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Abstract—Intelligent location-aware data aggregation 

mechanism for real-time observation, estimation and efficient 

dissemination of any kind of traffic information in vehicular ad-

hoc networks (VANETs) is presented in this paper. The 

mechanism introduces location awareness algorithm, enabling 

spatiotemporal database indexing and providing location context 

of the messages without the use of advanced positioning systems 

like satellite navigation and digital maps. Intelligent passive 

clustering and adaptive broadcasting are used to minimize the 

number of messages exchanged, packet collisions and network 

load. The incoming messages are fused by Kalman filter allowing 

the description of the traffic related information as a system 

characterized by as many variables as needed, depending on the 

application design. The scheme allows the comparison of 

aggregates and single observations which enables their merging 

and better overall accuracy. Old information in aggregates is 

removed by real-time database refreshing thus leaving only 

newer relevant information for driver to make real-time 

decisions in traffic. The mechanism is generic and can be used for 

any kind of VANET information. It is evaluated by extensive 

simulations to show the efficiency and accuracy.   

 
Index Terms—cooperation, dissemination, intelligent data 

aggregation, VANETs. 

 

I. INTRODUCTION 

 Vehicular ad-hoc networks (VANETs) can be used to 

provide drivers with real-time data about some traffic states, 

which drivers can use to adjust their routes. Communicating 

potentially large quantities of data in VANETs can be quite 

challenging, especially in the case of high node density, when 

the broadcast storm problem can occur [1]. In such situations 

data aggregation can increase communication efficiency, by 

optimizing data gathering, processing or dissemination. Still, 

aggregation should not compromise the accuracy of the 

disseminated information. 

Numerous data aggregation techniques have been proposed 

for application in wireless sensor networks (WSNs) [2][3]. 

These are not suitable for VANETs due to differences between 

the two types of networks. The WSNs are power constrained 

thus most protocols are designed with this limitation in mind. 

The nodes in WSNs are usually hierarchically organized with 

limited mobility and with the sink node responsible for data 

collection, processing and dissemination. VANETs are not 

 
 

power constrained and every node is practically a sink, their 

mobility is significantly higher than in WSNs and they move 

on constrained road network. The aggregation schemes for 

WSNs are usually based on certain structures like cluster, a 

tree or chain, which might be difficult or even impossible to 

build and maintain in VANETs. This is due to the high 

mobility of the nodes in VANETs, which make the formation 

of network structures challenging. Finally, the applications in 

VANETs require real-time information, whereas in WSNs 

they do not. The body of the research work on VANET data 

aggregation is not as large as for WSNs and only a limited 

number of proposals for VANETs can be found [4]-[13].  

In this paper we present an intelligent, location-aware data 

aggregation mechanism for real-time observation, estimation 

and efficient dissemination of traffic information in VANETs. 

The main novelty of the mechanism is its significant reduction 

of the communication overhead of a fully distributed VANET 

while providing accurate location awareness. Unlike the 

existing data aggregation mechanisms, the proposed 

mechanism can be deployed in any type of vehicle with 

VANET communication capability, even without systems like 

navigation, digital maps or additional information from the 

roadside units or the local traffic authorities. It does not 

require any knowledge about street segmentation and 

identification of segments, thus makes the database 

maintenance significantly less computationally complex. 

Moreover, the scheme provides flexible segmentation of 

streets in order to provide data aggregation structure while the 

vehicle is moving. The motivation of our work comes from the 

need for efficient and scalable distributed protocols for the 

distribution of neighborhood information using VANETs. The 

main aim of our solution is to use data aggregation algorithm 

to increase scalability without compromising the accuracy of 

the communicated network information. Location awareness is 

achieved by using a simple direction parameter to create 

spatiotemporal database indexing for storing and sending 

messages in the network. Additionally, this enables the 

comparison of aggregates and single observations which 

contributes to better accuracy. The database is being 

constantly refreshed, which solves the problem of old 

information in aggregates, thus providing only fresh 

information. The mechanism is generic and messages can 

contain anything from traffic congestion information to 

accident location or free parking space information. To 
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achieve reliable estimation from a large number of 

observations and overcome the problem of noisy observations, 

the messages are fused using Kalman filter. Additionally, the 

mechanism gives the possibility of describing the traffic 

related information as a system characterized by as many 

variables as needed, depending on the application design. 

Communication efficiency is achieved by intelligent passive 

clustering and adaptive broadcasting based approach where 

individual vehicles intelligently decide if and when the 

message should be broadcasted to other vehicles. In this paper, 

the mechanism’s performance is evaluated by extensive 

simulations to show the communication efficiency and 

accuracy.  

