2,462 research outputs found

    An evaluation of vendor selection models from a Total Cost of Ownership perspective.

    Get PDF
    Many different vendor selection models have been published in the purchasing literature. However there has been no systematic approach to compare the relative efficiency of the systems. In this paper we propose to use the concept of Total Cost of Ownership as a basis for comparing vendor selection models. We illustrate the comparison with real life data set of the purchasing problem of ball bearings at Cockerill Sambre, a Belgian multinational company in the steel industry. Mathematical programming models outperform rating models and multiple item models generate better results than single item models from a Total Cost of Ownership perspective for this specific case study.Evaluation; Models; Selection;

    Constructive solution methodologies to the capacitated newsvendor problem and surrogate extension

    Get PDF
    The newsvendor problem is a single-period stochastic model used to determine the order quantity of perishable product that maximizes/minimizes the profit/cost of the vendor under uncertain demand. The goal is to fmd an initial order quantity that can offset the impact of backlog or shortage caused by mismatch between the procurement amount and uncertain demand. If there are multiple products and substitution between them is feasible, overstocking and understocking can be further reduced and hence, the vendor\u27s overall profit is improved compared to the standard problem. When there are one or more resource constraints, such as budget, volume or weight, it becomes a constrained newsvendor problem. In the past few decades, many researchers have proposed solution methods to solve the newsvendor problem. The literature is first reviewed where the performance of each of existing model is examined and its contribution is reported. To add to these works, it is complemented through developing constructive solution methods and extending the existing published works by introducing the product substitution models which so far has not received sufficient attention despite its importance to supply chain management decisions. To illustrate this dissertation provides an easy-to-use approach that utilizes the known network flow problem or knapsack problem. Then, a polynomial in fashion algorithm is developed to solve it. Extensive numerical experiments are conducted to compare the performance of the proposed method and some existing ones. Results show that the proposed approach though approximates, yet, it simplifies the solution steps without sacrificing accuracy. Further, this dissertation addresses the important arena of product substitute models. These models deal with two perishable products, a primary product and a surrogate one. The primary product yields higher profit than the surrogate. If the demand of the primary exceeds the available quantity and there is excess amount of the surrogate, this excess quantity can be utilized to fulfill the shortage. The objective is to find the optimal lot sizes of both products, that minimize the total cost (alternatively, maximize the profit). Simulation is utilized to validate the developed model. Since the analytical solutions are difficult to obtain, Mathematical software is employed to find the optimal results. Numerical experiments are also conducted to analyze the behavior of the optimal results versus the governing parameters. The results show the contribution of surrogate approach to the overall performance of the policy. From a practical perspective, this dissertation introduces the applications of the proposed models and methods in different industries such as inventory management, grocery retailing, fashion sector and hotel reservation

    Single Item Supplier Selection and Order Allocation Problem with a Quantity Discount and Transportation Costs

    Get PDF
    In this paper, we address a single item supplier selection, economic lot-sizing, and order assignment problem under quantity discount environment and transportation costs. A mixed-integer nonlinear program (MINP) model is developed with minimization of cost as its objective, while lead-time, the capacity of the supplier and demand of the product are incorporated as constraints. The total cost considered includes annual inventory holding cost, ordering cost, transportation cost and purchase cost. An efficient and effective genetic algorithm (GA) with problem-specific operators is developed and used to solve the proposed MINP model.  The  model is illustrated through a numerical example and the results show that the GA can solve the model in less than a minute. Moreover, the results of the numerical illustration show that the item cost and transportation cost are the deciding factors in selecting suppliers and allocating orders. Keywords: Supplier selection, Economic Order Quantity, Order allocation, Mixed-integer nonlinear programming

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Optimal consignment stocking policies for a supply chain under different system constraints

    Get PDF
    The research aims are to enable the decision maker of an integrated vendor-buyer system under Consignment Stock (CS) policy to make the optimal/sub-optimal production/replenishment decisions when some general and realistic critical factors are considered. In the system, the vendor produces one product at a finite rate and ships the outputs by a number of equal-sized lots within a production cycle. Under a long-term CS agreement, the vendor maintains a certain inventory level at the buyer’s warehouse, and the buyer compensates the vendor only for the consumed products. The holding cost consists of a storage component and a financial component. Moreover, both of the cases that the unit holding costs may be higher at the buyer or at the vendor are considered. Based upon such a system, four sets of inventory models are developed each of which considers one more factor than the former. The first set of models allows a controllable lead-time with an additional investment and jointly determines the shipping size, the number of shipments, and the lead time, that minimize the yearly joint total expected cost (JTEC) of the system. The second set of models considers a buyer’s capacity limitation which causes some shipments to be delayed so that the arrival of these shipments does not cause the buyer’s inventory to go beyond its limitation. As a result, the number of delayed shipments is added as the fourth decision variable. A variable demand rate is allowed in the third set of models. Uncertainty caused by the varying demand are controlled by a safety factor, which becomes the fifth decision variable. Finally, the risk of obsolescence of the product is considered in the fourth model. The first model is solved analytically, whereas the rest are not, mainly because of the complexity of the problem and the number of variables being considered. Three doubly-hybrid meta-heuristic algorithms that combine two different hybrid meta-heuristic algorithms are developed to provide a solution procedure for the rest of models. Numerical experiments illustrate the solution procedures and reveal the effects of the buyer’s capacity limitation, the effects of the variable demand rate, and the effects of the risk of obsolescence, on the system. Furthermore, sensitivity analysis shows that some of the system parameters (such as the backorder penalty, the extra space penalty, the ratio of the unit holding cost of the vendor over that of the buyer) are very influential to the joint system total cost and the optimal solutions of the decision variables

