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ABSTRACT 

This thesis presents on the design of a fractional-N delay locked loop (DLL) 

circuit for clock synchronization in the transceiver system. A delta-sigma modulator is 

integrated into the DLL design to achieve low noise and low jitter performance. It is 

verified through the behavior model simulation that this DLL can provide fine phase 

resolution, wide operation range and low jitter performance. The whole architecture is 

implemented in 0.35 mμ  CMOS and is able to handle input clock frequency range 

from 10MHz~200MHz. This novel technique can also be used for a variety of 

applications which requires accurate timing delay or fine tuning resolution. 
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1.1 

CHAPTER 1 INTRDUCTION 

As the speed performance of the VLSI systems increases rapidly, more 

emphasis is placed on suppressing the clock skew and jitter. Phase-locked loop (PLL) 

and delay-locked loop (DLL) have been typically applied to microprocessors, memory 

interface or communication IC, where the external signal is required to be 

synchronized to the local reference clock. However, the clock skew and jitter reduces 

the resolution of clock synchronization, especially in high speed system. In this chapter, 

a novel DLL architecture is introduced for low noise and low jitter purpose.   

 Motivation of Fractional-N DLL 

1.1.1 PLL and DLL Comparison 

Many applications requires accurate phase placement of clock or data signal. 

Although phase shift can be done by simply delaying the signal, it is not robust to 

variations of processing, voltage or temperature. For more precise control, a feedback 

loop is used to lock the output phase with respect to an input reference signal, which is 

the essence of PLL. Recently, DLL has emerged as an alternative to the traditional 

oscillator-based PLL. 

Compared with PLL, phase is the only state variable for DLL. With its first 

order loop characteristic, DLL has better stability and no cycle-to-cycle jitter 

accumulation.[1] The basic building blocks for both PLL and DLL are similar. This 

includes phase detector, charge pump and loop filter. The oscillator and divider in PLL 

are replaced with the variable-delay line, which are shown in Figure 1-1 and Figure 1-2, 

respectively. Obviously, DLL has simpler structure than PLL 



 
Figure 1-1: Block diagram of PLL 

 

 
Figure 1-2: Block diagram of DLL 

 
DLL is preferred for clock synchronization due to fine phase resolution and 

low jitter performance. Recently, it has been commonly employed in the ultra-

wideband (UWB) system, because the signals consist of short pulses with typical pulse 

width around nanoseconds and the phase resolution is very critical. 

1.1.2 Fractional-N PLL Technology 

The development of fractional-N PLL becomes an important area of PLL study. 

As shown in Figure 1-1, the basic integer-N PLL has a limitation that the output 

frequency is fixed to integer multiples of the reference frequency, reff . In other word, 

finer tuning resolution can only be achieved with lower reff .[2] Moreover, the 

reference frequency also determines the loop bandwidth of PLL, which is 

approximately reff /10. Thus, reducing reff  tends to decrease the maximum loop 

bandwidth, thereby increasing the settling time of PLL, the noise contributed by VCO, 

and so on.  
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To solve the problem caused by this fundamental tradeoff between bandwidth 

and tuning resolution in integer-N PLL, fractional-N PLL is created by incorporating 

additional digital circuitry, which allows accurate interpolation between integer 

multiples of reference frequency. In this way, tuning resolution depends on the design 

and algorithm of the digital circuitry, so considerable flexibility and programmability 

can be achieved.[3] The ΔΣ  fractional-N PLL, illustrated in Figure 1-3, takes the idea 

one step further by randomizing the division ratio to eliminate the spurious tones. [4]

 
 Figure 1-3: ΔΣ  fractional-N PLL

 
The success of  PLL has spurred our interest in incorporating similar idea to 

the DLL architecture to achieve the objective of fine tuning resolution and better jitter 

performance. 

ΔΣ

1.1.3 Motivation of Fractional-N DLL  

The previous discussion indicates that the high speed transceiver design 

triggers study and research on precise clock synchronization, which targets low jitter 

performance. DLL is considered as a proper structure because of its inherited 

characteristic with no cycle-to-cycle jitter accumulation. In addition, to further reduce 
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phase noise while improve tuning resolution, ΔΣ  fractional-N technology is applied to 

the DLL design in the form of using a delta-sigma modulator.  

The proposed DLL block diagram is shown in Figure 1-4. A delta-sigma 

modulator and some digital control circuit (finite state machine) are added to realize 

the concept of fractional-N DLL. 

 
Figure 1-4: Block diagram of fractional-N DLL  

 
The digital control circuit is implemented as finite state machine (FSM), which 

could be described in Verilog language and synthesized into digital circuits. The 

function of FSM and how it achieves programmable tuning resolution will be 

discussed in Chapter 3.  

1.2  Thesis Contributions 

The major contributions of this thesis include: 

1. A novel approach to design DLL by incorporating a delta-sigma modulator 

to achieve low jitter performance. 

2. A novel FSM algorithm for controlling the coarse tuning and the fine 

tuning. This simplifies the overall system architecture by sharing one delay line, and 

also helps achieving programmable tuning resolution. 
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1.3 

3. A novel circuit design of adaptive loop filter with programmable bandwidth 

and phase margin. 

 Thesis Organization 

The rest of this thesis is organized in the following manner. 

Conventional DLL architecture and its development are reviewed and studied 

in Chapter 2. This is followed by detailed discussion on the proposed fractional-N 

DLL architecture in Chapter 3. Chapter 4 presents the CMOS implementation on both 

the analog and digital circuitry. The final conclusion is summarized in Chapter 5. 

   

 



CHAPTER 2  EXSITING DLL ARCHITECTURES 

For clock synchronization, DLL performs better stability and lower jitter 

performance than PLL in the applications with no frequency variation. However, 

conventional DLL suffers from the problem of limited operating frequency range. A 

few works have been proposed to solve this problem. This chapter begins with the 

basic analysis of conventional DLL, such as the operation principle, design parameters 

and the origin of its limitation. Two most common architectures, phase interpolation 

DLL and dual loop DLL, targeting wide frequency range, precise delay control and 

low jitter performance would then be discussed.  
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2.1 DLL Fundamental 

To demonstrate the operation principle of DLL, the linearized model is shown 

in Figure 2-1. It is characterized by the phase detector gain PDK (rad), charge pump 

current CPI (A), loop filter transfer function , and the gain of delay line ( )F s

DLK (rad/V). The input and output delay time are denoted as  and , respectively. 

The input clock period is . 

ID OD

REFT [5]

PDK CP
CP

REF

IK
T

= ( )F s DLK
ID

OD

−

( )N s

   
Figure 2-1: Linearized model of conventional DLL 
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LFCConventional DLL employs a single capacitor  as the loop filter, which has 

the first-order transfer function 

 1( )
LF

F s
sC

= . (2.1) 

The close-loop behavior can be expressed by the following first-order transfer 

function, with low-pass characteristic.  

 ( )( )
1 1 ( )

G sH s
G s

=
+

1
1 Ns ω

=
+

 (2.2) 

In this equation, ( ) ( )PD CP DLG s K K F s K=  is the open-loop transfer function, and Nω  is 

the bandwidth of close-loop response. The loop is unconditionally stable since there is 

only one pole which contributes to 90 degree of phase lag.   

Assume a noise source introduced at the delay line output, so the noise transfer 

function is a high-pass response. 

 1( )
1 1 ( ) 1

N

N

sN s
G s s

ω
ω

= =
+ +

 (2.3) 

Compared with the signal transfer function which is low-pass response, the noise due 

to delay line is high-pass filtered.  

