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Abstract

The Minimum Cost Network Flow Problem (MCNFP) includes a wide range of combinatorial

optimization problems. Many applications exist for MCNFPsfor instance supply chains, lo-

gistics, production planning, communications and transportations. Concave costs are, in many

applications, more realistic than linear ones because of the association of prices with economies

of scale. When concave costs are introduced in MCNFPs, then the difficulty to solve them in-

creases and they become NP-Hard. Solution methods developed for these problems comprise

both exact and approximate algorithms, the latter ones usually of a heuristic type. What we pro-

pose to do in this work is to present an overview of the past andmost recent literature published

on the subject.

Keywords: Minimum Cost Network Flow Problems, Survey, Heuristics, Exact Methods.

JEL Classifications: C61, C44.

∗This work is funded by the ERDF through the Programme COMPETEand by the Portuguese Government
through FCT - Foundation for Science and Technology, projects PTDC/EGE-GES/099741/2008 and PTDC/EEA-
CRO/116014/2009.

†Corresponding author.

1



1 Introduction

A Minimum Cost Network Flow Problem (MCNFP) can be describedas the problem of mini-

mizing the total cost incurred with the distribution of somecommodity from the sources to the

demand nodes. MCNFPs have a major role in optimization sincethey include problems such

as Transportation Problems (TPs), Assignment Problems (APs), and Shortest Path Problems

(SPPs). Therefore, MCNFPs have many practical applications for example in supply chains,

logistics, transportation, and facilities location, justto mention but a few (Geunes and Pardalos,

2005).

The costs incurred can take several forms but the ones we are interested in are concave costs,

usually associated to economies of scale, discounts, and start-up costs (Guisewite and Pardalos,

1990), which are much more realistic than the linear ones often found in literature and that are

considered easy to solve as they are solvable in polynomial time. An example of a situation

where concave cost functions have to be accounted for includes the setting of networks of

facilities, such as a network of bank branches, that besidesthe initial costs incurred with the

opening of facilities and equipment have also to include operating costs, see (Monteiro and

Fontes, 2006). The minimization of a concave function over aconvex feasible region, defined

by the linear constraints of the problem, makes it much more difficult to solve, therefore more

appealing.

Another attractive characteristic of concave MCNFPs is that any Network Flow Problem (NFP)

with general nonlinear costs can be transformed into a concave NFP in an expanded network

(Lamar, 1993).

In this work, we concentrate our attention in the study of thespecial case of Minimum concave

Cost Network Flow Problems (concave MCNFP). Our objective is to present a review on some

methodologies that have been used in order to address MCNFPs.

We start by presenting a formal description of the MCNFP along with its mathematical formu-

lation. We also give a brief characterization of a solution for the concave MCNFP and discuss

some issues that define its complexity. An overview of the methodologies used to address this

problem is provided next and it is divided accordingly to thethree types of concave cost func-

tions considered. We review both exact and heuristic methods. Finally, we close this paper with

the conclusions.

2 Concave Minimum Cost Network Flow Problems

A Minimum Cost Network Flow Problem with a general concave cost function can be formally

defined as follows.
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Given a directed graphG = (N,A), whereN is a set ofn nodes andA is a set ofm available

arcs(i, j), with i ∈ N and j ∈ N , a concave Minimum Cost Network Flow Problem is a

problem that minimizes the total concave costsgij incurred with the network while satisfying

the nodes demanddj.

Considering the notation summarized bellow,

n - number of nodes in the network

m - number of available arcs(i, j) ∈ A

dj - demand of nodej ∈ N

xij - flow on arc(i, j) ∈ A

yij = binary variable assuming the value 1 if arc(i, j) ∈ A is chosen and 0 otherwise

gij - concave cost function of arc(i, j) ∈ A

uij - upper limit on flow through arc(i, j) ∈ A

lij - lower limit on flow through arc(i, j) ∈ A

the mathematical model for the concave MCNFP can then be written as follows:

Model 1 A mixed-integer mathematical programming model for the general concave MCNFP
problem.

min:
∑

(i,j)∈A
gij(xij , yij) (1)

s.t.:
∑

{i|(i,j)∈A}
xij −

∑

{k|(j,k)∈A}
xjk = dj, ∀j∈N , (2)

0 ≤ xij ≤ uij , ∀(i,j)∈A, (3)

xij ≥ lijyij , ∀(i,j)∈A. (4)

The objective is to minimize the total costs defined in (1), provided that the demand is satisfied,

stated by theflow conservation constraints(2), and that the arcscapacity constraintsin (3) and

(4) are not violated. Regarding the demand,dj takes a negative or positive value depending on

whetherj is a source or a demand node, respectively. We assume that thetotal source demand

equals the total sink demand, thus
∑

j∈N dj = 0. Sometimes neither upper nor lower bounds are

established for the flows in the arcs, therefore the problem is considered uncapacitated which

mathematically translates intouij = +∞ andlij = 0.

