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ABSTRACT 

Biochemical processing methods have been targeted as one of the potential 

renewable strategies for producing commodities currently dominated by the 

petrochemical industry. To design biochemical systems with the ability to compete with 

petrochemical facilities, inroads are needed to transition from traditional batch methods 

to continuous methods. Recent advancements in the areas of process systems and 

biochemical engineering have provided the tools necessary to study and design these 

continuous biochemical systems to maximize productivity and substrate utilization while 

reducing capital and operating costs. 

The first goal of this thesis is to propose a novel strategy for the continuous 

biochemical production of pharmaceuticals. The structural complexity of most 

pharmaceutical compounds makes chemical synthesis a difficult option, facilitating the 

need for their biological production. To this end, a continuous, multi-feed bioreactor 

system composed of multiple independently controlled feeds for substrate(s) and media 

is proposed to freely manipulate the bioreactor dilution rate and substrate concentrations. 

The optimal feed flow rates are determined through the solution to an optimal control 

problem where the kinetic models describing the time-variant system states are used as 

constraints. This new bioreactor paradigm is exemplified through the batch and 

continuous cultivation of β-carotene, a representative product of the mevalonate 

pathway, using Saccharomyces cerevisiae strain mutant SM14. 

 The second goal of this thesis is to design continuous, biochemical processes 

capable of economically producing alternative liquid fuels. The large-scale, continuous 
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production of ethanol via consolidated bioprocessing (CBP) is examined. Optimal 

process topologies for the CBP technology selected from a superstructure considering 

multiple biomass feeds, chosen from those available across the United States, and 

multiple prospective pretreatment technologies. Similarly, the production of butanol via 

acetone-butanol-ethanol (ABE) fermentation is explored using process intensification to 

improve process productivity and profitability. To overcome the inhibitory nature of the 

butanol product, the multi-feed bioreactor paradigm developed for pharmaceutical 

production is utilized with in situ gas stripping to simultaneously provide dilution effects 

and selectively remove the volatile ABE components. Optimal control and process 

synthesis techniques are utilized to determine the benefits of gas stripping and design a 

butanol production process guaranteed to be profitable. 
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CHAPTER I 

INTRODUCTION 

1.1. Motivation 

Petroleum based products have become a key component of daily life across the 

globe since the Industrial Revolution. Electricity for commercial and residential use has 

relied extensively on coal and natural gas resources, many commodity chemicals and 

pharmaceuticals are produced from petroleum-derived feedstocks, and the transportation 

industry depends on gasoline, diesel, and jet fuel to successfully passage both people and 

products globally. However, the use of fossil fuel based energy sources has been linked 

to an increase in global warming, leading to a push for cleaner, more sustainable sources 

for energy and chemical feedstocks. For these renewable methods to supplant the 

ingrained dependence on fossil-based resources, it is important for engineers to develop 

processes that can reliably and inexpensively produce these necessary products at the 

levels that meet current demands. 

While wind, solar, nuclear, and other renewable sources have been examined as 

renewable methods for sustainable electricity generation, these methods do not currently 

meet the requirements to supplant the fuels and chemical precursors provided by 

petroleum. Biochemical conversion strategies, however, have been identified as a 

potential approach to fill this niche. Inroads in biochemical engineering over the last few 

decades, specifically in the areas of genetic engineering, have provided a powerful 

toolkit to produce many chemicals through the genetic modification of cellular 

organisms. Equipped with the ability to harness and adapt the powers of cellular 
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metabolism, processes are being developed for the commercialization of many 

biologically-derived products. 

To this point, processes for biochemically derived fuels and chemicals have 

struggled to achieve the reliability and economically attractive heights of the 

petrochemical industry. The traditional batch methods used in biochemical production 

are challenged by batch-to-batch variability and high operating and capital costs which 

have led to soaring, uncompetitive prices for renewable fuels such as ethanol and 

butanol. Similarly, the same batch processing methods have limited supplies in the 

biologic and nutraceutical industry, resulting in unaffordable prices attributed to the 

inability to meet increasing demand. 

One way to cut costs for consumers is to cut costs for suppliers, which can be 

achieved by transitioning from an unreliable batch-based processing method to the 

continuous processing method found in traditional chemical engineering applications. 

However, these new continuous processes need to be able to achieve productivities that 

rival or surpass those of batch systems in a way that is reliable and not subject to the 

same variability found in those processes. Process systems engineering, composed of 

strategies for process modeling, process design, and process control, offer the techniques 

necessary to investigate the effects of continuous production in biochemical processing. 

These continuous biochemical strategies must be able to deal with multiple types of 

biological products, i.e. intercellular and extracellular, and provide economic incentive 

to stimulate transition in the industry. By coupling the state-of-the-art biochemical 

methods with process systems engineering, inroads can be made on developing 
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dependable, sustainable processes that can meet demand and continue to deliver the 

quality of life to society that was once achieved through the petrochemical industry. 

1.2. Goals and outline of thesis 

The development of novel continuous methods for the biochemical production of 

alternative fuels and pharmaceuticals is the theme of this thesis. The specific 

achievements of this work can be categorized as follows: (1) develop models describing 

the non-trivial kinetics of products in the mevalonate pathway (beta-carotene, taxadiene, 

bisabolene, etc.) in genetically modified organisms, (2) design a novel continuous 

processing strategy that improves productivity and profitability for biological processes 

using a multi-feed inlet configuration and knowledge of reaction kinetics, (3) 

demonstrate the benefits of continuous production of pharmaceuticals using the kinetic 

models developed in Goal 1, (4) develop a process synthesis framework for determining 

the optimal strategy for cellulosic ethanol production, and (5) examine the efficacy of 

the continuous processing strategy that combines the continuous bioprocessing 

paradigm in Goal 2 and the process synthesis framework in Goal 4 for biobutanol 

production. 

In Chapter II, fundamentals of process systems engineering and mathematical 

programming are introduced. Algorithms for solving unconstrained optimization 

problems are introduced to lay the groundwork for algorithms that consider optimization 

problems with equality and inequality constraints. Methods for linear and nonlinear 

optimization in the presence of integer variables are also considered. The review of 

optimization strategies concludes with a discussion of global optimization methods. 
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Applications of mathematical programming in the context of chemical engineering are 

discussed, specifically in the areas of process modeling, process synthesis, and process 

control. 

Chapter III of this thesis provides a discussion of the growth and prominence of 

biotechnology. Advancements in genetic engineering that have led to development of 

high-productivity and high-tolerance strains will be examined. Special attention is placed 

on the growth of the pharmaceutical and alternative energy industries, where batch 

production strategies are traditionally utilized. The benefits and challenges of using 

continuous processing strategies in bio-based industries is also proposed. 

In Chapter IV, the kinetic modeling of genetically modified Saccharomyces 

cerevisiae, or baker’s yeast, is explored. The addition of several non-native genes to the 

mevalonate pathway, resulting in the production of beta-carotene, is discussed. 

Experimental procedures are explained for the aerobic, batch cultivation of the baker’s 

yeast, including procedures for measuring the key components of glucose, biomass, 

ethanol, acetic acid, and beta-carotene. A two-step parameter estimation, to estimate 

growth-rate parameters and then estimate kinetic parameters, is performed using 

nonlinear regression using an objective function based on the coefficient of 

determination (𝑅2) value. Local and global stability analyses are also conducted to 

determine the accuracy and importance of the models and their parameters. 

Chapter V proposes a continuous production strategy for pharmaceutical 

production based on a multi-feed bioreactor configuration. This configuration is an 

improvement over traditional single-feed processes as it allows for the independent 
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manipulation of the bioreactor dilution rate and inlet substrate concentration by 

modulating the flowrates. An optimal control formulation is discussed that looks to 

maximize process productivity while maintaining steady state subject to the kinetics of 

the desired biochemical reaction through the manipulation of feed flowrates. A case 

study for the continuous production of beta-carotene is presented using the kinetics 

developed in Chapter IV and using a three-feed configuration for the addition of glucose 

and ethanol as substrates and media as a diluent. Optimal control policies and the 

resulting system state profiles are found for one-, two-, and three-feed configurations 

and the economics for each are assessed as the difference between the cost of materials 

and the profit from the salable product beta-carotene. Results will demonstrate the 

improved economic potential of continuous bioprocessing using multiple feed 

configurations over using only a single feed. 

Chapter IV presents the development of a process synthesis framework for the 

economical production of continuous, biologically-produced ethanol using multiple 

cellulosic biomass feeds.  Process alternatives considered in the synthesis framework 

include biomass selection and pretreatment method, effectively determining the cost-

effective strategy for providing the raw material glucose from lignocellulosic biomass. A 

case study using this framework is presented for the United States. Biomass choices are 

selected from those available around the United States, with prominently studied 

methods for the pretreatment of each type considered. Results of this case study show 

that ethanol can be produced in an economically favorable manner from raw materials 

that do not influence food production. Additionally, the effect of using multiple biomass 
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feeds on the ethanol generation, electricity generation, and required harvesting area is 

characterized. 

Chapter VII introduces the continuous paradigm discussed in previous chapters 

to the production of alternative liquid fuels, specifically biobutanol. Specifically, the 

economic viability of using the multi-feed bioreactor discussed in Chapter V coupled 

with in situ gas stripping will be examined. First, the optimal control problem will be 

formulated using the flowrate of the liquid feeds and stripping gas as manipulated 

variables to maximize the profitability of the intensified bioreactor system. The steady 

state results of the optimal control analysis will be used to develop a large-scale process 

synthesis problem like that considered for ethanol in Chapter VI. This synthesis problem 

will consider the cellulosic biomass types, pretreatment options, and number of butanol 

bioreactors as process alternatives. Results will show that the economic production of 

butanol is feasible and attractive, providing sustainable alternatives to currently used 

fossil fuels. 

In Chapter VIII, novel methods for the pedagogy of process systems engineering 

methodologies in process integration are developed. This chapter begins with a brief 

overview of the currently employed process integration methods, namely direct recycle, 

mass integration, and heat integration, and proposes the inclusion of the newly 

developed financial integration to move from a linear teaching method to a more holistic 

approach. Basics of the graphical approach to financial integration are explained, and a 

new method for algebraically analyzing financial integration problems is postulated. The 

holistic teaching method is exemplified in two case studies, first in relation to a 
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generalized traditional chemical engineering process and then to a biochemical process 

for the conversion of lignocellulosic biomass to biofuels. 

Chapter IX summarizes the results of the previous chapters. This chapter also re-

emphasizes the importance of developing continuous strategies for sustainable design, 

specifically using biological conversion methods to produce alternative liquid fuels and 

pharmaceuticals. Finally, future research directions inspired by the work demonstrated in 

this thesis will be discussed. 
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CHAPTER II 

PROCESS SYSTEMS ENGINEERING: FUNDAMENTALS AND APPLICATIONS 

2.1. Process Systems Engineering (PSE): An Introduction 

Process systems engineering (PSE) is the branch of chemical engineering that 

deals with the design, operation, optimization, and control of chemical process systems. 

The goals of PSE are (1) to ensure the economic preservation of commodity chemical 

systems via the improvement of product quality or process efficiency in addition to a 

reduction of costs associated with a process and (2) to propagate the growth of the 

specialty chemicals industry via the discovery of new products or new methods of 

delivering those and preexisting products to market in a fast and economically efficient 

manner [1]. Through the development of general methodologies, the PSE community 

looks to improve many chemical industries. 

Figure 2.1. The chemical supply chain considered in process systems engineering [1]. 
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Figure 2.1 depicts the various multi-scale applications of PSE, ranging from 

nanometer-scale molecular processes that operate on the order of picoseconds to 

kilometer-scale chemical production processes that operate over a period of days or 

weeks [1]. Examples of the applications of process systems engineering strategies 

include the modeling of complex chemical and physical phenomena, the design and 

synthesis of novel chemical processes, the control of processes to operate within set 

safety limits, and the integration of processes to conserve resources such as raw 

materials and energy. These applications will be discussed in more detail in Section 2.3. 

The main challenge facing the PSE community is developing general 

methodologies capable of describing, designing, and controlling systems with such vast 

time and length scales. To this end, process systems engineering strategies are rooted in 

the solution of mathematical programs that minimize or maximize an objective subject 

to a set of constraint functions governing the physical and chemical phenomena of the 

system of interest. Typical objectives in chemical engineering applications include 

maximizing profitability, maximizing sustainability and minimizing environmental 

impacts, and minimizing safety hazards, among others. A generic mathematical program 

is shown below in Equation 2.1, with Z defining the objective value of interest and x and 

y defining the continuous and integer variables of the system, respectively [2]. 

minimize Z = f(x, y)                 

subject to

g(x, y) ≤ 0

    h(x, y) = 0    
        x ∈ X                   
       y ∈ Y    integer

 
(2.1) 
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Here, the equality constraints ℎ(𝑥, 𝑦) often describe material and energy balances 

that must be satisfied for the system to be considered optimal. The inequality constraints 

𝑔(𝑥, 𝑦) are typically used for limiting the feasible space of the potential solution due to 

physical limitations of the chemical process; for example, restricting the operating 

temperature of a reactor or the density of a mixture to a desired, feasible range. While 

continuous variables x are common in chemical systems, often denoting temperatures, 

pressures, and compositions, the integer variables y are used to make decisions, i.e. 

whether a processing unit would be included in an optimal process design or how many 

reactors are needed to achieve a target production rate. 

The type of optimization problem given by Equation 2.1 is defined by the 

characteristics of the functions 𝑓, 𝑔, and ℎ and on the existence of the variable set 𝑦. If 

the integer variables are not present, then Equation 2.1 takes the form of either a linear 

program (LP) if the functions 𝑓, 𝑔, and ℎ are linear with respect to the continuous 

variables 𝑥 or a nonlinear program (NLP) otherwise. If the integer variables 𝑦 are 

present then Equation 2.1 is deemed a mixed-integer (MIP) program, which can either be 

linear (MILP) or nonlinear (MINLP) depending on the previously explained criteria for 

the functions 𝑓, 𝑔, and ℎ. As an additional consideration, if any of the functions 𝑓, 𝑔, 

and ℎ take the form of differential equations with respect to time then the program is 

referred to as a dynamic program or optimal control problem. While the adaptability of 

the functionality for 𝑓, 𝑔, and ℎ is powerful for describing many different chemical and 

physical processes, it also requires solution methods capable of solving a mathematical 

program of any type to optimality. 
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2.2. Methodologies for Solving Mathematical Programing Problems 

2.2.1. Local Optimality Criteria, the Impact of Constraints, and Global Optimality 

Before discussing methods for finding the optimal solutions to mathematical 

programs, it is important to understand the criteria that makes a feasible point a 

candidate for optimality. The definition of an optimizer 𝑥∗ for a function f in a set of 

feasible points S is shown in Equation 2.2 below: 

𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝑆 such that ||𝑥 − 𝑥∗|| < ε (2.2) 

For unconstrained problems, any feasible value x may be the optima of a single-variable 

function if the derivative of f(x) is necessarily zero. This can be seen in the example in 

Figure 2.2(a) below. Using the example of a quadratic function, we can see that the 

value of x is less than all nearby values at the origin, where the derivative of this 

function is also zero. However, to sufficiently determine that the feasible optima is 

indeed the optimum and not a saddle point, the second derivative of f(x) must be 

necessarily positive definite. Referring again to Figure 2.2(a), we can see that the second 

derivative is 2, so the point (0,0) meets the necessary and sufficient condition to be the 

optimum solution. These necessary and sufficient conditions extend to unconstrained 

multi-variable systems, where the Jacobian matrix of partial first derivatives must be 

equivocally zero and the Hessian matrix of partial second derivatives must be positive 

definite, i.e. all eigenvalues are positive, at an optimal point 𝑥∗. 

The addition of constraints to an optimization problem results in complications 

when determining the optimal solution. We exemplify this with Figure 2.2(b) above, 

where a linear equality constraint and an inequality constraint on the feasible values of x 
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are added to the unconstrained problem previously discussed. In this example, the 

optimal solution must lie within the feasible region of x, eliminating the optimal solution 

in the unconstrained problem, and must also lie at the intersection between the objective 

function x
2
 and the linear equality constraint 2x. This leads to a single feasible point, 

which is also the optimal value of 𝑥∗, at a value of 2; however, unlike the unconstrained 

problem, the optimal solution is not at the point where the derivative of the objective 

function is equal to zero. In the existence of constraints, new necessary and sufficient 

conditions and new methods must be established to determine optimality.  

 
Figure 2.2. Example of an (a) unconstrained optimization problem and (b) constrained 

optimization problem. The red shaded region in (b) denotes the infeasible solution space 

of the optimization problem due to the inequality constraint. The green dots signify the 

optimal solution in each case. 

 
Figure 2.3. Example of an objective function with multiple optimal values. The local 

and global optimal solutions are designated in green and red, respectively. 
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In addition to the complication of constraints, many objective functions have a 

higher degree of nonlinearity when compared to the quadratic function shown in Figure 

2.2. As such, these functions often have multiple local minima, like the function shown 

in Figure 2.3. This function has two local minima, one marked in red and another in 

green, with the red minimizer being one true global minimum of the function f(x). It is 

often important to be able to determine the global optimum of an objective function; this 

can be done through stochastic methods such as a Monte Carlo search or genetic 

algorithms, but with no guarantee of success [3-5]. Often more deterministic methods 

that can guarantee convergence to the global solution are desired. These methods will be 

discussed in more detail in later sections. 

Most chemical engineering applications require the consideration of both 

equality, i.e. mass and energy balance, and inequality, i.e. operating limits, constraints 

during analysis. These constraints may include integer variables for decision-making 

purposes or differential equations for temporally- or spatially-variant systems. Often in 

chemical engineering applications it is important to find the global minimum of a 

solution, which results in the highest level of profitability or sustainability or conversely 

the lowest level of safety risk associated with a process. Methods for solving 

optimization problems, from simple unconstrained, univariate problems to those with the 

complexity relevant to chemical engineering applications, will be discussed in the 

following sections. 
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2.2.2. Continuous Systems 

2.2.2.1. Optimization Methods for Determining Local Solutions 

With an understanding of the optimality criteria and the additional challenges 

faced with constraints and objectives with multiple optima, we can begin to develop 

methods for solving mathematical programs. Regardless of the complexity of the 

optimization problem, all solution strategies follow the general algorithm shown in 

Figure 2.4 below [6]. The algorithm begins by supplying an initial guess of the 

solution 𝑥0. Then, for every iteration 𝑘 = 0,1, … , 𝑛 the following four steps are taken. 

First, the point 𝑥𝑘 is checked for optimality and the algorithm is stopped if optimality is 

determined true. If the point 𝑥𝑘 is not optimal then a search direction 𝑝𝑘 is determined. 

Additionally, a step length 𝛼𝑘 ensures that a nontrivial reduction is made in the function 

value. Finally, the new point 𝑥𝑘+1 is calculated from Equation 2.3 below. 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 (2.3) 

Two methods can be used to calculate 𝛼𝑘, the backtracking method and the 

Wolfe condition. The backtracking method, shown as Equation 2.4, sets the value 𝛼𝑘 to 

a set value and requires the check of a simple inequality to ensure that the solution of the 

iteration is at least some fraction 𝜇 of the decrease predicted by a linear approximation 

of the function. If a reduction is achieved the value of 𝛼𝑘 is used, otherwise 𝛼𝑘 is 

reduced and the check is performed again. In each iteration, the step size 𝛼𝑘 is reset to its 

initial value. 

𝑓(𝑥𝑘 + 𝛼𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝜇𝛼𝑘𝑝𝑘
𝑇∇𝑓(𝑥𝑘) (2.4) 
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Figure 2.4. General framework for solving general optimization problems. 

Alternatively, a more efficient but more complicated way of calculating the step 

size 𝛼𝑘 is the Wolfe condition shown in Equation 2.5. This condition is the result of the 

solution of a one-dimensional optimization problem that minimizes the function 

𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘). The need to solve the Wolfe condition leads to more complex algorithms 

than the solution to the backtracking method, but often leads to better algorithms by 

further restricting the feasible space of 𝛼𝑘. To guarantee a decrease in the function value, 

the Wolfe condition is paired with the sufficient decrease condition in Equation 2.4 with 

the criteria that 𝜇 < 𝜂. Illustrations for both the backtracking method and the Wolfe 

condition are shown in Figure 2.5. 

|𝑝𝑘
𝑇∇𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)| ≤ 𝜂|𝑝𝑘

𝑇∇𝑓(𝑥𝑘)| (2.5) 
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Figure 2.5. Line search methods for determining the sufficient decrease in function 

value: (a) the backtracking method and (b) the Wolfe condition (adapted from Griva et 

al.) [6]. 

The construction of algorithms capable of handling problems found in chemical 

engineering begin with ways of estimating the 𝛼𝑘 and 𝑝𝑘 values in Equation 2.3. Three 

methods to determine these values will be discussed for unconstrained problems 

consisting of only an objective function and will be used as a foundation upon which all 

solution strategies for more complicated problems are developed. The addition of 

constraints results in the need to reformulate the problem into a new, single objective 

function to allow for the use of the unconstrained methodologies. Further complexity is 

added for problems with integer variables, which is handled by systematically relaxing 

the integer constraints to be continuous, allowing the use of other methods previously 

discussed. Specific methods for unconstrained, constrained, and integer optimization 

problems will now be discussed in more detail. 

Unconstrained Optimization Algorithms  

 When solving an optimization problem of the simplest form, i.e. a minimization 

problem with no constraints, the logical solution is to construct a solver that heads 
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strictly “downhill” in the feasible space. The simplest method for solving unconstrained 

optimization problems, the gradient descent or steepest-descent method, follows this 

logic exactly by equating the search direction 𝑝𝑘 to the negative gradient of the function 

𝑓(𝑥), or −∇𝑓(𝑥). Developed by Cauchy in 1847, This method requires that the objective 

function is differentiable and converges to a solution linearly [7]. Additionally, because 

this method does not account for the curvature of the objective function, it is often 

necessary to include a line search to calculate 𝛼𝑘 to guarantee convergence to a solution. 

 Modifications have been considered to compensate for and speed up the slow 

convergence rate of the gradient descent method. The most commonly used modification 

is to use the curvature of the objective function 𝑓(𝑥) at the point 𝑥𝑘 to determine a 

modification for the step length 𝑝𝑘. To do this, the second-order Taylor series of the 

objective function 𝑓(𝑥𝑘) at iteration k+1 is used, as shown in Equation 2.6. The 

definition of a stationary point is then used by setting the derivative of Equation 2.6 with 

respect to the step length 𝑝𝑘 to zero. The solution to Equation 6 gives the step length 𝑝𝑘 

as ∇𝑓(𝑥𝑘)[∇
2𝑓(𝑥𝑘)]

−1. 

𝑓(𝑥𝑘+1) = 𝑓(𝑥𝑘 + 𝑝𝑘) ≈ 𝑓(𝑥𝑘) + 𝑓′(𝑥𝑘)𝑝𝑘 +
1

2
𝑝𝑘
𝑇[∇2𝑓(𝑥𝑘)]𝑝𝑘 (2.6) 

𝑑𝑓(𝑥)

𝑑𝑝𝑘
= 0 = ∇𝑓(𝑥𝑘) + ∇2𝑓(𝑥𝑘)𝑝𝑘   →    𝑝𝑘 =

−∇𝑓(𝑥𝑘)

∇2𝑓(𝑥𝑘)
 (2.7) 

The method that considers the curvature of the function 𝑓(𝑥) in its solution 

algorithm by using the step length 𝑝𝑘 shown in Equation 2.7 is known as Newton’s 

method. By considering the curvature in the search direction, unconstrained optimization 

problems solved with Newton’s method achieve quadratic convergence to the optimal 
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solution 𝑥∗. However, this improved convergence speed comes at the cost of needing the 

objective function to be twice differentiable, as the calculation of the Hessian matrix of 

second derivatives ∇2𝑓(𝑥) is required. Additionally, as the number of variables is 

increased the order of arithmetic operations increases rapidly, making Newton’s method 

impractical to use. Newton’s method is often seen as the ideal method for solving 

unconstrained problems but is often not used in practice in its native form [6]. 

Methods have been developed to increase the practicality of Newton’s method by 

using the matrix 𝐵𝑘 as an estimate of the Hessian matrix in the step length 𝑝𝑘, as defined 

in Equation 2.8 below. The matrix 𝐵𝑘 must be positive definite to achieve the goal of 

minimization and many different methods have been considered to estimate and update 

the matrix 𝐵𝑘 for every iteration [8-12]. One of the most popular methods to estimate 𝐵𝑘 

is called the BFGS method, named after its developers Broyden, Fletcher, Goldfarb, and 

Shanno, and is shown in Equation 2.9.  

𝑝𝑘 =
−∇𝑓(𝑥𝑘)

𝐵𝑘
 (2.8) 

𝐵𝑘+1 = 𝐵𝑘 −
(𝐵𝑘𝑠𝑘)(𝐵𝑘𝑠𝑘)

𝑇

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

+
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

 (2.9) 

Two new parameters, 𝑠𝑘 and 𝑦𝑘, are needed to complete the update for 𝐵𝑘 and are 

defined as 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = ∇𝑓(𝑥𝑘+1) − ∇𝑓(𝑥𝑘). Quasi-Newton methods are 

the most common methods for unconstrained optimization found in commercially 

available solvers as the estimation of the Hessian matrix avoids unnecessary 

calculations. However, Quasi-Newton methods are implemented at the expense of 
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reducing the convergence speed from quadratic to super-linear, still an improvement 

over the gradient-descent method. 

 All the methods previously discussed require the objective function to be at least 

continuous in ℝ𝑁 to calculate the necessary first order derivatives with respect to all N 

variables. However, for objective functions it may not be possible or practical to 

compute first derivatives; for example, the function may be discontinuous at certain 

points, making the derivative undefined at points, or first derivatives may be difficult to 

calculate even if they do exist. Alternative, derivative-free methods can be used to 

optimize objective functions of this type [13]. The most common derivative free method 

is the Nelder-Mead method, which searches a simplex of sample points 𝑥𝑘+1
𝑖  around the 

current point 𝑥𝑘 and accepts a “downhill” direction based on the evaluation of the 

objective function and other criteria at each 𝑥𝑘+1
𝑖  [14].While these methods often 

converge more slowly than their derivative based counterparts, and are not suited well 

for high-dimensional problems, they do offer strategies for handling cases with problems 

where derivatives are not available [6]. 

Constrained Optimization Algorithms 

 To this point methods that can solve optimization problems of a single objective 

functions have been established. In practice, however, these types of problems are rare 

and often are accompanied by constraints that restrict the feasible space where the 

optimal solution resides. Methods for solving constrained problems have been developed 

that handle constraints by reformulation into a single objective function form that can be 

solved using the established methods previously discussed. Three of these methods, 



 

20 

 

penalty methods, barrier methods, and the method of Lagrange multipliers, will be 

discussed in more detail. 

 Perhaps the simplest way of handling equality constraints is to include increases 

in the value of the objective function when a constraint is violated. This thinking gives 

rise to a subset of penalty methods that repurpose the constraints into a second term 

𝜌𝜓(𝑥) of the objective function as shown in Equation 2.10. This function 𝜓(𝑥) is a 

function of the equality constraints ℎ𝑖(𝑥) and has the property described in Equation 

2.11; the function must be equivalently zero at points 𝑥 in a region that does not violate 

the constraint and greater than zero otherwise. Additionally, the value of the weighting 

factor 𝜌, also termed the penalty parameter, is strictly positive and larger values of 𝜌 

force the solution of the reformulated problem toward the feasible region. Typical 

penalty method algorithms solve the constrained optimization problem by using a 

lenient, low-valued penalty parameter and solve successive minimization problems using 

the previous solution 𝑥∗ and increasingly larger penalty parameters 𝜌𝑘 until the solution 

𝑥∗ is no longer sufficiently decreasing.  

𝜋(𝑥) = 𝑓(𝑥) + 𝜌𝜓(𝑥) (2.10) 

𝜓(𝑥) = 0, if 𝑥 is feasible

𝜓(𝑥) > 0, otherwise      
 (2.11) 

Penalty function methods vary with the selection of the function 𝜓(𝑥). Two of 

the most common penalty functions are shown as Equation 2.12 and Equation 2.13. In 

the first case, the quadratic-loss penalty is used as proposed by Courant [15]. The second 

is a more general penalty function, for which the value of 𝛾 is greater than 1; when 𝛾 is 
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2, the quadratic-loss penalty function is recovered. An illustrative example of a 

constrained optimization problem solved with the penalty function method is shown in 

Figure 2.6. 

𝜓(𝑥) =
1

2
∑[ℎ𝑖(𝑥)]

2

𝑚

𝑖=1

 (2.12) 

𝜓(𝑥) =
1

𝛾
∑|ℎ𝑖(𝑥)|

𝛾

𝑚

𝑖=1

          𝛾 ≥ 1 (2.13) 

 In the same vein as penalty methods, barrier methods are used to solve problems 

with inequality constraints by modifying the objective function in a way that limits the 

feasible space to that allowed by the constraint functions 𝑔𝑖(𝑥). However, instead of 

enforcing a penalty when in an infeasible region, this method works by adding a 

secondary term 𝜇𝜙(𝑥) to the objective function 𝑓(𝑥) that creates a barrier that results in 

an undefined function evaluation if the infeasible region is entered. The barrier function 

𝜙(𝑥) has the property that it must approach an infinite value as the function 𝑔𝑖(𝑥) 

approaches zero; additionally, the value of the optimizer 𝑥∗ will approach the true 

optimal solution as the value of the weight parameter 𝜇 approaches zero. General 

algorithms using the barrier method begin with a large value of 𝜇, solve the reformulated 

optimization problem as an unconstrained problem, and continue to resolve the 

unconstrained problem with a monotonically decreasing value of 𝜇 until a sufficiently 

small decrease in the minimizer 𝑥∗ is achieved. 

𝛽(𝑥) = 𝑓(𝑥) + 𝜇𝜙(𝑥) 

𝜙(𝑥) → ∞   as   𝑔𝑖(𝑥) → 0+ 
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 As with penalty methods, various barrier method algorithms vary with the 

selection of the barrier function 𝜙(𝑥). One choice, the logarithmic barrier function, is 

shown in Equation 2.14 [16, 17]. This method restricts the value of 𝑔𝑖(𝑥) to be greater 

than zero as the logarithmic function is undefined for negative inputs. Another option is 

the inverse function shown in Equation 2.15. This function is small for large values of 

𝑔𝑖(𝑥) but gets asymptotically larger as the value of the constraint approaches zero. An 

example of the barrier function solution method is shown in Figure 2.6 below. 

𝜙(𝑥) = −∑log(𝑔𝑖(𝑥))

𝑚

𝑖=1

 (2.14) 

𝜙(𝑥) =∑
1

𝑔𝑖(𝑥)

𝑚

𝑖=1

 (2.15) 

 While penalty and barrier function methods are useful, they are often subject to 

complications if implemented poorly. First, the reformulated unconstrained optimization 

problems for both methods can become increasingly difficult to solve due to the ill-

conditioned Hessian matrix of 𝜋(𝑥) and 𝛽(𝑥) as 𝜌 and 𝜇 are increased and decreased, 

respectively [6]. Additionally, penalty and barrier methods often result in solutions that 

are close but not exactly the solution to the original constrained problem; in fact, the 

penalty method often gives a solution that is in the infeasible space as seen in Figure 2.6 

below. However, an additional method can be utilized that avoids these problems and 

determines the exact solution to the constrained optimization problem in the presence of 

both equality and inequality constraints simultaneously. 
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Figure 2.6. Illustrative example of the penalty (red) and barrier (green) methods for 

solving constrained optimization problems. The exact solution is shown in blue. 

 A more complex method for solving constrained optimization problems was 

developed by Joseph Louis Lagrange in 1761 and, like the penalty and barrier methods, 

uses a reformulation of the problem into a single objective function [18]. This method 

begins by defining a new function called the Lagrangian function, or 𝐿(𝑥, 𝜆, 𝜇), that is 

the linear combination of the objective function and the constraints of the system. This is 

shown as Equation 2.16 below, with the coefficients 𝜆 and 𝜇 being termed the Lagrange 

multipliers for the p equality constraints and q inequality constraints, respectively.  

𝐿(𝑥, 𝜆) = 𝑓(𝑥) +∑𝜆𝑗ℎ𝑗(𝑥)

𝑛

𝑗=1

+∑𝜇𝑖𝑔𝑖(𝑥)

𝑚

𝑖=1

 (2.16) 

Due to the reformulation of the original objective function and constraints into a 

single Lagrangian function with new parameters, new criteria for optimality are 

necessary. These criteria are the Karush-Kuhn-Tucker (KKT) conditions shown in 

Equation 2.17 [19, 20]. The first criterion is that the value of the Jacobian of the 

Lagrangian function with respect to 𝑥 must be zero at the stationary point (𝑥∗, 𝜆∗, 𝜇∗). 

Additionally, all Lagrange multipliers for the inequality constraints 𝜇𝑗 must be positive 



 

24 

 

or zero; the Lagrange multipliers 𝜆𝑖 for the equality constraints can take on any real 

value. The third condition is called the complementary slackness condition and requires 

that either the inequality constraint 𝑔𝑖(𝑥) is active, i.e. has a value of zero, or its 

associated eigenvalue is zero. Finally, the Hessian of the Lagrangian function must be 

positive definite, as was the case for the unconstrained objective function 𝑓(𝑥). 