It should be pointed out that the loop bandwidth Nω  tracks the operation 

frequency REFω , which is derived below.  

 
2
PD DL CP

N REF
LF

K K I
C

ω ω
π

= ⋅  (2.4) 

The loop bandwidth is a critical design parameter. To achieve fast loop locking speed, 

Nω  should be set as high as possible. On the other hand, high frequency noise cannot 
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Nbe suppressed if ω  increases. The design guideline suggests a typical ratio of 1/10 for 

/N REFω ω . [6]

Although conventional DLL is preferred for its unconditional stability, low 

phase error accumulation and fast locking time, it encounters operation range problem. 

[7] The architecture of conventional DLL is shown in Figure 2-2. Assume the 

reference clock (REF_CLK) origins from the first rising edge, and the output of delay 

line (DLL_CLK) is the output clock through delay line.  

 
Figure 2-2: Conventional DLL architecture 

 
The normal operation of conventional DLL is illustrated in Figure 2-3. The 1st  

rising edge of the reference clock (REF_CLK) and its delay version (DLL_CLK) are 

indicated by the circle. The rising edge of DLL_CLK is then compared with the 2nd 

rising edge of the REF_CLK, which is indicated by the dark upward arrow. Depending 

on whether there is a phase lag or phase lead, an UP or DOWN control signal is 

generated correspondingly.  Once DLL is locked, the DLL_CLK is delayed by exact 

one clock period from the REF_CLK.  

However, this normal operation is only guaranteed when the initial DLL_CLK 

appears within the dotted line regions. When the initial DLL_CLK is outside this 



region, it is no longer locked by one clock period from the REF_CLK. The false 

locking problem is shown in Figure 2-4. 

 
Figure 2-3: DLL locking range 

 
 

    
Figure 2-4: False locking problem 
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To avoid false locking problem, the delay range is found as follows.  

,min
1
2 CLK DL CLKT T T< <  

 ,max
3
2CLK DL CLKT T T< <  (2.5) 

Or, it can be expressed in terms of , CLKT

 ,min ,max ,min ,max
2( , ) (2 ,
3DL DL CLK DL DLMax T T T Min T T< < )  (2.6) 

The above inequality indicates that the operating frequency can only be satisfied over a 

very limited range. 

The application of DLL always depends on its basic structure. In the first type, 

the input clock REF_CLK is compared with the delayed version of itself, as shown in 

Figure 2-5. Usually, the output DLL_CLK is used for clock generation and frequency 

synthesis. [8]   

 
Figure 2-5: The first type of DLL 

 
 

 
Figure 2-6: The second type of DLL 
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The second type of structure is shown in Figure 2-6, where the reference clock 

REF_CLK is compared with the delayed version of another external clock, EXT_CLK. 

There are often two input clocks, and the output clock, DLL_CLK, is used for clock 

synchronization or signal recovery. [9]  
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2.2  Phase Interpolation DLL 

Phase interpolation DLL architecture, shown in Figure 2-7, is proposed to 

overcome the false locking problem and attain wide operation range. Instead of only 

using the clock phase at the end of the delay line, multiple coarse clock phases are 

tapped from the middle of the delay line. The phase interpolator then produces a clock 

phase which is interpolated from the tapped coarse clock phases. 

• • •

 
Figure 2-7: Phase interpolation DLL architecture 

 
There are two loops commonly known as the core loop and the peripheral loop, 

The core loop is a conventional DLL which locks the delay line with one cycle period 

to generate accurate multiple phases. The peripheral loop generates the phase 

interpolated DLL_CLK to align with REF_CLK. The phase selection and interpolation 

are controlled by the finite state machine (FSM). 



The linearized model is shown in Figure 2-8. [10] Each of the two loops is 

modeled as a single pole system, in which the input, output and error variables are 

represented in delay (in seconds), similar to the analysis in chapter 2.1.  and  

are the input clocks, while  and  are the output clocks for the core loop and the 

peripheral loop, respectively. So  represents delay errors related to the supply and 

substrate noise.  and  are delay errors seen by the phase detector in each loop. 

EXTD REFD

OCD OD

ND

ECD ED

 

EXTD ECD
cp

s

ND

ND

REFD

OCD

ED OD
pp

s

 
Figure 2-8: Linearized model of dual loop DLL 

 
For the core loop, the input-to-output transfer function can be derived as 

 1
1

OC

EXT c

D
D s p

=
+

 (2.7) 

where cp  (in rad/s) is the pole of the core loop determined by the charge pump current, 

the phase detector and the delay line gain, as well as the loop filter capacitor. The 

noise-to-error transfer function is given as 

 
1

EC c

N c

D s p
D s p

=
+

 (2.8) 

This indicates that the delay errors ( ) related to supply and substrate noise ( ) 

can be tracked up to the loop bandwidth.  

ECD ND
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 For the peripheral loop, the input-to-output transfer function is similarly 

derived as 

 1
1

O

REF p

D
D s p

=
+

, (2.9) 

To understand the effect of external clock disturbance ( ) on the delay error of the 

peripheral loop ( ), the following expression can be attained.  

EXTD

ED

 
(1 ) (1 )

pE

EXT c p

s pD
D s p s p

=
+ ⋅ +

 (2.10)  

The delay error  related to supply and substrate noise  is given as follows. ED ND

 
(1 2 )

(1 ) (1 )
c pE

N c

s p s pD
D s p s

+

pp
⋅

=
+ ⋅ +

 (2.11) 

This equation establishes that there is no overshoot in the dual loop step 

response when the peripheral loop bandwidth is less than half of the core loop 

bandwidth. [10]

The design of phase interpolator in [8] performs a weighted average of the 

input phases. As shown in Figure 2-9, ideally, the FSM controls multiplexers to select 

two input phases, both of which drive an integrator and their output currents join in to 

charge a capacitor. For example, when α = 1, the integrator output depends only on 

CLK0; when α = 0.5, the current is split equally between two integrators and the 

output phase is at the middle of CLK0 and CLK1. By varying α , the phase 

interpolator produces a programmable DLL_CLK. 
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0Iα

1(1 )Iα−  
Figure 2-9: Design of phase interpolator  

 

This phase interpolation architecture effectively solves the false locking 

problem of conventional DLL. Since the DLL_CLK is able to switch smoothly 

between clock phases tapped from the delay line, it can increase or decrease a wide 

range of delay to gradually track the reference clock. In other word, DLL covers a 

larger operation frequency range. Besides, programmable tuning resolution can be 

obtained by proper design of the FSM algorithm and the weighted factor and so on.  

However, the digital phase interpolation limits the tuning resolution, because 

α  could only be a finite number of fractions between 0 and 1. In addition, more delay 

cells are needed to avoid slew rate problem in the phase interpolation. Both issues 

impact the jitter performance, the area and the power consumption of phase 

interpolation DLL. 

2.3 Dual Loop DLL 

Dual loop DLL is developed to improve jitter performance. In dual loop DLL, 

the digital controlled phase interpolation is replaced with another analog mode DLL to 

achieve continuous phase adjustment. 
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• • •
1P 2P NP

 
Figure 2-10: Dual loop DLL architecture 

 
The architecture of dual loop DLL is displayed in Figure 2-10. [11] It involves 

two loops, the coarse loop and the fine loop, to synchronize the external clock 

(EXT_CLK) with the reference clock (REF_CLK). The coarse loop provides the 

closest clock phase (DLL_CLK) to the REF_CLK. The fine loop is only activated once 

the coarse loop has finished the phase selection. Then, the selected clock is aligned 

with the reference clock through the fine loop, which consists of anther analog DLL. 