Regarding concave cost functions, they can take several forms but the most popular ones used

in literature arebij · xij + cij, also known as concave fixed-charge functions. However, we can

also find other concave cost functions such as the square rootcost functionbij · √xij that has

been considered by Altiparmak and Karaoglan (2006), and thesecond-order polynomial cost
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function−aij · x2
ij + bij · xij used by Dang et al (2011), just to mention but a few possibilities.

2.1 Characterization of a solution for the concave MCNFP

A feasible solution for the concave MCNFP is a solution that does not violate neither (2) nor

(3). Lozovanu (1983) observed that if a feasible solution exists for concave MCNFPs, then an

optimal solution must occur at a vertex, i.e. an extreme point, of the convex polyhedron defined

by the problem constraints (2) and (3). Also, the minimization of a concave cost function in

a convex polyhedron means that a local optimum does not implya global optimum. Thus, in

order to find the global optimum solution for this problem, the set of all extreme points in the

convex polyhedron has to be searched for.

Furthermore, if the function has a finite global minimum on the feasible region, then there is an

extreme solution that is an optimal solution (Eggleston, 1963).

2.2 Complexity

The complexity of an optimization problem is a very important issue mainly because it will

allow the researcher to choose an adequate method to solve it. For example, if the MCNFP

instance to be solved is considered easy, an exact method, such as simplex or branch-and-

bound, can be used, whereas if it is considered hard then a heuristic method is probably more

adequate as it can provide a fairly good solution in a small amount of time. In this section, we

provide an insight on the main characteristics of MCNFPs that are associated with the degree

of their complexity.

The cost function considered in an optimization problem canhave a great impact on the dif-

ficulty to solve it. We have already mentioned that MCNFPs with linear costs are considered

easy to solve. However, if concave costs are used the difficulty to solve them increases and they

become NP-Hard (Guisewite and Pardalos, 1991a). The complexity arises from the fact that in

the minimization of a concave function (even over a convex feasible region) a local optimum

is not necessarily a global optimum. Guisewite and Pardalos(1991b) provide a study on how

the form of the concavity affects the complexity of these problems. The authors use functions

with the following formαijx
βij

ij . They were able to provide evidence that, on the one hand the

number of local optima increases with the decrease ofβij , and, on the other hand the larger

the set from which to draw the value ofαij , the smaller the set of local optima. Problems with

fixed-charge costs are a special case of concave optimization and they may be simpler or harder

to solve accordingly to characteristics that have been argued by Kennington and Unger (1976),

Palekar et al (1990), and Barr et al (1981). One such characteristic is the ratio between fixed

(F ) and variable (C) costsF
C

. On the one hand, Kennington and Unger (1976) claim that the

difficulty to solve fixed-charge problems increases with this ratio. On the other hand, Palekar
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et al (1990), which disagree with them, suggest that only ratios with intermediate values are dif-

ficult to solve because if the ratio is very small or very largethe problem is easier to solve either

because fixed costs are negligible thus transforming the problem into a linear one, or because

the problem reduces to the one of minimizing fixed costs. The special case of the Single Source

Uncapacitated MCNFP with fixed-charge costs has been provento be NP-Hard (Hochbaum and

Segev, 1989).

Another issue usually related to the complexity of a MCNFP isthe density of the network to be

considered, that is the ratio between them available and all existing arcs in a network. It is easy

to conclude that the denser the network the harder the problem is to solve, because the number

of feasible solutions increases and so does the computational time needed to enumerate all of

them in case of an exact method.

The number of arcs with nonlinear cost is also a major factor affecting the difficulty to solve a

nonconvex MCNFP (Tuy et al, 1995). The larger the number of nonlinear arcs, the harder the

problem becomes. Some problems with a small number of arcs with nonlinear costs have been

proven to be solvable in polynomial time, e.g. (Guisewite and Pardalos, 1993).

Regarding the capacity of arcs in a network, both versions ofthe concave MCNFP, Capacitated

and Uncapacitated, are known to be NP-Hard.