II. RELATED WORK 

The location information enables the vehicles to assign an 

observation to a certain location when sending or receiving the 

messages. Data aggregation should provide the spatiotemporal 

understanding and distribution of some traffic phenomenon to 

the driver. Existing data aggregation mechanisms for 

VANETs use fixed road segments for aggregation 

[6][7][9][10][11] or fixed areas such as city blocks containing 

more streets [4]. Using fixed road segments can be 

inconvenient because each segment has unique identification 

and vehicles have to maintain the database about all of them, 

and their number can be extremely large in a city. The 

problem with using fixed areas like city blocks as an 

aggregation structure is that areas contain several streets 

within. Thus, such aggregates are not particularly precise 

because they refer to large area and are then less relevant to 

the driver. One of the biggest problems with the existing data 

aggregation mechanisms that use both segments and areas as 

an aggregation structure is their dependence on location 

information obtained from external positioning systems like 

satellite navigation, GPS or digital maps. These positioning 

systems are still not widely available in most vehicles [14], 

and thus would limit the use of the data aggregation 

mechanisms. Additionally, GPS is often unreliable in urban 

environments [15] and requires complementing localization 

techniques. Therefore, there is a clear need for data 

aggregation mechanisms which can enable effective 

communication while providing spatiotemporal awareness of 

the environment without the use of positioning systems like 

GPS and digital maps.  

The mechanisms presented in [4]-[8] use simple periodic 

broadcasting to disseminate data, which is proven to be 

causing broadcast storm and scalability issues in certain cases 

[1][16]. The broadcast storm problem is so severe that the 

performance of the 802.11p MAC layer was  examined several 

times and found having limited performance especially in 

dense networks [17]. To reduce the broadcast storm and 

improve scalability in VANETs the common approach is the 

use of adaptive broadcasting [1][18][19][20] or clustering 

[21]. The former approach adapts the broadcast frequency 

according to certain criteria.  However, to the best of our 

knowledge only authors of [9][10] used adaptive broadcasting 

within data aggregation mechanism, although for different 

motivations. In [12] data aggregation is achieved by restricting 

forwarders based on the position of vehicle’s neighbors. In 

terms of messages and aggregates, one of the challenges is the 

existence of the old information in aggregates. Another issue 

with aggregates is that they sometimes cannot be compared 

and merged to generic observations.  

Related research work in the area of data aggregation in 

VANETs does, however, present a number of individual 

solutions which address some of the technical challenges 

described above. For example, in [4] the authors presented 

hierarchical probabilistic data aggregation scheme for 

VANETs. Here, the aggregates are duplicate-insensitive and 

are based on square areas of different sizes: small, medium 

and large. A structure-free data aggregation scheme based on 

fuzzy reasoning, enabling the vehicles to reach the aggregation 

decision based on the application specific set of criteria is 

presented in [5]. Authors of [6] present a cluster-based data 

aggregation approach where they use compression to provide 

aggregation without losing accuracy. In [10][11] authors insert 

the delay before forwarding the message to enable the 

aggregates, which are based on street segments, to meet at a 

certain point. In the [9] dissemination scheme uses 

aggregation per street segment and adapts the broadcast 

interval based on the type of the event observed. 

Finally, one of the biggest challenges as recognized by [22] 

is lack of generic proposals which could be used for more than 

one application types. For example, in SOTIS [7], each 

vehicle analyses traffic conditions based on the messages 

received from other vehicles which are aggregated per road 

section. In Traffic View [8], a congestion detection system is 

presented, including two proposed node-centric data 

aggregation mechanisms. Additionally, apart from being 

application specific, most schemes are scenario specific as 

well, thus considering only one type of scenario, for example 

highway traffic [5][6][7][10][11]. There is a clear need for a 

more universal data aggregation solution which can be 

deployed without restrictions on vehicle onboard systems, on 

any type of application and in any kind of scenario.  

III. LOCATION-AWARE DATA AGGREGATION  

Our data aggregation mechanism is conceptually based on a 

modified generic VANET data aggregation Architecture 

model as proposed in [21]. There, data aggregation in 

VANETs is defined as a process containing four modules, 

each performing a specific function. These modules are: 

Decision, the World Model, Dissemination and Fusion. The 

Decision module decides if and how the data obtained and 

received is being aggregated. The World Model presents 

vehicle’s knowledge about the network and environment while 

the Dissemination module specifies if and how the 

dissemination is being done. The Fusion module specifies the 

way the information is being fused with other information. We 

modified this model by introducing the new Location 

Awareness algorithm (LA) module which provides location 

information to the whole data aggregation mechanism. 