𝛻𝑥𝐿(𝑥
∗, 𝜆∗, 𝜇∗) = 0
𝜇∗ ≥ 0

𝜇∗𝑔(𝑥∗) = 0

𝑍𝑇[∇2𝐿(𝑥∗, 𝜆∗, 𝜇∗)]𝑍  is positive definite

 (2.17) 

 With a new formulation and a new set of optimality criteria for systems with 

equality and inequality constraints, an algorithm for solving the constrained optimization 

problem can be considered. Termed sequential quadratic programming (SQP), the 

algorithm first solves for the search direction for the variables 𝑥, or 𝑝𝑘, and the Lagrange 

multipliers, or 𝜈𝑘, by solving a quadratic program. This quadratic program is composed 

of a second-order Taylor series of the Lagrangian function at (𝑥𝑘, 𝜆𝑘) subject to 

constraints that equate a linear approximation of 𝑔(𝑥𝑘 + 𝑝𝑘) to zero as shown in 

Equation 2.18. Here, the Lagrange multipliers for the equality and inequality constraints 

are considered in 𝜆𝑘 and the search direction 𝜈𝑘. This search direction is then used to 

update the values of the 𝑥𝑘 and 𝜆𝑘. The steps are repeated until the KKT optimality 

criteria in Equation 2.17 are satisfied. This methodology for constrained optimization 

corresponds to the application of Newton’s method for unconstrained optimization 

shown in Figure 2.4, and the same simplifications can be used to improve the algorithm 

with respect to the number of calculations needed. 
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min 𝑞(𝑝) =
1

2
𝑝𝑇[∇𝑥𝑥

2 𝐿(𝑥𝑘, 𝜆𝑘)]𝑝 + 𝑝𝑇[∇𝑥𝐿(𝑥𝑘, 𝜆𝑘)]𝑝

𝑠. 𝑡. [∇𝑔(𝑥𝑘)]
𝑇𝑝 + 𝑔(𝑥𝑘) = 0

 (2.18) 

2.2.3. Mixed-Integer Systems with Integer Variables 

 To this point, algorithms for solving nonlinear programs (NLPs) with equality 

and inequality constraints have been developed. However, many chemical engineering 

applications require decision-making, planning, and scheduling, a feat not always 

feasible with only continuous variables. This leads to the inclusion of integer variables 

more suited to these tasks, resulting in complex optimization formulations like that 

shown in Equation 2.19.  

min
𝑥,𝑦

𝑍 = 𝑓(𝑥, 𝑦)

𝑠. 𝑡.

𝑔(𝑥, 𝑦) ≤ 0

ℎ(𝑥, 𝑦) = 0

𝑥 ∈ ℝ𝑁

𝑦 ∈ [0,1]

 (2.19) 

To this point, the algorithms that have been discussed can handle nonlinearities, 

inequality constraints, and equality constraints, but are not capable of dealing with 

problems with added integer variables, termed mixed-integer programs (MIP). This 

section will cover the ideas and algorithms available for these mixed-integer 

optimization problems. The methods for mixed-integer linear programs (MILP) with 

linear objective function 𝑓(𝑥, 𝑦) and linear constraints 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦) will first be 

discussed, with emphasis placed on the branch-and-bound technique as the most 

common method used for large mixed-integer problems. The solution strategies for 
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MILP problems will then be used as a basis for the more complex mixed-integer 

nonlinear programming (MINLP) algorithms.  

2.2.3.1. Linear Systems with Integer Variables – Mixed-Integer Linear Programs 

(MILP) 

 The solution strategies for mixed-integer linear programs can be separated into 

four broad categories: (1) cutting plane methods, (2) decomposition methods, (3) logic-

based methods, and (4) branch-and-bound methods [21]. In cutting plane methods, new 

constraints are added to the optimization problem that reduce the feasible region until a 

0-1 optimal solution is obtained [22-25]. Decomposition methods, beginning with those 

developed by Benders in 1962, utilize variable partitioning, duality, and relaxation 

methods to exploit and decompose the mathematical structure of the models [24, 26-28]. 

Logic-based methods utilize disjunctive constraints or symbolic inference techniques 

that define rules for the behavior of the binary variables and reduce the problem size [29-

32]. Finally, branch-and-bound methods utilize a binary tree to represent the 0-1 

combinations of binary variables, partitioning the feasible region into subdomains 

systematically [33-35]. An example of this method for a system of three binary variables 

is shown in Figure 2.7. This strategy is the most widely used for MILP problems, and 

will now be explained in more detail. 
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Figure 2.7. Binary tree representation of the branch-and-bound algorithm for solving 

mixed-integer linear programs (MILP). 

 

Figure 2.8. Branch and bound algorithm for the solution to mixed-integer linear 

programs. 
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 The general branch and bound algorithm for solving MILP problems is shown in 

Figure 2.8. The algorithm begins by solving a relaxation of the original MILP by 

removing the restrictions on all integer variables and formulating a linear program (LP) 

that can be solved using traditional methods such as the simplex method. The most 

common relaxation method is to allow the binary variables y to take any value between 

zero and one; this will result in an optimal solution of the relaxed LP with fractional 

values for most if not all binary variables. If the relaxed problem does not have an 

optimal solution, the problem is deemed infeasible. 

min
𝑥,𝑦

𝑍 = 𝑓(𝑥, 𝑦)

𝑠. 𝑡.

𝑔(𝑥, 𝑦) ≤ 0

ℎ(𝑥, 𝑦) = 0
0 ≤ 𝑦 ≤ 1

 (2.20) 

For a feasible problem, a binary variable 𝑦𝑖 that has taken a fractional value in 

the relaxed problem of the initial node is chosen as the branch variable. This results in 

two new daughter nodes with a set value of 𝑦𝑖, one with a new formulation where 𝑦𝑖 = 0 

and a second where 𝑦𝑖 = 1. One of these formulations is chosen as the new candidate 

subproblem (CS) and is solved using a similar relaxation to that in Equation 2.20. This 

node must then pass through a series of checks to determine if a new optimal solution of 

the master MILP has been found. First, the relaxed linear program of the CS must have a 

feasible solution. If it does not, then the node is considered infeasible, the value to which 

𝑦𝑖 was set cannot be true in the solution to the master MILP, and the node is fathomed; 

the daughter nodes of any fathomed node do not need to be considered further. 
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If an optimal solution to the candidate problem exists, the values of the 

remaining binary variables are checked. If any of the binary variables take a fractional 

value in the optimal solution, then this variable is selected as another branch point and 

two new daughter nodes are created for each instance of the binary value. However, if all 

values are binary, then this solution satisfies the MILP master problem. If the objective 

function value of the CS is greater than the current optimal solution, the objective value 

of the CS becomes the new optimal solution, otherwise the node is fathomed and a new 

CS is chosen from the unfathomed nodes. In this way, the lower bound on the solution is 

continuously increased until the optimal solution is found. The checks on each node 

continue until no candidate sub-problems remain and a solution to the master MILP 

problem has been determined.  

While this algorithm guarantees that the entire feasible region of the master 

MILP is searched for the globally optimum solution, it is subject to three techniques that 

have been considered for choosing subsequent candidate subproblems in the binary tree: 

(1) the Last-In-First-Out (LIFO) approach, also known as the depth-first with 

backtracking strategy, (2) the breadth-first strategy, and (3) the best-bound strategy. In 

the LIFO strategy, the next candidate subproblem is taken to be the daughter node of the 

current subproblem, leading the solver down a single branch of the binary tree before 

investigating other branches [21]. When the current branch is fathomed, the solver 

backtracks to another branch and continues down that branch of LP problems. 

Alternatively, the breadth-first strategy choses the next CS as another node at the same 

level of the binary tree before heading down any specific branch [21]. Finally, the best-
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bound strategy takes a hybrid approach, choosing the next node on the list that has the 

lowest lower bound [21]. However, it should be noted that there is a trade-off between 

each node-selection strategy and there is therefore no rule that predict fast solvers toward 

optimal solutions. 

2.2.3.2. Nonlinear Systems with Integer Variables – Mixed-Integer Nonlinear Programs 

(MINLP) 

 Designing many chemical engineering applications, including those involving 

reaction kinetics, fluid mechanics, and phase equilibrium, require the coupling of integer 

variables for design decisions with inherently complex, nonconvex, nonlinear models. 

These systems cannot be described by an MILP formulation without loss of accuracy by 

linearization or including many additional constraints and integer variables using 

disjunctions that characterize the nonlinearity of these models. Finding solutions to 

MINLP formulations like those in Equation 2.21 pairs the difficulty experienced with 

solving usually nonconvex nonlinear programs (NLP) and the complexity of solving 

mixed-integer linear problems (MILP). This section will describe methods for 

determining the optimal solution for mixed-integer nonlinear programs (MINLPs) of the 

following form: 

min
𝑥,𝑦

𝑍 = 𝑐𝑇𝑦 + 𝑓(𝑥)

𝑠. 𝑡.

𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
𝐴𝑥 = 𝑎

𝐶𝑥 + 𝐵𝑦 ≤ 𝑏
𝐸𝑦 ≤ 𝑒

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

𝑦 ∈ {0,1}𝑛

 (2.21) 
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While the branch-and-bound strategies discussed for MILPs can be applied, 

finding the solution to the relaxed NLPs in each node would require much more 

computational effort than the relaxed linear programs found at each node for MILPs. 

Instead, a more elegant solution strategy has been developed that couples the solving of 

an NLP subproblem with fixed binary variables and an MILP subproblem to determine 

an upper bound and lower bound, respectively, to the MINLP master problem. This 

general algorithm is shown in Figure 2.9. If the lower bound is found to be greater than 

the upper bound, then the optimal solution is found; alternatively, if a solution does not 

exist for either the NLP or the MILP then the master MINLP is deemed infeasible. 

Specific MINLP solvers are differentiated by their formulation strategy for the NLP and 

MILP subproblems. Two specific and widely-used methods, the Outer Approximation 

(OA) method and General Benders Decomposition (GBD)s, will be discussed in more 

detail. 

 

Figure 2.9. General algorithm for the solution of mixed-integer nonlinear programs 

(MINLP). 
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 Both OA and GBD utilize an NLP subproblem by setting the set of binary 

variables and solving the resulting NLP using methods discussed in Section 2.2.2. 

Instead, the differences in these algorithms lie in how the MINLP problem is 

reformulated into an MILP subproblem. The OA algorithm, developed by Duran and 

Grossmann in 1986, formulates the MILP subproblem by linearizing the objective 

function and inequalities [36, 37]. This is done by calculating a diagonal relaxation 

matrix 𝑇𝑘 from the value of the Lagrange multipliers 𝜆𝑘 calculated as the solution to the 

NLP subproblem, as shown in Equation 2.22. Using this and the first order Taylor series 

approximation of the objective function, defined as 𝛼𝑂𝐴 and the inequality constraints, 

the MINLP is reformulated to the MILP shown in Equation 2.23. This reformulation is 

used to solve for the next iteration of the binary variables y, and the cycle between NLP 

and MILP continues until the upper and lower bounds converge and an optimal solution 

is found. 

𝑇𝑘 = {𝑡𝑖𝑖} = {

+1, 𝑖𝑓 𝜆𝑖
𝑘 > 0

−1, 𝑖𝑓 𝜆𝑖
𝑘 < 0

   0, 𝑖𝑓 𝜆𝑖
𝑘 = 0

 (2.22) 

min
x,y

𝑧𝑂𝐴
𝑘 = 𝛼𝑂𝐴

𝑠. 𝑡.

𝛼𝑂𝐴 ≥ 𝑐𝑇𝑦 + 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)𝑇(𝑥 − 𝑥𝑘)

𝑇𝑘(∇ℎ(𝑥𝑘)𝑇(𝑥 − 𝑥𝑘)) ≤ 0

𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)𝑇(𝑥 − 𝑥𝑘) + 𝐵𝑦 ≤ 0
𝐴𝑦 ≤ 𝑎

∑ 𝑦𝑖
𝑖∈𝐵𝑘

− ∑ 𝑦𝑖
𝑖∈𝑁𝑘

≤ |𝐵𝑘| − 1

 (2.23) 

Alternatively, GBD uses a similar but more sophisticated approach to develop 

the MILP reformulation. Instead of using separate linearization for the objective function 
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and inequality constraints, this method uses a linear approximation given by the 

Lagrangian at the NLP solution (𝑥𝑘, 𝜆𝑘) [31, 38, 39]. The specific formulation of this 

Lagrangian is shown in Equation 2.24 below. Unlike the OA algorithm, no adjustments 

are needed to include the equality constraints ℎ(𝑥) as the extra term 𝜆𝑘ℎ(𝑥𝑘) in the 

Lagrangian reformulation is necessarily zero. Using this Lagrangian definition, the 

original MINLP is reformulated into the MILP subproblem by minimizing the value of 

𝛼𝐺𝐵 which is necessarily greater than or equal to the Lagrangian in Equation 2.24. This 

reformulation is shown in Equation 2.25. As with the OA algorithm, this reformulation 

is used to determine the new values of the binary variables y for the next iteration of the 

NLP subproblem. 

𝐿(𝑥𝑘, 𝑦, 𝜆𝑘) = 𝑐𝑇𝑦 + 𝑓(𝑥𝑘) + (𝜆𝑘)𝑇(𝐶𝑥𝑘 + 𝐵𝑦 − 𝑏) (2.24) 

min
𝑦

𝑧𝐺𝐵
𝑘 = 𝛼𝐺𝐵

𝑠. 𝑡.

𝛼𝐺𝐵 ≥ 𝑐𝑇𝑦 + 𝑓(𝑥𝑘) +∑𝜆𝑖
𝑘(𝑔𝑖(𝑥

𝑘) + 𝑏𝑖𝑦𝑖)

𝑡

𝑖=1

𝐴𝑦 ≤ 𝑎

∑ 𝑦𝑖
𝑖∈𝐵𝑘

− ∑ 𝑦𝑖
𝑖∈𝑁𝑘

≤ |𝐵𝑘| − 1

 (2.25) 

 When considering the two algorithms available to solve MINLP problems, it is 

important to discuss the trade-offs when using either the GBD and OA method. The first 

point of note is the requirements of the MILP formulations from each decomposition 

strategy. The MILP formulation for GBD in Equation 2.23 is only a function of the 

integer variables y. However, it can be seen in Equation 2.25 that the OA algorithm 

requires that the MILP reformulation be a function of both the continuous variables x 



 

34 

 

and the binary variables y. This results in a larger MILP formulation with an increased 

computational requirement to solve in the case of the OA algorithm, but also allows for 

tighter lower bounds and therefore fewer NLP solutions to be calculated. Inversely, the 

MILP formulation for GBD is smaller than that of OA, being an almost pure integer 

problem, but the complete delineation between the continuous and discrete spaces 

require more iterations of the algorithm and therefore more NLPs to be solved. While 

both methods are effective in solving MINLP problems, the computational trade-offs 

should be considered when choosing a solution method. 

2.2.4. Differential Systems 

To this point, all solution strategies for optimization problems have dealt with 

algebraic systems of equations. However, many applications in chemical engineering are 

interested in how systems perform over time, and therefore require the use of differential 

equations to define these system dynamics. The optimization of systems of time-

dependent equations is a subset of optimization theory known as optimal control, defined 

by the problem formulation shown in Equation 2.26. Here, the variables 𝑥(𝑡) are the 

system states that are functions of time and q is the set of control parameters or 

manipulated variables. Typically, the state and control variables are connected by an 

ordinary differential equation (ODE) defined as 𝐿(𝑥, 𝑦). Finally, constraints can be put 

on the states in the form of 𝑔(𝑥(𝑡)) and on the control parameters in the form of ℎ(𝑞).  
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min
𝑥=𝑥(𝑡),𝑞

𝑧(𝑥, 𝑡) = 𝑓(𝑥(𝑡), 𝑞)

𝑠. 𝑡.

𝐿(𝑥(𝑡), 𝑞) = 0

    𝑔(𝑥(𝑡)) ≥ 0

           ℎ(𝑞) ≥ 0

 (2.26) 

While the inclusion of differential equations into the optimization problem adds 

some complexity, the general strategy is to reformulate the problem into an algebraic 

system and allow for the use of the methods previous discussed in Section 2.2.3. The 

following sections will be devoted to discussing direct solution strategies for optimal 

control problems. Indirect methods based on deriving optimality criteria have also been 

developed, and the reader is direct to literature for more information on those methods 

[40-42]. 

2.2.4.1. Decomposition Strategies 

 The simplest direct method for reformulating an optimal control problem into a 

system of algebraic equations is by discretizing the differential terms into their finite 

difference representation. In its simplest form, the time horizon T is divided into N 

segments of length Δ𝑡 such that 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 = 𝑇. Finite difference 

methods, for example the forward Euler method, are then applied using this time step to 

all differential and integral terms in the system of equations. An example of a generic 

ODE and integral reformulation is shown as Equations 2.27 and 2.28.  

𝑑𝑥

𝑑𝑡
→
𝑥𝑛 − 𝑥𝑛−1

Δ𝑡
 (2.27) 

∫𝐹(𝑥(𝑡), 𝑡, 𝑞(𝑡))

𝑇

0

→ ∑Δ𝑡 ⋅ 𝐹 (
𝑥𝑛 + 𝑥𝑛+1

2
, 𝑡𝑛,

𝑞𝑛 + 𝑞𝑛−1

2
)

𝑁

𝑛=1

 (2.28) 
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When introduced correctly, the introduction of finite difference methods results in a 

system of algebraic equations where one time step is inherently dependent on the 

previous time step through the discretization. Three techniques can be developed from 

the methods of discretization that will be discussed in more detail: (1) single shooting, 

(2) multiple shooting, and (3) collocation on finite elements. 

 The single shooting method is the most basic of discretization methods for 

optimal control problems. For this method, the control actions 𝑞(𝑡) are discretized to 

values 𝑞𝑖 over the entire time length T. The dynamics of the problem are converted to a 

system of nonlinear equations by discretizing the differential equation constraints using a 

time-marching numerical integration technique such as forward or backward Euler or 

more advanced Runge-Kutta methods [43-45]. Likewise, the objective function is 

discretized using a numerical integration strategy. The optimal values of the control 

actions 𝑞𝑖 can then be determined by solving the NLP formed by these reformulated 

objective function and constraints. An illustrative example of the single shooting method 

is shown in Figure 2.10. While useful, this method is often susceptible to calculation 

errors in the discretization of the differential equation, and as a result does not work well 

with differential systems of high nonlinearity [45]. 

 An alternative to the single-shooting method is the multiple-shooting method. In 

this method, the time domain T is divided into N+1 intervals 𝑡𝑖 in which the single-

shooting method is used. In this problem, a new set of variables 𝑠𝑖 are used to denote the 

initial condition for the state variables 𝑥(𝑡, 𝑞) in each interval. To guarantee the 

continuity of the solution 𝑥(𝑡, 𝑞) in the final solution, a new set of equality constraints 
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are added to the optimization formulation as shown in Equation 2.29. More accurate 

solutions are obtained using this method as the numerical integration is done over a 

shorter time course than the single-shooting method, resulting in less susceptibility to 

numerical error. Additionally, parallelization can be used when solving the solutions to 

the individual time domains [46]. However, these improvements to the algorithm comes 

at the cost of increasing the size of the NLP relaxation. 

𝑠𝑖+1 = 𝑥𝑖(𝑡𝑖+1, 𝑠𝑖, 𝑞𝑖) (2.29) 

 
Figure 2.10. Illustrative example of the single shooting method for solving optimal 

control problems. 

 
Figure 2.11. Illustrative example of the multiple-shooting method for solving optimal 

control problems. 
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An alternative to the shooting methods, collocation on finite elements discretizes 

both the manipulated variables 𝑞(𝑡) and the state variables 𝑥(𝑡). However, unlike the 

shooting methods, the state variables are not approximated using a discretization of the 

differential terms but are instead approximated using a specified functional form. 

Discretization using collocation on finite elements begins with the division of the time 

domain T into S subintervals [𝑡𝑠−1, 𝑡𝑠+1] finite elements where 𝑡𝑆 = 𝑡𝑓.

Early discretization within each finite element was done using implicit Runge-

Kutta methods due to their stability properties when compared to explicit methods [43, 

44, 47, 48]. In 1988, Reddien first proposed using local orthogonal collocation methods 

that fixed the degree of the interpolating polynomial and varies the number of segments 

[49]. Reddien’s work used Gauss-Legendre points and a cubic spline as a basis function, 

but other researchers have also considered using Chebychev polynomial, Lagrange 

polynomials, and higher-order Gauss-Lobatto methods as an alternative [50-53]. 

Alternatively, pseudospectral methods have been developed that allow for the 

variation of the degree of the interpolating polynomial while fixing the number of 

segments in the collocation. To do this, a global polynomial of variable degree is used to 

estimate the states and collocation is performed at chosen points. The use of global 

collocation methods has been shown to increase the convergence rate compared to local 

collocation methods [45]. While not covered here in detail, global collocation strategies 

have been developed for Gauss-Lobatto quadrature [54-56], Legendre-Gauss quadrature 

[57], and Legendre-Gauss-Radau quadrature [58, 59]. 
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To this point, all the algorithms that have been discussed for solving optimization 

problems have resulted in locally optimal solutions. For linear convex nonlinear systems, 

this local solution is in fact the global solution for the optimization problem. However, 

many applications in chemical engineering are modeled using highly nonlinear models, 

often resulting in nonconvexity when used in optimization applications. As a result, 

methods are needed to deterministically guarantee the global solution to nonconvex 

systems will be found. 

The most widely used strategy for guaranteeing convergence to a global solution 

was developed by McCormick in 1975 [60]. In his method, McCormick proposed using 

an iterative strategy of convex relaxations, branching, and bounding to limit the feasible 

region in which the global solution can lie. An example of this method is shown in 

Figure 2.12. First, the feasible region of the global solution is underestimated with a 

convex function as shown in Figure 2.12a. Then, the upper bound is calculated using a 

local solver and the lower bound is calculated by solving the relaxed problem. Assuming 

the upper bound is larger than the relaxation, the feasible region is split into two regions. 

Convex relaxations are again calculated in the upper bound and lower bounds in these 

two sub-regions are calculated as shown in Figure 2.12c. If the lower bound of any 

region is greater than the upper bound of another region, the regions with the greater 

upper bounds are fathomed and removed from the feasible region as shown in Figure 

2.12d. This proves is continued until the global solutions is found to a reasonable level. 

Many researches have expanded on McCormick’s method to develop algorithms 

that determine global solutions using various relaxation methods [61-65]. Two 

2.2.5. Methods for Finding Global Solutions 
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algorithms capable of solving NLP and MINLP models to global optimality using 

variations of this technique are commercially available: the Algorithms for 

CoNTinuous/Integer Global Optimization of Nonlinear Equations (ANTIGONE) 

software package developed by Misener and Floudas [66-68] and the Branch And 

Reduce Optimization Navigator (BARON) software package developed by Tawarmalani 

and Sahinidis [65].  

 

Figure 2.12. General algorithm for using convex relaxations for global optimization. 

 When discussing global optimization strategies, it would be remiss not to touch 

upon the stochastic methodologies that have been developed to find global solutions to 

optimization problems. This is not intended to be a review of all stochastic methods, but 

will touch upon the prevalent method found in literature: the Monte Carlo Method and 

its extension of simulated annealing. The Monte Carlo search method uses a large 
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sample of “randomly selected” points to search the feasible region, comparing the 

functional value at each successive point, and keeping the lesser value of the function 

[5]. This algorithm uses an exponential barrier to select search directions and allow the 

search to continue uphill with some desired probability P, as seen in Equation 2.30. The 

parameter of the exponential barrier can be used as a tuning parameter for the method. 

Alternatively, this method can be coupled with a local Newton’s method search at 

various points to avoid using a very large sampling number and deterministically find 

the locations of the various local minima to compare. 

exp [−
𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘)

𝑇𝑘
] ≥ 𝑃 (2.30) 

One variation of the Monte Carlo method is simulated annealing, a method first 

used to study the thermodynamics of phase transitions in crystals [4]. This method 

utilized the same structure as the Monte Carlo method but reduces the “annealing 

temperature” 𝑇𝑘 is slowly reduced as the search is completed. This allows the algorithm 

to explore the feasible region in the early search but then slowly heads downhill toward a 

minimum as the search progresses. The key to the simulated annealing strategy is how 

the parameter 𝑇𝑘 is deceased. If the temperature is decreased too quickly, then there is a 

chance of being stuck in a local minimum that is akin to be trapped in a glass state in a 

crystal. However, if the temperature is not reduced quickly enough then this method is 

no better than the general Monte Carlo search method. 

2.3. Areas of Interest in Process Systems Engineering 

In chemical engineering, optimization algorithms like those discussed in detail in 
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Section 2.2 are used in the study of process systems. More specifically, nonlinear 

optimization strategies are used to develop comprehensive models of chemical reaction 

kinetics, fluid dynamics, and mass and energy balance models, among other phenomena. 

These models are then used to design large-scale, commercial processes to produce 

commodity chemicals, specialty chemicals, and energy. Finally, once processes have 

been designed and integrated, process systems engineers are tasked with its safe 

operation that guarantees product quality by developing successful control strategies. 

Each of these process systems areas require the development and solution of a 

usually nonlinear, nonconvex mathematical program that utilize the methods previously 

discussed to determine optimal operating conditions. Often it is desired to find the 

optimal solution to the program as this results in the highest profit margin, lowest 

environmental impact, or lowest safety risk. More specific formulations and a discussion 

on specific applications of each topic is discussed in more detail in the next sections. 

2.3.1. Process Modeling: Developing Insight to Complex Phenomena 

At the heart of chemical engineering practice, and more specifically process 

systems engineering application, lay mathematical models that capture the principles of 

these phenomena. These models form the foundation upon which all chemical processes 

are analyzed and designed by examination and fitting of experimental data to derive a 

mathematical description of a process. While accurate models are needed, they do not 

necessarily rely on a first-principles or knowledge-based approach that requires the 

models to follow an understood and accepted formulation. In fact, data-driven and 
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empirical modeling is often capable of achieving the required accuracy through deriving 

correlations in process data. This section will be focused on the ideas of first-principle 

models and data-driven models, the benefits and challenges faced with each, and recent 

applications of both modeling strategies. 

2.3.1.1. Knowledge-based Modeling 

First-principles or knowledge-based modeling is the most commonly experienced 

form of chemical process modeling. This method begins with the formulation of a model 

of a known functional form 𝑓(𝑥, 𝑝) as a function of the input data 𝑥 and the adjustable 

model parameters 𝑝. An unconstrained nonlinear program like that shown as Equation 

2.31 is developed to minimize the differences between experimentally determined data 

points and the model predictions. Additional constraints can be added to restrict the 

feasible values of the parameters 𝑝 based on prior knowledge. Solutions to this program 

can be found using Newton’s method previously discussed. 

min
𝑝

𝑧 =∑(𝑦𝑒𝑥𝑝,𝑖 − 𝑓(𝑥𝑖, 𝑝))
2

𝑁

𝑖=1

(2.31) 

While knowledge-based modeling is the most prevalent form of mathematical 

modeling in literature, it suffers from a few drawbacks based on the selection of 𝑓(𝑥, 𝑝). 

Often the chemical or physical processes being investigated is not completely 

understood, making determining the function form of 𝑓(𝑥, 𝑝) difficult. Mathematical 

models of a preconceived form may also suffer from complexity issues; models can 

either be too simple, therefore not capturing all necessary phenomena, or too complex, 

resulting in large, complicated models that over-fit the data and misrepresent the studied 
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phenomena [69, 70]. Methods can be used to assess the level of overfitting or 

underfitting, including local and global sensitivity analysis techniques that assess the 

“correctness” of both the fit parameters 𝑝 and the function 𝑓(𝑥, 𝑦), respectively [71-73]. 

Despite these drawbacks, first-principles models provide structured models that can be 

easily utilized in process design and control applications.  

2.3.1.2. Data-Driven Modeling 

As an alternative to knowledge-based models, researchers have proposed using 

data-driven and empirical models to describe chemical processes. Data-driven models 

forgo using models of set functionality, instead using data analysis to derive general 

models that capture trends and correlations. One important method for data-driven 

modeling is the artificial neural network (ANN), a regression-based method that 

represents the input-output behavior of the data after estimation of the model parameters, 

a process known as training.  

Neural network models try to simulate the ability of the brain to process 

information by constructing a set of nodes, called neurons, that systematically process 

input data to produce output data. Each neuron takes the incoming information, performs 

some operation on it, and passes the output result to the next neuron. The typical 

operation performed on the data in each node is the nonlinear weighted sum, shown in 

Equation 2.32, where the activation function K represents a predefined function such as a 

sigmoidal function or a hyperbolic tangent function and 𝑤𝑖𝑗 and 𝑤̂𝑗𝑘 represent the 

weights between nodes [74]. 
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𝑦𝑗 = 𝐾(∑𝑤𝑖𝑗𝑥𝑖
𝑖

) (2.32) 

The connection between neurons in an ANN is shown in Figure 2.13 below and 

begins with a set of input neurons, displayed in green, to which the input data 𝑥 is 

introduced. In the center of the network is one or more layers of hidden neurons, shown 

in blue, and the network is completed with a layer of output neurons displayed in red. 

The ability to change the number of hidden layers, the activation function at each node, 

and the interconnectivity between each node make ANNs very powerful modeling tools. 

In chemical engineering, these types of models have been used in process identification 

and process control applications, among others [75-85]. 

 

Figure 2.13. Artificial neural network representation for the development of process 

models. 

2.3.2. Process Synthesis: Deterministic Methods for Designing New Processes 

Once individual processes have been understood through the development of 

mathematical models, processes can be developed that take advantage of these reaction 
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and separation phenomena to convert raw materials to produce desired products. 

However, the sheer number of combinations between possible reaction and separation 

methods available results in many possible arrangements. Often, processes should be 

designed that meet some optimal criteria, typically maximizing process profitability, 

maximizing process productivity or minimizing environmental impact. This idea lends 

itself nicely to the formulation of a process synthesis problem as a mixed-integer 

programming problem like those discussed in Section 2.2.3. This formulation includes 

the objective function describing the desired optimization criteria, energy and mass 

balance equality constraints, and inequality constraints on the allowable operating 

conditions on the considered unit operations. Integer variables are included in the 

formulation to allow for the selection of necessary processing equipment while ignoring 

the unnecessary equipment in the final design. Using this framework, typical MILP or 

MINLP solvers can be utilized to find the optimal process topology, optimal operating 

conditions, and the resulting value of the objective function from many processing 

alternatives. 

 Process synthesis strategies have been used to design a variety of systems. Early 

use of these methods was for the development of optimal subsystems within a process, 

such as heat exchanger networks or distillation networks [32, 86-93]. As computer 

power increased, so too did the size of the synthesis problem. In recent years, process 

synthesis methods have been applied to many processes relevant to the fight against 

global warming, including carbon capture [94, 95] and processes capable of producing 

energy from renewable sources [96-100]. Intensified processes that combine reaction 
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and separation processes are also of interest to the process synthesis community, as these 

processes reduce the material and energy requirements and result in a cheaper 

production of commodity goods [101-104]. Ultimately, process synthesis strategies offer 

a powerful tool toward designing novel, sustainable processes that can reserve natural 

resources and produce goods at a large but affordable scale. 

2.3.3. Process Control: Maintaining Product Quality and Process Safety Standards 

Once an optimal process has been designed at steady state operation using 

process synthesis methods, it is important to maintain this operation in the instance of 

disturbances. Typical process output looks like Figure 2.14, where the state variables 

depicted in blue oscillate around a steady state, shown in green. This field of process 

control looks to use planned perturbations in manipulated variables to offset the effect of 

process disturbances on the process states and maintain the process states between 

desired control limits, shown in red. The use of process control strategies also allows 

controlled shifts in processing set points to increase or decrease production in the wake 

of market demands. 

 

Figure 2.14. Typical variation in process operation when process control is applied to a 

process output. The red lines denote the allowable control limits, the green line the 

desired steady state, and the blue line the value of the process state. 
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 Traditional process control strategies, and those widely used in industry, rely on 

the feedback of the process states 𝑦(𝑡) to the controller to determine changes in 

manipulated variables 𝑢(𝑡) to adjust for disturbances 𝑑(𝑡) or changes in the set point 𝑦𝑠𝑝 

[105]. The general feedback strategy is shown in Figure 2.15. These process states are 

compared to the set point and an adjustment in the manipulated variable is calculated 

from the controller as a function of the error 𝑒(𝑡). Standard controllers use a function 

that considers a combination of proportional, integral, and derivative terms of the error 

to calculate the change in the manipulated variable, with the specific functionality shown 

in Equation 2.33.  

𝑢(𝑡) = 𝐾𝑒(𝑡) +
𝐾

𝜏𝐼
∫𝑒(𝜏) 𝑑𝜏

𝑡

0

+ 𝑘𝜏𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (2.33) 

 

Figure 2.15. Standard feedback control strategy. State outputs y(t) are compared to a set 

point ysp to calculate an error e(t). The error is used to calculate a manipulated input u(t) 

that adjusts the process for disturbances d(t) in process operation. 

