pump current. When

either UP or DN is high, CPI is charging or discharging the loop filter, and hence

is increasing or decreasing, correspondingly.

CTRLV

43

UP

_B UPV

DN

_B DNV

CPI
CPI

Figure 4-11: Schematic of charge pump

Since covers a very wide range, high swing current mirrors are used in

the schematic (

CTRLV

Figure 4-11). The current CPI is controlled by MOS transistor switches,

M2 and M4. They are placed away from the charge pump output such that the

switching won’t cause severe glitches to the output. In this configuration, the voltage

swing at CP output is from 6 42 DSAT DSV V+ to 5(2)DD DSAT DSV V V 2− + .To minimize the

headroom, the size of M2 and M4 should be large.

To achieve the highest possible swing and to track the process variation, the

bias voltage of _B UPV and are generated by the cascode biasing circuit as shown

in

_B DNV

Figure 4-12. In addition, dummy switches are used to provide better matching.

44

_B DNV

_B UPV

Figure 4-12: Schematic of cascode biasing

The charge pump current CPI is also mirrored and scaled from replica bias SSI ,

but it is programmable to achieve adaptive bandwidth for wide operation range, which

is designed according to
REF

BW
F

=
1

CP DLI K
C

= 1
10

. In order to maintain this ratio, CP DLI K

is required to be constant so that the bandwidth of this DLL system goes adaptive with

different reference frequency. An obvious choice is to make CPI inversely proportional

to DLK . So the inverse relationship between SSI and DLK are desired to achieve the

above objective. However, this relationship is far from ideal, and some proper scaling

needs to be introduced.

With the scaling factor α , CP SSI Iα= results in the dotted curve in Figure 4-13.

For the operating frequency range of 10MHz~400MHz, CPI is designed to increase

discretely with 4 different values of α to keep the ratio close to 0.1. The modified

relationship is CP SSI S Iα= ⋅ ⋅ , shown as the solid line in Figure 4-13, which displays

better adaptive feature,

45

REF

BW
F

REFF

Figure 4-13: Simulation of adaptive bandwidth

This programmable current generation circuit is implemented as shown in

Figure 4-14. The current comes from in replica bias, and is scaled by the factor BNV α .

The factor S is tunable through the digital switches S0~S2.

BNV

CPI

Figure 4-14: Schematic of charge pump current generator

The relationships between and REFF CPI are tabulated in Table 4-3. The scaling

factor α is simulated to be 0.2, in order to satisfy
REF

BW
F

= 1
10

 . The charge pump

current has mismatch in the UP and DN branch, but within acceptable error range.

46

Table 4-3: Comparison of programmable CPI

CPISimulated () AμDesired
REFF SSI

47

(MHz) (Aμ) S() 2 1 0S S S CPI ()Aμ I (UP) I (DN)

400 546 3(011) 4(100) → 413 416.1 413.6

200 198 2(010) 3(011) → 119 118.8 119.5

100 74.4 1(001) 2(010) → 30 29.7 29.9

50 32.6 1(001) 6.5 6.56 6.52

10 5.09 1(001) 1 1.09 1.10

4.1.5 Adaptive Filter

The loop filter is designed with one resistor and two capacitors, as shown in

Figure 3-11. Also, the system level analysis points out that the value of , and R

affects the two poles in the frequency domain. From the adaptive bandwidth property

discussed before, is constant and chosen to be 5pF. On the other hand, the second

pole is also desired to be adaptive with different reference frequency (

1C 2C

1C

2P REFFω ∝).

From last section, it is shown that 1Pω can be made adaptive, by exploiting the

relationship between SSI DLK and . Similar idea is adopted to adaptively tune 2Pω

location according to the operating frequency. As the operating frequency gets slower,

DLK increases whereas SSI decreases. In order to reduce 2
2

1
P RC

ω = , either R or

can be increased accordingly. In this work, is kept constant and MOS resistor is

employed to vary

2C

2C

R . It is found that MOS resistance is inversely proportional to the

square root of the current. Hence, by making the MOS resistor tracks the SSI , the goal

of tuning for different operating frequency will be achieved. 2Pω

BNV

CTRLV

CPV

CPV

Figure 4-15: Schematic of adaptive filter

The circuit implementation of such adaptive filter with variable active resistor

is constructed in Figure 4-15. A PMOS transistor, M2, acts as the resistor, and its gate

is tied with the gate of diode-connected M1. The drain of M2 is connected to the

output of charge pump, while the drain of M1 is also kept to through the feedback

of an op-amp. The gain of op-amp is at least 40dB in order to maintain error

smaller than 0.01. In this way, M1 and M2 have the same gate-drain voltage.