Position of the new LA module in the architecture can be seen 

in Fig. 1.  
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A. Location Awareness (LA)  

We assume that each vehicle has access to basic 

information such as speed, traversed distance and direction, 

and does not have access to any external positioning system. 

As in all VANET applications we also assume that vehicles 

have onboard unit (OBU) with communication interface, 

memory and processing units. Additionally, we assume that 

vehicles are able to obtain generic observation M from on-

board sensors, depending on the application type. 

Theoretically, M can be the number of free parking spaces, the 

congestion estimate, the level of noise, or any other 

measurement provided that vehicle has the sensor to obtain it. 

Let θ be the angle representing the current movement 

direction of the vehicle, having values in the following range: 

                                      π θ π− ≤ ≤                                    (1) 

We also assume that vehicles can obtain the value of θ at 

any time, from a simple device like compass, and that drivers 

are able to recognize the direction of the roads in front of 

them. Vehicles can use the values of θ to divide their route 

into street sections, using the change in θ as an indicator of the 

street section change. According to our LA algorithm, every 

time angle θ changes, the new street section on the route will 

be detected by the vehicle, and thus the route S of the vehicle 

is defined as a sequence of consecutive street sections si and 

each of them characterized with direction θi: 

                                           ( )i i

i

S s θ=∑                                 (2) 

Theoretically, angle θ should be constant per street section, 

but this would give infinite number of unique angles θ and 

thus infinite number of street sections. To prevent this, we 

define a finite offset value Δθ and define the street section to 

be unique as long as the following equation for two successive 

angle values θ1 and θ2 is fulfilled: 

                                        
2 1
θ θ θ− ≤ Δ                                   (3) 

When the angle difference from the equation (3) becomes 

greater than Δθ the vehicle detects that street section has 

changed. Each time the street section is changed the counter of 

street sections on the route i is incremented. This way the 

algorithm enables the vehicles to approximate their routes 

with a finite number of street sections, as shown in Fig. 2. 

Based on this methodology, the vehicle counts how many 

street sections it traversed as it moves, and what were the 

values of θ, i and measurement M during that time. The 

pseudocode of the LA module is shown in Table I. These 

parameters enable the vehicles to map certain values of 

observation M to street sections they traversed. The same 

parameters are later included in messages which are sent to 

other vehicles.  

Additionally we introduce the knowledge depth parameter 

K, representing the size of the aggregates that are sent to other 

vehicles. K also defines one dimension of the database size of 

the vehicle. According to K, the vehicle sends the aggregate 

containing observations from last K street sections that it 

traversed, in the following format:  

                

Vehicle 

i‐1

Sensors

Decision Fusion

World model Dissemination

Data flow

Information requests
Vehicle

i

Vehicle 

i+1
LA

 

Fig. 1. Modified generic data aggregation architecture model  

θ2 

θ1 

θ3 

θ4 

θ5 

 

Fig. 2. Route approximation process by consecutive street sections.              

TABLE I.  PSEUDOCODE OF LA MODULE 

LA module pseudocode 

1 
initialize (timer=0 , location=0, buffer =0, 

route=0)  
5 

route= route + 

location 

2 location=get(current_direction) 6 
location_buffer = 

location 

3 if location ≠ location_buffer then 7 end 

4 i=i+1 8 
else (timer = 

timer+1); 

 

                  ( ) ( ) ( ),  ,  ,  1,...,M k k i k where k Kθ =                     (4) 

K determines the historical “depth” of the observed 

measurement M the receiving vehicle will obtain. Therefore 

when vehicle receives the message from another vehicle, it 

knows the values of observations of that vehicle on the 

previous K street sections. For example, in the case of K=3, 

vehicles in the network would send the values of observation 

M for the last three street sections on their route.  

Each measurement taken by the vehicle is characterized by 

the number of street segment i that it was taken on, and by the 

value of the angle θr of that street segment. Upon obtaining the 

current and previous directions of the sending vehicle, the 

receiving vehicle stores the measurements in the database with 

reference to θr and i. Clearly, storing information based on real 

value of θr would be inefficient because theoretically it can 

have infinite number of values. Because of that, the mapping 

function m is introduced which stores received information 

based on θr and i, but in one of the finite number of predefined 

memory slots:  

                             360
:  where  
r j j

m
g

θ α α→ =
o

                          (5) 

                               
 and 360

j

j

g Z α∈ =∑ o                               (6)  