 The main idea of classical control theory, as described above, is to improve the 

closed-loop stability of the chemical process to maintain a desired steady state; the 

choice of the steady state at which to operate is left as a decision to the user. However, 

there is incentive for determining the optimal steady state based on profitability, 

productivity, or safety. In recent years, determining these optimal steady states has been 
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achieved by formulating the problem as a dynamic optimization problem and solving for 

the desired manipulated variables a priori. The dynamic optimization problems 

formulated from optimal control problems are solved using the discretization methods 

discussed in Section 2.2.4. Though operating in an open-loop fashion, and therefore not 

able to consider process disturbances like that of the closed-loop classical control 

formulation, these optimal control problems provide the target set points for which 

closed-loop control can be utilized. After the set points have been determined, classical 

control methods or more comprehensive model-based control (MPC) strategies like 

those shown in Figure 2.16 can be used to maintain operation at this optimal steady state 

[106, 107]. 

 

Figure 2.16. Model-based control (MPC) strategy for closed-loop process control. 

Measurements y(t) and inputs u(t) are used by a state observer to estimate the system 

states ŷ(𝑡). A state-feedback controller is used to generate changes in the manipulated 

variables u(t) based on set point ysp and state estimation information. 

 Optimal control methodologies have been used in chemical engineering for a 

variety of challenges. Batch processes were among some of the first applications of 

optimal control strategies as it was determined that dynamically adjusting the 

temperature of these reaction and separation processes could result in higher 

productivities [52, 108-111]. Many other separation processes, particularly distillation 
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and crystallization, have been shown to benefit from manipulation of available process 

parameters to improve product recovery and reduce energy requirements [112-114]. 

More recently, bioprocesses have been the focus of research in optimal control, as small 

perturbations in temperature can lead to an enhancement in fermentation yields for batch 

and fed-batch processing methods [115-117]. Ultimately, dynamic optimization optimal 

control provides an important tool for studying chemical engineering problems by 

achieving the full potential of process systems. 

2.4. Conclusion 

This chapter has illustrated the many algorithms available for solving 

optimization problems of varying complexity. Detailing the ability to solve mathematical 

programs with nonconvexity, nonlinearity, equality and inequality constraints, and 

integer variables allows the area of process engineering to model and optimize intricate 

chemical processes. To this point, the studies of process systems engineering have been 

mainly focused on traditional, continuous processes that deliver commodity chemicals or 

energy in the form of fossil fuels. However, the development of alternative processes 

based on the emergence of biological production strategies has gained interest among the 

engineering community. The next chapter will discuss the potential benefits and 

underlying challenges found in bio-based processing strategies, with emphasis placed on 

the renewable energy and pharmaceutical industries. 
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CHAPTER III 

BIOCHEMICAL PROCESSES AS PLATFORMS FOR SUSTAINABLE 

ENGINEERING 

3.1. An Introduction to Biochemical Processing 

Throughout history, humans have been reliant on biological products. The 

understanding of standard agricultural practices resulted in an increase in available food 

resources and the settling of a traditionally nomadic people. Many plants and microbes 

produce chemicals that are medicinal in nature, providing treatments to many illnesses 

and increasing the average life expectancy. Biological materials have also been used as a 

source of fuel, beginning with wood used for fires and steam engines and eventually 

shifting to coal and oil used to provide electricity and power internal combustion 

engines. Faced with present day challenges of global warming, declining energy 

availability, and rising health care costs, humans may need to again rely on biological 

methods to develop sustainable systems that increase availability of energy and 

medicinal resources. 

In this chapter, the opportunities and challenges of harnessing the power of 

biologically produced molecules are discussed. Attention will be paid to the scientific 

advancements in genetic engineering and the resulting impact on the understanding of 

cellular metabolism and enzyme kinetics. Additional focus will be placed on the use of 

these advancements to develop biochemical processing methods, defined as any 

chemical process that uses complete living cells or their components in the conversion of 

a raw material to a final purified product, to increase availability of sustainable, clean 
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sources of energy and pharmaceuticals. Challenges innate to biochemical systems that 

rely on batch operation will be addressed, and the opportunities for continuous 

bioprocess development using process systems engineering strategies will be discussed. 

This interconnection between bioprocessing and optimization will set the stage for the 

work presented in the following chapters. 

3.2. Fundamentals of Biochemical Processes 

To effectively utilize biochemical methods in chemical processes, it is important 

to understand the fundamentals of cellular functions. Since the discovery of penicillin by 

Alexander Flemming in 1928, engineers have been looking to understand and utilize 

biochemical processes to produce necessary proteins and chemicals [118]. In the decades 

following, microbial systems have been used to produce enzymes such as catalase, 

cellulase and hemicellulose, and lactase, or primary and secondary metabolites such as 

ethanol, citric acid, vitamins, and various antibiotics. Genetic engineering has also been 

used to develop recombinant organisms capable of producing metabolites not native to 

the species, including insulin, streptokinase, and various vaccines [119-125]. 

This section describes the fundamental aspects of biochemical processes used to 

produce high-value pharmaceuticals and commodity chemical products. First, cellular 

metabolism, including the critical reaction pathways for aerobic and anaerobic growth, is 

discussed. Methods for systematically reprogramming these metabolic pathways by 

modifying the genetics of host microbial systems to produce non-native products are 

summarized. These methods are the pivotal discovery in microbiology for making 

biological processes viable. A mathematical understanding of these biochemical 
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interactions is needed, whether genetically altered or natural. To this end, modeling 

paradigms for both cellular metabolism and enzyme catalysis are presented. Finally, 

recovery and purification methods for biologically derived products will be briefly 

explored as the impetus for driving changes in the paradigm of biochemical processing 

practices. 

3.2.1. Cellular Metabolism and Genetic Engineering: Reprogramming Cellular 

Processes to Produce Desired Products 

3.2.1.1. Cellular Metabolism 

Cellular metabolism is the set of all biochemical reactions that are necessary for 

the production and utilization of energy within the cell. These reactions convert a 

substrate, such as glucose, to a variety of organic molecules necessary for cellular 

function and growth, such as nucleotides, amino acids, fatty acids, sugars, and energy in 

the form of adenosine triphosphate (ATP) needed to power the synthesis of these vital 

molecules. The reactions of cellular metabolism can be broken down into two categories 

based on the presence of oxygen: aerobic when oxygen is present and anaerobic 

otherwise. The mechanisms for each category will be briefly discussed to achieve an 

understanding of the complexity of cellular metabolism. As many desired products, 

including the cells themselves, are the result of these reaction pathways, it is important 

for process systems purposes to develop models to quantify the vast array of reaction 

networks found in the cell. 

Regardless of the presence of oxygen, the beginning of the metabolic process 

using a glucose substrate is the Embden-Meyerhof-Parnas (EMP) pathway, also known 



 

54 

 

as glycolysis [126]. This pathway produces a small amount of energy for future cellular 

reactions; however, the more important result of glycolysis is the conversion of a single 

molecule of glucose into two molecules of pyruvate through multiple enzymatic steps, a 

key metabolite that will be used as a raw material to produce many desired chemicals. 

Under anaerobic conditions, the pyruvate produced during glycolysis will be converted 

to organic acid or alcohol products. Under aerobic conditions, however, these pyruvate 

molecules are used for the acylation of coenzyme-A to form the molecule acetyl-CoA.  

The reduction of acetyl-CoA to the molecule citrate serves as the entry point into 

the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle. The primary goal of 

the TCA cycle is to produce the reduced form of the molecules nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FADH), providing electrons 

necessary for powering future biosynthetic pathways and ATP generation during aerobic 

respiration. The cyclic conversion of citric acid in the TCA cycle also provides the 

carbon skeletons for amino acid synthesis, which play a critical role in the production of 

proteins; a specific type of protein, enzymes, will be discussed later due to their 

relevance to biochemical processing applications. 

 Under anaerobic conditions, the pyruvate produced during glycolysis takes an 

alternative path to produce the energy required for biochemical synthesis. Due to the 

lack of oxygen that acts as an electron acceptor during aerobic growth, pyruvate 

molecules are converted to their final product through a series of balanced reduction-

oxidation reactions for energy production. This series of reactions, termed fermentation, 

often result in many commercially relevant products, such as ethanol, butanol, acetic 
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acid, lactic acid, isopropanol, and glycerol, among others. A general flowchart of cellular 

metabolism, including the aerobic and anaerobic pathways, is shown in Figure 3.1.  

 

Figure 3.1. Generic flowchart of the metabolic reactions occurring in the cell. 

3.2.1.2. Genetic Engineering 

 Even with an understanding of cellular metabolism, its use in chemical processes 

would require the selection of a specific organism that can produce a specific product at 

the necessary quantity to be economically viable. This seemingly impossible task would 

be much more realistic if the genes for the desired product from one species could be 

expressed in another, allowing for the design of bioprocesses around cell strains with 

known qualities but which produce non-native proteins. It would be even more helpful if 

modifications could be made within an organism that allows for the increased expression 

of genes that promote production and the decreased expression of genes for alternative 

pathways. With recent discoveries in microbiology, these what-if scenarios have become 
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a reality, allowing for the expression of foreign genes in specified host cell lines. Two 

main methods are utilized to achieve this gene expression: inserting a circular piece of 

DNA known as a plasmid into a cell, and directly modifying the genomic DNA of the 

cell. The use of a plasmid allows for the over-expression of a gene by adding multiple 

copies of the desired DNA sequence in a single construct, potentially resulting in higher 

production rates of desired proteins or metabolites, but is susceptible to stability issues 

from either being “kicked-out” of the cell or losing function after a certain number of 

replications. Alternatively, the direct modification of the genome provides a more stable 

change by altering the chromosomal DNA directly at the cost of an increased difficulty 

of adding multiple copies of the desired gene, resulting in a lower level of expression. 

While not specifically a focus of the work within this thesis, the understanding of 

cellular genetics and the tools developed for genetic engineering are vital to the success 

of any biochemical engineering process. As such, a brief history of the field, including 

an explanation of the two methods for genetic modification, will be given. 

 The process of genetic engineering using plasmid expression consists of four 

general steps: (1) identification, isolation, and amplification of the gene of interest from 

a cell line, (2) combination of the gene with a promoter region, termination region, and 

selectable marker gene into a plasmid construct, (3) transformation of the desirable cells 

with the constructed plasmid, and (4) selection of cells with successful transformation 

based on the choice of the selectable marker. Genetic engineering using plasmids does 

not affect the genomic DNA of the cell but instead inserts a new construct of stable 
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DNA that can be utilized to produce compounds not native to the chosen cellular 

species. 

Identification and isolation of the desired gene begins with the use of restriction 

enzymes, or enzymes that cut DNA at specific sights called restriction sights [127]. After 

this digestion process fragments of DNA of varying sizes are produced, and the 

identification of the desired fragment and further generate of more copies of the 

fragment is needed, a process called amplification. Assuming the nucleotide sequence of 

the DNA is known for the desired gene, electrophoresis can be used to separate the 

fragments and the fragment of the desired length can be isolated [128]. After isolation, 

polymerase chain reaction (PCR) is used to amplify the gene of interest by using thermal 

cycling to promote DNA deconstruction followed by DNA reconstruction processes 

[129, 130]. 

With the gene of interest isolated, it now needs to be placed in a stable structure 

that can be introduced into the desired cell line. This structure, termed a construct or 

plasmid, often contains a gene promoter region, a gene terminator region, and an 

additional gene called a selective marker [126, 131, 132]. The promoter region acts as a 

binding site for the enzyme responsible for DNA transcription into RNA, RNA 

polymerase, and its associated transcription factors. These regions also allow modulation 

of the rate at which a certain gene is transcribed, which in turn modulates the level of 

production of a specific product. The terminator region, conversely, acts as a signal for 

the transcription process that the complete sequence of the gene has been transcribed. 

The last piece of the construct, the selective marker, is included to indicate the success of 
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the upcoming transformation into the species of choice. Often a gene for an antibiotic 

resistance, the existence of this marker changes the phenotype of the engineered cell 

line; a successfully modified cell with an antibiotic resistance will survive in the 

presence of typically lethal antibiotics while unmodified cells will die [133-136]. By 

combining the desired gene, promoter, terminator, and selective marker into a complete 

construct using enzymes called DNA ligase enzymes, the final plasmid can be 

introduced to the chosen cell line [137]. 

The process of introducing the plasmid construct into the desired cell line is 

called transformation and occurs naturally in some bacterial cell lines [138, 139]. 

However, most nonbacterial cell lines require some external mechanism to accept the 

plasmid. One method is to treat the cells with a salt wash and heat treatment, opening 

pores within the cell wall to allow for diffusion of the plasmid [140, 141]. An additional 

method to open pores to allow cellular transformation is to introduce an electric field to 

the cells, a process known as electroporation [140, 142]. After using either one of these 

transformation techniques, the success of the transformation can be verified using the 

selective marker, successive generations of the transformed cells can be grown to 

stabilize the transformed system. 

 The alternative to introducing a plasmid is to directly modify the genome of the 

cell. There have been many methods developed to accomplish this, but the most recently 

developed CRISPR/Cas method is the simplest and most efficient method yet to target 

the modification of the chromosomal DNA directly [143]. The CRISPR/Cas method is 

designed to mimic the immune system of single-cell organisms that uses a two-
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component system of guide RNA (gRNA) and a Cas protein to provide resistance to 

foreign genetic elements [144, 145]. Genetic alterations to the target DNA can be made 

simply by altering the genomic sequence of the gRNA, which in turn guides the Cas 

protein to the location on the DNA that is to be modified. This targeted, stable approach 

to genetic modifications has made it the preferred method for gene knockouts, gene 

repression, and gene activation. Additionally, scientists have developed ways to edit 

multiple sites on the target DNA by using multiple gRNA sequences in a single 

CRISPR/Cas complex [146, 147]. The CRISPR/Cas method has already been used for 

many applications, and the mechanisms behind this revolutionary tool are still being 

studied and developed for uses in more systems [148-152]. Ultimately, the development 

of the genetic engineering tools discussed have been imperative to the bioprocessing 

community, allowing modifications at the cellular level to modulate the productivity of 

large scale systems at the cellular level, adding to the modifications and methods already 

available at the process level.  

3.2.2. Developing Models for Bioreactions: Converting Raw Materials to Desired 

Products 

3.2.2.1. Methods for Quantifying Metabolic Processes 

 To use the knowledge of both aerobic or anaerobic cellular metabolism and 

genetic engineering to develop large-scale bioprocesses, models are required that capture 

the complexity of cellular metabolism shown in Figure 3.1. One modelling method is to 

use chemical structured models that preserve the stoichiometry of all reaction pathways 

in the description of the kinetics. These models are often large sets of dynamic equations 
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that conserve the mole balances of the entire system of reaction pathways by predicting 

the flux of metabolites, denoted v, through the reaction pathways [153, 154]. An 

example of a single flux balance equation is shown in Equation 3.1, with the 𝑆 denoting 

the stoichiometry for the specific reaction. A steady-state assumption is often applied to 

these large sets of flux balance equations, allowing for the determination of the flux 

values by solving the resulting linear set of equations. While these methods are very 

detailed and have found applications in predictive genetic engineering, they are often too 

complicated to be useful in biochemical process designs [155, 156]. 

dx

dt
= S ⋅ v = 0 (3.1) 

 When considering models for biochemical process design, it is often easier to 

capture the dynamics of macroscopic, measurable components without considering the 

vast networks of intracellular reactions. These models, termed unstructured models, only 

consider the biomass growth, substrate consumption, and production of major desired 

products and byproducts. The equation for biomass growth is shown in Equation 3.2, 

where the rate of change of biomass formation is autocatalytic at a rate proportional to 

the current biomass concentration 𝑋. The proportionality constant 𝜇 is termed the growth 

rate and is a function of the substrate concentration 𝑆 as shown in Equation 3.3. The first 

term in the Equation 3.3, called the Monod equation based on his work on bacterial 

culture growth in 1949, is necessary to describe the stages of cellular growth: (1) the lag 

phase where the cells are adjusting to their environment, (2) the exponential growth 

phase, and (3) the stationary phase encountered on the depletion of the substrate [157]. 

The second term in the equation is used to model the death phase that follows the 
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stationary phase. A pictorial description of the cellular growth phases is shown in Figure 

3.2. 

dX

dt
= 𝜇𝑋 − 𝑘𝑑𝑋 (3.2) 

𝜇 =
1

𝑋

𝑑𝑋

𝑑𝑡
=
𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 (3.3) 

 
Figure 3.2. Typical stages of biomass growth in batch culture. 

 Cellular growth is accompanied by substrate consumption and formation of other 

metabolic products. Equations 3.4 and 3.5 are unstructured modeling equations used to 

describe these phenomena. The rate of substrate depletion occurs proportionally to the 

rate of biomass formation 𝜇𝑋; the proportionality constant is equal to the reciprocal of a 

yield coefficient 𝑌𝑋𝑆. Likewise, the rate of product formation is also proportional to the 

amount of biomass in the culture broth. However, unlike the substrate utilization, the 

amount of product formed may be growth-associated, or a function of the growth rate 𝜇, 

or non-growth. This is accounted for in Equation 3.5 with the first and second term, 

respectively, where the coefficients 𝛼 and 𝛽 serve as proportionality constants. When 

coupled, Equations 3.2, 3.3, 3.4, and 3.5 serve as a complete macroscopic description of 
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cellular metabolism and is much more conducive to analyzing, designing, and 

controlling biochemical processes. 

𝑑𝑆

𝑑𝑡
= −

𝜇𝑋

𝑌𝑋𝑆
 (3.4) 

𝑑𝑃

𝑑𝑡
= 𝛼𝜇𝑋 + 𝛽𝑋 (3.5) 

Equations 3.2 through 3.5 describe the growth of cellular species in an ideal 

environment. It is often the case, however, that cellular growth is hindered due to a high 

substrate or product concentration, a process known as substrate or product inhibition. 

Many substrates, including glucose, and desirable products formed in the anaerobic 

pathway of cellular metabolism, including ethanol, butanol, and acetic acid, are often 

inhibitory to cellular growth at high concentrations [126]. Cellular processes may also be 

downregulated due to a toxic component in the growth media. Cellular inhibition can be 

classified as noncompetitive or competitive regardless of its cause, and the Monod 

equation used for describing the growth rate must be modified to account for this 

inhibition. Equation 3.6 below is the common modification for noncompetitive substrate 

or product inhibition, where I is the concentration of the inhibition compound, which 

may be the substrate, product, or toxic compound, and 𝐾𝐼 is the inhibition parameter. A 

similar equation is available for competitive inhibition, which is shown as Equation 3.7.  

𝜇 =
𝜇𝑚𝑎𝑥𝑆

(1 +
𝐾𝑆
𝑆 ) (1 +

𝐼
𝐾𝐼
)
 

(3.6) 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑚 (1 +
𝐼
𝐾𝐼
) + 𝑆

 
(3.7) 
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3.2.2.2. Methods for Quantifying Enzymatic Reactions 

Certain special products of cellular metabolism that garners interest in bioprocess 

design are enzymes. While many enzymes are used within the cellular metabolism 

pathways, these proteins are of interest in bioprocesses for their ability to catalyze 

chemical reactions. Like transition metals used for traditional chemical catalysts, 

enzymes work by lowering the activation energy required to convert a raw material to a 

desired product. Enzymatic reactions typically proceed at a much higher rate than 

chemically catalyzed reactions under ambient conditions due to their specificity, 

versatility, and effectiveness, a characteristic that can be utilized to design more efficient 

processes [126]. Simple enzyme catalysis is defined by the chemical pathway shown in 

Equation 3.8 below, where ES is the complex formed between the enzyme and its 

specific substrate in a first step followed by the formation of the product P and release 

from the enzyme E. 

𝐸 + 𝑆
𝑘−1
⇐ 

𝑘1
⇒𝐸𝑆

𝑘2
→ 𝐸 + 𝑃 (3.8) 

To efficiently implement the benefits of enzymes in chemical processes, a mathematical 

description of these kinetics is required. 

 The first mathematical description for enzymatic reactions was developed by 

Henri in 1902 and again by Michaelis and Menten in 1913 [158, 159]. These 

mathematical models describe the rate of formation of the product P and are 

qualitatively like the Langmuir-Hinshelwood kinetics that describe traditional metallic 

catalysis reactions and the Monod equation previously discussed that describes the 

cellular growth rate. Two methods can be used to develop the kinetic equations, the 
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initial rapid equilibrium assumption developed by Henri and Michaelis and Menten, and 

the quasi-steady-state assumption later developed by Briggs and Haldane in 1925 [159, 

160]. Both methods begin with time-dependent models of the product and enzyme-

substrate complex concentrations shown in Equations 3.9 and 3.10 below. An additional 

mass balance is used to account for the total amount of enzyme in the system, which is 

conserved throughout the reaction. In the equilibrium assumption, the definition of the 

equilibrium constant is used along with Equation 3.11 to determine an algebraic solution 

for𝐸𝑆; this is then substituted into Equation 3.9 to successfully derive Equation 3.12. 

Alternatively, the quasi-steady-state hypothesis can be used by setting Equation 3.10 

equal to zero and solving for 𝐸𝑆; this method also leads to Equation 3.12 when 

substituted into Equation 3.11. 

𝑑𝑃

𝑑𝑡
= 𝑘2(𝐸𝑆) (3.9) 

𝑑(𝐸𝑆)

𝑑𝑡
= 𝑘1(𝐸)(𝑆) − 𝑘−1(𝐸𝑆) − 𝑘2(𝐸𝑆) (3.10) 

𝐸 = 𝐸0 − 𝐸𝑆 (3.11) 

𝑑𝑃

𝑑𝑡
=

𝑉𝑚𝑆

𝐾𝑚 + 𝑆
       𝑉𝑚 = 𝑘2𝐸0 (3.12) 

 The model in Equation 3.12 describing the production of product 𝑃 is a function 

of the substrate concentration 𝑆 and the total enzyme concentration𝐸0. It also contains 

two parameters that need to be estimated, 𝑉𝑚 and 𝐾𝑚. While the parameter estimation 

procedures discussed in Chapter II can be used alongside experimental data, three other 

methods are available based on restructuring Equation 3.12 into different linear forms 
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and comparing to linearized data. The resulting models after each linearization method is 

shown as Equation 3.13, 3.14, and 3.15 and their corresponding linear regression plots 

are referred to as the Lineweaver-Burk plot [161], the Eadie-Hofstee plot [162, 163], and 

the Hanes-Woolf plot [164, 165], respectively. In each plot the values of 𝐾𝑚 and 𝑉𝑚 are 

found as either an x-intercept, a y-intercept, or the slope of the regression. Examples of 

the three data fitting methods are shown in Figure 3.3. below. 

 
Figure 3.3. (a) Lineweaver-Burk, (b) Eadie-Hofstee, and (c) Hanes-Woolf linear 

regression methods for the determination of Michaelis-Menten parameters 𝐾𝑚 and 𝑉𝑚. 

1

𝜈
=

1

𝑉𝑚
+
𝐾𝑚
𝑉𝑚

1

𝑆
           𝜈 =

𝑑𝑃

𝑑𝑡
 (3.13) 

𝜈 = 𝑉𝑚 − 𝐾𝑚
𝜈

𝑆
           𝜈 =

𝑑𝑃

𝑑𝑡
 

(3.14) 

𝑆

𝜈
=
𝐾𝑚
𝑉𝑚

+
𝑆

𝑉𝑚
              𝜈 =

𝑑𝑃

𝑑𝑡
 

(3.15) 

 To this point methods for modeling simple enzyme kinetics have been discussed, 

but enzymatic processes are often more complex. Many enzymes have multiple substrate 

binding sites that must be bound in specific order for the reaction to proceed, a process 

known as allosteric or cooperative binding [126]. Like cellular systems, enzymes are 
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often inhibited by binding with certain compounds other than the desired substrate; 

however, inhibition in enzymatic processes is accounted for in the product formation 

equation directly instead of through the growth rate. Some compounds such as heavy 

metals will result in permanent inhibition when binding with the enzyme active site, 

while others will bind reversibly [126]. While the methodology used holds for these 

more complex systems, inhibition will result in slight variations in Equation 3.12. 

Allosteric enzymes will result in a cooperativity coefficient 𝑛 being introduced as an 

exponent to the substrate concentration [𝑆]. 

Reversible inhibition will also result in changes to Equation 3.12 based on how 

the inhibition occurs. The first method of reversible inhibition is competitive inhibition, 

where the inhibitory molecules compete with the substrate for the active site of the 

enzyme and results in a modification of Equation 3.12 shown in Equation 3.16.  

𝐸 + 𝑆
𝑘−1
⇐ 

𝑘1
⇒𝐸𝑆

𝑘2
→ 𝐸 + 𝑃

𝐸 + 𝐼 ⇐
𝐾𝐼
⇒ 𝐸𝐼                    

                      
𝑑𝑃

𝑑𝑡
=

𝑉𝑚𝑆

𝐾𝑚 (1 +
𝐼
𝐾𝐼
) + 𝑆

 (3.16) 

Alternatively, noncompetitive inhibitors do not bind to the active site but rather 

another site on the enzyme, hindering the binding of the substrate molecule by causing a 

deformation of the substrate active site; this results a modified equation shown in 

Equation 3.17. 

𝐸 + 𝑆
𝑘−1
⇐ 

𝑘1
⇒𝐸𝑆

𝑘2
→ 𝐸 + 𝑃              

𝐸 + 𝐼 ⇐
𝐾𝐼
⇒ 𝐸𝐼 ⇐

𝐾𝑚
′

⇒  𝐸𝑆𝐼 ⇐⇒ 𝐸𝑆

         
𝑑𝑃

𝑑𝑡
=

𝑉𝑚𝑆

𝐾𝑚 (1 +
𝐼
𝐾𝐼
) + 𝑆

 (3.17) 
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In certain cases, uncompetitive inhibition occurs, which is the selective binding 

of an inhibitor to the enzyme-substrate complex, preventing the reaction from 

proceeding. Equation 2.18 is the result of these additional uncompetitive inhibition 

reaction pathways. 

𝐸 + 𝑆
𝑘−1
⇐ 

𝑘1
⇒𝐸𝑆

𝑘2
→ 𝐸 + 𝑃

𝐸𝑆 + 𝐼 ⇐
𝐾𝐼
⇒𝐸𝑆𝐼               

                     
𝑑𝑃

𝑑𝑡
=

(
𝑉𝑚

1 +
𝐼
𝐾𝐼

)𝑆

𝐾𝑚′ (
1

1 +
𝐼
𝐾𝐼

) + 𝑆

 (3.18) 

Finally, a high substrate concentration can result in inhibition. This results in a 

modification to the Michaelis-Menten equation as shown in Equation 3.19. 

𝐸 + 𝑆
𝑘−1
⇐ 

𝑘1
⇒𝐸𝑆

𝑘2
→ 𝐸 + 𝑃

𝐸𝑆 + 𝑆 ⇐
𝐾𝑆𝐼
⇒ 𝐸𝑆2               

                   
𝑑𝑃

𝑑𝑡
=

𝑉𝑚𝑆

𝐾𝑚 + 𝑆 +
𝑆2

𝐾𝑆𝐼

 (3.19) 

3.2.2.3. Industrial Bioprocessing Applications for Metabolism and Enzyme Kinetics 

Researchers have taken advantage of recombinant systems and enzyme kinetics 

to design and analyze a variety of biochemical processes, including the production of 

biofuels, detergents, foods, and pharmaceuticals. Much of the recent interest in enzyme 

reactions is to produce simple sugars via hydrolysis of starch or cellulose. Enzymes used 

in this case can hydrolyze and break apart the respective 𝛼-linkages or 𝛽-linkages 

between the glucose monomers. Resulting simple sugars are often used in the 

fermentative production of alternative liquid fuels [166-171]. Economical production 

processes for several types of enzymes, including cellulases and lipases, are also of great 
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interest for developing biological detergents [172-175]. In the food industry, enzymes 

are often used to make products such as high fructose corn syrup, fruit juice, and lactose 

free milk [176-179]. Work has also been done on more sustainable production methods 

for enzymes used in pharmaceutical applications, such as protease or penicillin amylase, 

while also reducing the costs of these medicinal products [180-186]. Ultimately, the 

understanding of enzymatic pathways and the resulting kinetics is vital to the production 

of processes that span the fuels, food, and health-care industries. 

Many systems have been developed to produce cells as the desirable product for 

medicinal use. These cells are administered as whole-cell therapies for the treatment of 

many different health problems. Many researchers have investigated the development of 

bioprocesses to produce stem cells capable of differentiating into several specialized cell 

types, providing treatments for many genetic, immunological, and degenerative diseases, 

as well as a variety of cancers [187-192]. Another system of interest is the ex vivo 

production of red blood cells that can increase the supply of rare blood types available 

for needed transfusions [193]. Work has also been done on developing cellular therapies 

for the tissue engineering of skin and for use in therapies for lung diseases [194, 195]. 

 The models and understanding available for enzyme kinetics and cellular 

metabolism allow the development of biochemical conversion processes to produce 

many desirable products. However, strategies to separate the desired products from the 

unconcentrated effluent of the reactor are needed to develop complete chemical 

processes. Though not a large focus for the work presented in this thesis, for 
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completeness the next section will briefly introduce the separation processes commonly 

used for the recovery of biological products. 

3.2.3. Bio-separation: Recovering Desired Products from Biological Residues 

Once a cell line has been successfully transformed and a bioreactor process has 

been implemented to produce a desired compound, separation processes are necessary to 

recover the product in a purified form. One of the challenges of many biological 

products, specifically those in the pharmaceutical area, is the requirement of highly 

purified product to allow for the successful administration to patients. Also, while some 

products are extracellular and found in the culture broth, many intracellular products are 

not secreted from the cell and require additional processing steps to break open, or lyse, 

the cells to retrieve the product. The recovery process consists of up to five basic steps 

depending on the nature of the desired product: (1) cell concentration, (2) cell disruption, 

(3) isolation of the product and removal most of the water, (4) purification or removal of 

contaminating chemicals, (5) final preparation [126]. 

The processing limitations and desired quality of the final product often put a 

large burden on the separation train, usually consisting of multiple processes in series to 

guarantee purity. Like traditional chemical engineering systems, separation processes in 

biochemical process can account for 50-80% of the total manufacturing costs [196-200]. 

While work has been done to improve the separation processes, the high separation cost 

is often attributed to the low productivity of bioreactions [201-203]. To improve further 

upon these separation costs, advancements need to be made in methods for producing 

the desired product in the bioreactor at a level which increases process productivity. 
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3.3. Meeting Consumer Demand: The Need for Continuous Manufacturing 

Traditional bioprocessing has been performed in a batch mode, where the 

reaction proceeds for a designated amount of time after initially charging the reactor 

with a specific amount of raw materials. Once the time has passed, the contents of the 

bioreactor are emptied to proceed to downstream separation and the bioreactor is 

cleaned, sterilized, and filled with a new batch of reagents to begin the reaction cycle 

again.  

While currently the industry standard in bioprocess, batch modes of operation 

face inherent production challenges. Inhibiting and toxic compounds often build up 

during batch fermentation as the reaction progresses, causing loss of cellular or 

enzymatic activity; fed-batch production methods have been investigated to mitigate this 

problem by offering the ability to systematically introduce substrate while 

simultaneously provide dilution effects; these fed-batch systems often suffers from other, 

similar disadvantages as batch production, most notably batch-to-batch variability [204-

208]. Processes operating in batch and fed-batch mode typically employ multiple 

reactors operating cyclically to ensure that some product is always available for 

downstream processing, reducing process down-time and allowing for operation in a 

pseudo-continuous manner at the cost of increased capital expenditure [209]. This 

configuration also requires a large operating cost as enough raw materials are needed on-

hand to operate multiple reactors simultaneously [210]. For small-scale production, these 

methods of production are acceptable; however, as product demand increases, 

conventional wisdom says that batch processing methods are inadequate [211]. 
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For large-scale production, bioprocessing should emulate the continuous 

processing strategy used by the commodity chemical industries. Continuous processes 

differ from batch and fed-batch processing methods by introducing raw materials to the 

reactor via an inlet flow and removing product from the bioreactor via an outlet flow. 

When equal, the inlet or outlet flowrate is normalized by the volume of the bioreactor 

and is referred to as the dilution rate D and is synonymous with the space velocity of 

traditional chemical systems [212]. The inclusion of an outlet stream facilitates the 

gathering of measurements necessary for implementing online process control and fault 

detection strategies, mitigating the batch-to-batch reliability issues of batch or fed-batch 

strategies [209]. Continuous production typically results in decreased capital and 

operating cost requirements due to the operation of smaller reactors in fewer number to 

achieve the desired process throughput [213]. Continuous bioprocessing methods have 

also been shown to be environmentally friendlier by eliminating the need for the 

cleaning and sterilization step between batches. The United States Food and Drug 

Administration (USFDA) has been initially hesitant to adopt standards for continuous 

processing due to challenges with contamination and the ability to successfully allocate 

“batch numbers” that can help identify the product in case of a processing issue. 

However, these initial hesitations have since been alleviated as continuous processes 

have been identified as a method to improve product supply, product quality, process 

flexibility, and process robustness for biomanufacturing [204, 213]. Figure 3.4 compares 

the batch and continuous processing paradigms from a process systems perspective. 
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Figure 3.4. Comparison of batch processing and continuous processing methods for 

biochemical processes. 

