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Abstract

In practice, many companies experience non-stationary customer demand. Moreover, because
of the increasing importance of e-commerce and emerging economy resulting in a high variety
of products, warehouse storage locations are becoming more scarce as one type of SKU is stored
per warehouse location. Because in practice often incoming shipments are stored in a new loca-
tion and not merged with an already occupied location by the same SKU, honeycombing occurs.
In this study, a multi-item inventory model under honeycombing and non-stationary demand
restricted by warehouse capacity storage locations is presented. Three models are formulated
in which the first model represents the current situation. The second model modifies the re-
order level per SKU with as objective to minimize expected inventory costs (containing ordering,
holding and shortage costs) restricted by a minimum fill rate, weighted fill rate and occupied
warehouse storage locations. This model is solved using a MILP. The third model is formulated
in the same manner as the second and modifies, besides the reorder level, the MOQ and IOQ per
SKU. This model is solved using a combination of a greedy heuristic and a MILP. To cope with
non-stationary demand, the horizon is divided into phases. The phases are set in such a way
that within a phase the majority of the demand of the SKUs is stationary. A method for smooth
transition between the phases is proposed to ensure there is enough available stock (when chan-
ging to a higher demand phase) and inventory is not unnecessarily built up (when changing to a
lower demand phase). The results of the models (using mathematical formulas and simulation)
show how the number of used warehouse storage locations and inventory costs can strongly be
decreased while still maintaining the fill rate. Moreover, the smooth transition between phases
results in increased inventory and used locations while having lower total inventory costs.
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Executive Summary

Introduction

This master thesis project is conducted in cooperation with Coolbue, a Dutch e-commerce com-
pany. The retailer offers a broad product assortment and is active in the Netherlands, Belgium
and Germany. The scope of this project is limited to mature products with the size classification
corresponding to product group Parcel Large, ordered via planned or regular replenishment and
have been sold at least in the last three years.

A non-stationary product demand is observed with a seasonal pattern with, for most of the
SKUs, a high peak towards the end of the year. The inventory is stored at one stocking point
(warehouse in Tilburg). Moreover, the context is characterized by lost sales, positive lead times
and multi-period.

Problem statement

Coolblue has recently undergone significant growth and achieved record sales. Besides, due to
expansion to Germany, acquisition of German version products is necessary. Therefore, to meet
customer demand, an increasing number of products must be stored in the warehouse as products
can only be sold when they are available in the warehouse. Unfortunately, due to experience,
incorrect forecasts, increased sales, and uncertain supplier lead times, supply planners order
higher product quantities. However, when sales are not as high as expected resulting in excess
inventory. The high number of SKUs and product quantities lead to a high warehouse utilization
resulting in too few available locations for other SKUs. This results in unnecessary stock-outs,
high inventory costs, and less available cash to make investments. All in all, the number of
SKUs (assortment) and product quantities are increasing while the warehouse still has the same
size, resulting in capacity problems and a need to use the available space more efficiently.

Currently, to determine the quantity and timing of the order, for some SKUs, no logic is taken
into account concerning service level, costs, margin, value and, for all SKUs, used warehouse
space, or size. Accordingly, this research focuses on designing a system to control inventories
for Parcel Large products and especially takes into account product characteristics and ware-
house space capacity. A system to control inventories in which less inventory is needed can
significantly reduce the needed storage locations since the products within Parcel Large are of
significant size. Moreover, better balancing the available warehouse space among products can
reduce the number of stock-outs. Therefore, the main research question is formulated as follows:

How to design a system to control inventories in which expected inventory costs are
minimized and take into account warehouse space capacity?

Model design

To design an inventory control system for this context, assumptions are made regarding lost sales
and the inventory system used. Lost sales are assumed but can be relaxed using a backorder
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model because of the calculated number of outstanding orders and relative demand uncertainty
during lead time and review period. The used inventory system is an (R,s,nQ) inventory control
policy.

In this study, three models are designed. The first proposed model, referred to as current
situation, sets the reorder level based on the target service level. This model does not take into
account the capacity restriction and is used as a reflection of the current situation.

The second model (hereafter ss-model) minimizes expected inventory costs per time unit re-
stricted by service level constraints and a warehouse capacity constraint to restrict the average
number of used locations per time unit considering honeycombing. Expected inventory costs are
modeled as the sum of the holding, ordering and shortage costs. The service level constraints
refer to a minimum and (volume-based) weighted target fill rate. Based on the decision variable
reorder levels per SKU, a safety stock can be calculated per SKU. This model is solved using a
MILP.

In the third model (hereafter IOQ/MOQ-model) uses instead of an (R,s,nQ) inventory control
policy, an (R,s, MOQ,IOQ) inventory control policy as space is the problem and solely ordering
full pallets is not preferable. The IOQ/MOQ-model determines, besides the reorder level, the
IOQ and MOQ per SKU by minimizing the expected inventory costs constrained by warehouse
capacity, minimum and (volume-based) weighted target fill rate. A combination of a greedy
heuristic and MILP is used to solve this model.

Because of observed non-stationary stochastic demand, the horizon is divided into phases. For
each phase per SKU is the expected demand determined and used as input for the model. The
changeover between phases is of high importance because of the possibility of having too high
or low inventory levels. Therefore, a modified reorder level is used to smoothen the transition
to a new phase. When the lead time and review period exceeds the length of the phase, the
modified reorder level is calculated as the sum of the demand needed for the remaining days in
the current phase, the demand for the remaining days before the order will arrive in the next
phase and the maximum safety stock in the current phase or the weighted safety stock.

Results

The models are compared using theoretical mathematical formulas and a simulation. A discrete-
event simulation is built to evaluate the models performance taking into account non-stationary
demand. A full year is simulated on a daily level including the distinction between week and
weekend days.

Using mathematical formulas, the safety stock model shows a 4% cost decrease and the IOQ/-
MOQ model a 37% cost decrease compared to the modeled current situation. Using the simula-
tion, the safety stock model shows a cost decrease of 3% and the IOQ/MOQ a decrease of 20%.
Implementing a modified reorder level to smoothen this transition results in even higher costs
decreases (3 % for the safety stock model and 22% for the IOQ/MOQ model) relative to the
current situation (with no modified reorder levels). The computational time of the IOQ/MOQ
model is higher than for the safety stock model but still possible to implement in practice (6053
s for 868 SKUsvs 3045 s for 868 SKUs). Therefore, from a cost and location perspective, the
IOQ/MOQ model is the most preferable method to control inventories.

Conclusion

Through the utilization of mathematical formulas and simulations, the models demonstrate that
it is possible to significantly reduce the number of warehouse storage locations and inventory
costs without compromising the fill rate. Additionally, the transition between phases leads to
higher inventory and storage utilization rates, while simultaneously lowering costs. In conclu-
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sion, the redesigned inventory control model follows an (R,s,MOQ,IOQ) inventory policy with
dynamic values for s, MOQ and IOQ. These values change every phase and are set using the
designed IOQ/MOQ model. This model minimizes expected inventory costs restricted by the
number of storage locations and fill rate constraints. Honeycombing is taking into account to
not overestimate the available warehouse locations.

The company is advised to implement the IOQ/MOQ model for the products in scope as this has
been shown to have high potential. A disadvantage of this model is the increase in inventory on
hand which can be problematic in terms of risk as is also agreed on with inventory experts from
Coolblue. Comparing the inventory levels of the model with the inventory levels in practice still
shows a significant reduction. The model is demonstrated for a subset of Parcel Large products
but can also be implemented for other products.
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Chapter 1

Introduction

An increase in the importance of filling orders within 24 hours in the new global economy, has
increased the importance of warehouse operations and inventory management (Gagliardi et al.,
2008). When the inventory is lower than demand and thus not having products in stock, stock-
outs occur. This may result in loss of customer satisfaction and delays in other parts of the
system (Boulaksil et al., 2009) (Brito and de Almeida, 2012). Alternatively, customers may
decide to buy their products from the competitor leading to lost sales and a decrease in market
share (Zinn and Liu, 2001) (Gruen et al., 2002). Besides demand uncertainties, a company
can be exposed to other uncertainties. Therefore, the role of inventory is serving as the buffer
between demand and supply important (Williams and Tokar, 2008). When there is insufficient
warehouse space, ordering trade-offs have to be made among products; which products need to
be available in stock and what quantities are needed regarding minimizing costs, minimizing
used space, maximizing service level, and maximizing possible yields.

Inventory management and control is a broad research domain and closely influences other
areas of the operations management domain (Silver, 1981). The main focus is on the trade-off
between costs and profitability of the operations while meeting customer demand. According
to Silver (1981), the three key questions are: ‘(i) How often should the inventory status be
determined, that is, what is the review interval? (ii) When should a replenishment order be
placed? (iii) How large should the replenishment order be?’. Within this field, a division is often
made between single-item and multi-item inventory models. Single-item inventory models do
not take into account the dependencies between stock keeping units (SKUs) while multi-item
inventory models do take into account these dependencies. Item interdependencies can have
different causes such as budget or space constraints, complementary products, substitution or
needed coordination to save costs.

Products are often stored in warehouses. According to Heragu et al. (2005), a warehouse has two
primary functions; (i) temporary storage and protection of goods and (ii) value-added services
like packaging, repairs, and inspection. Due to the increasing importance of e-commerce and
emerging economy resulting in a high variety of products in small quantities under uncertain
demand, warehouse operations have become more complex (De Koster et al., 2017). According to
De Koster et al. (2017), optimizing the utilization of space is one of the main goals in warehouse
design and operations. Within a warehouse, the largest standardized material handling unit
is a pallet (Bartholdi and Hackman, 2008). Due to storing in one location one specific SKU,
honeycombing can occur. Honeycombing refers to loss of space because of an empty but unusable
position. While Bartholdi and Hackman (2008) refers to the occurrence of honeycombing within
pallet lanes,Van Donselaar and Broekmeulen (2022) generalize the effect to a direct accessible
location.
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1.1. COMPANY DESCRIPTION CHAPTER 1. INTRODUCTION

This research is in the intersection of inventory management and warehouse management. Be-
cause of warehouses not having an infinite size and resulting product dependencies, there is an
emphasis on multi-item inventory models constrained by capacity. This research aims to in-
corporate warehouse capacity and the occurrence of honeycombing in the to-be-made inventory
decisions. In the remainder of this section, the cooperating company is introduced. Moreover,
the problem is defined and corresponding research questions are formulated. Then the scope is
discussed followed by the methodology.

1.1 Company description

The project is conducted in cooperation with team Purchasing of Coolblue. The overall goal
of this team is ’to create and implement easy to use, cost-efficient and sustainable solutions
to ensure the stock required to realize commercial goals’ (Coolblue, 2021). This is done by
balancing the right products on stock, efficient processing of orders, and efficient use of capital
and warehouse space. In this section, an introduction is given to the company, the warehouse
and the process of ordering products.

1.2 Company Coolblue

Coolblue was founded in 1999 by Pieter Zwart, Paul de Jong, and Bart Kuijpers. The company
is a Dutch retailer and offers a broad assortment of products ranging from washing machines
to laptops and solar panels to telescopes in the business-to-business market as well as business-
to-customer market. They offer their services online and have an in-house delivery service
to deliver specific packages by electric bike (CoolblueFietst) or van (CoolblueBezorgt). The
remainder of the packages is delivered by distribution partners. Besides the webshop, customers
can buy products in their 22 physical stores. Coolblue aims to amaze the customer and surpass
the customer’s expectations (’Anything for a smile’ ). This can be seen in providing the best
possible customer journey. The retailer is active in the Netherlands, Belgium, and since July
2020 Germany. In 2022, the company realized annual sales of 2.35 billion euros and employed
more than 6000 people with more than 83 nationalities (Coolblue, 2022). The company itself is
headquartered in Rotterdam.

1.2.1 Warehouse

Coolblue has one warehouse located in Tilburg with a size of 88,000 m2. In the warehouse, ship-
ments are received and stored, customer orders are made ready to send and returned products
are received and checked. Also, the physical stores are replenished from the warehouse. The pro-
cess of receiving a shipment and sending of a customer order is visualized using BPMN language
in Appendix A.

The products are divided into four product groups - Autostore, Parcel Large, Parcel XL, and
’Whitegoods’ based on product size and weight (see Table 1.1 for criteria). Product group
Autostore includes for example headphones, and screen protectors. Product group Parcel Large
includes products such as microwaves and vacuum cleaners. Product group Parcel XL includes
products like lawnmowers, and BBQs. Product group ’Whitegoods’ includes amongst others
washing machines and dryers, with no set size or weight limit.

2



CHAPTER 1. INTRODUCTION 1.2. COMPANY COOLBLUE

Table 1.1: Overview of product groups based on product size and weight

Product group Size class
Maximum size
(lxwxh) in cm

Maximum weight
(in kg)

Autostore
S 31x21.5x2.8 1.8
M 60x40x40 30

Parcel Large
L1 100x70x58 30
L2 175x78x58 30

XL
XL 400x90x60 35
XXL max. 1.1 m3 108
XXXL 170

The warehouse contains designated hall(s) for each product group. However, in exceptional
cases such as high demand due to discounts, exceptions can be made. Only one specific product
type is stored at each location and the locations are not permanent for unique product types.
Note that Parcel Large is used to refer to the product group as well as the inbound location.

Because of the high utilization of Parcel Large products and the expectation of encountering
future problems within this group due to future growth, this research focuses on Parcel Large
products. For this group, the significant product size may result in more locations needed per
SKU compared to smaller sized products. On September 16 2022, the Parcel Large product
group contains 7684 SKUs, occupying a total of 17859 locations, out of which 14051 locations
are currently in use storing 194706 products. The locations can be categorized into active and
reserve racking, denoting pick area and storage area locations respectively. Additionally, there
are exceptional locations, such as those for bulk products. The height of locations ranges from
150 cm to 230 cm, with the number of locations subject to change over time due to modifications
in the warehouse structure. Table 1.2 presents the current situation of Parcel Large products,
including the occupied locations, location utilization, stored SKUs, number of products, and
average stored products per occupied location, all as of September 16, 2022.

Table 1.2: Specification of number of locations within Parcel Large hall

Inbound location Location
Total
locations

Number
occupied
locations

Location
utilization
(in %)

Stored
SKUs

Number
stored
products

Average product/
occupied location

Average product/
SKU

Parcel Large

Active (pick area) 3171 2901 91.5 2592 20985 7 8
Reserve (storage area) 14450 11079 76.7 5560 169078 15 30
Floor(bulk) 46 44 95.7 44 4600 105 105
Upright 192 27 14.1 22 43 2 2

1.2.2 Ordering of products

Coolblue has category teams responsible for the sales of products. The aim of the supply planner
is to maximize availability while minimizing costs. There are three ways of ordering products;
manual, semi-manual, and automatic. For a visualization of this process and more information
see Appendix A.

Semi-manual and automatic orders are triggered by a replenishment proposal based on a replen-
ishment logic. Based on a target fill rate, an order moment (using equation 2.3 in the article by
Van Donselaar and Broekmeulen (2014)) and order quantity (using EOQ formula) is calculated
every day. This may result in a replenishment proposal. The supply planner can modify this
proposal.

Manual orders are made in cases of volume discounts (deals), planned marketing campaigns,
custom-made products, limited stock at the supplier, specific inventory planners’ past experi-
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1.3. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

ences, and uncertain lead times. Planned replenishment orders are planned instantly or for a
term of approximately 1 until 3 months and can be modified intermediate because of no purchase
obligation. Products that are most of the time ordered as planned replenishment are referred
to as planned replenishment products (this also applies to regular replenishment products).
Planned replenishment orders are manually decided and based on experience and an Excel file.
This Excel file gives an overview of the forecast, sold items, on-hand inventory, and expected
on-hand inventory. When planning a longer period, the available 7-day forecast is used.

1.3 Problem description

Coolblue has recently undergone significant growth and achieved record sales. Customer satis-
faction is of utmost importance and products can only be sold when available in the warehouse.
Therefore, to meet customer demand, an increasing number of products must be stored in the
central warehouse. Unfortunately, due to the COVID-19 pandemic, incorrect forecasts, increased
sales, and uncertain supplier lead times have led supply planners to order higher quantities of
products in the hope of ensuring timely delivery. However, customer demand was not as high
as expected resulting in excess inventory. Moreover, Coolblue has expanded to Germany, neces-
sitating the acquisition of German version products.

The number of SKUs (assortment) and incoming product quantities are increasing while the
warehouse still has the same size, resulting in capacity problems and a need to use the available
space more efficiently. This is especially for ’Whitegoods’, Parcel Large and XL products. When
future periods are forecasted, the number of required storage locations is more than the available
storage locations. The capacity utilization of the warehouse for ’Whitegoods’, Parcel Large and
XL products is in general around 90-95% while this has to be around 85% for flexibility reasons.
For the Parcel Large hall, the number of occupied locations is higher than the set maximum
at certain points in time and even after changing the warehouse structure the number of used
locations exceeds the (new) maximum (Figure 1.1). Moreover, because of labor shortages, a
diminished number of incoming shipments can be handled.

Figure 1.1: Occupied locations over time for Parcel Large hall

This high warehouse utilization and labor shortages are a problem and result in the stopping of
ordering of certain products with lost sales as a result. Other consequences are high inventory
costs, and less available cash to make investments. Furthermore, around September 2022, a
queue of several days exists to handle incoming products from the supplier. This results in a
problem because normally a product could be delivered at the warehouse with a duration of
the supplier lead time but now there is an additional uncertain lead time. This may result in
a response time spiral; longer lead times lead to inaccuracy of forecast (Hopp and Spearman,
2011). Therefore, safety stock is needed to cope with variability and uncertainty resulting in
high inventory. Due to this high inventory, there is less space available for other products and
the queue for inbound handling increases. This in turn increases the lead time and this spiral
can go on.
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Planned replenishment products have the highest value of total stock in the warehouse relative
to other order types. When converting the stock values to weighted average stock in days (by
dividing the number of products on stock by the forecast per day for each product and taking the
average of these numbers weighted on price), it is remarkable that this value is especially high
for planned replenishment compared to regular replenishment products. Moreover, to determine
how much to order for planned replenishment products no logic is taken into account concerning
service level, costs, margin, used warehouse space, value, size, or labor capacity.

All in all, the high warehouse utilization is a problem. Moreover, planned replenishment products
have a higher stock and no logic regarding service level, warehouse space, size and costs is taken
into account. Furthermore, because of not taking into account the restrictions of the storage
locations, important products cannot be stored resulting in unnecessary stock-outs. The context
is characterized by positive lead times, stochastic demand and lost sales in a setting in which
the number of storage locations is restricted. Accordingly, this research focuses on designing
a system to control inventories for Parcel Large products and especially takes into account
product characteristics and warehouse space capacity. A system to control inventories in which
less inventory is needed can significantly reduce the needed storage locations since the products
within Parcel Large are of significant size. Moreover, better balancing the available warehouse
space among products can reduce the number of stock-outs.