    Assessment of joint inventory replenishment: a cooperative games approach

    Get PDF
    This research deals with the design of a logistics strategy with a collaborative approach between non-competing companies, who through joint coordination of the replenishment of their inventories reduce their costs thanks to the exploitation of economies of scale. The collaboration scope includes sharing logistic resources with limited capacities; transport units, warehouses, and management processes. These elements conform a novel extension of the Joint Replenishment Problem (JRP) named the Schochastic Collaborative Joint replenishment Problem (S-CJRP). The introduction of this model helps to increase practical elements into the inventory replenishment problem and to assess to what extent collaboration in inventory replenishment and logistics resources sharing might reduce the inventory costs. Overall, results showed that the proposed model could be a viable alternative to reduce logistics costs and demonstrated how the model can be a financially preferred alternative than individual investments to leverage resources capacity expansions. Furthermore, for a practical instance, the work shows the potential of JRP models to help decision-makers to better understand the impacts of fleet renewal and inventory replenishment decisions over the cost and CO2 emissions.DoctoradoDoctor en IngenierĂ­a Industria

    Optimization Based e-Sourcing

    Get PDF

    Warehousing and Inventory Management in Dual Channel and Global Supply Chains

    Get PDF
    More firms are adopting the dual-channel supply chain business model where firms offer their products to customers using dual-channel sales (to offer the item to customers online and offline). The development periods of innovative products have been shortened, especially for high-tech companies, which leads to products with short life cycles. This means that companies need to put their new products on the market as soon as possible. The dual-channel supply chain is a perfect tool to increase the customer’s awareness of new products and to keep customers’ loyalty; firms can offer new products online to the customer faster compared to the traditional retail sales channel. The emergence of dual-channel firms was mainly driven by the expansion in internet use and the advances in information and manufacturing technologies. No existing research has examined inventory strategies, warehouse structure, operations, and capacity in a dual-channel context. Additionally, firms are in need to integrate their global suppliers base; where the lower parts costs compensate for the much higher procurement and cross-border costs; in their supply chain operations. The most common method used to integrate the global supplier base is the use of cross-dock, also known as Third Party Logistic (3PL). This study is motivated by real-world problem, no existing research has considered the optimization of cross-dock operations in terms of dock assignment, storage locations, inventory strategies, and lead time uncertainty in the context of a cross-docking system. In this dissertation, we first study the dual-channel warehouse in the dual-channel supply chain. One of the challenges in running the dual-channel warehouse is how to organize the warehouse and manage inventory to fulfill both online and offline (retailer) orders, where the orders from different channels have different features. A model for a dual-channel warehouse in a dual-channel supply chain is proposed, and a solution approach is developed in the case of deterministic and stochastic lead times. Ending up with numerical examples to highlight the model’s validity and its usefulness as a decision support tool. Second, we extend the first problem to include the global supplier and the cross-border time. The impact of global suppliers and the effect of the cross-border time on the dual-channel warehouse are studied. A cross-border dual-channel warehouse model in a dual-channel supply chain context is proposed. In addition to demand and lead time uncertainty, the cross-border time is included as stochastic parameter. Numerical results and managerial insights are also presented for this problem. Third, motivated by a real-world cross-dock problem, we perform a study at one of the big 3 automotive companies in the USA. The company faces the challenges of optimizing their operations and managing the items in the 3PL when introducing new products. Thus, we investigate a dock assignment problem that considers the dock capacity and storage space and a cross-dock layout. We propose an integrated model to combine the cross-dock assignment problem with cross-dock layout problem so that cross-dock operations can be coordinated effectively. In addition to lead time uncertainty, the cross-border time is included as stochastic parameter. Real case study and numerical results and managerial insights are also presented for this problem highlighting the cross-border effect. Solution methodologies, managerial insights, numerical analysis as well as conclusions and potential future study topics are also provided in this dissertation
    • …
    corecore