The memory slots αj represent bands of angles θr is mapped 

into, and their number is determined by the granularity 

parameter g. This parameter shows the precision of the 

location awareness, and the larger the value of g, the location 

information is more precise, but at the cost of efficiency both 
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in terms of the memory space and the processing power and 

time. To show this in a practical example, we assume that 

g=20. This means that the size of the memory slots is 18
o
, and 

their distribution is as follows: 

         
{ }

{ }
1 2 3 18 19 20

18

,  ,  ,  ...,  ,  ,  

0 17 ,  18 35 ,  36 53 ,  ...,  342 360

i

α

α α α α α α α

=

= =

= − − − −

o

o o o o o o o o

         (7) 

If we assume that angle of the incoming message to be θr 

=32
o
, the result of the mapping function would be: 

                           ( ) 2
32 18 35m θ α= → = −

o o o                          (8)  

As described in the example above, the result of mapping 

the incoming data based on the angle θr would be in the 

second range of angles between 18
o
 and 36

o
. By using the 

mapping function m the vehicle calculates the approximate 

direction of the street that incoming measurement originates 

from. In this case the approximate direction angle of the 

incoming measurements is the street with direction somewhere 

between 18
o
 and 36

o
, while parameter i describes the 

‘historical’ distance of the observation. By combining the 

distance and the direction calculated from incoming messages, 

the LA module creates spatiotemporal database indexing and 

provides the drivers with measurements in the streets sorted 

per their direction angle and per distance i. This way it enables 

the drivers to know about the approximate traffic states in the 

streets in their nearest surroundings. The measurement whose 

i=3 refers to the closest street section with θr in the vehicle’s 

communication range. The measurements with i=2 and i=1 are 

one and two street sections further away, respectively. 

Therefore, the street sections characterized with angle θ are 

used as the structure for aggregation of observations in the 

memory. The algorithm does not need fixed predefined 

structure or any location information like coordinates or street 

names in order to aggregate the observations – it performs the 

aggregation independently while vehicle is on the move. The 

detailed architecture of database in the vehicles is presented in 

the World Model section.  

B. World Model 

The World Model represents the database of the vehicle and 

provides spatiotemporal context to the stored information, thus 

enabling the driver or the application to use this information to 

adjust their traffic routes in real-time. In this section we 

further explain the architecture of the database and the concept 

of the aggregation process, while the process of merging the 

information is shown later in the Fusion section.   

 Fig. 3 can be used to approximately illustrate the 

structure of the database, and the process of storing the 

received observations. The two vehicles are shown, the red 

sending vehicle and the blue receiving vehicle together with 

their movement directions measured as shown in the Fig. 3. 

We assume that red vehicle traversed through street sections 1, 

2 and 3, and that it observed measurement values of 7, 4 and 

11, on those street sections respectively. Assuming the 

knowledge depth K=3, the red vehicle sends the observations 

for the last three street sections traversed, sections 1, 2 and 3.  

M=7

k

,
2

πδ θ =

1

M=4
M=11 , 0δ θ =

, / 2δ θ π= −

3

2

1

:

0 3 11

45 2 4

90 1 7

Message

i M

i M

i M

θ

θ

θ

 = = =
 

= = = 
 = = = 

!

!

!

2

3

30
!

,δ θ π= ±

 

Fig. 3. Example scenario of location awareness. 

Therefore the content of the message sent by the red vehicle 

will be as shown in Fig. 3. Additionally, for this example, the 

granularity of the aggregation is set to g=12, meaning that the 

vehicle’s spatial awareness is divided into 12 equal ranges of 

angles of 30
o
, as shown in Fig. 3. According to those angular 

ranges, the memory slots are created in the database as shown 

in Table II, where rows refer to the street direction while 

columns refer to distance of the observation. Based on 

knowledge depth K and granularity parameter g the vehicle 

will have the database dimensioned K x g. Now vehicle stores 

the incoming observations based on the combination of θr and 

i and by using the mapping function m. The example in Fig. 3 

shows the message containing observations from three street 

sections with angles θr having values of θr3=0
o
, θr2=45

o
 and 

θr1=90
o
. These angles are mapped with m function and θr3, θr2, 

and θr1 are mapped in the following angle bands 0
o
-29

o
, 30

o
-

59
o
 and 90

o
-119

o
 as shown in Fig. 3 and Table II. Therefore, 

by following the described procedure, the blue vehicle 

becomes aware that observation valued 11 will be in the first 

street section in the vicinity whose direction is θr3=0
o
. The 

observation valued 4 will be in next street section further away 

whose direction is θr2=45
o
. Finally, the observed value 7 is two 

street sections away with direction θr1=90
o
. This way the blue 

vehicle becomes aware about the street sections that are in its 

immediate vicinity, but out of its communication range.  