One of the challenges that continuous bioprocessing must overcome is the 

requirement of maintaining process productivity when compared to batch systems. The 

productivity of a biochemical system is defined as the amount of product made per unit 

volume per unit time and is affected by the dilution rate, as shown in Figure 3.5. At zero 

dilution rate, continuous processes are in fact batch operations that achieve a high titer, 

also known as concentration which is displayed as 𝑥 from the top plot. However, this 

high titer comes at the cost of a low productivity, shown as 𝑥𝐷 on the bottom plot, due to 

long reaction times often associated with bioprocessing. As the dilution rate 𝐷 increases 

the product titer slowly decreases while the reactor productivity increases. At a certain 

dilution rate the productivity reaches a maximum, and beyond that point both the titer 

and productivity decline. Eventually, both the titer and productivity reach a value of 

zero; this value of the dilution rate is referred to as the washout dilution rate, where the 

dilution rate is higher than the growth rate of the cells and growth cannot keep up with 

the removal of cells from the effluent. The goal of continuous processing is to operate at 
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the optimal dilution rate that leads to the maximum process productivity at the expense 

of product titer. 

 
Figure 3.5. Effect of adding dilution rate on the titer and productivity of biochemical 

reactions. 

 The potential of continuous bioprocessing has opened the door for the 

development of novel processes. The ability to use process modeling strategies with the 

available first-principles models for cellular metabolism and enzyme kinetics suggest 

that a mathematical understanding of these biological processes can be reached. Process 

systems engineering strategies in process synthesis are uniquely designed to use these 

models to determine the optimal process topology from a variety of processing 

decisions; when used with the availability and versatility of genetic engineering, 

continuous processing strategies for a variety of products can be investigated. The 

existence of an optimal dilution rate that maximizes the productivity of these bio-

systems invites the use of process control strategies to achieve and maintain operation at 

this critical point, reducing the stress on the downstream separation and reducing the 
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cost of producing critical products in the health care and alternative fuels industries. The 

combination of process systems engineering and biochemical engineering fundamentals 

provides an excellent opportunity to design and control large-scale, continuous systems 

to increase the availability and reduce the costs of biologically-derived products. 

3.4. Conclusions 

In this chapter, fundamentals of bioprocessing have been explored; specifically, 

how the discovery of genetic engineering introduced increased customizability to 

cellular strains and how continuous manufacturing practices can provide over batch 

processing. In Chapter II, the fundamentals of optimization were discussed as tools for 

the application of the process systems engineering strategies for the modeling, design, 

and controlled operation of chemical systems. Using this knowledge, the remainder of 

this thesis is dedicated to discussing the use of process systems strategies in modeling, 

design, and control to develop novel methods for producing biological products via 

continuous processing methods. 

By combining the fundamentals of process systems engineering and the 

adaptability of bioprocessing, large-scale, well-controlled processes can be designed. 

Chapter IV and Chapter V utilize process modeling and optimal control techniques to 

model the production of nutraceuticals from recombinant yeast and subsequently use 

these models for the design a novel, multi-feed, continuous bioreactor that maximizes 

process productivity while decreasing process operating costs when compared to the 

traditional single-feed method. In Chapter VI and Chapter VII, process synthesis 

methodologies are used to design large-scale, continuous processes for the alternative 
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liquid fuels bioethanol and biobutanol from lignocellulosic biomass. By focusing on the 

areas of pharmaceuticals and biofuels, the impact of continuous processing can be 

exemplified. 



_____________________ 
*
Reprinted with permission from “Modelling of batch kinetics of aerobic carotenoid 

production using Saccharomyces cerevisiae” by Ordonez et al., 2016. Biochemical 

Engineering Journal, 114, 226-236, Copyright 2016 by Elsevier. 
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CHAPTER IV 

MODELING OF BATCH KINETICS OF AEROBIC CAROTENOID PRODUCTION 

USING SACCHAROMYCES CEREVISIAE* 

4.1. Introduction 

Carotenoids, a diverse group of yellow-orange pigments found in many 

biological systems, are produced by diverse organisms such as plants, fungi, and bacteria 

[214-216]. Because of its colored characteristic, it has been extensively used in food 

pigmentation and as constituents in vitamins and dietary supplements [217-220]. 

Carotenes, such as β-carotene, have important biological roles as a precursor of vitamin 

A. They have been shown to have positive impacts in human health, having antioxidant 

effects and properties protective against cancer [221-224]. 

Presently, some carotenoids are industrially produced by synthetic chemical 

technology; however, some of the by-products have undesirable side effects when 

consumed and most of the carotenoids such as β-carotene have a structural complexity 

that makes the chemical synthesis an unviable option. For this reason, the production of 

carotenoids from microbial sources has been the focus of vast literature references [217, 

225-228]. 

Overflow metabolism is the incomplete oxidation of the carbon source resulting 

in the excretion of generally inhibitory organic end products during aerobic operations. 

This phenomenon, also called the “short-term Crabtree effect”, manifests usually at a 

high substrate concentration [229, 230]. Various microorganisms exhibit this 
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phenomenon, examples of which include Saccharomyces cerevisiae cultures with 

aerobic ethanol formation [231, 232], Escherichia coli cultures with aerobic acetate 

formation [233, 234], or mammalian cell cultures with aerobic lactate formation [235]. 

This inhibition effect is undesirable in many processes and leads to complications when 

trying to quantitatively describe these systems. 

Mathematical models describing the kinetics of microbial growth, substrate 

uptake and product formation are very useful for optimization, process control, the 

reduction of process operating costs, and the increase of product quality of cultivation 

processes. In this context, kinetic models have been reported for yeast systems such as 

Xanthophyllomyces dendrorhous [236, 237] but there are very few studies dealing with 

appropriate modeling approach for engineered S. cerevisiae strains, and more 

specifically those engineered to produce β-carotene. The aim of this work is to develop a 

suitable and reliable kinetic model for the β-carotene production in batch cultures of an 

engineered S. cerevisiae strain using glucose as the main substrate. This model is also 

applied to predict cell growth, substrate consumption, ethanol and acetic acid formation 

and later assimilation. Furthermore, sensitivities of various model parameters were 

studied to elucidate the need to focus on key model parameters. 

4.2. Materials and Methods 

4.2.1. Microorganism and Culture Media 

An S. cerevisiae strain mutant SM14 engineered to produced β-carotene was 

used in this study [238]. The yeast strain was stored in frozen vials at -80℃ and in plates 

at 4℃ which were subcultured every three weeks for maintenance. Experiments were 
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conducted to determine the optimal initial glucose loading for all experiments. A single 

flash of 50 mL YPD and 20 g/L glucose was inoculated with a single colony and grown 

at 200 rpm and 30℃ overnight until the exponential growth phase was reached. Using 

this culture, YPD media with varying concentrations of glucose (20 g/L, 40 g/L, 60 g/L, 

80 g/L and 100 g/L) were inoculated in a 1:60 ratio that was intended for the bioreactor 

studies. These shake flask cultures were grown at 200 rpm and 30℃ for 110 hours after 

innoculation to allow for complete use of glucose. The beta-carotene concentrations 

were analyzed at the end of this time to determine the optimal initial glucose 

concentration that would yield the highest amount of β-carotene. Figure 4.1 below 

shows the productivity results of these experiments. 

The results in Figure 4.1 show that an increase in initial glucose concentration 

shows an inverse relationship with the overall 𝛽-carotene titer on a gram-dry-cell-weight 

basis. Based on these results, it was determined that 20 g/L was optimal initial glucose 

loading. As such, all experiments were conducted with the cells grown in fresh Yeast 

Nitrogen Base (YNB) media supplemented with 20 g/L D-glucose. 

Figure 4.1. Effect of initial glucose concentration on overall carotenoid yield. 

Experiments were done in YPD media with varying concentrations of glucose (20 g/L, 

40 g/L, 60 g/L, 80 g/L and 100 g/L), were inoculated in a 1:60 ratio, and were grown at 

200 rpm and 30℃ for 110 hours after innoculation to allow for complete use of glucose. 
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4.2.2. Bioreactor Cultivation Studies 

The bioreactor studies were carried out in a 7 L, glass, autoclavable bioreactor 

(Applikon
®
, Foster City, CA) with a 3 L working volume. The bioreactor was inoculated

with the entire seed culture. The temperature was set at 30 ̊C, pH was maintained at 4 by 

addition of 2 M HCL or 2 M NaOH as needed, the agitation speed was kept constant at 

800 rpm and the bioreactor was supplied with a constant airflow of 6 L/min. These 

conditions were optimized experimentally by Olson [239]. All the bioreactor 

experiments were performed in batch mode carried out in duplicate with duration of 72 

hours, the time at which the acetic acid produced was totally consumed. Substrate 

consumption and product formation and depletion were verified using the HPLC Agilent 

Technologies 1290 Infinity with the use of the Aminex HPX-87H HPLC column. 

Figure 4.2. Overview of the metabolic pathways found in wild type S. cerevisiea. The 

key enzymes for overflow metabolism are: pdh: pyruvate dehydrogenase complex; pdc: 

pyruvate decarboxylase; adh: alcohol dehydrogenase; ald: acetaldehyde dehydrogenase; 

acs: acetyl 
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The S. cerevisiae SM14 culture presents the following characteristics in a stirred-

tank bioreactor with 20 g/L initial glucose. Initially, ethanol and acetic acid are produced 

in the early stage of the batch culture due the overflow metabolism. The production of 

these metabolites starts with glycolysis, the metabolic pathway where the six-carbon 

glucose molecule is broken down into two three-carbon pyruvate molecules. At this 

level, cell respiration via the mitochondrial pyruvate dehydrogenase complex (pdh) 

producing Acetyl-CoA competes with cytosolic pyruvate decarboxylase (pdc) reducing 

it to acetaldehyde [240-243]. Once the acetaldehyde is formed through the pyruvate 

decarboxylase activity, it may feed the tricarboxylic acid cycle (TCA), reducing the 

acetaldehyde via acetaldehyde dehydrogenase (ald) to acetate and then producing acetyl 

coenzyme A (Acetyl-CoA) through acetyl-CoA synthetase (acs) [243, 244]. 

Alternatively, acetaldehyde is reduced to ethanol instead of being oxidized to carbon 

dioxide thru alcohol dehydrogenase (adh) [240], as shown in Figure 4.2. When the 

glucose is consumed, the ethanol present in the medium can be utilized via aerobic 

metabolism and converted to Acetyl-CoA via acetaldehyde and acetate, the pathway 

does not proceed via pyruvate. Similarly, once the ethanol becomes exhausted the 

acetate can be consumed [245]. 

The produced acetyl coenzyme A can be used in many different biochemical 

reactions such as the mevalonate pathway shown in Figure 4.3. Beta-carotene is derived 

from the isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) which 

can be condensed into geranyl pyrophosphate (GPP), a C10 molecule, and is then 

converted to the C15 molecule farnesyl pyrophosphate (FPP) with the addition of an 
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isoprene unit. The FPP is condensed into geranylgeranyl pyrophosphate (GGPP), a C20 

compound, catalyzed by crtE. The β-carotene biosynthesis starts with the formation of 

the C40 carotenoid phytoene, catalyzed by phytoene synthase (crtYB). Isomerization and 

desaturation reactions allow the formation of lycopene, which forms β-carotene [246-

248]. These pathways, highlighted in red in Figure 4.3, are not native and were 

recombinantly introduced to the genome. 

4.2.3. Inhibition Studies 

Experiments were performed to determine if the products inhibit the growth rate 

of the S. cerevisiae SM14. The experiments were done in a baffled Erlenmeyer flask 

containing with 50 mL of YNB media and incubated for 24 h at 30 ̊C in a shaker at 200 

rpm. Cell growth was measured in terms of turbidity at 600 nm. To measure the 

inhibition effects of the products, e.g. ethanol and acetic acid, experiments were run with 

20 g/L of glucose and various concentrations of the products. The ethanol concentration 

was varied from 0 to 70 g/L and the acetic acid from 0 to 10 g/L, as described in 

Maiorella et al [249]. The maximum growth rate was calculated for each experiment and 

plotted as a function of the ethanol or acetic acid initial concentration. 

4.2.4. Analytical Methods 

Cell growth was monitored based on an increase in the OD600 of the culture. For 

the β-carotene quantification the cells were disrupted using the method described by 

Reyes et al [238]. The D-glucose, ethanol and acetic acid concentrations in the media 

were analyzed by HPLC. 
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Figure 4.3. Mevalonate pathway genetically engineered via chromosomal integration 

into the S. cerevisiea SM14 strain. The β-carotene synthesis pathway introduced to the 

genome recombinantly is highlighted in red [246]. 

4.2.5. Kinetic Modeling Strategy 

4.2.5.1. Kinetic Model 

To account for the characteristics of the system and based on literature, a model 

was proposed to describe the overflow metabolism with the depletion of ethanol and 

acetic acid. 

As glucose, ethanol and acetic acid can be utilized for biomass production, the 

cell growth rate can be represented by 
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𝑑𝑋

𝑑𝑡
=  (𝜇𝐺 + 𝜇𝐸 + 𝜇𝐴) 𝑋 (4.1) 

where 𝜇𝐺 , 𝜇𝐸  and 𝜇𝐴 represents the specific growth rate on glucose, ethanol and acetic 

acid respectively. The Monod equation is the most common unstructured kinetic model 

for microbial growth, which relates the microbial growth rate to a single limiting 

substrate [249]. When the medium contains more than one carbon source multiple lag 

phases may be observed, caused by a shift in metabolic pathways in the growth cycle, a 

phenomenon called “diauxic growth” by Monod [157]. For mixed substrates, the model 

requires a modification as described by Yoon et al [250]. 

𝜇 = 𝜇𝐺 + 𝜇𝐸 + 𝜇𝐴 (4.2) 

𝜇𝐺 = (
𝜇𝑚𝑎𝑥,𝐺  ⋅ 𝜒𝐸 ⋅ 𝜒𝐴 ⋅ 𝐺

𝐾𝑆𝐺 + 𝐺 + 𝑎𝑔𝑒 𝐸 + 𝑎𝑔𝑎 𝐴
 ) (4.3a) 

𝜇𝐸 = (
𝜇𝑚𝑎𝑥,𝐸  𝐸

𝐾𝑆𝐸 + 𝐸 + 𝑎𝑒𝑔 𝐺 + 𝑎𝑒𝑎 𝐴
 ) (4.3b) 

𝜇𝐴 = (
𝜇𝑚𝑎𝑥,𝐴  𝐴

𝐾𝑆𝐴 + 𝐴 + 𝑎𝑎𝑔𝐺 + 𝑎𝑎𝑒 𝐸
 ) (4.3c) 

where 𝑎𝑖𝑗 represents the inhibition effect of the 𝑗th substrate on the utilization of the 𝑖th 

substrate by the organism [157]. If 𝑎𝑖𝑗 = 1, the jth substrate has the same inhibition 

effect as the 𝑖th substrate itself on the 𝑖th substrate utilization. If 𝑎𝑖𝑗 > 1, the 𝑗th 

substrate has inhibition on the 𝑖𝑡h substrate utilization. If 𝑎𝑖𝑗 is much greater than 1, the 

𝑗th substrate has a repression effect on the utilization of the 𝑖th substrate by the 

microorganism. 𝜇𝑚𝑎𝑥,𝐺, 𝜇𝑚𝑎𝑥,𝐸, and 𝜇𝑚𝑎𝑥,𝐴 are the maximum specific growth rates on 

glucose, ethanol and acetic acid, respectively. The variables 𝐺, 𝐸 and 𝐴 are the glucose, 
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ethanol and acetic acid concentrations. The variables 𝜒𝐸 and 𝜒𝐴 are added to 𝜇𝑚𝑎𝑥,𝐺 to 

account for any effect of ethanol or acetic acid inhibition on the glucose growth rate. 

These variables are functions of the ethanol and acetic acid concentration, respectively, 

whose functionalities are determined using the inhibition studies discussed in Section 

4.3. 

The mass balance for substrate governs the production of biomass. The energy 

requirement for cellular maintenance is very small relative to that of growth [237], for 

that reason it is neglected in the mass balance calculations. Then, the glucose 

consumption rate is given by Equation 4.4, where 𝑌𝑋 𝐺⁄  is the biomass yield coefficient 

on glucose. 

𝑑𝐺

𝑑𝑡
= −

 𝜇𝐺𝑋

𝑌𝑋 𝐺⁄
 (4.4) 

The ethanol production from fermentative catabolism of glucose occurs during 

the exponential growth phase and is growth associated [126, 251], hence ethanol 

formation is related to the yeast growth on glucose, shown by the first term of Equation 

4.5. The second term represents the amount of ethanol that is consumed by the yeast 

cells, where 𝑌𝑋 𝐸⁄ is the biomass yield coefficient on ethanol. 

𝑑𝐸

𝑑𝑡
=  𝑘1 𝜇𝐺𝑋 −  

𝜇𝐸𝑋

𝑌𝑋 𝐸⁄
 (4.5) 

Similarly, the acetic acid model considers the amount produced by the 

consumption of glucose and ethanol as well as the acetic acid consumed by the yeast 

cells, where 𝑌𝑋 𝐴⁄  is the biomass yield coefficient on acetic acid. We assumed that the 

acetic acid formation occurred in the growth phase of the cells. 
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𝑑𝐴

𝑑𝑡
= (𝑘2𝜇𝐺 + 𝑘3𝜇𝐸)𝑋 −

𝜇𝐴𝑋

𝑌𝑋 𝐴⁄
 (4.6) 

Carotenoid production in X. dendrorhous yeast cultures is partially growth 

associated, occurring in both the growth and stationary phase [236]. As the genes 

incorporated into the S. cerevisiae SM14 strain of interest came from an X. dendrorhous 

strain, we assumed that our recombinant yeast would follow the same behavior. 

Therefore, β-carotene production can be related to cell growth and biomass 

concentration by the Luedeking-Piret equation given in Equation 4.7, where 𝛼𝑖  

represents the coefficients for growth-associated product formation related to the yeast 

growth on each substrate, and 𝛽 is the coefficient for non-growth-associated carotenoid 

production [252]. 

𝑑𝑃

𝑑𝑡
= (𝛼1𝜇𝐺 + 𝛼2𝜇𝐸 + 𝛼3𝜇𝐴)𝑋 +  𝛽𝑋  (4.7) 

4.2.5.2. Parameter Estimation 

In the previous section, five dynamic model equations for cell growth (Equation 

4.1), substrate consumption (Equation 4.4), ethanol and acetic acid formation and 

depletion (Equations 4.5 and Equation 4.6) and β-carotene production (Equation 4.7) 

have been developed. This section will explain how the parameters of these model 

equations were estimated from experimental data. The parameter estimation is done in 

two steps, first to determine the optimal parameters in the growth rate equations and then 

using the determined parameters to find the optimal parameters in the dynamic model 

equations. Values used to initialize the two parameter estimation algorithms were 
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selected from literature for the growth of S. cerevisiae and X. dendrorhous [236, 237, 

253]. 

The data used in estimating the parameters of the model were filtered using a 

cubic smoothing spline method, a piecewise function and has a high degree of 

“smoothness”, available in Matlab [254]. From the batch cultivation data, we can 

distinguish three different growth rates related to the substrate that is being consumed at 

any moment in the cultivation. The specific growth rate expression is a generalized 

Monod model for the growth of an organism on mixed substrates (Equations 4.2 and 

4.3). Specific growth rate µ was calculated as  

𝜇 =
ln (

𝑥2
𝑥1
)

𝑡2 − 𝑡1
 

(4.8) 

With the collected data and the developed parameter estimation algorithm, the 

optimal parameters were estimated for the specific growth rate. The objective function 

used is the sum of squared errors (SSE) between the known data and model predictions 

and uses the Matlab fmincon function.  

To estimate the parameters of the dynamic mass balance equations, we propose 

the use of an expression that minimizes the coefficient of determination, 𝑅2, as the 

objective function. The 𝑅2 is a value that ranges from zero to unity and indicates the 

“goodness” of the fit between the model and the data. Using this value, the objective 

function avoids the necessity of weighting the equations, a common method found in the 

literature due to the order of magnitude difference in the expected concentrations of 

carotenoids versus the other products [237]. 
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Knowing that the best 𝑅2 value for each curve to be unity, the objective function 

for the second optimization is shown in Equation 4.9, where the coefficient of 

determination was calculated for each variable of the system. 

min   𝑍 = 5 − (𝑅𝑝
2 + 𝑅𝑥

2 + 𝑅𝑠
2 + 𝑅𝑒

2 + 𝑅𝑎
2) (4.9) 

Equation 4.10 shows how each 𝑅2 value is calculated, where the sum of the 

square error (SSE) is given by Equation 4.11, ∆𝑖
2 being the squared difference between 

the data value and the predicted value at a given time point. Equation 4.12 represents the 

total of sum squares (SST) which is the difference between the value to be predicted and 

the arithmetic mean of the observed data.  

𝑅2 =
1

𝑚
 ∑(1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
)

𝑚

𝑗=1

 (4.10) 

𝑆𝑆𝐸 =∑∆𝑖
2

𝑛

𝑖=1

 (4.11) 

𝑆𝑆𝑇 =∑(𝑦𝑖 − 𝑦̅)
2 

𝑛

𝑖=1

 (4.12) 
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Figure 4.4. Optimization scheme used to determine the optimal parameters of the batch 

kinetic model. 

The constraints of this optimization problem are the 5 dynamic mass balances 

describing the concentration of each component in the system. This programming 

problem is solved by setting the parameters optimized in the growth rate equations and 

using an iterative looping method that passes between the fmincon algorithm and ode45 

algorithm found in Matlab to estimate the remaining parameters. Figure 4.4 summarizes 

the steps that the parameter estimation algorithm takes to calculate the optimal value for 

the differential equations that describes our system. 

4.2.5.3. Local Sensitivity Analysis – Direct Differential Method 

Local sensitivity analysis is the analysis of the output of a set of models with 

respect to small perturbations in the model parameters or initial conditions. One of the 
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most widely used methods for doing this analysis is the calculation of sensitivity indices, 

S, via the direct differential method. Calculation of these sensitivity indices requires the 

development of differential equations of the sensitivity index, shown in Equation 4.13, 

which include calculations of the Jacobian matrix of the system as well as the derivative 

of each model with respect to the parameter or initial condition of interest [72]. The 

definition of the Jacobian matrix 𝑱, sensitivity index vector 𝑺, and vector of function-

parameter derivatives 𝑭𝒋 is shown in Equation 4.14 This results in a large-scale system 

of differential equations which need to be solved simultaneously with the initial 

conditions shown in Equation 4.15. 

𝑑

𝑑𝑡

𝜕𝒚

𝜕𝑝𝑗
=    

𝜕𝒇

𝜕𝒚

𝜕𝒚

𝜕𝑝𝑗
+  

𝜕𝑓

𝜕𝑝𝑗
  = 𝑱 ∗  𝑺𝒋 + 𝑭𝒋 (4.13) 

𝐽 =
𝜕𝒇

𝜕𝒚
=

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑦1
𝜕𝑓2
𝜕𝑦1

𝜕𝑓1
𝜕𝑦2
𝜕𝑓2
𝜕𝑦2

⋯

𝜕𝑓1
𝜕𝑦𝑛
𝜕𝑓2
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑦1

𝜕𝑓𝑛
𝜕𝑦2

⋯
𝜕𝑓𝑛
𝜕𝑦𝑛]

 
 
 
 
 
 
 

 , 𝑺 =
𝜕𝒚

𝜕 𝑝𝑗
= [

𝑆1,𝑗
𝑆2,𝑗
…
𝑆𝑛,𝑗

] , 𝑭𝑗 =
𝜕𝑓

𝜕𝑝𝑗
=  

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑝𝑗
𝜕𝑓2
𝜕𝑝𝑗
…
𝜕𝑓𝑛
𝜕𝑝𝑗]

 
 
 
 
 
 
 

 
(4.14) 

At 𝑡 = 0,   𝑠(𝑦𝑛, 𝑦𝑛
𝑖 ) = 1;  𝑠(𝑦𝑛 , 𝑝𝑗) = 0;  𝑠(𝑦𝑛 , 𝑦𝑛±1

𝑖 ) = 0 
(4.15) 

The kinetic models used to describe the carotenoid production by S. cerevisiae 

SM14 above consist of 5 ordinary differential equations, 5 initial conditions, and 10 

variables of interest. To implement the direct differential method described above, 

equations were developed for 75 total sensitivity indices. These equations were solved 

simultaneously and the results were analyzed to determine the parameters most 

important to each model equation when small perturbations are considered. 
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4.2.5.4. Global Sensitivity Analysis – ANOVA Method 

While local sensitivity analysis looks at the sensitivity of a solution in a close 

proximity to the optimal solution, it is also worth analyzing the sensitivity of the models 

for the full range of possible parameter values. For this, global sensitivity analysis can be 

used, which instead of considering only small perturbations in one parameter at a time 

focuses on parameter variations over the entire possible parameter space. In addition, 

global sensitivity indices can examine the combined effect of multiple parameters on the 

model solutions. Unlike local sensitivity analysis, which considers the sensitivity of the 

model subject to the nominal optimal parameters, the global sensitivity analysis 

considers the sensitivity of the model over the entire feasible space of the parameters. 

Consequently, the calculated global sensitivity indices allow the study of the 

mathematical model rather than a specific solution. 

The method we use for calculating the global sensitivity index relies upon stochastic 

variations of parameters. The method uses a normally distributed search of the parameter 

space and subsequent analysis of the variance (ANOVA) in the model outputs [73]. This 

is called the ANOVA method and utilizes a Monte Carlo search method to produce a 

large number (2𝑁 > 10,000) of parameter inputs (𝛾).  

𝜉𝑗 = (𝛾1
𝑗
, … , 𝛾2𝑁

𝑗
) 

The large number of sample points is then split into two matrices of equal size, 

denoted by 𝜉𝑗 and 𝜉𝑗
′ below. These two matrices will be the basis for the calculation of 

the global sensitivity indices. 

𝜉𝑗 = (𝛾1
𝑗
, … , 𝛾𝑁

𝑗
) = (𝜂𝑗 , 𝜁𝑗) 
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𝜉𝑗
′ = (𝛾𝑁+1

𝑗
, … , 𝛾2𝑁

𝑗
) = (𝜂𝑗

′ , 𝜁𝑗
′) 

To begin the algorithm, the rows belonging to the individual variable or 

combination of variables of interest are swapped between the matrices 𝜉𝑗 and 𝜉𝑗
′, as 

shown below.  

𝜉𝑗
∗ = (𝜂𝑗 , 𝜁𝑗

′)             𝜉𝑗
′∗ = (𝜂𝑗

′ , 𝜁𝑗) 

The equations are solved with each parameter set found in the matrices 𝜉𝑗 and 𝜉𝑗
∗, 

and are given by 𝑓(𝜉𝑗) and 𝑓(𝜉𝑗
∗) in Equations 16 through 18. Using the model outputs, 

it is possible to calculate their variances with respect to the original data set, the set of 

variables of interest, denoted by 𝑦, and the set of all other parameters, denoted by  𝑧, 

using Equations 4.16 through 4.20. 

1

𝑁
∑𝑓(𝜉𝑗)

𝑁

𝑗=1

 
     𝑃     
→    𝑓0

2 (4.16) 

1

𝑁
∑𝑓2(𝜉𝑗)

𝑁

𝑗=1

 
     𝑃     
→    𝐷 + 𝑓0

2 (4.17) 

1

2𝑁
∑[𝑓(𝜉𝑗) − 𝑓(𝜉𝑗

∗)]
2

𝑁

𝑗=1

 
     𝑃     
→    𝐷𝑧

𝑡𝑜𝑡 (4.18) 

𝐷𝑦 = 𝐷 − 𝐷𝑧
𝑡𝑜𝑡 (4.19) 

With the variances known it is possible to calculate two global sensitivity indices 

for the variable set of interest. This is done by using Equations 4.20 and 4.21. The first 

global sensitivity index, 𝑆𝑦, is a measure of the sensitivity of the model with respect to 

only the single variable of interest. For example, 𝑆𝐺,𝑌𝑋𝐺  would denote the sensitivity of 
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the glucose model with respect to only the 𝑌𝑋𝐺 parameter. The second sensitivity index, 

𝑆𝑌
𝑡𝑜𝑡, is the measure of the total sensitivity that a model has with respect to a parameter 

𝑦. Unlike the first index, 𝑆𝑦, this second index also accounts for the variance associated 

with interactions between all parameters and the parameter of interest, thus accounting 

for the total variance associated with parameter 𝑦. To contrast with 𝑆𝐺,𝑌𝑋𝐺 , the sensitivity 

index 𝑆𝐺,𝑌𝑋𝐺
𝑡𝑜𝑡  would account for the sensitivity of not only 𝑆𝐺,𝑌𝑋𝐺  but also of the 

sensitivity of any combination of parameters combined with 𝑌𝑋𝐺. 

𝑆𝑦 =
𝐷𝑦

𝐷
 (4.20) 

𝑆𝑦
𝑡𝑜𝑡 =

𝐷𝑦
𝑡𝑜𝑡

𝐷
 (4.21) 

These sensitivity indices can have values between zero and unity. While 

intermediate values of these are not necessarily informative, there are a few extreme 

cases which can divulge how the model and parameters interact [71]: 

1. If 𝑆𝑦 = 𝑆𝑦
𝑡𝑜𝑡, the variable of interest is not involved in any interaction with 

other input factors  

2. If 𝑆𝑦 = 𝑆𝑦
𝑡𝑜𝑡 = 0, the model does not depend on the variable of interest.  

3. If 𝑆𝑦 = 𝑆𝑦
𝑡𝑜𝑡 = 1, the model depends only on the variable of interest 

4.3. Results and Discussion 

4.3.1. Bioreactor Cultivation Results 

Figure 4.5a shows the batch culture profiles of the cell growth, β-carotene 

production, ethanol and acetic acid production and subsequent consumption, and glucose 
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consumption of S. cerevisiae SM14 in a stirred-tank bioreactor with 20 g/L initial 

glucose. Figure 4.6 shows the time profile for the dissolved oxygen content in the 

bioreactor as a percentage of the saturation value, which remains above 70% for the 

duration of the experiments. The yeast exhibited an exponential growth period in the 

initial 24 hours, until the glucose was exhausted and the ethanol had reached its 

maximum concentration of 5.42 g/L. After glucose depletion, ethanol was utilized as a 

carbon source, resulting in ethanol depletion and an acetic acid peak concentration of 

1.19 g/L at 50 hours. After this time, the acetic acid was consumed. After 24 hours, the 

yeast presented a slow growth period to reach a maximum biomass density of 7.9 g/L. 

Beta-carotene production started in the early exponential growth phase and continued 

throughout the cultivation period. The β-carotene production increased markedly when 

consuming the sub-products, reaching nearly 120 mg/L at the end of a 72-hour 

cultivation period.  

Figure 4.5b shows the batch culture profiles with the initial glucose raised to 90 

g/L. When compared to Figure 4.5a the same trends are seen regarding each component 

in the system. In addition, it can be noted that the β-carotene yield is comparable, 15.2 

mg⋅L-1⋅h-1
 when charged with 20 g/L versus 15.4 mg⋅L-1⋅h-1

 when 90 g/L is used. These 

results are like those shown in Figure 4.1, where flask experiments show similar yields 

in the 20 g/L and 100 g/L initial glucose cases. However, when comparing the 

productivities of the two systems, an increase in initial substrate concentration leads to a 

longer initial lag phase, a result shown in literature for various biochemical systems 

[255, 256]. These longer cultivation times lead to a drop in the process productivity, 1.67 



 

94 

 

for the 20 g/L system versus 0.90 for the 90 g/L system, and thus an increase in initial 

substrate is not suitable for economically practical commercial implementation. 

 
Figure 4.5. The dissolved oxygen profile for a batch culture of S. cerevisiae with 20 g/L 

initial glucose. 

 
Figure 4.6. Time courses of cell growth, glucose consumption, ethanol and acetic acid 

concentration and carotenoids production in batch cultures of S. cerevisiae with (a) 20 

g/L initial glucose and (b) 90 g/L glucose. Experiments with 20 g/L glucose were 

repeated  
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4.3.2. Inhibition Studies 

The performed experiments reveal that the substrate concentrations studied did 

not present any inhibition effect in the strain as the maximum growth rate remained 

roughly constant up to glucose concentrations of 200 g/L (data not shown). The effect of 

ethanol inhibition in the S. cerevisiae SM14 can be observed in Fig 7a, where inhibition 

is seen for amounts of ethanol as low as 4.5 g/L. The growth rate is drastically affected 

with ethanol concentration higher than 30 g/L and completely inhibits the growth of the 

cells at 65 g/L. The acetic acid study is shown in Fig 7b, which illustrates that cell 

growth is affected at low concentrations of acetic acid, equivalent to 2 g/L.  At 8.6 g/L 

cell growth is completely inhibited by acetic acid.  

Using these data, it is possible to determine a normalized functional form for the 

inhibition effect of ethanol (𝜒𝐸) and acetic acid (𝜒𝐴) on the growth rate of S. cerevisiae 

SM14 on glucose. It has been shown in literature that equations such as that shown in 

Equation 4.22 have been used to fit cellular growth inhibition, where the toxicity 

parameter 𝜂 is commonly found to be unity and the 𝐸𝑐𝑟𝑖𝑡 is the critical ethanol threshold 

beyond which there is no observable cell growth [257-259]. 

