
 
 

 
 

 

 

 

 

 

 

SIMULTANEOUS MINIMISATION OF WATER AND 

ENERGY WITHIN A WATER AND MEMBRANE 

NETWORK SUPERSTRUCTURE 

 

 

Esther Buabeng-Baidoo 

 

 

 

 

 

Master of Science in Engineering by research: 

“A dissertation submitted to the Faculty of Engineering and Built Environment, University of 

the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master 

of Science in Engineering.’’ 

 

June, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188775382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

i 
 

Declaration 

I declare that this dissertation is my own unaided work. It is being submitted for the 

Degree of Master of Science in Chemical Engineering to the University of the 

Witwatersrand, Johannesburg. It has not been submitted before for any degree or 

examination to any other University.   

 

 

(Signature of Candidate)  

 

  day of   year  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

In loving memory of my dearest brother 

 

Cephas Buabeng-Baidoo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements  

First, I would like to thank almighty God, without whom none of this would have been 

possible. I would like to thank my supervisor, Prof Thokozani Majozi for his support, 

guidance and patience over the past two and a half years.  

I would like to thank my family and friends for all the support and love they showed me 

during the good and bad times. This has been a long Journey but you never gave up on 

me. A special thanks to my colleagues especially, Nielsen Mafukidze, Dematria 

Nezungai and Musah Abass. Thank you for the many good laughs, your insight, 

thoughts and love.  

I would also like to acknowledge the National Research Foundation (NRF) for funding 

this work under the NRF/DST Chair in Sustainable Process Engineering at the 

University of the Witwatersrand, Johannesburg, South Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Synopsis 

 

The scarcity of water and strict environmental regulations have made sustainable 

engineering a prime concern in the process and manufacturing industries. Water 

minimisation involves the reduction of freshwater use and effluent discharge in 

chemical plants. This is achieved through water reuse, water recycle and water 

regeneration. Optimisation of the water network (WN) superstructure considers all 

possible interconnections between water sources, water sinks and regenerator units 

(membrane systems). In most published works, membrane systems have been 

represented using the “black-box” approach, which uses a simplified linear model to 

represent the membrane systems. This approach does not give an accurate 

representation of the energy consumption and associated costs of the membrane 

systems. 

 

The work presented in this dissertation therefore looks at the incorporation of a detailed 

reverse osmosis network (RON) superstructure within a water network superstructure in 

order to simultaneously minimise water, energy, operating and capital costs. The WN 

consists of water sources, water sinks and reverse osmosis (RO) units for the partial 

treatment of the contaminated water.  An overall mixed-integer nonlinear programming 

(MINLP) framework is developed, that simultaneously evaluates both water 

recycle/reuse and regeneration reuse/recycle opportunities. The solution obtained from 

optimisation provides the optimal connections between various units in the network 

arrangement, size and number of RO units, booster pumps as well as energy recovery 

turbines.  The work looks at four cases in order to highlight the importance of including 

a detailed regeneration network within the water network instead of the traditional 

“black-box’’ model.  The importance of using a variable removal ratio in the model is 

also highlighted by applying the work to a literature case study, which leads to a 28% 

reduction in freshwater consumption and 80% reduction in wastewater generation.   
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CHAPTER 

1 INTRODUCTION 

1.1 Background  

Strict environmental regulations and social pressures have created the need for water 

and energy minimisation in the process industries (Bandyopadhyay & Cormos, 2008). 

Water minimisation involves the reduction of freshwater use and effluent discharge in 

chemical plants. This is achieved through water reuse, water recycle and water 

regeneration. Water reuse involves the use of wastewater in operations other than the 

process where it was originally produced. Water recycle, however, allows the effluent to 

be used in any process including the process in which it was produced. In water 

regeneration-reuse/recycle, the effluent is partially treated before it is recycled or reused 

in other processes. Partial treatment can be achieved by using water purification units 

often classified as membrane and non-membrane processes, e.g. reverse osmosis (RO) 

membranes and steam stripping respectively (Khor et al., 2011). 

The purification of water through membrane systems is an energy intensive process. 

The minimisation of energy within the water networks is also needed for sustainable 

development. Energy usage within the water network is largely associated with the 

regeneration units (membrane units). In most published works, however, membrane 

systems have been represented using the “black-box” approach, which uses a simplified 

linear model to represent the membrane systems (Tan et al., 2009; Alva-Argáez et al., 

1998; Khor et al., 2012). The performance of the regenerators in most cases was also 

represented by a fixed removal ratio (RR), which is the fraction of mass load into the 

regenerator that exits in the retentate stream (Khor et al., 2011).  
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RO membranes are highly favoured amongst other separation units due to their 

relatively low energy consumption, ease of operation, high product recovery and quality 

(El-Halwagi, 1992). In past studies of RO membranes, more attention has been given to 

incorporating it in a water network superstructure in order to minimise the amount of 

water usage. Some papers have also focused on minimising the energy used by the RO 

systems by using energy recovery turbines (El-Halwagi, 1992). Very little focus has, 

however, been given to synthesising the RO network and incorporating it in a WN 

superstructure. This approach minimises freshwater, energy and also synthesises the 

optimal number of RO units, booster pumps, energy-recovery turbines, operating 

conditions and to allow for parallel and series connections. Most of the work on RO 

systems has failed to achieve these objectives simultaneously.  

 

There are two major approaches adopted in addressing water network synthesis, 

namely, insight based techniques and mathematical model-based optimisation methods. 

Insight-based techniques involve the water pinch analysis, which is a graphical method 

based on the concept of a limiting water profile. This method was first proposed by 

Wang and Smith (1994a). Hallale (2002) then proposed a graphical method that was 

based on non-mass transfer operations with single contaminants. Recently, the water 

pinch method has been extended to only include algebraic methods such as the water 

cascade analysis (Ng et al., 2007; Manan et al., 2004). The water pinch method proves 

unsuccessful for complex problems involving multiple contaminants (Faria & 

Bagajewicz , 2009) and various topological constraints (Khor et al., 2012). The 

computational burden of this method is, however, lower than that experienced by 

mathematical model based optimisation methods. 

 

The mathematical optimisation approach employs a superstructure, which identifies an 

optimal configuration for the process from a number of alternatives. This idea was first 

proposed in the work of Takama et al. (1980). They proposed a nonlinear model that 

incorporates both water using and wastewater treating units for multiple contaminant 

systems. Significant developments in the area have been achieved including the work of 

Galan and Grossmann (1998), Karuppiah and Grossmann (2006) and Tan et al. (2009) 

who explored different techniques for modeling regenerators and developing strategies 
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for the complex mixed-integer nonlinear programming (MINLP) problems.  However, 

mathematical optimisation is computationally expensive. 

1.2 Motivation 

The first motivation behind this work is that most works on WN synthesis does not 

consider regeneration reuse/recycling. The incorporation of a regenerator is proven to 

reduce the amount of freshwater usage and wastewater generation in the process 

industries. The second motivation behind this work is that, most work on WN synthesis 

that does incorporate regeneration units, describes the performance of the regenerators 

by means of the  “black-box’’ approach. This approach does not give an accurate 

representation of the energy consumption and associated costs of the membrane 

systems. The treatment units cannot be clearly identified with this method and no design 

considerations are indicated. This, therefore, means that a more rigorous and detailed 

design and synthesis model of the regeneration units is needed (Khor et al., 2014). This 

will allow the incorporation of parallel and series configuration of the regenerators, as 

this is not taken into account with the “black-box” approach.  

The final motivation for this work is that most work on water networks has not focused 

on minimising both water and energy simultaneously within WN superstructure. In past 

studies of RO membranes, more attention has been given to incorporating it in a WN in 

order to minimise the amount of water usage. Some papers have also focused on 

minimising the energy used by the RO systems by using energy recovery turbines (El-

Halwagi, 1992). Very little focus has, however, been given to synthesising the RO 

network and incorporating it in a WN that minimises freshwater, energy and also 

synthesise the optimal number of RO units, booster pumps and energy-recovery 

turbines at optimal operating conditions. Most of the works on RO systems have not 

addressed these objectives simultaneously.  

Figure 1.1 shows a schematic representation of the motivations behind this work with 

regards to energy and water minimisation. In Figure 1.1(a) the idea was to minimise the 

amount of energy used by the membrane networks and this was achieved in the work of 
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Tsiakis and Papageorgiou (2005). Figure 1.1(b) shows the scenario where freshwater 

minimisation was the main objective of the optimisation, as the minimisation of energy 

was not considered. Figure 1.1(c) shows the scenario where the objective of the problem 

is to simultaneously minimise energy and water. 
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1.3 Objectives  

The objectives of the research can be summed up as follows: 

(i) To develop a mathematical model to synthesise a detailed network of RO 

membranes to purify industrial wastewater and also minimise the energy used by 

the regenerators. 

(ii) To develop a mathematical model for WN superstructure that treats wastewater 

with multiple contaminants for further recovery to minimise fresh water 

consumption.  

(iii) To combine the reverse osmosis network (RON superstructure and the water 

network superstructure (WNS) in order to simultaneously minimise energy and 

water use.   

(iv) To explore the idea of using a variable RR to describe the performance of the RO 

membranes.  

(v) Validate the model with a literature study in order to show the practicality of the 

model.  
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Figure 1.1: Illustration of the motivation behind the work. 
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1.4 Problem Statement  

The problem addressed in this work can be stated as follows: 

Given: 

(i)  A set of water sources, I, i∈I, with known flowrates and known contaminant 

concentration, M, m∈ 𝑀.   

(ii) A set of water sinks, J, j∈J, with known flowrates and known maximum allowable 

contaminant concentration. 

(iii) A network of RO regenerators, Q, q∈Q, with known liquid recovery and design 

parameters. 

(iv) A freshwater source, FW, with known contaminant concentration and variable 

flowrate. 

(v) A wastewater sink, WW, with known maximum allowable contaminant 

concentration and variable flowrate.  

Determine: 

(i) The minimal freshwater intake, wastewater generation, the energy consumed in 

the RON and the total annualised cost (TAC). 

(ii) The optimal configuration of the water network. 

(iii) The optimal number of RO units, pumps and energy recovery turbines. 

(iv) The optimal operation and design conditions of the RON such as feed pressure, 

number of hollow fibre modules per regenerator, stream distributions, separation 

levels etc. 

1.5 Dissertation Structure  

Chapter 2 gives a comprehensive survey of the literature connected to this work. 

Literature review is given on the synthesis of RO membranes as well as the different 

types of membranes used for the purification of wastewater. Literature is also given on 

the different techniques used in solving WN problems such as insight-based methods 

and mathematical model based optimisation methods. The review also looks at the work 
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that has used the “black-box’’ approach and the work that has considered a detailed 

design of regenerators within the WN.  The mathematical model is then developed in 

Chapter 3. Chapter 4 shows the results obtained when the model is applied to a 

petroleum refinery case study and Chapter 5 gives recommendations and considerations 

for future work drawn from the study. Conclusions are presented in Chapter 6. 

References follow each chapter.   

1.6 References 

Alva-Argáez, A., Kokossis , A. & Smith , R., 1998. Wastewater minimisation of 

industrial systems using an integrated approach. Computers and Chemical Engineering, 

22, pp.741-44. 

Bandyopadhyay , S. & Cormos, C., 2008. Water management in process industries 

incorporating regeneration and recycle through a single treatment unit. Industrial and 

Engineering Chemistry Research , 47, pp.1111-19. 

El-Halwagi, M., 1992. Synthesis of reverse osmosis networks for waste reduction. 

American Institute of Chemical Engineers, pp.1185-98. 

Faria, D. & Bagajewicz , M., 2009. On the appropriate modelling of process plant water 

systems. American Institute of Chemical Enginering Journal, 56, pp.668-89. 

Galan , B. & Grossmann, I., 1998. Optimal design of distributed wastewater treatment 

networks. Industrial and Engineering Chemistry Research, 37(10), pp.4036-48. 

Hallale , N., 2002. A new graphical targeting method for water minimisation. Advances 

in Environmental Research, 52, pp.377-90. 

Karuppiah, R. & Grossmann, I., 2006. Karuppiah, R.; Grossmann, I. Global 

optimisation for the synthesis of integrated water systems in chemical processes. 

Computers and Chemical Engineering 2006, 30 (4), 650-673 

Khor , C., Chachuat , B. & Shah, N., 2014. Optimisation of water network synthesis for 

single-site and continous processes: milstones, challenges, and future directions. 

Industrial & Engineering Chemistry Research , 53, pp.10257-75. 



Chapter 1                                                                                                         Introduction 

 
 

1-8 

 
 

Khor, C., Chachuat , B. & Shah, N., 2012. A superstructure optimisation approach for 

water network synthesis with membrane separation-based regenerators. Computers and 

Chemical Engineering , 42, pp.48-63. 

Khor, CS, Foo, DCY., El-Halwagi, MM., Tan, RR., Shah, N., 2011. A superstructure 

optimisation approach for membrane separation-based water regeneration networks 

synthesis with detailed nonlinear mechanistic reverse osmosis model. Industrial and 

Engineering Chemistry Research , 50, pp.13444-56. 

Manan , Z., Tan , Y. & Foo, D., 2004. Targeting the minimum water flow rate using 

water cascade analysis technique. AIChE Journal , 50(12), pp.3169-3183. 

Ng, D., Foo , D. & Tan , R., 2007. Targeting for total water networks.1. waste stream 

identification. Industrial and Engineering Chemistry Research , 46, pp.9107-13. 

Takama, N., Kuriyama , T., Shiroko, K. & Umeda , T., 1980. Optimal water allocation 

in a petroleum refinery. Computers and Chemical Engineering, 4, pp.251-58. 

Tan, R., Ng, D., Foo, D. & Aviso, K., 2009. A superstructure model for the sybthesis of 

single-contaminant water network with partitioning regenerators. Process Safety and 

Environmental Protection, 87(3), pp.197-205. 

Tsiakis, P. & Papageorgiou, L., 2005. Optimal design of an electrodialysis brackish 

water desalination plant. Desalination , 173(2), pp.173-86. 

Wang , Y. & Smith, R., 1994a. Wastewater minimisation. Chemical Engineering 

Science, 49(7), pp.981-1006. 

 



 
 
 
 
 

  2 
 

2-1 

 
 

CHAPTER 

2 LITERATURE REVIEW  

2.1 Introduction 

As the work in this dissertation focuses on the incorporation of a RON superstructure within 

a WN, background is given on the synthesis of a RON and the WN. Different membrane 

technologies are also discussed with their respective advantages and disadvantages in order to 

highlight the importance of using RO membranes for the minimisation of water and energy in 

the process industries. 

 

The incorporation of the RON superstructure within the WN superstructure leads to an 

overall mixed-integer nonlinear programming (MINLP) framework. The overall 

mathematical model consists of binary variables that are used to account for the existence of 

units and streams. An MINLP model is, however, difficult to solve due to bilinear terms 

(which create nonconvex functions) in the mass balance equations and the concave cost terms 

in the objective function (Ahmetović & Grossmann , 2010). This section therefore looks at 

the different approaches that have been used over the years to solve nonlinear problems 

(NLP) and MINLP problems with regards to WN synthesis problems.  

 

Finally, the chapter includes at a detailed discussion of the synthesis of a RON. The works 

that have looked at a “black-box’’ representation of the regenerators and those that consider a 

detailed synthesis of the regenerators have been discussed. 
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2.2 Process Integration  

Process integration is defined as “a holistic approach to process design, retrofitting and 

operation of existing plants which emphasises the unity of the process and considers the 

interactions between different unit operations from the outset rather than optimising them 

separately” (El-Halwagi, 1997).  The main advantage of this method is that, it looks at the 

system as a whole unlike analytical approaches that attempt to optimise or improve a process 

unit by looking at each unit separately. 

These techniques are often used at the beginning of a project in order to screen all the 

possible options to optimise the design and/or operations of the plant. The objective of 

process integration is therefore to optimise the use of resources, energy and equipment and to 

produce sustainable methods, which in turn can have a significant effect on the efficiency and 

revenue of the plant. Process integration methods are, therefore, used in conjunction with 

mathematical optimisation methods. 

2.3 Mathematical Optimisation  

2.3.1 Optimisation Theory  

According to Snyman (2005) mathematical optimisation is defined as “the science of 

determining the best solutions to mathematically defined problems, which may be models of 

physical reality or of manufacturing and management systems”. This is needed in engineering 

in order to not only minimise or maximise cost, but also to develop designs that enhance 

sustainable developments.  

Optimisation in engineering is concerned with the selection of the best solution (global 

optimum) or one of the best solutions (local optimum) among an entire set by an efficient 

quantitative method. Every optimisation problem consists of at least one objective function, 

and equality and inequality constraints (Edgar & Himmelblau , 1988). Different mathematical 

solvers are used to obtain the optimal solutions. The problem that needs to be solved has to be 

written in a mathematical form in order for the solvers to obtain the solutions. The following 

is the typical mathematical form of an optimisation problem (Song, 1999): 
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Objective:              minimise f(x) 

Subject to              h(x) = 0 

                             g(x) ≤ 0 

The aim is therefore to minimise an objective function f(x) that is subject to equality h(x) and 

inequality constraints g(x). The mathematical model obtained from the RON and WN can be 

a linear model, nonlinear (NLP) model, mixed integer nonlinear programming (MINLP) 

model or a mixed integer linear programming (MILP) model. A feasible solution in an 

optimisation problem is when a set of variables satisfies the constraints of the problem. A 

feasible region of an optimisation problem represents all the possible feasible solutions to the 

problem (Edgar & Himmelblau , 1988). An optimal solution is a set of feasible solutions that 

give the best solution to the objective function (Edgar & Himmelblau , 1988).  