TABLE II.  DATABASE STRUCTURE 

Direction 
Distance 

i=1 i=2 i=3 

θr =0
o
-29

o
   M=11 

θr =30
o
-59

o
  M=4  

θr =…    

θr =90
o
-119

o
 M=7   

θr =…    

θr = -1
o
-30

o
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Finally, in order to work properly, our mechanism refreshes 

the database by erasing the World Model each time vehicle 

changes the street section. This way, the content of the World 

Model is kept up to date and vehicle is provided only with 

real-time knowledge about observations. Additionally, it 

should be pointed out that our approach enables direct 

comparison between measurements and aggregates, because 

they both refer to same street section in approximately the 

same time period. 

C. Decision 

The decision module of the aggregation scheme is 

responsible for reaching the decision if and when observations 

should be aggregated or stored in the database. In our 

mechanism upon the reception of the message the vehicle 

extracts the measurements together with values of θ and i, and 

searches the World Model accordingly to aggregate the 

measurements with existing content of World Model. 

Therefore our mechanism assumes that all observations are 

always being aggregated in corresponding slots in the World 

Model because it is refreshed each time a vehicle enters a new 

street section and thus every observation received is highly 

relevant.  

D. Fusion 

Fusion enables the vehicles to store the incoming 

measurements into the database by merging them with 

existing values in the database. There are plenty of data fusion 

mechanisms and many of them have been widely used in 

wireless sensor networks. Extensive survey of such works can 

be found in [23]. We propose the Kalman filter [24] because 

of several reasons. The Kalman filter is a well-known state 

estimator that allows detailed description of measurements as 

a system, depending on the requirements of the application. 

This means that system can be described with as many 

variables as needed. These can include intensity, position, 

location, or something else. Additionally, Kalman filter copes 

well with noisy measurements and makes optimal estimations.  

Prior to describing the system equations of the filter, we 

introduce the measurements that we use in the paper. As 

mentioned in Section II, the proposed mechanism can be used 

for any kind of VANET application, and for this paper, we use 

traffic congestion management as an example in which vehicle 

exchange measurements of traffic congestion based on one of 

our previous works [25]. There we presented the concept of 

quantification of traffic congestion based on the current values 

of a vehicle’s speed and the speed trend over time. According 

to this concept each vehicle derives the value of the 

congestion level independently by monitoring the trend of its 

current speed. The trend is monitored based on pre-defined 

values of speed threshold Vt=6m/s and time intervals T={5s, 

10s, 15s, 20s, 25s, 30s, 35s, 40s, 45s, 50s} which are used to 

quantify the level of congestion. The values of Vt and T can be 

adjusted (calibrated) to fit certain city environment, and 

aforementioned values are used here as an example scenario. 

The values of congestion levels are calculated according to the 

following: 

                        if Vc>Vt and T >5s then M=1+N,                    (9) 

        else Vc≤Vt and T=η·5s, η={2, 3.., 10}then M=η+N      (10) 

Here Vc is the current speed of the vehicle, while Vt  is the 

threshold for activating the congestion detection process. M is 

the level of traffic congestion and can have values between 1 

and 10, while T is the time period which refers to time trend of 

M. Thus, each vehicle obtains noisy measurements with 

additive white Gaussian noise N, of the traffic congestion, 

which are then communicated to other vehicles. Each vehicle 

feeds the Kalman filter with obtained and received 

measurements in order to fuse them into the World Model.  

We model the congestion M as the system which is denoted 

as x and which evolves from the state xk-1 to xk according to 

the following equations: 

                                 
1 1k k k k

x Ax Bu w
− −

= + +                         (11) 

                                        
k k k
z Hx v= +                                  (12) 

In equations (11) and (12) k denotes discrete time samples 

and according to equation (11) the real congestion value xk is 

combination of previous value and a control signal uk and 

process noise wk. zk is the measurement value obtained from 

other vehicles or on its own, while vk is the measurement 

noise, and both vk and wk are additive white Gaussian noise 

with normal probability distribution. The process noise and 

measurement noise covariance are as follows, respectively: 

                                       ( ) ( )~ 0,p w N Q                               (13) 

                                        ( ) ( )~ 0,Rp v N                               

(14) 