 The phase selection is shown in Figure 2-11. For example, if the size of the 

coarse DLL is 10, the rising edges of multiple clocks (dashed lines) are equally spaced 

in one cycle of EXT_CLK. Thus, for the displayed phase error between EXT_CLK 

and REF_CLK,  is selected as the DLL_CLK, which is the closest clock to 

REF_CLK.  

4P
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0P 1P 2P 3P 4P 10P• • •  
Figure 2-11: Phase selection of dual loop DLL 

 
The step response of the coarse tuning and the fine tuning are shown in Figure 

2-12. The left figure illustrates that the coarse tuning is digital mode, while the right 

figure illustrates that the fine tuning is analog mode. 

 

Figure 2-12: Coarse tuning and fine tuning 
 

The dual loop DLL overcomes the finite phase problem of the phase 

interpolation DLL. It also significantly reduces the settling time. However, the 

additional delay line in the fine loop deteriorates the phase jitter, and it costs area and 

power penalty too.  

In next chapter, the proposed architecture will be introduced to reduce the 

above limitation. 
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CHAPTER 3  FRACTIONAL-N DLL ARCHITECTURE 

This chapter presents the proposed fractional-N DLL architecture. The system 

is designed and proven through behavioral simulation using Matlab/Simulink.   
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3.1  System Architecture 

The fractional-N DLL employs a delta-sigma modulator to improve the jitter 

performance. Compared with the exiting DLL architectures, it doesn’t introduce the 

phase interpolator or the additional delay line. The structure is very similar to the dual 

loop DLL, as illustrated in Figure 3-1. 

 
Figure 3-1: System architecture of fractional-N DLL 

 
Initially, the core DLL is running at some pre-defined delay interval and 

generating multiple clock phases for the coarse loop. The coarse loop will select the 

clock phase that is closest to the reference clock (REF_CLK). During this period, the 

finite state machine and the Δ∑  modulator in the fine loop are disabled. Once the 

coarse loop acquires the closest clock phase (Coarse_CLK), it will enable the fine loop. 

This is realized by the digital block, Coarse FSM, to hold the state of Coarse_CLK 

selection, and send out logic control signal. The fine loop will then start adjusting the 



initial pre-defined delay interval through the delta-sigma modulator. This is based on 

the principle that the  modulator controls the feedback signal, DLL_CLK, from the 

VCDL, thus the effective number of delay cells. Another digital block, Fine FSM is 

designed to update the input of the 

Δ∑

Δ∑  modulator, then the DLL_CLK selection as 

well. It will stop when the Coarse_CLK, aligns with the REF_CLK, being locked with 

new delay interval. So the Coarse_CLK is the final output clock. 

The main advantage of this proposed DLL is that the selected clock phase is 

derived directly from the core delay line without additional phase interpolator or 

second delay line. This saves extra power consumption and chip area. Besides, the 

jitter accumulation mostly comes from the delay line, which can be reduced by sharing 

the delay line for both the coarse loop and the fine loop. In the next few sections, each 

block will be discussed in detail. 

3.2 Sub-block Models 

The main sub-blocks could be divided into the following categories: voltage 

control delay line (VCDL) and other coarse loop components, delta-sigma ( Δ∑ ) 

modulator and other fine loop components. Design specifications are described for 

each sub-block, with behavioral models built to verify their functions. 

3.2.1  Voltage Control Delay Line 

VCDL is the essential part of all DLL structures. It consists of a chain of delay 

cells which has one cycle of phase shift from the input to output. 
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The consideration about the size of delay line is the tradeoff between tuning 

resolution and power consumption. The phase interpolation based architecture in [12] 

uses up to 128 taps, which means 128 delay cells in the delay line.  Later works ( [11], 



[13] ) count on finite state machine to control fine tuning resolution, and hence 

significantly reduce the size of delay line. This work moderately chooses 13 delay cells 

and 10 taps of the delay line, as shown in Figure 3-2. The delay is the same for each 

cell, which is controlled by the voltage from the loop filter.  

10
T

10
T

10
T

10
T

10
T

• • •1P 2P

4P

10
T

10
T

10
T

10
T

9P 10P 11P 12P

10
T

10
T

8P7P 13P

3P

 
Figure 3-2: Design of the VCDL 

 

The relationship between control voltage ( ) and delay time for each cell (CV DT ) 

is designed as follows: 

 
20 10
REF REF

D C
T TT V= − ⋅ +  (3.1) 

where 
10
REFT  is the nominal delay, and DT  can change through  which ranges from   

-1 to 1. 

CV

Initially, all the delay cells are delayed by
10
REFT , and the output of the 10th 

delay cell, , is feedback to compare with the delay line input ( ) to form a 

conventional DLL. This will pre-define each delay cell with a delay time of 

10P 0P

10
REFT  for 

the coarse loop adjustment. 

Although 10 delay cells are needed to cover one clock period, ~  are 

designed for coarse phase selection rather than ~ . This will relax the performance 

4P 13P

1P 10P
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requirement of the delay cell and also simplify the fine loop control. The design trade-

off is explained with the two worst case considerations. 

For the first scenario, where ~  is chosen for coarse phase selection, the 

worst case occurs when  is selected as the coarse phase. In order for the fine loop to 

cover the whole tuning range (

1P 10P

1P

10
REFT ), the delay needs to be varied from 

10
REFT  to 2

10
REFT , 

which is 100% delay variation. In addition, the amount of delay cells required in the 

core loop will reduce from 10 to 5 through fine loop tuning. Both of the above 

conditions pose stringent design requirements on the delay cell and the fine loop 

control. 

For the second scenario, where ~  is chosen for coarse phase selection, the 

worse case happens when  is selected. Now, the delay cell only needs to vary from 

4P 13P

4P

10
REFT to 1.25

10
REFT

×  in order to cover the whole tuning interval, which is only 25% 

delay variation. Furthermore, the size of delay line after fine tuning will reduce from 

10 to 8, which costs less drastic change. 

Similarly, the ~  scenario is also analyzed. 9P 18P Table 3-1 compares the 

performance of different scenarios, and the ~  scenario is the best option for our 

design. 

4P 13P

Table 3-1: Comparison of different coarse phase selection scenarios  

Coarse phase 
selection 

Amount of delay cells in 
the core loop 

Total length of 
VCDL Delay variation

1P ~  10P 5~10 10 100% 

4P ~  13P 8~10 13 25% 

9P ~  18P 9~10 18 11.1% 
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3.2.2 Coarse Loop Control 

The coarse loop detector (PD) compares the VCDL output (Coarse_CLK) one 

by one with the reference clock, until the closest clock phase (leading the REF_CLK 

by less than 
10
REFT ) is found.  Figure 3-3 is the design of the coarse loop phase detector 

(PD). The delay cells are duplicated from the VCDL. The output signals are updn and 

hold.  