Different papers use different methods and computer programming solvers to solve the 

mathematical models in order to obtain an optimal solution. The optimal solution can be a 

local minimum, local maximum, global minimum or a global maximum solution (best 

solution). The solution is, however, dependant on whether a model is convex or concave. 

This will help determine if a locally optimal solution is also a globally optimal solution. A 

function is convex if a line drawn arbitrarily between two points on a convex curve, has all its 

values above the curve.  This therefore means that the points on the curve must be less than 

or equal to the points on the straight line. This observation is best depicted in Figure 2.1(a). 

A concave function is when all the points on the curve are greater than or equal to the points 

on the straight line. This observation is depicted in Figure 2.1(b) (Edgar & Himmelblau , 

1988).  

The function can also be classified as strictly convex or concave. A strictly convex function 

has the greater or equal to sign replaced by just a greater than sign while a strictly concave 

function has its less than or equal to sign replaced by just a less than sign. This therefore 

means that strictly convex or concave function provides a single optimum solution. A 

nonconvex function may, however, have multiple optimum solutions (local optima).  
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2.3.2 Convexification methods  

A global optimum, which is the best solution, can be guaranteed if a function is convex 

(Lundell & Westerlund, 2012). This therefore means that MINLP models have to be 

convexified in order for a globally optimal solution to be obtained. There is currently no 

method available that can guarantee global optimality for nonconvex MINLP problems (Pörn 

et al., 1999) .  

Relaxation methods are a modelling strategy used to approximate difficult problems by 

means of nearby problems that are easy to solve. A solution obtained from the relaxed 

problem is used to provide information about the original problem. Linear programming 

relaxations replace the 0-1 variables by variables belonging to the interval between 0 and 1. 

This relaxation results in a linear program 

The convexification methods that will be discussed in this review are McCormick (1976) 

over and under estimators, Glover (1975) transformations, reformulation-linearisation 

techniques (RLT), transformations for other nonlinear terms and piecewise linearisation 

methods.  

 

xa xb

f(x)

xa xb

f(x)

a

b

a

b

(a) (b)

 Figure 2.1: Comparison of a) Convex function and b) Concave function. 
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a) McCormick (1976) over and under estimators 

Linear programming methods are used to drive the solution process of NLP and MINLP 

algorithms.  The success of these algorithms therefore depends on the strength and tightness 

of the linear programming algorithms (Sherali & Adams, 1999).   

Linearisation of nonlinear terms within NLP and MINLP models lead to a convex model 

which can then be solved to obtain a globally optimal solution. Linearisation methods have 

been developed for bilinear terms. Bilinear terms are a product of two continuous variables or 

of a product a binary variable and a continuous variable (Zamora & Grossmann, 1998).  A 

product of two continuous variables within a model gives rise to an NLP model. The 

linearisation of these terms can help accelerate the convergence of the model.   

McCormick (1976) introduced a general method for linearising the concave/convex 

envelopes of these functions that involves a set of LP relaxation models which use linear 

convex underestimators and linear concave overestimators for a tight upper bound on the 

global optimum with regards to bilinear terms. It was assumed that convex and concave 

envelopes can be provided for any function of a single variable. The convex envelope was 

defined as the highest convex function, which everywhere underestimates the function and 

the concave envelope was defined as the lowest concave function, which everywhere 

overestimates the function. This method was, however, limited to NLP problems that are 

factorable.  This method can therefore be used to handle nonconvexities in the concentration 

balance of the WN.  A solution is obtained by solving the linearised model. 

The method proposed by McCormick (1976) can be explained as follows: A bilinear term, 

which arises from a product of two continuous variables, is defined as 

 

 

The following substitution shown in constraint (2.2) can therefore be made for the product of 

the two continuous variables. 

Ry

,Rx




 

 

(2.1) 
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The two continuous variables each have a lower and upper bound and this is shown in 

constraints (2.3) and (2.4).  

 

 

                                  

 

The following constraints therefore arise as a result 

 

  

 

Taking the product of the constraints in constraint (2.5), one gets 

 

       

which inherently is positive as the product of two positive terms must also be positive. 

Rearranging the terms in constraint (2.7) gives rise to constraint (2.8).  

 

 

Three more constraints can also be derived in the same way using different combinations in 

constraints (2.5) and (2.6). These constraints are shown in constraints (2.9) to (2.11).  

xyw   (2.2) 

UL xxx   (2.3) 

UL yyy   (2.4) 

0xx L   and 0yy L   
(2.5) 

0xxU   and 0yyU   (2.6) 

0yxxyyxxy LLLL   
(2.7) 

LLLL yxxyyxw   
(2.8) 
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The bilinear term can therefore be replaced by w, which has only linear terms. The upper and 

lower bounds of x and y are shown in constraints (2.3) and (2.4) respectively.  

Constraints (2.8) to (2.17) represent the McCormick (1976) overestimators and 

underestimator and this is shown in Figure 2.2. This method is, however, not an exact 

linearisation technique, but does lead to the creation of a convex solution space as all bilinear 

terms are replaced by linear constraints. The method also allows the resulting system to be 

solved easily and does not require an initial starting point. It, however, leads to an increase in 

the number of constraints and can also be cumbersome when applied to a large scale NLP or 

MINLP problem. 

 

 

 

 

 

 

 

 

UUUU yxxyyxw   
(2.9) 

ULUL yxxyyxw   
(2.10) 

LULU yxxyyxw   
(2.11) 



Chapter 2                                                                                                         Literature Review 

  
 

2-8 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Glover (1975) Transformations  

Glover (1975) introduced a novel method to linearise the nonlinear terms in NLP and MINLP 

problems which are due to the product of a discrete variable and a continuous variable. The 

method proposed by Glover (1975) can be explained as follows: 

Let x be a continuous variable and y a binary variable. Both x and y are defined in constraint 

(2.12).  

 

 

 

 1,0

,





y

Rx
 

(2.12) 

Underestimators 

y

x

Overestimators 

f(x)

xL
xU

yU

yL

Figure 2.2: Graphical representation of the McCormick (1976) overestimators and 

underestimators. 
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The product of x and y can be replaced with a new continuous variable, H and this is shown 

in constraint (2.13).  

 

 

From constraint (2.13), it can be seen that, H can assume a value of 0 when y is equal to 0 and 

1 when y is equal to 1.  The lower and upper bounds of x , if known, are expressed in 

constraint (2.14).   

 

 

Constraint (2.14) is then multiplied with y in order to replace the nonlinear term xy  with H  

and this is shown in constraint (2.15). Constraint (2.16) is then derived from the 

understanding of binary variables and upper and lower bounds of x .  

 

 

 

     

It can be seen that constraints (2.15) and (2.16) are linear in terms of x and y as it is assumed 

that the upper and lower bounds of x are known. These constraints are then used to replace 

constraint (2.13) in order to eliminate the nonlinear term. This method is an exact 

transformation technique and a globally optimal solution can therefore be guaranteed 

provided that the rest of the formulation is also linear. 

c) Transformations  

Other nonlinear terms within an NLP and an MINLP problem can be linearised by means of 

transformations, which reformulate an MINLP problem to a convex MINLP problem. This is 

achieved by transforming the original nonconvex problem into a convex problem, which is 

then solved using an MINLP solver (Pörn et al., 1999).  The nonlinear terms include 

xyH   (2.13) 

UL xxx   (2.14) 

yxHyx UL   
(2.15) 

   y1xxHy1xx LU   
(2.16) 
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exponential terms, positive and negative power terms and mixed power and continuous terms, 

which are grouped together as signomial terms (Lundell & Westerlund, 2012). Different 

transformations are therefore developed for these terms individually, namely (Lundell & 

Westerlund, 2012): 

(i) Positive power transformations (PPT) for positive power terms. 

(ii) Exponential transformation (ET) for exponential terms 

(iii) Mixed power and exponential transformations (MPET) for a mixed power and 

exponential term. 

(iv) Power transformations (PT) for negative power terms, which are applied term-wise and 

include the αBB-reformulation (for nonconvex twice-differentiable functions).  

(v) Inverse transformations for positive terms.  

The number of discrete and continuous variables that are needed in the reformulation can, 

therefore, vary depending on the combination of transformations that are chosen. This in turn 

leads to reformulated problems with different styles (Lundell & Westerlund, 2012).  Different 

transformation methods have been developed over the years to handle nonconvex MINLP 

problems. 

 

Pörn et al.  (1999) looked at a large number of general convexification techniques which were 

applicable to large class of MINLP problems. The extended cutting plane method was used 

by convexifying all the inequality constraints and by making sure that all the equality 

constraints and objective function were linear. Their method showed how posynomials and 

binomials could be convexified within the discrete optimisation and was a general method, 

which could incorporate continuous variables. Pörn et al.  (2008) then applied the ET, IT and 

PT for NLP and MINLP problems where the nonlinear transformation constraints were 

discretised in order to obtain a piecewise linear transformation.  

Lundell and Westerlund (2012) introduced a set of transformations for convexifying 

nonconvex twice-differentiable problems in an extended variable space. An MILP was solved 

in order to obtain the transformation. The solution that was obtained for the MILP problem 

rendered a minimal set of convex transforms for the nonconvex MINLP problem. Their 



Chapter 2                                                                                                         Literature Review 

  
 

2-11 
 
 

method included the αBB convex reformulation technique, which made it possible to obtain a 

set of transformations for any MINLP problem containing nonconvex twice-differentiable 

functions.   

 

d) Reformulation-Linearisation Methods (RLT) 

RLT methods generate tight linear programming relaxations in order to design heuristic 

procedures for discrete and continuous nonconvex programming problems (Sherali & Liberti, 

2007). The method consists of two basic steps known as reformulation and linearisation. 

Given a mixed 0-1 linear program and n binary variables, additional constraints are created 

by multiplying the constraints by product factors of binary variables x and their complements 

(1-x) in the reformulation step. The linearisation step replaces the continuous variables for 

each product of variables by means of McCormick (1976) over and under estimators or any 

linearisation method. This results in a hierarchy of linearisation, which is dependent on the 

form of the product factors, employed. RLT generates an explicit algebraic characterisation 

of the convex hull which is available at the highest level, level-n. This method can be applied 

to discrete optimisation problems where the bound-factors are replaced by suitable Lagrange 

interpolating polynomials (Sherali & Liberti, 2007).  

Quesada and Grossmann (1995) used the RLT for the linearisation of bilinear terms. In their 

method, the bilinear terms are eliminated by creating a convex solution space. This was 

achieved by substituting the bilinear term with four constraints that contained the upper and 

lower bounds of each continuous variable within the bilinear term.  This technique, however, 

was not an exact linearisation technique, even though a convex solution space was created 

from the method.  Like the method proposed by McCormick (1976), overestimating and 

underestimating envelops are created around the nonlinearities. The result of the LP model 

was then used as a starting point for the original NLP model. Quesada and Grossmann (1995) 

then showed that, if the solution of the LP and NLP match, then the solution is a globally 

optimal solution. If the solutions, however, did not match, then the locally optimal solution 

found was therefore not a globally optimal solution. Figure 2.3 shows a general algorithm 

procedure for the RLT.  
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Meyer and Floudas (2006) presented a global optimisation algorithm based on the piecewise 

RLT based on the approach by Sherali and Alameddine  (1992). The method was applied to a 

complex generalised pooling problem. Binary variables were used to indicate the existence of 

treatment units, which were described by a removal ratio.  This therefore rendered the 

problem an MINLP with nonconvex bilinearities. In the reformulation stage, nonlinear 

constraints were formed by multiplying groups of valid constraints from the original 

formulation. In the linearisation stage, every product was substituted for a new variable and 

new constraints were added by multiplying inequality constraints on the bounds in order to 

generates lower bounds and produces an MILP model. The method was therefore able to 

reduce the gap between the lower and upper bounds by augmenting the lower bounding 

problem by using 0-1 variables to partition the continuous space. The method, when applied 

to a complex industrial case study (multiple contaminants), was able to generate tight lower 

bounds. This method was, however, computationally expensive due to the increase in the 

number of 0-1 variables that were used.  

 

 

Exact MINLP is linearised using RLT 

Resulting MILP is solved 

MILP solution is then used as a starting point for 

MINLP 

If MILP objective = MINLP objective  

Then 

Globally Optimal  

If MILP objective ≠ MINLP objective  

Then 

Locally Optimal  

Figure 2.3: Solution algorithm for RLT by Quesada and Grossmann (1995). 
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e) Piecewise linear approximation  

This method solves MINLP problems by approximating all the nonlinearities as piecewise 

linear functions as can be seen in Figure 2.4 for the approximation of f(x) by L(f(x)). The 

benefit of this method is that, the piecewise linear functions can be modelled by linear 

constraints in mixed integer variables which in turn opens the possibility of applying MILP 

solvers to the approximated MINLP (D'Ambrosio et al., 2015). This is achieved by 

partitioning the domain of a univariate (function, polynomial or an expression of only one 

variable) function into several intervals. The function can then be approximated by means of 

a line segment that connects the end points of the intervals known as breakpoints. The 

accuracy of the approximation is therefore dependent on the number of breakpoints. This 

method can also be applied to multivariate functions by portioning the domain (instead of 

intervals for univariate functions) of the function into several simplices and then 

approximating over each simplex with an affine function (function is the composition of a 

linear function with a translation function). 

The globally optimal solution obtained for the MILP is, however, not necessarily a global or 

local optimal solution for the MINLP as the method only approximates the original problem 

(D'Ambrosio et al., 2015). Figure 2.5 shows the general framework for incorporating 

piecewise-affine relaxations into a GO algorithm within a spatial branch and bound 

framework (Khor et al., 2014).  

Karuppiah and Grossmann (2006) introduced a new deterministic spatial branch and contract 

algorithm in order to obtain a global optimum solution for the minimisation of freshwater for 

the design of integrated water systems which combines both water using and water treating 

operations within a superstructure. The model was first formulated as an NLP problem and 

then modelled as a general disjunctive program (which is an MINLP) in order to allow for the 

selection of different technologies. A general disjunctive programming problem uses logic-

based methods to represent discrete and continuous decisions. Piecewise linear under- and 

over-estimators were used to approximate the nonconvex terms by means of McCormick 

convex and concave envelops. This resulted in an MILP problem whose solution was used as 

a tight lower bound for every node within the spatial branch and bound tree. The lower 

bounds were then compared to the upper bounds (obtained by solving the nonconvex 
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problem) within a branch and bound enumeration. The lower bound tightening cuts they 

proposed was only applicable for fixed load formulation and was also computationally 

expensive.  

f(x)

L(f(x))

x

 

  Figure 2.4: Piecewise linearisation of f(x). 

This method has been used by many authors in order to obtain a globally optimal solution for 

the WN problem (Faria & Bagajewicz , 2011; Gounaris et al., 2009; Misener & Floudas , 

2013).  
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2.4 Wastewater Minimisation  

Wastewater is generated in industry by processes and their utilities. Reducing the amount of 

wastewater, however, affect both effluent treatment and freshwater costs. Wastewater 

minimisation involves the reduction in freshwater consumption and wastewater generation. 

This is achieved through water reuse, water recycle and water regeneration (Wang & Smith, 

1994). Figure 2.6 illustrates the different methods used in the minimisation of wastewater.  

(i) Water Reuse: Water reuse involves the use of wastewater in other operations except 

the process where it was originally used. These operations do not need freshwater. 

This process leads to a reduction in the effluent volume, but the contaminant mass 

load is often unchanged. This principle is illustrated in Figure 2.6(a).  

Variable Partitioning 

Bound Contraction

Solve lower bounding problem with 

piecewise-affine relaxations to get LB

Solve lower bounding problem with 

piecewise-affine relaxations to get LB

Solve upper bounding problem to get

 UB

Spatial branch and bound to check if:

(UB-LB) ≤ tolerance? 

STOP: Optimal solution = UB

No

Yes

Figure 2.5: General framework for incorporating piecewise-affine relaxations into GO 

algorithm (Khor et al., 2014).  
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(ii) Water recycling: Water recycle, however, allows the effluent to be used in any 

process including the process in which it was produced. This principle is illustrated 

in Figure 2.6(b).  

(iii) Regeneration reuse: During regeneration reuse, wastewater is regenerated by partial 

treatment to remove the contaminants. Water is therefore regenerated to be used in 

other operations. The regenerated water does not, however, go back to the operation 

it was originally used for. The benefit of this process is the volume of the freshwater 

used, the wastewater generated and that the contaminant mass load in the wastewater 

will decrease. Partial treatment can be achieved by using water purification units 

often classified as membrane and non-membrane processes, e.g. RO membranes and 

steam stripping respectively (Khor et al., 2011). This principle is illustrated in Figure 

2.6(c). 

(iv) Regeneration recycling: In regeneration recycling, water is regenerated and can be 

used in any process. The regenerated water can, therefore, be recycled to processes 

in which it had been used previously. This therefore means that the freshwater 

volume required, effluent volume and the contaminant mass load in the wastewater 

will most probably all be decreased by more than that achieved with regeneration 

reuse (Wang & Smith, 1994a). This principle is illustrated in Figure 2.6(d). 
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2.5 Water Networks  

The idea of reuse, regeneration reuse and regeneration recycling is incorporated in a water 

network superstructure. The water network (WN) is a collection of processes that require or 

produce water called water-using processes and operations that clean wastewater known as 

regenerators (treatment units). Most works involve the use of WN for continuous operation 

mode (Jeżowski, 2010).  The aim of WN synthesis is to synthesise a network which 

integrates water using operations and/or water treatment operations by optimising an 

objective function, which is based on economics and/or environmental sustainability while 

obeying certain discharge limits to the environment (Khor et al., 2014). 