In network flow problems, demand nodes are usually the ones contributing to the complexity of

a problem because transshipment nodes represent a null costbridge between demand nodes. In

addition, problems with several source nodes can be transformed into problems with a single

source node (Zangwill, 1968). Therefore, the size of a problem, and consequently one of the

many aspects contributing to the difficulty in solving it, isusually related with the number of

demand vertices.

3 Solution Methods for MCNFPs

Most of the works developed around concave MCNFPs consider fixed-charge costs, that is

cost functions having a fixed start-up component and a linearrouting component. Other works

considering nonlinear concave routing costs (Guisewite and Pardalos, 1991a; Horst and Thoai,

1998; Smith and Walters, 2000) do not include a fixed component.

As far as we are aware of, only a few works consider concave cost functions made of nonlinear

concave routing costs and fixed costs simultaneously, whichare those of Burkard et al (2001),

Fontes et al (2003, 2006b,a), Fontes and Gonçalves (2007),and Dang et al (2011). This is the

main reason why the review of previous works is mainly on the Fixed-Charge problem.

Exact solution methods are usually not very efficient in the case of NP-hard problems, because

they make use of implicit or explicit enumeration of the vertices (local optima) of the convex
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polyhedron defined by the flow conservation constraints. Nonetheless, exact methods are very

important in the sense that they provide us with optimal values, even if it is only for small

problem instances, and due to the theoretical advances theyunravel.

The most popular methods to solve NP-Hard problems are heuristic methods. Low usage of

computational memory and computational time are their mostattractive characteristics although

they may provide only a local optimum. Heuristic methods maybe classified, regarding the

number of solutions evaluated, into single-point or multi-point algorithms. Generally speak-

ing, a single-point algorithm evaluates a single solution in each phase of the search. These

algorithms are usually coupled with a local search procedure in order to improve the solution.

Examples of such heuristics are Simulated Annealing and Tabu Search. Multi-point heuris-

tics, in opposition, analyse a set of solutions in each phase/iteration and usually combine the

best parts of the solutions in order to create new solutions.Examples of these are Evolution-

ary Algorithms, such as Genetic Algorithms, and Ant based algorithms. Furthermore, hybrid

algorithms are also very popular because they usually join forces between methods focused

in the exploration of the search space and methods, such as local search, more focused in the

exploitation of the search space.

This section is divided into three parts accordingly to the type of concave cost function consid-

ered: nonlinear routing costs with and without a fixed component, and linear routing costs with

a fixed charge component.

3.1 Nonlinear concave routing costs with fixed charge components

Burkard et al (2001) develop a Dynamic Programming algorithm, to solve the SSU concave

MCNFP, based on linear approximations of the cost function,where concave costs are given

by c + bxij + axd
ij , with d ∈ [0, 1] and wherea, b, c, andd might or might not depend on

the arc(i, j). The authors develop a DP algorithm to solve it and prove thatwith the use of

approximated linear cost functions the method converges towards an optimal solution. The

method is only adequate to networks where nodes have small degrees. Therefore, although they

are able to solve problems with 1103 nodes they may only have up to 2203 arcs.

Upper Bounds (UBs) based on local search are calculated by Fontes et al (2003) to solve SSU

concave MCNFPs. The local search is based on swaps of arcs andis performed repeatedly with

different initial solutions, this way avoiding getting trapped into a local optimum. Given an

initial feasible solution, and for every subtreeTy in the solution, the Local Search procedure

tries to putTy “under” another nodek that does not belong to that subtree. If a new solution,

thus constructed, has a better cost, the UB is updated and theprocedure continues to the next

subtree. When no more reductions in the cost can be found the algorithm stops. The initial

feasible solution is provided by a Lower Bound (LB), found bya relaxation of the state space

of a DP recursion (Fontes et al, 2006c), and it consists of a network supplying a set of demand
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nodes. Supplied nodes are added to the set of fixed-nodes and the rest are added to a temporary

nodes list. Then, the temporary nodes are appended to the solution tree. Each temporary node

k is selected, one at the time, and the arc linking it to the LB tree is identified as the one

representing the lowest cost for the path linking the sourcenode and nodek. This action is

performed until the set of temporary nodes is empty, and a newimproved solution is found.

