252 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    A pedestrian navigation system based on low cost IMU

    Full text link
    © 2014 The Royal Institute of Navigation. For indoor pedestrian navigation with a shoe-mounted inertial measurement unit (IMU, the zero velocity update (ZUPT technique is implemented to constrain the sensors' error. ZUPT uses the fact that a stance phase appears in each step at zero velocity to correct IMU errors periodically. This paper introduces three main contributions we have achieved based on ZUPT. Since correct stance phase detection is critical for the success of applying ZUPT, we have developed a new approach to detect the stance phase of different gait styles, including walking, running and stair climbing. As the extension of ZUPT, we have proposed a new concept called constant velocity update (CUPT to correct IMU errors on a moving platform with constant velocity, such as elevators or escalators where ZUPT is infeasible. A closed-loop step-wise smoothing algorithm has also been developed to eliminate discontinuities in the trajectory caused by sharp corrections. Experimental results demonstrate the effectiveness of the proposed algorithms

    Unsupervised pedestrian trajectory reconstruction from IMU sensors

    Get PDF
    International audienceThis paper presents a pedestrian navigation algorithm based on a foot-mounted 9DOF Inertial Measurement Unit, which provides accelerations, angular rates and magnet-ics along 3-axis during the motion. Most of algorithms used worldwide are based on stance detection to reduce the tremendous integration errors, from acceleration to displacement. As the crucial part is to detect stance phase precisely, we introduced a cyclic left-to-right style Hidden Markov Model that is able to appropriately model the periodic nature of signals. Stance detection is then made unsupervised by using a suited learning algorithm. Then, assisted by a simplified error-state Kalman filter, trajectory can be reconstructed. Experimental results show that the proposed algorithm can provide more accurate location, compared to competitive algorithms, w.r.t. ground-truth obtained from OpenStreet Map

    A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients

    Get PDF
    Machine learning methods have been widely used for gait assessment through the estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose and validate a general probabilistic modeling approach for the classification of different pathological gaits. Specifically, the presented methodology was tested on gait data recorded on two pathological populations (Huntington’s disease and post-stroke subjects) and healthy elderly controls using data from inertial measurement units placed at shank and waist. By extracting features from group-specific Hidden Markov Models (HMMs) and signal information in time and frequency domain, a Support Vector Machines classifier (SVM) was designed and validated. The 90.5% of subjects was assigned to the right group after leave-one-subject-out cross validation and majority voting. The long-term goal we point to is the gait assessment in everyday life to early detect gait alterations

    Real time event-based segmentation to classify locomotion activities through a single inertial sensor

    Get PDF
    We propose an event-based dynamic segmentation technique for the classification of locomotion activities, able to detect the mid-swing, initial contact and end contact events. This technique is based on the use of a shank-mounted inertial sensor incorporating a tri-axial accelerometer and a tri-axial gyroscope, and it is tested on four different locomotion activities: walking, stair ascent, stair descent and running. Gyroscope data along one component are used to dynamically determine the window size for segmentation, and a number of features are then extracted from these segments. The event-based segmentation technique has been compared against three different fixed window size segmentations, in terms of classification accuracy on two different datasets, and with two different feature sets. The dynamic event-based segmentation showed an improvement in terms of accuracy of around 5% (97% vs. 92% and 92% vs. 87%) and 1-2% (89% vs. 87% and 97% vs. 96%) for the two dataset, respectively, thus confirming the need to incorporate an event-based criterion to increase performance in the classification of motion activities

    Pathological Gait Abnormality Detection and Segmentation by Processing the Hip Joints Motion Data to Support Mobile Gait Rehabilitation

    Get PDF
    An accurate detection of the gait sub-phases is fundamental in clinical gait analysis to interpret kinetic and kinematic data. In general, detecting the gait events that mark the transition from one gait sub-phase to another as well as the sequence of sub-phases is essential to evaluate gait abnormalities. However, finding a reliable segmentation for pathological gait has been a challenging task. This manuscript entails a generic approach for the gait segmentation into sub-phases in the CORBYS1 system. A number of distinctive features are extracted from the Hip joints motion data which are able to partition and segment the gait cycles in an efficient way. The degree of deviation (i.e. anomaly) in each sub-phase is then calculated with respect to an optimal gait reference which is used for robot-assisted gait rehabilitation. The proposed gait segmentation method is applicable to gait with many types of pathology since training on the pathology specific templates is not required. Performance of the proposed algorithm is evaluated by statistical analysis of results which produced 100% gait segmentation accuracy for healthy subjects and over 99% for pathological subjects
    • …
    corecore