10
T

10
T

10
T

10
T

10
T

10
T

 
Figure 3-3: Design of the coarse loop PD 

 
If the rising edge of the Coarse_CLK leads that of the REF_CLK, the updn 

signal is set to high; otherwise, it is set to low. The timing relationship of the 

Coarse_CLK and the REF_CLK and the corresponding signals can be categorized into 

10 regions, illustrated as A~J in Figure 3-4 and Table 3-2. When the Coarse_CLK 

locates in region E, which means the Coarse_CLK leads the REF_CLK by less than 

10
REFT , the hold signal goes to high. This indicates that the closest clock phase to the 

REF_CLK has been selected.  
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A B C D E F G H JIREF_CLK

DLL_CLK

  
Figure 3-4: Timing of the coarse loop PD  

 
Table 3-2: The coarse loop PD output signals 

region  updn hold 

A 0 0 

B 0 0 

C 0 0 

D 0 0 

E 0 1 

F 1 0 

G 1 0 

H 1 0 

I 1 0 

J 1 0 
 

The function of the coarse loop FSM is to dispose the updn and hold signal. 

The updn signal will control the multiplexer for coarse phase selection; whereas the 

hold signal will freeze the coarse loop and kick start the fine loop. The whole operation 

is best illustrated with the flow chart shown in Figure 3-5. The variable mux controls 

the coarse loop multiplexer. The en signal will be sent to enable the fine FSM. 
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mux=0, en=0,
counter=0. 

en

hold counter

updn

mux+1mux-1

mux=mux,
counter+1.

en=1

counter=0

0
0

0

1

1

1 N

 
Figure 3-5: Flow chart of the coarse loop FSM 

 

3.2.3  Delta-sigma Modulator 

 This work employs a ΔΣ  modulator to generate an average clock (DLL_CLK) 

for phase comparison in the core DLL, with the similar idea of fractional-N PLLs. [14]   

Higher order ΔΣ  modulator offers better noise shaping but suffers from stability issue. 

So, a second order digital ΔΣ  modulator is designed, with the discrete model in Figure 

3-6. [15]  Integer arithmetic is developed with a 2-bit quantizer, and its output switches 

among four taps from the VCDL. The quantizer threshold, input and output range, 

quantized level, will be discussed later on, together with the fine loop design. 

1
z

z −
1

1z −

 
Figure 3-6: Discrete model of  ΔΣ  modulator 

 
Based on the model, the following transfer functions can be obtained,  
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 1( )
( )

Y z z
X z

−=  (3.2) 

 1 2( ) (1 )
( )

Y z z
Q z

−= −  (3.3) 

Simulation results verify that the output of the ΔΣ  modulator is an array of 

integers, as shown in Figure 3-7. The data array is collected and analyzed, with the 

average value very close to the input value. However, it is observed that the waveform 

is repeated in some pattern, which converts to spurious tones and degrades jitter 

performance. This can be seen from the spikes in spectrum waveform of frequency 

response. (Figure 3-8)  

 
Figure 3-7: Waveform of ΔΣ  output 

 
 
 

   
Figure 3-8: Frequency response of ΔΣ  output 

 
Dithering topology is introduced to solve this problem.[16] In this work, a 

pseudo random sequence is added to the quantizer to provide better randomness. The 
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gain needs to be carefully adjusted to produce sufficient dithering without affecting the 

desired average value. Figure 3-9 shows the dithered output frequency spectrum. 

Figure 3-10 is the corresponding output of the ΔΣ  modulator with dithering. The 

dither amount can be characterized by the gain and the length of the pseudo random 

sequence. In this figure, a 22-bit shift register is placed in feedback connection to 

generate pseudo random sequence, with the gain of one unit of quantization level  

   
Figure 3-9: Frequency response of dithered ΔΣ  output 

 

 
Figure 3-10: Waveform of dithered ΔΣ  output 

 

The  modulator output controls the fine loop MUX to switch among ~ . 

Because the quantizer is 2-bit, it requires a control signal to change the switching 

group between ~  and ~ . Similarly, the trigger clock for ΔΣ  modulator also 

needs to be changed for each switching group.  is used for the switching group 

~ ,  whereas  is used for the switching group ~ . 

ΔΣ 7P 11P

7P 10P 8P 11P

7P

8P 11P 6P 7P 10P
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3.2.4  Fine Loop Control 

After the coarse loop selects the correct Coarse_CLK, the fine loop is enabled 

to synchronize the Coarse_CLK with the REF_CLK. This is achieved by changing the 

input of  modulator, which in turns modify the delay of the Coarse_CLK.    ΔΣ

 
Figure 3-11: Fine loop DLL  

 
Figure 3-11 shows the structure of the fine loop.  The whole loop functions 

very similarly to the conventional DLL, but with one critical difference. The ΔΣ  

modulator controls the MUX to generate an average feedback clock, DLL_CLK. The 

feedback clock may not be exactly one clock period delayed. However, on the average, 

this DLL_CLK will have exactly one clock interval delay.  

The fine loop phase detector is a traditional phase frequency detector (PFD). 

[17] But this work requires higher order low-pass filter to suppress the high frequency 

noise introduced by the ΔΣ  modulator. In Figure 3-11, a 2nd order loop filter is 

designed with two capacitors and one resistor, and the transfer function is  

 2
1 2 1 2

1( )
( )

C

CP

VF s
I s C C R s C C

= =
+ +

.  (3.4) 

This in turns give rise to the following close loop transfer function, 
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 2
1 2 1 2

( )
( )

O REF CP DL

I REF CP DL

D F I KH s
D s C C R s C C F I K

= =
+ + +

.  (3.5) 

The above equation can be further simplified into  

 1 2

1 2

/( )
( / )( 1 )

k C C RH s
s k C s C R

=
+ +

,  (3.6) 

where k is , and the two poles are respectively designed as REF CP DLF I K 1 1/P k Cω =  and 

2 21P C Rω = . 

By assuming 2Pω >> 1Pω , which means the loop parameters, bandwidth (BW) 

and phase margin (PM) can be estimated as follows, 

 BW = 1 /P k C1ω =  (3.7) 

            PM = 1 1

2

90 tan ( )P

P

ω
ω

−°− .  (3.8) 

For the stability and settling time concern, it is required that the BW to be 

approximately 1
10

 of the reference frequency, and the PM to be around 65  

(

°

2Pω ≈2.2 1Pω ) to avoid overshooting problem. So, 1Pω ≈20MHz and 2Pω ≈45MHz at 

200MHz are estimated in behavior simulation.  

The fine loop FSM realizes the following working principle to adjust the 

DLL_CLK towards the REF_CLK. It increases DLL_CLK delay in small steps. The 

maximum delay interval for the fine loop (
10
REFT ) is further divided by N, so the tuning 

resolution becomes 
10

REFT
N×

, where N is programmable depending on the operating 

clock frequency.  
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Figure 3-12: Flow chart of the fine loop FSM 

 
As illustrated in the flow chart of the fine loop FSM (Figure 3-11), the variable 

delay_step represents this tuning resolution, within the range from 
2
N  to -

2
N . It is 

updated according to the hold signal. Once the hold signal jumps down, which means 

the Coarse_CLK becomes lag to the REF_CLK, the state of the delay_step stays fixed. 

If the delay_step variable reaches -
2
N  without the hold signal being low, the switching 

group needs to be changed by the signal, adr_ctrl and trgr_ctrl. After the fine tuning is 

finished, FSM starts an internal timer to check the hold signal every M clock cycles. 

This is used to release the fine tuning in case that the synchronized clock becomes 
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misaligned due to environmental variation. This waiting period can be estimated by 

assuming that the synchronized clock drifts away by 100ppm. For example, it takes at 

least 100 clock cycles for the locked clock edges to differ by 0.0001 at 200MHz. 