1.4 Research objective and questions

Based on the described problem, the research objective and questions are formulated. The goal
of this research is to design a system to control inventories in which expected inventory costs are
minimized and take into account warehouse space capacity. Within literature, the majority of
multi-item inventory models correspond to minimizing the expected inventory costs. The com-
pany aims at reaching high sales in combination with high revenue and profit, which is in line
with the objective of minimizing inventory costs. This to-be-designed system will set a reorder
level per SKU such that all products within the assortment will fit within the warehouse while
minimizing costs and maintaining a service level. Based on the described problem description,
and research objective, the following main research question is formulated:

How to design a system to control inventories in which expected inventory costs are
minimized and take into account warehouse space capacity?

This to-be-designed system (order control policy and its settings) is in particular for products
that have a large size. To answer the main research question, sub-research questions are for-
mulated. The first sub-research question refers to defining objective(s), constraints, decision
variables, and parameters.

What are the objective(s), constraints, decision variables, and parameters within the system to
control inventories?

Based on the previous sub-research question and the performed literature review, an adequate
model will be formulated. To solve this model, several solution alternatives may exist or be
formulated. First, existing methods will be explored and possibly modified to solve the model.
Based on the second sub-research question, a method to solve the proposed model will be de-
veloped.

Which solution methods can be used to solve the proposed system to control inventories?

The developed solution methods in the previous sub-research questions can perform differently
in terms of among others computational effort and objective value. Therefore, the last sub-
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research question aims to compare the different solution methods and choose the best solution
method.

What is the best method to solve the proposed system to control inventories in terms
of performance?

1.5 Scope

The focus of this research is to provide a systematic approach to determine reorder levels for
SKUs with a significant size taking into account a limited number of storage locations. Because
of the high utilization of storage locations for Parcel Large products and the expectation of
encountering future problems within this group, the research focuses on this product group and
corresponding storage locations.

Products are seen as Parcel Large when according to their order information the inbound location
was Parcel Large and the product is classified as Large (Table 1.1). Only mature products within
the assortment and sold to customers are within scope. Phasing-in and phasing-out SKUs are
out of scope. Since this project does not take into account commercial planning, market data
and market share, choices regarding assortment are not the goal of this project and therefore a
fixed assortment is assumed. Only products that are most often (in terms of quantity) ordered
as planned or regular replenishment are included. Products that are stored on upright, bulk or
trampoline locations are excluded as these products only have a subset of specific locations that
can be used resulting in a total of 2651 SKUs. In this study, 868 SKUs are used as for these
SKUs the sales are known of the last three years which is found to be necessary to investigate
the seasonal pattern and possible sales disruptions because of COVID-19.

As indicated by several articles, demand forecasting influences inventory management (Silver,
1981) (Goltsos et al., 2021). Within Coolblue, forecasting is done using a two-step forecasting
method. Using a machine learning algorithm, first, a statistical forecast is generated based
on historical data. As second, adjustments to the forecast can be made by analysts to take
into account exceptional circumstances that the algorithm is not able to consider. Because the
forecast relies heavily on human judgment and improving the forecast is not the main goal of
this research, forecasting is out of scope.

Since the shortage in labor within the warehouse of Coolbue is assumed to be incidental and
not structural, it has no added value to take this into account within the project. Therefore,
labor capacity constraints are assumed to be out of scope.

Capacity extension of the warehouse is often taken into account in cases of non-stationary
demand and decision sizing models (Lee and Elsayed, 2005). In this project, the size of the
warehouse is taken as fixed and therefore capacity extension is not considered in the models.
Reflection on the binding storage capacity constraint is done in the sensitivity analysis.

Several storage policies within a warehouse can be distinguished such as dedicated, shared,
random, and turnover-based policies (Graves et al., 1977) (Gu et al., 2007). The chosen storage
policy can result in reductions in order picking time and thus costs (Gu et al., 2010). The storage
policies are out of scope since it is closely related to the warehouse floor map which is another
team’s responsibility.
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Figure 1.2: The problem solving cycle (adopted from Van Aken and Berends (2018))

1.6 Methodology

Based on the research questions, a methodology is proposed. Since this research aims to develop
solutions for a field problem in a structured manner, the research paradigm, problem solving cycle
of Van Aken and Berends (2018) will be used in this research (see Figure 1.2 for a visualization).
In this cycle the following steps can be distinguished; problem definition, analysis and diagnosis,
solution design, implementation and evaluation.

In the first step of the cycle, problem definition, is the problem context and research problem
precisely formulated including scope (which is done in this chapter).

In the second step, analysis and diagnosis, a comprehensive overview of the current situation
is established using both qualitative and quantitative methods. Qualitative data is gathered
through informal conversations and brainstorms. Because of the informality of these conversa-
tions, no reports or transcriptions are made of these conversations. Quantitative methods are
used to analyze data, providing insight into the current situation (e.g. warehouse occupancy,
supplier performance, product characteristics). The findings are discussed with experts to gain
a better understanding. This information, along with research literature, will be used to answer
the first sub-research question: ”What are the objective(s), constraints, decision variables and
parameters within the system to control inventories?”.

Based on literature, an appropriate model will be formulated, which is the third step, design
of the solution. To solve this designed model, several solution methods can be used. This
corresponds to the second sub-research question Which solution methods can be used to solve
the proposed system to control inventories?.

The fourth step, implementation, aims to implement the designed solution method. The system
to control inventories will be implemented in a simulation because of the limited time span
and simulation can imitate years in a relatively short time. Simulation is especially useful in
cases of high uncertainty and to compare solution alternatives which is here the case(Hillier and
Lieberman, 2015).

Finally, the system is evaluated in the last step, evaluation. First, performance indicators
are defined corresponding to existing literature and the problem context. With the indicated
performance indicators, the designed system is evaluated. This corresponds to answering the
final sub-research question, What is the best method to solve the proposed system to control
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inventories in terms of performance?. Moreover, a sensitivity analysis will be performed to
analyze how the system will react to varying input parameters.
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Chapter 2

Literature

This chapter will provide an overview of literature regarding inventory management and other
related topics that are part of this study. Before the start of this study, an extensive literature
study was conducted with a focus on multi-item inventory models and capacity constraints.
In this section, first, some background is provided on warehouse management and inventory
management literature. Finally, literature on the modeling of constraints and objectives within
multi-item inventory models is presented.

2.1 Warehouse operations

With the emerging economy and increasing importance of e-commerce, the complexity of ware-
house operations has increased because of a high variety of products in small quantities under
fluctuating demand patterns (De Koster et al., 2017). One of the major challenges to capacity
planning, allocation and inventory management is demand fluctuations (Kembro et al., 2018).
According to Gu et al. (2010), when assessing capacity requirements, seasonality, storage policy
and order characteristics need to be considered since these factors impact the obtainable storage
efficiency.

Honeycombing
The largest standardized material handling unit within a warehouse is a pallet (Bartholdi and
Hackman, 2008). One of the simplest methods to store pallets is in lanes. The lane depth refers
to the number of pallets stored back to back away from the pick lane. The height of a lane is
measured as the number of pallets on top of each other and depends on amongst others fragility
and pallet weight. Pallet racking is often used for storage and to support full case picking.
In one location is often one specific SKU stored in order to keep track of where products are
stored. Therefore, honeycombing can happen which refers to a loss of space because of an
empty but unusable position (Bartholdi and Hackman, 2008). The unusable position can be
used when the remaining items in the same aisle and/or column are removed. Especially in
deep lanes, this occurs often. The magnitude of honeycombing depends on individual product
withdrawal rate and lane depth (Gu et al., 2010). Van Donselaar and Broekmeulen (2022)
generalizes honeycombing; it can also happen within an one unit location since the remaining
units consume the full space of the location. For example, half a pallet arrives of a specific
product and this is stored in a new location instead of merging it with a location that already
contains this specific product and has sufficient space for the remaining products.
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2.2 Inventory management

Having enough inventory on hand is of high importance because the supply chain is exposed to
several uncertainties (e.g. lead time and demand). When the inventory is lower than demand,
stock-outs can occur. This may cause emergency shipments, loss of customer goodwill, lost
sales and delays in other parts of the system (Boulaksil et al., 2009), (Brito and de Almeida,
2012). Especially, customer’s reaction to stock-outs in a retail setting is complex. According to
Gruen et al. (2002), when there is a stock-out approximately 40% of demand is lost. Moreover,
customers often substitute than delay the purchase of a product (Zinn and Liu, 2001) (Gruen
et al., 2002). Therefore, it is of high importance to have the necessary amount of buffer.

For inventory models, a division is often made between single-item and multi-item inventory
models. Other factors that are used to make a distinction in methods are among others type
of demand, uncertainty in lead times and single or multiple period(s). The main difference
between single and multiple period(s) is the fact that in multiple periods the unsold stock needs
to be taken into account in the next period, which results in extra complexity regarding order
quantity. Another often-made assumption in inventory models is how the customer will respond
to an out-of-stock; backorders or lost sales (Williams and Tokar, 2008). All these factors result
in different inventory methods. The combination of different parameters, factors and limitations
in a changing environment makes it challenging to find a proper solution.

2.2.1 Lost sales and backorders

How customers react to a stock-out is of high importance for an inventory model as this assump-
tion is important for the model’s applicability in practice. When the customer demand cannot
be fulfilled from inventory on hand, the demand can be backordered, in other words demand
will be satisfied in the future. Assuming backorders for unmet demand is not realistic in many
retail environments (Bijvank and Vis, 2011). The other option is that the demand will be lost.
This adds complexity to the model since lost sales can be unobserved (Bijvank and Vis, 2011).
This study is in the context of an online retailer in which unmet demand is lost since customers
are unable to place backorders.

When unmet demand is backordered, the average sales are higher compared to a lost sales model
because the backordered demand is still sold while the lost demand is not sold. This results in
a higher average inventory on hand in a lost sales model relative to a backorder model. Because
the actual sales within a lost sales model are less than in a backorder system per period, the
service level for a lost sales system is at least as high as in the backorder system. Accordingly,
due to the lower sales, it is possible to achieve the same or higher service level with the same
amount of inventory in a lost sales system. Therefore, cost deviations may occur.

Moreover, within a backorder model, the inventory position is used as a main indicator of the
inventory status. The inventory position is decreased when demand takes place and increased
when an order is placed. Within the lost sales model, when the SKU is out of stock and thus
demand is lost the inventory position does not decrease (Hadley and Whitin, 1963). Therefore,
it is not possible to treat changes in the inventory position independent of the inventory level for
a lost sales model. This makes it more difficult to approach the case of a lost sale as it is needed
to take explicit account of available inventory on hand and outstanding orders (that have not
yet arrived) (Bijvank and Vis, 2011). For lost sales models, when the lead time is higher than
the review period, approximations are available for the fill rate while for other key performance
indicators simulation is often suggested.

In some cases, it is possible to assume backorders while the model is clearly in an environment
with lost sales. According to Van Donselaar and Broekmeulen (2013), in situations with a high
target service level, the backorder model can overestimate the needed amount of safety stock.
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This is especially the case when the number of outstanding orders is large and the relative
demand uncertainty during lead time and review period is small. The number of outstanding
orders (nOO) can be calculated as the expected demand during lead time divided by a simple
approximation of the expected order size. The relative demand uncertainty during the lead time
and review period can be measured by the coefficient of variation of demand during the lead
time and review period. When the target fill rate is at least 0.95, cL+R < 0.5 and nOO ≥ 1,
the service level using a backorder approximation will result in an actual service level in a lost
sales system which deviates by at least 1% from the target service level (Van Donselaar and
Broekmeulen, 2013).

2.2.2 Inventory control systems

Inventory control systems can be classified (for an overview of inventory systems see Table 2.1)
based on replenishment quantity and review period.

Table 2.1: Inventory system classification adopted from Van Donselaar and Broekmeulen (2014)

Periodic review Continuous review

Fixed base replenishment quantity (R, s, nQ) (s, nQ)
Variable replenishment quantity (R, s, S) (s, S)

In a continuous system, the inventory is reviewed at all times while in a periodic review system,
every review period, R, the inventory is reviewed. R is the time between two review moments.
Within a continuous system, the safety stock only needs to cover the demand during lead time
since there is no review period and thus an order is placed when the inventory position falls
below the reorder level. In a periodic review system, the safety stock needs to cover the demand
during lead time and review period since the inventory is only reviewed at a review moment.
Because of achieving the same customer service with less safety stock and thus costs, continuous
systems perform better (Van Donselaar and Broekmeulen, 2014).

The choice for a fixed base replenishment quantity results in ordering with a quantity of the
largest multiple of the order quantity (Q) that will bring the inventory position after ordering
to or above the reorder level (s) when the inventory position at a review moment is below the
reorder level, s. A variable order quantity results in the ordering of a variable number of units
to bring the inventory position back to order up to level S. There is only ordered at a moment
when the inventory position is below the reorder level. In general batch systems, (s,nQ) as well
as (s,S) can be used. In an (s,S) policy, the decision variables are the reorder point and order
up to level. In periodic review settings, this becomes an (R,s,S) model (Van Donselaar and
Broekmeulen, 2014).

According to Sani and Kingsman (1997), the continuous (s,S) system is from a theoretical
perspective the best to manage products with low and intermittent demand. However, this con-
tinuous order up-to-level system is often not preferred in practice. Due to the usage of standard
packaging quantities such as fixed case packs or pallet layers, the replenishment quantity in
practice is often greater than one. Inventory planners of Coolblue need to order in a multiple
of a fixed base replenishment quantity often set by the supplier. This enables efficient handling
of goods; handling of one product or a pallet requires the same amount of time (Van Donselaar
and Broekmeulen, 2014). Therefore, this order-up-to-level system is not applicable to Coolblue.

Due to periodic review and fixed case packs, the (R,s,nQ) inventory control system is preferred
at Coolblue. To take into account, besides a predetermined order quantity, a minimal order
quantity (MOQ), there is also a modification of the (R,s,nQ) inventory control system, namely
the (R,s,MOQ, IOQ) inventory control system. When the inventory position at a review
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moment is below the reorder level, s, an order is placed with a quantity of the largest multiple
of the incremental order quantity (IOQ) but not that the inventory position exceeds s-1+MOQ.
In other words, the order up to level is s-1+ MOQ. For example, when the s is 14, the IOQ
2, the MOQ is 20 and at a review moment the inventory position is 6. The inventory position
is below s and therefore an order is placed with quantity 26 (maximum inventory position is
s− 1 +MOQ = 14− 1 + 20 = 33, resulting in an order of 33− 6 = 27, converting to multiples
of IOQ results in 26).

2.2.3 Reorder level

In this section is zoomed in on the reorder level. The reorder level should ensure that the number
of stock-outs during the lead time and review period is minimal and can be determined using a
general formula (Nahmias and Olsen, 2015).

s = µdemand
R+L + ss (2.1)

This formula reflects that the reorder level should ensure that the demand during lead time and
review period is covered including an additional safety stock to cope with uncertainties (Williams
and Tokar, 2008). A balance needs to be found in setting the reorder level, since too high results
in high inventory costs while too low results in stock-outs. Safety stock often depends on the set
service level and can be calculated using the formula ss = k ·σdemand

L+R . The k refers to the safety

factor and σdemand
L+R to the standard deviation of the demand during the review period and lead

time. The safety factor depends on the service level and grows with the service value (Axsäter,
2015). For cases with non-stationary demand, the reorder level is set based on the forecasted
demand for the next lead time and review period and additional safety stock (Van Donselaar
and Broekmeulen, 2014). This safety stock depends on the standard deviation of the forecast
error for the next lead time periods and next lead time and review period periods. Within this
calculation of the safety stock, capacity constraints and costs are not taken into account.

2.2.4 Demand pattern

As mentioned previously, the type of demand, especially its fluctuations, influences inventory
control models and is even seen as one of the major challenges of inventory management (Kembro
et al., 2018).

Demand can be classified into stationary or non-stationary and deterministic or stochastic. Most
demand patterns are non-stationary in practice (Silver et al., 2016). The changing variance of
non-stationary demand can occur because of the occurrence of a seasonal pattern and trend.
A repeating pattern at fixed intervals, such as every week or month, is referred to as a season
(Nahmias and Olsen, 2015). Ignoring the seasonal pattern within the demand data may be
destructive to optimal controlling inventory (Ehrenthal et al., 2014). A trend can be described
as a downward or upward movement or a stable increasing or decreasing pattern (Silver et al.,
2016) (Nahmias and Olsen, 2015).

The non-stationary demand pattern leads to an irregular pattern of how much and when to order
(Pauls-Worm et al., 2014). The exact computation of reorder levels in non-stationary demand
systems is often complicated and heuristics are rather used (Silver et al., 2016). Determining
the reorder level at every review moment can be a solution (Van Donselaar and Broekmeulen,
2014). Another option is to divide the planning horizon into different phases and assume within
each phase stationary demand (Neale and Willems, 2009). Neale and Willems (2009) apply this
in a multi-stage system to minimize safety stock holding costs in all periods and stages. For each
phase, the reorder levels can be determined based on the characteristics of that phase. The phases
do not have to be of equal length. Chen and Chang (2007) also divide their planning horizon in
phases with a duration of one month. Each month has constant demand and at the beginning of
every month is decided whether or not to place an order. Besides dividing the planning horizon
into phases, non-stationarity can also be implemented using a rolling horizon (Ettl et al., 2000)
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or a two-stage process as proposed by Tarim and Kingsman (2004) Bookbinder and Tan (1988);
first determining the replenishment periods and as second determining the modifications for the
planned orders. In this study, the planning horizon will be divided into phases (see section 5.3).

Tunc et al. (2011) investigate the costs of approximating a non-stationary policy using a station-
ary policy. Depending on the magnitude of the variability of demand, using a stationary policy
can be expensive. Their recommendations involve periodically updating policy parameters to
take into account variability in non-stationary demand. The timing of updating depends on the
balance between the mean and standard deviation. Shorter intervals stabilize the mean but re-
duce data points, giving exceptional points more impact. Longer intervals reduce abnormalities’
impact but increase the likelihood of non-stationary demand.

2.2.5 Service level

Within inventory control, the fill rate is most commonly used as service level and refers to the
fraction of demand that is directly fulfilled from on-hand stock (Teunter et al., 2017). Guijarro
et al. (2012) indicate the difficulty of obtaining or calculating the expected unfulfilled demand
during a replenishment cycle which is used to calculate the fill rate. When only sales are
registered and not demand, the achieved fill rate cannot be measured (Van Donselaar and
Broekmeulen, 2014). Meistering and Stadtler (2017) indicate besides the fill rate, non-stock-
out probability (fraction of periods without stock-outs). The fill rate is more often used since
it also takes into account the backorder size while this is not the case for the non-stock-out
probability (Tempelmeier, 2007). Besides fill rate, Axsäter (2015) considers two other service
level definitions; the probability that an order arrives on time before the on-hand stock is
finished and ready rate. The ready rate refers to the portion of time during which the on-
hand stock is positive. Other relevant performance indicators are expected inventory on hand,
expected number of backorders and discrete ready rate (Van Donselaar and Broekmeulen, 2014).
The discrete ready rate refers to the probability of having positive on-hand inventory before a
potential delivery moment. The discrete ready rate is in settings with small review periods and
large lot sizes similar to the fill rate. When there are long review periods and at the end an
order is delivered, the discrete ready rate does not reflect the true product availability through
the period (since at the end of the period the inventory can be 0 which results in a discrete
ready rate of 0%) (Van Donselaar and Broekmeulen, 2014). Product availability is measured
continuously over time while for the discrete ready rate this is only before a potential delivery
moment (from the perspective of incoming orders at the warehouse). Due to taking into account
the number of backorders and reflecting the product availability through the period, the fill rate
will be used to indicate the service level. Besides, the fill rate has already been used within the
company.