 A, B and H are matrices or scalars, depending on the 

application and are linear scaling factors relating to change of 

state, control input and measurements, which we consider 

constant. Also, in our case we assume that there is no control 

signal uk and that the congestion level M is a system described 

with only intensity, thus we use scalar Kalman filter. From 

equations (11) and (12), time update and measurement update 

equations are derived [24]. This process has been shown many 

times and we will skip it here and just present the final 

equations. The time update equations are: 

                                   
1k k k

x Ax Bu
−

−
= +                                (15) 

                                  
1

T

k kP AP A Q−

−
= +                                  

(16) 

The filter predicts the value of congestion x
-
k which 

depends from estimated value from previous timestamp xk-1 

and control signal, while the P
-
k is the predicted value of error 

covariance. Once the prediction is done when measurements 

arrive, the filter uses the measurement update equations: 

                              1( )T T

k k k
K P H HP H R

− − −
= +                         (17) 

                             ( )
k k k k k
x x K z Hx

− −
= + −                            (18) 

                                ( )
k k k
P I K H P

−
= −                                  (19) 

Kk is the Kalman gain.  Based on previous equations 
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vehicles calculate the current (estimated) level of congestion 

as a function of predicted value, the incoming measurement 

and the Kalman gain. Therefore, the vehicle estimates the 

congestion level based on measurements obtained on its own 

and measurements received from other vehicles. 

E. Dissemination 

The final goal of the aggregation mechanism is to enable 

the vehicles in the network to have global knowledge about 

some traffic parameter by exchanging the minimum number of 

messages. General clustering mechanisms use the cluster-head 

selection process which induces additional communication 

overhead, thus the passive clustering seems more appropriate. 

In adaptive broadcasting the nodes change their broadcast 

frequency based on local measurements and some threshold. 

We want to reduce both broadcast frequency and the number 

of broadcasting nodes in the network and thus our approach is 

based on both passive clustering and adaptive broadcasting 

concepts. The nodes will determine if and when they should 

broadcast the information based on their observations and the 

received observations. Ideally, only a small percentage of 

nodes should decide to broadcast while majority should 

refrain.  

The clustering is achieved by using the current direction 

angle θ obtained by LA algorithm, where all the vehicles with 

same θ belong to the same cluster. Therefore the streets are 

segmented in clusters with unique θ and every vehicle is aware 

of it. The passiveness of clustering, and eventual adaptation of 

broadcast interval is achieved by refraining the vehicles from 

broadcasting based on relationship between the vehicle’s own 

estimations of the traffic state and estimations of other 

vehicles from the same cluster. With this approach, each 

broadcast decision of every vehicle has location context 

attached, resulting in reduced number of broadcasts per street 

section. The formal formulation of the broadcast criteria is: 

( )0
 *  ==True   r o rif M M and Broadcast decision YESθ θ= → =  (20) 

In (20) the symbol * refers to a mathematical condition 

which describes relationship which depends on the type of 

application and its requirements. Since we use the application 

of traffic congestion management as a case study in this paper, 

the goal is to disseminate the information about the congestion 

level on the road, thus condition * will be “greater than”. Mo 

and Mr are estimations obtained by the vehicle and received 

from other vehicles, respectively. Therefore the vehicle will 

broadcast the message if and only if its local estimation 

indicates higher level of congestion, than estimation based on 

the received measurements from the same cluster. The 

decision making process of LA mechanism together with the 

periodic broadcasting mechanism is described with pseudo-

code in Table III.  

IV. SIMULATION, ANALYSIS AND EVALUATION 

The performance evaluation of the proposed data 

aggregation mechanism is based on a comprehensive 

simulation of a real city scenario and VANET based on 

802.11p standard. For this purpose the Veins simulation 

framework [26] was used because it is designed specifically 

for VANETs, supports full 802.11p standard and enables real-

time integration with the traffic mobility simulator. Veins is 

the framework based on OMNeT++ [27] network simulator 

and is bi-directionally coupled with SUMO [28], the traffic 

mobility simulator. The scenario used for the simulation is 

based on real map of the city of Erlangen in Germany, which 

is included in the Veins simulator. The map realistically 

represents urban environment and includes buildings which 

make radio propagation similar to a real scenario, and thus 

directly influences the dissemination of messages. The map of 

Erlangen is showed in Fig. 4. There are three simulation 

scenarios with different traffic densities used for evaluation of 

our mechanism including: low with 250 vehicles, medium 

with 500 and high with 1000 vehicles. Every vehicle has its 

own route, chosen from randomly generated set of routes, 

representing the real life situation in which vehicles have 

independent routes. The simulation setup parameters are 

shown in Table IV. The vehicles in the simulation used the 

proposed data aggregation mechanism with the knowledge 

depth parameter set to K=3 and granularity parameter set to 

g=12. The vehicles in the simulation measured the traffic 

congestion level as described in Section III.  