Another BB procedure is proposed by Fontes et al (2006a) to optimally solve SSU concave

MCNFPs considering fixed-charge and nonlinear concave second-order complete polynomial

cost functions. At each node of the BB procedure, a lower bound for the cost of the solution is

found by making use of a modified relaxation of the state spaceof the DP developed by Fontes

et al (2006b). The relaxation only guarantees that the number of used arcs is the correct, i.e.

n − 1 wheren is the number of nodes. However, any arc may be used several times. The

BB procedure is as follows. Given an LB solution, a branchingarc (i, j) is chosen, and two

branches are identified and analysed, one where the arc is deleted from the solution and the

other where it is forced to be in the solution. If, when(i, j) is deleted from the solution, any

demand node is disconnected from the solution tree, then that branch is discarded, otherwise

lower and upper bounds are obtained. After analysing that branch, the algorithm steps into the

other branch, where(i, j) is fixed as part of the solution and again upper and lower bounds are

calculated. The choice of the BB tree node to go to next is madeby selecting the node with the

largest gap between the corresponding LB and the best upper bound available. An upper bound

is computed as explained above and given by Fontes et al (2003).

Fontes et al (2006b) use an exact method involving DP to optimally solve SSU concave MC-

NFPs with four cost functions: linear, fixed-charge, and second-order polynomials both with

and without a fixed-charge component. The state space graph is gradually expanded by using a

procedure working in a backward-forward manner on the statespace graph. The dynamic part

of the algorithm is related to the identification of only the states needed for each problem being

solved. The DP procedure has as many stages as the number of nodesn + 1 in the problem to

be solved, and each stage is made up a set of statessi ≡ (S, x) such that each state considers a

subsetS (of the set of nodesW ) to be supplied and some root nodex, with x ∈ S. Therefore

a stage is given by the cardinality ofS. The algorithm starts from the final state where all de-

mand nodes are considered along with the root nodet, (W, t). Then, it moves backwards, until

some state already computed is reached, identifying possible states in the way. Then, it moves

forward, through already computed states, until a not yet computed state(S, x) is reached. The

algorithm continues this backward-forward procedure until the last stage(W, t) is reached and

no more moves can improve its cost, and thus the optimal solution has been found.

Lower bounds for SSU concave MCNFPs, derived from state space relaxations, are given by

Fontes et al (2006c). The State Space Relaxation associatedwith a DP recursion can be trans-

lated into a reduction on the number of states, by forcing constraints in the linear programming

formulation to appear as variables of the DP. The authors provide a new relaxation adding a
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new constraint to the q-set relaxation forcing the solution, of a problem withn+1 arcs, to have

exactlyn nodes. The solution is a LB since then arcs used are not necessarily all different. The

bound obtained is further improved by penalizing demand nodes not fully supplied. These LBs

are later on used in the bounding phase of a Branch-and-Boundprocedure given by Fontes et al

(2006a).

Kim et al (2006) introduced Tabu Search strategies into the basic DSS having improved upon

the results of the basic DSS developed by Kim and Pardalos (1999). The new algorithm is called

Enhanced DSS and has three phases. The first phase runs the basic DSS with an addition, when-

ever the best solution to the moment is updated, the arcs withthe largest changes on the flow,

when compared to the previous iteration, are added to a set called the inspiration setξ. Also,

a record of the frequency of appearance of each arc with a positive flow is incremented. After

reaching one of the DSS stopping criteria, the intensification phase follows. In it, some arcs are

chosen to be tabu, according to the frequency of their appearance in previous solutions. Other

arcs, including the ones inξ, are added to a candidate arcs listα which will be the ones allowed

to enter new solutions. Once these sets are identified, the DSS phase is run again. The initial lin-

earisation factors used for those arcs not inα, in the DSS phase that follows the intensification

phase, are the same linear factors associated with the arcs of the most recently improved best

solution. At the end of the intensification phase, the third phase, the diversification phase takes

place in order to explore new regions of the search space. Arcs appearing not so frequently are

added to the candidate listβ, based on information about the reduced costs, i.e. the amount by

which c̄ij has to be improved in order for arc(i, j) to enter the solution. Tabu and non-tabu lists

are also maintained during this phase. The DSS phase is run again but now using the reduced

costs as the initial linearisation factors. Both the intensification and the diversification are run

a fixed number of times. The tabu mechanisms introduced in this DSS were inspired by the TS

heuristic previously developed by Sun et al (1998) to solve Fixed-Charge Transportation Prob-

lems which, to the moment, and along with the one of Glover et al (2005), and more recently

of Aguado (2009), is still one of the most efficient heuristicmethods to solve such an NP-hard

problem.