Individual fill rates can be aggregated using several methods as distinguished by Van Donselaar
et al. (2021); general weights, volume-based weights, turnover-based weights and profit-weighted
(weights are proportional to the average demand multiplied by the profit margin). As shown by
Van Donselaar et al. (2021), the benefits of service differentiation depend on the definition of the
weights. The reported benefits for the volume-based weights were the greatest. A disadvantage
is that for medium to high-priced SKUs, the demand needs to be backordered while turnover-
based weights resulted in higher inventory costs. Due to the reported benefits, the volume-based
weights will be used to aggregate the individual fill rates.

2.2.6 Multi-item inventory models

In multi-item inventory models, dependencies between items are taken into account. Based on
system characteristics, an optimal policy can be generated (De Schrijver et al., 2013). Significant
cost reductions can be observed when applying a system approach instead of an item approach.
Multi-item inventory problems can be identified in three categories; independent items, network
of items and shared supply chain processes (De Schrijver et al., 2013). This research is in the
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context of the first category; independent items.

Objective
For articles in which demand is stochastic and a stochastic programming modeling technique is
used, the objective is often set to optimize an expected value of a function (Hillier and Lieber-
man, 2015). In most reviewed articles, a model is proposed in which the costs are minimized.
Other objectives that are often set are maximize fill rate (Bijvank and Vis, 2012a), minimize
used capacity (Bijvank and Vis, 2012a), maximize expected profit (Taleizadeh et al., 2010) and
maximize order fulfillment (Yang et al., 2020). In some models, two objectives are taken into
account such as minimizing total system costs and costs of used space (Najafi et al., 2018). Pas-
andideh and Keshavarz (2015) propose a model maximizing the service level and simultaneously
minimizing costs.

Modelling of costs
Various sorts of costs are encountered in articles, namely penalty, purchase, ordering, holding,
shortage (backorder and/or lost sales), (individual) set-up, production, machine, rework, leftover
inventory, fixed joint replenishment, warehouse space, handling and salvage costs. The total
inventory costs often are a combination of holding, ordering and purchase costs. In some models,
an additional shortage cost is added. Remarkable is that often handling costs are not explicitly
taken into account since there can be a big difference in time for handling an order of 600 items or
10 orders of each 60 items. This distinction has not been found in the studied articles. Moreover,
as indicated by Gu et al. (2010), travel time depends on used storage policy and sort of aisle
system and therefore it is complex to model handling costs. Accordingly, Van Donselaar and
Broekmeulen (2022) indicates the influence of honeycombing on handling costs which are right
now not taken into account. Holding costs are influenced by the inventory level and are often
modeled independently of space. In most articles holding costs are linear modeled dependent
on the (average) inventory level (Janakiraman et al., 2018) (Fan and Wang, 2018).

Service constraints
In the selected articles, service is most often incorporated as fill rate. Examples of other im-
plementations are individual(/class) service level per cycle (Das et al., 2019), probability of not
having a shortage (Taleizadeh et al., 2010), requiring a positive net inventory at the end of
period (Tarim and Kingsman, 2004) and to use an objective function to maximize order fulfill-
ment (Yang et al., 2020). An alternative for service level is shortage/penalty/backorder costs
(Axsäter, 2015). These costs depend on the real costs incurred by shortages. Because of diffi-
culties in determining these costs, a service level is set. As indicated by Van Donselaar et al.
(2021), two types of models deal with balancing the fill rates and inventory levels. On the one
hand, models in which holding costs are minimized take into account a fill rate constraint, and,
on the other hand, models in which inventory holding and shortage costs are minimized.

Capacity constraints
Capacity in multi-item inventory models can be modeled as constraint or objective. As capa-
city constraint, it is modeled as safety stock space in numbers (Das et al., 2019), capacity in
time (Najafi et al., 2018), total needed space for inventory (Pasandideh and Keshavarz, 2015;
Taleizadeh et al., 2010). As objective it is often taken into account to minimize needed storage
space (Mousavi et al., 2016; Sarkar et al., 2022), used capacity (reorder level and order quant-
ity) (Bijvank and Vis, 2012a) and costs of used space (Najafi et al., 2018). Solving capacity
constraints is more complex and provides less flexibility. Tight capacity can result in changes in
stock-outs, costs and replenishment. Budget constraints in which the total value of inventory is
restricted, can also be used to consider capacity constraints (Bera et al., 2009; Taleizadeh et al.,
2010; Najafi et al., 2018).

Because of honeycombing, it can be that more space is needed since locations will not be as ef-
ficient as possible filled with products. Therefore, it is remarkable that the honeycombing effect
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is not considered. Van Donselaar and Broekmeulen (2022) derive expressions for multiple key
performance indicators in an unit-load warehouse (including the honeycombing effect) as well
as propose a model for optimizing reorder levels and minimum order quantities simultaneously
taking into account warehouse capacities. When enlarging the minimum order quantity of ex-
pensive products, a balance exists between decreasing the number of unit load arrivals (which
can decrease the needed storage locations and boost availability) and financial assets invested
in inventory. Conducted experiments show the importance of taking into account stochastic de-
mand and the honeycombing effect when deciding warehouse size in a decision support model.
Including the honeycombing effect when estimating warehouse occupancy results in a warehouse
occupancy of three times more compared to models with stochastic demand and no honeycomb-
ing. Only receiving and storing full unit loads results in efficient use of warehouse capacity and
high investment in inventories. When using service differentiation and optimizing corresponding
inventory variables, warehouse occupancy can be reduced. In short, honeycombing can have
large effects and therefore needs to be included in models for unit-load warehouses.

2.3 Gap in literature

This literature section provides a short overview of the modeling of constraints and objectives
in multi-item inventory models. In the remainder of this section, unexplored perspectives in
literature are identified which the thesis aims to address.

Only a few articles could be found with multi-item inventory models incorporating both capacity
and service level constraints. The article by Van Donselaar and Broekmeulen (2022) incorporates
honeycombing in the key performance indicators and capacity constraints. No articles have been
found in which honeycombing is included as a constraint in the context of a single location, cost
minimization objective and multi-item inventory models, while neglecting honeycombing shows
the overestimation of the available warehouse space.

According to Tarim and Kingsman (2004), while the stationary demand assumption is well
known, non-stationary demand is often not considered. It is inappropriate to use constant
inventory parameters in cases of non-stationary demand. Neale and Willems (2009) and Chen
and Chang (2007) divide the planning horizon into phases to handle non-stationary demand.
These approaches have a lot of similarities with a rolling horizon approach as updated demand
data can be used when planning the next cycle (Narayanan and Robinson, 2010). A disadvantage
of the rolling horizon approach is the possibility of adjusting decisions (Tunc et al., 2013) which
may result in a loss in planning confidence (Van der Sluis, 1993). Moreover, as adjusting decisions
is unwanted, smooth changeovers between phases must be included when dividing the horizon
into phases to handle non-stationary demand. To the best of the author’s knowledge, smooth
changeovers in a rolling horizon for inventory control without adjusting inventory decisions are
unexplored.

Lastly, unexplored yet relevant within literature is the influence of incorporating honeycombing
within the context of non-stationary demand as most demand patterns in practice are non-
stationary (Silver et al., 2016). It is especially relevant how inventory control policies perform
in a setting with smooth transitions and honeycombing regarding required capacity, stock-outs
and costs. Businesses with seasonal demand frequently face limitations on capacity due to cost
considerations of maintaining peak capacity (Neale and Willems, 2009).

Concluding, the integration of honeycombing within cost minimization multi-item inventory
models, smooth changeovers between phases without order modification and the performance of
inventory control policies including honeycombing under non-stationary demand are novel and
relevant contributions to literature.
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Chapter 3

Current situation

In this section, the current situation is analyzed. Within this project, sales will be measured
in quantity and revenue and profit in monetary terms. It is specified when is done otherwise.
Product characteristics, exceptional cases, and achieved results are discussed in this section
regarding products in scope. The aim of this section is to understand the products in scope and
achieved results in the current situation. Therefore, the uncleaned data is used and the findings
are discussed with practitioners. Finally, the first research question What are the objective(s),
constraints, decision variables, and parameters within the system to control inventories? will be
answered.

3.1 Descriptive products in scope

The most occurring product categories within the products in scope are monitors, garden tools,
and kitchen appliances. To understand the products in scope, data descriptives are described
in Table 3.1. Because of difficulties in lead time (as will be explained in the remainder of this
section), the lead time is taken per supplier. Moreover, because the review period is not strictly
fixed within Coolblue, the review period is approximated as the time between the arrival of
orders of the same supplier (for more information see the remainder of this section).

Table 3.1: Data descriptives of all SKUs within scope

L (in
working days)

R (in
working days)

Demand
(in quantity
per day per SKU)

CoV
Order quantity
(per SKU)

Order quantity/
daily demand

IOQ (in quantity) MOQ (in quantity) KC Purchase price
(in eper SKU)

mean 7.19 4.76 1.01 1.58 3.31 9.34 2 4.28 37 197.13
std 3.71 3.39 3.30 0.67 4.66 13.75 2 6.92 60 209.44
min 2 1 0 0.44 1 0.02 1.0 1 2 4.27
25% 5 3 0 1.31 1 1.75 1.0 1 15 79.86
50% 6 4 1 1.55 2 4.41 1.0 3 24 127.94
75% 8 5 1 1.73 4 10.81 1.0 5 36 238.51
max 23 38 157 2.05 50 188.97 28.0 121 1080 1784.31

CoV = coefficient of variation of daily sales; KC = maximum number of products on a pallet; DOS = Duration of stay

The median order quantity is 2 products while the median capacity of a pallet is 24 showing that
often partially fulfilled pallets are ordered. This shows the potential to increase the MOQ to
order more products to fill the locations more resulting in less frequent ordering and less needed
locations. Increasing the MOQ can be a method to decrease the number of used locations.

The average purchasing price and average daily demand per SKU is higher for planned replen-
ishment relative to regular replenishment products. Following the logic of Camp, with for both
groups the same fixed ordering costs, the expected order quantity of the planned replenishment
products is expected to be higher which is the case. From the perspective of median values,
the purchase price and demand of planned replenishment products is higher also resulting in a
higher order quantity, as expected.
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Lead time
At Coolblue, lead time is the sum of ordering, supplier, inbound, and operational lead time.
Ordering lead time is the duration between the start of the order creation to the sending to the
supplier. Ordering lead time is mostly influenced by manual checking of orders for exceptional
sizes but is neglected as mean and median lead time is approximately 0. Inbound and operational
lead time depends on Coolblue’s inbound capacity and is neglected due to labor shortages (which
are denoted as incidental). Supplier lead time is analyzed only for regular replenishment products
as it is unknown and meaningless for planned replenishment products since orders are sent with
a delivery date in the future (resulting in a supplier lead time of 0). The lead times are analyzed
in working days as the majority of suppliers do not deliver during weekends.

The supplier lead time shows high variation between January 2020 and January 2022 (figure
3.1), which coincides with the outbreak of COVID-19 (based on the timeline of corona measures
of RIVM). This increasing variation was observed across different suppliers, regardless of their
size.

Figure 3.1: Supplier lead time of orders over time

Order characteristics, such as whether the order is delivered by post and whether the supplier
is a distributor, were examined to determine the influences on supplier lead time at Coolblue.
An independent t-test was used to compare group differences. The assumptions for this test
are independence of observations, normality of data and homogeneity of variance. As all orders
are recorded, the observations are assumed to be independent. Normality assumption does not
need to hold as the sample size was over 200 Hair Jr (2014), and homogeneity of variance was
not assumed, therefore Welch’s t-test was used. The mean supplier lead time for shipments
delivered by post was significantly higher than for shipments not delivered by post. Shipping
by post is common for orders with a quantity between two and ten. Distributor suppliers had a
lower mean supplier lead time than non-distributor suppliers. No significant differences in lead
times were found based on other order characteristics.

Review period
Inventory planners are able to review the inventory every day but it is unknown whether this
also happens. Therefore, is the review period approximated by analyzing the time between
shipments of the same supplier as orders are often consolidated by the supplier or carrier. The
time between arriving of shipments of the same supplier is on average 4.76 working days, in
other words, each supplier delivers on average once a week. 50% of the suppliers deliver every 4
working days. When investigating the times a supplier comes per week based on week numbers,
the results are in line with the days between the delivered shipments. On average suppliers
deliver 1.8 times a week and the median is once a week. When investigating the time between
shipments of a product, on average there are 16.7 working days between shipments of the same
product. The median is 10 working days between incoming shipments of the product. This is
longer than the days between shipments calculated per supplier as it is not usual to order and
receive the same products every week.

17



3.1. DESCRIPTIVE PRODUCTS IN SCOPE CHAPTER 3. CURRENT SITUATION

Demand
The demand cannot be determined exactly because of not recording lost sales because products
that are out of stock are not sold to customers. Because of the set target fill rate of 96.9% for
regular replenishment products and inventory planners act similarly for planned replenishment
products, there is assumed that the demand is equal to the observed sales. This assumption is
in line with the made assumption in Van Donselaar and Broekmeulen (2022).

Instead of solely investigating the sales of the scoped products, the sales of all Parcel Large
products are also investigated as these sales influence the available warehouse capacity through-
out the year. The sales of all the products within Parcel Large have high peaks between February
2020 and 2022 which can partially be explained by the closing of stores due to COVID-19 (see
Figure 3.3). Besides, the sales is decomposed in a trend, seasonal and residual components
using time series decomposition. The multiplicative model is used because of increasing and
decreasing trend and seasonal variation. From this decomposition, the clear seasonal pattern of
higher sales within the end of year and lower sales in the beginning of the year can be observed.
Some category teams have sales peaks during different periods of the year than the decomposed
seasonal pattern such as category team Team Garden, Tools & Climate Control. The observed
patterns are in accordance with the experience of practitioners and inventory planners.

Figure 3.2: Decomposition of sales using time series decomposition for all Parcel Large products

Zooming in on the products in scope also shows relatively higher peaks between February 2020
and 2022 which can partially be explained by COVID-19. Because of the occurrence of trend
and seasonality (higher peaks towards the end of the year), the demand can be classified as
non-stationary. Furthermore, during the weekend days, the sales are less than during the week.

(a) Monthly sales over time (b) Sales per day

Figure 3.3: Overview of sales (in quantity) for SKUs in scope

Order quantity
An order contains on average 40 products while 50 % of all orders contain 10 or less products.
An order consists of several order lines which correspond to an order per SKU. The mean order
line quantity is 22 and the median is 8 products in the last 3 years. Solely for 2022, the mean
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order line quantity is 3 and the median is 2. For planned replenishment products, the average
order quantity is approximately 5 times higher than for regular replenishment products because
regular replenishment products are ordered more often resulting in smaller quantities.

MOQ
Most suppliers have set a minimal order value in euros. The mean minimal order value is
e305,32 for all products within scope. Internally Coolblue has set a minimal order value of
e100,00 meaning that when an order is below this value, the order will not be placed at the
supplier.

The minimal order value in euros can be converted to minimal order amount in quantity. This is
done by dividing the minimal order value by mean product purchasing price. The mean minimal
order amount is 4.28 products and a median of 3 products.

Maximum number of products on a pallet
The maximum number of products on a pallet is known for some SKUs. The maximum pallet
quantity, that is missing, is calculated using the volume of a pallet and SKU. This can be seen
as an approximation since it can be difficult to fully fulfill a pallet calculated using volume. The
average number of products that fit on a pallet is 37 and the median is 24. The average order
quantity in terms of pallets is 1.38 and 50% of the orders have an order size of 0.4 pallets.

Pallet layers will not be discussed as it is unknown and it can be the case that a supplier stacks
the pallet in such a way that products of the same SKU are not on the same layer of the pallet.

Some suppliers have determined the number of products that fit within a box. The size and
volume of this box are not standardized. For 75% of the SKUs (of which the box quantity is
known), the number of products that fit within a box is 1 or less.

Purchase price
When products are bought, a purchase price is known. The net purchase price considers sub-
sequent agreements (e.g. rebates and listing fees). This net purchase price is used within this
project since the ’standard’ purchase price is not realistic. For clarity reasons, when referring
to the purchase price, the net purchase price is used.

A clear linear relationship has been observed between the selling price and purchase price; a
relatively high selling price corresponds with a relatively high purchase price. No clear relation-
ships can be seen between the selling price and profit margin or the purchase price and profit
margin.

3.2 KPIs current situation

In this section, first, the observable results of the current situation are discussed. As second,
the inventory levels and warehouse utilization are analyzed.

The results regarding inventory on hand, the value of the inventory, number of orders, order
quantity, and used locations are summarized in Table 3.2. The values are based on the period
between February and November 2022. The values for the KPIs are calculated for the SKUs in
scope.

3.2.1 Inventory

When comparing the total daily sales with the total daily inventory, it is notable that the total
inventory fluctuates and increases over time while the sales do not increase and fluctuate that
much over time (Figure 7.2a).
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Table 3.2: Overview of achieved results in current situation (per day)

Total inventory (in units) Total inventory (in e) Used locations (in number)

mean 23 254 4 224 182.36 2056
std 3193 609 599.62 180
min 16 380 3 038 656.73 1637
25% 21 173 3 777 812.76 1924
50% 22 971 4 173 396.87 2071
75% 24 848 4 535 855.75 2184
max 31 160 5 622 429.48 2437

As expected, the inventory of planned replenishment products has been observed to be higher
as these orders have a higher order quantity. The inventory levels of the regular replenishment
products are lower, the products are more frequently ordered and the difference between sales
and inventory levels are lower. This can also be seen in the inventory levels of a planned and
regular replenishment product (Figure 7.2c and 7.2d).

Within Coolbue, ABC classifications are set for products. While this classification to helps
identify important products, it is not used to set a target service level. Therefore, the ABC
classification will not explicitly be taken into account within the to-be-designed models.

(a) Sales and total inventory over time
(b) Inventory and sales over time for a planned re-
plenishment product

(c) Inventory and sales over time for a regular re-
plenishment product

Figure 3.4: Overview of inventory levels

3.2.2 Warehouse

On average, the 868 SKUs within scope occupy 2056 locations daily with a maximum of 2437
locations. Of these locations, the majority are active racking locations. Other distinctions that
can be made within the locations are based on height. Approximately 74 % of the products
occupy locations with a height of 230 cm and the rest of the products occupy locations with a
height of 150 cm. The number of used locations fluctuates over time. Especially more locations
are used within Augustus and September which can partly be explained by sales peaks in these
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months (Figure 7.2a). Unfortunately, because of access to limited data, it cannot be discussed
whether more locations are needed near the end of the year because of the higher sales. It can be
observed that within September and October the number of used locations decrease which can
be explained by the removal of excess stock and making the warehouse ready for the high number
of needed products for the end of the year. The number of products per location fluctuates over
time between the 6.8 and 8.2.