The tuning resolution of the fine loop FSM also determines the input and 

output range of the ΔΣ  modulator. The input comes from the delay_step variable in 

the fine loop FSM, which are digits from 
2
N  to -

2
N . It will be scaled to 0~3 through 

the quatnizer, and then added with the adr_ctrl signal (0 or 1) to control the fine loop 

phase selection among ~ . 7P 11P Figure 3-13 indicates the design of the 2-bit quantizer, 

of which the threshold values and the quantized feedback values are also 

programmable. 

2
N

2
N

 
Figure 3-13: Design of the quantizer in ΔΣ  modulator 

 
 

3.3  System Integration and Simulation 

The whole system behavior can be best illustrated through an example shown 

below. In general, assuming the REF_CLK is initially lagging the EXT_CLK by 

10
REFTDΔ + ⋅N , where 

10
REFT  is the delay of each delay cell, the coarse loop will select 

 as the Coarse_CLK.  This will reduce the phase difference between the final output NP
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clock and the REF_CLK down to DΔ .  The fine loop is then activated to modify the 

delay of each cell from 
10
REFT  to REFT

X
, in order to absorb this difference of .  This 

is achieved through the delta-sigma modulator, which is able to generate fractional 

division ratio X with fine delay resolution.  The total delay needed for clock 

synchronization is best described by the following equation, 

DΔ

 (
10 20 10
REF REF REF REF

C
T T T TD N N V ) N

X
Δ + ⋅ = ⋅ = − ⋅ + ⋅  (3.9) 

where the total delay can also be expressed in terms of the control voltage, . CV

The number of steps required to acquire synchronization in the fine loop 

depends on the operating clock frequency.  For 200MHz clock frequency, 10 steps are 

needed with each step finely adjusting the clock phase by 50ps. When the fine loop is 

first activated, the input to the delta-sigma modulator (the delay_step variable) is first 

reset to 5 and reduced by 1 subsequently.  The phase difference between the output 

clock and the REF_CLK is examined after every adjustment of the delta-sigma input to 

determine whether there is any phase change.  If the phase difference changes from 

phase lagging to phase leading, clock synchronization is achieved and the subsequent 

adjustment is stopped.  Otherwise, the fine loop continues its operation. 

The required fractional division ratio X determines the expected value of the 

delay_step variable. However, due to the finite value of the delay_step, it will result in 

quantized fractional division ratio X̂ . The relationship between the input variable 

delay_step, the fractional division ratio (X), and the quantized fractional division ratio 

( X̂ ) is shown as follows, 

 _ ˆ0.5
10B

delay stepX P X≈ + + =  (3.10) 
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where  is 8 if the 4 feedback phases in the DLL is ~ , and  is 9 if the 4 

feedback phases in the DLL is ~ . 

BP 7P 10P BP

8P 11P

Table 3-3 shows the desired values of the different variables for different initial 

phase difference with operating clock frequency of 200MHz. 

Table 3-3: Testing cases of the system 
Initial 

delay error 
(ns) 

Coarse 
selection  

(N) 
NP

Required 
division ratio 

X 

Quantized 
division 
ratio X̂  

Final state of 
the delay_step 

variable 
Vc 

2.25 4 8.88 9 4 -0.25 

2.75 5 9.09 9.1 -4 -0.2 

3.25 6 9.23 9.3 -2 -0.17 

3.75 7 9.33 9.4 -1 -0.14 

4.25 8 9.41 9.5 0 -0.12 

4.75 9 9.47 9.5 1 -0.11 

0.25 10 9.52 9.6 1 -0.1 

0.75 11 9.56 9.6 0 -0.09 
1.25 12 9.6 9.6 0 -0.08 
1.75 13 9.63 9.7 0 -0.07 

 

As an example, if the initial delay error is set to 3.75ns, the system simulation 

shows that  is chosen as the Coarse_CLK. This is verified by the mux variable 

shown in 

7P

Figure 3-14. It should be pointed out that the mux value of 0~9 corresponds 

to clock phase of ~ respectively. 4P 13P

 
Figure 3-14: Simulation of coarse loop 

 

The operation of the fine loop is verified through the simulated delay_step and 

Vc, as illustrated in Figure 3-15.  It was shown that and the delay_step variable and Vc 
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lock to -1 and -0.13 respectively once clock synchronization is achieved.  In addition, 

the simulated X̂ can be obtained by averaging out the output of the delta-sigma 

modulator, and is found to be 9.43 from the simulation.  This is comparable to the 

estimated X̂  and Vc of 9.4 and -0.14 respectively from Table 3-3 . 

-0.05
-0.1

-0.15
-0.2

0

5

0

-5

 
Figure 3-15: Simulation of fine loop 

 
The various clock phases before and after clock synchronization are displayed 

in Figure 3-16 and Figure 3-17 respectively. It is demonstrated that the desired output 

clock  locked to the REF_CLK after clock synchronization. 7P

      

P10

P7

EXT_ CLK

REF_ CLK  
Figure 3-16: DLL clock before synchronization  
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P10

P7

EXT_ CLK

REF_ CLK  
Figure 3-17: DLL clock after synchronization 

 
In next chapter, the CMOS implementation of this fractional-N DLL 

architecture will be discussed in detail. 
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CHAPTER 4  CMOS IMPLEMENTATION 

This fractional-N DLL is implemented in 0.35 mμ  CMOS technology. The 

implementation includes both analog circuit design and digital synthesis. The operating 

frequency range covers from 10MHz to 200MHz, with 3V power supply. 

4.1  Analog Circuit Design 

4.1.1  Delay Cell 

Voltage controlled delay line consists of cascoded delay cells, which is one of 

the most critical blocks in DLL system, because the performance of the VCDL 

considerably affects the stability and jitter performance. Unlike in all-digital DLL 

system where basic inverters are simply used as the delay cell, analog DLLs employ 

many different configurations for their delay cells. Generally, it can be divided into 

single-ended type and differential type. For example, Figure 4-1 shows a digital RC 

delay cell [18] and a current starved single-ended delay cell [19], respectively. But 

differential delay cells are more widely used because of their inherent advantages, such 

as better immunity to common-mode noise and improved spectral purity.  

Typically, the differential delay cell involves a source coupled differential pair 

with two load elements and a biasing tail current source. An ideal tail current source 

would be highly immune to static supply noise and cost small voltage headroom. The 

load element determines the relationship between delay time, control voltage, the range 

of output swing, and so on. It can be implemented either in a diode-connected 

configuration or in a triode-connected configuration, as shown in Figure 4-2. The 

diode loads have simple structure but consume voltage headroom, so the output 
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voltage swing is limited. In addition, the load transistors work in saturation region, so 

the output DC voltage is not controllable. The triode loads work in linear region, thus 

provide wider output voltage swing. However, the drawback is the difficulty to 

maintain the load transistors in linear region.  

 
Figure 4-1: Other VCDL delay cells 

 

Vin+ Vin-

Vout+

Vctrl

Vbias

Vctrl

Vout-

Vin+

Vout+

Vin-

 
Figure 4-2: Differential delay cell with diode loads and triode loads 

 
The schematic of differential delay cells in this work is a source coupled pair 

with symmetric loads, which is an improvement of the above two configurations. In 

Figure 4-3, the load element is comprised of an equal-sized PMOS pair in shunt, one 

being diode-connected (M3) and the other one being active load (M4) controlled by 

. The delay is proportional to its RC time constant, of which the effective load 

resistance can be adjusted by . It has been proved that this symmetrical load can 

provide good control over the cell delay as well as high dynamic supply noise rejection. 