Fontes and Gonçalves (2007) use a genetic algorithm coupled with a local search procedure,

which was called HGA, to solve the Single-Source Uncapacitated Minimum Cost Network

Flow Problem (SSU MCNFP) with general concave costs. Randomkeys are used to encode the

chromosome, as they allow all solutions generated by crossover to be feasible solutions. In order

to create a new generation of solutions, the algorithm selects the top chromosomes, regarding

their fitness value, which are directly copied onto the next generation. The mutation operator

used, not a traditional one, generates new random chromosomes, without any genetic influence

on the current population. Finally, the remaining chromosomes, to integrate the next generation,

are created by applying a biased probability crossover operator. The crossover between two

parent solutions is performed by considering a gene at the time. The algorithm generates a
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vector with as many random numbers (in the interval[0, 1]) as the genes in a chromosome.

Every random number on that vector is tested and if its value is lower than a certain probability,

say 70%, then the gene of the offspring is drawn from the best parent, otherwise it is drawn from

the other parent. This way, better parents pass on more genetic information. The local search

procedure, which is applied to all solutions, consists of swap operations between arcs already

in the solution and arcs not in the solution. Arcs(i, j) belonging to the solution tree are sorted

and considered in descending order of nodes priority. Then each arc(k, j) outside the solution

tree, is considered in descending order of priority, and thefirst one that does not introduce a

cycle in the solution is the one chosen to substitute the leaving arc(i, j). When compared with

results in literature, the HGA was able to improve upon upperbounds provided by a heuristic

algorithm based on local search, as well as running times.

Poorzahedy and Rouhani (2007) solve Transportation Network Design problems by proposing

seven hybrid algorithms based on a previously developed AntSystem (Poorzahedy and Abul-

ghasemi, 2005) and on three improvements with notions borrowed from genetic algorithms,

simulated annealing and tabu search. The first improvement introduced modifies the way

pheromones are updated, allowing only the three best solutions to contribute to the pheromone

update. The second improvement is based on evolutionary algorithms and it allows mutation to

take place under some conditions. The mutation is applied insubstitution of the construction

phase, and it occurs in the middle of the run of the algorithm,that is to say, in the fifth iteration

since the algorithms are allowed to run only 10 iterations. The 3 best solutions of each of the

previous four iterations, are retained. These solutions will be used to calculate the frequency

of appearance of each project. Then, the 2 best solutions of the previous iterations are also

retained along with the 2 best solutions of them all, with repeated solutions allowed. Repeated

solutions identify the least, or next least, frequent project and substitute it with the most, or next

most, frequent project provided that the solution is still feasible. The solutions thus found are

considered new solutions and the algorithm continues to thenext step, the pheromone update.

The last improvement, applied from the second iteration onwards, is based on Simulated An-

nealing concepts and its purpose is to reduce the computational effort of computing net benefits

by decreasing the probability of solutions with low levels of energy, as opposite to the usual

simulated annealing. The seven hybrid algorithms are constructed by incorporating into the

AS different combinations of these three improvements, as well as incorporating each one on

its own. The algorithms were applied to a real-size traffic-network of a city in Iran and the

algorithm incorporating all three improvements achieved the best results of them all.

More recently, Monteiro et al (2012) address the SSU MCNFP with concave cost functions by

developing an Ant Colony Optimization (ACO) algorithm to solve it. The ACO algorithm is

hybridized with a local search procedure (HACO) in order to improve its performance. The cost

functions considered are of three types, a fixed-charge function bxij + cij and two second order

polynomials, one with and another without a fixed charge component, that isax2
ij + bxij + cij
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andax2
ij + bxij , respectively. Also, all arcs have associated nonlinear and concave costs. The

ACO algorithm is based on the min-max ant system (Stützle and Hoos, 1997) in the sense that

it uses pheromone bounds to avoid the fast convergence of thepheromone trail. The authors

provide a study on the performance of the algorithm with the variation of the parameters values,

which revealed that some are of vital importance for the goodperformance of the algorithm,

while others can be set to almost any reasonable value withinthe problem context. Local search

is applied right after all ants have constructed their solution. The algorithm identifies the best

solution found by the ants at the current iteration and localsearch is performed to it and also

to other four randomly chosen solutions. The gap results obtained with the ACO algorithm

were always as good or better than the ones reported in literature (Fontes and Gonçalves, 2007).