Figure 3.5: Occupied locations over time

3.3 Conclusion

To summarize, the context is characterized by positive lead times and non-stationary stochastic
demand. Moreover, requirements are set on the order quantity as this needs to be at least the
MOQ and in multiples of IOQ (if this is specified by the supplier). There are high inventory
levels, especially for products ordered via planned replenishment. The inventory is stored at one
stocking point (warehouse in Tilburg). Within the warehouse, the number of occupied locations
fluctuates and is often near the set maximum bound.

All in all, within this context, the decision variable is the reorder level per SKU. Moreover,
the possibility of increasing the order quantity is shown which can be seen as an additional
potential decision variable. The number of storage locations is a restricting constraint. Fur-
thermore, customer satisfaction is highly important resulting in the need of setting service level
constraints. Finally, the objective must clearly reflect the objective of the inventory planner and
Coolblue which on the one hand is to have maximum customer satisfaction and on the other
hand minimizing of costs.
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Chapter 4

Data preparation

This project relies on quantitative data as input for the to-be-designed models. The pre-
processing of data is an important process to improve the quality of the raw data. When
the data is not well prepared, it will produce misleading output, according to the phenomena of
garbage in is garbage out (Rahm and Do, 2000). In this section, the pre-processing and cleaning
of the data are described.

4.1 Data gathering

The relevant data is available in Looker and exported to .csv files. Used data in this research are
daily inventory levels (in units), sales per SKU per customer order, occupied storage locations
within the warehouse per SKU per day, SKU characteristics, and orders made by inventory
planners. All data is gathered in the time period January 2019 until October 2022. The sales
are gathered from January 2019 up to and including December 2022.

Filters are used to scope down to products in scope. Filters are set to solely analyze arrived
product orders. The sales per SKU per customer per day are aggregated to daily sales per SKU.

4.2 Data cleaning

To improve the quality of raw data, the data is cleaned. The goal of data cleaning is to identify
and remove inconsistencies and errors. this is done by detecting and correcting missing data
and outliers. It is important to understand the data by graphically examining (Hair Jr, 2014).
Within this section, there will be further zoomed in on missing data, outlier detection, and
correctness of the data points.

Missing data
Missing data is a result of a systematic event (e.g. data entry errors) or dependent on the
respondent (like refusing to answer) (Hair Jr, 2014). Within the inventory and sales data, no
missing data or duplicates are found.

In the data concerning product characteristics, the box quantity or maximum number of products
on a pallet was missing for some SKUs. The reasons for this missing data can partly be explained
by the suppliers and inventory planners not knowing this information. Therefore, the values are
approximated using the volume of an Europallet and an SKU. The height of the location is 230
cm but the maximum possible height is 220 cm since the pallet needs to fit within a location with
a height of 230 cm. This results in a possible tolerated height on which SKUs can be placed of
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220− 14.4 (since the pallet consists of a frame). This is an approximation since boxes can have
extraordinary forms resulting in not fitting perfectly to use the whole pallet. Since the entering
of the product characteristics is done manually, sometimes mistakes are made when entering the
data. Another possible reason for mistakes in the maximum number of pallets can be explained
by the change in product package size over time. Therefore, the given maximum number of
products on a pallet is checked by calculating the highest possible number of products that can
fit on a pallet based on the pallet and product volume. If the calculated number is lower than
specified in the data set, the number is modified. The missing values regarding the maximum
number in a box cannot be calculated and are set to 1.

Other incorrectness found within the data are negative sales and inventory levels. These values
are set to 0 since the inventory levels or sales cannot be negative. The occurrence of these
negative values can be explained by data entry errors.

Outlier detection
Outliers are usually judged as unusually high or low on a variable or combination of variables
in comparison with other values. According to Hair Jr (2014), outliers are ”observations with
a unique combination of characteristics identifiable as distinctly different from the other ob-
servations”. An outlier must be investigated concerning the representatives of the population.
Based on the source of the unique observation, an outlier can be classified; procedural errors,
extraordinary events, extraordinary observations, and outliers unique in their combination of
values across variables. The first class originates from mistakes in the gathering of data or data
entry errors and is eliminated during the previous step.

Extraordinary events
Outliers in this category occur as a result of an extraordinary event (Hair Jr, 2014). During
the period of COVID-19, extremely high and fluctuating sales patterns have been observed.
The first signals of COVID-19 were in January 2020 and the working from-home advice was
given by the government in March 2020. Especially, since this event, the total sales doubled in
March 2020 in comparison with February 2020. This can be explained by the closing of stores
and working from home advice as Coolblue is (mainly) an online retailer and sells electronic
devices. The total sales of February 2022 decreased by 25% relative to January 2022. Besides
this, the mid of February COVID-19 restrictions have been modified and this can partly explain
the decrease in total sales. The sales points during COVID-19 are eliminated as the COVID-19
situation is an extraordinary event and not representative of the normal situation. In short, the
data points between March 2020 and January 2022 are deleted from the data set. The values of
the month of January 2022 will be modified because the simulation aims to replicate the year
2022 based on the cleaned sales data. Because of seasonality, the values of January 2022 are
modified using a combination of the seasonal indices of 2019 and the median.

Because of the increase in sales, also an increase in ordered products by inventory planners
can be observed. Moreover, the mean supplier lead time is relatively higher and the standard
deviation shows high deviations in this period. This can be explained by the negative impact
on suppliers resulting in longer lead times and shortages. The data points during COVID-19
(between March 2020 and January 2022) are deleted from the data set.

Extraordinary observations
This class contains observations for which there is no explanation. The promotional calendar is
unavailable and therefore it is unknown whether an outlier is because of a promotion or another
reason. Therefore, will these promotion outliers be detected with the method described in this
section.

A method to detect univariate outliers is to examine the distribution of the observations of the
variables and select outliers that fall outside the ranges of the distribution (Hair Jr, 2014). This
is done by converting the values to standard scores with a mean of 0 and a standard deviation
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of 1. The formula to convert the values is x′ = x−µ
σ . For a number of observations smaller than

81, the standard score must be 2.5 or greater to be detected as an outlier. For a larger number
of observations, the cut-off value is 4. The value of detected outliers will be set to the median
value. The median value (without outliers) is chosen since the median is less prone to outliers
relative to the mean or mode. This results in a lower number of incidental sales points.

Another extraordinary observation is no registration of sales when the inventory is 0 because
there is no inventory on hand available. These values are substituted with the median demand
value because of the possibility of having demand when the inventory level was positive instead
of 0.

The number of changed sales data points is 2%. According to Hair Jr (2014) any of the im-
putation methods can be applied when the to be substituted data points are below 10%. This
cleaned data will be used as input for the models.
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Chapter 5

Design of model

To determine when and how much to order, or in other words, the reorder level and order
quantity, a model is formulated incorporating the constraints in line with the current situation.
The context is characterized by lost sales, stochastic demand, positive lead times, multi-period
and capacity constraints. In this chapter, three models are designed and discussed. The first two
models are in line with the current situation while the third model reflects the possibilities of
modifying the MOQ and IOQ. First, the inventory system, assumptions and the used notation
and concepts are discussed. Finally, the models are formulated, and the solution methods are
provided.

5.1 Inventory system

As could be seen in Table 2.1 in Chapter 2, inventory systems can be classified into several
classes. Within Coolblue, a periodic review is used since inventory can be reviewed every
weekday. An advantage of using periodic review is that it is known in which time interval,
orders are potentially created. Because of this, regular ordering is preferred for the inventory
planner and supplier.

Because of this and a fixed base replenishment quantity, the preferable inventory control system is
an (Rj ,sj ,nQj) inventory control policy within this context. The index j indicates the uniqueness
of the variables for SKU j.

As is shown in Section 3, there are possibilities to modify the order quantity in order to decrease
the number of used storage locations. This together with the minimum order quantity (set
by the supplier and Coolblue), an (Rj ,sj ,MOQj , IOQj) inventory control system will be used
in model 3. In the remainder of this chapter, assumptions and models will be discussed and
formulated to determine reorder levels.

5.2 Assumptions

Lead time
When an order is placed at the supplier, there is assumed that the supplier can always deliver
the order in full with a duration of the supplier specific lead time.

Time periods
Because of the possibility of selling products every day and ordering products every weekday,
the time period within the model is set to daily time periods. This has no impact on the lead
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time and review period in the models which is in days.

Prices
In reality, the purchase and sales prices fluctuate. Within the model, the sales and purchase
prices are taken as fixed per product and independent of quantity.

Storage locations
As mentioned in Chapter 3 and 1, several distinctions can be made within storage locations. The
location distinction based on height is relaxed and not taken into account within the models as
the height of an incoming pallet/shipment is unknown. Moreover, the distinction between pick
and storage locations is unnecessary as within practice an empty pick location is immediately
filled with inventory from a storage location.

Sales and backorders
As discussed in Section 3.1, the average demand is assumed to be equal to the average sales.
Substitution behavior is neglected as a high fill rate will be set resulting in a small part of the
demand lost and minimal substitution behavior.

The model is in the context of an online retailer in which unmet demand is lost since customers
are not able to place backorders. As described in Section 2.2.1, in some cases it is possible to
assume backorders while the model is clearly in an environment with lost sales. For the products
within scope, the median nOO is 1.4 and the median cL+R is 0.49. As for the majority of the
products (86%) cL+R < 0.5 and nOO ≥ 1 holds, lost sales can be ignored, and backorders
are assumed since the actual service level will not deviate much based on the outcome of the
variables cL+R and nOO.

5.3 Notation and concepts

The following concepts, logic and formulas are based on Van Donselaar and Broekmeulen (2014,
2022). In this section, it will be explained in detail.

The demand is stochastic, fluctuates over time and a seasonal pattern can be indicated, in short,
the demand is non-stationary. As the determination of the reorder level at each review moment
for each SKU will be too time-consuming to implement in practice, the choice has been made to
divide the planning horizon into phases and assume that within a phase demand is stationary.
For each phase, a reorder level per SKU is set. At the start of a phase, the reorder level will
be calculated based on the characteristics of that phase and the proposed models. The demand
within a phase is assumed to be independent and identically distributed.

Dividing the planning horizon into phases is reflected within the variables since the variables
are for a specific SKU and a specific phase denoted with j and g. The indication of a specific
phase g is not always denoted due to readability reasons. To formulate the models, the following
variables are distinguished;

(Potential) Decision variables
sg,j Reorder level for phase g and SKU j
ssg,j Safety stock in phase g for SKU j
MOQg,j Minimum order quantity for phase g and SKU j
IOQg,j Incremental order quantity for phase g and SKU j
smod
g,j (xcur) Modified reorder level for phase g and SKU j at time xcur
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Input
J Set of all SKUs in assortment
G Set of all phases
Lj Lead time of SKU j in time units
Rj Review period of SKU j in time units
IOQcurrent

j Current IOQ of SKU j in quantity

MOQcurrent
j Current MOQ of SKU j in quantity

Qcurrent
j Current order quantity of SKU j

hg,j Holding costs for SKU j in phase g per product per time unit
bg,j Shortage costs for SKU j in phase g per product
vg,j Value of SKU j in phase g
K Ordering costs
Cj Maximum number of products of SKU j on pallet in [products/pallet]
Wmax Maximum number of storage locations within warehouse
P2 Target fill rate
Pmin
2 Minimum target fill rate

E[D1,g]j Expected demand in phase g for SKU j per time unit
xcur Current time
Tg Length of phase g in time units
IPj,xcur Inventory position of SKU j at time xcur

To further analyze the relationship between the decision variables and other distinguished vari-
ables, first, the dynamics of the inventory system are further analyzed. Within this project, a
(Rj , sj , nQj) policy is used in model 1 and 2 for replenishment and (Rj , sj ,MOQj , IOQj) policy
in model 3. The MOQj is a limit on the minimum order size that can be ordered while the
step size is determined by the IOQj (Broekmeulen et al., 2017). When the MOQj is increased,
a lower number of the expected number of order lines can be observed since the quantity of an
order will increase. The inventory position is defined as the sum of the inventory on hand and
planned deliveries minus the number of backorders.

To be able to formulate a model, expressions for the system are derived at an arbitrary review
moment (τ) (without loss of generality) for an SKU. The time between two review moments is
R. If an order is placed at review period τ , the order will arrive after the fixed lead time (L) has
passed at τ + L. At τ + R is the next review period and if an order is placed, it will arrive at
τ +R+ L. Moments τ + L and τ +R+ L are potential delivery moments. Potential since not
at every review moment, an order is placed. The potential delivery cycle is the time interval
τ +L, τ +R+L. The inventory on hand is highest after a potential delivery τ +L and referred
to as IOH(L). Before the next potential delivery moment (τ +R+L), the inventory on hand is
at its lowest indicated by IOH(R+ L).

Expected inventory on hand
In the case of an (R,s,nQ) replenishment logic, the expected inventory on hand after a potential
delivery (at the beginning of the potential delivery cycle, IOH(L)) and before a potential delivery
(at the end of the potential delivery cycle, IOH(R+ L)) can be calculated. Because backorders
are assumed, the expected inventory on hand after a potential delivery (at moment τ+L) is
reflected by the inventory position at τ and demand during lead time. The inventory placed in
transit at moment τ arrives in the warehouse at τ+L and is already part of the inventory position
at moment τ . Moreover, during time interval (τ, τ + L), the inventory is decreased because of
demand during this time interval. The inventory on hand cannot be negative. Therefore, the
inventory on hand at τ + L, can be written as IOH(τ + L) = (IP (τ)−D(τ, τ + L))+.

An expression for the inventory on hand just before a potential delivery (IOH(τ +R+L) can be
formulated using the same logic. The order has not arrived yet at moment τ + R (since it will
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arrive at τ + R + L). Therefore, the inventory on hand at moment τ + R + L is similar to the
inventory at moment τ +L minus the demand in time interval (τ +L, τ +R+L). As inventory
on hand cannot be negative, the inventory on hand before the next potential delivery moment
at time τ + R + L is similar to IOH(τ + R + L) = (IOH(τ + L) − D(τ + L, τ + R + L))+ =
(IP (τ)−D(τ, τ +R+ L))+.

Besides, the inventory position after a potential ordering moment is always between s-1 and
s-1+Q because the inventory position must be smaller than s to be able to order. The quantity
to order will bring the inventory position back to or above s with a maximum of s-1+Q. This
maximum is reflected as maximum in the second sum sign since demand higher than this will
result in backorders. The expected inventory depends on the probability of a certain value of
the demand (lower than s-1+Q) and Q.

E
[
IOH(t)

]
j
= E

[
{IP (τ)−Dj(τ, τ + t)}+

]
=

1

Q

Q−1∑
i=0

s+i−1∑
d=0

{s+ i− d}P (Dt = d)
(5.1)

The expected inventory on hand at moment τ+L and τ+R+L can be calculated using formula
5.1. In this formula, t can be replaced with t = L or t = L+R to reflect the expected inventory
on hand at time t. Moreover, Dt reflects the demand during t.

In the case of an (Rj ,sj ,MOQj , IOQj) replenishment logic, the inventory position ranges
between s and s-1+MOQ. Because it is unknown whether at an arbitrary review moment just
after the potential ordering moment the inventory position follows a discrete uniform distribu-
tion, an additional probability for the inventory position is included. These distributions can
be derived using Adan’s Fitting procedure based on the mean demand and standard deviation.
These changes result in the following formulas 5.2 and 5.3.

E[IOH(L)] =

s−1+MOQ∑
i=s

i∑
d=0

(i− d) · P (IP = i) · P (DL = d) (5.2)

E[IOH(R+ L)] =

s−1+MOQ∑
i=s

i∑
d=0

(i− d) · P (IP = i) · P (DR+L = d) (5.3)

The average expected value of the inventory on hand is similar to the average of the expectation
of IOH(L) and IOH(R+ L).

E[IOH ] =
E[IOH(L)] + E[IOH(R+ L)]

2
(5.4)

Fill rate
The fill rate refers to the fraction of demand that is directly fulfilled from on-hand stock. The
fill rate can be expressed as the expected sales during the potential delivery cycle divided by the
expected demand during the potential delivery cycle (Van Donselaar and Broekmeulen, 2022).
The expected sales during a potential delivery cycle are the difference between IOH(L) and
IOH(R+L). The expected demand during the potential delivery cycle is similar to the expected
demand per time unit times R. This results in the following formula for fill rate per SKU per
phase (note E[D1] reflects the expected demand during a time unit);

P2 =
E[IOH(L)]− E[IOH(R+ L)]

R ∗ E[D1]
(5.5)
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Stock-outs occur when the demand is more than the inventory on hand. The expected number of
backorders during a time unit is when the expected demand is more than the expected inventory
during the time unit. This can be approximated by multiplying the expected demand for a time
unit with one minus the expected fill rate.

E[X−] = (1− P2 (s)) · E [D1] (5.6)

Expected number of occupied locations
Constraints are often set on the maximum number of stored products within a warehouse, which
is often calculated by multiplying the average inventory on hand by used space (Taleizadeh et al.,
2010; Pasandideh and Keshavarz, 2015). Within Coolblue, these approximations are incorrect
since the incoming stock is not added to an already-in-use storage location, but a new storage
location is used resulting in more storage locations occupied (and thus space) than approximated.

The maximum used space during a potential delivery cycle is when the inventory on hand is at
its maximum. This is just after a potential delivery at moment τ + L. Since the inventory of
incoming SKUs is not merged with inventory already in the warehouse, the maximum number
of occupied locations (in the number of whole storage locations or equivalent whole pallets) for
an SKU is the sum of the number of unit-load arrivals at a potential delivery moment and the
number of occupied locations before the arrival (Van Donselaar and Broekmeulen, 2022).

E[USL(L)] = E[USL(R+ L)] + E[UA] (5.7)

The number of occupied locations before arrival can be estimated by the inventory on hand
at τ + R + L divided by the replenishment order size. The maximum replenishment order
size is the maximum number of products on a pallet (C). The replenishment order size will be
approximated with the expected order size (E[OS]) and cannot exceed the maximum number
of products on a pallet. This results in the expected number of occupied locations before arrival
for the (R,s,MOQ,IOQ) logic as described in formula 5.8. To calculate, the expected number of
occupied locations before arrival for the (R,s,nQ) logic, the specified IOQ and MOQ need to be
replaced with Q in formula 5.8.

E[USL(R+ L)] =

s−1+MOQ∑
i=s

i∑
d=0

⌈
i− d

min(E[OS], C)

⌉
· P (IP = i) · P (DR+L = d) (5.8)

The number of unit-load arrivals at a potential delivery moment is similar to the order size
divided by the maximum number of products on a pallet (rounding this number up). Taking
the expectation of this number results in the expected number of unit-load arrivals at a potential
delivery moment (formula 5.9).

