1,621 research outputs found

    Layout optimization and Sustainable development of waste water networks with the use of heuristic algorithms: The Luxemburgish case

    Get PDF
    Fresh water tends to increasingly comprise a scarcity today both in arid or demographically boosted regions of the world such as large and smaller cities. On this basis, research is directed towards minimization of fresh water supply into a Waste Water Network Topology (WWNT) and maximizing water re-use. This might be composed of a cluster of agents which have certain demands for fresh water as well as waste water dependent on their daily uses and living profiles. This work is divided into two parts. In the first part, different waste water flows within a reference building unit i.e. a typical household of four (4) occupants is simulated. This type of building represents a major part of the total building stock in Luxembourg. In its first part the present study attempts to examine the optimized fresh and waste water flow pathways between water using units of the building. Between water flows two domestic treatment units are adopted. The simulation of above mentioned system is attempted by adopting different algorithm methods such as the Sequential Quadratic Programming (SQP), the interior point and meta-heuristic optimization algorithms such as the Genetic Algorithms (GA’s).Suitable computational platform tools such as MATLAB and GAMS are incorporated. A comparison study on the most efficient approach is then realized on the single household unit by developing four (4) different mathematical model formulation versions. The second part of this study comprises simulation and development of the Waste Water Network Grid (WWNG) in the upscale level, such as the neighborhood level within or outside the urban context. This model encompasses all possible land uses and different kinds of buildings of different use envelopes thus demands. This range of units includes mainly building stock, agricultural and infrastructure of the tertiary sector. Integration of above mentioned model to the existing WWNG will enhance attempts to more closely reach the optimum points. The use of appropriate mathematical programming methods for the upscale level, will take place. Increased uncertainties within the built model will be attempted to be tackled by developing linear programming techniques and suitable assumptions without distorting initial condition largely. Assumptions are then drawn on the efficiency of the adopted method an additional essential task is the minimization of the overall infrastructure and network cost, which may in turn give rise to corresponding reduced waste effluents discharge off the proposed network. The case study comprises selected rural and semi-rural areas zone districts of similar living profiles outside the City of Luxembourg. Therefore a clustering of end users of similar demand will be attempted. Possible redesign of an optimized WWNG comprises a vital need within the context of large scale demographic growth of urban environments today.Open Acces

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Optimization of integrated water and multiregenerator membrane systems

    Get PDF
    A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering), September 2017Water and energy are key resources in the process industry. The water-energy nexus considers the interdependence of water and energy resources and their effect on the environment. The increasing awareness of environmental regulations has heightened the need for process integration techniques that are environmentally benign and economically feasible. Process integration techniques within water network synthesis require a holistic approach for the sustainable use of water through reuse and recycle and regeneration reuse and recycle. Conventional methods for water minimisation through water network synthesis often use the “black-box” approach to represent the performance of the regenerators. The degree of contaminant removal and cost of regeneration are represented by linear functions. This, therefore, leads to suboptimal operating conditions and inaccurate cost representation of the regeneration units. This work proposes a robust water network superstructure optimisation approach for the synthesis of a multi-regenerator network for the simultaneous minimisation of water and energy. Two types of membrane regenerators are considered for this work, namely, electrodialysis and reverse osmosis. Detailed models of the regeneration units are embedded into the water network superstructure optimisation model to simultaneously minimise water, energy, operating and capital costs. The presence of continuous and integer variables, as well as nonlinear constraints renders the problem a mixed integer nonlinear program (MINLP). The developed model is applied to two illustrative examples involving a single contaminant and multiple contaminants and one industrial case study of a power utility plant involving a single contaminant to demonstrate its applicability. The application of the model to the single contaminant illustrative example lead to a 43.7% freshwater reduction, 50.9% decrease in wastewater generation and 46% savings in total water network cost. The multi-contaminant illustrative example showed 11.6% freshwater savings, 15.3% wastewater reduction, 57.3% savings in regeneration and energy cost compared to the water network superstructure with “black-box” regeneration model. The industrial case study showed a savings of up to 18.7% freshwater consumption, 82.4% wastewater reduction and up to 17% savings on total water network cost.XL201

    Simultaneous minimisation of water and energy within a water and membrane network superstructure

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2015The scarcity of water and strict environmental regulations have made sustainable engineering a prime concern in the process and manufacturing industries. Water minimisation involves the reduction of freshwater use and effluent discharge in chemical plants. This is achieved through water reuse, water recycle and water regeneration. Optimisation of the water network (WN) superstructure considers all possible interconnections between water sources, water sinks and regenerator units (membrane systems). In most published works, membrane systems have been represented using the “black-box” approach, which uses a simplified linear model to represent the membrane systems. This approach does not give an accurate representation of the energy consumption and associated costs of the membrane systems. The work presented in this dissertation therefore looks at the incorporation of a detailed reverse osmosis network (RON) superstructure within a water network superstructure in order to simultaneously minimise water, energy, operating and capital costs. The WN consists of water sources, water sinks and reverse osmosis (RO) units for the partial treatment of the contaminated water. An overall mixed-integer nonlinear programming (MINLP) framework is developed, that simultaneously evaluates both water recycle/reuse and regeneration reuse/recycle opportunities. The solution obtained from optimisation provides the optimal connections between various units in the network arrangement, size and number of RO units, booster pumps as well as energy recovery turbines. The work looks at four cases in order to highlight the importance of including a detailed regeneration network within the water network instead of the traditional “black-box’’ model. The importance of using a variable removal ratio in the model is also highlighted by applying the work to a literature case study, which leads to a 28% reduction in freshwater consumption and 80% reduction in wastewater generation.GR201