𝜇𝑜𝑏𝑠 = 𝜇𝑚𝑎𝑥 (1 −
𝐸

𝐸𝑐𝑟𝑖𝑡
)
𝜂

 (4.22) 

For this work, it was determined that this linear system would not accurately 

model the inhibition effects of ethanol and acetic acid due to their nonlinear behavior. 

The functions of ethanol and acetic acid inhibition used in this work were chosen as an 

extension of these linear models to higher order polynomial models of their respective 
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concentration, as shown by Equations 4.23 and 4.24, to try and capture the nonlinearity 

of the inhibition data. The fits given by these models are shown as the red lines in Figure 

4.7a for ethanol and Figure 4.7b for acetic acid, respectively. 

𝜒𝐸 = 1 − 4.1 × 10−6 ⋅ 𝐸3 + 1.4 × 10−4 ⋅ 𝐸2 − 9.1 × 10−3 ⋅ 𝐸 (4.23) 

𝜒𝐴 = 1 − 0.011 ⋅ 𝐴2 − 0.021 ⋅ 𝐴 (4.24) 

The maximum concentration of ethanol and acetic acid found in the bioreactor 

during cultivation was 5.4 g/L and 1.2 g/L, respectively. Based on the inhibition studies, 

we can determine that the ethanol reduces the maximum glucose growth rate by 

approximately 6.5% and the acetic acid inhibition results in a decrease of about 5.7%. 

 

Figure 4.7. The inhibition effect of (a) ethanol and (b) acetic acid sub-products on the 

growth rate of S. cerevisiae SM14 on glucose. Experimental data is represented by the 

markers and the obtained fit is denoted by the continuous red line. 

4.3.3. Parameter Estimation 

The developed kinetic model equations (Equations 4.1 through 4.7) contain a 

total of 22 model parameters, all of which were estimated by using the previously 

described parameter estimation algorithm and the batch culture time profiles are shown 

in Figure 4.8. The values of the optimal parameters obtained from the parameter 

estimation are compiled in Table 4.1. The model simulation provided the coefficients of 
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determination for each variable of  𝑅𝑋
2 =0.989, 𝑅𝐺

2 =0.998, 𝑅𝑃
2 =0.993, 𝑅𝐸

2 =0.995 and 

𝑅𝐴
2 =0.807; these 𝑅2 values show that the predictive model can represent the 

experimental data with high accuracy. It is useful to note that the model predicts only 

production of carotenoids to be non-growth associated during glucose utilization and 

highly growth associated during ethanol utilization, as seen by the parameter 𝛼1 being 

zero and 𝛼2 being two orders of magnitude larger than 𝛽 at the optimal solution. 

 

Figure 4.8. Time profiles and curves of best fit for the cell growth, glucose 

consumption, ethanol and acetic acid concentration and carotenoids production in batch 

cultures of S. cerevisiae with 20 g/L initial glucose. Cultivation data are represented by 

the markers and the optimal fit by the solid lines. 
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Table 4.1. Optimal parameter estimates for the batch kinetic models. 

Parameter Value Units Parameter Value Units 

𝜇𝑚𝑎𝑥,𝐺 0.2516 ℎr−1 𝑎𝐴𝐸  1.0031 
g Cell

g Ethanol

𝐾𝑆𝐺  0.4137 𝑔 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐿−1 𝑌𝑋𝐺  0.1855 
g Cell

g Glucose

𝜇𝑚𝑎𝑥,𝐸 0.0218 ℎr−1 𝑌𝑋𝐸  0.3637 
g Cell

g Ethanol

𝐾𝑆𝐸 0.5618 𝑔 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝐿−1 𝑌𝑋𝐴 1.0163 
g Cell

g Acetic Acid

𝜇𝑚𝑎𝑥,𝐴 0.0182 ℎr−1 𝛼1 0.7545 
mg Product

g Glucose

𝐾𝑆𝐴 0.4506 𝑔 𝐴𝑐𝑒𝑡𝑖𝑐 Acid 𝐿−1 𝛼2 13.9280 
mg Product

g Ethanol

𝑎𝐺𝐸  1.2964 𝛼3 1.1089 
mgProduct

g Acetic acid

𝑎𝐺𝐴 1.0318 𝛽 0.2804 
mg Product

g Cell ⋅ hr

𝑎𝐸𝐺  1.0636 𝑘1 1.7300 
g Ethanol

g Cell

𝑎𝐸𝐴 1.0058 𝑘2 0.0936 
g Acetic Acid

g Cell

𝑎𝐴𝐺  1.0000 𝑘3 0.2937 
g Acetic Acid

g Cell

4.3.4. Local Sensitivity Analysis 

The effect of each parameter and the initial values of the state variables was 

calculated and plotted as shown in the Figure 4.9. Figure 4.9a illustrates the sensitivity of 

the variables with respect to 𝑌𝑥𝑔. The glucose shows a high sensitivity during the time 

period it is used in the cultivation and then the sensitivity decreases to zero. The 

minimum and maximum values of glucose sensitivity are 0 and 60. Then, we can say 

that the local sensitivity of the glucose with respect to the parameter 𝑌𝑥𝑔 is 0 < 𝑆𝑙𝑜𝑐𝑎𝑙 <

60. The same analysis was done for all the inputs and results are summarized in Table
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4.2. Figure 4.9b presents the effect of the initial condition of the ethanol on the profiles 

of the state variables, where the negative sensitivity values represent an inhibitory effect.  

In Table 4.2, we highlight the inhibitory effects captured by the model at the 

optimal values when changes in ethanol and acetic acid initial conditions are made. The 

predicted final value of the β-carotene shows a high sensitivity for small changes in the 

values of 𝑌𝑥𝑔, 𝑌𝑥𝑒, or initial biomass concentration 𝐺𝑖. Changes in the parameters 

governing the biomass production from glucose and ethanol would be expected to have 

an effect on the carotenoid production as it is an intracellular product (highlighted in 

pink in Table 4.2). The parameter β, symbolizing the non-growth associated carotenoid 

production, is a very influential variable in the prediction of β-carotene production, so 

small changes in this parameter lead to a larger effect on the carotenoid estimates, as 

seen by the elevated sensitivity index for the product. Other state variables are affected 

by parameter changes to a much smaller degree, most notably the sensitivity of biomass, 

glucose and ethanol on the 𝑌𝑋𝐺 parameter (highlighted in orange in Table 4.2) and the 

biomass and ethanol on the initial biomass inoculum 𝑋𝑖 (highlighted in green in Table 

4.2). 
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Figure 4.9. Local sensitivity analysis of the models at the optimal solution for the a) 

glucose yield with respect to biomass (𝑌𝑋𝐺) and b) the initial concentration of ethanol 

(𝐸𝑖). 

Table 4.2. Minimum and maximum local sensitivity index values for each process 

variable with respect to all parameters and initial conditions 

 Biomass Glucose Ethanol Acetic Acid Carotenoids 

𝑋𝑖  1.0 < S < 35. -170. < S < 0.0 -23 < S < 52. -4.7 < S < 3.4 0.0 < S < 280 

𝐺𝑖  0.0 < S < 0.4  0.0 < S < 1.0  0.0 < S < 0.3 - 0.0 < S < 6.0  

𝐸𝑖  -0.5 < S < 0.5  0.0 < S < 2.4  0.0 < S < 1.2 0.0 < S < 0.2  -2.6 < S < 5.1  

𝐴𝑖  -0.5 < S < 1.0  0.0 < S < 2.4  -0.7 < S < 1.0 0.0 < S < 1.0  -6.5 < S < 2.4  

𝑃𝑖  -  - - - - 

𝑌𝑋𝐺  0.0 < S < 40.  0.0 < S < 60. -0.1 < S < 30. -0.3 < S < 3.4  0.0 < S < 620  

𝑌𝑋𝐸  -0.1 < S < 8.4 0.0 < S < 0.4 0.0 < S < 11   0.0 < S < 2.8 0.0 < S < 140  

𝑌𝑋𝐴 0.0 < S < 1.0 - 0.0 < S < 0.2   0.0 < S < 0.5 -0.6 < S < 4.0  

𝑘1  - - - - - 

𝑘2  -0.4 < S < 3.7  0.0 < S < 2.2  -0.6 < S < 3.0 0.0 < S < 3.4  -14 < S < 16  

𝑘3  0.0 < S < 2.4 0.0 < S < 0.1 0.0 < S < 1.0  0.0 < S < 1.5 -4.2 < S < 11  

𝛼1   -   - -   - 0.0 < S < 4.0  

𝛼2  -  - -   - 0.0 < S < 2.4  

𝛼3  -  - -   - 0.0 < S < 1.1  

𝛽  -  - -   - 0.0 < S < 320  
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4.3.5. Global Sensitivity Analysis 

Figure 4.10 shows the relevant results from the global sensitivity analysis. In 

Figure 4.10a we show that the global (𝑆𝑦) and total (𝑆𝑦
𝑡𝑜𝑡) sensitivity indices of all 

variables concerning biomass production were identical, thus we conclude that the 

variance in this model is not associated with any interaction between variables at any 

time. During the first 9 hours, the biomass model is only influenced by the 𝑘1 parameter 

representing the ethanol formation during glucose consumption. Between 9 and 25 

hours, the time pertaining to glucose consumption and ethanol and biomass production, 

the variance in the model outputs are due to both 𝑘1 and 𝑌𝑥𝑔. After 50 hours the 𝑌𝑥𝑒 

parameter begins to affect the variance in the biomass model as it is associated with 

ethanol consumption.  

Ethanol formation and glucose consumption are related by the parameter 𝑘1, 

leading to the only source of variance in the ethanol model during the time of ethanol 

production on glucose, as shown in Figure 4.10b. Later, the ethanol is being consumed 

to form biomass and acetic acid, and the model variance begins to depend on the yield of 

biomass on glucose, 𝑌𝑥𝑔, the yield of biomass on ethanol, 𝑌𝑥𝑒, as well as the coefficients 

𝑘1 and 𝑘3. At the end of the cultivation, interaction effects between 𝑘1 and 𝑌𝑥𝑒 is 

present, as seen in the divergence of the total global sensitivity from the individual 

global sensitivity. 

The main source of variance in the β-carotene model through the first 16 hours of 

the process was a result of the 𝛽 parameter. As the cultivation progresses, the variance of 

the model shifts to depend on both β and 𝑌𝑥𝑔. The biomass formation is directly related 
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with the substrate consumption, which is expressed in the models by the parameter 𝑌𝑥𝑔. 

The amount of β-carotene is then related to the amount of biomass through the non-

growth association parameter β. Due to these interactions, after 16 hours it is intuitive 

that these two parameters would play an important role in the model variance. 

Additionally, these two related parameters do not have any interaction effects on the 

model variance, as shown in Figure 4.10c. 

 

Figure 4.10. Global sensitivity analysis of the a) biomass, b) ethanol, c) carotenoids, d) 

acetic acid, and e) glucose models. 
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The global sensitivity analysis of acetic acid is shown in Figure 4.10d. The acetic 

acid is present in the cultivation in small amounts compared to other variables and it is 

also affected by glucose, ethanol and biomass; this is reflected on the global sensitivity 

analysis results for acetic acid. Initially the variance in the model is due only to 

parameter 𝑘2, which represents the acetic acid formation by glucose consumption. Later, 

the model variance is affected by the parameters associated with glucose and ethanol 

yield with respect to biomass (𝑌𝑥𝑔, 𝑌𝑥𝑒), ethanol formation (𝑘2), and acetic acid 

formation due the ethanol depletion (𝑘3). The total sensitivity index represents the same 

global sensitivity effect on the acetic acid as the variables did; therefore, we determine 

that the variance in the acetic acid model does not represent interaction with the related 

variables at any time. 

The glucose model variance can be seen in Figure 4.10e and shows results from 

the variance in the first 9 hours depend on the yield of biomass on glucose, 𝑌𝑥𝑔, which is 

due the biomass formation during this period of the cultivation. Later, the variance of the 

model is due to both 𝑌𝑥𝑔 and 𝑘1; this is because of ethanol formation and during this 

time the global sensitivity shows the same effect as the total sensitivity. After the 

glucose is consumed, the total sensitivity differs from the global sensitivity, thus we 

conclude that the glucose model represents accurate information regarding interaction 

with the related variables.  

The remaining variables 𝑌𝑥𝑎, 𝛼1, 𝛼2 and 𝛼3 did not show any effect on the 

variance in the model predictions.  
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4.4. Conclusions 

This study develops models and estimates the parameters necessary for 

accurately describing the growth of S. cerevisiae SM14 and the resulting product 

profiles, specifically glucose, ethanol, acetic acid, and β-carotene. Results indicate that 

the proposed model and estimated parameters are sufficient for describing the growth 

with glucose consumption and sub-products formation and depletion in batch cultures of 

S. cerevisiae SM14. Additionally, utilization of the coefficient of determination 𝑅2 in the 

objective function provides a reliable optimal solution for parameter estimation of the 

model equations. It avoids the normalization of the equations or the weighting of them.  

The local sensitivity analysis reflects the inhibition effect of the ethanol and acetic acid 

concentration in the system and indicates for which parameters we must have accurate 

parameter estimation to develop a suitable description of the cultivation process. Global 

sensitivity analysis gives an understanding of the mathematical models in all the input 

space. The results show appropriate connections between the model variance, parameters 

of study, and characteristics of the cultivation process.  

The methods presented here have a much wider application than the single case 

study of 𝛽-carotene production from genetically altered S. cerevisiae. Modified versions 

of these models and methods can be applied to any biological system for which there is a 

set of sub-products that experience generation and depletion through the course of a 

single batch fermentation. Additionally, the models described for this specific case study 

can be used in future optimization and controls studies, including applications in fed-

batch and continuous production processes. Finally, knowledge of the S. cerevisiae 
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kinetics is the first step toward the analysis large-scale production for which the 

economic impact of biologically produced nutraceuticals can be ascertained.  



_____________________ 
†
Reprinted with permission from “Economic Improvement of Continuous 

Pharmaceutical Production via the Optimal Control of a Multi-feed Bioreactor” by J.P. 

Raftery, M.R. Desessa and M.N. Karim, 2017. Biotechnology Progress, Copyright 2017 

by John Wiley & Sons. 
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CHAPTER V 

OPTIMAL CONTROL OF A MULTI-FEED BIOREACTOR FOR THE 

CONTINUOUS PRODUCTION OF PHARMACEUTICALS† 

5.1. Introduction 

The production of pharmaceuticals is a multi-billion-dollar industry worldwide 

that is expected to see a dramatic increase in profit by 2019 [260]. These growth 

projections are particularly relevant in large markets such as the United States and 

Europe, accounting for 44.5% and 25.3% of the world’s pharmaceutical sales in 2014, 

respectively, and high potential markets such as Brazil, China, India and Russia [261]. 

However, trends have shown stagnation in newly developed pharmaceutical products. 

Figure 5.1 depicts this trend through the number of approved new drug applications 

(NDAs) by the Food and Drug Administration (FDA) of the United States, showing a 

relatively constant number of approvals since 1980 [262]. To meet the economic growth 

projections set for 2019 despite this stagnant development of new products, new 

opportunities for economic improvement must be considered. A transition from batch to 

alternative processing methodologies in the pharmaceutical industry may present 

possible economic benefits despite introducing some additional complications. 
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Figure 5.1. Number of approved new drug applications by the United States FDA from 

1945 to 2011 [262]. 

Batch processing methods are the traditional production method for 

pharmaceuticals due to being ideal for small scale production. Batch processes in 

commodity chemical industries have been shown to incur large capital, operating and 

labor costs when compared their continuous counterparts. Batch systems in the 

pharmaceutical industry are subjected to intensive cleaning practices that utilize 

environmentally hazardous caustic solutions to ensure contamination is mitigated for 

each batch run [126]. Alternatively, continuous processing methods are easily 

controllable processes ideal for large scale implementation and result in a reduction of 

equipment size and minimal raw material requirements and waste production [263]. In 

recent years, the United States FDA has acknowledged the potential of continuous 

processing schemes in the pharmaceutical industry through the updating of their policies 

to accommodate continuous production strategies [263]. In addition, various process 

monitoring techniques are being developed to determine process contamination utilizing 

online data, allowing for quick process shutdowns that lessen the effect of contamination 
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downstream [205, 264, 265]. The main challenge of transitioning to continuous 

processing in the pharmaceutical industry is to design a reactor able to maintain or 

improve reactor productivity, and in doing so increasing profitability, while also 

maintaining strict standards of product quality when compared to traditional batch 

systems. 

Many studies discussed in literature have shown the advantage of alternative 

processing methods for biological systems. Methods such as cell immobilization have 

been a staple of the bioprocessing community, with immobilization materials such as 

calcium alginate or silicon being readily available for use [266-268]. Researchers have 

also investigated reactor designs that can selectively remove the desired product from 

the reactor broth through selectively permeable membranes [269-271]. Specialized 

membrane reactors focused on the process of pervaporation, or the removal of a product 

via partial vaporization through a membrane in the bioreactor, have been considered for 

systems where volatile renewable liquid biofuels are produced [272-274]. San and 

Stephanopoulos investigated the use of fed-batch systems to maximize the productivity 

of penicillin production [206].
 

Warikoo et al. exemplified the use of continuous 

perfusion reactors for the production of therapeutic proteins from Chinese hamster ovary 

(CHO) cells [275]. The fed-batch production of the poly-3-hydroxybutyrate (PHB) has 

also been investigated by Yamane, Fukunaga and Lee to increase cell density and 

therefore improve productivity of the intracellular bio-plastic [276]. These bioreactor 

systems do not operate continuously or are limited to use with extracellular metabolites 

due to their necessity for cell immobilization. However, many important biological 
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products are intracellular and require cell harvesting and disruption of the biomass for 

product recovery. For intracellular products, the improvement of continuous 

bioprocessing systems can be achieved through the manipulation of the feed of the 

bioreactor to introduce or limit substrate in the system. 

To contend with the challenges of fed-batch and continuous bioprocesses, many 

researchers have utilized the concepts of dynamic optimization, also known as optimal 

control, as a way of predicting the optimal operation of a bioreactor system a priori. 

Henson and Seborg have examined the use of nonlinear controllers based on exact 

linearization for continuous fermentation [277]. Work by Modak and Lim, as well as the 

aforementioned work by San and Stephanopoulos, has shown that the implementation 

and optimal control of biochemical processing methods beyond batch cultivation can 

result in improved productivity [206, 278]. Hodge and Karim have employed a nonlinear 

model predictive control algorithm that uses a sequential solution to predict solutions to 

the optimal control problem in real time and maximize fed-batch ethanol production by 

recombinant Zymomonas mobilis [279]. Additionally, work by Saucedo and Karim has 

shown that the use of input-output models for the real time optimization and control of 

fed-batch cultivation processes can be used to enhance ethanol production in Escherichia 

coli systems [280]. Further work by Sridhar and Saucedo has shown the existence of 

globally optimal solutions to the optimal control problem of continuous production of 

ethanol via Saccharomyces cerevisiae using the dilution rate or mass transfer coefficient 

as decision variables [281]. However, the use of a single feed at a set substrate 

concentration or mass transfer coefficient may result in a lack of controllability to 
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respond to the needs of biochemical systems while also trying to maintain the constant 

volume of a continuous reactor system. 

This paper develops a novel strategy for continuous cultivation to enhance the 

economic viability of bioreactors when compared to batch cultivation methods. A three-

feed bioreactor system is introduced that allows for the independent variation of the 

dilution rate and entering substrate concentrations. This reactor system is then applied to 

a model compound of beta-carotene from recombinant S. cerevisiae, where it is shown 

that by using optimal control methodologies the necessary control policy that governs its 

optimal production during continuous cultivation can be determined a priori. The 

optimal steady-state results of this control policy are used to compare the productivities 

of continuous operation of a bioreactor system to the batch cultivation of the same 

system. Finally, the design of the bioreactor will be optimized using the optimal control 

algorithm as constraints to further improve upon the productivity of continuous 

production. 

5.2. Materials and Methods 

5.2.1. Multi-feed Continuous Processing 

Figure 5.2 illustrates the proposed set up of a multi-feed continuous bioreactor 

consisting of multiple independent feeds allowing for the variation in operation 

necessary to adapt to the complications of biological system. While any number of feeds 

can be utilized, Figure 5.2 depicts the configuration of a multiple feed bioreactor for an 

organism capable of assimilating two different substrates, denoted 𝑆1 and 𝑆2. The feed 

flow rates for these streams are represented by 𝐹1 and 𝐹2. A third feed devoid of any 
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substrate and with a flow rate 𝐹3 is composed of the same media as the other two feeds 

and added for dilution effects. Pumps are added to each branching path as a way of 

manipulating the flow rate of these three feed streams. The feed streams are mixed 

together before being introduced by the reactor, leading to a feed flow rate described by 

Equation 5.1.  

𝐹𝑖𝑛(𝑡) = 𝐹𝑜𝑢𝑡(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) + 𝐹3(𝑡) (5.1) 

The manipulation of the flow rates of the various feeds allows for the 

independent variation of reactor dilution rate as well as substrate concentrations. By 

restricting the flow rate of one of the substrate feeds and the media feed 𝐹3 the reactor in 

Figure 5.2 becomes the typical single feed bioreactor capable of implementing these 

various single-feed feeding strategies. Many previous works have looked at the effect of 

single-feed strategies on the productivity of biological systems. Ho, Tam and Zhou 

utilized constant and exponential feeding to maximize carotenoid yield in Phaffia 

rhodozyma [282]. Ding and Tan showed the effects of pulse feeding as well as constant 

and exponential feeding strategies on the fed-batch L-lactic acid production of 

Lactobacillus casei [283]. However, while these strategies work to improve the 

economic viability via an increase in productivity of simple systems of a single feed, the 

addition of multiple feeds allows for more complex feeding strategies as well as the 

introduction of multiple potential substrates that may further improve the economic 

viability of more complex systems. 
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Figure 5.2. Diagram of the multi-feed system to improve the economic viability of 

continuous biochemical reactors 

5.2.2. Optimal Control Problem Formulation and Solution Methodology 

The development of an optimal control, also known as dynamic optimization, 

framework can be used to determine the optimal operation of the continuous multi-feed 

reactor system. The solution of the optimization problem determines the optimum 

manipulation of process variables as a function of time that maximizes some objective, 

such as product titer or productivity. In the bioreactor system shown in Figure 5.2, the 

manipulated variables are the flow rates dictated by the operation of the pumps for each 

feed. This methodology can be used to elucidate non-trivial feeding methods a priori 
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that can then be further examined in experimental studies. The general formulation of 

the dynamic optimization problem is shown in Equation 5.2. The objective is to 

maximize an index 𝜙 which takes the form of a function of both the set of system states 

𝒙 and the set of manipulated variables 𝒖. Differential equations, denoted 𝒙̇ in Equation 

5.2, are used as constraints to the optimization problem and usually govern the states of 

the systems as functions of either time, i.e. kinetic models, or space, i.e. heat or mass 

transport models. Algebraic equations describing physical constraints and physical 

properties can also be used as constraints to the optimization problem and are denoted 

as 𝒈(𝒙, 𝒖) in Equation 5.2. Strict limitations are also placed on the values allowed for 

the manipulated variables, for example setting the value of a pump flow rate to always 

be greater than or equal to zero. The generic form of the optimal control problem is 

shown in Equation 5.2.  

𝑚𝑖𝑛
𝒖

𝜙 = ∫ 𝑓(𝒙(𝑡), 𝒖(𝑡))

𝑡𝑓

0

 

𝑠. 𝑡.
𝒙̇ = 𝒉(𝒙, 𝒖)
𝒈(𝒙, 𝒖) = 0

𝑢𝑚𝑖𝑛 ≤ 𝒖 ≤ 𝑢𝑚𝑎𝑥

 

(5.2) 

Many solution methods have been proposed to solve the dynamic programming 

problems summarized in Equation 5.2. One subset of methods, deemed sequential 

methods, discretizes the dynamic programming problem into a multistage system where 

the operating conditions in each stage must be selected in sequence in an effort to 

optimize the entire process [284]. Another set of solution methods, termed 

pseudospectral methods, solves the entire time horizon simultaneously through the 
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conversion of the dynamic programming problem into a large-scale set of nonlinear 

equations that can be solved simultaneously with commercially available solvers. This 

relies on the conversion of the differential equation constraints to a set of algebraic 

constraints through the discretization along known points known as finite elements. 

Within each finite element, a set of points termed collocation points are chosen as the 

roots of a single Legendre polynomial or combinations of Legendre polynomials and 

their derivatives [285]. This work uses the method proposed by Flores-Tlacuahuac at al. 

which uses a three-point (ncol = 3) Radau collocation method, with the exact point 

values defined by Hairer and Wanner, to converting the differential equations 𝒙̇ into the 

algebraic profiles shown in Equation 5.3 [286, 287]. Here, 𝒙𝑖 denotes the value of the 

state variables at finite element 𝑖, ℎ𝑖 is the finite element length, 𝑡𝑖 is the time at each 

finite element, and 
𝑑𝑥

𝑑𝑡𝑖,𝑞
 is the value of the differential equations describing state 

variables at finite element 𝑖 and collocation point 𝑞. The Legendre polynomial 

describing the state variables within each finite element is denoted as Ω𝑞. Equation 5.4 is 

also included in the new optimization to guarantee the continuity of the state profile 

between finite elements. 

𝒙(𝑡) = 𝒙𝑖−1 + ℎ𝑖 ∑𝛺𝑞 (
𝑡𝑖 − 𝑡𝑖−1

ℎ𝑖
) ⋅

𝑑𝒙

𝑑𝑡𝑖,𝑞

𝑛𝑐𝑜𝑙

𝑖=1

 (5.3) 

𝒙𝑖 = 𝒙𝑖−1 + ℎ𝑖 ∑𝛺𝑞 (
𝑡𝑖 − 𝑡𝑖−1

ℎ𝑖
) ⋅

𝑑𝒙

𝑑𝑡𝑖,𝑞

𝑛𝑐𝑜𝑙

𝑖=1

 (5.4) 

With the conversion of the differential equations to a larger system of algebraic 

equations, the optimization program in Equation 5.2 becomes a nonlinear program that 
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can be solved using commercially available solvers. In this work these optimization 

problems developed for the multi-feed continuous bioreactor are modeled in the General 

Algebraic Modeling System (GAMS) and solved using the IPOPT solver developed by 

Wächter and Biegler [288]. 

5.2.3. Case Study: Production of 𝜷-carotene 

In this work the efficacy of the multi-feed continuous bioreactor paradigm 

developed in Section 2.1 is exemplified through the production of beta-carotene. Beta-

carotene is an orange pigment naturally produced by many plant species, including 

carrots, cantaloupe, and peppers, as well as some fungal and bacterial species. It has 

been used widely in many different industries like in the pharmaceutical industry as a 

vitamin A precursor and antioxidant, the paint and food industry as an orange coloring 

additive, and in the cosmetics industry to improve skin tone and reduce the cancer risk 

by resisting the damage by solar radiation, and also has other uses [217, 221, 223, 224]. 

Beta-carotene can be produced synthetically but this process is difficult due to the 

complicated structure of the molecule. One alternative method of producing biological 

beta-carotene is through its recovery from natural sources such as the plant species 

mentioned above. However, these methods require harsh chemicals and result in a 

devaluation of the product due to isomerization during the extraction process [289, 290]. 

Studies have suggested that biologically formed beta-carotene could exhibit enhanced 

antioxidant properties due to an increase in fat solubility when compared to its synthetic 

counterpart [291-293]. These enhanced properties in conjunction with the potential for 

higher profit margins due to the market price for natural beta-carotene, approximately 
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$1,000 to $2,000 per kilogram, being much higher than that of the synthetic product, 

approximately $400 to $800 per kilogram, make beta-carotene a model compound to be 

analyzed for biological production [292]. 

One way of increasing the availability of biologically produced beta-carotene is 

to use genetic engineering and biochemical processing techniques to develop a process 

capable of producing and purifying the recombinant product. Regarding beta-carotene 

production, literature shows many different species capable of producing the orange 

carotenoid. Luna-Flores et al. were successful in developing and modeling the beta-

carotene production of a Xanthophyllomyces dendrorhous in both batch and fed-batch 

production modes [237]. Works by Reyes et al. and Olson et al. have shown that through 

chromosomal integration and adaptive evolution of a Saccharomyces cerevisiae SM14 

strain it is possible to produce beta-carotene in batch culture [238, 294]. Figure 5.3 

below shows in detail the path added to the SM14 strain, using a branching fatty-acid 

path from the production of acetyl-CoA in the cell to make the desired beta-carotene 

product. This strain developed by Reyes et al will be the focal point of this work. 
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Figure 5.3. Modified biochemical pathway of S. cerevisiae to produce beta-carotene 

based on the work of Reyes et al [238]. The image on the left shows the location of the 

new branch pathway while the image on the right shows a more detailed version of the 

beta-carotene pathway. 

Due to its intracellular nature, typical continuous production methodologies 

utilizing membrane reactors or other immobilization strategies are not applicable as the 

cell biomass needs to be harvested for product recovery. In addition, S. cerevisiae has 

been known to exhibit overflow metabolism, also known as the “short-term Crabtree 

effect”, which results in the formation of inhibitory compounds during aerobic operation 

due to the incomplete oxidation of the carbon source [229, 230]. However, our previous 

work has also shown that the SM14 strain of S. cerevisiae utilizes these inhibitory 

compounds in a secondary growth phase once the initial carbon source has been 

completely utilized, during which there is an increase in the production rate of the beta-

carotene product [295]. To incorporate this into the multi-feed bioreactor framework, the 

first feed, 𝐹1, of the reactor is a mixture of ethanol and media at ethanol concentration 

𝐸1. This feed is used to promote additional beta-carotene production by feeding the 
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ethanol substrate most responsible for product formation in the cell. The second feed, 𝐹2, 

is a mixture of glucose and media at a concentration 𝐺2. This feed is used to provide the 

primary substrate necessary for biomass cultivation along with the generation of ethanol 

needed for beta-carotene production. Finally, a media only feed 𝐹3 is used to provide 

dilution effects for the control of ethanol and/or glucose concentration as well as to 

maintain a constant dilution rate of the system, if needed. These feeds are combined 

before entering the reactor per Equation 5.1. 

The differential growth models for continuous beta-carotene production 

developed in this section are based on the kinetic models described by the work of 

Ordonez et al [295]. The batch bioreactor studies used to develop the models in 

Equations 5.6 through 5.13 were carried out in a 7 L, autoclavable, glass, Applikon® 

bioreactor with a 3 L working volume. The temperature was controlled at 30℃ and the 

pH was maintained at 4 by addition of 2 M HCL or 2 M NaOH as needed. The 

bioreactor was supplied with a constant airflow of 6 L/min and the impeller speed was 

kept constant at 800 rpm. The models begin with an additive growth rate, as shown in 

Equation 5.6, which considers the multiple growth phases of the strain. The growth rate 

for each substrate is defined by a modified Monod kinetic equation, as seen in Equations 

5.7a, 5.7b, and 5.7c, which is the most common unstructured kinetic model for microbial 

growth, and relates the microbial growth rate to a single limiting substrate [157, 249]. 

These equations are functions of the substrate of interest for each growth phase and 

include inhibition effects from the other substrates present. Modifications to the models 
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of this type were first utilized in the work of Yoon et al. to describe multiple substrate 

systems [250].
 

𝜇 = 𝜇𝐺 + 𝜇𝐸 + 𝜇𝐴 (5.6) 

𝜇𝐺 = (
𝜇𝑚𝑎𝑥,𝐺  ⋅ 𝜒𝐸 ⋅ 𝜒𝐴 ⋅ 𝐺

𝐾𝑆𝐺 + 𝐺 + 𝑎𝑔𝑒 𝐸 + 𝑎𝑔𝑎 𝐴
 ) (5.7a) 

𝜇𝐸 = (
𝜇𝑚𝑎𝑥,𝐸  𝐸

𝐾𝑆𝐸 + 𝐸 + 𝑎𝑒𝑔 𝐺 + 𝑎𝑒𝑎 𝐴
 ) (5.7b) 

𝜇𝐴 = (
𝜇𝑚𝑎𝑥,𝐴  𝐴

𝐾𝑆𝐴 + 𝐴 + 𝑎𝑎𝑔𝐺 + 𝑎𝑎𝑒 𝐸
 ) (5.7c) 

While ethanol and acetic acid act as substrates to produce biomass and beta-

carotene, they also work as inhibitors to the growth process. Equations 5.8a and 5.8b are 

taken from Ordonez et al. to mathematically describe the inhibition effects of each 

substrate [295]. 