An order is created when the inventory position is below the reorder level sj . For an (R,s,MOQ,IOQ)
logic, the maximum order size is sj − 1 +MOQj because the order is made to increase the in-
ventory position to a maximum of sj − 1+MOQj . This results in an order when DR > IP − s,
reflected in formula 5.10. The expected order size and expected number of unit load arrivals
can then be calculated using formulas 5.11 and 5.12.

E[UA] = E[⌈OS/C⌉] (5.9)

OS =

{
⌊(s− 1 +MOQ− IP +DR) /IOQ⌋ · IOQ if DR > IP − s

0 otherwise
(5.10)

29



5.4. MODELS CHAPTER 5. DESIGN OF MODEL

E[OS] =

s−1+MOQ∑
i=s

∞∑
d−i−s+1

⌊
(s− 1 +MOQ− i+ d)

IOQ

⌋
· IOQ ·P (IP = i) · P (DR = d) (5.11)

E[UA] =

s−1+MOQ∑
i=s

∞∑
d=i−s+1

⌈⌊
(s− 1 +MOQ− i+ d)

IOQ

⌋
· IOQ

C

⌉
·P (IP = i) ·P (DR = d) (5.12)

For an (R,s,nQ), the maximum order size is sj − 1 +Qj . To formulate the formula of expected
order size, the logic described by (Van Donselaar and Broekmeulen, 2022) is used. An order is
placed when at moment τ+R, the inventory position is below the reorder level. During the time
interval (τ, τ +R), the inventory position only changes because of demand. Summarily, an order
is made when the difference in the inventory position after a potential replenishment order (at
time τ) and demand during the review period is less than the reorder level (IP −DR < s can
be rewritten as Dr > IP − s). The order size will be equal to converting IOQ and MOQ to Q in
formula 5.10. The expected order size is similar to converting IOQ and MOQ to Q in formula
5.11. The expected number of unit-load arrivals at a potential delivery moment is calculated by
filling the expected order size in in formula 5.9 resulting in formula 5.13.

E[UA] =

s−1+Q∑
i=s

∞∑
d=i−s+1

⌈⌊
(s− 1 +Q− i+ d)

Q

⌋
· Q
C

⌉
· P (IP = i) · P (DR = d) (5.13)

Lastly, the expected number of unit-storage locations at a moment in time ( E[USL]) is cal-
culated by taking the mean of E[USL(L)] and E[USL(R + L)] resulting in E[USL(R + L)] +
E[UA]/2.

5.4 Models

Based on the discussed notation and concepts, three models are formulated. Within the literat-
ure, the reorder level is often based on a target service constraint or inventory costs (Axsäter,
2015). The main goal of this project is to design a system to control inventories in which ex-
pected inventory costs are minimized. The model will result in a value for the decision variables
per phase. The parameter setting is discussed in Section 6.1.2.

The first proposed model sets the reorder level based on the target service level. This model does
not take into account the capacity restriction and is used as a reflection of the current situation.
Within the second model, the reorder level is set using a general formula consisting of expected
demand during lead time and review period and safety stock. The model minimizes the expected
inventory costs restricted by warehouse storage locations. The third model optimizes, besides
the reorder levels, also the incremental order quantity and minimum order quantity by taking
into account the expected inventory costs and warehouse storage locations. For an overview of
the decision variables per model see Table 5.1. Model 2 and 3 are subject to an aggregrate fill
rate constraint allowing different service targets for different models. Therefore, to enable fair
comparison and discussion of differences among the models, all models have a set aggregated fill
rate constraint. The models and solution methods are further explained below.
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Table 5.1: Overview of decision variables per model

Model Decision variables per SKU j and phase g

1. Current situation Reorder level (/safety stock)
2. Safety stock model (SS-model) Reorder level (/safety stock)
3. IOQ and MOQ model (IOQ/MOQ-model) Reorder level (/safety stock) , IOQ and MOQ

5.4.1 Model 1: current situation

As this model represents the current situation, the (R,s,nQ) replenishment logic is used. One
method to determine the SKU reorder level is by setting a service level. The DoBr-tool, de-
veloped by Van Donselaar & Broekmeulen, determines the reorder level of an SKU based on
a stochastic inventory model and the input parameters; review period, standard deviation of
time unit demand, mean time unit demand, lead time, IOQ, demand distribution and a target
service level in the form of fill rate or discrete ready rate. The lead time, review period and IOQ
are known and constant for each SKU. The goal of this current situation model is to provide
a method to mimic the current situation on setting the current reorder levels. Moreover, the
results of these set reorder levels can later be compared to the reorder levels set by the other
models regarding performance.

The minimum reorder levels that are calculated do not take into account the warehouse capacity
constraint nor can individual products compensate fill rates for the aggregated target fill rate.
When each SKU is set to the same service level, the aggregate service level will also reach that
value. The tool shows exact results in situations with backorders, non-perishable products and
stationary demand. Because of not taking into account the warehouse capacity, these calculated
reorder levels can be seen as an approximation of the base situation.

In combination with a search procedure, in the case of discrete demand, the following formula
of the fill rate is used to determine the reorder level per SKU per phase.

P2 = 1− E[{D(τ,τ+R+L)−IP (τ)}+]−E[{D(τ,τ+L)−IP (τ)}+]
E[D(τ+L,τ+R+L)]

= 1−
1
Q

∑Q−1
i=0

∑∞
d=s+i+1[P (DL+R=d)−P (DL=d)]{d−s−i}

E[DR] .
(5.14)

Here, E [DR] is the demand during the review period and P represents a probability.

Besides the reorder levels, the DoBr tool provides the expected inventory on hand for two
moments in time. These two moments are after a potential delivery (at the beginning of the
potential delivery cycle, IOH(L)j) reflecting the highest inventory level, and before a potential
delivery (at the end of the potential delivery cycle, IOH(R+L)j). This corresponds to formula
5.1 .

5.4.2 Model 2: determining safety stock

Besides setting a service level or using an optimization model to minimize costs, the reorder
levels can also be determined using a general formula as described in Section 2.2.3. The reorder
level should ensure that the demand during lead time and review period is covered including an
additional safety stock to cope with uncertainties. As this second model reflects an improvement
on the current situation, the (R,s,nQ) replenishment logic is used. The current situation will be
improved as this model allows different service targets for different products based on expected
inventory costs.

There is expected that there will be a higher safety stock for products with lower uncertainty

31



5.4. MODELS CHAPTER 5. DESIGN OF MODEL

and/or lower value (which results in a lower holding cost and backorder cost making it more
interesting to stock more of this specific product compared to products with a relatively high
value). When there is a capacity constraint, reorder levels depend on each other. The aggregate
fill rate will be met by stocking also other products that cost less in euros and/or space. The
model will contain the following objective and constraints.

Objective
The objective is set to minimize the expected total inventory costs per time unit expressed in
euros. The total inventory costs per time unit contains the holding costs per time unit, the
ordering costs incurred when an order is placed and shortage costs when demand cannot be
satisfied and is thus backordered (as backorders are assumed). The company aims at reaching
high sales in combination with high revenue and profit, which is in line with the objective
of minimizing inventory costs (containing the elements of holding costs and shortages). This
objective ensures that stock can be built up to deal with uncertainty while balancing shortage
and holding costs and adhering to the set constraints. Moreover, because of the holding costs, the
objective will penalize overstocking which is one of the main problems in the current situation.

According to Axsäter (2015), due to the holding of stock there is an opportunity cost for capital
tied up in inventory. These costs are the dominating part of the holding costs. Coolblue owns
its warehouse and therefore these fixed warehouse costs will not be taken into account within
the model. Holding costs will be determined as a percentage of the unit value (Axsäter, 2015).
Multiplying the average expected inventory on hand with the holding costs of an item and the
length of the period results in the expected holding costs incurred per SKU per period.

As there will be ordered from an external supplier, fixed ordering costs will be taken into
account. These costs reflect the costs of replenishing independent of the batch size. The expected
times that will be ordered within a phase g is the expected total demand of the phase (Tg ·
E[D1]g,j) divided by the expected order size (Ghiani et al., 2004). The expected order size will
be calculated using formula 5.11 (including converting IOQ and MOQ to Q). The expected total
ordering costs within a phase are the number of expected times that will be ordered multiplied
by the ordering costs. To calculate the ordering costs per time unit, the total ordering costs are
divided by the number of time units within a phase which is equal to the length of the phase
(Tg).

E[Ordering costs]j =
(Tg ·E[D1]g,j/E[OS]g,j)·K

Tg

E[Ordering costs]j = (E[D1]g,j/E[OS]g,j) ·K
(5.15)

The last distinguished cost component is shortage costs. These costs reflect the associated costs
of having stock-outs. Shortage costs only appear when there is a stock-out and this happens
when the demand is more than the inventory on hand. The shortage costs are incurred per
backordered item. The expected number of backordered items of an SKU during a period can
be approximated by multiplying the expected demand for a period by 1 minus the expected fill
rate of that SKU. The total resulting shortage costs for an SKU for a period can be calculated by
multiplying the expected number of backordered items of an SKU by the shortage costs incurred
per item.

E[X−]j = (1− P2,j (sj)) · E [D1]j (5.16)

Summing all cost components results in the expected inventory costs per period per SKU.
Dividing this sum by the length of the period results in the average expected costs per time unit
for an SKU.

Constraints
A constraint is set on the aggregated fill rate. The fill rate is calculated for an SKU as in formula
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5.5. Individual fill rates can be aggregated using several methods; general weights, volume-based
weights, turnover-based weights and profit-weighted average fill rate (Van Donselaar et al., 2021).
Therefore, the aggregated fill rate is modelled as the sum of weight times the individual fill rate.
This aggregate constraint is set to make sure that the fill rate of the assortment is at least
sufficient to serve the customer demand.

Besides an aggregated fill rate constraint, a minimum fill rate constraint is set. This ensures that
all SKUs have sufficient fill rates including the expensive and highly uncertain demand SKUs.
Otherwise, for SKUs with high holding costs will the reorder levels be lower in comparison to
SKUs with lower holding costs. Since the products are decided to be within the assortment, it
is needed that these products are most of the time available.

As the model is used to set a reorder level consisting of the sum of the demand during lead time
and review period and a safety stock. The reorder level must be at least the expected demand
during the lead time and review period. For some SKUs, this constraint is already satisfied
because of the minimum fill rate constraint.

Another constraint will be set on the used capacity in the number of storage locations. This
constraint cannot be exceeded. Therefore, the maximum inventory on hand can be used which is
after a potential delivery and at moment τ +L. Unfortunately, the inventory of incoming SKUs
cannot be merged with inventory already in the warehouse when there is still enough space in
the already occupied location. Therefore, a ’new’ location will be occupied for the incoming
shipments. The expected number of occupied locations cannot be exceeded and therefore will
a maximum be set on E[USL]. Using E[USL(L)] to set a maximum is not realistic as not all
SKUs will occupy at the same moment the maximum number of locations. Within the model,
the reorder level will be changed resulting in different reorder levels and potential changes in
the number of occupied locations. The word potential is used since it can be the case that the
expected number of used locations will not change since the used location is not fully occupied.

This objective and these constraints result in the formulated model described in 5.17. Tg refers
to the length of the phase. The model will result in the safety stock and reorder levels as output.
The expected inventory on hand, expected order size and expected number of backorders depend
on the reorder level which is the sum of the expected demand during the lead time and review
period and safety stock.

Min
∑

j∈J(hj · E[IOH ]g,j + (E[D1,g]j/E[OS]g,j) ·K + bj · E[X−]g,j)

s.t.
∑
j∈J

wg,jP2,g,j ≥ P ⋆
2

P2,g,j ≥ Pmin
2 ∀j ∈ {1, .., N}∑

j∈J
E[USL]g,j ≤ W ∗

sg,j ≥ E[DRj+Lj ]g,j ∀j ∈ {1, .., N}∀g ∈ {1, .., G}
sg,j ∈ N+ ∀j ∈ {1, .., N}∀g ∈ {1, .., G}

(5.17)

Solving of model
The model will be approached as a knapsack problem. Using a knapsack approach to solve a
model like this is already done for example by Schwarz (2008), who solve a knapsack problem
to determine the number of products in storage by balancing the limited resources. Another
example is by Bijvank and Vis (2012a) in which inventory control variables are determined
within an environment with limited storage capacity. This limited storage capacity is expressed
in the number of bins and within a bin fit at most a specific amount of units. To solve the
model, in this project, two solution methods are used; a greedy heuristic and a mixed integer
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linear program (MILP). Because the MILP has a lower computational time and shows better
results than the greedy heuristic, there will be a focus on the MILP. The greedy heuristic is
described in Appendix B including its performance.

MILP
To solve the model using a mixed integer linear program (MILP), first, all possible reorder levels
are determined for an SKU. The minimum reorder level is determined as the demand during the
lead time and review period. When this minimum reorder level results in a fill rate lower than
the minimum fill rate constraint, the minimum reorder level is adjusted. The maximum reorder
level is determined as the reorder level when the fill rate is higher than 0.999 as a higher fill
rate results in very high costs. For every reorder level, in the range the minimum and maximum
reorder level are the expected required locations, the expected inventory costs and the expected
fill rate calculated.

All possible reorder levels of an SKU form the set Z. Using the following MILP, one reorder level
per SKU is determined. The values of E[IOH ]j,z, E[OS]j,z, E[X−]j,z,P2,j,z and E[USL]j,z are
for SKU j and combination z. An additional restriction is included to make sure that only one
combination is selected per SKU. All in all, this results in the following MILP.

Minimize
∑
j∈J

∑
z∈Z

xj,z · (hj · E[IOH ]j,z + (E[D1,g]j/E[OS]j,z) ·K + bj · E[X−]j,z)

s.t.
∑
j∈J

∑
z∈Z

xj,z · wj · P2,j,z ≥ P ⋆
2∑

z∈Z
xj,z · P2,j,z ≥ Pmin

2 ∀j ∈ {1, .., N}∑
j∈J

∑
z∈Z

xj,z · E[USL]j,z ≤ W ∗

∑
z∈Z

xj,z = 1 ∀j ∈ {1, .., N}

xj,z ∈ {0, 1} ∀j ∈ {1, .., N}
(5.18)

5.4.3 Model 3: modifying IOQ and MOQ

As shown in Section 3, the ordered quantity could be increased as the ordered quantity is
relatively low compared to the maximum pallet quantity. By also incorporating the IOQg,j and
MOQg,j as decision variables, there is expected to be a positive result in expected inventory
costs. This model is based on the model proposed by Van Donselaar and Broekmeulen (2022).
By also optimizing the MOQg,j and IOQg,j (e.g. setting the MOQg,j and IOQg,j higher), the
ordered quantity will increase resulting in fewer times ordering and filling locations can more be
filled resulting in fewer locations needed. This can solve the perceived current location deficit.

The objective is to minimize the expected inventory costs and similar to the objective of model 2.
The warehouse capacity and (minimum) fill rate constraints are similar to model 2. Additional
constraints are set to ensure that all products within the set have an incremental and minimal
order quantity that is at least the value of the current. Moreover, the set MOQg,j must be a
multiple of the set IOQg,j . The new set IOQg,j must be a multiple of the current IOQCurrent

g,j

if the MOQg,j is set smaller than the maximum pallet capacity. When the MOQg,j is set to
the maximum pallet capacity, it can be beneficial to set the IOQg,j also to the maximum pallet
quantity as it will facilitate the most efficient use of storage locations. The maximum of the new
set MOQ is the maximum pallet capacity as this is one unit load. Incorporating these additional
constraints result in the model presented below.
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Min
∑

j∈J(hj · E[IOH ]g,j + (E[D1,g]j/E[OS]g,j) ·K + bj · E[X−]g,j)

s.t.
∑
j∈J

wg,jP2,g,j ≥ P ⋆
2

P2,g,j ≥ Pmin
2 ∀j ∈ {1, .., N}∑

j∈J
E[USL]g,j ≤ W ∗

MOQCurrent
j ≤ MOQg,j ≤ Cj ∀j ∈ {1, .., N}

IOQg,j

{
= k · IOQCurrent

j if MOQg,j < Cj

∈
{
IOQCurrent

j , Cj

}
if MOQg,j = Cj

k ∈ N+, ∀j ∈ {1, .., N}

MOQg,j = k · IOQg,j k ∈ N+, ∀j ∈ {1, .., N}
sg,j ≥ E[DRg,j+Lj ]g,j ∀j ∈ {1, .., N}∀g ∈ {1, .., G}

sg,j ,MOQg,j , IOQg,j ∈ N+ ∀j ∈ {1, .., N}∀g ∈ {1, .., G}
(5.19)

Solving of model
To solve this model, three solution methods are used; the two-step heuristic of Van Donselaar
and Broekmeulen (2022), a modified version of the two-step heuristic and a MILP. Because the
results and computational time of the modified version of the two-step heuristic is satisfactory,
the results of the two-step heuristic and MILP are discussed in Appendix B.2. In the remainder
of this section is the modified version of the two-step heuristic (hereafter IOQ/MOQ model)
described.

The IOQ/MOQ model determines first the target fill rate per SKU as a first step. In the second
step, all combinations of MOQj , IOQj and sj of an SKU that meet this fill rate are sought.
With all these possible combinations, the best values for MOQj , IOQj and sj for all SKUs are
determined using a MILP.

In the first, the target fill rate is determined using a greedy heuristic. The starting reorder level
of each SKU will be calculated as the demand during the lead time and review period. If this
resulting reorder level is lower than the minimum fill rate constraint, the reorder level of this
SKU will be increased until the minimum fill rate is met. The objective here is the minimization
of the expected inventory costs. The ratio for each SKU is calculated as the change in objective
(expected inventory costs) when the reorder level is increased by 1 divided by the (potential)
change in the expected number of used locations when the reorder level is increased with one
unit. This ratio is used since the main goal is to investigate the SKUs that yield the most (in
controversy have the lowest costs) while not consuming a lot of space. The increased reorder
level is assigned to the item with the lowest ratio. Increasing the reorder level of SKUs is done
until the aggregated fill rate is satisfied.

As second, all combinations ofMOQj , IOQj and sj of an SKU that meet the fill rate (determined
in the first step) are sought. In this MILP, the expected inventory costs are minimized and
restricted by the number of locations and weighted fill rate. The combination of MOQj,f ,
IOQj,f and sj,f for all SKUs form the set of combinations F. For each combination f and SKU j,
the values of E[IOH ]j,f , E[USL(L)]j,f , E[X−]j,f ,P2,j,f and E[USL(L)]j,f are calculated. These
found combinations are the input for the MILP described in formula 5.20 with constraints on
the weighted fill rate, warehouse capacity and selecting one combination per SKU.
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Minimize
∑
j∈J

∑
f∈F

xj,f · (hj · E[IOH ]j,f + (E[D1,g]j/E[OS]j,f ) ·K + bj · E[X−]j,f )

s.t.
∑
j∈J

∑
f∈F

xj,f · wj · P2,j,f ≥ P ⋆
2∑

f∈F
xj,f · P2,j,f ≥ Pmin

2 ∀j ∈ {1, .., N}∑
j∈J

∑
f∈F

xj,f · E[USL]j,f ≤ W ∗

∑
f∈F

xj,f = 1 ∀j ∈ {1, .., N}

xj,f ∈ {0, 1} ∀j ∈ {1, .., N}
(5.20)

5.5 Transition between phases

Since between the phases, the expected demand can change significantly, handling the transition
to the next phase is needed. This transition is important because it needs to make sure that
there is enough available stock when the phase starts in cases of transitioning from a phase with
low to high demand. While in the case of changing from a phase with high to low demand, the
transition needs to make sure that the inventory is not unnecessarily built up in the last days
of the current phase as this can result in excess stock in the next phase.