CPV

CPV

Thus, the variable resistor is calculated as:

2 2

1
(/) ()p ox GS TP

R
u C W L V V

=
−

 (4.6)

48

where = , and tracks the current 2GSV 1GSV 1GSV SSI 1DI SSI. The is chosen to be 0.02 to

achieve reasonable and . 2CR

In Table 4-4, the variable resistor is simulated to compare with the calculated

value. When the filter current drops at low reference frequency, the resistance is quite

different from the expectation due to the sub-threshold operation of M1. However, the

phase margin doesn’t degrade significantly.

Table 4-4: Comparison of variable resistor in adaptive filter

49

REF
Filter current

(
Designed R

(
Simulated R

(
F (MHz) PM(°)) Aμ kΩ kΩ))

400 10.8 7 7.2 69

200 3.96 11.4 12.6 72

100 1.49 18.6 29.2 67

50 0.65 28 56.8 77

10 0.1 72 308 63

4.1.6 Other Analog Blocks

The coarse loop PD is implemented in a straightforward manner as described in

Figure 3-3, and its operation is verified by simulation.

Two multiplexers are required for phase selection. Since the MUX has

differential input and output, it can be implemented using the basic delay cell in Figure

4-4, except that M1 is not connected to replica bias but works as a switch. The

switches are controlled by the digital bits from FSM. According to system block

diagram in Figure 3-1, a 10-to-1 MUX is connected with the 10 bits output variable

(mux[9:0]) of the coarse loop FSM, and a 5-to-1 MUX is connected with the 5 bits

output variable (delay_step[4:0]) of the fine loop FSM.

4.2 Digital Synthesis

4.2.1 Finite State Machine

The coarse loop FSM and fine loop FSM are synthesized into one block. They

are coded with two individual modules, FSM_COARSE and FSM_FINE, which are

instantiated in the top level module, FSM, as shown in Figure 4-16.

hold en
updn mux

en
adr_ctrl
trgr_ctrl

Coarse_CLK

Fine_CLK

mux[9:0]FSM
FSM_COARSE FSM_FINE

hold
delay_step[4:0]

Figure 4-16: Schematic of FSM

The input ports are updn and hold signals from the coarse phase detector,

which tells FSM the phase relationship between the Coarse_CLK and the REF_CLK.

The output ports are mux[9:0] from FSM_COARSE and delay_step[4:0], adr_ctrl,

trgr_ctrl from FSM_FINE. It has been clearly discussed before about the connection of

each port and their functions. Note that the Fine_CLK is much slower than the

Coarse_CLK because every state update of the FINE_FSM needs much longer time for

the whole loop to settle down.

The RTL synthesis process is constrained to meet the target in Table 4-5. The

coarse loop clock period is 5ns and the fine loop clock period is 50ns. The output port

is set to drive a maximum 0.5pF load. For setup time, 40% of the clock period is

chosen as the timing budget. The synthesized layout is shown in Figure 4-17.

Table 4-5: Synthesis constraints for the FSM

Clock period FSM_COARSE: 5ns FSM_FINE: 50ns

Clock skew 0.5ns

Driving cell “BUF2”

Output load 0.5pF (maximum)

Setup timing FSM_COARSE: 2ns FSM_FINE: 20ns

Hold timing FSM_COARSE: 0.3ns FSM_FINE: 0.3ns

50

Figure 4-17: View of FSM layout

Pre-layout and post-layout simulations are compared to verify the function of

the FSM. The following algorithm is tested to verify the design, with the waveform of

simulation results illustrated in Figure 4-18.