In order to define and solve a WN design problem, the following minimum information is 

needed: concentration of contaminants, mass loads of contaminants transferred to the water, 

Water User 1

(source)

Water User 2

(source)

Water User 1

(source)

a) Water reuse b) Water recycle

c) Regeneration reuse  

Water User 1

(source)

Water User 2

(source)

Regeneration
Water User 1

(source)

Water User 2

(source)

Regeneration

d) Regeneration recycling  

Figure 2.6: Schematic representation of different ways of achieving wastewater 

minimisation (Khor et al., 2014). 
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or the flowrate of the water streams (Jeżowski, 2010). This therefore means that either mass 

load or flowrate data are required in order to solve a WN problem.  

2.5.1 Basic elements of WN 

A WN also consists of freshwater sources and wastewater as well as wastewater disposal 

sites. It also encompasses mixers and splitters for the distribution of streams within the 

network.  

Water using processes are classified into mass transfer operations and non-mass transfer 

units. Mass transfer operations are also known as quality controlled or fixed load processes 

and involve the mass load of contaminants that have to be carried by a medium such as water. 

Examples of mass transfer operations are absorption, liquid-liquid extraction and fractional 

distillation (Treybal , 1981). Non-mass transfer operations are also known as quantity 

controlled or fixed flowrate operations. These operations are further classified into sources 

and sinks (Jeżowski, 2010).  

Water sources are processes that supply streams with a fixed flowrate and contaminant 

concentration that enable direct reuse/recycle or regeneration–reuse/recycle. The freshwater 

source has an unknown flowrate. One of the objectives of solving WN optimisation problems 

is to minimise the amount of freshwater needed. The other aim of the optimisation is also to 

determine the optimal split ratios of the water source flowrates at a particular contaminant 

concentration for regeneration and for use by the water sinks (Khor et al., 2012).  

Water sinks are water-using units or operations that use water from the sources or the 

regenerators. The water sinks have a fixed known flowrate and a maximum allowable 

contaminant concentration limit. The optimisation therefore aims at finding the optimal 

mixing ratios of the source and regeneration streams that are needed for reuse/recycle in the 

sink operations. The water sinks also consist of a wastewater stream that consists of streams 

from the regenerator or from the sources to be discharged to the environment (Khor et al., 

2012).  
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Fixed load processes can be transformed into fixed flowrate operations in a case where a 

single contaminant problem is considered. This is achieved by dividing the fixed load process 

into a pair of sink-source and then setting their concentrations (inlet and outlet) to a 

maximum (Poplewski et al., 2010). This method is needed to reach the minimum freshwater 

intake for single contaminant cases according to the necessary conditions of Savelski  and 

Bagajewicz (2000) and is valid if freshwater minimisation is the only objective of the 

problem. Savelski and Bagajewicz (2003) also showed that a “key” contaminant is a 

necessary condition for freshwater minimisation for multiple contaminant problems. The key 

component is however unknown for multiple contaminant problems and as such, fixed load 

processes cannot be transformed to fixed flowrate operations for multiple contaminants. 

It should also be noted that a WN problem (non-mass transfer processes) for a case where 

there are no regenerators and the optimisation criterion is only the minimisation of freshwater 

flow, the problem becomes a linear problem (Jeżowski, 2010). 

2.5.2 Superstructures  

WN optimisation methods are often applied to a superstructure. A superstructure 

encompasses all the feasible structures of a particular network (Jeżowski, 2010). It is used to 

identify the optimal configuration for the process from a number of alternatives. 

Superstructures therefore generate multiple alternative solutions, which are then used by the 

designer to make a well informed decision (Alnouri & Linke, 2012). The WN superstructure 

consists of water sources, water sinks and water regeneration units.  An example of the WN 

superstructure with a regeneration unit is shown in Figure 2.7 (Khor et al., 2011).  

The treatment units can be centralised or distributed. In a centralised treatment system, 

wastewater from different operations is mixed and then treated in one centralised treatment 

facility (Wang & Smith, 1994b). Distributed effluent treatment systems lead to lower capital 

and operating costs (compared to centralised treatment) as streams are treated separately or 

partially mixed which reduces the flowrate to be treated. The capital cost reduction is 

proportional to the flowrate of wastewater in most treatment operations. The operational          

cost, however, increases with decreasing concentration for a specific mass of contaminants. 
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This therefore means that streams should be segregated and only combined where appropriate 

(Galan & Grossmann, 1998). 

 

 

 

 

 

 

 

 

 

2.5.3 Optimisation of WN 

There are two major approaches adopted in addressing water network synthesis namely, 

insight based techniques and mathematical model-based optimisation methods. These two 

methods will be discussed in detail in the preceding sections.  Insight based techniques will 

be addressed in Section 2.6 and mathematical model-based optimisation methods will be 

discussed in depth in Section 2.7.  A combination of these two methods can be used to solve 

water network problems (Jeźowski, 2010).  
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Figure 2.7: General representation of a WN superstructure (Khor et al., 2011).  
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2.6 Insight based techniques  

2.6.1 Basic concept  

Insight based techniques involve water pinch analysis, which is a graphical method based on 

the concept of a limiting water profile which is the most contaminated water that can be fed 

into a particular operation (Wang & Smith, 1994a). During water pinch analysis, the amount 

of freshwater that is needed has to be determined in order for specific targets to be set.  

El-Halwagi and Manousiouthakis (1989) were the first to use this method for a mass 

exchange between a set of rich and lean streams. Their work defined a minimum allowable 

concentration difference, which was applied throughout the mass exchange network and was 

applied to a single key component. El-Halwagi and Manousiouthakis (1989)  then extended 

their method to include regeneration. The model used a variety of mass transfer agents for the 

lean streams and with the aid of mathematical optimisation which, sought to design a mass 

exchange network and then to minimise the annual cost of the system by allocating the right 

mass exchange agents. This method was, however, complicated.  

Wang and Smith (1994a) developed a limiting water composite curve for minimising the 

generation of wastewater when water is the only lean stream for single and multiple 

contaminants. The method was based on the grounds that, all the water using operations 

require clean water and can handle a maximum level of contamination.  In their work, targets 

were first set, which included regeneration reuse and recycling. The method begins by 

developing an understanding of how the water using processes behave in an overall sense. A 

limiting composite curve of contaminant concentration versus the mass load is then 

constructed which defines concentration intervals by means of the inlet and outlet 

concentrations of the processes and this is illustrated in Figure 2.8(a). The operations are then 

combined within the concentration intervals to form the limiting composite curve (or grand 

composite curve), which is shown in Figure 2.8(b). This curve represents how the total 

system will behave if it was a single water using process.  
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The limiting water line (or water supply line) is determined by drawing a line that is just 

below the grand composite curve as shown in Figure 2.9. The inlet and outlet of the limiting 

water line is set to zero. This therefore meant that by maximising the outlet concentrations of 

the water supply line, one is also able to minimise the amount of freshwater consumption and 

wastewater generation. The gradient of this line is inversely proportional to the flowrate. The 

line is used to define a boundary between feasible and infeasible concentrations. Lines below 

the limiting water profile signify feasible water streams and the lines above it lie in the 

infeasible region. It creates a pinch point where it just touches the grand composite curve 

(Wang & Smith, 1994a) and this can be seen in Figure 2.9. The pinch point represents the 

minimum feasible flowrate of wastewater. The relationship between the concentration (C), 

mass load (m) and flowrate (F) is shown in constraint (2.17).  

It can be seen from constraint (2.17) that once the concentration and mass loads are known, 

the flowrate can be determined and vice versa.  The driving force for water pinch is, 

therefore, the change in contaminant concentration. The flowrate corresponding to the 

maximum inlet and outlet concentrations is known as the limiting flowrate (Doyle & Smith, 

C

m
F




  

(2.17) 

Figure 2.8: (a) Limiting water profile (b) Limiting composite curve (Wang & Smith, 1994a). 
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1997). The minimum flowrate is therefore defined, as the flowrate required if the operation is 

supplied with pure water. 

 

 

 

 

 

 

 

Once the minimum amount of freshwater is known for the entire design and for each process, 

the design that meets the target can therefore be determined. The amount of freshwater 

required below and above the pinch was determined by constraint (2.17). Each operation is 

then drawn with respect to the concentration intervals. The final design is drawn with reuse 

and recycling of streams. In the design, the amount of freshwater used was equal to the 

amount of wastewater generated from the system (Wang & Smith, 1994a). 

The advantage of the method was that no knowledge of the equipment performance or 

mechanics of the mass transfer was needed as it only required a limiting maximum 

concentration for each process.  

Wang and Smith (1994b) then extended the method for single contaminants to multiple 

contaminants. Their method initially sets targets for each contaminant in isolation. The 

highest flowrate that was obtained for all the contaminants for a treatment process was then 

taken as the target for the treatment process.  Network designs were obtained for each 
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Figure 2.9: Grand composite curve with the water supply line for targeting 

minimum water flowrate (Wang & Smith, 1994a). 
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contaminant in isolation and a final network was then obtained by merging all the 

subnetworks together. This therefore meant that each contaminant was taken into account for 

targeting and design. This method, however, becomes unsuccessful when applied to large and 

complex problems. There are also a number of drawbacks in the methodology presented by 

Wang and Smith (1994b): 

(i) In some cases, the method fails to give the best targets as the pinch position could 

move to different positions after regeneration (Kuo & Smith, 1998b). 

(ii) It was difficult to apply the method to cases involving multiple contaminants. 

(iii) Stream splitting was also allowed in the operation. This was, however, impractical as 

some operations might require more water over and above the amount predicted by 

the targets that were set (Kuo & Smith, 1998b).  

2.6.2 Extension of the water pinch method  

The work proposed by Wang and Smith (1994a) was modified and extended by many authors 

in order to improve its application for the minimisation of wastewater for both single and 

multiple contaminants for mass transfer operations.  

Wang and Smith (1994b) extended their methodology to distributed effluent treatment 

systems. In distributed treatment systems, streams are segregated for treatment and are only 

combined if appropriate. The method they proposed was, however, a general approach for 

both centralised and distributed systems. Targets are first set for the effluent flowrates 

through the treatment processes in order to determine the minimum treatment costs in the 

case of single contaminants. Design rules are then used for the design of the final networks. 

These rules were, however, based on the location of the pinch for the particular system. In 

their design, streams starting above the pinch for the treatment system were treated fully. 

Streams starting at the pinch were partially treated and streams starting below the pinch 

completely bypassed the treatment units. The performance of the treatment processes was 

defined by either an achievable outlet concentration or a RR. The methodology could also 

predict the number of treatment units needed. The method was extended to multiple 

contaminants by an extension of that used for single contaminants. Subnetworks were 
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generated for each contaminant and the final network is achieved by a combination of the 

different subnetworks. This methodology, however, had several drawbacks. 

(i) A detailed design was not used to represent the treatment processes. 

(ii) In the development of the multiple contaminant model, a single treatment unit was 

assumed for each targeting stage and was therefore not known beforehand. The 

performance of the treatment processes was also fixed. 

(iii)  The prediction of the lowest possible flowrate was not always possible.  

(iv) Important features of the design for multiple treatment processes for both single 

and multiple contaminants were also not taken into consideration during the design 

process. 

 

Kuo and Smith (1997) pointed out the above draw backs of the method proposed by Wang 

and Smith (1994b) by introducing a modified method for the design of the distributed effluent 

treatment systems and extended the concepts to retrofit cases.  The method was able to 

choose the appropriate type and number of treatment operations. Their methodology also 

allowed the effluent streams to reach their consent limits for discharge at a minimum cost. 

This was achieved by setting targets for minimum flowrates in the case of single 

contaminants where the optimum solution could be achieved. In the case of multiple 

contaminants, the treatment network was achieved by means of a repeated use of targets and 

design.  The methodology was based on a “composite effluent curve” instead of the water 

supply line.  

Kuo and Smith (1998a) then looked at the interactions between water use and effluent 

treatment systems in the process industries  for the design  of minimum water use. Their 

method used a conceptual and graphical approach based on the “composite effluent curve”. 

They introduced a new method for the design of the water networks, which does not only 

achieve the target for minimum water consumption, but also leads to the lowest effluent 

treatment cost. This new approach involved the construction of the “water mains” which 

helps satisfy the requirements of each operation. Water mains (imaginary) were used to store 

the minimum freshwater below and above the pinch. Figure 2.10 shows the water mains used 

for the design of the WN. From Figure 2.10, the intermediate water main acts as a source and 
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a sink. From this design, the final WN is then drawn. Kuo and Smith (1998b) then expanded 

on this method to include regeneration reuse and recycling.  
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2.6.3 Water pinch for non-mass transfer processes  

The methodology proposed by Wang and Smith (1994a; 1994b) and Kuo and Smith (1997; 

1998a; 1998b), however, treats the water using processes as mass transfer operations. 

According to Dhole et al. (1996), most process units (reactors, boilers, cooling towers etc.) 

cannot be modelled as mass transfer operations. This is because these operations are based on 

flowrate of water rather than the amount of contaminants. Also, mass transfer models cannot 

be easily adapted to situations where several aqueous streams enter and leave a unit at 

 Figure 2.10: Design grid (Kuo & Smith, 1998a). 
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different concentrations and changes in water flowrate are also not easily accounted for 

within the model formulation (Dhole et al., 1996). 

Dhole et al. (1996) therefore proposed a new graphical technique to overcome the limitations 

experienced by mass transfer models. In their method, each operation was considered to have 

an inlet and outlet stream (different concentrations and flowrates). The input streams were all 

plotted together to form a demand composite curve and the water sources formed the source 

composite curve. Their graphical technique represented concentration versus flowrate and not 

the original concentration versus mass load used by previous studies and this is shown in 

Figure 2.11. The two composite curves were then plotted together on the same axes and were 

then shifted together until they just touched. The point at which the two curves touched was 

identified as the water pinch and the potential for water reuse was therefore identified. They 

therefore concluded that freshwater should be added below the pinch and that sources above 

the pinch should not be discharged as wastewater in order for targets to be met.  
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Figure 2.11: Water composite curve representation of Dhole et al. (1996). 

The method proposed by Dhole et al. (1996) , however, did not provide a systematic method 

for the elimination of pinch points by mixing. This is because the mixing of water sources 

could easily change the shape of the source composite curve and as a result change the 

targets.  The targets given by Dhole et al. (1996) can, therefore, not be considered as true 

targets due to these limitations (Hallale , 2002).  

Hallale (2002)  then proposed a graphical method that was based on non-mass transfer 

operations with single contaminants in order to overcome the drawbacks of the methodology 

proposed by Dhole et al. (1996). This was firstly achieved by plotting a new demand and 

supply curve, which had purity of water on the vertical axis rather than the contaminant 

concentration and this, is shown in Figure 2.12(a). The initial value of freshwater flowrate 

was now assumed as can be seen from Figure 2.12(a).  The assumed value for freshwater was 

then tested (too high or too low).  This was achieved by knowing that sufficient pure water is 

needed at all points within the network. A new diagram known as the Water Surplus diagram 

was therefore constructed to account for all possible missing arrangements. This diagram was 

plotted by knowing from Figure 2.12(a) that there are regions that lie below (deficit of pure 
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water) and above (surplus of pure water) the demand composite.  The regions are illustrated 

in Figure 2.12(a). 
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Figure 2.12: An illustration of the surpluses and deficits plotted to form the water surplus 

diagram (Hallale , 2002) . 

The surplus or deficit of pure water for each region was then determined by calculating the 

area enclosed by each rectangle (Hallale , 2002). These values were plotted against the water 

purity to form the water surplus diagram shown in Figure 2.12(b). From Figure 2.12 (b) it can 

be seen that the cumulative surplus is plotted and if the region of deficit is greater than the 

previous value, the graph moves in the negative water surplus direction. The complete water 

surplus diagram is illustrated in Figure 2.13(a).  
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Figure 2.13: (a) The complete surplus diagram. (b) The freshwater flowrate is increased until 

surplus diagram becomes pinched.   

Figure 2.13(a) shows that the assumed value for the freshwater flowrate causes part of the 

plot to lie in the negative region, which is an indication of insufficient water purity at all 

points within the network. This therefore means that more freshwater is needed until no part 

of the surplus diagram lies in the negative region.  The minimum water flowrate is therefore 

the flowrate that causes the surplus diagram just to touch the vertical axis and this is 

illustrated in Figure 2.13(b).  The method also gives flowrate targets that ensure that all 

demands with regards to flowrate and purity are satisfied.  This method helps determine the 

true pinch points and reuse targets as it incorporates all the mixing opportunities.  

The method by Hallale (2002)  was able to deal with a wider range of water using operations 

but was, however, limited to single contaminant cases. Hallale (2002) also built a 

mathematical model to determine the minimum freshwater and wastewater flowrates. 

According to Hallale (2002), insight based methods have an advantage over mathematical 

models as they: 

(i) provide increased insight into the problem 

(ii) give clear guidelines about the process modifications that are beneficial to the 

designer. 
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(iii) have a lower computational burden. 

 

The above analysis, however, shows that the water pinch method proves unsuccessful for 

complex problems involving multiple contaminants (Faria & Bagajewicz , 2009) and various 

topological constraints (Khor et al., 2012). The methodology cannot allow for constraints 

other than concentration and flowrates. Constraints for forbidden matches, safety and 

distances between processes cannot be specified by the water pinch method (Doyle & Smith, 

1997).  Insight-based techniques therefore offer good insights into the water network problem 

with a low computational burden but require a significant amount of problem simplification 

(Khor et al., 2014). 