To change the ordered quantity, the reorder level will be modified. The reorder level is modified at
a review period resulting in a modified reorder level (smod

g,j ). Because of the dependencies among
the SKUs due to the capacity constraint, the reorder level is only modified when the sum of the
review period and lead time exceeds the remaining duration of the current phase. Otherwise,
the model could best be executed at every review moment which can be too computationally
expensive. Because of modifying the reorder level in transitions from a low to high demand and
vice versa, there is assumed that the capacity constraint will not be exceeded as the start of
preparing for the transition from a high to low demand phase starts early.

There are several possibilities when the changeover of a phase is nearby in the future. When
in the next phase the demand and thus corresponding reorder level is more than in the current
phase, there needs to be made sure that at the end of the current phase, enough inventory is
built up otherwise it will result in stock-outs at the start of the next phase. Therefore, before
the end of the current phase, an additional quantity needs to be ordered. This is reflected
in formula 5.21 in which the modified reorder level at a day (xcur) is the sum of the demand
needed for the remaining days in the current phase, the demand for the remaining days before
the order will arrive in the next phase and the maximum safety stock in the current phase or the
weighted safety stock. xcur refers to the number of the day in the current phase. It is necessary
to stock this additional stock for the next phase as late as possible because of the holding costs.
Therefore, the reorder level will only be modified when the sum of the current time, lead time
and review period are more than the end date of the phase. Using this modified reorder level
will result in an order with a higher quantity. This results in advantages such as no additional
ordering costs and decreasing the chance of being too late resulting in stock-outs.

Another possibility is that the demand in the next phase is expected to be lower than in the
current phase. To not have a significant amount of stock leftovers, there needs to be made sure
that especially near the end of the phase, only the amount is ordered that is needed within this
phase. This correction is reflected in the modified reorder level. This modified reorder is set in
the same manner as for the case when the demand is expected to be higher than in the current
phase. The reorder level is only modified when the sum of the current time and review period
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and lead time exceeds the duration of the phase, otherwise, it will not be logical as the normal
reorder level can be used.

smod
g,j (xcur) = (Tg − xcur) · E[D1,g]j + (Lj +Rj − Tg + xcur) · E[D1,g+1]j +

Tg−xcur

Lj+Rj
· ssg,j + Lj+Rj−Tg+xcur

Lj+Rj
· ssg+1,j

(5.21)
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Chapter 6

Model settings & Simulation

Within the project, the expected performance of each model will be approximated. Besides, a
simulation will be built to test the models including the transition between phases. As stated
before, the horizon of a year will be divided into phases. Within this section, will first be
explained how these phases are determined whereafter the parameter setting within the models
will be discussed. Finally, how the simulation is built and the simulation specific parameters are
discussed.

6.1 Parameter setting

To be able to determine the phases within a year, the demand pattern of the products needs to
be understood. Within this section, first, the demand pattern will be investigated where after
the phases and other parameters are determined.

6.1.1 Demand

Seasonality
Recall that the recorded sales are assumed to be the demand as explained in Section 3. Because
of the occurrence of a trend and seasonal pattern in the demand data, the demand can be
classified as non-stationary.

To be able to understand the sales throughout the year, seasonal patterns within a year are
investigated. The seasonal indices of all products within scope within a year are drawn from
2019 to 2022 for monthly periods (figure 6.1). While the sales in 2021 are not representable for
the current situation, the seasonal indexes are still drawn for this year to show the occurrence of
a seasonal pattern. As expected the seasonal pattern shows an increase towards the end of the
year (for all years) which can be explained by Black Friday and the Christmas period. Moreover,
at the start of the year (especially in 2019 and 2020), the sales decease where after it increases
again. This can partly be explained by the increase in temperature and the corresponding
’needed’ products such as air coolers, barbecues, and garden appliances in the summer period
(as can be seen in the total daily sales of garden tools and climate control products in Figure
6.1c). The seasonal indices are inconsistent over time. The sales within 2021 and 2022 are more
evenly spread compared to 2019 and 2020. To examine the seasonal pattern on an SKU level,
ACF plots are used since the relationship between lagged values of a times series is measured
by autocorrelation. This is done for some SKUs and a seasonal pattern has been observed.

Determining length of phases
There are several options to cope with non-stationary demand in an inventory control situation
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(a) Seasonal indices original data (b) Seasonal indices cleaned data

(c) Daily sales of garden tools and climate control
products over time

Figure 6.1: Seasonality

as described in Section 2.2.4. Within this project, the planning horizon will be divided into
phases and in these phases, the demand is assumed to be stationary as described in Section 5.3.
As a starting point, the duration of the phases is set to a month as is done by Chen and Chang
(2007).

Within a phase is assumed that demand is stationary. To test the stationary of the SKUs within
a phase, the Augmented Dickey-Fuller (AD-F) test is used. This test checks whether the time
series is stationary by setting a null hypothesis; the time series is non-stationary. The null
hypothesis can be rejected when the p − value is below the 0.05 significance level. This test
is done per SKU per month per year using the cleaned sales data as described in Section 4.
The duration of phases are varied. On average most SKUs have a stationary demand when the
duration of the phases is set to 13 weeks (Table 6.1). Looking at the seasonal indices of the
cleaned data of 2022, there was expected that two phases will be most beneficial; the first phase
having a duration of months 1 to 10 and the second phase of solely months 11 and 12. This
is not the case and can be explained by the underlying seasonal patterns of SKUs for example
garden SKUs which have a higher demand between April and June. Therefore, there will be 4
phases with a length of 13 weeks.

Table 6.1: Overview of results AD-F test

Duration of phase Ratio stationary SKUs (in %)

1 month 88.75
4 weeks 87.24
2 months 93.61
8 weeks 91.23
13 weeks 96.03
Months 1-10 and months 11-12 95.39
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Demand distribution
Using the data of the year 2022 and the set duration (13 weeks) of the phase, a demand distribu-
tion will be fit on the demand per SKU. Because of actual discrete demand values, it is possible
to fit a discrete distribution (Axsäter, 2013). This is also preferred as there is discrete demand in
practice and there is a relatively low average demand (Van Donselaar and Broekmeulen, 2014).
Therefore, a discrete demand distribution will be used.

A theoretical distribution will be fitted based on the standard deviation and mean of the demand
using the method of Adan et al. (1995). The standard deviation and mean demand are calculated
based on the cleaned demand data per SKU and per phase of the year 2022. Based on the
outcome of the variable a (calculated using formula 6.1), a discrete probability distribution
function is chosen.

a =
σ2/µ− 1

µ
(6.1)

For a = 0 the Poisson distribution is chosen, for −1 < a < 0 the Binomial distribution, for
0 < a < 1 the negative binomial distribution, and for a ≥ 1 the geometric distribution. As
the theoretical distribution is based on a limited set of historical data, the distribution is an
estimate of the true probability function.

6.1.2 Other parameters

Within this section, the setting of other parameters is discussed. The setting of parameters is
based on literature and analysis of the current situation.

Lead time
As explained in section 3, the lead time per supplier instead of per SKU will be used as lead
time. This is estimated by calculating the supplier lead time of all regular replenishment SKUs
(excluding data points in the COVID-19 period) and taking the average of this per supplier.

Review period
Within Coolblue, the review period is not strictly reported as inventory planners can review
the inventory every weekday. As indicated by experts within Coolblue, the placed orders are
possibly consolidated at the supplier. This means that reviewing the inventory every day and
placing small orders may not result in also receiving the order with a duration of the lead time
as the supplier can consolidate the orders. Therefore, the review period is estimated as the time
between the delivery of shipments by the same supplier.

MOQ
The minimum order quantity will be set as the required minimum order value set by the supplier
divided by the purchasing price of an SKU. If no minimum order value is set by the supplier,
e100,00 is used as the minimum order value to calculate the minimum order quantity.

IOQ
The incremental order quantity is used in the third model and will be set as defined by the
supplier. If nothing is defined for an SKU, the IOQ will be set to 1.

Q
To mimic a realistic current situation the used ordered quantity per SKU in the first and second
model is set to the average order quantity of an SKU.

Maximum number of products on pallet
The maximum number of products on a pallet are calculated as described in Section 4.2.
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Holding costs
Within Coolblue, the precise holding costs are unknown and therefore an approximation is
used. Teunter et al. (2017) models the holding costs of an SKU per time unit as the inventory
holding charge times purchasing price of the SKU. The inventory holding charge is assumed to
be constant for all items. This approach is in line with the common assumption that the holding
cost parameter is constant (Berling, 2008). Moreover, according to Azzi et al. (2014) cost of
capital makes up most of the costs. Unfortunately, no standard inventory holding rate are found
within literature. The used of costs of capital at Coolblue is 23% and therefore is the annual
holding cost rate set at 23% (resulting in 23/365 % as daily holding cost rate used in model).
This 23 % is compared to other articles using a holding cost rate. As within most textbooks,
the percentages range between 12 and 34 % (Berling, 2008). Therefore, 23% as the holding cost
rate is appropriate.

Shortage costs
Due to having stock-outs, a company will have a loss of sales and thus revenue. Unfortunately,
stock-outs may also result besides the loss in sales, in loss of customer satisfaction and decrease
in market share (Boulaksil et al., 2009) (Zinn and Liu, 2001) (Gruen et al., 2002).

Quantifying these losses due to stock-outs numerically is difficult. Solely using product profit
margin cannot be done as some products have a low profit margin while these products are
important, for example, as a complementary product or for attracting people to the website.

Because of these reasons, the lost product profit margin does not reflect the impact of a lost sale.
Therefore, the shortage costs are set using the result of the classical Newsvendor problem as
also done by Broekmeulen and Van Donselaar (2009). The Newsvendor problem is a one-period
model in which is determined how much to stock under uncertain demand knowing that leftover
stock cannot be sold anymore. The result is that in the classical Newsvendor problem, the
service level needs to be equal to the division of the underage cost by the sum of the overage and
underage cost, which is used to determine the costs associated with lost sales. The holding costs
and the shortage costs are balanced such that it is unfavorable to either hold more inventory nor
backorder more. Within this study, the overage costs are equal to the holding costs (assuming
that for excess stock, Coolblue removes the product for a price similar to the purchasing price
and depreciation). The underage costs are equal to the lost sales costs. The fill rate is set equal
to the aggregated target fill rate. The shortage cost per SKU are determined using the following
formula;

bj = hj ·
P2

1− P2
(6.2)

Fill rate
As explained in Section 5.4.2, a minimum and target fill rate is used. The minimum fill rate is
set to 0.83 as decided in consultation with practitioners of Coolblue. Bijvank and Vis (2012b)
set a minimum fill rate in the range between 0.75 and 0.99. As the set minimum fill rate lies
within this range, the minimum fill rate is found to be appropriate.

The target fill rate is set to 0.95 reflecting the commercial goals of Coolblue for these products.
This set target fill rate is within the range (0.8 - 0.99) of often set fill rates within literature and
therefore denoted as sufficient (Pauls-Worm et al., 2014; Van Donselaar et al., 2021; Teunter
et al., 2017).

Ordering costs
The ordering costs will be set to e10,00 per placed order per SKU. This value is based on the
costs of creating, and verifying orders, planning the orders, and invoice handling. Moreover, an
additional part is included regarding handling delivery conflicts as the duration of this process
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is high resulting in high costs relative to the normal flow of placing and receiving orders. In
addition, a part is included that mirrors the costs when small order quantities are ordered to
penalize high frequent ordering. Orders with small order quantities at the same supplier are
delivered on a pallet with multiple SKUs (so-called mixed pallets). These mixed pallets need to
be decomposed and sealed again resulting in additional time needed. Moreover, it also results
in extra traveling time as a forklift can only bring one pallet per time to a storage location. As
the duration of these processes depends on a high number of factors, the mean process duration
is approximated.

Warehouse capacity
In 2022, the mean number of storage locations for the SKUs in scope used a day is 2056, the
minimum is 1637, the median is 2071 and the maximum is 2437. In 2022, the number of used
locations was at some points too high and therefore the warehouse capacity cannot be set based
on the achieved results in 2022. The 868 SKUs were approximately 10% of the sales and 12%
of the volume of all SKUs stored in Parcel Large locations. The numbers are relatively low
which can be explained by other Parcel Large products that have high sales because of deals
and the fact that a lot of products within Coolblue have a short product life cycle. In this study,
products with sales of at least 3 years are in scope (because of being able to investigate seasonal
patterns). Based on these numbers the preferred number of occupied warehouse locations by
these SKUs was between the 1436 and 1821 storage locations (including a 15% buffer of storage
locations). The warehouse capacity is set to 1725 as this is the 75% point between 1426 and
1821 and found to be sufficient by Coolblue practitioners.

6.2 Simulation

This study uses simulation to explore the performance of parameter changes and the designed
models in a realistic situation. The MILP part of the models are solved using Gurobi Optimizer
9.5.1 in Python 3.9. The main goal of the simulation is to imitate the behavior of the actual
inventory system and evaluate the impact of the designed models and transition between phases
based on performance indicators. A discrete system is used because these systems are only
observed at regular points in time which is in line with the system under study (because of
reviewing periodically). Discrete-event simulation with an objective-oriented approach is used
because the system state changes due to randomly occurring events (e.g. customer demand).
First, the distinguished events are discussed whereafter the simulation specific parameters are
explained.

6.2.1 Simulation procedure

In principle, the working of the simulation is as follows; first, an event is selected from the
Future Event set. As second, the time is set corresponding to the event’s time. Then the event
is handled based on the specific type according to the event handler. This is done until the time
exceeds the running time. The events that are distinguished are:

• Check incoming customer demand : Because of customer demand, a decrease in the invent-
ory position and inventory on hand can be observed.

• Review inventory : Every R time unit, the inventory position of an SKU is reviewed and
potentially an order is placed.

• Receive incoming order : A placed order is received resulting in an increase in the inventory
on hand.

• Start of new phase: This event starts a new phase and sets the parameters per SKU to
the right values (corresponding with the new phase).
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The order of events on a day is, first inventory is reduced by occurring demand, whereafter a
replenishment decision is possibly made whereafter a potential order is delivered (Van Donselaar
and Broekmeulen, 2014). Demand per SKU is sampled using a discrete distribution based on
past data using the fitting procedure of Adan et al. (1995). When demand occurs, demand is
fulfilled from a location using the FIFO principle. As the simulation reflects as best as possible
the current situation, demand is lost when available inventory is less than the demand.

The placing of an order increases the inventory position immediately and the order is received
after the lead time. The receiving of the order increases the inventory on hand. When the order
is received, the products of the new order will be placed on new storage locations instead of
filling the already-used locations of the specific SKU. This reflects honeycombing and is in line
with the current operations within the warehouse.

Within the simulation, a distinction is made between week and weekend days. On weekend days,
it is not possible to place orders or receive incoming orders. Therefore, incoming orders scheduled
on Saturday are delivered on Friday and scheduled on Sunday are delivered on Monday. This
reduces high inventory fluctuations by dividing the incoming shipments planned in the weekend
on two days instead of solely one day. Moreover, the reorder level is corrected for weekend days
by considering the number of total days until the next lead time and review moment.

When the event start of a new phase occurs, the parameters of the SKUs are set to the parameters
within this phase (i.e. fill rate weight, standard deviation, and mean demand) and the reorder
levels and safety stocks are calculated using one of the designed models. The transition between
phases (as described in Section 5.5) is implemented by modifying the reorder level at a review
moment when the conditions (the sum of the current day, lead time and review period exceed
the length of the phase) are met.

An overview of the flow between the events can be seen in Appendix C. In the simulation, a day
represents a single time step. At the start of the simulation, the events of incoming customer
demand, review inventory, and the start of a new phase are triggered. To better reflect the
situation in practice, the review inventory events for all SKUs are scheduled using a schedule to
make sure that not all review inventory moments are at the same moment. During the handling
of these events, the next event of these types is scheduled.

6.2.2 Simulation parameters

Besides model parameters, also values for specific simulation parameters need to be defined.
These values are specified using the simulation of the current situation model as this situation
shows high variance. A detailed discussion of the settings is provided in Appendix D. As the
simulation will start with inventory levels of 0, the warm-up period is of high importance. The
warm-up period will be set to 1000 time units (see Figure D.1 in Appendix D), the replication
length to one year and the number of runs to 12 (based on the method described by Boon et al.
(2020)) .

6.2.3 Validation simulation

The simulation model needs to be verified and validated before it can be used as a tool to
gather outputs. To determine whether a simulation program performs as intended is referred
to as verification (Kleijnen, 1995). Validation refers to whether the simulation is a correct
representation of the system in practice.

First, the model is verified. This is done by verifying intermediate output with theory and
context of the system. Moreover, as objective-oriented programming is used, modular testing is
done.
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Validation is done by comparing the simulation results to the results of analytical formulas. In
this way the validation of the simulation is guided by knowledge of theoretical models with known
solutions as is asserted by Kleijnen (1995) when studying real systems. The values of analytical
formulas are calculated using the DoBr tool. Based on the results (as shown in Appendix E),
the simulation can be used to gather outputs.
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Chapter 7

Results

The performance of the described models and solutions methods can be compared using two
methods. On the one hand, mathematical formulas can be used to approximate the expected
performance of the model. On the other hand, expected performance can be approximated
by implementing the models in a simulation. A disadvantage of the first method is that no
distinction can be made between week and weekend days. First, the results using mathematical
formulas are discussed. As second, obtained results using simulation are discussed and the
sensitivity of the models is tested.

7.1 Mathematical formulas

Using the formulas described in Section 5, the expected performance of the models is approx-
imated. The KPIs that are of interest are the expected total costs, average expected inventory
per time unit, expected number of required locations, and expected order size. These KPIs are
calculated per phase. The mean value for the KPIs of each model is compared. The overview
of the results using approximation is documented in Table 7.1.

