376 research outputs found

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    A Hybrid (Active-Passive) VANET Clustering Technique

    Get PDF
    Clustering serves a vital role in the operation of Vehicular Ad hoc Networks (VANETs) by continually grouping highly mobile vehicles into logical hierarchical structures. These moving clusters support Intelligent Transport Systems (ITS) applications and message routing by establishing a more stable global topology. Clustering increases scalability of the VANET by eliminating broadcast storms caused by packet flooding and facilitate multi-channel operation. Clustering techniques are partitioned in research into two categories: active and passive. Active techniques rely on periodic beacon messages from all vehicles containing location, velocity, and direction information. However, in areas of high vehicle density, congestion may occur on the long-range channel used for beacon messages limiting the scale of the VANET. Passive techniques use embedded information in the packet headers of existing traffic to perform clustering. In this method, vehicles not transmitting traffic may cause cluster heads to contain stale and malformed clusters. This dissertation presents a hybrid active/passive clustering technique, where the passive technique is used as a congestion control strategy for areas where congestion is detected in the network. In this case, cluster members halt their periodic beacon messages and utilize embedded position information in the header to update the cluster head of their position. This work demonstrated through simulation that the hybrid technique reduced/eliminated the delays caused by congestion in the modified Distributed Coordination Function (DCF) process, thus increasing the scalability of VANETs in urban environments. Packet loss and delays caused by the hidden terminal problem was limited to distant, non-clustered vehicles. This dissertation report presents a literature review, methodology, results, analysis, and conclusion

    A Secure and Distributed Architecture for Vehicular Cloud and Protocols for Privacy-preserving Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    Given the enormous interest in self-driving cars, Vehicular Ad hoc NETworks (VANETs) are likely to be widely deployed in the near future. Cloud computing is also gaining widespread deployment. Marriage between cloud computing and VANETs would help solve many of the needs of drivers, law enforcement agencies, traffic management, etc. The contributions of this dissertation are summarized as follows: A Secure and Distributed Architecture for Vehicular Cloud: Ensuring security and privacy is an important issue in the vehicular cloud; if information exchanged between entities is modified by a malicious vehicle, serious consequences such as traffic congestion and accidents can occur. In addition, sensitive data could be lost, and human lives also could be in danger. Hence, messages sent by vehicles must be authenticated and securely delivered to vehicles in the appropriate regions. In this dissertation, we present a secure and distributed architecture for the vehicular cloud which uses the capabilities of vehicles to provide various services such as parking management, accident alert, traffic updates, cooperative driving, etc. Our architecture ensures the privacy of vehicles and supports secure message dissemination using the vehicular infrastructure. A Low-Overhead Message Authentication and Secure Message Dissemination Scheme for VANETs: Efficient, authenticated message dissemination in VANETs are important for the timely delivery of authentic messages to vehicles in appropriate regions in the VANET. Many of the approaches proposed in the literature use Road Side Units (RSUs) to collect events (such as accidents, weather conditions, etc.) observed by vehicles in its region, authenticate them, and disseminate them to vehicles in appropriate regions. However, as the number of messages received by RSUs increases in the network, the computation and communication overhead for RSUs related to message authentication and dissemination also increases. We address this issue and present a low-overhead message authentication and dissemination scheme in this dissertation. On-Board Hardware Implementation in VANET: Design and Experimental Evaluation: Information collected by On Board Units (OBUs) located in vehicles can help in avoiding congestion, provide useful information to drivers, etc. However, not all drivers on the roads can benefit from OBU implementation because OBU is currently not available in all car models. Therefore, in this dissertation, we designed and built a hardware implementation for OBU that allows the dissemination of messages in VANET. This OBU implementation is simple, efficient, and low-cost. In addition, we present an On-Board hardware implementation of Ad hoc On-Demand Distance Vector (AODV) routing protocol for VANETs. Privacy-preserving approach for collection and dissemination of messages in VANETs: Several existing schemes need to consider safety message collection in areas where the density of vehicles is low and roadside infrastructure is sparse. These areas could also have hazardous road conditions and may have poor connectivity. In this dissertation, we present an improved method for securely collecting and disseminating safety messages in such areas which preserves the privacy of vehicles. We propose installing fixed OBUs along the roadside of dangerous roads (i.e., roads that are likely to have more ice, accidents, etc., but have a low density of vehicles and roadside infrastructure) to help collect data about the surrounding environment. This would help vehicles to be notified about the events on such roads (such as ice, accidents, etc.).Furthermore, to enhance the privacy of vehicles, our scheme allows vehicles to change their pseudo IDs in all traffic conditions. Therefore, regardless of whether the number of vehicles is low in the RSU or Group Leader GL region, it would be hard for an attacker to know the actual number of vehicles in the RSU/GL region