The simple NMOS current source is biased by , which is less susceptible to static 

supply and substrate noise. 

BPV

BPV

BNV

[6]
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BPV

BNV
 

Figure 4-3: Differential delay cell with symmetric loads 
 

The load resistance can be calculated as  

 2 4
3 3

1
L ds ds

m m

R r r
g g

=
1

≈ , (4.1) 

where =3mg ( / ) ( )p ox P DD BP TPu C W L V V V− − .   

Thus, the relationship of delay time for each stage with respect to  is  BPV

 1
( / ) ( )

L
D L L L

mp p ox P DD BP TP

CT R C C
g u C W L V V V

= = ⋅ =
− −

. (4.2) 

Notice that  is the effective load capacitance which combines all the parasitic 

capacitance of M2, M3 and M4, also including gate capacitance from other load 

components, such as the next delay stage and multiplexer.  

LC

Another consideration is the gain of this differential pair. Since the VCDL is a 

cascode chain of delay cells, the gain of each stage must satisfy A>1, to guarantee no 

signal loss. However, if the gain is too high, the thermal noise from previous stage is 

also amplified, and hence the timing error. Therefore, the gain is kept as small as 

possible with a sufficient safety margin, including some process variation tolerance.  

It is considerably designed that A=1.5, which can be derived as  
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( / )1
( / )

n ox N DN
mn

mp p ox P DP

u C W L I
A g

g u C W L I
= ⋅ = . (4.3) 

where, DNI = 2 DPI . When the differential pair is fully switched, the output voltage 

swing for each cell is  

 2( )SW DD BPV V V= −  (4.4) 

The delay time is simulated at 200MHz in typical case, as shown in Figure 4-4. 

By adjusting ,  the delay time BPV
10
REFT (500ps) is achieved at =1.8V. The output 

voltage swing (peak to peak) is 2.35V. 

BPV

 
Figure 4-4: Simulation of delay cell at 200MHz 

 

Since the relationship of DT  and  is nonlinear, simulation results are shown 

in 

BPV

Table 4-1. For different operating frequency, the related nominal delay ( DT =
10
REFT ) 

can be achieved by varying . In BPV Figure 4-5, DT  increases dramatically when  

goes close to 

BPV

DD TPV V− . 
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Table 4-1: Simulation results of DT  and  BPV

CLKF (MHz) Nominal DT (ns) BPV (V) 

10 10.4 2.235 

50 1.98 2.1 

100 1.02 2 

200 0.5 1.8 

400 0.25 1.48 

 

BPV

DT

 
Figure 4-5: Nonlinear relationship of  vs. BPV DT  

 

Since  is the loop filter output voltage, its variation will transfer to the jitter 

noise of the delay cell. The minimum delay tuning resolution should be larger than this 

clock jitter. From the system simulation, the peak-peak variation of  is 0.02V. So 

the peak-peak jitter which per delay cell can tolerate is around 20ps (multiplied by the 

delay gain, 1ns/V ) 

BPV

BPV

4.1.2  Replica Bias 

Replica bias technique is employed to provide the control voltage  and the 

bias current for the delay cells. As shown in 

BPV

Figure 4-6, the main structure is two 

duplicated circuits of half the delay cell, one as replica stage and the other as  CTRLV
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buffer stage. A differential op-amp keeps tracking the voltage at the load element to 

 with feedback, which keeps the PMOS pair (M1) in saturation region. 

Meanwhile, the output of op-amp set biasing voltage  to NMOS current source 

(M3) so that the  buffer stage and all the following delay cells have the same 

operation condition. Rather than directly using  for delay cells, the control 

voltage is buffered as  to isolate replica stage from the load effect by delay cells. 

Another advantage is that this simple current source is independent of the supply 

voltage and hence has high static supply noise rejection. 

CTRLV

BNV

CTRLV

CTRLV

BPV

BPV

BNV
+

-

CTRLV
M1

M2

SSI M3

Replica 
Stage

         Buffer
 Stage

CTRLV

VDD

 
Figure 4-6: Schematic of replica bias 

 

To achieve wide tuning range of , a wide-swing differential op-amp is 

used to extend the allowable input voltage range.

CTRLV

[20] It uses two complementary input 

differential amplifier stages in parallel, to ensure sufficient gain when the input DC 

voltage is either too high or too low. The minimum gain is designed to be 40dB for 

offset consideration. 
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CTRLPractically, for a specific reference frequency, V  should cover certain range 

to fulfill the required delay, REFT
X

, where X is 8~10 as calculated before. Taking  

= 200MHz as an example, the desired delay time for each stage is 500ps~625ps. From 

Equation

REFF

(4.2),  have to reach 1.8V~1.91V. The control voltage may need minor 

adjustment because the load effective capacitance is not a constant for the whole 

frequency range, which is finally simulated in 

CTRLV

Table 4-2. The table also shows the 

current that flows through the replica stage, which is mirrored to all the delay cells. 

Theoretically, the current satisfies the following equation as long as the PMOS load 

(M1) stays in saturation region. 

 2
32 2 ( ) ( )SS DP p ox DD CTRL TP

WI I u C V V V
L

= = − −  (4.5) 

When  gets quite close to CTRLV DD TPV V− , the PMOS load will fall into sub-threshold 

region, consuming very little current. 

Table 4-2: Simulation results of  range CTRLV

REFF  (MHz) N DT (ns) CTRLV (V) SSI ( Aμ ) 

10 0.25 1.47 546 
400 8 0.31 1.62 374 

10 0.49 1.8 198 
200 8 0.63 1.9 127 

10 1.02 2 74.4 
100 8 1.22 2.03 60 

10 1.98 2.1 32.6 
50 8 2.55 2.14 21.3 

10 10.5 2.233 5.09 
10 8 12.5 2.242 4.3 

 



In addition, 20% design margin is included for the delay cell for process 

variation consideration. 

4.1.3  Phase Detector 

In the fine loop, phase detector compares the phase error of the REF_CLK and 

the DLL_CLK, therefore produces pulse signal to control the charge pump. The 

conventional structure, as modeled in behavior level, has the limitation of initial 

condition.[21] For both input clocks, the rising edge generates a short pulse (UP or 

DN), and the difference between their pulse widths determines the leading or lagging 

relationship. However, in DLL system, the first rising edge of the DLL_CLK is 

feedback to compare with the second rising edge of the REF_CLK, as shown in Figure 

4-7. To avoid that PD falsely compares the DLL_CLK with the original rising edge of 

the REF_CLK, as illustrated in Figure 4-8, a modified PD structure is introduced with 

a start-up circuit.  

 
Figure 4-7: Desired timing of PD in DLL 
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Figure 4-8: False comparison of conventional PD 

 
In Figure 4-9, an additional D flip-flop is placed at the first stage of a 

conventional phase detector, and this configuration functions correctly for any initial 

condition. When the START signal is low, the PD is disabled and the RDY signal is 

low too. Once the START signal goes high, the PD is enabled. At the 1st rising edge of 

the REF_CLK, the RDY signal will be latched to high. It should be pointed out that the 

whole PD works similarly to the conventional PD once the RDY signal is high. 

Therefore, this start-up structure successfully hides the 1st rising edge of the REF_CLK 

for false comparison. 