Table 7.1: Overview of results using mathematical formulas

Current SS-model Difference current and SS-model IOQ/MOQ-model Difference current and IOQ/MOQ

Average expected inventory on hand per time unit 6596.4 6192.2 -6% 8675.9 32%
Average expected order size 6.1 6.1 0% 14.8 142%
Average expected backorders per time unit 0.05 0.05 0% 0.05 -10%
Average expected used locations per time unit 1745.9 1514.1 -13% 1015.5 -42%
Maximum expected used locations per time unit 2011.2 1779.4 -12% 1144.6 -43%
Total expected costs per time unit 2102.30 2025.07 -4% 1329.95 -37%
Fill rate 0.95 0.95 0% 0.95 0%
Expected holding costs per time unit 721.29 618.85 -14% 778.25 8%
Expected ordering costs per time unit 1295.29 1295.29 0% 449.24 -65%
Expected backorder costs per time unit 85.73 110.93 29% 102.46 20%
Ratio holding costs (in %) 34% 31% 59%
Ratio ordering costs (in %) 62% 64% 34%
Ratio backorder costs (in %) 4% 5% 8%
Computational time (in s) 2.4 3045 6053

When comparing the current situation with the safety stock model, especially the 4% cost
decrease is interesting. This can partly be explained by the fact that the MILP sets the reorder
levels in such a way that it perfectly fits within the capacity constraint while considering costs. It
results in holding less expensive products (this is reflected in the decrease of expected inventory
on hand and expected holding costs). In the current situation, all products have the same fill
rate resulting in a situation in which no service differentiation can take place, while service
differentiation is done in the MILP as a weighted target fill rate is set. This results in setting
higher reorder levels for less expensive SKUs.

The holding costs are not close to the ordering costs. While this was expected since in the EOQ
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formula, an optimal Q is given by balancing the ordering and holding costs. In this situation, the
holding and ordering costs are not perfectly balanced but can be explained by the set capacity
constraint and the used Q from practice. The expected order quantity based on the EOQ formula

is Q∗ =
√

2AD
vr =

√
2·10·0.44

127.94·0.23/365 = 10.4 which is higher than the used Q within these models.

This shows possibilities to further improve by setting the IOQ and MOQ based on the current
values as is done in the IOQ/MOQ model.

As expected, the IOQ/MOQ model results in a 37% expected inventory costs decrease compared
to the current situation. Within this model, the IOQ and MOQs are set in such a way that the
locations are more fulfilled reflected in the higher expected inventory and expected order size.
This results in higher holding costs and lower ordering costs (because of higher inventory levels,
there needs to be ordered less frequently). The IOQ is most often set to 1 as this results in the
most flexibility while placing an order. The MOQ is set to a value between the current MOQ
and max pallet capacity. The expected order size relies heavily on the set MOQ. Moreover, the
inventory on hand is often similar to half of the expected order size. This can be explained by
when there is ordered at least the MOQ needs to be ordered. The expected order size is not
similar to the calculated Q∗ resulting from the EOQ formula. This can be explained by the set
capacity constraints and lower bounds of the MOQ and IOQ.

In all models, the backorder costs are a small proportion of the total costs which can be explained
by the setting of a minimum fill rate and a weighted fill rate. As these fill rates are already
relatively high, the expected shortages are low resulting in a low backorder costs.

7.2 Simulation model results

In this section, the models are implemented in the simulation as described in Chapter 6. The
models are tested for two situations: 1) using the modified reorder level and 2) not modifying
the set reorder level.

No modified ROL
The results for not modifying the reorder level between phases are described in this section. As
expected based on the previous section, the IOQ/MOQ model outperforms the other two models
regarding costs. Especially with the current situation, a cost decrease of 20% can be observed.
Also in line with the approximation results, the inventory and average order size increased.
Moreover, the IOQ/MOQ model is the only model that always use less locations than the set
maximum which can be explained by the increased order size. Moreover, the median number of
used locations is 22% lower compared to the current situation.

The total inventory costs of the safety stock model is 3% lower than the current situation model.
This can be explained by the decrease in holding and ordering costs (which is also reflected in
the slightly higher total inventory and average order size). What is especially interesting is
that within the simulation, the ratio ordering and holding costs are closer than within the
mathematical formulas for the current situation and safety stock model. This can be explained
by the transitions between phases and the increased order sizes because of taking into account
weekend days.

Approximation vs simulation
When comparing the approximation and simulation results, the higher inventory is remarkable.
This can be explained by the building up of inventory throughout the year. When a product
goes from high to low demand for several phases, it takes a long time to decrease the inventory
as this depends on the demand. An example is air coolers, these products are sold during the
summer period and the rest of the year is the demand exceptional low. Therefore, first, the
inventory is built up whereafter it takes a long time to decrease the inventory. In line with the
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Table 7.2: Overview of results using simulation

Current SS-model Difference between current and SS IOQ/MOQ model Difference between current and IOQ/MOQ

Total inventory 3071562 3109040 1% 4158948 35%
Average order size 7.9 8.0 2% 17.0 116%
Total shortages 41168 40985 -0.4% 41580 1%
Total times ordered 36913 36694 -1% 16287 -56%
Maximum occupied locations 1831 1785 -3% 1367 -25%
Maximum % of occupied locations 1.06 1.04 -3% 0.79 -25%
Median % of occupied locations 0.87 0.88 1% 0.67 -22%
Fill Rate 0.950 0.950 0% 0.950 0%
Total inventory costs 797662.20 775605.59 -3% 639497.64 -20%
Total holding costs 338234.39 309095.44 -9% 372090.83 10%
Total ordering costs 369133.51 366940.00 -1% 162877.99 -56%
Total shortage costs 87743.26 99570.15 13% 104528.81 19%
Ratio holding costs 42% 40% 58%
Ratio ordering costs 46% 47% 25%
Ratio shortage Costs 11% 13% 16%

higher inventory, also the number of used locations is building up throughout the phases which
can be explained by the same reasoning. This situation frequently occurs in practice.

The fluctuating pattern of the inventory levels can be explained by solely receiving orders on
week days (figure 7.1). Because of this, two days worth of orders are received on the Friday and
Monday resulting in high peaks in the incoming orders with as result high inventory levels. The
low inventory level peaks are on Sunday because no orders are received in the weekend.

(a) Daily inventory over time for a period of the year (b) Incoming orders over time for period of the year

Figure 7.1: Overview of inventory levels SS-model

No modified reorder vs modified reorder level
The reorder level is modified to ensure that at the start of the next phase, there is enough
inventory available when the demand increases or to ensure that unnecessary stock is not built
up. In the days before the start of a new phase, the number of locations used by the system with
the modified reorder level is higher because more products are ordered due to increased demand
in the next phase (Figure 7.2). When zooming in on day 183 (the day at which phase 3 starts),
the number of used locations before this day in the case of modifying the reorder level is higher
than not modifying the reorder level. This can be explained by the building up of inventory.
The effect of modifying the reorder level resulting in a lower order quantity cannot clearly be
seen as this effect is relatively small compared to the corresponding increase in order quantity.

Modified reorder level
Modifying the reorder level influences the inventory on hand and costs. Because of ordering
the needed products for the next phase earlier, the inventory on hand and number of maximum
used locations increased. Because of this, the number of times ordered decreased due to already
heightening the orders earlier resulting in less needed orders. Therefore, from a cost perspective,
modifying is interesting.

In the SS-model, there is ordered slightly more (reflected in the order size) and ordered less
frequently compared to the current situation. This results in a decrease in the maximum used
locations. This can be explained by on the one hand having less inventory and order less
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(a) Daily inventory (b) Daily inventory zoomed in

(c) Used locations (d) Used locations zoomed in

Figure 7.2: Differences in inventory and used locations for modified and not modified reorder
level

frequently. The focus of the SS-model, minimizing costs, can best be seen in the increase in
total inventory while having a decrease in holding costs. The shortage costs have increased
remarkably which can partly be explained by the transition between phases. When there is a
transition from a low to high demand phase, there is still a possibiltiy that the order is too late
resulting in shortages of relatively expensive products in the first few days.

The differences between models 1) modifying the reorder level or 2) not are highest for the
IOQ/MOQmodel. Less inventory is needed and costs decrease when the reorder level is modified.
This can be explained by lowered holding and ordering costs (because of higher order size) which
outbalances the increased shortage costs.

All in all, the IOQ/MOQ model outperforms the other models on the most important objective,
inventory costs but the model is not necessarily an optimum solution on all KPI’s as the inventory
increases greatly.

Table 7.3: Overview of results using simulation with smod

Current SS-model Difference between current and SS IOQ/MOQ-model Difference between current and IOQ/MOQ

Total inventory 3050231 3048513 0% 3980755 31%
Average order size 7.89 7.96 1% 17.07 116%
Total shortages 41323 41286 0% 41286 0%
Total times ordered 37010 36787 -1% 16416 -56%
Maximum occupied locations 1803 1762 -2% 1385 -23%
Maximum % of occupied locations 1.05 1.02 -2% 0.75 -28%
Median % of occupied locations 0.86 0.87 4% 0.67 -22%
Fill rate 0.950 0.950 0% 0.950 0%
Total costs 795786.33 772285.40 -3% 624020.43 -22%
Total holding costs 338826.21 302927.38 -11% 356067.79 5%
Total ordering costs 370100.00 367870.00 -1% 164163.31 -56%
Total shortage costs 86860.12 101488.02 17% 103789.33 19%
Ratio holding costs 43% 39% 57%
Ratio ordering costs 47% 48% 26%
Ratio shortage Costs 11% 13% 17%
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7.3 Sensitivity

The performance of the different models depends on the input parameters. Therefore, in this
section, the input model parameters are changed regarding weekend days, ordering costs, review
period, storage locations and fill rate. Moreover, also the influence of shortage costs is analyzed.

As described in Section 7.2, the fluctuating pattern of the inventory levels can be explained
by receiving orders only on week days. When also enabling the simulation to receive orders
on weekend days, the costs decrease with 0.2% in the case of the SS-model. Especially, the
high decrease in order size and more frequent ordering resulting in a 13% decrease in inventory
and 11% increase in ordering costs. The costs for the IOQ/MOQ decreases with 4% when also
receiving orders on weekend days. This can also be explained by the decrease in order size and
more frequent ordering.

The set MOQ depends on the set ordering costs. When the ordering costs are 50% decreased,
the mean order size decreases with 24% while ordering occurs more frequent. Moreover, as
ordering becomes less expensive, it becomes preferable to order more frequent and have lower
inventory levels (10% decrease). As expected, when increasing the ordering costs, an increase in
the inventory and order size and decrease in the times ordered occurs.

According to the formula of the reorder level, when the review period is decreased, the reorder
level will decrease. Decreasing the review period with 25% results in a decrease in inventory
which can be explained by reviewing more frequently leading to needing less inventory on stock.
Moreover, it results in more frequent ordering and lowered order sizes. Because of more frequent
ordering, the ordering costs increase which do not balance the decrease in holding costs with as
result a cost increase of 10% of the SS-model.

Increasing the storage locations, results for the IOQ/MOQ not in other outcomes as not the
full capacity is used. For the SS-model, costs decrease (by 3%). This can be explained by more
frequent ordering and the decrease in holding costs outbalances the increase in ordering costs
resulting in lower costs.

As expected, increasing the fill rate results in both models in increases in inventory, costs and
used locations. For the SS-model, increasing the fill rate to 0.98 results in 38% more inventory,
27% more occupied locations, and 14 % costs increase (because of a decrease of 38% shortage
costs). For the IOQ/MOQ model, increasing the fill rate to 0.98 results in 29% more inventory,
24% more occupied locations, and 15 % costs increase.

Within literature, two types of models are distinguished regarding fill rates and inventory levels;
models in which costs are minimized restricted by a fill rate constraint and models in which
inventory and shortage costs are minimized. In this study in both models, the shortage costs
and a fill rate constraint are set. Based on the results, the shortage costs are a small proportion
of the total costs. When the shortage costs are not part of the cost minimization, the difference
in results regarding inventory and costs are small (less than 3%). Moreover, the number of
shortages slightly changes but especially the shortage costs increase when not taking into account
the shortage costs as part of the costs. This can be explained by having shortages of products
that are of higher value. Therefore, adding the shortage costs as part of the inventory costs
minimization and setting fill rate constraints show advantages.

49



Chapter 8

Conclusion

This chapter describes the main findings of this study. Research questions are answered and
managerial insights are presented. Moreover, the scientific contribution is discussed followed by
the limitations of the study and directions for future research.

8.1 Answer to research questions

The research’s objective is to design a system to control inventories in which expected inventory
costs are minimized and take into account warehouse space capacity. Therefore, the following
main research question was formulated:

How to design a system to control inventories in which expected inventory costs are minimized
and take into account warehouse space capacity?

To answer the main research question, three sub-research questions were formulated. The first
sub-research question focused on defining objective(s), constraints and decision variables. The
context of this study is characterized by lost sales, non-stationary stochastic demand, posit-
ive lead times, multi-period, one stocking point and capacity constraints. Also, the model is
constrained by warehouse storage locations and fill rate. The decision variable is the reorder
level/safety stock per SKU. The MOQ and IOQ are potential decision variables.

Based on the performed literature review, an adequate model is formulated. The objective of
the model is to minimize total expected inventory costs per time unit modeled as the sum of the
holding, ordering and shortage costs. The model is restricted using a warehouse capacity con-
straint to restrict the average number of used locations per time unit considering honeycombing.
Besides, a minimum and weighted target fill rate are set.

To design an inventory control system for the situation, assumptions are made regarding lost
sales and the inventory system used. Lost sales are assumed but can be relaxed using a backorder
model because of the calculated number of outstanding orders and relative demand uncertainty
during lead time and review period. The used inventory system is an (R,s,nQ) inventory control
policy.

Because of non-stationary stochastic demand, the horizon is divided into phases to cope with
non-staionary demand. For each phase per SKU is the expected demand determined and used as
input for the model. The changeover between phases is of high importance due to the possibility
of having too high or low inventory levels. Therefore, a modified reorder level is used to smoothen
the transition to a new phase resulting in lower inventory costs.
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The second sub-research question focused on determining solution methods to solve the proposed
system to control inventories. Combining the objective and constraints, a safety stock model is
formulated in which the costs are minimized restricted by warehouse storage locations and fill
rate constraints. Based on the set reorder levels per SKU, the set safety stock can be calculated
per SKU. The model is solved using a MILP (and greedy heuristic). As space is the problem
and solely ordering full pallets is not preferable, another model is designed in which besides the
reorder level (/safety stock), also the IOQ and MOQ are determined per SKU. This model is
solved using a combination of a greedy heuristic and a MILP. The combination of honeycombing
and minimization of expected inventory costs in a model is novel.

The third sub-research question focuses on comparing the solution methods. The methods are
compared based on mathematical formulas and a simulation. Using mathematical formulas, the
safety stock model shows a 4% cost decrease and the IOQ/MOQ model a 37% cost decrease
compared to the modeled current situation. Using the simulation, the safety stock model shows a
cost decrease of 3% and the IOQ/MOQ a decrease of 20%. Implementing a modified reorder level
to smoothen this transition results in even higher costs decreases (3% for the safety stock model
and 22% for the IOQ/MOQ model) relative to the current situation (with no modified reorder
levels). The computational time of the IOQ/MOQ model is higher than for the safety stock
model but still possible to implement in practice (6053 seconds for 868 SKUs vs 3045 seconds
for 868 SKUs). Therefore, from a cost and location perspective, the IOQ/MOQ model is the
most preferable method to control inventories. The combination of smoothening the transition
between phases and the designed models (without order modification) are a novel contribution
and shows a way of handling non-stationary demand in inventory control.

In conclusion, the redesigned inventory control model follows an (R,s,MOQ,IOQ) inventory
policy with dynamic values for s, MOQ and IOQ. These values change every phase and are set
using the designed IOQ/MOQ model. This model minimizes expected inventory costs restricted
by the number of storage locations and fill rate constraints. Honeycombing is taking into account
to not underestimate the needed warehouse locations.

8.2 Managerial insights

This research provides relevant findings for the company in various ways. Firstly, the company
is advised to take into account a system approach in order to set SKU reorder levels. On the one
hand by including a weighted fill rate. On the other hand, taking into account the warehouse
capacity. This results in decreased inventory costs and not extremely exceeding the capacity
constraints.

Moreover, the company is advised to optimize SKU’s MOQ and IOQ values as this is shown to
result in decreased inventory costs and required locations. Moreover, because of increased order
sizes and less frequent ordering, the handling time of incoming orders in the warehouse will
decrease because as expected less mixed pallets will arrive. A potential downside of increasing
the order size, is the increased inventory.

In addition, there is no clear rule regarding reviewing inventory. In practice, this is often done
when the inventory is low or sales has extremely increased or decreased (but this also depends on
the method of the inventory planner). Right now, it is unknown what the review period is and
the review period is thus approximated. When data is collected regarding the review period, the
models can better reflect the situation. Moreover, as shown in the sensitivity analyses for the
SS-model more often reviewing the inventory results in more frequent ordering, needing more
locations and a cost decrease. Therefore, setting the review period not too low is advised.

All in all, the company is advised to implement the IOQ/MOQ model for the products in scope
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as this has been shown to have high potential. A disadvantage of this model is the increase in
inventory on hand which can be problematic in terms of risk as is also agreed on with inventory
experts from Coolblue. Comparing the inventory levels of the model with the inventory levels
in practice still shows a significant reduction (10906 vs 23254). Moreover, the overall goal of the
team is ’to create and implement easy to use, cost-efficient and sustainable solutions to ensure
the stock required to realize commercial goals’. The models are perceived to be easy to use as the
outcome of the model is explainable and is in the same range of complexity of other used models
within Coolblue. Moreover, the proposed models are found to be cost-efficient because of the
focus on cost minimization while on the other hand still enabling Coolblue to realize commercial
goals by the set fill rate constraints. Finally, the models are found to be sustainable as it is easy
to modify input parameters to reflect the changing environment.

The model is demonstrated for a subset of Parcel Large products but can also be implemented
for, for example, Autostore products. For the Autostore case, the maximum number of products
on a pallet needs to be modified to number of products that fit within a bin. Moreover, the
occurrence of honeycombing is not a problem as it is possible to store multiple SKUs within a
bin. Other cases to which the models can be applied to (without modifications) is to groups
of locations with specific characteristics (such as upright locations) and Parcel XL products.
Especially the case for Parcel XL products is expected to be promising because of the significant
size and also perceived location deficit. Implementing the model for other products within the
assortment can be done based on the forecasted demand instead of expected demand.

8.3 Scientific contribution

This research has contributed to existing literature in several ways. Firstly, the mixed integer
linear program designed (for the SS-model) in this research is, to the best of the researcher’s
knowledge, innovative in the sense that it includes honeycombing while minimizing costs. The
safety stock model results in decreased costs while not increasing the inventory levels signi-
ficantly. This makes it applicable to a broad specter of industries. Taking into account hon-
eycombing and minimizing inventory costs and number of used locations without significantly
increasing inventory levels shows a different application of the honeycombing formulas and is a
contribution of this study.

Similarly, the designed IOQ/MOQ model with a cost minimization objective is solved using
the two-step heuristic and a modified version of the two-step heuristic. The combination of
honeycombing and minimization of expected inventory costs in a model and solving using the
modified version of the two-step heuristic is novel and is shown to outperform existing solution
methods.