𝜒𝐸 = 1 − 4.1 × 10−6 ⋅ 𝐸3 + 1.4 × 10−4 ⋅ 𝐸2 − 9.1 × 10−3 ⋅ 𝐸 (5.8a) 

𝜒𝐴 = 1 − 0.011 ⋅ 𝐴2 − 0.021 ⋅ 𝐴 (5.8b) 

The growth rates described in Equations 5.6 and 5.7 are used to develop models 

for the five components present during the cultivation process, biomass (X), acetic acid 

(A), beta-carotene (P), glucose (G), and ethanol (E). Equations 5.9, 5.10, and 5.11 show 

the models developed for all species not associated with the feeding process. The change 

in the biomass concentration described by Equation 5.9 is the summation of two terms, 

the first of which is an autocatalytic first order reaction rate defined by the total growth 
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rate, 𝜇. The second term of Equation 5.9 describes decrease in the biomass 

concentrations due to losses in the effluent and the dilution effects of the feed stream.  

The change in acetic acid concentration, shown as Equation 5.10, is described by 

four terms, the first two denoting the production of acetic acid through the consumption 

of glucose or ethanol, respectively. Acetic acid is lost via reaction to form more biomass 

as well as by the dilution of the reactor inlet, as shown by the last two terms in Equation 

5.10. The production of beta-carotene is denoted by Equation 5.11, where the kinetics 

are described by a Luedeking-Piret model that attributes production via growth 

association, a result of the utilization of any of the three substrates by the biomass, as 

well as non-growth association characterized by the parameter 𝛽 [252]. The 𝛼1, 𝛼2, and 

𝛼3 parameters in this equation define the dependence for product formation on the 

biomass growth from the associated substrate utilization. 

𝑑𝑋

𝑑𝑡
= −

𝐹𝑜𝑢𝑡
𝑉

𝑋 + 𝜇𝐺𝑋 + 𝜇𝐸𝑋 + 𝜇𝐴𝑋 (5.9) 

𝑑𝐴

𝑑𝑡
= −

𝐹𝑜𝑢𝑡
𝑉

𝐴 + 𝛼1μGX + α2μEX −
μAX

𝑌𝑋 𝐴⁄
 (5.10) 

𝑑𝑃

𝑑𝑡
= −

𝐹𝑜𝑢𝑡
𝑉

𝑃 + 𝛼3𝜇𝐺𝑋 + 𝛼4𝜇𝐸𝑋 + 𝛼5𝜇𝐴𝑋 + 𝛽𝑋  (5.11) 

Equations 5.12 and 5.13 describe the time-dependent mass balance for the feed 

species glucose and ethanol. Each equation is composed of an inlet feed term based on 

the inlet concentrations Gf and Ef, outlet terms based on the outlet flowrate Fout and 

depletion terms based on the kinetic equations developed by Ordonez et al [295]. The 

second term in Equation 5.13 accounts for the formation of ethanol during the glucose 

utilization phase of S. cerevisiae SM14. 
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𝑑𝐺

𝑑𝑡
= −

𝐹𝑜𝑢𝑡
𝑉

(𝐺 − 𝐺𝑖𝑛) −
𝜇𝐺𝑋

𝑌𝑋 𝐺⁄
 (5.12) 

𝑑𝐸

𝑑𝑡
=  −

𝐹𝑜𝑢𝑡
𝑉

(𝐸 − 𝐸𝑖𝑛) + 𝛼6𝜇𝐺 −
𝜇𝐸𝑋

𝑌𝑋 𝐸⁄
 (5.13) 

To construct the dynamic programming problem described in Section 5.2.2, an 

objective function that combines the optimization criteria of maximizing the bioreactor 

productivity while also reaching steady state as quickly as possible is postulated. This 

objective function 𝜙 is shown as part of Equation 5.14, where the first term describes the 

average bioreactor productivity with respect to beta-carotene production. The 

productivity of a bioreactor is calculated by multiplying the average product 

concentration 𝑃̅ by the dilution rate 𝐷. The dilution rate is calculated as the ratio of the 

average outlet flow rate 𝐹̅𝑜𝑢𝑡 and the working volume 𝑉. The second term in the 

objective function is included to guarantee the bioreactor reaches a steady state as 

quickly as possible by minimizing the sum of square errors between the process states 

and their average state values. The algebraic constraints developed because of the 

discretization of Equations 5.6 through 5.13, described in Section 5.2.2, are used as the 

constraints to the optimal control problem; the values for the parameters in these 

equations are taken from Ordonez et al. [295]. 

The solution to the optimal control problem in Equation 5.14 is the time profiles 

for the manipulated variable(s) in the process that maximized the desired objective. 

These control actions of the manipulated variables are determined a priori but can be 

used experimentally to evaluate the bioreactor performance. In the beta-carotene case 

study proposed, the objective is to maximize bioreactor productivity and the manipulated 
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variables are the pump controls that determine the flow rate of each inlet feed. While not 

performed in this work, the feeding strategy defined by the determined pump control 

actions can be implemented experimentally through manual manipulation or a 

programmable controller. The necessary inlet concentrations of the substrates are 

calculated using simple mass balances based on the optimal flow rates of each inlet 

stream and the bulk concentration of the corresponding substrate. The predicted time 

profiles of the bioreactor concentrations are obtained by examining the values of 𝒙(𝑡) 

serving as the constraints of the system. These results are discussed in the next section 

for each case of the multi-feed bioreactor used for beta-carotene production. 

min
𝐹1,𝐹2,𝐹3

𝜙 = −α ⋅ 𝑃̅𝐷 +∑∑[𝑃𝑖,𝑞 − 𝑃̅]
2
+ [𝑋𝑖,𝑞 − 𝑋̅]

2
𝑛𝑐𝑜𝑙

𝑖=1

𝑛𝑓𝑒

𝑞=1

 

𝑠. 𝑡. 

𝒙(𝑡) = 𝒙𝑖−1 + ℎ𝑖 ∑𝛺𝑞 (
𝑡𝑖 − 𝑡𝑖−1

ℎ𝑖
) ⋅

𝑑𝒙

𝑑𝑡𝑖,𝑞

𝑛𝑐𝑜𝑙

𝑖=1

 

𝒙𝑖 = 𝒙𝑖−1 + ℎ𝑖 ∑𝛺𝑞 (
𝑡𝑖 − 𝑡𝑖−1

ℎ𝑖
) ⋅

𝑑𝒙

𝑑𝑡𝑖,𝑞

𝑛𝑐𝑜𝑙

𝑖=1

 

𝐹𝑖𝑛(𝑡) = 𝐹𝑜𝑢𝑡(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) + 𝐹3(𝑡) 

𝜒𝐸 = 1 − 4.1 × 10−6 ⋅ 𝐸3 + 1.4 × 10−4 ⋅ 𝐸2 − 9.1 × 10−3 ⋅ 𝐸 

𝜒𝐴 = 1 − 0.011 ⋅ 𝐴2 − 0.021 ⋅ 𝐴 

0 ≤ 𝐹1(𝑡), 𝐹2(𝑡), 𝐹3(𝑡) ≤ 𝐹𝑚𝑎𝑥 

𝒙(𝑡) = [𝐺(𝑡), 𝑋(𝑡), 𝑃(𝑡), 𝐸(𝑡), 𝐴(𝑡)] 

(5.14) 
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5.3. Results and Discussion 

5.3.1. Optimal Control a Multi-feed 𝜷-carotene Bioreactor 

One of the benefits of the continuous cultivation process shown in Figure 5.2 is 

its adaptability to different operating scenarios. As mentioned previously, S. cerevisiae 

SM14 exhibits multiple growth phases; the first growth phase utilizes the main carbon 

source glucose, resulting in the formation of produces ethanol, biomass and some 

product, and then a second growth phase utilizes the ethanol and exhibits a higher beta-

carotene formation rate. Through restriction of the pump operation in the system 

(𝐹𝑖(𝑡) = 0) it is possible to operate the reactor using different feeding strategies and 

determine which feeds are necessary to achieve the optimal economic performance. 

Three feeding strategies are tested here, and include (1) the use of a single glucose inlet 

to simulate the current feeding strategies seen in literature (𝐹1(𝑡) = 𝐹3(𝑡) = 0), (2) the 

use of the glucose and media inlets to examine the effects of the independent variation of 

both dilution rate and glucose inlet concentration (𝐹2(𝑡) = 0), and (3) the use of the a 

glucose, ethanol and media inlets to target both growth phases of S. cerevisiae to 

enhance beta-carotene production.  

All strategies are tested using a working volume of 3 liters to ensure the minimal 

amount of change to the conditions of the bioreactor whose effects are not captured by 

the kinetic models by Ordonez et al., i.e. nutrient levels, dissolved oxygen, etc. The bulk 

concentration of the glucose and ethanol feeds are 20 g/L and 5 g/L, respectively, and 

are chosen as these were the highest concentrations of each substrate seen during the 

work of Ordonez et al. The bioreactor is initially charged with 20 g/L of glucose and 
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0.06 g/L of biomass containing 6 mg/L of beta-carotene. The ethanol and acetic acid 

initial conditions are zero. The final constraint to the program is the restriction of 

possible flow rates for the pumps for the multiple feeds. The value of the maximum flow 

rate of each pump is determined based on the number of feeds used in the reactor; this 

sets a standard maximum dilution rate 𝐷 possible for the reactor, allowing for 

comparable operation regardless of the number of feeds. For example, assuming a total 

flow rate of 12 L/s into the reactor is allowed, the maximum pump flow rate would result 

12 L/s for a single pump configuration, 6 L/s each for a dual feed configuration having 

two pumps, and 4 L/s each for a three-feed configuration having three pumps. 

The results from the simulation of the optimal control of a continuous bioreactor 

utilizing a single glucose feed are shown in Figure 5.4 and will be used as a guideline to 

compare the improved performance of the multi-feed bioreactor. From the dynamic state 

profiles shown in Figure 5.4a the process comes to an oscillatory steady state after 

approximately 25 hours of operation. Table 5.1 gives the average concentrations for all 

five reactor components. Though reactor feeding is allowable in the optimal control 

program from the start, the reactor operates in batch mode for the first 20 hours to 

establish an adequate biomass culture. After that initial 20 hours, the glucose pump 

begins to operate, reaching a steady state control policy as shown in Figure 5.4b. The 

corresponding feed concentration of glucose is shown in Figure 5.4c. The optimal 

control policy for the single glucose feed shows the pump exhibits cyclic, pulsing 

operation over the course of each hour of operation, starting at the maximum possible 

flow rate of 1.2 L/hr, decreasing to 0.4 L/hr in the second part of the hour, and then 
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closing the pump completely in the final third of the hour. The cyclic nature of the 

optimal feeding profile is independent of the finite element length, though this value 

does affect the final steady state values of the state variables and as such should be 

optimized to achieve the maximum profitability in future work. 

Table 5.1. Average steady state bioreactor compositions for the single glucose feed, 

glucose and media feed, and glucose, ethanol and media feed reactors. 

Concentration (units) 
Glucose Only  

Feed 

Glucose and  

Media Feed 

Glucose, Ethanol  

and Media Feed 

Beta-carotene (mg/L) 20.56 18.62 17.35 

Biomass (g/L) 3.62 2.79 2.36 

Glucose (g/L) 2.98 1.53 1.38 

Ethanol (g/L) 4.19 2.84 3.14 

Acetic Acid (g/L) 0.39 0.31 0.28 

 
Figure 5.4. (a) State profiles, (b) steady state feed flow rates and (c) steady state feed 

composition for a single feed bioreactor (glucose only) for beta-carotene production. 



 

126 

 

Figure 5.5 displays predicted control policy and resulting state profiles of adding 

a secondary controllable media feed as a diluent along with the initial glucose feed. The 

optimal control policies for the glucose pump shown in Figure 5.5b follows the same 

hourly, oscillatory trend as the single glucose feed control policy. The flow rate begins at 

the maximum glucose flow rate of 0.4 L/hr, dropping to 0.2 L/hr and then finally closing 

for the final 20 minutes of each hour of operation. The media feed is also introduced in 

an oscillatory fashion, spiking to the maximum possible flow rate of 0.6 L/hr for the first 

one third of the hour and then closing the pump for the remaining 40 minutes. The 

glucose concentration shown in Figure 5.5c depicts the effect of the multiple feeds on 

the inlet glucose concentration. While both the media and glucose feeds are active we 

can see a reduction in the optimal glucose concentration being fed into the reactor. This 

value then increases to the maximum possible concentration of 20 g/L until both pumps 

are closed. The result of this oscillatory optimal control policy on the bioreactor states 

are shown in Figure 5.5a. Like those of Figure 5.4a for a single glucose feed, the 

bioreactor states for the duel feed reactor show oscillatory behavior after reaching an 

oscillatory steady state at around 60 hours. This bioreactor also sees an initial period of 

20 hours where the reactor is operated in batch mode with no inlet or effluent flow. The 

inclusion of a second dilution feed does decrease the steady state concentrations of the 

key reactor products; the beta-carotene titer shows a slight decrease from 20.56 mg/L to 

18.62 mg/L. 
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Figure 5.5. (a) State profiles, (b) steady state feed flow rates and (c) steady state feed 

composition for a two-feed bioreactor (glucose and media) for beta-carotene production. 

The predicted control of a three-feed bioreactor utilizing independent glucose, 

ethanol, and media feeds is shown in Figure 5.6. Figure 5.6b shows that this system with 

three independent, controllable pumps again displays a pulsing feeding strategy. In this 

case, the ethanol, glucose and media are introduced to the bioreactor together at the 

maximum allowable flow rate of 0.4 L/hr each. During the middle one third of the hour 

the ethanol and media pumps are closed for the remainder of the hour while the glucose 

pump flow rate is halved to approximately 0.2 L/hr. During the final third of each hour 

all three pumps are closed completely. This feeding pattern gives the feed concentration 

profile shown in Figure 5.6c, where the initial feeding of glucose and ethanol are done 

well below the maximum concentration of 20 g/L and 5 g/L, respectively. The glucose 
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inlet concentration does reach the maximum during the period at which the ethanol and 

media pumps are switched off. The optimal feeding policy again results in an oscillatory 

steady state exhibiting the same characteristics of the previous two bioreactor 

configurations. However, the introduction of the third feed again reduced the beta-

carotene titer when compared to the single glucose feed and glucose and media feed 

reactor arrangements. 

 
Figure 5.6. (a) State profiles, (b) steady state feed flow rates and (c) steady state feed 

composition for a three-feed bioreactor (glucose, ethanol and media) for beta-carotene 

production. 

Due to the similarity of the optimal control policies for reactor flow rates and the 

resulting state profiles systems shown in Figures 5.4 through 5.6, a more in-depth 

analysis of the improvement through the introduction of multiple feeds is required. Table 
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5.2 compiles these more advanced analytics beginning with the calculation of the 

average bioreactor productivity. This is calculated as follows for continuous systems, 

where Fi indicates the average flow rate for feed 𝑖: 

Average Productivity = P̅ ⋅ D̅ = P̅ ⋅
∑ Fii

V
 (5.15) 

In addition to its effect on the beta-carotene titer (P̅ in Equation 5.15), the multiple feeds 

affect the optimal average dilution rate (D̅ in Equation 5.15). These variations in titer and 

dilution rate lead to differences in productivity. The single glucose feed results in the 

highest beta-carotene productivity, as it shows the largest titer and dilution rate among 

all the reactor options at 3.61 mg⋅L-1⋅hr
-1

. The addition of more feeds to the system 

results in a 29.75% and 23.53% decrease in productivity for the two-feed and three-feed 

configurations, respectively. This difference, while partially attributed to the decrease in 

product titer, is also a result of a lower average dilution rate, a result that suggests that 

the multi-feed bioreactors require longer residence times. However, when compared to 

the results of Ordonez et al, all three bioreactor configurations reach a higher beta-

carotene productivity than the 1.67 mg⋅L-1⋅hr
-1

 achieved during batch production [295].
 

Based on these results it seems that the traditional single glucose feed is the ideal method 

for the continuous production of beta-carotene. 
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Table 5.2. Comparison of the single, double, and three-feed reactors via key operation 

metrics, i.e. product titer, productivity, cellular and substrate yields, etc. 

 

Glucose Only  

Feed 

Glucose and  

Media Feed 

Glucose, Ethanol  

and Media Feed 

Average Beta-carotene Titer (mg/L) 20.57 18.62 17.35 

Average Dilution Rate (hr
-1

) 0.176 0.136 0.159 

Average Productivity (mg/L⋅hr) 3.61 2.54 2.76 

Breakeven β-Carotene Price ($/kg) $1,258.58 $688.27 $873.47 

Cellular Yield (mg/g biomass) 5.69 6.67 7.33 

Substrate Yield (mg/g substrate fed) 1.31 3.09 2.16 

Productivity Difference 0.00% -29.75% -23.53% 

Price Difference 0.00% -45.31% -30.60% 

While the multi-feed bioreactors underperform compared to their single-feed 

counterpart in terms of productivity (labeled in green in Table 5.2), they show vast 

improvement when it comes to economic viability (labeled in orange in Table 5.2). To 

determine the economics of these reactors, and knowing that the capital cost of these 

systems were similar, the breakeven cost for the beta-carotene product was calculated 

based on their operating costs. Equation 5.16 was used to calculate the breakeven cost of 

the average amount of beta-carotene produced 𝐶𝑃 based on the average amount of each 

substrate necessary for its production. For these calculations the price of the ethanol 𝐶𝐸 

was set to be approximately $3 per liter ($1 per gram) [296]. The price of the glucose 𝐶𝐺 

was set to be $0.40 per pound ($0.88 per kilogram) based on the reports available from 

the United States Department of Agriculture for the commodity cost of glycose syrup 

based on dry weight [297].
 

𝐶𝑃𝑃̅𝐹̅𝑜𝑢𝑡 = 𝐶𝐺𝐺𝑓𝐹̅1 + 𝐶𝐸𝐸𝑓𝐹̅2 (5.16) 
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The benefits of the multi-feed approach to the production of biologics can be 

seen through the calculation of this breakeven analysis. While the single feed excelled 

when comparing the productivity of the reactor systems, it falls far behind in the 

economics. The addition of both the ethanol and media feeds reduces this breakeven cost 

by over 30%. This level of price reduction outpaces the decrease in reactor productivity 

and is a result of an improvement in both the cellular and substrate yield of the 

bioreactors with multiple feeds. As expected, the supplementation of ethanol targets the 

secondary growth phase of the S. cerevisiae and results in a 64.86% increase in substrate 

yield, allowing for the decrease in operating cost despite the decrease in overall reactor 

productivity.  

5.3.2. Optimal Solution Verification and Investigating Increased Operability 

Additional analysis was performed to verify the optimality of the obtained 

solutions and to examine the effect of additional operability constraints on the system. 

With respect to optimality, it was important to determine whether the parameters of the 

discretization method, specifically the chosen finite element length, were influential on 

the optimal exit concentrations of the system. Figure 5.7 below shows the effect on the 

average exit concentrations of each of the five state variables for a three-feed reactor 

with an ethanol, glucose, and media feed. Changes in the finite element length vary from 

0.1 hours to 2 hours. Three internal collocation points were used for each finite element 

length, and the percent change in the optimal steady state exit concentrations were 

calculated using the one-hour finite element length as a basis. From Figure 5.7 below it 

can be seen that the optimal steady-state concentrations vary slightly based on finite 
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element length, with the highest variation of ±1.5% shown in the glucose concentration. 

All other changes showed sensitivities at or below ±0.5%. The steady state optimal 

control policies (not shown) were all similar to the cyclic optimal control policy shown 

for the 1 hour case in Figures 5.4, 5.5, and 5.6. These results suggest that the cyclic 

optimal control policy for the three independent flowrates is actually a set of cyclic 

solutions based on the chosen finite element length that result in the same optimal state 

profiles for the multi-feed bioreactor system. 

 
Figure 5.7. The effect (calculated in percent change) of the finite element length on the 

optimal solution to the optimal control problem for the three-feed bioreactor. 

 With the optimality of the solution determined, it is also important to investigate 

the role operability plays in the optimal solution of the multi-feed bioreactor. Bang-bang 

control schemes like those seen in the optimal control policies for the multi-feed 

bioreactor often lead to faster degradation of equipment due to the constantly changing 

values of the manipulated variables between their maximum and minimum values. Often 

it is more amenable to operate within small windows of change, resulting in less wear on 
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equipment such as pumps and valves. One method to determine the impact of operability 

on the optimal control is to penalize large changes in the manipulated variable values in 

the objective function of the optimal control problem. This can be seen specifically 

applied to the previously determined optimal two-feed bioreactor problem in Equation 

5.17 below, where the 𝜙𝑓𝑟𝑒𝑒 term denotes the original objective function from Equation 

5.14 and the second term is used to penalize large, quick changes in the flowrates of the 

glucose feed and media feed, respectively. The parameter 𝜉 is a chosen scaling 

parameter to adjust the importance of the operability constraint; a value of 𝜉 = 0 would 

result in the original free problem. 

min
𝐹1,𝐹2,𝐹3

𝜙 = 𝜙𝑓𝑟𝑒𝑒 + 𝜉 ⋅ ∫ [(
𝑑𝐹1
𝑑𝑡

)
2

+ (
𝑑𝐹3
𝑑𝑡

)
2

]  𝑑𝑡

𝑡𝑓

0

 (5.16) 

 Once discretized, the objective function in Equation 5.16 can be used to limit the 

allowable solution space to optimal control policies to those that decrease the wear on 

the flow valves. The resulting optimal state profiles can then be used to determine the 

effect of increased operability. Figure 5.8 below shows the optimal solution for the 

original “free” problem discussed in the previous section, the problem that considers 

operability with changes in the manipulated variables at each collocation point using 

Equation 5.16 as the objective function, and the problem that considers operability while 

also limiting changes in the manipulated variable to each finite element and remaining 

constant at each collocation point. Comparing the optimal control policy in Figure 5.8a 

for the free problem to Figure 5.8b denoting the operability problem it is easy to see that 

the cyclic nature remains in the problem where operability is considered. However, the 
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magnitude of the changes has been limited when operability is considered, and the 

resulting bang-bang control seen in the free problem is no longer encountered. If Figure 

5.8c is considered, when operability is taken into account with fewer opportunities to 

change the manipulated variable, it can be seen that a constant glucose flowrate is used 

to operate the reactor without the presence of a media stream for dilution effects. 

 

Figure 5.8. Effect of adding operability penalties for the allowable flow rate changes to 

the objective function of the optimal control problem. Plots correspond to: (a) free 

manipulation of independent variables every 20 minutes, (b) penalties placed on large 

changes in the manipulated variables to improve controllability, and (c) penalties placed 

on changes in manipulated variables and only allowing for infrequent changes 

corresponding to once every hour. 
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Table 5.3. Effect of penalizing and limiting the number of changes in the independent, 

manipulated variables (MV). Columns correspond to freely manipulated independent 

variables, penalizing large changes in the manipulated variables to improve 

controllability, and penalties placed on changes in manipulated variables and only 

allowing for infrequent changes corresponding to once every hour 

  

Infrequent & Penalized Penalized Free 

Average Exit Concentrations 

   

 

Glucose (g/L) 4.648 1.584 1.530 

 

Biomass(g/L) 3.090 2.466 2.790 

 

Beta-carotene (mg/L) 13.461 15.660 18.622 

 

Ethanol (g/L) 4.230 2.640 2.836 

 

Acetic Acid (g/L) 0.324 0.272 0.309 

Average Dilution Rate (hr
-1

) 0.112 0.084 0.136 

Beta-Carotene Productivity (mg/L-hr) 1.501 1.315 2.539 

Breakeven Beta-carotene Price ($/kg) $1,292.61 $708.64 $688.27 

While visible effects can be seen in the optimal control policies when operability 

is considered, it is important to quantify their effects on the operation of the bioreactor. 

These effects, including the average exit concentration of the five state variables, 

average dilution rate, 𝛽-carotene productivity, and calculated breakeven 𝛽-carotene price 

are shown in Table 5.3 below. When comparing the free manipulation of independent 

variables to the more constrained operability problem, it can be seen that the calculated 

breakeven 𝛽-carotene price is increased by approximately $20 per kilogram when 

operability is considered. This a result of a lower productivity of the reactor, a decrease 

from 2.539 hr
-1

 in the free case to 1.315 hr
-1

 in the case where the manipulated variables 

are penalized for operability. It can also be seen that the optimal average exit 

concentration of the 𝛽-carotene product is reduced by about 3 mg/L, as highlighted in 

green. However, if the ability to manipulate the flowrates is reduced to once per hour, 

then the system reverts to a single, constant glucose flowrate and the breakeven 𝛽-



 

136 

 

carotene price rises substantially to a value of almost $1300 per kilogram. This is a 

direct result of both a further decrease in 𝛽-carotene production and a rise in the exit 

glucose concentration, highlighted in orange, demonstrating that a constant glucose feed 

does not allow for adequate residence time for the glucose to be consumed by the S. 

cerevisiae. The need for more glucose that cannot be used in the single pass bioreactor 

results in higher operating cost and thus a higher breakeven 𝛽-carotene price. This 

outcome demonstrates the need for a multi-feed approach that can be used to manipulate 

the glucose concentration based on the metabolic cycle of the organism. 

5.3.3. Summary of Future Analysis 

Ethanol substrate is inhibitory to cellular growth and its introduction to the 

reactor, as well as being a by-product of glucose metabolism, results in the subpar 

performance of the three-feed reactor when compared to the dual feed system. By 

eliminating the ethanol feed and using the media feed to manipulate the inlet glucose 

concentration and control the amount of produced ethanol while still maintaining the 

necessary dilution rate, the dual feed reactor can maximize its cellular yield of beta-

carotene and achieve a breakeven price that is 45.31% lower than the single feed reactor 

despite having the lowest productivity of the three reactor systems. While further 

analysis of the long-term economics of these reactors is needed, the results discussed 

here show great promise for stimulating economic improvement of biochemical systems 

through the implementation of multiple feed bioreactors. 

The results of this work have direct applicability to the control of many 

biochemical reactor systems. The optimal feeding profiles developed here can be used 
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directly with cultivation experiments using a programmable controller or manual 

manipulation of the pump flow rates. If online feedback control is desired, the optimal 

control models discussed in Equation 5.14 can serve as the beginnings of a model 

predictive control (MPC) framework that can be developed for direct online control of a 

bioreactor system. In this framework, the bioreactor concentrations can be directly 

measured in the instance of extracellular products or estimated from online data using 

different state estimation techniques, i.e. Kalman filters, in the instance of intracellular 

products. This concentration can be directly related to the concentration predicted by the 

controller, thereby giving an error signal that can be used to adjust the multiple pumps 

controlling the various substrate flow rates. Finally, the general nature of the control 

framework can be adjusted to any biochemical system, regardless of the intracellular or 

extracellular nature of the product, if kinetic equations can be developed for the system 

of interest. 

5.4. Conclusions 

This work looks to develop a novel multi-feed paradigm for the economic 

improvement of biochemical processes. This new biochemical processing strategy aims 

to maintain process productivity while decreasing operating costs through the 

introduction of multiple independent feeds with associated pumps that allow for the 

manipulation of substrates and diluent flow rates and substrate concentrations. A beta-

carotene production process is utilized as a case study for the new paradigm utilizing a 

traditional single glucose feed, two separate glucose and media feeds, or three feeds 

consisting of glucose, ethanol, and media as substrates. Kinetic models taken from 
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literature are utilized as constraints to the optimal control problem looking to determine 

the individual feed flow rate control policies necessary to maximize reactor productivity 

as well as minimize the response time to steady state. Results of this study show that 

while the introduction of multiple feeds reduces the bioreactor productivity through 

decreases in product titer and dilution rate. However, the implementation of these feeds 

reduces the breakeven beta-carotene price due to an increase in the cellular and substrate 

yields of the product. This result suggests that the use of a multi-feed bioreactor system 

can be used to insight cost savings in bioreactor system through the reduction of 

operating costs associated with the production of biologics. 



_____________________ 
‡
Reprinted with permission from “Economic viability of consolidated bioprocessing 

utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol 

production” by Raftery and Karim, 2017. Journal of Biomass and Bioenergy, 103, 35-

46, Copyright 2017 by Elsevier. 
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CHAPTER VI 

PROCESS SYNTHESIS FOR COMMERCIAL-SCALE CELLULOSIC 

BIOETHANOL PRODUCTION
‡

6.1. Introduction 

Even with the recent discoveries of shale gas, concerns over the future 

availability of petroleum-based liquid fuels exist due to the high demands of the 

transportation industry. Renewable liquid fuel sources such as ethanol will play a key 

role in filling the gap left by declining fossil-fuel-based options. At present, popular 

methods of producing ethanol rely upon the conversion of food sources with high starch 

content, such as corn and sweet potatoes, resulting in the debate of the necessary 

sustainability if used in both the food and fuel markets [298]. An alternative method is 

the thermochemical conversion of lignocellulosic biomass to ethanol, which has been 

shown to be competitive with current petroleum prices, but these processes are 

associated with high energy requirements for operation [299]. The production of 

bioethanol from lignocellulosic sources can also be done biochemically, but this method 

of production introduces operational and other, e.g. mass transfer, issues. For example, 

to produce high concentrations of bioethanol through fermentation one needs to have 

high concentrations of glucose and xylose, which are only obtainable using a high 

concentration (e.g. 25-30 wt%) of pretreated lignocellulosic biomass that is processed 

with the appropriate enzymes [300]. However, the biochemical production of ethanol 
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requiring high solid loadings has the potential to utilize many different cellulosic 

biomass substrates and pretreatment technology options without the use of food 

resources, giving it the versatility to replace many liquid fuels produced from crude oil. 

Research in the techno-economic analysis of biochemical ethanol production has 

focused mainly on processes involving conversion technologies featuring three main 

steps: biomass pretreatment, enzyme hydrolysis, and fermentation. The effect of many 

different pretreatment technologies, including ammonia fiber expansion (AFEX), dilute 

sulfuric acid (DSA) and liquid hot water (LHW), on the economic viability of 

lignocellulosic ethanol production when using a switchgrass feedstock has been 

demonstrated by the Consortium for Applied Fundamentals and Innovation (CAFI) 

[301]. Dutta et al. have demonstrated the economic viability of biochemical ethanol 

production in various process configurations using corn stover and a Zymamonas 

mobilis bacterium to facilitate the fermentation [302]. In 2011, the National Renewable 

Energy Laboratories (NREL) showed that the conversion of corn stover to ethanol using 

a dilute acid pretreatment can result in an attractive ethanol selling price [303]. 

Zondervan et al. studied the optimal plant topology to produce ethanol alone as well as 

with coproduction of butanol and succinic acid [304]. Gabriel et al. used mixed-integer 

nonlinear programming methods to determine the optimal biomass choice and 

pretreatment necessary for a single-feed process from a process superstructure to analyze 

the viability of bioethanol production [96]. Furthermore, Martín and Grossmann have 

studied the production of ethanol from a switchgrass feedstock, first by minimizing 

energy needs of the process and then simultaneously producing i-butene [305, 306]. Da 
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Silva et al. have investigated the techno-economics of different pretreatment processes 

for cellulosic ethanol production at the industrial scale [307]. Additional work has been 

done regarding the selection of technologies specific to bioethanol production [308, 

309]. While the studies described above have all shown promising results to produce 

bioethanol via biochemical pathways, in most cases they are limited by their focus on 

separate hydrolysis and fermentation (SHF) as a processing methodology. 

The SHF process for the biochemical conversion of lignocellulosic biomass 

requires an enzymatic saccharification step to convert the cellulose chains to simple 

sugars, a costly venture and a common bottleneck in their implementation [310]. An 

alternative method discussed in the literature aims to circumvent this costly approach in 

favor of using a single organism or consortium of organisms capable of hydrolysis via 

enzyme production and simultaneous fermentation of the cellulose polymer to ethanol in 

a single process step; this process is known as consolidated bioprocessing or CBP [311]. 

This process has been analyzed at the laboratory scale using many different types of 

organisms, including the genetically engineered bacteria Caldicellulosiruptor bescii, 

Clostridium phytofermentans, and Saccharomyces cerevisiae, to name a few [312-314]. 

Ryu and Karim have also analyzed the use of genetically engineered E. coli for creating 

a whole cell biocatalyst for the single-step conversion of lignocellulose to ethanol [315]. 

However, this alternate conversion route has the potential of further increasing the 

economic potential of ethanol production via biochemical means, but no large-scale 

techno-economic analysis of consolidated bioprocessing has yet been reported in the 

literature. 
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In addition to their emphasis on SHF as a processing methodology, much of the 

literature on biochemical ethanol production focuses on the use of a single biomass 

feedstock for operation. However, work by Quaglia et al. has shown that a mixed 

biomass feed of cassava rhizome, corn stover, and sugarcane is economically favorable 

to many single biomass feeds [316]. Marvin et al. have also investigated the use of 

multiple biomass feedstocks to determine the optimal ethanol supply chain in Iowa and 

the surrounding states [317]. The development of a single biorefinery capable of 

utilizing multiple feedstock options simultaneously would facilitate its application in 

many more areas of the United States than just those rich in a single biomass type, e.g. 

corn in the Midwest. 

To further improve the economic viability for biochemically produced ethanol, 

the otherwise unprofitable waste product and key component in the cell walls of the 

lignocellulosic biomass, lignin, is used to generate cogenerate energy in the form of 

steam utilities and salable electricity. As much as 25% of the biomass used in these 

processes, regardless of specific type, is composed of this highly complex polymer that 

cannot be converted to the desired ethanol product. Repurposing this lignin for energy 

cogeneration has been shown to be feasible, resulting in the reduction of plant operating 

costs for utilities [6, 20]. Steam produced through the burning of this otherwise unusable 

lignin can also be used for electricity generation, and has been shown to benefit second 

generation biofuels profitability by Dias et al [318]. The implementation of cogeneration 

has the capability of reducing the energy requirements of the plant while increasing the 
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potential of providing green electricity to the grid from any excess energy produced 

during the lignin combustion process. 