To evaluate the performance of LA mechanism we compare 

the results with the results of the reference simulation. We 

performed two sets of simulations, one simulating our LA 

mechanism and the other simulating the reference mechanism 

“PB”. In the PB mechanism the vehicles use location 

awareness method like in LA mechanism to create and 

maintain their world model and also use the same routes as the 

vehicles in LA mechanism. The only difference is that in PB 

mechanism the vehicles use periodic broadcasting and not 

dissemination module like the vehicles in LA mechanism. This 

provides very high level of data accuracy as messages are 

frequently exchanged. Additionally since most existing data 

aggregation schemes use periodic broadcasting we wanted to 

test how LA mechanism compares to it. We set the broadcast 

interval for PB to 10 seconds. In the LA mechanism the 

broadcast decision is made every 10 seconds, using the 

dissemination module of our mechanism as described in Fig. 

4. 

TABLE III.  PSEUDOCODE OF DISSEMINATION MECHANISMS 

 LA mechanism Periodic broadcasting 

1 timer=0  timer=0  

2 if (timer > broadcast_interval) then 
if (timer > 

broadcast_interval) then 

3 location=get(current_direction) broadcast_decision=yes 

4 Mo=get(own_measurement(location) timer=0 

5 Mr=get(received_measurement(location) end 

6 if (Mo *Mr)= =True)) then else (timer=timer+1) 

7 broadcast_decision=yes  

8 timer=0  

9 end  

10 end  

11 else (timer=timer+1);   



 7 

 

Fig. 4. Erlangen city map taken from Veins simulator.  

TABLE IV.  SIMULATION PARAMETERS 

Road Traffic Density Low/medium/high 

Number of vehicles 250/500/1000 

Total city area 2.25 km x 2.25 km (~5km
2
) 

Communication standard IEEE 802.11p 

Tx power 10 mW 

Rx sensitivity -89 dBm 

MAC Bit rate 18 Mb/s 

 

The mechanism is evaluated from communication 

efficiency and accuracy point of view. 

A. Efficiency 

In order to evaluate how the proposed mechanism reflects 

on network load, Fig. 5 presents the overview of simulations 

showing average number of sent messages, received messages, 

the number of times vehicle went into back-off procedure and 

the number of lost packets. To compare the performance of LA 

mechanism with existing schemes, we implemented DA2RF 

[12] scheme, which performs aggregation by restricting 

forwarders based on the position of the vehicle’s neighbors. 

Here the vehicle flags itself as non-forwarder jf there is a 

forwarder in front and behind. The results refer to average 

values per vehicle and they are normalized to PB simulation, 

thus the data from the chart shows percentages. The chart 

shows that each of the parameters in both LA and DA2RF case 

is significantly lower than the values of results in the PB case. 

Comparison of the results of LA and DA2RF shows 

significantly better performance of LA mechanism for all 

evaluated parameters. The reduced number of sent messages 

results in smaller number of received messages, less 

contention and eventually in smaller number of lost packets in 

the communication. According to Fig. 5, the number of 

messages sent and received in the LA mechanism decrease 

when the traffic density increases, thus the performance of the 

LA mechanism is better when the traffic density is higher.  

To further examine the broadcast activity of individual 

vehicles in the network we calculate the broadcast frequency 

of every vehicle and show their histogram in Fig. 6. Broadcast 

frequency is calculated as a ratio of the number of sent 

messages and the time interval the vehicle spent in the 

simulation. Since the broadcast interval in the PB mechanism 

was set to 10 seconds, the majority of vehicles have broadcast 

 

Fig. 5. Network load evaluation of LA and DA2RF (D) schemes showing the 

average values per vehicle normalized to results of PB mechanism in three 
traffic density scenarios: low (L), medium (M) and high (H).  

frequency 0.1 as shown in Fig. 6. On the other hand, the 

broadcast frequency for the LA mechanism for the majority of 

vehicles is significantly lower, whereas the small portion of 

vehicles has broadcast frequency 0.05, or higher. This shows 

the clustering effect of our scheme, where only limited 

number of vehicles have high frequency, whilst the most of 

them broadcast significantly less. 

Apart from the overall analysis of broadcast activity of the 

vehicles, it is important to understand how the broadcast 

activity in both simulations is spatially distributed in terms of 

aggregation structures such as street segments and city blocks. 