2.6.4 Recent works on water pinch methods  

Recent studies have extended water pinch analysis to algebraic methods primarily water 

cascade analysis (WCA) (Ng et al., 2007; Manan et al., 2004).  The WCA is a numerical 

technique that is used to establish the minimum water and wastewater targets in a maximum 

water recovery network.  This method establishes the minimum targets by looking at the 

possibility of using available water sources within the process in order to satisfy the water 

demand (Manan et al., 2004).  The method is advantageous to other previous methods as it 

determines the exact utility targets and pinch locations without any tedious iterative steps. It 

can also be applied not only to non-mass transfer operations, but to a wide range of water 

using operations (Manan et al., 2004). 

2.7 Mathematical model optimisation methods 

Mathematical optimisation is capable of handling WN problems in their full complexity by 

considering a wider range of constraints in the objective function, multiple contaminants, 

representative cost functions as well as various topological constraints (Khor et al., 2014) can 

be included in the model formulation. Optimal water allocation and treatment is therefore 

moving towards the use of mathematical techniques also due to the tedious nature of insight 

based techniques (Karuppiah & Grossmann, 2006) .  
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The mathematical optimisation approaches employ a superstructure, which identifies an 

optimal configuration for the process from a number of alternatives. This idea was first 

proposed in the work of Takama et al. (1980). In their work, they proposed a nonlinear model 

that incorporates both water using and wastewater treating units for multiple contaminant 

systems. The objective of the work was the minimisation of freshwater consumption and 

wastewater generation for a refinery problem. This was achieved by the removal of 

uneconomical and irrelevant connections from the superstructure. The model was 

transformed into problems without inequalities by means of penalty functions and was solved 

using a method they proposed. Their method was, however, restricted and included a 

centralised treatment system (Gunaratnam et al., 2005) and was highly complex to apply. The 

method was also applied to small-scale problems. The solution they obtained was feasible, 

but was far from the optimum solution. 

WN problems therefore result in NLP and MINLP models. Binary variables are needed to 

account for the existence of units, streams, piping interconnections and for topological 

constraints. This therefore results in an MINLP model, which is difficult to solve when a 

global optimum is desired (Grossmann & Biegler , 2004). The complexity arises due to 

bilinear terms (which create nonconvex functions) in the mass balance equations and the 

concave cost terms in the objective (Ahmetović & Grossmann , 2010), which result in 

nonconvexities within the model. The complexities are also due to the existence of integer 

variables, nonlinearities and nonconvexities within the model (Ahmetović & Grossmann , 

2010).  

Nonconvex models give rise to many suboptimal solutions and lead to certain complications 

that cause the failure of most local optimisation models (Zamora & Grossmann, 1998). In the 

absence of convexity, NLP methods fail to locate the global optimum solution (Ryoo & 

Sahinidis, 1996). This difficulty can, however, be handled in a number of ways (Jeżowski, 

2010) through direct linearisation, generating a “good” starting point, using sequential 

solution procedures and by means of global (deterministic) optimisation methods.  
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2.7.1 Direct Linearisation 

This method involves the linearisation of the nonlinear terms in the mathematical model. This 

is achieved by the selection of linear conditions for optimality. In the context of WN, 

linearity constraints exist for non-mass transfer processes as well as processes with or without 

regeneration, which are defined by fixed outlet concentrations (Jeżowski, 2010). Relaxation 

methods proposed by McCormick (1976) and Glover (1975) can be used to linearise an 

MINLP problem. Different methods for linearising NLP and MINLP models have been 

proposed over the years.  

Bagajewicz and Savelski (2001) showed that a WN with mass transfer processes and single 

contaminants can easily be linearised when freshwater minimisation is the only objective of 

the optimisation. They proposed an iterative method, which involved LP formulation for the 

optimal solution of the single contaminant problem and an MILP for the design of the 

different possible network alternatives. Their method was based on the previously developed 

necessary conditions of optimality. Partial regeneration of wastewater was also considered in 

the formulation. In the case where no regeneration was considered, a sequential two-step 

procedure was proposed in which the LP (freshwater minimisation) solution was made the 

starting point of the MILP, which minimises the number of interconnections. The bilinearities 

were eliminated in this case by setting the outlet concentrations to their maximum values. In 

the case where regeneration was considered, an additional step which involved the MILP 

solution being the starting point of another LP with the objective of determining the 

minimum amount of water through the regenerator. The optimality conditions for water 

regeneration without recycle were also determined. This method, however, uses the fixed 

load method and was limited to single contaminants.  

Savelski and Bagajewicz (2003) then extended the work by Bagajewicz and Savelski (2001) 

for multiple contaminants through the selection of a key component.  Their work was the first 

to provide proof for optimality conditions for multiple contaminants. They proved that at 

least one contaminant reaches its maximum allowable concentration at the outlet of the 

freshwater-using process and that concentration monotonicity only holds certain key 

contaminants.  The first condition was that, at every outlet of a partial water provider, the 

outlet concentration of a key component should not be lower than the concentration of the 



Chapter 2                                                                                                         Literature Review 

  
 

2-34 
 
 

same component from the precursors. The second condition states that, the outlet 

concentration of a key component of a partial provider head process must be equal to its 

maximum concentration and the third condition was that, the outlet concentration of at least 

one component of an intermediate process reaches its maximum value. Regeneration of 

streams was, however, not considered in their work and the model was based on a fixed load 

model. Freshwater minimisation was the only objective of the work.  

The methods provided by Bagajewicz and Savelski (2001) and Savelski and Bagajewicz 

(2003) provide an exact linearisation method as the method is applied to LP and MILP 

problems. Exact linearisation is, however, not possible for nonconvex MINLP models. 

2.7.2 Generation of a “good” starting point  

This method determines a global optimum or “good” optimal solutions. This is achieved by 

using problem linearisation to provide a good starting point for the nonconvex MINLP 

problem. The initial point can be obtained by stochastic optimisation or through problem 

linearisation. The most common practice for mass transfer water using operations is to 

remove the bilinear term by fixing outlet concentrations in all operations to their maximum 

values (Jeżowski, 2010). The initial guesses adopted for solving NLP and MINLP models 

have a significant impact on the convergence process and must therefore be chosen with 

reliable methods (Zamora & Grossmann, 1998).  

Li and Chang (2007) proposed an efficient initialisation strategy to solve NLP and MINLP 

models for WN synthesis problems with multiple contaminants by generating near feasible 

guesses. The model was based on a superstructure and the initialisation strategy was based on 

knowing the mass load of contaminants in every water-using unit, the rate of water loss in 

each unit and the upper bounds of the corresponding inlet and outlet concentrations (Li & 

Chang, 2007). The computational time for solving the NLP and MINLP models was reduced 

as a result. The NLP model was, however suited for small-scale problems while the MINLP 

model could be used to optimise larger water using systems by including structural 

constraints for the simplification of the network configuration. Their method, however, did 

not guarantee global optimality.  
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Teles et al. (2008) proposed a initialisation procedure that replaces the NLP with a succession 

of LP models that are then solved for all operation sequences. The LP model was first relaxed 

and used as a starting point for the NLP model. The paper therefore looked at four 

initialisation methods for the NLP model which were proposed and tested. The first method 

looks at a single starting point by linearising the NLP by looking at the maximal 

concentrations or by removing connections among the fixed load operations. The other 

method looks at using multiple starting points. Each point is, however, related to a predefined 

sequence of fixed load operations and the LP model is also generated by the two methods 

used in the single starting point scenario. The best solutions were obtained in the case were 

multiple starting points where used with the maximal concentration linearisation method. 

This method, however, was computationally expensive. The procedure they proposed does 

not guarantee global optimality but provides a large probability of finding the globally 

optimal solution. The model does not also consider regeneration.  

Galan and Grossmann (1998) looked at the optimum design of a distributed wastewater 

network where multiple contaminants were taken into account. They proposed an NLP and 

MINLP model for the superstructure that was presented by Wang and Smith(1994b). Their 

paper was the first to address the synthesis regeneration networks within the WN.  The paper 

presents three formulations. The first formulation looks at an NLP model for the distributed 

wastewater treatment network synthesis with nonlinear bilinearities in a mixer unit.  The 

second formulation looks at an MINLP model that employs 0-1 variables for the selection of 

different treatment technologies. The treatment units in this case were described by a constant 

removal ratio. The final formulation looks at an NLP model for membrane based treatment 

technologies by using short-cut design equations instead of a fixed removal ratio.  

They proposed a search procedure that is based on a relaxed linear model. The LP relaxation 

was based on the method proposed by Quesada and Grossmann (1995).  The solution from 

the LP model was then used as a lower bound as well as a starting point for the NLP model. 

Different objective functions were used in the LP model to provide different starting points 

for the NLP model (the best objective function was then selected). This therefore led to 

different locally optimal solutions. The best solution was then chosen as the upper bound for 

the globally optimal solution. The nonconvex exponential terms in the objective function was 
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linearised by using linear underestimators proposed by Zamora and Grossmann (1998).  The 

procedure was able to find near global or global optimum solutions. This method was, 

however, computationally demanding even though it was very effective.  

NLP and MINLP models can therefore be solved with less computational time once a “good 

initial starting point” is provided. This therefore aids in the convergence process of the 

model. This method, however, does not also guarantee a globally optimal solution and also 

minimises the chance of a nonlinear solution becoming a local solution, which is far from the 

globally optimal solution (Doyle & Smith, 1997).  

2.7.3 Sequential solution procedures 

This involves the use of iterative methods. With regards to WNs, the concentration intervals 

are divided into smaller intervals until convergence is achieved. The work by Takama et al. 

(1980) was the first to use sequential optimisation procedures for solving WN problems. 

Doyle and Smith (1997) then presented the first model for a sequential superstructure 

optimisation approach for WN synthesis, which was based on an iterative procedure. The 

superstructure used considered direct reuse and recycle. The solution procedure they 

proposed, involves a sequential procedure that uses a linear programming approximation (LP) 

as an initial guess to solve an NLP.  The model considered multiple contaminants and water 

regeneration was not considered. The Linearisation was based on assuming a fixed maximum 

outlet concentration and the water using processes were then modelled by assuming a fixed 

mass load for the NLP. The LP problem is solved first and used as a starting point for the 

NLP problem. Convergence was, however, achieved by the introduction of additional 

constraints on the maximum wastewater flows and forbidden stream matches. Feasibility was 

also achieved by relaxing the concentration balance as an inequality. The method they 

proposed, however, does not guarantee a globally optimal solution, but does reduce the 

difficulties that are associated with NLP problems.  

Gunaratnam et al. (2005) used the sequential superstructure optimisation approach to 

generate a WN which considers both water-using operations and water-treating systems. 

Their procedure was developed in three steps. In the first step, the material balance equations 
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are relaxed by setting the outlet concentration at a maximum and introducing slack variables 

in order to create an MILP. In the second step, the flowrate solutions are then used as the 

starting point for solving the LP relaxation. This generates new concentration values that can 

be used in the MILP in the next step. The objective of the LP problem is to minimise the 

summation of the slack variables. In the last step, convergence is achieved when the sum of 

the slack variables becomes small and this then becomes the solution for the MINLP. The LP 

and MILP models are therefore solved iteratively until convergence and then used as a 

starting point for the MINLP model. Network complexity was also reduced through the 

specification of the minimum permissible flowrate, maximum number of streams allowed at a 

mixing point and piping costs. Binary variables are also used to enforce/eliminate certain 

substructures from consideration.  

This method is, however, computationally demanding and does not necessarily guarantee a 

global optimum solution. Regeneration recycling was also eliminated in order to avoid 

concentration build. The number of water-treating operations was fixed and was modelled 

using the removal ratio. This therefore means that a detailed design was not used to describe 

the treatment systems. The cost of effluent treatment was also assumed to be proportional to 

the effluent flowrate. The methodology proposed by Gunaratnam et al. (2005) is shown in 

Figure 2.14. 
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The sequential superstructure optimisation approach also helps reduce the computational 

burden experienced in solving MINLP models. This method is, however, not straight forward 

as it includes different iterative procedures as can be seen from Figure 2.14. The method also 

does not guarantee a globally optimal solution.  
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MILP Models

Outlet concentration of sinks = maximum
Outlet concentration of regenerators =0

At iteration k

MILP Models

Outlet concentration of sinks = maximum
Outlet concentration of regenerators =0

At iteration k
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All flowrate at k = optimal 
flowrate

MILP Models 
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The optimal outlet 

concentrations
At k+1  
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Figure 2.14: Solution strategy for sequential solution procedures (Gunaratnam et al., 2005) 
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2.7.4 Global (deterministic) Optimisation (GO) 

GO methods can be described as either stochastic or deterministic (Grossmann & Biegler , 

2004). 

Stochastic Methods 

The term stochastic refers to systems that are based on the theory of probability. Randomness 

is present in these models and unique variables are not used to describe variables as they are 

described by probability distributions. These methods often rely on physical analogies for the 

generation of trial points, which in turn mimic the approach to an equilibrium condition. They 

are easy to implement, but require that the problem is modelled in terms of recursive moves. 

This is, however, not easy with continuous variables. Stochastic methods are not rigorous and 

also have difficulty in handling complex constrained problems. Examples of stochastic 

methods include simulated annealing and genetic algorithms (Grossmann & Biegler , 2004). 

Global optimality with a probability approaching one can be achieved as the running time of 

this method can go to infinity (Ryoo & Sahinidis, 1996). This method cannot, however, 

guarantee convergence to a global optimum in a finite number of iterations (Zamora & 

Grossmann, 1998).  

Deterministic Methods for NLP and MINLP   

a) Basic concept  

In a deterministic model, every variable is determined by parameters in the model and by the 

previous values of the variables. It performs the same way for a given set of initial conditions. 

GP algorithms are deterministic and converge to a global optimum value. Deterministic 

global optimisation techniques are designed to converge to a global optimum solution or to 

prove that a particular point (solution) does indeed exist. This is, however, achieved by 

making certain specific assumptions and is also restricted to specific classes of problems 

(Zamora & Grossmann, 1998). GO algorithms use subsolvers to solve LP and NLP 

subproblems. This method includes Lipschitzian methods, branch and bound (BB) methods, 

cutting planes methods, difference of convex and convex methods, outer-approximation 

methods, primal-dual methods and reformulation-linearisation methods (Grossmann & 

Biegler , 2004) and piecewise affine linearisation methods. Deterministic methods take 



Chapter 2                                                                                                         Literature Review 

  
 

2-40 
 
 

advantage of the mathematical structure of the problem and often guarantee finite 

convergence within a particular pre-specified accuracy (Ryoo & Sahinidis, 1996).  

Most GO methods work by using convex envelopes or underestimators to formulate the 

lower-bounding convex MINLP problems. These techniques are then combined with GO 

techniques for continuous variables, which are usually spatial branch and bound methods. 

Spatial branch and bound methods divide the feasible region of continuous variables and then 

compare each lower and upper bound in order to unravel each subregion. The subregion that 

contains the optimal solution is then found by eliminating the subregions that do not contain 

the optimal solution (for NLP nonconvex problems). An example of this approach is the 

method proposed by Quesada and Grossmann(1995).  

Zamora and Grossmann (1998) were the first to propose a global (deterministic) optimisation 

algorithm for addressing nonconvexities in MINLP for distributed wastewater network 

synthesis problems (Khor et al., 2014). They were also the first to apply global optimisation 

to a superstructure model. The MINLP model consisted of nonconvex bilinear, linear 

fractional, and concave univariate objective function terms. A branch and bound based 

algorithm with bound contraction was proposed which led to the elimination of a large 

portion of the search space and a reduction in the number of nodes within the search tree.  

The deterministic global optimisation methods that will be discussed are the branch and 

bound method, branch and reduce methods, cutting planes methods and outer approximation 

methods.  

b) Branch and Bound (BB) 

Land and Doig (1960) were the first to propose a BB method for discrete programming.BB 

methods develop lower (LB) and upper (UB) bounds of the optimal value of the objective 

function over subregions within the particular search space. Branching refers to the 

successive subdivision of the feasible domain while bounding refers to the computation of the 

lower and upper bounds for the global optimum. The branch is then checked against upper 

and lower estimated bounds on the optimal solution and then discarded if it cannot produce a 

better solution than the best solution found by the model. The main feature of this method is 
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its ability to delete inferior subsets of the original subspace during the iteration process. 

During the iteration process, the subregions whose lower bounds are no longer better than the 

current upper bound is then deleted from the search (Ryoo & Sahinidis, 1996). Ryoo and 

Sahinidis (1996) then used the methodto handle nonconvex MINLP problems. The procedure 

for the branch and bound tree is illustrated in Figure 2.15.  

 

 

 

 

 

 

 

The branching can either take place through the depth first-approach or the breadth-first 

approach. The depth-first approach performs branching on the most recently created node 

within the tree. If no nodes are expanded, the method then backtracks to a node whose 

successor has not been examined. The breadth-first approach, however, selects a node with 

the best value at each level and then expands on all its successor nodes. The two different 

methodologies are illustrated in Figure 2.16. The breadth-first approach requires examination 

of fewer nodes and backtracking is also not required. The depth-first approach, however, 

requires less storage and can find the optimal solution early in the enumeration procedure. 

The branch and bound tree, however, uses a breadth-first enumeration (Ryoo & Sahinidis, 

1996).  

 

 

 

LB < UB 

LB < UB LB > UB 

Figure 2.15: Branch and bound tree. 
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c) Branch and reduce (BR)  

Reduction techniques are used to pre-process a global optimisation problem before the global 

optimisation algorithm is applied. Range reduction is used in BB algorithms to improve the 

performance of the bounding procedure at every node for a particular search tree (Sahinidis , 

2000). The resulting algorithm is known as a branch and reduce (BR) algorithm. The 

reduction test is therefore applied to every subproblem of the search tree in pre-processing 

and post-processing steps in order to contract the space and to reduce the relaxation gap. The 

relaxation tests are often based on duality (Sahinidis , 2000). Certain subregions are therefore 

excluded by employing optimality and feasibility criteria and also refine other subregions 

dynamically (Ryoo & Sahinidis, 1996). The method therefore branches on the continuous and 

discrete variables (Grossmann & Biegler , 2004). This concept is implemented in the global 

optimisation solver known as BARON (Branch and Reduce Optimisation Navigator) 

(Tawarmalani & Sahinidis , 2005).  