Finally, coping with non-stationary demand is done by dividing the horizon into phases. The
changeover between phases is of high importance because of the possibility of having too high
or low inventory levels. A modified reorder level is designed to smoothen the transition to
a new phase resulting in lower inventory costs. The combination of non-stationary demand,
smoothening the transitions without order modification in inventory control is a contribution of
this research.

8.4 Limitations

This section discusses the limitations. The limitations are threefold. The input for the models is
based on provided data. Some product characteristics have been approximated using a realistic
rule of thumb since some values were missing. This influences the performance of the models
and therefore sensitivity of the parameters has been checked. While namely simulated values are
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compared, instead of values from the situation in practice, the comparison sketches a realistic
view.

Secondly, a discrete-event simulation is built to investigate the performance of the designed
models in a context of varying demand. The demand within this simulation is sampled using a
discrete distribution based on the mean and standard deviation of historical demand. Because
a lot of (unknown) factors influence real demand, the difference between simulated and real
demand cannot be specified. Moreover, the price setting within the company but also of the
competitor influences the demand. This cannot be taken into account when simulating the
demand. Additionally, the simulation is based on a predefined order of events. The customer
demand is sampled in one time while it can be the case that it happens throughout the whole
day. Moreover, receiving of orders happens after customer demand at a day while in practice this
may occur simultaneously. Moreover, assumptions are made regarding decreasing of inventory
on locations. Within the simulation is FIFO assumed while in practice a location may be picked
randomly or situations with the lowest number of SKUs are chosen to decrease inventory from.
This assumption has a high influence on the number of locations used. All models are run based
on these same assumptions and therefore these limitations will most likely only affect absolute
performance.

Finally, a MILP is used to solve the different models. While a MILP results in optimal solutions
based on the given combinations, it can take a lot of computational effort to find all combinations.
Therefore, is solving the models using a MILP only be preferable when the number of unique
SKUs is relatively low. Because of this, are in the appendix other solution methods discussed.
These solution methods are less computational expensive for a high number of SKUs while still
showing improvements compared to the current situation.

8.5 Future research

There are several suggestions for future research based on the model design and key findings of
this research. Firstly, the modified reorder level should be investigated more closely in future
research. The current modified reorder level only shows modifications to the reorder level when
the review period and lead time exceed the duration of the phase. Investigating when to stop
ordering and modeling this in a systematic way is of scientific and practical relevance.

Secondly, the impact of promotion and changed prices on customer demand as well as fluctuating
purchase prices are suggested to be included. Especially, promotions will cause peaks in the
inventory levels and it is unknown how the model will react to this.

Thirdly, incorporating order advancement within the model is suggested as research direction.
This can lead to more stable inventory levels and incoming orders a day. This can have positive
results for the labor capacity and number of required locations.

Incorporating human judgment within the model is suggested as last research direction. This
will make the model more realistic as replenishment decisions often involve a high degree of
human judgment and decision-making (Bijvank and Vis, 2012a).
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Appendix A

Processes

In this chapter the process of reordering, handling of incoming shipment and fulfilling customer
orders are described using the BMPN language. Because of clarity reasons, not all flows and
roles are modelled.

A.1 Reordering

The reorder process is mostly executed by a supply planner and consists of several steps (see
figure A.1 for a visualization). There are several triggers which can be seen as the start of the
reordering process; low stock, discount opportunities, planning of future demand or other. The
triggers are received by the supply planner and form the start of the reordering process. Based
on the trigger, a manual or semi-manual order is proposed and made. After creating the order,
the order is verified based on automatic verification rules. When the order is not confirmed,
the order will be verified manually by a supply specialist. If the order is not verified, it needs
to be changed by the supply planner. When the order is verified, it is send to the supplier for
confirmation via Electronic Data Interchange (EDI). After order acceptance by the supplier, the
order is planned in the inbound schedule taken into account labour and space capacities. Since
these capacities are taken into account after placing of the order, a queue can be formed because
of not having enough capacity. After this, delivery details are sent to the supplier. Creating of
an Advanced Shipping Notice (ASN) marks the end of the reordering process. For the ASN, the
location of the delivery is specified.
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Figure A.1: Visualization of process of reordering

A.2 Handling of a shipment

The start of handling a shipment starts when there is an incoming shipment (for visualization
see figure A.2). Within the ASN is specified where the supplier needs to deliver the ordered
shipment. There are distinguished inbound locations; Whitegoods, Parcel XL, Parcel large and
Autostore. In each location is a docking master who informs the truck driver to which dock to
go. First is checked whether the supplier is on time. When this is not the case the shipment can
be rejected but this depends on the inbound planning and the degree in which the shipment is
needed. When the shipment is on time, the shipment and package slip is checked. When the
shipment is not accepted because of damages it will be sent back. Then the truck is unloaded
and the products are placed on the floor. The products are again checked. At this point there
are several reasons why a shipment is not accepted such as damaged products, amount of the
order line is missing (manco) or missing, unknown or unscanable barcode. When the shipment
is not accepted, the troubleshooter will decide what will happen to the shipment. When the
shipment is accepted, the order in the system needs to be adjusted and the finance team needs to
send a credit/purchase invoice. After this, the products will be brought to the correct location.
As can be seen, a distinction is made between the aforementioned groups of products.

The Autostore is an automatic storing and retrieving system with bins. The bin is automatically
brought to a location within the Autostore.

InParcel Large, there is a division between easy and hard to reach locations. When an easy
to reach location is (almost) empty, it will be refilled by a specialized team. This team first
needs to pick the products from an hard to reach location after which the products needs to be
unpacked. Then the unpacked products are brought to an easy to reach locations. The product
locations are flexible.
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Figure A.2: Visualization of process of handling an incoming shipment
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A.3 Handling of customer order

Orders can be for customers or stores. An order can contain multiple products. As mentioned
before there are four distinguished product categories based on size. For each location, a product
is handled differently (see figure A.3 for visualization). In the Autostore, the packaging method
and retrieving of the bin is done simultaneously while in the other locations this is done in serie.
For store orders, the products are first collected where after it is placed in a crate. For Parcel
Large, Parcel XL and Whitegoods the products are picked manually. Only for Whitegoods and
Parcel XL products, a customer can buy extras for which a manual action is needed, for example
adjusting the door rotation direction of a fridge.

When the products are ready to be shipped, several methods are available. When the shipping
adress is near a CoolblueFietst hub, the product will be shipped via CoolblueFietst and will
have a special packaging (zak). For Autostore and Parcel Large products, products can be sent
via delivery partners or physical stores. Whitegoods and Parcel XL products are sent to the
customer via CoolblueDelivery, for which the package is first sent to a hub whereafter it will be
sent to the customer.
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Figure A.3: Visualization of process of fulfilling customer order
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Appendix B

Additional solution methods

In this chapter, methods are described which where found to perform worse in comparison with
other solution methods to solve a certain model. One of these solution methods is the greedy
heuristic which is used to solve the safety stock model.

B.1 Safety stock model - greedy heuristic

A possible solution method for the safety stock model is a greedy heuristic. In each step, the
next element of the solution is chosen that results in the best immediate benefit (Silver, 2004).
An add heuristic is used in which the variables are set to the lowest value and when the objective
value improves by adding a specific variable, this variable is added. The starting reorder level
of each SKU will be calculated as the demand during lead time and review period. If this
resulting reorder level is lower than the minimum fill rate constraint, the reorder level of this
SKU will be increased until the minimum fill rate is met. The objective here is the minimization
of the expected inventory costs. The ratio for each SKU is calculated as the change in objective
(expected inventory costs) when the reorder level is increased by 1 divided by the (potential)
change in the expected number of used locations when the reorder level is increased with one
unit. This ratio is used since the main goal is to investigate the SKUs that yield the most (in
controversy have the lowest costs) while not consuming a lot of space. Another ratio that can
be used is based on the fill rate and expected number of used storage locations, as the fill rate
is also used as a constraint within this model. The increased reorder level is assigned to the
item with the highest ratio. The decrease in expected inventory costs is calculated using the
objective of the model. The expected number of used locations is calculated using formula 5.7
and the fill rate using formula 5.5.

Increasing the reorder level of SKUs is done until the aggregated fill rate is satisfied or all
warehouse capacity is occupied. There can be a point at which the constraints are not met but
no empty locations are left. When this is the case, the greedy heuristic is modified to choose
to increase the reorder level of SKUs with the highest ratio for which no increase in required
locations is needed.

Results
Based on the approximation results, the greedy heuristic (using the costs and locations ratio
and the fill rate and location ratio) was found to perform less than the MILP. This can be
explained by the fact that a MILP takes all possible combinations into account while a greedy
heuristic chooses an SKU reorder level to increase based on a specific moment instead of taking
into account all possible combinations of reorder levels of all SKUs. An advantage of the greedy
heuristic is that it can be relatively fast regarding computational time for a high number of SKUs.
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Within the computational time of the MILP, the making of the combinations is included.

The MILP has the lowest expected inventory costs. This can be explained by the decrease in
expected inventory on hand and corresponding holding costs. Moreover, calculating the average
holding per unit results in slightly lower holding cost per unit of the MILP compared to the
greedy heuristics. The greedy heuristic focuses on the decrease in costs and therefore increases
the reorder level of expensive SKUs with high uncertain demand resulting in lower average
backorder costs per unit.

When comparing the greedy heuristic with the ratio regarding the fill rate and the costs, it can
be noted that the computational time of the greedy heuristic with the fill rate ratio is slightly
higher. Moreover, the expected inventory costs are slightly lower for the heuristic with the cost
ratio. This is because of the higher expected inventory on hand as this is more balanced in the
costs focused ratio while in the fill rate focused ratio is solely focused on increasing the reorder
level of SKUs with the highest impact on the fill rate.

Table B.1: Overview of approximation results for safety stock model

SS- CL SS- FL SS - MILP

Average expected inventory on hand per time unit 6514.2 6528.1 6192.2
Average expected order size 6.1 6.1 6.1
Average expected backorders per time unit 0.1 0.1 0.1
Average expected used locations per time unit 1725.0 1725.0 1514.1
Maximum expected used locations per time unit 1856.6 1856.9 1779.4
Total expected costs per time unit 2090.35 2091.89 2025.07
Fill rate 0.950 0.950 0.950
Expected holding costs per time unit 699.20 701.16 618.85
Expected ordering costs per time unit 1295.29 1295.29 1295.29
Expected backorder costs per time unit 95.86 95.45 110.93
Ratio holding costs 33.4 % 33.5 % 30.6 %
Ratio ordering costs 62.0 % 61.9 % 64.0 %
Ratio backorder costs 4.6% 4.6% 5.5%
Computational time (in s) 6037 6127 3045

B.2 IOQ/MOQ model

The IOQ/MOQ model can be solved using, besides the modified version of the two-step version,
the two-step heuristic developed by Van Donselaar and Broekmeulen (2022).

The IOQ/MOQ model can be solved using the two-step heuristic developed by Van Donselaar
and Broekmeulen (2022). First, the target fill rate per SKU is determined. In the second
step, all combinations of MOQj , IOQj and sj of an SKU that meet this fill rate are sought.
With all these possible combinations, the best values for MOQj , IOQj and sj for all SKUs are
determined using a MILP.

In the first, the target fill rate is determined using a greedy heuristic. The starting reorder level
of each SKU will be calculated as the demand during the lead time and review period. If this
resulting reorder level is lower than the minimum fill rate constraint, the reorder level of this
SKU will be increased until the minimum fill rate is met. The objective here is the minimization
of the expected inventory costs. The ratio for each SKU is calculated as the change in objective
(expected inventory costs) when the reorder level is increased by 1 divided by the (potential)
change in the expected number of used locations when the reorder level is increased with one
unit. This ratio is used since the main goal is to investigate the SKUs that yield the most (in
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controversy have the lowest costs) while not consuming a lot of space. The increased reorder
level is assigned to the item with the lowest ratio. Increasing the reorder level of SKUs is done
until the aggregated fill rate is satisfied.

As second, all combinations ofMOQj , IOQj and sj of an SKU that meet the fill rate (determined
in the first step) are sought. In this MILP, the expected inventory costs are minimized and
restricted by the number of locations and weighted fill rate. The combination of MOQj,f ,
IOQj,f and sj,f for all SKUs form the set of combinations F. For each combination f and SKU j,
the values of E[IOH ]j,f , E[USL(L)]j,f , E[X−]j,f ,P2,j,f and E[USL(L)]j,f are calculated. These
found combinations can be used as input in the MILP described in formula 5.20 with constraints
on the weighted fill rate, warehouse capacity and selecting one combination per SKU.

Results
Based on the approximation results, the modified two-step heuristic was found to perform the
best regarding expected inventory costs compared to the two-step heuristic. This can be ex-
plained by lower expected holding costs as a result of the focus on expected inventory costs in
the first step. The expected ordering costs have decreased and the expected order size have
increased showing ordering less frequently while ordering higher quantities (also reflected in the
higher expected inventory).

Table B.2: Overview of results using mathematical formulas for IOQ/MOQ model

CL IOQ/MOQ-MILP Two-step

Average expected inventory on hand per time unit 8675.9 8554.0
Average expected order size 14.8 14.7
Average expected backorders per time unit 0.0 0.0
Average expected used locations per time unit 1015.5 1021.5
Maximum expected used locations per time unit 1144.6 1151.9
Total expected costs per time unit 1329.95 1357.00
Fill rate 0.950 0.950
Expected holding costs per time unit 778.25 798.24
Expected ordering costs per time unit 449.24 469.05
Expected backorder costs per time unit 102.46 67.53
Ratio holding costs (in %) 58.5% 58.8%
Ratio ordering costs (in %) 33.8% 34.6%
Ratio backorder costs (in %) 7.7% 5.0%
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Appendix C

Simulation procedure

Within the discrete-event simulation, several events are used as described in section 6.2.1. In
figure C.1, the interactions and the handling of events are visualized.

The inventory is reviewed every Rj time unit. In the simulation, week and weekend days are
taken into account as a result that sometimes the next review moment is further away than
Rj or Lj time unit. When the inventory position of the SKU is lower than the reorder level,
the quantity to order is determined. The determination of quantity to order is based on the
(R,s,nQ)-policy for models 1 and 2 or (R,s, MOQ,IOQ) policy for the third model. If this
quantity to order is positive, the order is placed resulting in immediately increasing the SKU
inventory position. After the completion of Lj time units, the inventory on hand is increased.
When the transition between phases needs to be smoothed (in other words when section 5.5 is
used within the simulation), a modified reorder will be calculated at the review moment when
the set conditions are met.

Figure C.1: Visualization of simulation
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Setting of simulation parameters

Before collecting results, the simulation will run a warm-up period that enables the simulation
aspects to reach typical running conditions in the considered environment (Boon et al., 2020).
As the simulation will start with an initial inventory of 0 and the building up of inventory takes
time, the warm-up period is of high performance. The warm-up period is set based on a visual
inspection of the fill rate and inventory levels per day (figure D.1). After approximately 1000
time units, the simulation reaches a steady state.

Because the goal of the simulation is to replicate one year, the replication length is set to one
year corresponding with 365 days.

(a) Weighted fill rate over time (b) Total daily inventory over time

Figure D.1: Weighted fill rate and total daily inventory over time to set warm-up period

To estimate the number of runs, the method as described by Boon et al. (2020) is used. The
number of runs has to satisfy the formula D to obtain a (1-α) confidence interval. In line
with (Van Donselaar and Broekmeulen, 2022), an accuracy of three digits and 95% confidence
intervals is preferred. Therefore, the ε is set to 10−3 and Za/2 is 1.96. Because no initial guess
for σ is available, an initial guess is made for σ with a simulation setup of a warm-up period
set to 1000, running length to 365, and the number of runs to 10. The σ of the fill rate across
is 0.0017. This results in at least 12 runs (Equation D). All in all, the warm-up period is set to
1000, the replication length to 365, and the number of runs to 12.

n >
(zα/2 · σ

ε

)2

(D.1)
11.1 >

(
1.96 · 0.0017

10−3

)2

(D.2)
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Appendix E

Validation of simulation

The simulation model needs to be verified and validated before it can be used as a tool to gather
outputs. In this appendix, is the process of validation in more detail discussed.

Validation is done by computing the values for different KPIs using analytical formulas and
comparing these values with the simulated results for the same inputs. To calculate the values
of different KPIs, the DoBr tool is used. The used analytical formulas within this tool are also
used within this research several times.

Before being able to validate the simulation, the simulation needs to be slightly modified. Within
the DoBr tool, it is not possible to distinguish between week and weekend days and therefore
this is modified within the simulation. Moreover, the inventory position is decreased when there
are backorders. The simulation is validated for a stationary situation (i.e. one phase) with three
SKUs. The input parameters are defined in table E.1 and the same simulation parameters are
used as defined in section 6.2.2.

Table E.1: Input parameters for validation

Parameters SKU 1 SKU 2 SKU 3

µj 0.30 0.22 2.68
σj 0.53 0.49 2.08
Rj 2 5 3
Lj 6 7 6
Cj 15 12 24
P 2
j 0.95 0.95 0.95

Qj 5 3 24
sj 4 5 25

The results of the approximation formulas and simulation output can be seen in table E.2.
When comparing the values for the KPIs, mostly similar results are observed in both situations.
As the validation situation is with stationary demand, deterministic lead times, non-perishable
products, and backordering, the value of the analytical formulas is exact except for the value of
the expected number of locations (as this value was given in blue in the DoBr-tool). Especially,
marginal differences are observed in the expected number of locations. All in all, the simulation
can be used to gather output.
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Table E.2: Results theoretical formulas and simulation

KPI SKU 1 SKU 2 SKU 3

Simulation

Fillrate 0.96 0.96 0.95
E[OS]j 5.0 3 24
E[IOH(Lj)] 4.2 4.5 20.4
E[IOH(Rj + Lj)] 3.6 3.4 12.8
E[USL(Lj)] 1.4 1.9 1.4

DoBr

Fillrate 0.96 0.96 0.95
E[OS]j 5.0 3 24
E[IOH(Lj)] 4.2 4.5 20.4
E[IOH(Rj + Lj)] 3.6 3.4 12.8
E[USL(Lj)] 1.2 1.8 1.3

70


	Abstract
	Executive Summary
	Preface
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Company description
	Company Coolblue
	Problem description
	Research objective and questions
	Scope
	Methodology

	Literature
	Warehouse operations
	Inventory management
	Gap in literature

	Current situation
	Descriptive products in scope
	KPIs current situation
	Conclusion

	Data preparation
	Data gathering
	Data cleaning

	Design of model
	Inventory system
	Assumptions
	Notation and concepts
	Models
	Transition between phases

	Model settings & Simulation
	Parameter setting
	Simulation

	Results
	Mathematical formulas
	Simulation model results
	Sensitivity

	Conclusion
	Answer to research questions
	Managerial insights
	Scientific contribution
	Limitations
	Future research

	Bibliography
	Processes
	Reordering
	Handling of a shipment
	Handling of customer order

	Additional solution methods
	Safety stock model - greedy heuristic
	IOQ/MOQ model

	Simulation procedure
	Setting of simulation parameters
	Validation of simulation