Step 1: Reset the FSM block. All the variables are set to initial states in both

FSM_COASE and FSM_FINE. The coarse loop starts to work immediately, and the

shift register, mux, continuously move left or right according to the updn signal.

Step 2: Set the hold signal to be high so that the coarse loop is frozen. After a

while, which is controlled by the FSM_COARSE internal counter, the en signal goes

to high and enable the fine loop.

51

Step 3: The fine loop starts to work. The 4-bit variable, delay_step, changes

from 0101(5) to 1011(-5). Once it reaches 1011, the delay_step is reset to 0101. At the

same time, the adr_ctrl and trgr_ctrl signals change from 1 to 0.

Step 4: When the fine tuning continues on until hold = 0 again, the FSM_FINE

starts the internal timer, so the delay_step state is fixed until the end of one timer cycle.

Then, the hold signal is checked again and the delay_step state is adjusted accordingly.

Figure 4-18: Simulation of FSM

4.2.2 Delta-sigma Modulator

From the structure of the delta-sigma modulator, it can be synthesized by

instantiating the modules of adders, accumulators, PN generator and quantizer, as

shown in Figure 4-19. ADD1 and ADD2 are combinational logic blocks, while

ACCUM1, ACCUM2, PN GEN and QUANTIZER are sequential logic blocks. The

clock is triggered by the FSM output signal, trgr_ctrl, which selects one of the delay

line output clocks. The input ports are mod_in and adr_ctrl from the FSM output,

delay_step and adr_ctrl, respectively. The output port is mod_out[4:0], which

connects to the 5-bit fine loop MUX for the feedback clock selection.

52

Figure 4-19: Schematic of modulator

Under the top level, it should be pointed out that both ACCUM1 and ACCUM2

are integrators, but their functions are slightly different, according to their discrete-

time models in Figure 3-6. The PN sequence is simply generated from the LSB of a

24-bit shift register, which has certain configuration to achieve the maximum sequence

length. The input of QUANTIZER takes the effect of dithering and the control signal,

adr_ctrl.

The RTL synthesis constraints are similar to that for FSM block. Since the

clock period is also 5ns, the timing requirement, such as setup and hold time, is set up

similarly. There is minor violation in worst input delay (setup time), but it can be

eliminated after clock tree generation in the place&route step, which produces the

layout as shown in Figure 4-20.

53

Figure 4-20: View of modulator layout

 The testing algorithm and corresponding waveform of simulation results are

shown in Figure 4-21.

Step 1. Initial values are set up. The output variable, mod_out, is initialized to

select the DLL_CLK to be the 10th clock from the delay line. The input data, mod_in,

is set to 5(0101).

Step 2. After the reset signal goes high, the modulator starts to work. The PN

sequence is comprised of 0 and 1 in a random order. It can be seen that the mod_out

state varies randomly to control the DLL_CLK selection.

54

Step 3. Collect the data array from the mod_out sequence and take average. For

this example, the mean value of the mod_out sequence is 4.93, which is very close to

the mod_in value.

Figure 4-21: Simulation of modulator

Other test cases of different mod_in and adr-ctrl values are also simulated to

verify the function of this delta-sigma modulator.

55

56

CHAPTER 5 CONCLUSION

This fractional-N DLL for clock synchronization is proposed in this project.

The main benefits are wide operation range, infinite phase shift and low jitter

performance. It borrows the idea from fractional-N PLL to reduce noise and jitter. The

architecture is based on dual loop DLL: the coarse loop selects the closest clock to the

reference clock and the fine loop further aligns these two clocks. But a delta-sigma

modulator is applied to the fine loop to randomize the feedback clock. This technique

has the feature of noise shaping, so the noise is shifted to higher frequency band, and

can be filtered out by the loop filter. Moreover, the operation algorithm avoids extra

delay line in the fine loop, which saves power and area compared to previous work.

Behavior model is built to verify the functions. CMOS implementation for

analog circuit and digital synthesis has been discussed. For wide operating frequency

range, the adaptive loop filter has been proposed. The finite state machine is designed

to share the delay line for both coarse phase selection and fine tuning. Table 5-1 gives

the performance comparison among the previous work and this proposed DLL.