BARON therefore integrates the BB with a wide variety of range reduction tests (Sahinidis , 

2000). Heuristic techniques are also implemented in BARON for the approximate solution of 

optimisation problems that yield solution bounds for the variable. This is known as feasibility 

based tightening. Convergence is accelerated by the incorporation of a number of compound 

1

2 43
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a) Breadth-first b) Depth-first 

Figure 2.16: Schematic representation of the breadth and depth-first approach. 
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branching schemes. Additional constraints are therefore required in order to achieve global 

optimality. These constraints may therefore speed up the solution time and also increase the 

probability of obtaining a solution. The solver also requires finite lower and upper bounds on 

the problem variables in order for BARON not to infer the bounds from the problem 

constraints. BARON does not require a starting point in solving NLP and MINLP problems 

(GAMS, 2013). Subsolvers for LP, MIP and NLP are incorporated in the solver.  

Most GO methods incorporate the BB and BR method (Grossmann & Biegler , 2004). This 

includes the work of Zamora and Grossmann (1998), Karuppiah and Grossmann (2006) and 

Misener and Floudas (2010).  Figure 2.17 describes the solution algorithm scheme used for 

the implementation of BARON.   
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 Figure 2.17: BARON algorithm.  
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d) Cutting planes Method  

These methods iteratively refine a feasible set (or objective function) by using linear 

inequalities known as “cuts”. Optimisation problems are therefore solved through a series of 

relaxations whose feasible sets are progressively tightened through the addition of valid cuts 

(valid inequalities). These methods are used to find integer solutions to MILP problems to 

solve convex optimisation problems. CP methods are used in solving NLP problems by 

approximating a feasible region of a nonlinear (convex) model by means of a finite set of 

closed half spaces, which are then solved by a sequence of approximating linear programs. 

An example of a cutting planes method is known as outer approximation (OA).  

The OA method was first proposed by Duran and Grossmann (1986). This method applies 

convex (or concave) functions and convex sets. The OA method approximates a function by 

means of a polyhedral, which contains the set. The function is therefore approximated by 

piecewise-linear functions. The procedure is an iterative method that generates an upper and 

lower bound on an MINLP solution. The disadvantage of this method is that, a large number 

of approximations may be required for an adequate approximation to be obtained. OA is 

implemented within the MINLP optimisation solver known as DICOPT (discrete 

and continuous optimiser) (Lee & Leyffer, 2012).  
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2.8 Membrane Technology 

Membrane technology has gained a growing level of application in the process industry 

(Galan & Grossmann, 1998).  This is because membrane technology is less energy intensive 

than the traditional separating processes such as distillation. Membrane systems also have a 

low capital and utility cost (El-Halwagi, 1997). They are thin film-like structures that 

separate two fluids and act as selective barriers to retain pollutants in a contaminated stream 

in order to allow water (solvent) to permeate into a purified stream (Saif et al., 2008b). 

Membrane systems are therefore impermeable to certain particles when exposed to a specific 

driving force such as pressure. The feed stream is split into two product streams namely 

permeate and retentate. The permeate stream has a low contaminant concentration and the 

retentate has a high contaminant concentration level. A schematic representation of a simple 

membrane separation process is shown in Figure 2.18. 

 

There are many different types of membranes used in the process industry for the treatment 

of wastewater and seawater. Membranes are selected based on the types of material that 

passes through their pore, the type of wastewater that needs to be treated and the driving 

force for the separation process. The focus of this research will, however, be on RO 

membranes due to their distinct characteristics. The different types that will be discussed 

briefly in this review are namely: 

 

(i) Microfiltration membranes 

(ii) Ultrafiltration membranes  

(iii) Nanofiltration membranes 

(iv) Reverse osmosis membranes 

(v) Forward osmosis  

(vi) Membrane distillation  

(vii) Electrodialysis 
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(i) Microfiltration (MF) 

MF is a separation process that allows a solution to flow perpendicular to a porous 

membrane. The pore of MF ranges from 0.1μm to 10μm (Baker , 2012). It is a low-pressure 

separation process with pressures of 0.2bar to 5bar (Perry & Green , 2007). This therefore 

means that any particle that exceeds the pore size is retained on the membrane and as such 

the solution then filters out of the membrane. MF is used to remove pathogens such as 

sediments, algae and protozoa within the wastewater. They are therefore used in the 

pharmaceutical industry, clarification of juices/wine/beer, oil/water separation, water 

treatment, dairy processing etc. (Baker , 2012). MF membranes are often used as 

pretreatment for UF, RO and NF membranes.  

  

(ii) Ultrafiltration (UF) 

UF is a membrane separation process that involves the use of a pressure gradient to separate 

solvents from solutes through a semipermeable membrane. UF is similar to MF with a 

smaller pore size of 1nm to 100nm. The membranes are characterised by the molecular 

weight cut-off (MWCO) of the membrane, which refers to the lowest molecular weight solute 

in which 90% of the solute is retained by the membrane. UF membranes are used to remove 

particulates, macromolecules, bacteria, colloids, dispersed fluids and suspended solids from 

the contaminated solution (KOCH, 2013).  

 

Figure 2.18: A simple schematic representation of a membrane separation. 
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(iii) Nanofiltration (NF) 

NF is a high pressure process which is similar to RO but is however used to remove only 

divalent and large ions. NF membranes have a low rejection to monovalent ions and are 

therefore used mainly for de-salting of a process stream. In water treatment NF membranes 

are used to remove pesticides and for colour reduction (KOCH, 2013).  It uses nanometer 

sized cylindrical through-pores which, penetrate the membrane at an angle of 90°C. NF 

membranes have a pore size that ranges from 1nm to 10nm. NF is, however, the least used 

method in industry as the pore size has to be in nanometers and incurs high maintenance costs 

(Baker & Martin, 2007).   

(iv) Reverse Osmosis (RO)  

RO membraneshave the smallest pore size which ranges from 0.0001μm to 0.001μm. RO 

membranes separate a water stream into a lean stream of low contaminant concentration 

known as the permeate and a highly contaminated stream known as the retentate stream. The 

process is achieved by applying an external pressure to the feed solution in order to reverse 

the osmotic phenomenon. As a result of this process, retentate streams exit the membrane at a 

high pressure. RO membranes are used to remove different types of molecules and ions (Saif 

et al., 2008a). RO membrane systems are often used for seawater and brackish water 

desalination (Maskan et al., 2000).  

(v) Forward Osmosis (FO)  

FO membranes are similar to RO membranes, but the driving force for the separation is an 

osmotic pressure gradient. More energy is, however, required for RO than FO. FO is used in 

desalination and wastewater treatment. FO membranes are often used as pretreatment for RO 

membranes (Lee, 1981). 

(vi) Membrane distillation (MD) 

MD is a thermally driven separation system and separation is brought about by a phase 

change. The driving force is due to a partial vapour pressure, which is driven by a 

temperature difference. The membrane is hydrophobic and displays a barrier for the liquid 

phase, which in turn allows the vapour phase to pass through the pores of the membrane. This 
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technology is applied in seawater desalination, water treatment and water purification (Winter 

et al., 2011).  

(vii)  Electrodialysis (ED) 

ED is a process, which is based on the electromigration of ions across cation and anion 

exchange permselective membranes by means of direct electric current (Tsiakis & 

Papageorgiou, 2005).  The ED membrane allows the movement of positive and negative ions 

through its pores. ED is used for the desalination of high salinity water, wastewater 

minimisation etc.  

The focus of this review will, however, be on reverse osmosis membranes due to their low 

energy consumption (compared to multistage flash distillation), high quality and product 

recovery. RO units are also easy to operate and have a modular plant design. They are also 

attractive as they are able to meet varying feed water concentrations and varying production 

water qualities (Lu et al., 2012).  The RO system is also moderate in energy consumption 

when compared to thermal separation systems (Marcovecchio et al., 2005) and other 

separation systems. Cost of maintenance is also significantly lower (compared to thermal 

separation processes) for RO units (Voros et al., 1997). These advantages therefore make the 

RO system more attractive than other conventional separation processes (Saif et al., 2012). 

2.9 Reverse Osmosis Membranes (RO) 

2.9.1 Basic concepts 

RO is a pressure driven process, where solute is retained on the pressurised side known as the 

retentate side and the solvent is allowed to pass through to the less pressurised side known as 

the permeate. RO membranes are able to retain molecules and ions due to their small pore 

size, which is less than 0.5 nm (Saif et al., 2012). 

Solutions with different solute concentrations create a chemical potential difference when 

separated by a semi-permeable membrane (Saif et al., 2008a). Chemical potential difference 

in a mixture is defined as the slope of free energy of the system with respect to a change in 

the number of moles of just that species. The chemical potential difference allows the carrier 
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solvent to be transported from a low concentration side to a high concentration side. This 

phenomenon is known as osmotic flow. Osmotic flow causes an increase in pressure on the 

retentate side. The system will then reach equilibrium when the pressure difference across the 

membrane balances the chemical potential across the membrane. An external pressure, which 

is larger than the osmotic pressure is applied to the solution in order to reverse the osmotic 

phenomenon. The external pressure allows the solvent to pass through the membrane while 

the solute remains in the retentate stream (El-Halwagi, 1997).  

An energy recovery turbine is used to harness pressure energy from the retentate stream as it 

leaves the RO membrane at a high pressure (El-Halwagi, 1992).  The principle behind RO is 

shown in Figure 2.19, where π is the osmotic pressure and ΔP is the pressure difference 

across the membrane. The presence of the osmotic pressures of the solutions limits the 

expansion of the RO membrane, as the value must not exceed the applied pressure 

(Evangelista , 1989). 

 

 

 

 

 

 

 

 

π 

ΔP>π 

(a) Osmosis  (b) Equilibrium   (C) Reverse Osmosis  

Figure 2.19: Principle of RO (El-Halwagi, 1997). 
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The performance of RO membranes (membranes in general) is, however, affected by fouling 

(Sassi & Mujtaba, 2011). Fouling can be in the form of suspended solids such as silica, iron 

oxides, inorganic compounds, organic compounds and biological compounds. The mass 

transfer on the high pressure side of the RO membrane (retentate), causes fouling 

(Evangelista, 1985). Fouling affects membrane performance as it deteriorates membrane 

permeability. Fouling also results in decreased product quality and increased feed pressure in 

order to maintain the freshwater demand (Sassi & Mujtaba, 2011). It also increases the 

energy consumption and because chemicals are needed to remove the foulants, this results in 

an increase in the total treatment cost. This therefore means that the membranes have to 

undergo regular maintenance (Zhu et al., 1997). The performance of the RO membranes is, 

however, recovered by being chemically or mechanically regenerated (Zhu et al., 1997). 

The performance of RO units is also affected by concentration polarisation. Concentration 

polarisation is the accumulation of solute on the membrane surface. This therefore means that 

the solute concentration at the membrane wall becomes greater than that of the bulk feed 

solution (Kaushik, 2008). This affects the solvent and solute recovery as they are dependent 

on the wall concentration, which in turn is a function of the solvent and solute fluxes 

(Evangelista, 1985).  

In order to minimise capital cost, the membrane module must provide a large area per unit 

volume. This creates a more efficient separation system. RO units consist of four module 

configurations: hollow fibre, plate and frame, spiral and tubular wound (Evangelista, 1985). 

The choice of a module configuration therefore depends on ease and cost of module 

manufacture, energy efficiency, fouling tendency, required recovery and the capital cost of 

auxiliary equipment (Maskan et al., 2000). Hollow-fibre reverse osmosis and spiral wound 

modules are commonly used in industrial processes as they offer a large surface area to 

volume ratio, self-supporting strength of fibres and negligible concentration polarisation (El-

Halwagi, 1997). 

2.9.2 Hollow-fibre reverse osmosis modules (HFRO) 

HFRO modules consist of a large number of membrane tubes, which are placed in a module 

shell. The fibres have a small diameter of approximately 1x10
-5

m (Marriott, 2001). This 
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therefore increases the packing density of the configuration (larger than spiral-wound 

configuration). HFRO modules are commonly used in industrial processes as they offer a 

large surface area to volume ratio, self-supporting strength of fibres and negligible 

concentration polarisation (El-Halwagi, 1997). The concentration polarisation is negligible 

because the permeability is about ten times less than that of flat sheet membranes 

(Evangelista, 1985).  

 

HFRO modules will therefore be used in the design of the RO membrane. The feed stream is 

introduced outside the hollow-fibres and the material permeates into the interior to form the 

permeate stream (Marriott, 2001). 

 

 Figure 2.20 illustrates the main features of a hollow-fibre module configuration. The fibres 

are grouped together in a bundle with one exposed to the atmosphere while the other end is 

sealed. The open ends are potted into an epoxy sealing head after which the permeate is 

collected. The feed solution flows around the outer side of the fibres towards the perimeter of 

the shell, the permeate solution penetrates through the fibre wall into the bore by means of 

reverse osmosis (El-Halwagi, 1997). The permeate stream is then collected at the open ends 

of the fibres while the retentate stream is collected at the porous wall of the shell (El-

Halwagi, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.20: HFRO membrane. 
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2.9.3 Modelling of HF reverse osmosis units  

Two aspects are considered when modelling the RO module such as the membrane transport 

equations and the hydrodynamic modelling of the RO module. The membrane transport 

equations describe the process taking place at the membrane surface. The hydrodynamic 

model describes the macroscopic transport of the different species along with the momentum 

and energy associated with them (El-Halwagi, 1997).  

In the hydrodynamic models, two approaches have been adopted to describe the pressure 

variation through the shell side. The first approach assumes a constant pressure on the shell 

side while the second approach treats the fibre bundle as a porous medium where flow is 

described by Darcy’s equation with an arbitrary constant. The pressure drop inside the model 

along the membrane creates a pressure difference across the fibre and as a result, the 

permeation rate may change considerably along the fibre length. This therefore means that an 

axial component of the shell side pressure arises in addition to the radial component. The 

model must therefore capture both radial and axial flows within the HF reverse osmosis 

module.  

Two transport equations are used to predict the flux of water and solute. The water flux 

through the membrane is described in constraint (2.18). 

 

 

 

Where waterN   is the water flux, P is the pressure difference across the membrane, f  is the 

osmotic waterN  feed pressure,  fC
 
is the solute concentration in the feed, sC  is the average 

solute concentration in the shell side and   is a dimensionless constant described by  

constraint (2.19). 
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In constraint (2.19) is also a dimensionless constant and is described in constraint (2.20). The 

description of    is shown in constraint (2.21).  

 

 

 

 

 

 

The solute flux is shown in constraint (2.22).  

 

 

 

where 








K

D M2
is the salt flux constant. 

2.9.4 Synthesis of RO Membrane Networks 

Research towards the optimum design and synthesis of RO networks has increased 

considerably (Marcovecchio et al., 2005). Designing a cost effective RO unit depends on the 

determination of the optimal operational and structural schemes (Voros et al., 1997). The 

optimum design includes the generation of the optimum number of RO units, booster pumps, 

energy recovery turbines, optimum stream distributions, operating conditions and separation 

levels of the streams (El-Halwagi, 1992). This therefore allows a detailed synthesis and 

design of the RON system. The RO system is typically installed in order to meet the 

environmental, technical and economic requirements needed for the separation process 

(Maskan et al., 2000). The optimisation of a RON has been studied extensively (Khor et al., 

2011). A WN has, however, not been included in most studies of the RON synthesis.  

El-Halwagi (1992) was the first to introduce the idea of using a sequence of reverse osmosis 

networks for wastewater minimisation. The paper led to the development of a superstructure 
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system that considered all the possible processing unit configurations (membranes, pumps 

and energy recovery turbines) and full stream connectivity. El-Halwagi (1992)investigated 

the optimum synthesis of RO networks by using the state space approach. In the state space 

approach the RO networks are split into four distribution boxes: a 

pressurisation/depressurisation stream-distribution box (PDSDB), 

pressurisation/depressurisation matching box (PDMB), a RO stream-distribution box 

(ROSDB) and a RO matching box (ROMB).  The purpose of the distribution boxes was to 

allow all possible combinations of stream mixing, splitting, recycle and bypass. This 

therefore allows all possible network configurations. The mathematical model was therefore 

formulated as an MINLP. The objective of the optimisation problem was to minimise the 

total annualised cost (TAC), which consisted of the annual installation cost of the RO module 

(including annualised installed cost, membrane replacement, labour and maintenance), fixed 

cost of the pumps, turbine installation and cost of electrical power. 

 

The model was applied to a seawater desalination problem and a pulp-bleaching plant. The 

solution to the optimisation problem provided the optimum arrangement, size and type of the 

RO units, energy recovery turbines and booster pumps, optimum stream-distributions and 

operating conditions. Figure 2.21 shows the state space representation of the RO network 

proposed by El-Halwagi (1992). The methodology proposed by El-Halwagi (1992) does not, 

however, guarantee global optimality and did not include a WN (Khor et al., 2011).  El-

Halwagi (1993) then combined the RON with other separation processes. The maximum 

allowable inlet concentration into the regenerator was also not specified or included in the 

model formulation.  
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Zhu et al. (1997) then presented a technique for the optimal design and scheduling of a 

flexible RO network. In the model formulation the decline in permeate flux was described as 

an exponential decay due to fouling. This therefore meant that the model was influenced by 

variable feed conditions and system performance. The mathematical model was formulated as 

an MINLP problem whose objective was to minimise the TAC, which included 

thermodynamic, technical, fouling and flexibility constraints. Different schedules for the 

membrane regeneration were determined. The overall minimum TAC generated from the 

schedules was then chosen as the best configuration. The effect of fouling on the membrane 

performance was taken into account by Zhu et al. (1997) but was not taken into consideration 

in the model proposed by El-Halwagi (1992). This is important as it affects the TAC. The 

model by Zhu et al. (1997) did not, however, guarantee global optimality. 