Furthermore, the computational time requirements of the ACO algorithm were much lower,

even when compared with the ones obtained with CPLEX for large problem instances.

3.2 Nonlinear concave routing costs without a fixed cost component

The most common techniques associated with exact methods tosolve MCNFPs are usually

Branch-and-Bound (BB) and Dynamic Programming (DP). Both techniques approach the prob-

lem by dividing it into smaller subproblems which, in turn, are divided into smaller subprob-

lems, and so on.

The branch-and-bound procedure developed by Soland (1974), is still very popular and used

by other authors as a basis for their own branch-and-bound methods. The idea is to use linear

underestimation by convex envelopes and to use rectangles defined by the capacity flow con-

straints to partition the search space. In Soland’s algorithm the branching procedure starts by

considering the rectangle defined by the capacity flow constraintsC. Then, a subsetCa ⊂ C

is partitioned into two subrectanglesCb andCc such thatCb ∪ Cc = Ca. This way, a subprob-

lem at a nodeb has its domain defined by both the rectangleCb and the flow constraints. The

bounding procedure corresponds to the computation of a lower bound on the optimal solution

found in the subrectangleCa. This lower bound is obtained by solving a linear relaxationof

subproblemCa.

Gallo et al (1980) developed a BB algorithm to solve Single Source Uncapacitated concave

MCNFPs (SSU MCNFPs). In the problems to be solved the authorsconsider nonnegative

separable concave cost functions for all arcs, however onlysome of then nodes are demand

nodes, the others being merely transshipment nodes. The BB algorithm initially starts with only

the source node and the branching part of it is performed by adding arcs extending the current

subtree. Then, lower bounds are obtained for each BB node by using linear underestimation

of the arcs costs for demand nodes not satisfied. Latter on, Guisewite and Pardalos (1991a)

improve these lower bounds by projecting them on the cost of extending the current path.

Horst and Thoai (1998) consider the capacitated version of concave MCNFPs where a fixed
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number of arcs have concave flow costs and the other arcs have linear costs. A BB algorithm

based on the work of Soland (1974) is developed leading to improvements of lower bounds.

This algorithm differs from Soland’s in two ways: in the way rectangles are subdivided, turning

them into integral rectangles of approximately the same size, and in the way branching arcs are

chosen, in this case from the set of arcs with nonlinear costs. A survey on MCNFPs with a fixed

number of arcs with nonlinear costs can be found at (Tuy, 2000).

Genetic algorithms are heuristic algorithms based on the evolution of species and the main idea

is to take a set of solutions, which are called a population orgeneration, and to combine the best

of them, following the maxima“the survival of the fittest”, in order to generate new improved

solutions. A mutation factor is also usually incorporated.

Smith and Walters (2000) provide a heuristic method based onGenetic Algorithms to find

minimum cost optimal trees on networks and apply it to the solution of SSU concave MCNFPs.

The cost functions considered are concave given by the square root of the flow. Randomly

generated feasible trees are considered for the initial population. The authors stress out the

problematic of generating feasible trees specially in the mutation and the crossing of parents

and propose a technique for each. Accordingly to their fitness value, two parents at a time,

T1 andT2, are chosen to reproduce thus creating two new trees. In order to accomplish that,

a bipartite graph is created by overlappingT1 andT2. The children have a common structure

constituted by the parents common arcs. The number of arcs unique to each parent is the same.

Therefore, these arcs are chosen in pairs, one from each parent, and one of them is attributed to

one child and the other to its sibling, with a probability of 0.5. If at least one child is not a tree

the crossing process is repeated until both of them are. The mutation operator is applied to a

subset of the population, and is defined so that one arc is randomly chosen to be substituted by

another one in such a way as to maintain the solutions feasibility, that is, so that the solution is

still a tree.

A hybrid between Simulated Annealing and Tabu Search with anadaptive cooling strategy is

the algorithm proposed by Altiparmak and Karaoglan (2006) to solve the Concave Cost Trans-

portation Problem, where the cost function is proportionalto the square root of the flowcij
√
xij .

After the generation of an initial feasible solution, swap moves between an arc in the solution

and an arc not in the solution are applied in order to improve the solution. An arc is added to

the solution, thus creating a cycle. As in a pivot move on the network flow simplex algorithm,

in order to maintain the feasibility of the solution the flow of the arcs in the cycle is increased

or decreased, as needed, accordingly to the flow on the arc to be dropped from the solution.