This work looks to be the first to analyze the techno-economics of large scale 

consolidated bioprocessing and compare it to the more conventional separate hydrolysis 

and fermentation pathway. A process superstructure of biomass alternatives and 

pretreatment technologies is considered for each conversion pathway, allowing for the 

selection of an optimal feed consisting of a single biomass or multiple biomasses with 

corresponding optimal pretreatments. Steady state mathematical models are utilized to 

formulate a mixed-integer nonlinear optimization (MINLP) problem whose solutions 

will be compared to determine the economically superior option based on minimum 

ethanol selling price. The long term economic implications of the superior processing 

technology as well as the impact of utilizing multiple biomass feedstocks simultaneously 

are examined. Additionally, the optimal topology of the ethanol production process is 

used to elucidate the ideal location for biorefinery infrastructure based on the selected 

biomass types necessary for economically optimal ethanol production. 

6.2. Materials and Methods 

6.2.1. Biomass Selection and Geographic Implications 

This study focuses on the development of consolidated bioprocess (CBP) as a 

method of producing ethanol from lignocellulosic biomass and its techno-economic 

comparison to the existing separate hydrolysis and fermentation (SHF) methodology. 

Each process incorporates the options of processing multiple biomass feeds and the 

cogeneration of utilities and electricity through the use of the unreacted lignin product. 
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The processes are designed to handle a total of 2,000 to 3,500 U.S. tons (1,800 to 3,200 

metric tons) per day of biomass and operates for 350 days per year. Biomass options 

focus on prevalent biomass options available in the United States, including sugarcane 

bagasse (𝑆𝐵), sorghum (𝑆𝑂𝑅), hybrid poplar (𝐻𝑃), switchgrass (𝑆𝑊) and corn 

stover (𝐶𝑆). 

Table 6.1. Oven-dried composition of each biomass type considered in the proposed 

separate hydrolysis and fermentation and consolidated bioprocessing bioethanol 

facilities [96, 319-321]. 

Biomass component Corn stover Switchgrass Poplar Sorghum Bagasse 

Glucan 0.3546 0.3325 0.4373 0.2825 0.3911 

Mannan 0.0047 0.0032 0.0281 0.0016 0.0032 

Galactan 0.0087 0.0107 0.0070 0.0046 0.0045 

Xylan 0.1919 0.2186 0.1720 0.1306 0.2023 

Arabinan 0.0231 0.0291 0.0055 0.0148 0.0158 

Water 0.0271 0.0215 0.0318 0.0365 0.0286 

Lignin 0.1869 0.1806 0.2355 0.1372 0.2430 

Other 0.2032 0.2039 0.0827 0.3923 0.1115 

Price per tonne $61.60 $81.50 $101.60 $173.90 $40.00 

While it is acknowledged that the process of drying the biomass would add both 

capital and operating costs to the process designs, thereby increasing the minimum 

selling price of the ethanol produced, these factors are not considered in this work. 

Biomass moisture content at harvest is extremely variable due to factors such as growth 

region, the weather of a harvest year, soil type and fertilization, as well as harvesting and 

storage practices [303]. This work assumes the off-site drying of biomass before delivery 

to the processes developed here, focusing on the use of oven-dried biomass as a raw 

material. The biomass prices used in this work are chosen to reflect the additional 

preprocessing of the biomass. In this way, the uncertainty associated with biomass 

moisture and the drying process is eliminated and can be considered in more rigorous 
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designs of the optimal biorefinery developed here. Table 6.1 outlines the average oven-

dried composition and purchase cost of each type of biomass considered in this work 

[320]. Prices (in $ per tonne) are taken from Gabriel et al. for corn stover, switchgrass 

and poplar, NREL for sugarcane bagasse, and the World Bank Group for sorgum [96, 

319, 321]. 

 
Figure 6.1. Predominant location in the United States to produce each biomass option 

considered as a raw material for ethanol production [322]. 

The economics of the biochemical conversion of biomass to ethanol is largely 

linked to the type(s) of biomass used in the optimal ethanol process. Figure 6.1 shows 
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the main regions of the United States in which each of these biomass types is 

predominantly found. The types of biomass available for processing is highly dependent 

on the location at which the plant is constructed, e.g. sorghum is likely to be the main 

feedstock for a bioethanol facility constructed in southern California or Arizona, while a 

plant constructed in the Midwest would be more apt to use switchgrass or corn stover as 

its raw material [322]. Likewise, for facilities that utilize multiple biomass options it 

would be beneficial to be built in an area such as Kansas, where multiple biomass types 

are readily available. As such, the elucidation of the optimal biomass selection is directly 

representative of the optimal construction location for the facility. Thus, the choice of 

biomass feedstock(s) in the optimal process topology can be used to clarify the optimal 

location of biorefinery construction. 

6.2.2. Pretreatment Selection 

Pretreatment is essential for any process involving the biochemical conversion of 

biomass to commodity chemicals. Various chemical and physiochemical types of 

pretreatment can be used to weaken the cell walls and facilitate the hydrolysis and 

fermentation steps downstream. Pretreatment with alkali chemicals, e.g. sodium 

hydroxide, causes a swelling of the cell walls that leads to an increase in the internal 

surface area, a decrease in the degree of polymerization of the cell wall, and the 

disruption of the lignin structure responsible for the rigidity of plant cell walls [323]. 

Treatment with dilute acid mixtures using sulfuric or hydrochloric acid is also common; 

these treatments hydrolyze the hemicellulose to its monomeric sugar units and make the 

cellulosic portion of the biomass more accessible to enzymatic action [323]. 
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Physiochemical pretreatments, typically using of steam, liquid hot water, or aqueous 

ammonia, rely on more mechanical methods for cell wall disruption. During these 

processes the cell walls are subject to the working chemical under high pressures, 

facilitating hemicellulose hydrolysis, and then the pressure is released to cause a 

disruption in the cell walls, making the cellulose portion of the biomass available for 

further enzyme hydrolysis [323]. 

Specific pretreatment options considered in this work include sodium 

hydroxide (𝑁𝑎𝑂𝐻), liquid hot water (𝐿𝐻𝑊), dilute sulfuric acid (𝐷𝑆𝐴) and ammonia 

fiber explosion (𝐴𝐹𝐸𝑋), and at least two of these options are considered for each type of 

biomass feed. All combinations of the biomass and pretreatment combinations 

considered in this work, as well as their operating temperature, conversion of xylan 

during pretreatment, and conversion of glucan during subsequent enzyme hydrolysis 

steps, are shown in Table 6.2. 

6.2.3. Process Design Superstructures 

Figure 6.2a shows the process design superstructure used in the formulation of 

the design models for the consolidated bioprocessing process. While a feed of multiple 

biomass types to the process is possible, each biomass is treated separately through its 

respective pretreatment and hydrolysis pathway. The use of independent processing 

streams before fermentation allows for an accurate depiction of the pretreatment and 

hydrolysis steps of each biomass type, whereas the use of a single mixed biomass stream 

would introduce complications (e.g. kinetic and mass transfer issues) into the process 

modelling not accounted for in reported literature data. 
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Table 6.2. Biomass and corresponding pretreatment options for the proposed bioethanol 

plant design. Xylan conversion refers to the pretreatment process and glucan conversion 

refers to the hydrolysis process. 

Biomass Pretreatment 
Conversion Temperature 

(℃) 
Reference 

Xylan Glucan 

Sugarcane bagasse 
NaOH 96% 87% 110 

[324] 
LHW 44% 42% 190 

Sorghum 
DSA 25% 54% 100 [325] 

NaOH 68% 85% 50 [326] 

Hybrid poplar 
DSA 90% 82% 160 [327] 

LHW 22% 65% 200 [328] 

Switchgrass 

AFEX 92% 70% 100 [329] 

DSA 85% 76% 160 [327] 

NaOH 84% 68% 50 [330] 

Corn stover 
AFEX 99% 80% 90 [331] 

DSA 91% 90% 160 [327] 

 
Figure 6.2. Biomass and associated pretreatment options considered in plant 

superstructures for (a) consolidated bioprocessing (CBP) and (b) separate hydrolysis and 

fermentation (SHF). 

As no single organism has shown the capabilities of utilizing cellulose and 

hemicellulose as well as the fermenting the resulting monomer sugars, it is suggested 
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that a consortium of organisms that collectively can complete these tasks are used [332, 

333] Literature has shown that Thermoanaerobacterium saccharolyticum, a bacterium 

capable of hydrolyzing the hemicellulose and fermenting the five-carbon sugar 

monomers, and Clostridium thermocellum, an organism capable of hydrolyzing and then 

fermenting the monomers from the cellulose polymers, show potential as a consortium 

for CBP fermentation due to their conditions of pH and temperature under which both 

experience optimum growth, cellulose and hemicellulose decomposition, and ethanol 

production [334-336]. In 2011, work done by Argyros et al. demonstrated that CBP 

fermentation can be done with a co-culture of T. saccharolyticum and C. thermocellum, 

and their results and methods will serve as a basis for the analysis done here [336]. 

The removal of the carbon dioxide and excess nitrogen from the fermenter, 

though usually built into the vessel, is modeled in this work using a flash tank. A 

distillation column is used to concentrate the flash tank effluent to the azeotropic level of 

ethanol and water as well as remove the solid portion of the beer. Finally, a molecular 

sieve is used to complete the dehydration of the ethanol to the desired 99.5% product. 

The biological waste found in the bottoms of the beer column is used in the production 

of energy. This stream is first centrifuged to separate the solid portion of the stream from 

the aqueous phase. The solids are then separated with a portion going to the boiler to 

provide energy to produce steam from the aqueous phase. The rest of the solids are used 

as fuel for a separate steam generation cycle that generates electricity to be sold as an 

additional product. 
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Figure 6.2b shows the process design superstructure used for the separate 

hydrolysis and fermentation process used to compare to the consolidated bioprocessing. 

This process begins with the same biomass and pretreatment options used in the 

consolidated bioprocessing superstructure as shown in Figure 6.2a. An additional 

hydrolysis step is facilitated using cellulase enzymes capable of converting the long 

sugar polymers to their simple sugar monomers. The streams that exit the separate 

hydrolysis units are combined before the fermentation process. A strain of Zymomonas 

mobilis, genetically engineered for high ethanol tolerance and titers, is used for the 

mixed-sugar, anaerobic fermentation [303]. After fermentation, the reactor effluent 

undergoes the same ethanol recovery and energy generation procedure as described 

previously. 

6.2.4. Process Modeling 

6.2.4.1. Objective Function and Cost Correlations 

The objective of this work is to minimize ethanol selling price (MESP) 

determined as part of the total cost function shown in Equation 6.1, which must offset 

the capital cost (𝐶𝐶), operating cost (𝑂𝐶) and labor cost (𝐿𝐶) of the plant. Labor costs 

are scaled linearly with ethanol production, as shown in Equation 6.1b, at a rate of about 

$0.17 per gallon of ethanol as given by Humbird et al [303]. Additional revenue from 

electricity generation (Gelec) by the plant is factored in to the overall economics of the 

process through the last term in Equation 1a where 𝐶𝐸𝑙𝑒𝑐 is $0.0665 per kilowatt-hour, 

the average industrial electricity price for the United States in May 2015 [337]. 
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MESP =
CC + OC + LC − Gelec ⋅ CElec

Ethanol Produced
 (6.1a) 

LC = (
Labor Cost

Per Gallon Ethanol
) (

Ethanol
Produced

) (6.1b) 

The capital cost (CC) in Equation 6.1a is calculated as the annualized cost 

contribution of all unit operations for the process. Contributions to the capital cost come 

from the reactor costs (𝑅𝐶), separator costs (𝑆𝐶) and heat exchanger costs (𝐻𝐸𝐶) and 

are annualized using Equation 6.2 to adjust for an interest rate 𝑞 applied over a certain 

payback period of years 𝑛 [338]. For these processes a 5% interest rate is used, a slight 

overestimate of industry standards reported by the United States Federal Reserve System 

[339]. 

𝐶𝐶 −
𝑞 ⋅ (𝑅𝐶 + 𝑆𝐶 + 𝐻𝐸𝐶)

1 − (1 + 𝑞)−𝑛
= 0 

(6.2) 

Table 6.3. Base size (flowrate) and base cost to calculate the cost (Equation 6.3) of each 

piece of process equipment. 

Process Unit Material of Construction Base Size (kg/hr) Base Cost (USD) Ref. 

Pretreatment Incoloy Clad Carbon Steel 83,333.00 9,972,958 [303] 

Hydrolysis 304 Stainless Steel 52,722.00 1,000,847 [303] 

Fermentation 304 Stainless Steel 133,689.84 1,274,490 [303] 

Flash Separation 316 Stainless Steel 264,116.00 1,103,895 [303] 

Distillation 316 Stainless Steel 30,379.00 8,040,557 [303] 

Molecular Sieve Stainless Steel 22,687.00 2,540,057 [303] 

Heat Exchanger Stainless Steel 10,000.00 81,402 [211] 

To calculate the installed cost of each unit operation (𝑈𝑂𝐶), i.e. heat exchangers, 

reactors, distillation columns, etc., a six-tenths scaling factor is used [340-342]. Shown 

in Equation 6.3, this model adjusts the cost of each unit operation based on the costs of 

unit operations of a known size. Base size and base cost parameters are taken from 
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Humbird et al. or calculated using Guthrie correlations [211, 303]. In this work, all unit 

sizes correspond to the hourly capacity (or flow rate, measured in kg per hour) processed 

by the unit. The corresponding base size and cost for each piece of equipment is shown 

in Table 6.3. 

𝑈𝑂𝐶 − 𝐵𝑎𝑠𝑒 𝐶𝑜𝑠𝑡 ⋅ (
𝑈𝑛𝑖𝑡 𝑆𝑖𝑧𝑒

𝐵𝑎𝑠𝑒 𝑆𝑖𝑧𝑒
)
0.6

= 0 (6.3) 

Operating costs (OC) of the plant include the cost of biomass (BC), pretreatment 

chemicals (PC), enzymes (EC), process water (PWC), biomaterial costs which include 

enzymes and fermentation organisms (BMC), cooling water and steam utilities (UC), and 

waste treatment (WC) needed for the daily operation of the plant, and is calculated as 

shown in Equation 6.4. All operating costs are calculated based on the yearly usage of 

the material in question. Unit costs for each of the non-biomass raw materials used in the 

calculation of the operating cost, e.g. process water, pretreatment chemicals, utilities, 

etc., are shown in Table 6.4. 

OC = BC + PC + EC + PWC + BMC + UC +WC (6.4) 

Table 6.4. Cost of each non-biomass raw material used in the consolidated 

bioprocessing and separate hydrolysis and fermentation processes. 

Raw Material Cost Value Units Reference 

Sodium Hydroxide 430.000 $/1000 kg [343] 

Dilute Sulfuric Acid 55.110 $/1000 kg [96] 

Ammonia 500.000 $/1000 kg [96] 

Water    

Process 0.001 $/1000 kg [96] 

Cooling 0.065 $/1000 kg [96] 

Steam 6.610 $/1000 kg [96] 

Waste Treatment 36.000 $/1000 kg [96] 

Electricity Price 66.500 $/1000 kWh [337] 
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6.2.4.2. Biomass and Pretreatment Selection 

As stated in Section 4.2.1, both the CBP and SHF process superstructures allow 

for the use of multiple biomass feeds. In the models developed in this section, index b 

will be used for the available biomass types, index i will be used for the individual 

components of each stream (with a complete list shown in Table 6.1, and index j will be 

used for the available pretreatment options. Equation 6.5 is used to maintain the limit on 

the total biomass introduced to the system while allowing for multiple biomass types to 

be selected. For this work, a maximum of 3,500 U.S. tons of total biomass feed, 

regardless of type, is allowed into the biorefinery. Each biomass type selected is then 

broken down into the flow rates of its individual components using Equation 6.6, with 

𝑥𝑖,𝑏 denoting the mass fraction of each component (e.g. glucan, xylan, lignin, etc.) in the 

specific biomass option shown in Table 6.1. 

𝑚𝑏𝑖𝑜 −∑𝑚𝑏

𝑏

= 0 (6.5) 

𝑚𝑖 −𝑚𝑏 ⋅ 𝑥𝑖,𝑏 = 0 (6.6) 

For each biomass type fed into the system only a single pretreatment technology 

can be selected. This is controlled through the introduction of binary decision 

variables 𝑦𝑏,𝑗, where the subscript 𝑏 denotes the five biomass options available and 𝑗 

denotes a specific pretreatment option. Equation 6.7 shows how the selection of each 

technology is limited to only one option per biomass type. There exists one integer 

constraint like that in Equation 6.7 for each biomass type available. 
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1 −∑𝑦𝑏,𝑗
𝑗

= 0 (6.7) 

The amount of pretreatment chemical added to each branch is dependent on the 

biomass flow rate, 𝑚𝑏, in that branch system. Based on the literature sources outlined in 

Table 6.2 for each pretreatment-biomass combination, the amount of pretreatment 

chemical (𝑚𝑝𝑟𝑒) is added in proportion to the biomass loading, as shown in Equation 

6.8. The parameter 𝜉𝑏,𝑗 denotes the necessary amount of pretreatment chemicals added to 

the system for pretreatment type 𝑗. Water is added as a diluent based on the necessary 

pretreatment concentration needed in the pretreatment feed, the proportion of which is 

denoted as 𝛽𝑏,𝑗. For cases where liquid hot water is a pretreatment option, which requires 

no additional pretreatment chemicals, an extra term is added to account for the water 

addition as exemplified in Equation 6.9a for sugarcane bagasse. Where liquid hot water 

is not an option, this extra term is omitted, as shown in Equation 6.9b for the sorghum 

feedstock pretreatment. There exists one constraint like that in Equation 6.8 and either 

Equation 6.9a or 6.9b for each biomass type available. 

𝑚𝑝𝑟𝑒 −𝑚𝑏 ⋅∑𝑦𝑏,𝑗 ⋅ 𝜉𝑏,𝑗
𝑗

= 0 (6.8) 

𝑚𝑤𝑎𝑡𝑒𝑟 −𝑚𝑝𝑟𝑒 ⋅∑𝑦𝑏,𝑗 ⋅ 𝛽𝑏,𝑗
𝑗

− 𝑦𝑏,𝐿𝐻𝑊 ⋅ 𝑚𝑏 ⋅ 𝛽𝑏,𝐿𝐻𝑊 = 0 (6.9a) 

𝑚𝑤𝑎𝑡𝑒𝑟 −𝑚𝑝𝑟𝑒 ⋅∑𝑦𝑏,j ⋅ 𝛽𝑏,𝑗
𝑗

= 0 (6.9b) 
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6.2.4.3. Hydrolysis and Fermentation 

Reactor mass balance models were developed for the pretreatment, hydrolysis 

and fermentation reactors. Pretreatment reactors involve the breakdown of xylan based 

on the pretreatment type selected and biomass type used. Hydrolysis reactors utilize 

cellulase enzymes to break down the glucan made accessible via pretreatment; its 

conversion is therefore also dependent on pretreatment type. These values are shown in 

Table 6.2 for each biomass-pretreatment combination. Yields for each reaction were 

calculated based on the stoichiometry of each reaction, as shown below [303]. The 

polymer chain length for the glucan and xylan are given by n and m and were taken to be 

10,000 units and 1,000 units, respectively. While it is understood that these chain length 

values vary and will influence the amount of product ethanol, the numbers used in this 

study reflect an average length of these polymer chains [344]. 

1.0 (Glucan)n + n H2O → n Glucose    

1.0 (Xylan)m  + m H2O → m Xylose    

All reactor mass balance models are component balances that use a constant 

conversion (𝜒𝑏,𝑖) assumption. For consolidated bioprocessing a conversion of 90% and 

an ethanol yield of 0.41 grams of ethanol per gram of glucan are used for the 

fermentation step [336]. For the xylose fermentation, a conversion of 85% and an 

ethanol yield of 0.38 grams of ethanol per gram of xylose are used [345]. For the SHF 

process, fermentation conversions of 90% and 80% are used for glucose and xylose, 

respectively. Yields for separate hydrolysis and fermentation were based on the 

stoichiometry of ethanol fermentation shown below [303]: 
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1.0 Glucose → 2.0 Ethanol    +  2.0 CO2 

1.0 Glucose → 6.0 Z.mobilis +  2.4 H2O 

3.0 Xylose  → 5.0 Ethanol    +  5.0 CO2 

1.0 Xylose → 5.0 Z.mobilis +  2.0 H2O 

An example of a reactor mass balance model for the pretreatment and hydrolysis 

is shown in Equation 6.10, specifically for the pretreatment of sugarcane bagasse. The 

conversion during the pretreatment (glucan to glucose) or hydrolysis step for that 

specific pretreatment pathway is given as 𝜒𝑆𝐵,𝑖. Values of this 𝜒𝑏,𝑗 parameter for the 

conversion of xylan to xylose during pretreatment and glucan to glucose during 

hydrolysis can be found in Table 6.2. The value of 𝜒𝑏,𝑖 for all other components 𝑖 is zero. 

The mass flow rates of the inlet and outlet flow for each component in the reactor is 

given as 𝑚𝑖
𝑖𝑛 and 𝑚𝑖

𝑜𝑢𝑡, respectively, while the molecular weight and reaction 

stoichiometry of each component is given as 𝑀𝑊𝑖 and 𝑎𝑖. 

𝑚𝑖
𝑜𝑢𝑡 −𝑚𝑖

𝑖𝑛 −𝑚𝑥𝑦𝑙𝑎𝑛
𝑖𝑛 ⋅

𝑀𝑊𝑖

𝑀𝑊𝑥𝑦𝑙𝑎𝑛
⋅ 𝑎𝑖 ⋅∑(𝑦𝑏,𝑗 ⋅ 𝜒𝑏,𝑖)

𝑗

= 0 (6.10) 

6.2.4.4. Separation Processes 

Identical separation models are developed for the two processes to characterize 

the flash tank, distillation column and molecular sieve, respectively. A flash tank is used 

to model the capability of the fermenter to remove the gaseous components, such as 

carbon dioxide produced from the anaerobic respiration during fermentation, from the 

final ethanol product. Component balance models are developed to separate gasses from 

the liquid and solid components, which continue to the distillation process. 

The feed to the distillation process is assumed to be a binary mixture of ethanol 

and water and is modeled as such. The distillate of the column produces the product 
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ethanol to be sent for further refining while the bottoms stream consists of a water-rich 

solution that contains the unreacted solids from the pretreatment, hydrolysis, and 

fermentation. The separation of ethanol and water via distillation is modeled using a 

fractional recovery method shown in Equation 6.11 [346]. The fractional recovery, 𝑓𝑙, is 

determined by the desired compositions of the ethanol in the distillate and bottoms 

streams, 𝑧𝑑 and 𝑧𝑏, as well as the ethanol concentration in the distillation feed, 𝑧𝑒𝑡ℎ
𝑓

. A 

93 wt% stream of ethanol is desired as the distillate of the column and we look to restrict 

the bottoms of the column to less than 1 wt% ethanol. The fractional recovery can then 

be used to determine the amount of ethanol and water found in the distillate stream 

[346].  

𝑓𝑙 −
𝑧𝑑 ⋅ (𝑧𝑒𝑡ℎ

𝑓
− 𝑧b)

𝑧𝑒𝑡ℎ
𝑓

⋅ (𝑧𝑑 − 𝑧𝑏)
= 0 (6.11) 

The final step toward 99.5% pure ethanol product involves separation via 

molecular sieve. The molecular sieve is modeled using individual component balances 

with a split fraction approach as shown in Equation 6.12 and Equation 6.13. Equation 

6.14 shows the overall component mass balance of the sieve, with the feed flow rate 𝑚𝑖
𝑖𝑛 

split into a pure product stream with flow rate 𝑚𝑖
𝑝
 and a waste stream with flow rate 𝑚𝑖

𝑤. 

Here, the split fraction is denoted as 𝜙. 

𝑚𝑒𝑡ℎ
𝑝 −𝜙 ⋅ 𝑚𝑒𝑡ℎ

𝑖𝑛 = 0 (6.12) 

𝑚𝑤𝑎𝑡𝑒𝑟
𝑝 − (1 − 𝜙) ⋅ 𝑚𝑤𝑎𝑡𝑒𝑟

𝑖𝑛 = 0 (6.13) 

𝑚𝑖
𝑖𝑛 −𝑚𝑖

𝑤 −𝑚𝑖
𝑝 = 0 (6.14) 
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6.2.4.5. Energy Cogeneration 

Energy considerations for this plant design include the energy requirement 

needed to heat and cool process streams and reactors. Heat exchangers are found before 

the pretreatment reactors for each biomass feed branch to adjust the temperature of the 

stream to that of the reactor feed; this allows effective pretreatment of the biomass feed. 

Additional heat exchangers include the reboiler and the condenser of the distillation 

column. All heating is done using low pressure steam utility and all cooling is done via 

cooling water. Equation 6.15 is used to determine the amount of energy transfer in each 

heat exchanger (𝑄𝑒𝑥), with Equation 6.16 being used to calculate the heat capacity for 

the multicomponent streams. The constants 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐷𝑖 in Equation 6.16 are found 

in literature [347]. For lignin and other biological solids, 𝐶𝑖 and 𝐷𝑖 are assumed to be 

zero while the constants 𝐴𝑖 and 𝐵𝑖 were fit to data provided by Voitkevich et al. [348]. 

Additional thermodynamic model parameters were taken from Sandler [349]. 

𝑄𝑒𝑥 −𝑚𝑏 ⋅∑(𝑥𝑖𝐶𝑃,𝑖)

𝑖

⋅ Δ𝑇𝑗 = 0 (6.15) 

𝐶𝑝,𝑖 − (𝐴𝑖 + 𝐵𝑖𝑇 + 𝐶𝑖𝑇
2 +𝐷𝑖𝑇

3) = 0 (6.16) 

Energy requirements for each reactor must also be calculated. Each reactor is 

designed to remain isothermal to allow for the optimal performance of all biological 

reactions. As such, the heat generated or consumed by the reactions must be removed or 

replaced. Equation 6.17 uses the heats of formation (Δ𝐻𝑖
𝑓
) to calculate the heats of 

reaction (Δ𝐻𝑟𝑥𝑛) for each reaction, and Equation 6.18 uses this calculation to determine 

the heating or cooling requirement of each reactor (𝑄𝑟𝑒𝑎𝑐𝑡𝑜𝑟) based on the change in 
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flow rate of the limiting reactant (Δ𝑚𝑟𝑥𝑛). The heats of formation for glucan, xylan, 

glucose, xylose and biomass are determined from literature [256]. 

Δ𝐻𝑟𝑥𝑛 −∑𝜈𝑖Δ𝐻𝑖
𝑓

𝑖

= 0 (6.17) 

𝑄𝑟𝑒𝑎𝑐𝑡𝑜𝑟 −∑(Δ𝑚𝑟𝑥𝑛 ⋅ Δ𝐻𝑟𝑥𝑛)

𝑟𝑥𝑛

= 0 (6.18) 

From this energy requirement, the required amount of utility, either low pressure 

steam or cooling water, can be ascertained. Equation 6.19 shows the determination of the 

steam flow rate needed for a typical heat exchanger using the heat of vaporization of 

water Δ𝐻𝑤𝑎𝑡𝑒𝑟
𝑣𝑎𝑝

, while Equation 6.20 shows the cooling water flow rate required for a 

typical reactor using the sensible heat of water.  

𝑚𝑠𝑡𝑒𝑎𝑚 −
𝑄𝑏

Δ𝐻𝑤𝑎𝑡𝑒𝑟
𝑣𝑎𝑝 = 0 (6.19) 

𝑚𝑐𝑤 −
𝑄𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝐶𝑝
𝑤𝑎𝑡𝑒𝑟 ⋅ Δ𝑇𝑤𝑎𝑡𝑒𝑟

= 0 (6.20) 

Steam and electricity generation using the lignin content of the distillate bottoms 

stream are considered to offset the operating costs of the processes. First, the bottoms 

effluent is sent through a centrifuge that separates the solid phase into a pellet containing 

5% water. The aqueous phase continues to a boiler, where a portion of the solid pellet is 

used to generate low pressure steam that can be used to supplement or replace the energy 

needs of the heat exchangers in the process. The boiler operates at an efficiency of 80%. 

The remaining solids are sent to a separate steam cycle for electricity generation. 

Equation 6.21 is used to calculate the electricity generation of the steam cycle, where 
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𝜂𝑆𝐶  denotes the steam cycle efficiency, 𝐹𝐿𝑖𝑔𝑛𝑖𝑛 denotes the flow of lignin to the steam 

cycle, and Δ𝐻𝐿𝑖𝑔𝑛𝑖𝑛
𝑐  denotes the heat of combustion of lignin given as 22,870 kJ per 

kilogram [256]. It is assumed that the steam cycle operates at 33% efficiency [350]. The 

cost of this steam cycle (𝐶𝑜𝑠𝑡𝑆𝐶) is calculated based on the amount of electricity 

generated, as shown in Equation 6.22. A base cost of $1000 per kilowatt of electricity 

generated (𝐶𝑜𝑠𝑡𝑆𝐶
𝑏𝑎𝑠𝑒) is used for the steam cycle [351]. 

(
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

) − 𝜂𝑆𝐶 ⋅ 𝐹𝐿𝑖𝑔𝑛𝑖𝑛 ⋅ Δ𝐻𝐿𝑖𝑔𝑛𝑖𝑛
𝑐 = 0 (6.21) 

𝐶𝑜𝑠𝑡𝑆𝐶 − 𝐶𝑜𝑠𝑡𝑆𝐶
𝑏𝑎𝑠𝑒 ⋅ (

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

) = 0 (6.22) 

6.3. Results and Discussion 

6.3.1. Economic Viability of Consolidated Bioprocessing 

Table 6.5 shows the minimum ethanol price for the CBP facility with energy 

cogeneration. This plant produces ethanol at a breakeven ethanol selling price of $1.31 

per gallon ($0.35 per liter). The solver BARON, developed for the solution of non-

convex, mixed-integer nonlinear programs via a branch-and-reduce framework, was 

used to solve the optimization problem described by the models in Section 2.4 to a 5% 

optimality gap [65]. The optimal topology foregoes the selection of multiple biomass 

feed stocks, instead selecting only the least expensive feedstock, sugarcane bagasse. This 

optimal topology is depicted in Figure 6.3, where a single biomass feed train of 

sugarcane bagasse is selected and the energy cogeneration is used only for the initial 

pretreatment heater. A pretreatment method of sodium hydroxide was chosen for this 

sugarcane bagasse feed; this pretreatment leads to an increased ethanol production and a 
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decrease in energy requirements due to its higher conversions and lower operating 

temperature when compared to the alternately available liquid hot water pretreatment, as 

shown in Table 6.2. 

Table 6.5. Results for the minimum ethanol selling price, optimal topology, and optimal 

ethanol and electricity production rates for the separate hydrolysis and fermentation 

(SHF) and consolidated bioprocessing (CBP) facilities. 

 CBP SHF 

Ethanol price ($/gal) $1.31 $1.64 

Ethanol production (MM gal/yr) 66.0 76.2 

Total biomass feed (U.S. ton/day) 3,500 3,500 

Feed composition Sugarcane bagasse Sugarcane bagasse 

Pretreatment selection NaOH NaOH 

Electricity generation (MW⋅hr) 67 23 
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Figure 6.3. Optimal topology of the consolidated bioprocessing pathway for biological 

conversion and subsequent separation of lignocellulosic biomass to ethanol. 

6.3.2. Comparison of the Optimal CBP and SHF Processes 

In addition to those of the optimal CBP process, the optimal SHF process 

topology with respect to the selected biomass option(s), pretreatment(s), production rates 

of ethanol and electricity, and the resulting minimum ethanol selling price are shown in 

Table 6.5. Like the CBP process, the selection of sugarcane bagasse at the maximum 

allowable feed rate with a sodium hydroxide pretreatment is also featured in the optimal 
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SHF solution. This result follows that of Michailos et al., who demonstrated that for a 

sugarcane bagasse feed the optimal pretreatment was independent of fermentation 

strategy [352]. However, the difference seen in the ethanol production and minimum 

ethanol price exemplifies the impact of the removal of the enzyme hydrolysis step. 

While the removal of a hydrolysis step does lead to a 13.3% decrease in ethanol 

production for the CBP process, the removal of operating costs associated with enzyme 

addition results in a 20.2% decrease in the breakeven minimum ethanol selling price. 

Table 6.6. Breakdown of the costs (in $MM per year) associated with the optimal 

consolidated bioprocessing (CBP) and separate hydrolysis and fermentation (SHF) 

facilities with energy cogeneration. 