Table 5-1: Performance comparison

 [6] [10] [7] [23] [13] This work

Process 0.5um 0.8um 0.35um 0.35um 0.18um 0.35um

Power supply 3.3V 3.3V 3.3V 3.3V 1.8V 3V

Frequency
range

0.0025M-
400MHz

0.08M-
400MHz

62.5-
250MHz

6M-
130MHz

60M-
760MHz

10M-
200MHz

Jitter (pk-pk)
262ps@
250MHz

68ps@
250MHz

44ps@
250MHz

24ps@
130MHz

39ps@
760MHz

40ps@
200MHz

Phase
resolution 100ps 40ps <40ps X X <50ps

~1130
cycles Lock time X X X X ~400 cycle

>28.4
Power mW 102mW 41.6mW 132mW 63mW ~120mW

57

Area 1.18mm 2 2 2 2 20.8 mm 0.2 mm 0.45mm 0.19mm N.A.

Noted in the table, the maximum operation frequency is 200MHz, which is

limited by the digital synthesized blocks. From Chapter 4, the analog blocks work

properly up to 400MHz. So, high speed performance could be realized if the digital

blocks are customer designed. Besides, the phase resolution will be further improved

by increasing the fine tuning steps. It can also be modified to achieve programmable

tuning resolution.

The future work is to verify the pre-layout simulation with all frequency range

and variation of corners, supply voltage and temperature. Then, this work will be

fabricated in 0.35um CMOS technology.

58

REFERENCES

[1] Behzad Razavi, Phase-locking in high-performance systems: from devices to

architectures, Wiley-IEEE Press, New Jersey, 2003.

[2] P. M. Gardner, “Charge-pump phase-lock loops”, IEEE Transactions on

Communications, vol. COM-28, pp.1849-1858, Nov. 1980.

[3] B. Miller, B. Conley, “A multiple modulator fractional divider”, Annual IEEE

Symposium on Frequency Control, vol. 44, pp. 578-583, Jun. 1991.

[4] T. A. Riley, M. A. Copeland and T. Kwasniewski, “Delta-sigma modulation

in fractional-N frequency synthesis”, IEEE Journal of Solid-State Circuits, vol. 28, No.

5, pp. 553-559, May. 1993.

[5] Cheng Jia, “A delay-locked loop for multiple clock phase/delays generation”,

Ph. D Thesis, Georgia Institute of Technology, Dec. 2005

[6] John G. Maneatis, “Low-jitter process-independent DLL and PLL based on

self-biased techniques”, IEEE Journal of Solid-State Circuits, vol. 31, No. 11,

pp.1723-1725, Nov. 1996.

[7] Yongsam Moon et al., “An all-analog multiphase delay-locked loop using a

replica delay line for wide-range operation and low-jitter performance”, IEEE Journal

of Solid-State Circuits, vol. 35, No. 3, pp.1021-1027, Mar. 2000.

[8] A. Efendovich, Y. Afek, C. Sella and Z. Bikowsky, “Multifrequency zero-

jitter delay-locked loop”, IEEE Journal of Solid-State Circuits, vol. 29, No. 1, pp.67-

70, Jan. 1994.

[9] W. Garlepp et al., “A portable digital DLL for high-speed CMOS interface

circuits”, IEEE Journal of Solid-State Circuits, vol. 34, No. 5, pp. 632-635, May. 1999.

[10] Stefanos Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked

loop”, IEEE Journal of Solid-State Circuits, vol. 32, No. 11, pp. 1683-1692, Nov. 1997.

[11] Y. S. Song and J. K. Kang, “A delay locked loop circuit with mixed-mode

tuning”, The First IEEE Asia Pacific Conference on ASICs, pp. 347-350, Aug. 1999.

[12] A. Efendovich, Y, Afek, et al., “High resolution multi-frequency digital phase

locked loop”, IEEE International Symposium on Circuits and Systems, pp. 1128-1131,

May. 1993.

[13] S. J. Bae, et al., “A VCDL-based 60-760MHz dual-loop DLL with infinite

phase-shift capability and adaptive-bandwidth scheme”, IEEE Journal of Solid-State

Circuits, vol. 40, No. 5, pp.1119-1129, May, 2005.