The setD of arcs from the cycle whose flow must be adjusted by being decreased is identified

and the arc(k, l) ∈ D with the least amount of flow is the one to be dropped from the solution.

The tabu procedure is incorporated in the algorithm in the form of two tabu lists, one keeping

track of the arcs leaving the solution and another one keeping track of the arcs entering the so-

lution. This way, the number of arcs to be tested decreases, and consequently the computational
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time also decreases. The adaptive cooling schedule is basedon a ratio between the temperature

at the previous iteration and 1 minus the cubic root of the temperature, allowing for a slower

temperature decreasing rate.

Dang et al (2011) developed a deterministic annealing algorithm for the capacitated version of

the concave MCNFP, that can be used to solve both single-source and multiple-source cases.

They use of a Hopfield type barrier function, which is a notionborrowed from the theory of

neural networks, to cope with the lower and upper bounds on the capacities of the arcs. Each

arc(i, j) is associated to a Hopfield-type barrier field thus allowing the capacity constraints to

be incorporated into the objective function. The barrier parameter has a behaviour similar to the

temperature on the simulated annealing, decreasing towards zero, from a large positive number.

The linear constraints, the flow conservation constraints,are dealt with the use of Lagrangean

Multipliers, by incorporating them into the objective function. This way, a Lagrange and barrier

function is obtained. Numerical results are provided, for problems with 5 up to 12 nodes, for

both a linear cost functionbij · xij and a concave second order polynomial function−aij · x2
ij +

bij · xij .

3.3 Linear routing costs with a fixed-charge component

Methods based on the linearisation of the cost function are very popular to solve fixed-charge

problems.

In (Kennington and Unger, 1976) a linear relaxed version of the Fixed-Charge Transportation

problem is used, where the usual fixed-charge objective function is replaced bydij · xij with

dij = cij + fij/uij, whereuij represents the flow capacity of arc(i, j). This relaxation is used

to obtain bounds for the solution of the original problem, which are later strengthened using

Driebeek penalties (Driebeek, 1966), which are used in the branching and fathoming phases of

a BB algorithm.

Kim and Pardalos (1999) developed a technique called Dynamic Slope Scaling (DSS) in order

to solve the well-known NP-Hard Fixed-charge Network Flow Problem. Given an objective

function of the typef(x) =
∑

(i,j)

cijxij + sij , wherecij represents the flow variable cost, andsij

represents the fixed cost, the idea behind it is to find a linearfactor that can represent the variable

and fixed costs at the same time. Thus iteratively solving linear problems. At each iteration

the cost function is updated by using the information of the solution found in the previous

iteration. The algorithm follows these two steps, solving the linear problem and updating the

cost function, until two consecutive iterations return thesame solution. Later on, Kim and

Pardalos (2000) extend the use of DSS by incorporating a local search scheme, called Trust

Interval, to solve concave piecewise linear NFPs. An adaptation of the DSS technique, coupled

with a local search procedure, was also used by Monteiro and Fontes (2006) to solve the problem
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of bank-branch location and sizing with fixed-charge costs.

Ortega and Wolsey (2003) solve the Uncapacitated Fixed-Charge Network Flow problem with

a Branch-and-Cut algorithm by extending the cutting planespreviously used to solve uncapaci-

tated lot sizing problems, and applying them to a commercialoptimisation routine of software

Xpress. The problem is formulated as a Mixed Integer Problem(MIP) where binary variables

yij, associated to the use of arc(i, j) are considered. Four dicut-inequalities are defined as

follows: simple dicut, mixed dicut, simple inflow-outflow, and mixed dicut with outflow in-

equalities. However, only dicut-inequalities and simple inflow-outflow inequalities are used,

due to their performance in preliminary tests. Another feature therein introduced was the use

of a dynamic set node list for the dicut inequalities. Single-commodity and multicommodity

problems have been solved.