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Research on security and privacy in vehicular ad hoc networks

    Get PDF
    Los sistemas de redes ad hoc vehiculares (VANET) tienen como objetivo proporcionar una plataforma para diversas aplicaciones que pueden mejorar la seguridad vial, la eficiencia del tráfico, la asistencia a la conducción, la regulación del transporte, etc. o que pueden proveer de una mejor información y entretenimiento a los usuarios de los vehículos. Actualmente se está llevando a cabo un gran esfuerzo industrial y de investigación para desarrollar un mercado que se estima alcance en un futuro varios miles de millones de euros. Mientras que los enormes beneficios que se esperan de las comunicaciones vehiculares y el gran número de vehículos son los puntos fuertes de las VANET, su principal debilidad es la vulnerabilidad a los ataques contra la seguridad y la privacidad.En esta tesis proponemos cuatro protocolos para conseguir comunicaciones seguras entre vehículos. En nuestra primera propuesta empleamos a todas las unidades en carretera (RSU) para mantener y gestionar un grupo en tiempo real dentro de su rango de comunicación. Los vehículos que entren al grupo de forma anónima pueden emitir mensajes vehículo a vehículo (V2V) que inmediatamente pueden ser verificados por los vehículos del mismo grupo (y grupos de vecinos). Sin embargo, en la primera fase del despliegue de este sistema las RSU pueden no estar bien distribuídas. Consecuentemente, se propone un conjunto de mecanismos para hacer frente a la seguridad, privacidad y los requisitos de gestión de una VANET a gran escala sin la suposición de que las RSU estén densamente distribuidas. La tercera propuesta se centra principalmente en la compresión de las evidencias criptográficas que nos permitirán demostrar, por ejemplo, quien era el culpable en caso de accidente. Por último, investigamos los requisitos de seguridad de los sistemas basados en localización (LBS) sobre VANETs y proponemos un nuevo esquema para la preservación de la privacidad de la localización en estos sistemas sobre dichas redes.Vehicular ad hoc network (VANET) systems aim at providing a platform for various applications that can improve traffic safety and efficiency, driver assistance, transportation regulation, infotainment, etc. There is substantial research and industrial effort to develop this market. It is estimated that the market for vehicular communications will reach several billion euros. While the tremendous benefits expected from vehicular communications and the huge number of vehicles are strong points of VANETs, their weakness is vulnerability to attacks against security and privacy.In this thesis, we propose four protocols for secure vehicle communications. In our first proposal, we employ each road-side unit (RSU) to maintain and manage an on-the-fly group within its communication range. Vehicles entering the group can anonymously broadcast vehicle-to-vehicle (V2V) messages, which can be instantly verified by the vehicles in the same group (and neighbor groups). However, at the early stage of VANET deployment, the RSUs may not be well distributed. We then propose a set of mechanisms to address the security, privacy, and management requirements of a large-scale VANET without the assumption of densely distributed RSUs. The third proposal is mainly focused on compressing cryptographic witnesses in VANETs. Finally, we investigate the security requirements of LBS in VANETs and propose a new privacy-preserving LBS scheme for those networks
    corecore