Maskan et al. (2000) optimised a two-staged RO network. The problem was formulated as a 

constrained multivariable nonlinear optimisation problem. The objective of the problem was 
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Figure 2.21: State space representation of the RO network (El-Halwagi, 1992).  
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to maximise the annual profit that was obtained from the permeate, capital cost from process 

units, the operation costs associated with the maintenance and energy consumption. A 

nonlinear correlation between the concentration and the osmotic pressure was used to 

estimate the osmotic pressure better instead using of the common linear relationship. A linear 

correlation was used to calculate the osmotic pressure in the model presented by El-Halwagi 

(1992) and Zhu et al. (1997). The model also accounted for the pressure losses (due to the 

friction and flow in the module) and concentration polarisation in order to calculate the 

osmotic pressure accurately. The objectives of the study were to determine the optimum 

dimensions for the RO module and the optimum layout of the treatment network. The 

objective function also included the sale of permeate obtained by external and internal 

customers. The model also used decision variables to distinguish between module types like 

tubular, spiral wound and hollow fibre modules. This was also not considered in previous 

papers. The model was applied to the desalination of brackish water and seawater and the 

analysis showed that the optimum network designs were the ones that produced the 

maximum permeate.  

Saif et al. (2008a) proposed a superstructure which was a modification of the superstructure 

presented by El-Halwagi (1992). In their superstructure, several alternatives among the utility 

units (e.g. pumps and turbines) that have common RO design concepts where reduced. The 

superstructure also provides other network alternatives, which enabled meaningful 

connectivity between the RO units and also simplified the modelling of the RO network. The 

superstructure consisted of only the PDSDB and unit operation boxes (pumps, turbines, RO 

membrane) that contained different units, which treat the various feed streams. The 

mathematical programming model was formulated as a nonconvex MINLP for water 

desalination and wastewater treatment from a pulp and paper industry. A mixed integer linear 

problem (MILP) was then derived from the original nonlinear problem by means of convex 

relaxation of the nonconvex MINLP model. The MILP was solved iteratively in order to 

supply different initial guesses for the nonconvex MINLP model.  The method was effective 

in finding several local optimum solutions as the convergence difficulty experienced by most 

MINLP local search methods was overcome. Global optimality was, however, not 

guaranteed.  The model was able to minimise treatment costs and led to minimisation of 

wastewater.  
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Saif et al. (2008b) then extended the superstructure by Saif et al. (2008a) by applying an 

efficient branch-and-bound algorithm in order to obtain global optimality for the RON. This 

was achieved by solving the MILP model at every node in the branch-and-bound tree in order 

to verify the global optimality of the RO network. Additional constraints where derived in 

order to tighten the mathematical programming structure and the RO design. This helped 

tighten the bounds of the variables and to accelerate the convergence of the algorithm. The 

tightening constraints were provided in order to prevent a stream discharge from an RO stage 

being recycled back to the same stage due to the pressure drop at every stage; to prevent 

mixing of streams from reject to turbine and streams from turbine to the RO and to prevent 

the mixing of low and high-pressure streams mixing at the same pump nodes. The optimal 

treatment cost obtained by Saif et al. (2008b) was 14.8% lower than that obtained by El-

Halwagi (1992). The mathematical model of Saif et al. (2008b) also guarantees global 

optimality. Most of the earlier authors of RO synthesis proposed models that do not guarantee 

global optimality (Saif et al., 2008b).  

 

Sassi and Mujtaba (2011) optimised an RO network using the MINLP approach and also 

incorporated fouling effects. The effect of fouling was described by an exponential function, 

which also represented the decline in water permeability using a spiral wound membrane 

element. The objective of the problem was to minimise the TAC in order to find the optimal 

design and configuration of the RO system. The model was solved using outer approximation 

algorithm within the gPROMS software. The results showed that, the optimal solution was 

sensitive to the fouling distribution between stages. The overall fouling however remained 

constant. The fouling effects in their formulation was therefore not assumed be equal as in 

previous optimisation of RO networks.  

Lu et al. (2012) presented a systematic methodology for the optimal design of RO 

desalination systems with multiple feed streams (seawater, brackish water and regenerated 

water) and multiple product streams of different quality. The problem was formulated as an 

MINLP whose objective was to minimise the TAC in order to determine the optimal system 

structure, operation conditions and stream distributions when subjected to constraints of the 

multiple feed and multiple product system. The superstructure was a modified version of the 

state-space approach presented by El-Halwagi(1992). An example of the modification was 
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that a turbine is used only for the final retentate stream produced. Stream split ratios and a 

logical expression of stream mixing was included in the mathematical formulation. This 

made the mathematical model easier to handle as it reduced the number of binary variables 

and solving space. The model was also formulated to select different types of spiral-wound 

membrane modules for each stage. The minimum desirable product flowrate with its 

corresponding maximum concentration was given as a parameter in the case study. The 

model was able to produce multiple permeate streams of different quality and the optimal 

design of the RO network was obtained.  

Saif et al. (2012) considered the minimisation of wastewater and freshwater in the pulp and 

paper industry by using RO membranes. The RON was synthesised in order to regenerate 

streams with reduced salt concentration at a minimum cost. The model by Saif et al. (2008a) 

was used for the RON.  Their work optimised the RO but did not optimise the WN. This 

therefore meant that the RON was optimised separately then incorporated within the ready 

existing water network.  The minimisation freshwater intake and wastewater generation was 

therefore not included in the objective function. The maximum allowable inlet concentration 

into the regenerator was also not specified or included in the model formulation.  

2.10 Optimisation of the WN  

The idea of a WN was first proposed by Takama et al. (1980). Different papers were written 

after that based on the idea of using mathematical programming to optimise a WN. The 

difference in ideas, however, arises with the modelling of the regenerators and the methods 

used to solve the MINLP model. Some papers have looked at a detailed model of the 

regenerators while others have represented the regenerator with a “black-box’’ (without any 

detail). A detailed design of the regenerator can help reduce the amount of energy used for 

the treatment of wastewater. There have, however, been few works that consider a detailed 

nonlinear regeneration model for the synthesis of water networks (Khor et al., 2014). The 

cost of designing the regenerator can also be optimised, as it will be included in the objective 

function.  
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The use of regenerators in a WN leads to a reduction in both freshwater usage and wastewater 

generation. A few works have, however, looked at a detailed model of the regenerators but 

these are often limited to only a single treatment technology of fixed type (Khor et al., 2011). 

It is also ideal for the number and type of treatment units not to be fixed, but rather chosen 

among others through the optimisation process.  

2.10.1 WN optimisation with a “black-box” Regenerator  

Models for regenerators have, however, been described in most works by means of a fixed 

outlet concentration and a fixed removal ratio for contaminants (Jeżowski, 2010). This is 

known as the “black box” approach (Alva-Argáez et al., 1998; Khor et al., 2012; Tan et al., 

2009), which uses a simplified linear model with constant removal ratios (RR) to represent 

the membrane systems (Tan, et al., 2009). The RR is defined as the fraction of mass load in 

the regeneration unit from the feed stream that exits in the retentate stream (Khor et al., 

2011). In networks where multiple regenerators are considered, the RR and allowable 

contaminant concentration are varied. This approach allowed the simplification of complex 

networks that consisted of multiple water sources, sinks and regenerators (Khor et al., 2012).  

The fixed liquid phase recovery (α) factor is also used to represent the performance a 

regenerator unit. α is the fixed fraction of the inlet stream into a regenerator that exits in the 

permeate stream (Khor et al., 2011). This is achieved by expressing the objective function in 

terms of the total inlet flow of streams into the regenerator (Galan & Grossmann, 1998). In 

some works, the cost of regeneration is neglected and only the cost of freshwater, wastewater 

and the capital cost of the network are taken into account. This therefore means that the 

actual cost of the regenerator is not considered in the model formulation. This approach does 

not give an accurate representation of the energy consumption and associated costs of the 

membrane systems.  

Tan et al. (2009) developed a WN with partitioning based regenerators for total WN 

synthesis. The partitioning regenerators split the wastewater into regenerated lean streams 

(permeate) and low quality reject streams (retentate). Membrane separation processes such, 

as reverse osmosis and ultrafiltration are examples of partitioning regenerators. A fixed RR 
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and α were used to represent the function of the regenerators.  A centralised single portioning 

regenerator was used with a source-sink superstructure. The formulation resulted in a 

nonconvex NLP, which was solved using a branch and bound method via Lingo. The water 

streams that are linked to the regenerator were already identified. The problem was, however, 

restricted to single contaminated streams. The model did lead to the minimisation of fresh 

water consumption. The minimisation of energy was, however, not considered in the model 

formulation, as the objective was to minimise freshwater. The model was not formulated to 

select multiple regenerators as a single portioning regenerator was used. A detailed 

representation of the regenerator was also not considered in the model formulation.  

Chew et al. (2008) focused on interplant water integration (IPWI) by looking at the 

geographical location of the water-using processes. They combined different water networks 

together instead of the usual single water network that has been used by most researchers. In 

their work they looked at two IPWI schemes, direct and indirect integration, which are then 

solved by mathematical optimisation techniques. In the direct integration, water from the 

different networks is integrated directly via pipes. The indirect integration utilises a 

centralised utility hub to integrate the water from the different networks together. The 

centralised hub was then used to distribute water to the different plants and was also 

modelled in a different case study as a water regeneration unit. The removal ratio of the 

contaminants from the regenerator was used to define the lean and concentrate streams.  The 

scenario with the regenerator led to lower freshwater and wastewater flowrates in the overall 

water networks. A detailed representation of the regenerator was, however, not considered in 

the mathematical modelling.  

Khor et al. (2012) proposed a WN that consisted of partitioning regenerators (RO and 

ultrafiltration) and non-membrane regenerators. Their superstructure consisted of sources, 

sinks and regenerators. The sinks, however, consisted of an end-of-pipe effluent treatment 

system (ETS). The water sources also consisted of multiple freshwater streams. A linear 

model with fixed removal ratios and liquid-phase recovery factors was developed for the 

membrane regenerators. The permeator and rejector streams from the regenerators were 

treated as tasks instead of states. This meant that,the permeator and rejector streams were 

treated as units which can accept water streams from the sources. Khor et al. (2012) also 
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incorporated linear logical constraints by using 0-1 variables in order to tighten the model 

formulation and to enhance solution convergence. The model was formulated as an MINLP. 

A global optimum WN was developed with 27% savings in freshwater use. The mathematical 

model, however, did not include a detailed representation of the regenerators. This therefore 

means the solution is not a true reflection as a “black-box’’ was used to describe the 

regenerators. The consumption of energy by the multiple regenerators was also not taken into 

account in the objective function. 

Similar approaches of using the “black-box” method have been used in most published work 

with regards to WN synthesis. This includes the work of Galan and Grossmann(1998), 

Karuppiah and Grossmann (2006), Koppol et al. (2004), Meyer and Floudas (2006) and Faria 

and Bagajewicz (2011)  

The ‘black-box’ representation does not present a good description of the regenerator as 

removal ratios and liquid recoveries are used to represent the treatment by the regenerators. 

The minimisation of energy used by the regenerators in all the papers discussed is also not 

considered in the model formulation. The optimum solution is therefore not a good 

representation of the cost and a detailed design of the regenerator is therefore not obtained at 

the optimum solution. The specific regeneration technology is also not considered in the 

model. 

2.10.2 WN optimisation with a detailed Regenerator 

A detailed model of the regenerator makes the optimum cost of the WN more realistic as its 

design is also included in the optimisation model. The type of regenerator for the treatment of 

the wastewater can also be specified in the model instead of using a “black-box’’ 

representation. Faria and Bagajewicz (2009) showed the importance of modelling the 

regenerators in the WN. In their discussion, they showed that every WN needs a detailed 

model of the regenerator. The use of a fixed RR to represent treatment units also limits their 

application in industrial processes (Yang et al., 2014 ). This therefore means that a more 

rigorous representation of the regeneration unit is needed (Khor et al., 2014). 
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Khor et al. (2011) presented a detailed model of a regenerator, which was incorporated into a 

water network superstructure. The superstructure they proposed consisted of continuous 

variables for the contaminants and flowrates and binary variables for the piping 

interconnections. The superstructure consisted of the nonlinear detailed RON model, water 

sources and water sinks. An MINLP mathematical model was therefore proposed. The model 

enabled direct water reuse/recycle, regeneration reuse or regeneration recycling. The model 

was also formulated to incorporate multiple contaminants. They proposed equations to 

represent the RO membrane, but a superstructure of the RON model was not incorporated 

into the model formulation.  

The work of Khor et al. (2011) assumed a single regenerator with a fixed design, which 

implies that the number of regenerators needed, number of pumps, number of energy 

recovery turbines were specified a priori. This limited the flexibility of the model, which 

could result in a suboptimal solution. As such, the model was not programmed to select if a 

series connection or a parallel connection between the regenerators was the optimal choice. 

The model, however, did lead to a 58% saving in freshwater use and a reduction in the capital 

cost of the regeneration unit with a payback period of 2.1 years when applied to a petroleum 

refinery. The maximum allowable inlet concentration into the regenerator was also not 

specified or included in the model formulation.  

Yang  et al. (2014 ) addressed the problem of using a RR to represent the performance of 

treatment units. The objective of the work was to consider the trade-off between the removal 

efficiency of a unit and treatment cost and their impact on the WN. The work combines 

various technologies in order to remove total dissolved solids, total suspended solids and 

organics. Unit specific short-cut models were used to describe each treatment system instead 

of a fixed RR. Uncertain parameters are used to account for the change of condition for a 

particular process during the course of the operation. The model also looks at the best 

available technology to remove a specific contaminant. This was achieved by using 

disjunction in the GDP. This is, however, computationally expensive to solve to global 

optimality. The treatment units that were considered are RO, UF, ion exchange, 

sedimentation, activated sludge and trickling bed. A spiral-bound RO module was used 

instead of the hollow fibre RO module. The model was applied to a metal finishing and 
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petroleum refining industrial case study. The work of Yang et al. (2014 ) used only one RO 

unit and also did not consider the detail synthesis of the RO unit.  
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CHAPTER 

3 MATHEMATICAL MODEL  

3.1 Introduction 

This chapter gives the development of the mathematical model for the incorporation of a 

RON superstructure within a WN superstructure for the simultaneous minimisation of water 

and energy. The overall MINLP model is based on the superstructure represented in Figure 

3.1.  
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Figure 3.1: Superstructure representation of the RON superstructure within the WN 

superstructure   
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3.2 Mathematical Model  

The RON superstructure proposed by El-Halwagi (1992) must however be modified in order 

to incorporate it within the WN. This is achieved by modifying the 

pressurisation/depressurisation stream-distribution box (PDSDB) and the pressurisation/ 

depressurisation matching box (PDMB) section of the superstructure. The properties of the 

updated pressurisation/depressurisation stream-distribution box PDSBD and 

pressurisation/depressurisation matching box PDMB are detailed below: 

(i) Water sources are fed directly to node n for regeneration and are not mixed with 

retentate or permeate streams. This was incorporated to ensure that each reteantate 

and permeate stream leaves its respective regenerator, without further contamination. 

(ii) Permeate and retentate streams are not allowed to mix in order for each stream to be 

fed directly from regenerator to the sinks. It is also assumed that each permeate stream 

will leave the regenerator at atmospheric pressure.  Retentate streams, however, leave 

the RO at high pressures and are therefore passed through an energy recovery turbine 

for reduction in pressure to atmospheric pressure before distribution to the sinks.   

(iii) Different retentate streams or permeate streams are also not allowed to mix in order to 

feed each stream directly to the water sinks. Mixing of the streams within the water 

sinks is decided by water quality requirements of the sink.  

(iv) Each retentate stream or permeate stream can, therefore, go directly to a retentate 

node or can be recycled back to node n for further cleaning by the regenerators.  

(v) A stream that does not require a pressure change can be fed directly to the ROSDB 

where it is then fed to the ROMB.   

(vi) Inlet streams to box PDMB can either go to a pump or to an energy recovery turbine. 

The illustration of this idea is modified in order to clearly explain the original idea 

proposed by El-Halwagi (1992).   

 

These modifications are illustrated in Figure 3.2(a) and 3.2(b). Figure 3.2(a) shows the 

original PDSDB proposed by El-Halwagi (1992)  and Figure 3.2(b) shows the modified 

PDSDB and PDMB which will be incorporated with the WN.  
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Figure 3.2: a) Original PDSDB and PDMB by El-Halwagi (1992). b) New modification to PDSDB 

and PDMB. 
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3.2.1 Water balances for the sources  

Figure 3.3 shows a schematic representation of the water sources. From the diagram it can be 

seen that a water source can be fed to the PDSDB, wastewater sink or to the water sinks. The 

flowrate balance is shown in constraint (3.1). 

It should also be noted that the freshwater source is included in the model as the last source 

within the model formulation. It can also be sent to the regenerators for further cleaning as its 

contaminant concentration is not zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


J

j

N

n

d

ni

s

i FFF
ji

1 1

,,
 

 

Ii  

 

(3.1) 
 

i

1

J=WW

1

N 

s

1i
F

,

s

Ji
F

,

d

Ni
F

,

d

1i
F

,

i
F

d

i
F

2,

2

wF
1

w

J
F

PDSDB

Figure 3.3: Schematic representation of the water sources. 
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3.2.2 Water balances for the sinks   

Figure 3.4 shows a schematic representation of the water sinks. From the diagram it can be 

seen that the water sinks receive water from the water sources, permeate and retenetate of the 

regeneration units as well as the freshwater source. This flowrate balance is shown in 

constraint (3.2).  