    Superstructure optimisation of a water minimisation network with a embedded multicontaminant electrodialysis model

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016The water-energy nexus considers the relationship between water and energy resources. Increases in environmental degradation and social pressures in recent years have necessitated the development of manufacturing processes that are conservative with respect to both these resources, while maintaining financial viability. This can be achieved by process integration (PI); a holistic approach to design which emphasises the unity of processes. Within the realm of PI, water network synthesis (WNS) explores avenues for reuse, recycle and regeneration of effluent in order to minimise freshwater consumption and wastewater production. When regeneration is required, membrane-based treatment processes may be employed. These processes are energy intensive and result in a trade-off between water and energy minimisation, thus creating an avenue for optimisation. Previous work in WNS employed a black box approach to represent regenerators in water minimisation problems. However, this misrepresents the cost of regeneration and underestimates the energy requirements of a system. The aim of the research presented in this dissertation is to develop an integrated water regeneration network synthesis model to simultaneously minimise water and energy in a water network. A novel MINLP model for the design of an electrodialysis (ED) unit that is capable of treating a binary mixture of simple salts was developed from first principles. This ED model was embedded into a water network superstructure optimisation model, where the objective was to minimise freshwater and energy consumption, wastewater productions, and associated costs. The model was applied to a pulp and paper case study, considering several scenarios. Global optimisation of the integrated water network and ED design model, with variable contaminant removal ratios, was found to yield the best results. A total of 38% savings in freshwater, 68% reduction in wastewater production and 55% overall cost reduction were observed when compared with the original design. This model also led to a 80% reduction in regeneration (energy) cost.GS201

    Continuous Biochemical Processing: Investigating Novel Strategies to Produce Sustainable Fuels and Pharmaceuticals

    Get PDF
    Biochemical processing methods have been targeted as one of the potential renewable strategies for producing commodities currently dominated by the petrochemical industry. To design biochemical systems with the ability to compete with petrochemical facilities, inroads are needed to transition from traditional batch methods to continuous methods. Recent advancements in the areas of process systems and biochemical engineering have provided the tools necessary to study and design these continuous biochemical systems to maximize productivity and substrate utilization while reducing capital and operating costs. The first goal of this thesis is to propose a novel strategy for the continuous biochemical production of pharmaceuticals. The structural complexity of most pharmaceutical compounds makes chemical synthesis a difficult option, facilitating the need for their biological production. To this end, a continuous, multi-feed bioreactor system composed of multiple independently controlled feeds for substrate(s) and media is proposed to freely manipulate the bioreactor dilution rate and substrate concentrations. The optimal feed flow rates are determined through the solution to an optimal control problem where the kinetic models describing the time-variant system states are used as constraints. This new bioreactor paradigm is exemplified through the batch and continuous cultivation of β-carotene, a representative product of the mevalonate pathway, using Saccharomyces cerevisiae strain mutant SM14. The second goal of this thesis is to design continuous, biochemical processes capable of economically producing alternative liquid fuels. The large-scale, continuous production of ethanol via consolidated bioprocessing (CBP) is examined. Optimal process topologies for the CBP technology selected from a superstructure considering multiple biomass feeds, chosen from those available across the United States, and multiple prospective pretreatment technologies. Similarly, the production of butanol via acetone-butanol-ethanol (ABE) fermentation is explored using process intensification to improve process productivity and profitability. To overcome the inhibitory nature of the butanol product, the multi-feed bioreactor paradigm developed for pharmaceutical production is utilized with in situ gas stripping to simultaneously provide dilution effects and selectively remove the volatile ABE components. Optimal control and process synthesis techniques are utilized to determine the benefits of gas stripping and design a butanol production process guaranteed to be profitable

    Productivity enhancement through process integration

    Get PDF
    A hierarchical procedure is developed to determine maximum overall yield of a process and optimize process changes to achieve such a yield. First, a targeting procedure is developed to identify an upper bound of the overall yield ahead of detailed design. Several mass integration strategies are proposed to attain maximum yield. These strategies include rerouting of raw materials, optimization of reaction yield, rerouting of product from undesirable outlets to desirable outlets, and recycling of unreacted raw materials. Path equations are tailored to provide the appropriate level of detail for modeling process performance as a function of the optimization variables pertaining to design and operating variables. Interval analysis is used as an inclusion technique that provides rigorous bounds regardless of the process nonlinearities and without enumeration. Then, a new approach for identification of cost-effective implementation of maximum attainable targets for yield is presented. In this approach, a mathematical program was developed to identify the maximum feasible yield using a combination of iterative additions of constraints and problem reformulation. Next, cost objectives were employed to identify a cost-effective solution with the details of design and operating variables. Constraint convexification was used to improve the quality of the solution towards globability. A trade-off procedure between the saving and expenses for yield maximization problem is presented. The proposed procedure is systematic, rigorous, and computationally efficient. A case study was solved to demonstrate the applicability and usefulness of the developed procedure
    • …
    corecore