To spatially examine the broadcast activity we introduce the 

measure of Spatial Communication (SC) and define it as: 

           
   

    

Number of sent messages
SC

Number of traversed street segments
=         (21) 

SC represents the average number of sent messages per 

segment per node and shows the average communication 

activity per street segment. Since this is the average value, 

ideally SC should be as low as possible because it means that 

the majority of the nodes have less communication activity. 

We recorded the SC values for the LA scenario and the PB 

scenario that use the LA module for localization. Fig. 7 shows  

  

Fig. 6. Distribution of broadcast frequencies in LA and PB mechanism for 
three traffic densities: a) low, b) medium, c) high 

 

Fig. 7. Average number of sent messages per segment for LA and PB 

mechanism in traffic with low, medium and high density. 
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the LA mechanism achieving the smallest number of 

broadcasts per segment and always less than one for all three 

traffic densities. This means that average vehicle will refrain 

from broadcasting if using the LA mechanism, while in case 

of the PB this number is at least four times higher.  

B. Accuracy 

While it reduces the network load, data aggregation 

mechanism should not compromise the accuracy of the 

disseminated information.  To test the accuracy, the values of 

vehicles’ World Model (WM) in the case of LA and PB 

mechanisms are compared. Since the PB mechanism is chosen 

as a reference for the “best” way to disseminate the message 

we introduce the error E as a metric of accuracy as: 

                             
( ) ( ) ( )

( ),  1...

PB LA
E i WM i WM i

i Z i g K

= −

∈ = ⋅

                  (22) 

 Error E(i) is defined for each database slot individually as a 

difference between the same slots of the same vehicle 

recorded during two scenarios, PB and LA. All vehicles use 

the same routes in both simulations, thus their movement will 

be the same and only broadcasting activity will differ. In our 

example since g=12 and K=3, we totally have 36 slots per 

vehicle and N=450 vehicles. The average error per vehicle is 

defined as:  

                              
( )

1 1

g KN

i i
AVG

E i

E
g K N

⋅

= ==
⋅ ⋅

∑∑
                            (23) 

EAVG is calculated and normalized to the maximum value of 

traffic congestion 10, thus the results shown in Fig. 8 refer to 

percentages, with maximum value of 9% for low density 

scenario. The error of the LA mechanism is the lowest in the 

case of high traffic density, and is the largest in low traffic 

density. This is due to network segmentation problem that 

occurs when the traffic density is low. To further examine the 

spatial distribution of errors, Fig. 9 shows the error breakdown 

per hop for the three hops in the scenario. Each hop refers to 

12 database slots where hop 0 refers to the messages that come 

from vehicles that are within the communication range of the 

single vehicle. This reflects the streets closest to the vehicle. 

Hop 1 refers to the previous street section of vehicles within 

the communication range of a vehicle, while hop 2 refers to 

the street before the previous one. Errors per hop are defined 

as:  

                    

( )
1 1 ,  1,...,

gN

i i

Hj

E i

E j K
g N

= == =
⋅

∑∑
                     (24) 

 

Fig. 8. Average error value between databases in LA and PB scenario. 

 

 

Fig. 9. Average error value LA and PB mechanism per hop for low (a), 
medium (b) and high (c) traffic densities. 

The results of per-hop error analysis show the LA 

mechanism in low and medium traffic scenarios induces 15% 

error maximum for hop 2, while in the high density case it is 

10%. For hop 0 and hop 1, the maximum error is around 5%. 

The results show that the average accuracy of the disseminated 

information is not significantly compromised even when the 

number of broadcasting vehicles and their frequency are 

reduced. Finally, other than average errors we present the 

individual errors for the whole World Model of single 

randomly chosen vehicle from simulation. Fig. 10 shows the 

real error values for all 36 database slots, where in majority of 

simulation the error was under 10%, in rare cases the error 

increased to 30% for certain slots and in couple of cases for 

short period of time the error increased up to 70%. 

 

Fig. 10. Error for single vehicle in the simulation. 
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V. CONCLUSION 

In this paper we introduced location aware data aggregation 

mechanism which can be used to efficiently disseminate 

messages in VANETs. The mechanism reduces the number of 

broadcasting nodes and their broadcasting frequency based on 

the difference of local observations obtained by each vehicle 

and observations received by surrounding vehicles about the 

same local area. The vehicles use the LA module to develop 

spatial understanding of the surroundings by creating 

spatiotemporal database and by assigning the location context 

to the messages they send. As a result of reducing the 

broadcasting activity of the nodes, the overall number of 

dropped packets, collisions and contentions is reduced as well. 

As a result of data aggregation the accuracy of information 

that is communicated is not compromised.  
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