 
Figure 4-9: Schematic of PD with start-up function 

 
Figure 4-10 shows the simulation result when pre-defined delay error is set 

between the REF_CLK and the DLL_CLK.  
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Figure 4-10: Simulation of PD with start-up function 

When the REF_CLK and the DLL_CLK are in phase, the pulse width of UP 

and DN are the same, which is also the shortest pulse that UP or DN could have. This 

pulse width is designed to be around 
5
REFT  to avoid deadzone problem. 

4.1.4  Charge Pump 

Charge pump is the block following phase detector to convert the phase 

difference to current. Figure 4-11 illustrates the schematic of the charge pump. The UP 

and DN signal from the phase detector switch on or off the charge pump current. When 

either UP or DN is high, CPI  is charging or discharging the loop filter, and hence  

is increasing or decreasing, correspondingly.   

CTRLV
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UP

_B UPV

DN

_B DNV

CPI
CPI

 
Figure 4-11: Schematic of charge pump 

 

Since  covers a very wide range, high swing current mirrors are used in 

the schematic (

CTRLV

Figure 4-11). The current CPI  is controlled by MOS transistor switches, 

M2 and M4. They are placed away from the charge pump output such that the 

switching won’t cause severe glitches to the output. In this configuration, the voltage 

swing at CP output is from 6 42 DSAT DSV V+  to 5(2 )DD DSAT DSV V V 2− + .To minimize the 

headroom, the size of M2 and M4 should be large. 

To achieve the highest possible swing and to track the process variation, the 

bias voltage of _B UPV  and  are generated by the cascode biasing circuit as shown 

in 

_B DNV

Figure 4-12. In addition, dummy switches are used to provide better matching. 
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_B DNV

_B UPV

 
Figure 4-12: Schematic of cascode biasing  

 

The charge pump current CPI  is also mirrored and scaled from replica bias SSI , 

but it is programmable to achieve adaptive bandwidth for wide operation range, which 

is designed according to 
REF

BW
F

= 
1

CP DLI K
C

= 1
10

. In order to maintain this ratio, CP DLI K  

is required to be constant so that the bandwidth of this DLL system goes adaptive with 

different reference frequency. An obvious choice is to make CPI  inversely proportional 

to DLK . So the inverse relationship between SSI  and DLK  are desired to achieve the 

above objective. However, this relationship is far from ideal, and some proper scaling 

needs to be introduced.  

With the scaling factor α , CP SSI Iα=  results in the dotted curve in Figure 4-13. 

For the operating frequency range of 10MHz~400MHz, CPI  is designed to increase 

discretely with 4 different values of α  to keep the ratio close to 0.1. The modified 

relationship is CP SSI S Iα= ⋅ ⋅ , shown as the solid line in Figure 4-13, which displays 

better adaptive feature,  
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REF

BW
F

REFF
 

Figure 4-13: Simulation of adaptive bandwidth 
 

This programmable current generation circuit is implemented as shown in 

Figure 4-14. The current comes from  in replica bias, and is scaled by the factor BNV α . 

The factor S is tunable through the digital switches S0~S2. 

BNV

CPI

 
Figure 4-14: Schematic of charge pump current generator 

The relationships between  and REFF CPI  are tabulated in Table 4-3. The scaling 

factor α  is simulated to be 0.2, in order to satisfy 
REF

BW
F

= 1
10

 . The charge pump 

current has mismatch in the UP and DN branch, but within acceptable error range. 
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Table 4-3: Comparison of programmable CPI  

CPISimulated ( ) AμDesired
REFF SSI
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(MHz) ( Aμ ) S( ) 2 1 0S S S CPI ( )Aμ I (UP) I (DN) 

400 546 3(011) 4(100) → 413 416.1 413.6 

200 198 2(010) 3(011) → 119 118.8 119.5 

100 74.4 1(001) 2(010) → 30 29.7 29.9 

50 32.6 1(001) 6.5 6.56 6.52 

10 5.09 1(001) 1 1.09 1.10 
 

4.1.5  Adaptive Filter 

The loop filter is designed with one resistor and two capacitors, as shown in 

Figure 3-11. Also, the system level analysis points out that the value of ,  and R 

affects the two poles in the frequency domain. From the adaptive bandwidth property 

discussed before,  is constant and chosen to be 5pF. On the other hand, the second 

pole is also desired to be adaptive with different reference frequency (

1C 2C

1C

2P REFFω ∝ ). 

From last section, it is shown that 1Pω  can be made adaptive, by exploiting the 

relationship between SSI DLK and . Similar idea is adopted to adaptively tune 2Pω  

location according to the operating frequency. As the operating frequency gets slower,  

DLK  increases whereas SSI  decreases. In order to reduce 2
2

1
P RC

ω = , either R  or  

can be increased accordingly. In this work,  is kept constant and MOS resistor is 

employed to vary 

2C

2C

R . It is found that MOS resistance is inversely proportional to the 

square root of the current. Hence, by making the MOS resistor tracks the SSI , the goal 

of tuning  for different operating frequency will be achieved. 2Pω



BNV

CTRLV

CPV

CPV

  
Figure 4-15: Schematic of adaptive filter 

 

The circuit implementation of such adaptive filter with variable active resistor 

is constructed in Figure 4-15. A PMOS transistor, M2, acts as the resistor, and its gate 

is tied with the gate of diode-connected M1. The drain of M2 is connected to the 

output of charge pump, while the drain of M1 is also kept to  through the feedback 

of an op-amp. The gain of op-amp is at least 40dB in order to maintain  error 

smaller than 0.01. In this way, M1 and M2 have the same gate-drain voltage. 

CPV

CPV

Thus, the variable resistor is calculated as: 

2 2

1
( / ) ( )p ox GS TP

R
u C W L V V

=
−

 (4.6)  
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where  = , and  tracks the current 2GSV 1GSV 1GSV SSI 1DI SSI. The  is chosen to be 0.02  to 

achieve reasonable  and . 2CR

In Table 4-4, the variable resistor is simulated to compare with the calculated 

value. When the filter current drops at low reference frequency, the resistance is quite 

different from the expectation due to the sub-threshold operation of M1. However, the 

phase margin doesn’t degrade significantly. 

 



Table 4-4: Comparison of variable resistor in adaptive filter 
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REF
Filter current 

(
Designed R 

(
Simulated R 

(
F (MHz) PM( ° ) ) Aμ kΩ kΩ) ) 

400 10.8 7 7.2 69 

200 3.96 11.4 12.6 72 

100 1.49 18.6 29.2 67 

50 0.65 28 56.8 77 

10 0.1 72 308 63 

 

4.1.6  Other Analog Blocks 

The coarse loop PD is implemented in a straightforward manner as described in 

Figure 3-3, and its operation is verified by simulation.  

Two multiplexers are required for phase selection. Since the MUX has 

differential input and output, it can be implemented using the basic delay cell in Figure 

4-4, except that M1 is not connected to replica bias but works as a switch. The 

switches are controlled by the digital bits from FSM. According to system block 

diagram in Figure 3-1, a 10-to-1 MUX is connected with the 10 bits output variable 

(mux[9:0]) of the coarse loop FSM, and a 5-to-1 MUX is connected with the 5 bits 

output variable (delay_step[4:0]) of the fine loop FSM. 

4.2  Digital Synthesis  

4.2.1 Finite State Machine 

The coarse loop FSM and fine loop FSM are synthesized into one block. They 

are coded with two individual modules, FSM_COARSE and FSM_FINE, which are 

instantiated in the top level module, FSM, as shown in Figure 4-16.  



hold en
updn mux

en
adr_ctrl
trgr_ctrl

Coarse_CLK

Fine_CLK

mux[9:0]FSM
FSM_COARSE FSM_FINE

hold
delay_step[4:0]

 
Figure 4-16: Schematic of FSM 

 

The input ports are updn and hold signals from the coarse phase detector, 

which tells FSM the phase relationship between the Coarse_CLK and the REF_CLK. 