 

Each sink can however handle a certain concentration limit. Constraint (3.3) implies that, the 

load to each sink must not exceed the maximum allowable load to that particular sink.  

It should be noted that the wastewater sink is considered as the last sink. The maximum 

allowable load to this sink is also given in order to comply with the standard effluent 

discharge limits imposed by environmental regulations.  

In order to forbid the mixing of permeate and retentate streams from one regenerator in the 

same sink, constraint (3.4) is added to the model as follows: 
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3.2.3 Regeneration unit (RON superstructure)  

Figure 3.1 shows the schematic representation of the updated RON superstructure within the 

WN superstructure. Figure 3.5 therefore shows the interaction of the PDSBD with the sources 

and sinks of the WN. 
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Performance equations  

The performances of the RO regenerators are represented by means of the liquid recovery 

αqand removal ratio RRq,m. The liquid recovery is the amount of the feed flowrate into the 

regenerator that exits in the permeate stream. The removal ratio RRq,m refers to the fraction of 

the inlet mass load that exits in the retentate stream of the regenerators (Khor et al., 2011). 

Constraints (3.5) and (3.6) represent the αq and RRq,m respectively.  
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Figure 3.5: Schematic representation of the modified PDSDB. 
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The recommended operating flowrate for RO modules is given in constraint (3.7) and is 

determined by the manufacturers.  Constraint (3.8) gives the upper bound for the feed 

pressure into the RO membranes.  

 

RON superstructure equations 

a) Constraints for PDSDB 

Constraint (3.9) shows the flowrate balance for the outlet junction of the PDSDB as can be 

seen in Figure 3.5. The node n represents a mixing junction at the outlet of the PDSBD.  

Constraint (3.10) shows the corresponding concentration balance for the outlet junction of the 

PDSDB. 

 

The balance for the flowrate and concentration of the permeate stream entering the PDSDB to 

the sinks is shown in constraint (3.11) and (3.12) respectively.   

 

UL

F
N

F
F

s

q

f

q
  

Qq
 (3.7) 

 

maxPP f
q 

 

Qq
 (3.8) 

 





Q

q

r

nq

Q

q

p

nq

I

i

d

ni

a

n FFFF
1

,

1

,

1

,  

 

Nn  

 

 

(3.9) 
 

r

mq

Q

q

r

nq

p

mq

Q

q

p

nq

d

mi

I

i

d

ni

a

mn

a

n CFCFCFCF ,

1

,,

1

,,

1

,, 


  Mm

Nn




 

 

 

(3.10) 
 





J

j

p

jq

N

n

p

nq

p

q FFF
1

,

1

,  

 

Qq  

 

(3.11) 
 

p

mq

J

j

p

jq

p

mq

N

n

p

nq

p

mq

p

q CFCFCF ,

1

,,

1

,, 


  

 

Mm

Qq




 

 

(3.12) 
 



Chapter 3                                                                                                     Mathematical Model 

  
  

3-9 
 
 

The balance for the flowrate and concentration of the retentate stream entering the PDSDB to 

the sinks is shown in constraint (3.13) and (3.14) respectively.   

 

Since the permeate and retentate streams from the regenerator are at different pressures, 

constraints have to be given in order to ensure that streams are at the same pressures before 

they mix. This is shown in constraint (3.15), (3.16) and (3.19) for the feed, permeate and 

retentate streams.  Constraint (3.18) shows the isobaric mixing of streams within the ROSDB.  

 

b) Constraints for PDMB and ROSDB  

In the PDMB, the turbine is used to reduce the pressure of a stream while the pump is used to 

increase the pressure. Constraints (3.19) and (3.20) represent the principles of an energy 

recovery turbine and a pump respectively. Figure 3.6 shows the schematic representation of 

the PDMB and RODB.  
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The flowrate balance for the inlet of the ROSDB is given in constraint (3.21). 

 

The outlet flowrate and concentration balance for the ROSDB is given in constraints (3.22) 

and (3.23) respectively. 

The maximum inlet concentration limit to the regenerators must also be specified since not all 

of the waste streams can be fed to the RO membrane and this is shown in constraint (3.24). 

 

c)  Binary variables for the existence of units  

Constraint (3.25) shows that a booster pump exits in the RON if the i
nP  is larger than the   

pressure of the stream entering the PDMB and this forces the binary variable nb  to become 

one.  A similar concept is used to represent the existence of an energy recovery turbine and is 

given in constraint (3.26) It is however illogical to pressurise and depressurise a stream 

simultaneously. Constraint (3.27) is therefore needed to prevent a turbine and pump from 

appearing in series.  
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Constraint (3.28) indicates the existence of RO unit which is defined by the flowrate of the 

permeate stream from the regenerator q.  

 

 

 

 

 

 

 

 

 

 

 

 

d) Constraints for ROMB   

The characteristic of the RO membrane needs to be described in order to relate flowrate to 

pressure. The pressure drop across the membrane is calculated as the difference in pressure 
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between the feed side and permeate side pressure and is shown in constraint (3.29) (El-

Halwagi, 1997). The pressure on the retentate side is calculated as the pressure difference 

between the feed and the shell side pressure drop per module, m
qP . This is shown in 

constraint (3.30). The pressure drop across the membrane ΔPq in terms of shell side pressure 

drop per module is given in constraint (3.31) (Khor et al., 2011). The equation was simplified 

by assuming a linear-shell side concentration and pressure profiles (El-Halwagi, 1997). The 

schematic representation of the ROMB is given in Figure 3.7. 

 

The osmotic pressure, q , is defined as a function of the contaminant concentration on the 

feed side (Saif et al., 2008a) and is shown in constraint (3.32). The osmotic pressure on the 

permeate side is however neglected due to its low contaminant concentration.  

 

The permeate flowrate per module is given in constraint (3.33).   

The average concentration 
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The concentration of contaminants on the feed side must also be described in terms of the 

pressure drop and the osmotic pressure. This is described in constraint (3.35). 

 

A mass and concentration balance around the regenerator is also needed and is described in 

constrain (3.36) and (3.37) respectively. 
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unnecessary for the design of the plant. This formulation makes use of the big-M parameters 

adopted by Khor et al. (2011). In the big-M parameters, M is a valid upper/lower bound 

denoted by U and L respectively. The piping interconnections of flowrates below the lower 

bound are then eliminated from the final design. Constraints (3.38) to (3.41) represent the 

big-M parameters for the piping interconnections between the different units. The upper and 

lower bounds are chosen based on the information given by the water sources.  

3.4 Objective function 

The objective function of the combined RON superstructure and WN superstructure is used 

to minimise the overall cost of the regeneration network on an annualised basis which 

consists of: 

(i) TAC of the RON 

(ii) cost of freshwater (FW) 

(iii) treatment cost of wastewater (WW)  

(iv) capital and operation costs of the piping interconnection  

The total annualised cost of the RON consists of the capital cost of RO modules, pump, and 

energy recovery turbines, operating cost of pumps and turbines as well as pretreatment of 

chemicals. The operating revenue of the energy recovery turbine is also considered in the 

determination of the TAC and is shown in constraint (3.42). 
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The piping cost of components will be formulated by assuming a linear fixed-charge model. 

In their formulation, the cost particular of a pipe is incurred if the flowrate through the pipe 

falls below the threshold value. This is achieved by using 0-1 variables. Constraint (3.43) 

represents the objective function of the total regeneration network. It is also assumed that all 

the pipes share the same properties of pc and qc and a 1-norm distance D. The cost of piping 

also includes the approximate length and the material of construction.  
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where 


















nn

n

m

mm
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1)1(

)1(
is the annualisation factor.  

The overall model results in a nonconvex MINLP due to the bilinear terms as well as the 

power function in the constraints. 

3.5 Nomenclature  

3.3.1 Sets   

I={i|i=water source} 

J={j|j=water sink} 

M={m|m=contaminants} 

Q={q|q=regeneration units} 

3.3.2 Parameters 

αq liquid recovery   

RRq,m removal ratio  

F
U
 maximum flowrate per hollow 

fiber module  

F
L
 minimum flowrate per hollow 

fiber module 

m
qP  shell side pressure drop per 

module    

M
U
 upper bound of big-M constant 

for interconnections between 

streams 

M
L
 lower bound of big-M constant 

for interconnections between 

streams 

AOT annual operating time 

pc parameter for carbon steel 

piping based on CEPCI value 

of 318.3 

qc parameter for carbon steel 

piping based on CEPCI value 

of 318. 

v velocity 

A water permeability coefficient 

Pmax maximum allowable pressure 

for the regenerators 

km solute permeability constant 

L fiber length 

Ls seal length 

ro  outside radius of fiber 

ri inner radius of fiber 

Sm membranearea per module 

P
U
 an arbitrary big value for 

pressure  

P
L
 an arbitrary small value for 

pressure 

ϒ a dimensionless constant 

η
pump

 pump efficiency 

η
tur

 turbine efficiency 

OS proportionality constant 

between the osmotic pressure 



Chapter 3                                                                                                     Mathematical Model 

  
  

3-17 
 
 

and average salt mass fraction 

on the feed side 

U
mjC ,  maximum allowable 

contaminant concentration m 

in sink j 

U

mqC ,  maximum allowable 

contaminant concentration m 

into a regenerator q 

a
jiD ,  manhattan distance between 

water source i and sink j  

p
jqD ,  manhattan distance between 

regenerator q and sink j 

r
jqD ,  manhattan distance between 

regenerator q and sink j 

d
niD ,  manhattan distance between 

source i and node n 

Ci,m mass fraction of contaminant 

m within water source i 

C
chem

 cost parameter for chemicals 

C
elec

 cost of electricity 

C
mod

 cost per module of HFRO 

membrane  

C
pump

 cost coefficient for pump 

C
tur

 cost coefficient for turbine 

C
waste 

 freshwater cost  

C
water 

 waste water cost  

μ water viscosity 

P
qP  pressure of a permeate stream 

from regenerator q 

w
iP  pressure of source i 

r
jP  pressure of the retentate 

stream in  sink j 

Fl
L
 lower bound  on flowrate  

Fl
U
 upper bound on flowrate 

P
L
 lower bound on pressure 

P
U
 upper bound on pressure 

 

3.3.3 Continuous Variables   

s
jiF ,  allocated flowrate between 

source i and sink j 

d
niF ,  allocated flowrate between 

source i and node n 

Fi flowrate of sources i 

p
jqF ,  flowrate of the permeate 

stream from regenerators q to 

sink j 

r
jqF ,  flowrate of the retentate 

stream from regenerators q to 

sink j 

a
qnF ,  flowrate of streams from node 

n to regenerator q 

f
qF  flowrate leaving the outlet 

junction of ROSDB 

p
qF  flowrate of permeate stream 

leaving the regenerator q 

p
nqF ,  flowrate of permeate stream 

regenerator q to node n 

r
qF  flowrate of retentate stream 

leaving the regenerator q 

r
nqF ,  flowrate of retentate stream  

from regenerator q to node n  

a
nF  flowrate of streams from  node 
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n 

w
jF  flowrate of sink j 

a
mnC ,  concentration of contaminant 

m in stream leaving node n 

f
mqC ,  concentration of contaminant 

m in the feed to the 

regenerator q 

p
mqC ,  concentration of contaminant 

m in permeate stream leaving 

regenerator q 

r
mqC ,  concentration of contaminant 

m in retentate stream leaving 

regenerator q 

av
mqC ,  average concentration of 

contaminant m in the high-

pressure side of regenerator q 

a
nP  pressure of streams leaving 

node n 

i
nP  pressure of an inlet stream to 

an energy recovery turbine 

from node n 

o
nP  pressure of an outlet stream 

from an energy recovery 

turbine from node n 

ΔPq pressure drop over regenerator 

q 

f
qP  feed pressure into regenerator 

q 

r
qP  pressure of a retentate stream 

from regenerator q 

p
qP  pressure of a permeate stream 

from regenerator q 

Δπq osmotic pressure on the 

retentate side of regenerator q 

FW freshwater flowrate 

WW wastewater flowrate 

 

3.3.4 Binary Variables  

 

 

1 ← if a pump exits  

0 ← otherwise   

 

 

 

1 ← if a turbine exits  

0 ← otherwise   

 

 

 

1 ← if regenerator q exits   

0 ← otherwise   

 

 

 

1 ← if piping exits between the 

permeate streams and sink  j 

0 ← otherwise   

 

 

 

1 ← if piping exits between the 

retentate  streams and sink  j 

0 ← otherwise   

 

jiy ,  

1 ← if piping exits between 

source i and sink  j 

0 ← otherwise  

  

 

d
niy ,  

1 ← if piping exits between 

source i and node n 

0 ← Otherwise   

  

r
jqy ,  

p
jqy ,  

rq= 

bn= 

tn= 
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3.3.4 Integer Variables  

s
qN
 

the number of hollow 

fiber modules of 

regenerator q 
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CHAPTER 

  

4 RESULTS AND DISCUSSION  

4.1 Introduction 

The results obtained for applying the model to a petroleum refinery case study are 

presented. The model was applied to four cases in order to highlight the importance of 

incorporating a detailed RON superstructure within a WN superstructure. The schematic 

diagram for all four cases is also presented in order to show the complete design of the 

WN. A comparison of the best case and the “black-box” approach is also discussed in 

order to highlight the importance of using a detailed model for the regenerators.  

4.2 Illustrative Example  

The above model was applied to a literature based refinery case study (Khor et al., 

2011). The model was implemented in GAMS 24.2 using the general purpose global 

optimisation solver BARON which obtains a solution by using a branch-and-reduce 

algorithm. The network consists of 4 sources and 4 sinks. The limiting water data for 

the sources and sinks is given in  

Table 4.1.  

Table 4.2 shows the Manhattan distances between different units. The distances 

between the regenerators and the sinks for both permeate and retentate streams are the 

same.  
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Table 4.3 presents the process and economic data for the detailed RON. The economic 

data and the model parameters are given in  

 

Table 4.1: Limiting data for water network.  

Sources,i Sinks, j 

i 

 

 

 

Unit Flowrate 

(kg/s) 

 

 

Contaminant 

Concentration 

(kg/m
3
) 

 

J 

 

 

 

Unit Flowrate 

(kg/s) 

 

 

Max 

Contaminant 

Concentration 

(kg/m
3
) 

    TDS COD     TDS COD 

1 

Amine 

Sweeting  7.3 3.5 3.5 1 

Caustic 

Treating  0.83 2.5 2.5 

2 

Distillation 

10.65 4 4 2 

Menox-I 

Sweeting  40 2 2 

3 Hydrotreating 3.5 1 3 3 Desalting 5.56 2.5 2.5 

4 Freshwater  
 

2 1 4 Wastewater 
 

25 25 

 

Table 4.2: Manhattan Distance for the case study. 

 Sinks  Regenerator 

unit 

Sources  1 2 3 4  1 2 

1 50 50 50 60 50 50 

2 60 50 60 70 40 40 

3 50 50 50 60 65 50 

4  60 50 60 70 100 50 

Regenerator unit       

1 80 70 60 70   

2 60 10 40 20   
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Table 4.3: Process and economic data for the detailed RON. 

Parameter Value  

Pure water permeability, A 5.50x10
-13

 m/(s.Pa) 

Shell side pressure drop per module per regenerator , 

Pm 4.05x10
4
 Pa 

Solute permeability coefficient, km 1.82x10
-8 

m/s 

Fibre length, L 0.75 m 

Seal length, Ls 0.075 m 

Outside radius of fiber, ro 42x10
-6

 m 

Inner radius of fiber,ri 21x10
-6

 m 

Membrane area, Sm  180 m 

Water viscosity, μ 0.001 kg/(m.s) 

Dimensionless constant, ϒ 0.69 

Permeate pressure per regenerator, Pp(q) 101325 Pa 

Pump efficiency, ηpump 0.7 

Turbine efficiency, ηturbine 0.7 

Liquid recovery for all regenerators, α(q) 0.7 

Osmotic constant, OS 4.14x10
-7

 Pa 

Cost parameter for chemicals, Cchemical 0.11$/kg 

Cost of electricity, Celec 0.06 $/(kW.h) 

Cost coefficient for pump, Cpump 6.5 $/(yearW0.65) 

Cost coefficient for pump, Ctur 18.4 $/(yearW0.43) 
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Cost per module of HFRO membrane, Cmod 2300 $/(year.module) 

Maximum flowrate per hollow fiber module, F
U
 0.27 kg/s 

Minimum flowrate per hollow fiber module, F
L
 0.21 kg/s 

 

Table 4.4: Economic data and the model parameters for WN. 

 

 

4.3 Scenarios Considered 

Four scenarios will be compared in order to highlight the importance of incorporating a 

detailed RON superstructure within the water network.  

(i) Firstly, the case in which no regeneration is considered within the water network 

is modeled in order to provide a basis (base case) for comparison (Case 1).  

(ii) In the second case, a single regenerator is incorporated within the WN with fixed 

removal ratio (Case 2).  

(iii) The third case looks at multiple regenerators within the WN with fixed removal 

ratio (Case 3).  

Parameter Value  

Annual operating time, AOT 8760 h 

Unit cost of freshwater, Cwater 1 $/kg 

Unit cost of wastewater, Cwaste 1 $/kg 

Interest rate per year, m 5% 

Number of years, n 5 year 

Parameter p for carbon steel piping  7200 

Parameter q for carbon steel piping  250 

Velocity, v 1 m/s 
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(iv) In case 4 multiple regenerators with variable removal ratio are considered. 