[14] M. H. Perrott, M. D. Trott and C. G. Sodini, “A modeling approach for Σ -Δ

fractional-N frequency synthesizers allowing straightforward noise analysis”, IEEE

Journal of Solid-State Circuits, vol. 37, No. 8, pp. 1028-1034, Aug. 2002.

[15] C. H. Heng and B. S. Song, “A 1.8-GHz CMOS fractional-N frequency

synthesizer with randomized multiphase VCO”, IEEE Journal of Solid-State Circuits,

vol. 38, No. 6, pp. 848-852, Jun. 2003.

59

[16] Richard Schreier, et al., Delta-Sigma Data Converters: Theory, Design, and

Simu-lation, pp.107-110, IEEE Press, 1997.

CMOS: Circuit Design, Layout, and Simulation[17] R. Jocob Baker, , pp. 379-382,

IEEE Press, 1998.

[18] S. Liu, J. H. Lee and H. W. Tsao, “Low-power clock-deskew buffer for high-

speed digital circuits”, IEEE Journal of Solid-State Circuits, vol. 34, pp. 554-558, Apr.

1999.

60

[19] I. A. Young, J. K. Greason, “A PLL clock generator with 5 to 110MHz of

lock range for microprocessors”, IEEE Journal of Solid-State Circuits, vol. 27, pp.

1599-1607, Nov. 1992.

[20] W. Sansen, et al., “A high-dynamic-range CMOS Op Amp with low-

distortion output structure”, IEEE Journal of Solid-State Circuits, vol. 22. No. 6, pp.

1683-1687, Dec. 1989.

[21] J. Christiansen, “An integrated high resolution CMOS timing generator based

on an array of delay locked loops”, IEEE Journal of Solid-State Circuits, vol. 31, No. 7,

pp. 952-960, Jul. 1996.

[22] C. H. Kim, et al., “A 64-Mbit, 640-MByte/s bidirectional data strobed,

double-data-rate SDRAM with a 40-mW DLL for a 256-MByte Memory System”,

IEEE Journal of Solid-State Circuits, vol. 33, No. 11, pp. 1703-1710, Nov. 1998.

[23] H. H. Chang, et al., “ A Wide-Range Delay-Locked Loop With a Fixed

Latency of One Clock Cycle”, IEEE Journal of Solid-State Circuits, vol. 37, No. 8, pp.

1021-1028, Aug. 2002

	Thesis_Cover.doc
	 ACKNOWLEDGEMENTS

	Thesis_amended.doc
	TABLE OF CONTENTS
	 LIST OF FIGUERS
	 LIST OF SYMBOLS AND ABBREVIATIONS
	ABSTRACT
	CHAPTER 1 INTRDUCTION
	1.1 Motivation of Fractional-N DLL
	1.1.1 PLL and DLL Comparison
	1.1.2 Fractional-N PLL Technology
	1.1.3 Motivation of Fractional-N DLL

	1.2 Thesis Contributions
	1.3 Thesis Organization

	CHAPTER 2 EXSITING DLL ARCHITECTURES
	2.1 DLL Fundamental
	2.2 Phase Interpolation DLL
	2.3 Dual Loop DLL

	CHAPTER 3 FRACTIONAL-N DLL ARCHITECTURE
	3.1 System Architecture
	3.2 Sub-block Models
	3.2.1 Voltage Control Delay Line
	3.2.2 Coarse Loop Control
	3.2.3 Delta-sigma Modulator
	3.2.4 Fine Loop Control

	3.3 System Integration and Simulation

	CHAPTER 4 CMOS IMPLEMENTATION
	4.1 Analog Circuit Design
	4.1.1 Delay Cell
	4.1.2 Replica Bias
	4.1.3 Phase Detector
	4.1.4 Charge Pump
	4.1.5 Adaptive Filter
	4.1.6 Other Analog Blocks

	4.2 Digital Synthesis
	4.2.1 Finite State Machine
	4.2.2 Delta-sigma Modulator

	CHAPTER 5 CONCLUSION
	REFERENCES