The output ports are mux[9:0] from FSM_COARSE and delay_step[4:0], adr_ctrl, 

trgr_ctrl from FSM_FINE. It has been clearly discussed before about the connection of 

each port and their functions. Note that the Fine_CLK is much slower than the 

Coarse_CLK because every state update of the FINE_FSM needs much longer time for 

the whole loop to settle down. 

The RTL synthesis process is constrained to meet the target in Table 4-5. The 

coarse loop clock period is 5ns and the fine loop clock period is 50ns. The output port 

is set to drive a maximum 0.5pF load.  For setup time, 40% of the clock period is 

chosen as the timing budget. The synthesized layout is shown in Figure 4-17. 

 
Table 4-5: Synthesis constraints for the FSM  

Clock period FSM_COARSE: 5ns          FSM_FINE: 50ns 

Clock skew 0.5ns 

Driving cell  “BUF2” 

Output load  0.5pF (maximum) 

Setup timing FSM_COARSE: 2ns    FSM_FINE: 20ns 

Hold timing FSM_COARSE: 0.3ns    FSM_FINE: 0.3ns 
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Figure 4-17: View of FSM layout 

 
Pre-layout and post-layout simulations are compared to verify the function of 

the FSM. The following algorithm is tested to verify the design, with the waveform of 

simulation results illustrated in Figure 4-18. 

Step 1: Reset the FSM block. All the variables are set to initial states in both 

FSM_COASE and FSM_FINE. The coarse loop starts to work immediately, and the 

shift register, mux, continuously move left or right according to the updn signal.  

Step 2: Set the hold signal to be high so that the coarse loop is frozen. After a 

while, which is controlled by the FSM_COARSE internal counter, the en signal goes 

to high and enable the fine loop.  
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Step 3: The fine loop starts to work. The 4-bit variable, delay_step, changes 

from 0101(5) to 1011(-5). Once it reaches 1011, the delay_step is reset to 0101. At the 

same time, the adr_ctrl and trgr_ctrl signals change from 1 to 0. 

Step 4: When the fine tuning continues on until hold = 0 again, the FSM_FINE 

starts the internal timer, so the delay_step state is fixed until the end of one timer cycle. 

Then, the hold signal is checked again and the delay_step state is adjusted accordingly.  

 
Figure 4-18: Simulation of FSM 

 

4.2.2 Delta-sigma Modulator  

From the structure of the delta-sigma modulator, it can be synthesized by 

instantiating the modules of adders, accumulators, PN generator and quantizer, as 

shown in Figure 4-19. ADD1 and ADD2 are combinational logic blocks, while 

ACCUM1, ACCUM2, PN GEN and QUANTIZER are sequential logic blocks. The 

clock is triggered by the FSM output signal, trgr_ctrl, which selects one of the delay 

line output clocks. The input ports are mod_in and adr_ctrl from the FSM output, 

delay_step and adr_ctrl, respectively. The output port is mod_out[4:0], which 

connects to the 5-bit fine loop MUX for the feedback clock selection.  
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Figure 4-19: Schematic of modulator 

 
Under the top level, it should be pointed out that both ACCUM1 and ACCUM2 

are integrators, but their functions are slightly different, according to their discrete-

time models in Figure 3-6. The PN sequence is simply generated from the LSB of a 

24-bit shift register, which has certain configuration to achieve the maximum sequence 

length. The input of QUANTIZER takes the effect of dithering and the control signal, 

adr_ctrl. 

The RTL synthesis constraints are similar to that for FSM block. Since the 

clock period is also 5ns, the timing requirement, such as setup and hold time, is set up 

similarly. There is minor violation in worst input delay (setup time), but it can be 

eliminated after clock tree generation in the place&route step, which produces the 

layout as shown in Figure 4-20. 
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Figure 4-20: View of modulator layout 

 
 The testing algorithm and corresponding waveform of simulation results are 

shown in Figure 4-21.  

Step 1. Initial values are set up. The output variable, mod_out, is initialized to 

select the DLL_CLK to be the 10th clock from the delay line. The input data, mod_in, 

is set to 5(0101). 

Step 2. After the reset signal goes high, the modulator starts to work. The PN 

sequence is comprised of 0 and 1 in a random order. It can be seen that the mod_out 

state varies randomly to control the DLL_CLK selection. 
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Step 3. Collect the data array from the mod_out sequence and take average. For 

this example, the mean value of the mod_out sequence is 4.93, which is very close to 

the mod_in value.  

 
Figure 4-21: Simulation of modulator 

 
Other test cases of different mod_in and adr-ctrl values are also simulated to 

verify the function of this delta-sigma modulator.  

 

 

55



 

 

56

CHAPTER 5  CONCLUSION 

This fractional-N DLL for clock synchronization is proposed in this project. 

The main benefits are wide operation range, infinite phase shift and low jitter 

performance. It borrows the idea from fractional-N PLL to reduce noise and jitter. The 

architecture is based on dual loop DLL: the coarse loop selects the closest clock to the 

reference clock and the fine loop further aligns these two clocks. But a delta-sigma 

modulator is applied to the fine loop to randomize the feedback clock. This technique 

has the feature of noise shaping, so the noise is shifted to higher frequency band, and 

can be filtered out by the loop filter. Moreover, the operation algorithm avoids extra 

delay line in the fine loop, which saves power and area compared to previous work.  

Behavior model is built to verify the functions. CMOS implementation for 

analog circuit and digital synthesis has been discussed. For wide operating frequency 

range, the adaptive loop filter has been proposed. The finite state machine is designed 

to share the delay line for both coarse phase selection and fine tuning. Table 5-1 gives 

the performance comparison among the previous work and this proposed DLL. 

Table 5-1: Performance comparison 

 [6] [10] [7] [23] [13] This work

Process 0.5um 0.8um 0.35um 0.35um 0.18um 0.35um 

Power supply 3.3V 3.3V 3.3V 3.3V 1.8V 3V 

Frequency 
range 

0.0025M-
400MHz 

0.08M- 
400MHz

62.5-
250MHz

6M-
130MHz

60M-
760MHz 

10M-
200MHz 

Jitter (pk-pk) 
262ps@ 
250MHz 

68ps@ 
250MHz

44ps@ 
250MHz

24ps@ 
130MHz

39ps@ 
760MHz 

40ps@ 
200MHz 



Phase 
resolution 100ps 40ps <40ps X X <50ps 

~1130 
cycles Lock time X X X X ~400 cycle

>28.4 
Power mW 102mW 41.6mW 132mW 63mW ~120mW 
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Area 1.18mm  2 2 2 2 20.8 mm 0.2 mm 0.45mm 0.19mm  N.A. 
 

Noted in the table, the maximum operation frequency is 200MHz, which is 

limited by the digital synthesized blocks. From Chapter 4, the analog blocks work 

properly up to 400MHz. So, high speed performance could be realized if the digital 

blocks are customer designed. Besides, the phase resolution will be further improved 

by increasing the fine tuning steps. It can also be modified to achieve programmable 

tuning resolution. 

The future work is to verify the pre-layout simulation with all frequency range 

and variation of corners, supply voltage and temperature. Then, this work will be 

fabricated in 0.35um CMOS technology.  
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