 

 

 

 

4.4 Results and Discussion 

The results obtained from the optimisation are given Table 4.5 for case 1 to 3. In case 2 

and 3, the regenerators had a fixed removal ratio of 0.95. In the first scenario, the water 

network with no regeneration had a higher total cost due to the high consumption of 

freshwater which can be seen in Table 4.5. The network is shown in Figure 4.1. The 

second scenario where a single regenerator was used led to a 15.26% reduction in 

freshwater usage and a 43.36% in reduction in wastewater generation in comparison 

with the base case. The overall cost of network was minimised by 17.6% due to the 

incorporation of the RO regenerator. The use of the energy recovery turbines in the 

RON led to a reduction in the regeneration cost of the network.  

Figure 4.2 shows the complete water network and RON obtained for case 2. This 

diagram includes the distribution boxes as shown in Figure 3.1. Figure 4.2 can be 

translated into a simplified schematic diagram showing only the relevant physical units, 

i.e. RO membranes, pumps, turbines, mixes and splitters.  Figure 4.3 shows the water 

network for case 2. In Figure 4.3 it can be seen that, one pump and turbine are needed 

for the regeneration as well as 20 HFRO modules. For simplicity in cases 3 and 4 only 

the simplified water network is presented.  

Case 3 led to a 24.82% reduction in freshwater consumption and 70.82% reduction in 

wastewater generation in comparison with case 1. The total cost of the network was also 

reduced by 22.35%. The low cost of the water network is due to the low freshwater 

consumption and wastewater generation. The introduction of a second regenerator, Case 

3, leads to further reduction in the total cost. This is due to the lower consumption in 

freshwater and wastewater generation. Figure 4.4 shows the water network for case 3. In 

Figure 4.4 it can be seen that, two pumps and turbines are needed for the regeneration as 
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well as 37 HFRO modules per regenerator. A parallel configuration was chosen by the 

model. 

 

 

 

Table 4.5: Summary of results for case 1 to 3 

 

No 

regeneration 

Single 

regenerator 

Two   

regenerators 

 (Case1) 

Fixed RR 

(Case 2) 

Fixed RR 

(Case 3) 

Freshwater flowrate  

(kg/s)  38.40 32.54 

 

28.87 

Wastewater flowrate  

(kg/s) 13.40 7.59 

 

3.91 

Cost of regeneration  

(million $/year)  0.068 

 

0.23 

Total cost  

(million $/year) 1.70 1.40 

 

1.32 

CPU time (h)  0 0.13 

 

6 

 

Table 4.6  shows the comparison between case 3 and 4. The removal ratio chosen by the 

model in case 4 was 0.97 for all contaminants.  Case 4 led to 3.12% reduction in 

freshwater and 30.43% reduction in wastewater generation in comparison with case 3.  

A 15.91% reduction in the total network cost was also achieved. The large decrease in 

the total cost of the network in case 4 can be attributed to the high removal ratio which 

was selected by the model rather than the value that was initially predicted. In 

comparison with the case where no regeneration was considered, case 4 leads to a 28% 

reduction in freshwater consumption and 80% reduction in wastewater generation. The 
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modeling of case 4 is however computationally expensive as can be seen in. The best 

case used 15 HFRO modules per regenerator. The model selected two regenerators, two 

pumps and two energy recovery turbines as can be seen in. It can also be seen that a 

parallel configuration of the network was chosen by the model. Flowrates obtained for 

the different streams are indicated on Figure 4.1 to Figure 4.5. 

 

Table 4.6: Summary of results for case 3 and 4. 

 

Multiple regenerators  

Fixed RR 

(Case 3) 

Variable RR 

(Case 4) 

Freshwater flowrate  

(kg/s)  

28.87 27.68 

Wastewater flowrate  

(kg/s) 

3.91 2.72 

Cost of regeneration  

(million $/year) 

0.23 0.096 

Total cost  

(million $/year) 

 

1.32 

 

1.11 

Network configuration  Parallel   Parallel 

Number of HFRO modules 

 

37 for each regenerator 15 for each 

regenerator 

CPU time (h)  6 54 

 

The high computational time for solving the model in case 3 was due to the complexity 

of the problem as well as the large number of 0-1 variables. The model solves quicker 

when tighter bounds are imposed on the feed and retentate pressure. The use of the 

energy recovery turbines in the RON led to a reduction in the regeneration cost of the 

network, and as a result, a reduction in energy usage by the system was achieved. The 

statistics of the model for all the four cases is shown in. It can be seen from the  
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Table 4.7  that the amount of discrete variables increased from case 1 to case 4. This 

was due to the introduction of binary variables for indication of piping interconnection 

between the sources and RON as well as between the sinks and the RON. This increase 

is also as a result of the integer variables that are used to determine the number of 

HFRO modules within each RO membrane.  

Table 4.7: Model statistics for case 1 to 4. 

 

No 

regeneration 

Single 

regenerator 

Multiple regenerators 

(Case1) 

Fixed RR 

(Case 2) 

Fixed RR 

(Case 3) 

Variable RR 

(Case 4) 

Number of equations  60 168 282 282 

Number of 

continuous variables  

46 

 

134 

 

208 212 

Number of  discrete 

variables 

 

16 

 

32 

 

48 48 

Optimality gap 0.1 0.1 0.1 0.1 

 

 

 

 

 

 

 

 

 

  

 

1

2

1

2

3

4=FW

3

4=WW

0.28

2.37

1.88

2.7710.65

3.50

0.55
34.14

3.68

7.29

10.65

3.50

38.37

0.83

40

5.56

13.41

Figure 4.1: Network obtained for case 1 (No regeneration). 
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1

2

1

2

3

4=FW

3

4=WW

ROMB

PDMB

PDSDB

ROSDB

7.29

10.65

3.50

32.54

0.83

40

5.56

7.59

5.40

1.62

3.78
3
.7

8

1
.3

6

0
.2

7

1x10-5

6.10

0.21

1x10-5

2.51

0.63

27.61

4.30

0.99

6.23

1.19

4.21

1

2

1

2

3

4=FW

3

4=WW

 20

  parallel 

modules  

1x10-5

6.10

0.21

1x10-5

2.51

0.99

0.63

27.61

4.30

1
.1

9

4
.2

1

0
.5

5

0
.2

7

1
.3

6

6.23

0.83

40

5.56

7.59

7.29

10.65

3.50

32.54

5.40

3.78

1.62

3
.7

8

Figure 4.2: Network for case 2 based on the distribution boxes.  
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Figure 4.3: Network obtained for case 2 (Single regenerator with fixed removal ratio)). 

Figure 4.4: Network obtained for case 3 (Multiple regenerators with fixed removal ratio). 
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0.95
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...………………………………….0.41
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1

2

1

2

3

FW

3

WW

3.37

3.92

2.65

0.43

3.50

0.81
26.8

7.29

10.65

3.50

27.68

0.83

40

5.56

2.72

……………………………………….

……………………………………….

..……………………………………….

..……………………………………….

3.78

0.31

3.78

0.31

3.86

3.86

2.70

1.16

2.70

1.16

……………………………...

…………………………………

…………………………………

…………………………………...

…………………………….

0.02

1.13

1.02

2.66

1.64

……………………………….. 1.16

15

 parallel 

modules  

15

 parallel 

modules  

Figure 4.5: Network obtained for case 4 (multiple regenerators with variable removal 

ratio). 
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4.5 Black-box” and Detailed model 

The importance of the proposed model can also be demonstrated by comparing the 

results obtained in case 4, which was the best case, to a “black box” model. The TAC of 

the “black-box” regenerators was adopted from the work Tan et al. (2009) which is 

dependent on the inlet flowrate into the regenerators.  Table 4.8 shows the results for the 

apparent and true “black-box” models and case 4 (detailed model) which consisted of 

two regenerators. The true “black-box” model only considers the actual cost of 

regeneration. This was estimated using a detailed standalone regeneration model in 

order highlight the short comings of the “black-box” model in terms of regeneration 

cost.  

Table 4.8: Summary of results for the “black-box” approach and case 4.   

 

Apparent 

“black-box” 

model 

True “black-

box” model 

 

Multiple 

regenerators 

(Case 4) 

Freshwater flowrate  

(kg/s)  

28.15 28.15 

 

27.68 

Wastewater flowrate  

(kg/s) 

3.20 

 

3.20 

 

2.72 

Cost of regeneration  

(million $/year) 

0.034 0.13 

 

0.096 

Total cost  

(million $/year) 

1.06 1.15 

 

1.11 

 

From Table 4.8 it can be seen that, the “black-box” model led to a higher freshwater 

consumption and wastewater generation than in case 4. The regeneration cost estimated 

by the apparent “black-box” model was 73.85% less than that estimated by the true 

“black-box” model. The total cost of the true “black-box” model was 3.48% higher than 
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that obtained by the by case 4. It can therefore be seen from the above results that, the 

“black-box” model does not give a true cost representation of the RO regenerators and 

as such a detailed model of the regenerators is needed to accurately determine the cost 

of regeneration.  
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CHAPTER 

5 RECOMMENDATIONS AND 

CONSIDERATIONS 

5.1 Introduction 

This chapter shows the methods that can be used to improve the solution procedure used 

in solving the model. Further considerations for a detailed design of the RO membranes 

are also discussed. It looks at the variables and equations that are critical to obtaining a 

solution to model with less computational time. The chapter also gives the relevant 

recommendation in order to highlight the shortcomings of the proposed model.  

5.2 Detail design of RO membranes  

In the modeling of the RO membranes, the membrane area, length of fiber, outer and 

inner radius of the HFRO modules were fixed. This parameters can however be used in 

the model as variables in order to obtain a complete design of the RO membranes 

obtained by the model as this values will be at the optimal solution. This therefore 

means that, the fixed values used in solving the model, are not necessary the optimal 

values.  

 

In order to illustrate the importance of considering these parameters as variables in the 

model, the membrane area was made a variable (case 5) for the case 2 in Chapter 4.  

Table 5.1 shows the comparison between the case 2 where the membrane area was a 

parameter and case 5 where it is a variable.  
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Table 5.1: Summary of results for case 2 and 5. 

 

Single regenerator 
Single regenerator 

 

Fixed Sm 

(Case 2) 

Variable Sm 

 (Case 5) 

Membrane area 

(m
2
) 

180 

 

                                 316 

Number of HFRO modules 

20 

 

32 

Freshwater flowrate  

(kg/s)  32.54 

 

28.0 

Wastewater flowrate  

(kg/s) 7.59 

 

3.04 

Cost of regeneration  

(million $/year) 0.068 

 

0.10 

Total cost  

(million $/year) 1.40 

 

1.12 

CPU time (h)  0.13 

 

0.083 

 

It can be seen from Table 5.1 that, the membrane area chosen by the model in case 5 

was higher than that in case 2.  There was however a reduction in the freshwater usage 

(13.95%) and wastewater generation (60%) in comparison with case 2.  The total cost of 

regeneration was also lower for case 5 as it was reduced by 20% compared to case 2 

even though the cost of regeneration was higher in case 5 due to the increase in the 

number HFRO modules. It can therefore be concluded from the following results that, it 

is better for the model to choose the design variables for the RO membrane. It is 

therefore recommended that, the membrane area, length of fiber, outer and inner radius 

of the HFRO modules should be made variables in future work.  
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5.3 Method used to reduce computational time  

From Chapter 4 it was seen that the computational time for case 4 with multiple 

regenerators was high due to the increase in the complexity of the problem as the 

number of discrete variables increased. The following methods were considered in 

aiding the convergence of the model: 

(i) The relaxed model (RMINLP) was first solved using BARON. The solution 

obtained from the RMINLP model was then used as a starting point for the 

MINLP model and was then solved using DICOPT.  This method was used to 

provide a better starting point that can aid in the convergence of the MINLP 

model. The method however failed to solve the problem. This could be attributed 

to the large number of discrete variables that can be seen from case 2 to case 4 of 

Table 4.7.  

(ii) An adaptive numerical optimisation procedure proposed by Arora (2012) also 

used to help increase the convergence of the MINLP problem. In this method, the 

RMINLP is solved and the variables that are close to their discrete or integer 

value are then assigned that value. The variables are then held fixed and the 

optimisation problem was solved again. This procedure was then continued until 

all the variables were assigned their discrete or integer values. This method also 

failed and was tedious as the model consisted of a large number of discrete 

variables (Arora, 2012).  

5.4 Recommended methods for Convergence  

The optimisation problem was solved successfully with BARON even though the 

problem was computationally expensive. The following methods can be used to 

accelerate the converge rate of this model: 

(i) The RLT method proposed by Quesada and Grossmann (1995) can be used to 

decrease the computational time of the model. This method can aid in the 

convergence of the problem as a linear model is first solved to provide a starting 

point and a lower bound for the nonlinear model. The procedure can aid in finding 

a near global or global optimum solutions.  
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(ii) The whole model can also be solved be linearising all the bilinear terms in the 

model. This can be achieved by using McCormick’s over and under estimators for 

the product of two continuous terms (not an exact method) and Glover 

transformations for the product of a continuous variable and an integer variable 

(exact method). Transformation methods can be used for other nonlinear terms 

within the model. 

(iii) Piecewise linearisation can also be used in aiding the convergence of the proposed 

model (not an exact method).  

5.5 Preprocessing of Variables 

The idea behind preprocessing is that by reducing problem size one is able to also 

reduce data storage requirements and computational time (Hare et al., 2010). This 

involves the reduction of variables and constraints. The convergence of the MINLP 

problem can also be improved by knowing before optimisation, the variables that are 

critical for obtaining an optimal solution and quick solution convergence. This can be 

achieved through a thorough inspection of the mathematical model. The methods used 

in preprocessing include:  

(i) Standard linear reductions  

(ii) Knowing more information about problem to further inspect variables 

(iii) Removing redundant constraints  

(iv) Removing linear dependencies  

(v) Eliminating fixed variables  

(vi) Substituting out free variables with their complementary equations from the 

model.  

(vii) Checking for consistency of bounds 

Preprocessing steps are used by solvers like BARON. The preprocessing step used by 

BARON can be summarised as follows (Tawarmalani & Sahinidis, 2002): 

a) The solver starts by looking at the user supplied starting points  

b)  It then looks at the user supply LPs that maximise/minimise the problem by   

using OA. 
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The methods i, ii and vii for the preprocessing of optimisation problems can be applied 

to the proposed model to reduce computational time and to aid in the convergence of the 

model. The following method can be used in the preprocessing stage: 

 

(i) Knowing more information about problem to further inspect variables can be 

applied to the model during the preprocessing stage. The results indicated that, 

the feed position of streams and outlets of the system where the critical variables 

that need to be optimised (Lu et al., 2012). This therefore means that these 

variables are one of the many variables that are critical to the optimisation 

process. The mass load of permeate and retentate streams from the outlet of the 

regenerators therefore need to be linearised in order to aid in the convergence 

process of the MINLP problem.  

(ii) Bounds were provided for the number of HFRO modules, feed pressure, retentate 

and permeate pressure, upper and lower bounds as this was needed for the model 

to be solved. This therefore means that, a bilinear term consisting of any of these 

variables can be linearised in other to aid the convergence process of the problem. 

These variables can, therefore be classified as critical variables. 

(iii) Concentrations of the permeate and retentate streams are critical as this are 

dependent on the osmotic pressure and indicate the performance of the RO 

membrane. In the preprocessing stage, a product of these variables with any other 

variable should therefore be linearised.  

(iv)  The flowrate of the permeate stream is also associated with the osmotic pressure 

and should therefore be considered a critical variable for the optimisation process. 

5.6 Recommendations for future work  

The recommendations for the proposed model can be summed up as follows: 

(i) Additional design variables of the RO membrane should be incorporated in 

order to obtain a more detailed design of the units. It is therefore recommended 

that the design of the RO unit should be fully chosen through the optimisation 

process. Parameters like the membrane area, inner and outer radius and length of 
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fibers must be made variables in order to obtain the optimal design of the RO 

units. The importance of this is demonstrated in Table 5.1. 

(ii) A more detailed model should be used to account for fouling and concentration 

polarisation within the model as their influence affects the performance of the 

RO membranes.  

(iii) Other membrane technologies such as ultrafiltration can be included in the 

model to increase the flexibility of the model. 

(iv) Convex relaxation methods must be used within the model in order to accelerate 

the convergence process of the model.  

(v) The proposed model can be applied to large-scale petroleum case studies with 

multiple contaminants and this is therefore recommended.  
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CHAPTER 

6 CONCLUSIONS 

 

This work has addressed the synthesis of an optimal water regeneration network that 

incorporates the detailed synthesis of a RON. The model formulation resulted in an 

MINLP problem. The use of water and energy were optimised simultaneously. Both 

fixed and variable RR has been considered. Streams with multiple contaminants have 

also been considered in the model formulation.  

 

The proposed model was applied to a literature case study with 4 sources and 4 sinks 

with multiple contaminants. It was then solved using GAMS/BARON in order to 

highlight its practicality. The results show that the use of multiple regenerators in the 

water network, can lead to a reduction in the total cost of the network due to the 

significant reduction in freshwater consumption and wastewater generation. It can also 

be concluded that, there is a significant benefit in allowing the removal ratio in the 

model to be a variable as this has significant impact on the cost and structure of the 

network.  

 

Large computational times were however incurred due to the complex nature and 

structure of the model and relaxation methods must therefore be used together with the 

MINLP solver. It is also noteworthy that the proposed model was limited to one 

membrane technology.  Multiple membrane technologies such as ultrafiltration can 

however be incorporated in the membrane network and thus offering a scope for future 

work. This is needed to increase the flexibility of the proposed model.  

 