A recent work on MCNFPs is the one of Nahapetyan and Pardalos (2007) where the authors

consider a concave piecewise linear cost function. The problem is transformed into a continuous

one with a bilinear cost function, through the use of a nonlinear relaxation technique. First, the

problem is formulated as a mixed integer program, by introducing the usual binary variablesykij
associated to the fixed costs, wherek identifies the linear segment of the cost function. Then,

the binary nature ofykij and constraintxk
ij ≤ Mykij are replaced withykij ≥ 0 andxk

ij = xijy
k
ij,

respectively, wherexij is the flow in arc(i, j). The relaxed problem is then solved with a

dynamic slope scaling method, based on the one proposed by Kim and Pardalos (1999, 2000)

and explained above. Nahapetyan and Pardalos (2008) improve upon the results of the original

DSS (Kim and Pardalos, 1999) by approximating the fixed-charge cost function by a concave

piecewise linear function. The problem is transformed intoa continuous one with a bilinear

cost function. This approach is considered a novelty because fixed-charge functions are usually

approximated to linear functions. One of the cost functionsrepresents a line connecting the

origin and some point(εij, f(εij)), and is defined asf εij
ij (xij) = c

εij
ij xij if xij ∈ [0, εij[. The

other one is defined asf εij
ij (xij) = cijxij + sij for xij ∈ [εij, λij ], whereλij is the capacity of

arc (i, j) andcεijij = cij + sij/εij with cij as the flow cost andsij the fixed cost. Although the

arcs are capacitated, this problem can be transformed into an uncapacitated one by substituting

the capacities with a sufficiently largeM (constant). The problem thus formulated, a value

for εij ∈ [0, λij] is chosen and the problem is then solved by the DSS algorithm developed by

Nahapetyan and Pardalos (2007). At the end of each iteration, every flow variablexij is tested

in order to verify if its value is within[0, εij]. If so,εij is decreased by a constantα ∈]0, 1[, such

thatεij ←− αεij, otherwise the algorithm stops and the best found solution is returned.

Rebennack et al (2009) propose a continuous bilinear formulation from which an exact algo-

rithm, based on the algorithm developed earlier by Nahapetyan and Pardalos (2007, 2008), is

derived to solve fixed-charge MCNFPs. The fixed-charge function is modified by introducing

binary variablesyij, defined for all arcs, that take the value 1 ifxij , the flow on arc(i, j), is

between a given small valueǫij and the capacity of arc(i, j), and 0 ifxij is between 0 andǫij .
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The relaxation of these variables results on a continuous bilinear network flow problem with the

following cost function

f(x, y) =
∑

(i,j)∈A

(
c
ǫij
ij xij +

(
sij −

sij
ǫij

xij

)
yij

)
, (5)

whereA is the set of all available arcs,cij is the variable cost of arc(i, j),andsij is the fixed

cost of arc(i, j). The algorithm defined for this new formulation proved to converge in a finite

number of steps.

Another work on Fixed-Charge (FC) problems is the one of Adlakha et al (2010), where the

authors make use of the relaxation of the binary restrictionon theyij value, which was initially

proposed by Balinski (1961).The optimal solution of this relaxation, has the property that the

value per unit flow in each arc becomes

Cij = cij +
fij

min(si, di)
. (6)

The relaxed problem becomes a linear one. The objective function value of the optimum solu-

tion for this new problem provides the FC with a lower bound tothe total flow costs, while the

objective function value for the FC provides an upper bound.Then, based on the differential of

the fixed costs for the FC and for the relaxed problem, the algorithm iteratively chooses demand

nodes to be provided with all their demand by a single supply,adjusting the rest of the network

by eliminating the most expensive arc. The bounds are then tightened until an optimum value

is reached and both bounds have the same value. Although the authors provide a numerical

example to illustrate the branching procedure, they do not provide computational results.

4 Conclusion

Concave cost functions are usually associated to economiesof scale, thus they are very inter-

esting and important from the point of view of logistics, transportation, and supply-chains, just

to mention but a few areas. Nevertheless, although they are,usually, present in practical ap-

plications, surprisingly not much has been done in academicstudies regarding network flow

problems with cost functions. In fact, in recent years thereeven has been a slow down in re-

search for this class of problems, when compared to other classes. The main reason for this to

happen may have to do with the complexity concave cost functions bring to the solvability of

the problem. In this work, we have mainly reviewed works on Nonlinear concave Minimum

Cost Network Flow Problems. In recent years some of these problems have been solved with

heuristic methods that, although not guaranteeing a globaloptimal solution,0 are usually able to

find a good solution rapidly, perhaps a local optimum. There is still much to improve regarding
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the results that have been obtained, either because exact methods cannot cope with the size of

the problem or because solutions found by heuristics can be further improved. With the recent

boom of nature based heuristic algorithms, such as, for example, the Bees Algorithm (Pham

et al, 2005) or the Water Drops Algorithm (Shah-Hosseini, 2009), it is expectable to have some

of the existing results improved.
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