 CBP SHF 

Annualized capital costs 23.66 13.44 

Fermentation cost 2.97 0.66 

Enzyme cost 0.00 25.91 

Total biomass cost 44.45 44.45 

Total pretreatment cost 1.98 1.98 

Process water cost 6.67 9.82 

Waste water treatment cost 12.84 11.29 

Utilities cost 2.48 0.07 

Labor cost 34.47 39.77 

Total annual cost 123.89 137.58 

Table 6.6 shows a breakdown of the major cost contributors for both the CBP 

and SHF processes and gives more insight into the differences between the optimal CBP 

and SHF processes. Many cost contributions vary slightly between the two technologies, 

but consolidated bioprocessing results in a cheaper process annually. This is a direct 

result of the removal of the enzyme cost needed for enzyme hydrolysis, an operation 

accounting for $25.91 million dollars in operating cost for the SHF process. This 9.95% 

reduction in yearly cost, coupled with a 197% increase in electricity generation, is large 
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enough to overcome the decrease in ethanol production and leads to the decrease in the 

minimum ethanol selling price. 

While the knowledge of the commercial scale yields and consumptions of the 

SHF process have a very high degree of reliability based on its industrial scale 

performance, the analysis for CBP performed here is based on lab-scale experiments and 

assumptions that the scaled processes would perform identically to the experimental 

scale at the commercial level. Bioprocessing in general is subject to a high level of 

cellular variability that often results in uncertainty regarding bioreactor conversion; the 

scale up of these systems see a further increase in uncertainty due to an increase in mass 

transfer limitations with respect necessary nutrients and substrates. This uncertainty in 

bioreactor conversion could be detrimental to the production of ethanol, which could 

result in a higher selling price. To mitigate these concerns, traditional scale up 

techniques using pilot plant analysis need to be used to determine the extent of the 

uncertainty and level of deviation from lab-scale results. 

In addition to uncertainty regarding the scale-up of CBP, this work utilizes many 

constant values that are a subject of uncertainty due to seasonal variability. For example, 

the sales price of electricity is variable with respect to time of the year and location in 

the United States. Biomass prices are also variable, reaching a low point when in peak 

harvesting season and reaching a maximum during the non-growth seasons. The aim of 

this work is to compare the two processes at the commercial scale in a way that 

determines if consolidated bioprocessing is a technology that can potentially provide 

economic improvement when compared to the well-known separate hydrolysis and 
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fermentation. As such, uncertainties in the variables listed above are not addressed here 

but would be necessary considerations for the optimal topology determined here. 

Optimization methods that consider the uncertainty of various model parameters have 

been developed and used for a variety of other systems [353-355]. However, this aim of 

this work is to compare the two processes at the commercial scale in a way that 

determines if consolidated bioprocessing is a technology worth further investigation due 

to providing economic improvement when compared to the well-known separate 

hydrolysis and fermentation. The results demonstrated here show the use of consolidated 

bioprocessing with energy cogeneration is an economically favorable option for liquid 

transportation fuel production that should be investigated in more detail. 

6.3.3. Long Term Economics of Consolidated Bioprocessing 

As the leading strategy for the biological conversion of lignocellulosic biomass 

to ethanol, the long term economic implications of the consolidated bioprocessing plant 

are studied further. While analysis to this point had determined the breakeven selling 

price for the ethanol, this analysis aims to determine the price markup for the sale of 

ethanol that would ensure a long-term profitable process, indicated by achieving a 

discounted cash flow return on investment (DCFROI) of greater than 15% [211]. This 

study assumes a process lifetime of 20 years at a tax rate of 9% based on data collected 

across the entire chemical industry [356]. Additional assumptions include an engineering 

and contingency cost of 20% of the inside boundary limit (ISBL) costs each, a startup 

cost of 10% of the total capital investment (TCI), and straight-line depreciation for the 

lifetime of the plant. The plant is constructed in 2 years, the initial capital investment of 



 

165 

 

the plant is paid over a course of the following 10 years, and the sale price of the 

electricity was not adjusted in this analysis. The payout time of the project is also 

examined. 

The long term economic analysis shows that to achieve the economic indicators 

previously described that the ethanol price must be marked up by about 78%, leading to 

an ethanol selling price of $2.32 per gallon ($0.61 per liter). The cumulative cash flow 

for a discount rate of 10% is shown in Figure 6.4, resulting in a net present value of 

$135.4 million. This would result in a payout time of 5.80 years. The ethanol selling 

price of $2.32 per gallon ($0.61 per liter) is comparable to today’s selling prices for 

petroleum products used for transportation fuel and does not involve the need of any 

subsidy that would only serve to drive the price for profitability down. 

An additional sensitivity analysis on the DCFROI was performed for the instance 

where the ISBL costs, raw material costs, and product prices determined here are 

inaccurate. These parameters were chosen as then have the most associated uncertainty 

in their estimation. While the input-output models used in this work capture the general 

flows of mass, energy, and cost in the facility, they are simple balances that do not 

include a high degree of detail. For example, the use of the six-tenths rule (Equation 6.3) 

for cost estimation gives a general idea of the cost of equipment but will not be as 

accurate as a direct vendor quote. Increasing the level of detail in the design will 

increase the accuracy of the capital expenditures and as such it is important to look at 

how the long-term economics will be affected by more detailed design process. For this 
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work, it is assumed that the economic estimations for the capital cost are within 50% of 

the more detailed design. 

 
Figure 6.4. Cumulative cash flow for the consolidated bioprocessing plant with 

cogeneration, ethanol sold at $2.32 to ensure at least a 15% DCFROI. 

A similar statement can be made about both the prices of the raw material and the 

selling price of the ethanol and electricity products. The prices used here are static prices 

while these are variable prices dictated by their respective markets that tend to deviate 

both across the United States and throughout the year. Examining the resilience of the 

designs discussed in this work to these deviations is vital to making any conclusions 

about the economic feasibility of the CBP biorefinery. To ensure that most of the 

variability in the cost of these materials is utilized, a deviation of ±10% is used in the 

sensitivity analysis for the raw material and product prices. 

The results of this sensitivity analysis are shown in Table 6.7. The consolidated 

bioprocessing plant with cogeneration was found to be economically favorable for up to 

50% disturbances in the total capital investment (TCI) and 10% disturbances in the 
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product prices or raw material costs as all values of the DCFROI were close or greater 

than 10%. It is interesting to note that an underestimate of 50% in the TCI results in an 

almost 6% drop in the DCFROI, whereas an overestimate of 50% to the TCI results in a 

14% increase in the DCFROI. Additionally, perturbations in the price of raw materials 

shows minor changes in the economic potential of the process, as a 10% increase or 

decrease in this input only exhibits a positive of negative 1.5% change in the DCFROI. 

The ability of the process to handle disturbances in raw material costs is imperative to its 

long term financial success, as the price of sugarcane bagasse is subject to variation 

depending on that growth season. 

Table 6.7. Sensitivity analysis on the discounted cash flow return on investment 

(DCFROI) economic indicator for the consolidated bioprocessing plant with energy 

cogeneration. 

Deviated Economic Factor Variation DCFROI Change in DCFROI 

Base case - 15.17%   

Change in total capital investment 
+50% 9.38% -5.79% 

-50% 29.51% 14.34% 

Change in product prices 
+10% 18.96% 3.79% 

-10% 11.02% -4.15% 

Change in raw material prices 
+10% 13.62% -1.55% 

-10% 16.67% 1.50% 

6.3.4. Implications of Using Multiple Feeds with Consolidated Bioprocessing 

While the proposed CBP superstructure allows for the use of multiple biomass 

options, only the sugarcane bagasse feedstock with sodium hydroxide pretreatment was 

selected in the optimal topology. This can be attributed the necessity of reactors 

dedicated to pretreatment if any additional biomass types are selected, leading to an 

increase in capital and operating expenses. As discussed in Section 1, the biomass 

selection can elucidate the geographical location for each plant to be built. As Figure 6.1 
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shows, sugarcane bagasse is grown in the southeastern part of the United States, 

primarily in the states of Virginia, the Carolinas, Florida, and Louisiana. The optimal 

CBP process calls for approximately 1.2 million U.S. tons of biomass to be processed 

per year; this amount of biomass must be harvested from the surrounding area and 

available for processing for these designs to be feasible.  

However, the use of multiple biomass types can be used to effectively reduce the 

necessary radius used for harvesting the process feed. Figure 6.5 shows the effect of 

using a mixture of sugarcane bagasse and corn stover on the minimum ethanol selling 

price (MESP) and the radius of influence of the processes. Harvesting radius was 

calculated for each biomass type using the method described by Overend while 

assuming a biomass productivity of 10 oven dry metric tons per hectare per year 

(ODt ⋅ ha−1 ⋅ yr−1) and a complete circular geometry with 10% devoted to the growth of 

each crop [357]. As it is assumed that each biomass can be found around the process the 

largest harvest radius for each type of biomass is used as the overall harvesting radius. 

As the percentage of bagasse in the feed is reduced, while maintaining a similar 

total biomass flow rate, the MESP is increased to account for the additional capital and 

operating cost necessary. However, a minimum in the harvest radius can be seen around 

an even split in the biomass feed. This minimum of approximately 20 km is due to the 

equal use of bagasse and corn stover, leading to a similar harvesting radius. The tradeoff 

between the economic and environmental implications of bioethanol production via 

biochemical means can be seen clearly here, as a pure feed of sugarcane bagasse allows 

for the minimum ethanol selling price but utilizes the maximum amount of land while a 
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mixture of biomass types necessitates an increased price of bioethanol but reduces the 

strain on the surrounding agricultural community. It can also be seen that with an 

increase in corn stover usage comes a decrease in the electricity that can be generated by 

the process, a direct result of the significant difference in lignin composition between the 

two feed stocks, as can be seen in Table 6.1 in Section 6.2.1. When coupled with the 

decrease in ethanol production, this decrease in electricity production leads to an 

increase in the minimum ethanol selling price, as seen in Figure 6.5. 

 

Figure 6.5. Minimum ethanol selling price (MESP), required land area (expressed as a 

radius of a circle) and electricity generation as a function of sugarcane bagasse fed to the 

CBP process. 

6.4. Conclusions 

The economic and environmental impact of two different methods to produce 

ethanol from lignocellulosic biomass using biochemical conversion methods has been 

analyzed. It has been shown that a consolidated bioprocessing plant utilizing a sugarcane 

bagasse feedstock, sodium hydroxide pretreatment and energy cogeneration can be used 

to provide ethanol at a breakeven selling price of $1.31 per gallon. Additionally, the long 
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term economic outlook for this plant has been shown to be attractive for an ethanol 

selling price of $2.32 per gallon, a markup of 78%. Finally, the use of sugarcane bagasse 

as a feedstock suggests the construction of these facilities in the southeastern United 

States, where sugarcane is plentiful, while of a split feed of sugarcane and bagasse and 

corn stover can be used to lower the environmental impact of the plant by reducing the 

harvest area required for its feedstock supply to be met. 
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CHAPTER VII 

PROCESS INTENSIFICATION OF CONTINUOUS BIOBUTANOL PRODUCTION 

VIA A MULTI-FEED BIOREACTOR WITH IN SITU GAS STRIPPING 

7.1. Introduction 

New methods to produce alternative energy sources are of great interest to 

increase sustainability, combat global warming, and achieve energy independence. Many 

researchers are interested in the harvesting energy from wind and solar resources; 

however, while these energy sources are critical for securing a renewable energy future, 

their direct application is limited in the transportation industry without improvements in 

battery technology and the distribution infrastructure [358-361]. The use of these 

technologies can be used indirectly to produce hydrogen as a fuel source, but questions 

remain about the ability to transport and store this volatile product for wide distribution 

[362, 363]. Biofuels offer an alternative to petroleum products for energizing the 

transportation industry using a liquid fuel that can utilize the current distribution 

network. While distribution may not present a challenge, methods are still needed for 

producing these alternative fuels in quantities necessary to meet the demand of current 

fossil fuel sources. 

One of the promising alternative liquid fuels is ethanol. Though currently made 

industrial using a corn feedstock, many researchers have investigated using novel 

technologies to process the sugars found in lignocellulosic biomass to avoid using food 

products as a supply for energy needs. Many process have been designed on the premise 

of first pretreating the biomass to delignify the biomass and allow access to the sugars 
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during a subsequent enzyme hydrolysis step [96, 301, 303, 305-307, 317, 364]. This 

sugar mixture, containing both six-carbon glucose and five-carbon xylose, can then be 

fermented using a variety of different organisms [365-368]. As an alternative, 

consolidated bioprocessing has been developed to remove the costly enzyme hydrolysis 

step by using organisms capable of the direct fermentation of the sugar polymer 

cellulose [168, 334, 369, 370]. Despite the inroads in process development, ethanol 

suffers from a few disadvantages when compared to traditional petroleum-derived fuels, 

most notably a higher volatility, a higher corrosiveness, and a high miscibility with 

water, making pipeline transportation challenging, and a lower energy density than 

gasoline or diesel fuel [371, 372].  

Another alcohol product, butanol, provides a promising alternative to bioethanol 

as a renewable liquid fuel. With a higher energy density that rivals that of gasoline, a 

lower volatility, and negligible miscibility with water, butanol has many favorable 

qualities over its ethanol counterpart [373]. Traditionally, biobutanol is produced 

simultaneous with ethanol and acetone through the fermentation of glucose by the 

bacteria Clostridium acetobutylicum, a process called acetone-butanol-ethanol (ABE) 

fermentation. However, the production of butanol during the ABE fermentation process 

increases the toxicity of the broth to the cells [374, 375]. Overcoming the butanol 

toxicity limitations, which in turn limits the productivity and potential profitability, is 

necessary for ABE to be produced at levels that meet current gasoline demands. 

 Many methods focusing on coupling reaction and separation processes, a field 

known as process intensification, have been developed to selectively remove the desired 
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ABE products and combat the toxic nature of butanol. Selective removal of the ABE 

species using adsorption in an ex situ column has been investigated using cyclic filling, 

emptying, and regeneration to continuously remove the ABE products from a batch 

fermentation process [376-379]. Pervaporation, the process of selectively removing 

volatile compounds such as ethanol, butanol, and acetone via partial vaporization and 

diffusion through a nonporous, selective membrane, has also been studied for improving 

ABE fermentation productivity [380-383]. Additionally, both in situ and ex situ gas 

stripping using inert gases such as nitrogen, hydrogen, or carbon dioxide has been 

considered to actively remove the volatile alcohol components without affecting the 

growth of the Clostridium cells [377, 384-387]. Many of these technologies have been 

investigated experimentally and computationally and have been shown to be effective at 

the small, batch scale for increasing reactor productivity, but little work has been done 

on investigating its efficacy and economic feasibility in a large, continuous setting. 

In this work, the economics of biobutanol production are examined through the 

optimal control and subsequent process synthesis of an intensified ABE bioreactor. First, 

the optimal control of a multi-feed, continuous ABE fermenter with in situ gas stripping 

is analyzed to maximize the reactor profitability using the dilution rate, feed glucose 

composition, and stripping gas flowrate as manipulated variables. The optimally 

controlled, intensified bioreactor is compared to an optimally controlled, multi-feed 

bioreactor in the absence of gas stripping to demonstrate the improved performance. 

After determining the optimal control policy for a profitable reactor, the long-term 

economic prospect of large-scale, continuous biobutanol production from lignocellulosic 
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biomass is considered. By considering a process superstructure of potential biomass 

feedstocks and pretreatment methods, process synthesis techniques are used to determine 

the necessary butanol selling price to guarantee a 15% discounted cash flow return on 

investment (DCFROI). The sensitivity of the selling price to process scale is investigated 

and compared to the current butanol market, and potential improvements to the reactor 

and overall process to increase economic viability are discussed. 

7.2. Materials and Methods 

7.2.1. Butanol Production from Clostridium acetobutylicum  

The production of biobutanol via fermentation is a complex set of metabolic 

reactions typically done using a strain of Clostridium bacteria [388]. In the first part of 

the fermentative pathway, the substrate is converted to acetyl-CoA, a key intermediate 

that can be utilized to produce biomass or the production of the desired solvent products. 

While glucose is typically used as the substrate, work has been done to develop 

recombinant strains of Clostridium that can simultaneously ferment xylose to allow the 

efficient use of lignocellulosic biomass feedstocks [389]. The subsequent reactions 

necessary to produce ABE solvents are completed in two steps. The first step involves 

the conversion of acetyl-CoA through three separate and simultaneous pathways to 

generate butyric acid and acetic acid in a process called acidogenesis. By changing the 

pH of the fermentation both, these intermediates initiate the second step called 

solventogenesis, during which the acids are converted to the final solvent products 

butanol, ethanol, and acetone. A generalized diagram for the metabolic pathways for 

acidogenesis and solventogenesis are shown in Figure 7.1. 
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Figure 7.1. Generalized metabolic pathways of Clostridium acetobutylicum to produce 

acetone, butanol, and ethanol. 

Many researchers have focused on developing mathematical equations necessary 

to design chemical processes that harness the complexity of the ABE fermentation 

pathways [390-394]. One model of interest was proposed by Votruba et al. and assumes 

the media is glucose limited and there is no limitation on the nitrogen source [395]. By 

using a state variable 𝑦 to define the ratio of the RNA concentration and the critical 

RNA concentration needed for growth, this model uses the RNA concentration as a 

physiological state marker to account for all phases of batch culture growth and 

production. The equation for the normalized RNA concentration is shown below in 

Equation 7.1, with the 0.56 constant defining the relationship between the growth rate 𝜇 

and the RNA concentration as defined by Harder and Roels [396]. Equation 7.2 and 

Equation 7.3 below describe the time-dependence of the biomass growth (𝑋) and 

substrate utilization (𝑆). In Equation 7.2, the first term is the growth equation based on 

the RNA ratio 𝑦, where cell growth occurs if 𝑦 > 1 and cell death occurs if 0 ≤ 𝑦 < 1. 
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The second term in that equation is used to model the inhibition effects of the butanol 

product. 

𝑑𝑦

𝑑𝑡
= 𝑘1𝑋 (

𝐾𝐼
𝐾𝐼 + 𝐵

)𝑦 − 0.56(𝑦 − 1)𝑦 (7.1) 

𝑑𝑋

𝑑𝑡
= 0.56(𝑦 − 1)𝑋 − 𝑘2𝐵𝑋 (7.2) 

𝑑𝑆

𝑑𝑡
= − [𝑘3𝑆 + 𝑘4 (

𝑆

𝐾𝑆 + 𝑆
)] 𝑋 (7.3) 

 Models for the products of the ABE pathway, including the butyrate (𝑅) and 

acetate (𝑇) products of the acidogenesis pathway and acetone (𝐴), butanol (𝐵), and 

ethanol (𝐸) of the solventogenesis pathway, are shown as Equations 7.4 through 7.8. 

Apart from the ethanol production equation, which is only dependent on the growth of 

the C. acetobutylicum, the equation for each metabolite is composed of two terms; the 

first term denotes the increase in concentration due to substrate utilization and biomass 

growth and the second term couples the butyrate and butanol products as well as the 

acetate and acetone. In Equations 7.4 and 7.5, the concentration of the acid products is 

increased with the conversion of glucose, subject to the inhibition effects of butanol, and 

decreased as these components are used to produce acetone and butanol. In Equations 

7.6 and 7.7, butanol and acetone production are modeled with a first term that increases 

concentration when glucose is utilized and a second term that is linearly dependent on 

the rate of change of the corresponding acid; the stoichiometric coefficient of the acid to 

alcohol reactions are used as the linear constants.  
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𝑑𝑅

𝑑𝑡
= [𝑘5𝑆 (

𝐾𝐼
𝐾𝐼 + 𝐵

) − 𝑘6 (
𝑅

𝐾𝑅 + 𝑅
)]𝑋 (7.4) 

𝑑𝑇

𝑑𝑡
= 𝑘8 (

𝑆

𝐾𝑆 + 𝑆
) (

𝐾𝐼
𝐾𝐼 + 𝐵

)𝑋 − 𝑘9 (
𝑇

𝐾𝑇 + 𝑇
) (

𝑆

𝐾𝑆 + 𝑆
)𝑋 (7.5) 

𝑑𝐵

𝑑𝑡
= 𝑘7𝑆𝑋 − 0.841

𝑑𝑅

𝑑𝑡
 (7.6) 

𝑑𝐴

𝑑𝑡
= 𝑘10 (

𝑆

𝐾𝑆 + 𝑆
)𝑋 − 0.484

𝑑𝑇

𝑑𝑡
 (7.7) 

𝑑𝐸

𝑑𝑡
= 𝑘11 (

𝑆

𝐾𝑆 + 𝑆
) 𝑆 (7.8) 

7.2.2. Optimal Control of a Single, Intensified ABE Bioreactor 

7.2.2.1. The continuous, intensified multi-feed bioreactor 

With knowledge of the ABE fermentation kinetics, bioreactors can be designed 

with the goal of maximizing profitability and productivity. In this work, we propose the 

intensification of a continuous, multi-feed ABE fermenter with in situ gas stripping to 

selectively remove the solvent products. The configuration of the reactor is shown in 

Figure 7.2. The traditional method for continuous operation of bioreactors uses a single 

substrate feed that allows for the modulation of the dilution rate at a set glucose 

concentration. However, recent studies have shown that using a multi-feed configuration 

allows for the independent control of the dilution rate and glucose concentration and can 

improve process controllability, productivity, and profitability of continuous bioreactors 

[397]. In addition to the multiple feeds for substrate additional, the inclusion of gas 

stripping directly to the reactor allows for the selective removal of the desired ABE 

products. Studies have also shown that the direct inclusion of gas stripping has no 
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negative effects on the cell culture [398]. An optimal control framework can be 

developed that determines the optimal control policy for the two liquid feed flow rates 

and a gas flow rate that maximize reactor profitability. The development of this optimal 

control problem, including the development of a properly formulated objective function 

and continuous liquid and gas mass balances, will now be discussed. 

 

Figure 7.2. Multi-feed bioreactor with in situ gas stripping. The glucose flow rate F1, 

media flow rate F2, and gas flow rate Fg can be modulated to maximize the conversion 

of glucose (𝐺) to biomass (𝑋), acetone (𝐴), ethanol (𝐸), butanol (𝐵), butyrate (𝑅), and 

acetate (𝑇). 

7.2.2.2. Optimal control framework for the intensified reactor 

The framework of the optimal control problem for the multi-feed, intensified 

bioreactor begins with the development of continuous mass balance models for the gas 

and liquid phase concentrations. Equation 7.9 and 7.10 shows the mass balance model 

for a generic component in the liquid (𝑃) and gas phases (𝑃𝑔). In the liquid phase, 

component 𝑃 can be added to the system at concentration 𝑃𝑖𝑛 through the liquid phase 

inlet and removed by the liquid effluent, respectively, at a rate equal to the total flowrate 
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𝐹1 + 𝐹2 normalized by the reactor volume 𝑉𝑟, also known as the dilution rate. 

Alternatively, component 𝑃 can be produced or consumed by reaction, with the reaction 

kinetics for each component denoted as 𝑟𝑝. In this work, the reaction kinetics and 

corresponding kinetic parameters are described by the models of Votruba et al. discussed 

previously [395]. In the gas phase, products are only removed from the reactor, at a rate 

proportional to the gas phase concentration 𝑃𝑔. The rate of product removal is 

determined by the gas dilution rate, defined by the gas flowrate 𝐹𝑔 normalized by the 

liquid reactor volume 𝑉𝑟, and the gas hold-up 𝜀, or volume fraction of gas in the 

fermenter.  

𝑑𝑃

𝑑𝑡
=
𝐹1 + 𝐹2
𝑉𝑟

(𝑃𝑖𝑛 − 𝑃) + 𝑟𝑝 − 𝑟𝑒 − 𝑟𝑐 (7.9) 

𝑑𝑃𝑔

𝑑𝑡
= −

𝐹𝑔

𝑉𝑅
(
1 − 𝜀

𝜀
)𝑃𝑔 + (

1 − 𝜀

𝜀
) 𝑟𝑒 + (

1 − 𝜀

𝜀
) 𝑟𝑐 (7.10) 

As the reaction progresses, the volatile compounds will be transferred from the 

liquid phase to the gas phase, either through diffusive or convective transport. These 

phenomena couple the gas and liquid phase concentrations and are described by the rates 

𝑟𝑒 and 𝑟𝑐, respectively. Definitions for the mass transfer rates are shown in Equation 

7.11. The rate of diffusive transport 𝑟𝑒 is proportional to the difference between the 

current concentration 𝑃𝑔 and the equilibrium concentration 𝑃𝑔
∗ defined by Henry’s law. 

The Henry’s law constant 𝐻 is defined for each species and is taken from literature 

[399]. The convective mass transfer rate 𝑟𝑐 is calculated similarly, using a difference of 

the current concentration 𝑃𝑔 and the dispersion concentration 𝑃𝑑𝑖𝑠𝑝 that denotes the 

concentration of product in the entering dispersed gas phase; this value is necessarily 
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zero to denote a clean gas feed. The respective mass transfer coefficient (𝐾𝑔) values are 

determined from literature while the convective mass transfer coefficients ℎ and the 

bubble size 𝑎 are calculated using the correlation in Equation 7.12 [400-402]. The 

correlations for ℎ and 𝑎 require knowledge of the Schmidt number 𝑆𝑐, which describes 

the interaction between viscosity and mass diffusivity, and the power-to-volume ratio 

that describes the mass transfer properties imparted by the impeller speed. Correlations 

for these values, along with the gas hold-up parameter 𝜀 used in the gas mass balance, 

are shown as Equation 7.13 [400]. Other constants and physical properties are taken 

from literature [400]. 

𝑟𝑒 = 𝐾𝑔𝑎(𝑃𝑔
∗ − 𝑃𝑔);        𝑟𝑐 = ℎ𝑎(𝑃𝑔 − 𝑃𝑑𝑖𝑠𝑝) (7.11) 

ℎ = 0.31 ⋅ 𝑆𝑐−0.66 (
Δ𝜌𝜇𝑙𝑔

𝜌𝑙
)
0.33

;         𝑎 = 593 (
𝑃

𝑉𝑟
)
0.25

𝑈0.75 (7.12) 

𝑆𝑐 =
𝜇𝑙
𝜌𝑙𝐷𝑙

;         𝜀 = 0.34 (
𝑃

𝑉𝑟
)
0.25

𝑈0.75         
𝑃

𝑉𝑟
= 0.354𝜌𝑙𝑔𝑈 (7.13) 

With the understanding of how the composition of the gas and liquid phases will 

change as a function of time and feed flowrates, an optimal control or dynamic 

optimization problem can be formulated that maximizes a process objective. In this 

work, we aim to maximize the reactor profitability, defined as how much money the 

reactor makes over a certain operating time, by manipulating the two liquid feed flow 

rates 𝐹1(𝑡) and 𝐹2(𝑡) and one gas flow rate 𝐹𝑔(𝑡). The mathematical structure of the 

objective function in shown in Equation 7.14, calculated as the difference between the 

profit made from selling 𝑖 desired products acetone, butanol, and ethanol and the 

expense of the glucose added to the reactor. In this equation, the mass flow rate of the 
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liquid, products, gas products, and glucose addition is defined as 𝑚̇𝑖
𝑙(𝑡), 𝑚̇𝑖

𝑔(𝑡), and 

𝑚̇𝐺
𝑖𝑛(𝑡), respectively, the cost of each solvent product is 𝐶𝑖, and the cost of glucose is 𝐶𝑔. 

This objective function is maximized subject to the dynamic mass balance constraints 

defined by Equations 7.9 through 7.13 and constraints on the allowable values of the 

manipulated variables 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹𝑔(𝑡). Values for the substrate and product costs 

are given in Table 7.1 below. 

max
𝐹1,𝐹2,𝐹𝑔

𝜙 = ∫ [ ∑ 𝐶𝑖 (𝑚̇𝑖
𝑙(t) + 𝑚̇𝑖

𝑔(𝑡))

𝑖=𝐴,𝐵,𝐸

− 𝐶𝐺𝑚̇𝐺
𝑖𝑛(𝑡)]  𝑑𝑡

𝑡𝑓

0

𝑠. 𝑡.

Equations 9 − 13

𝑚̇𝑖
𝑙 = 𝑃𝑖(𝐹1(𝑡) + 𝐹2(𝑡))

𝑚̇𝑖
𝑔
= 𝑃𝑔,𝑖𝐹𝑔(t)

0 ≤ 𝐹1(𝑡), 𝐹2(𝑡) ≤ 0.15 ⋅ 𝑉𝑟
0 ≤ 𝐹𝑔(𝑡) ≤ 60 ⋅ 𝑉𝑟

𝑃 = {𝐺, 𝑋, 𝐴, 𝐵, 𝐸, 𝑅, 𝑇}

𝑃𝑔 = {𝐴, 𝐵, 𝐸}                    

 (7.14) 

Table 7.1. Raw material and product prices for the optimal control of the multi-feed, 

intensified bioreactor. 

Price, $/kg Value Units Reference 

Butanol 1.49 $/g [296] 

Ethanol 1.00 $/g [296] 

Acetone 1.03 $/g [296] 

Glucose 0.88 $/kg [297] 

 Obtaining solutions to the optimal control problem described in Equation 7.14 

require the discretization of the differential and integral terms to form a large system of 

coupled nonlinear equations capable of being solved by commercially available solvers. 

While many methods for discretization have been proposed, the method used here is the 

method of collocation of finite elements. In this method, the time horizon 𝑡𝑓 is 
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partitioned into segments called finite elements. Within each finite element, a set of 

points called collocation points are chosen that satisfy the roots of an interpolating 

polynomial and their derivatives. In this work, the method proposed by Flores-

Tlacuahuac at al. is used, which employs a three-point Radau collocation method 

(𝑛𝑐𝑜𝑙 = 3) with exact values of the collocation points defined by Hairer and Wanner 

[286, 403]. For a more detailed explanation for the application of collocation of finite 

elements to a multi-feed bioreactor problem, the reader is referred to our previous work 

on the production of continuous pharmaceuticals [397]. 

Applying this collocation method on the dynamic optimization problem posed in 

Equation 7.14 results in the formulation of large system of algebraic equations as shown 

in Equation 7.19. First, Equations 7.15 and 7.16 describe the component concentrations 

in the liquid and gas phases by discretizing Equations 7.9 and 7.10 within each finite 

element 𝑗. Here, ℎ𝑗  is the finite element length and Ω𝑗 is the Legendre polynomials 

describing the system states within a finite element. Equations 7.17 and 7.18 are 

included in the new problem formulation to guarantee continuity in the final optimal 

control policy solution. Additionally, the objective function is reformulated as a 

summation of profit and operating cost for each collocation point with in each finite 

element, as shown in Equation 7.19. This newly reformed system, now strictly a 

nonlinear programming (NLP) problem, can be solved to local optimality using the 

commercially available solver IPOPT developed by Wächter and Biegler [404]. 

𝑃(𝑡) = 𝑃𝑞−1 + ℎ𝑗 ∑Ω𝑗 (
𝑡𝑞 − 𝑡𝑞−1

ℎ𝑗
) ⋅

𝑑𝑃

𝑑𝑡𝑗,𝑞

𝑛𝑐𝑜𝑙

𝑞=1

 

(7.15) 
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𝑃𝑔(𝑡) = 𝑃𝑔,𝑞−1 + ℎ𝑗 ∑Ω𝑗 (
𝑡𝑞 − 𝑡𝑞−1

ℎ𝑗
) ⋅

𝑑𝑃𝑔

𝑑𝑡𝑗,𝑞

𝑛𝑐𝑜𝑙

𝑞=1

 

(7.16) 

𝑃𝑞 = 𝑃𝑞−1 + ℎ𝑗 ∑Ω𝑗 (
𝑡𝑞 − 𝑡𝑞−1

ℎ𝑗
) ⋅

𝑑𝑃

𝑑𝑡𝑗,𝑞

𝑛𝑐𝑜𝑙

𝑞=1

 

(7.17) 

𝑃𝑔,𝑞 = 𝑃𝑔,𝑞−1 + ℎ𝑗 ∑Ω𝑗 (
𝑡𝑞 − 𝑡𝑞−1

ℎ𝑗
) ⋅

𝑑𝑃𝑔

𝑑𝑡𝑗,𝑞

𝑛𝑐𝑜𝑙

𝑞=1

 

(7.18) 

max
𝐹1,𝐹2,𝐹𝑔

𝜙 =∑∑ [ ∑ 𝐶𝑖(𝑚̇𝑖,𝑗,𝑞
𝑙 + 𝑚̇𝑖,𝑗,𝑞

𝑔
)

𝑖=𝐴,𝐵,𝐸

− 𝐶𝐺𝑚̇𝐺,𝑗,𝑞
𝑖𝑛 ]

𝑛𝑐𝑜𝑙

𝑞=1

𝑛𝑓𝑒

𝑗=1

𝑠. 𝑡.

Equations 11 − 13
Equations 15 − 18

𝑚̇𝑖
𝑙 = 𝑃𝑖(𝐹1(𝑡) + 𝐹2(𝑡))

𝑚̇𝑖
𝑔
= 𝑃𝑔,𝑖𝐹𝑔(t)

0 ≤ 𝐹1(𝑡), 𝐹2(𝑡) ≤ 0.15 ⋅ 𝑉𝑟
0 ≤ 𝐹𝑔(𝑡) ≤ 60 ⋅ 𝑉𝑟

𝑃 = {𝐺, 𝑋, 𝐴, 𝐵, 𝐸, 𝑅, 𝑇}

𝑃𝑔 = {𝐴, 𝐵, 𝐸}                    

 (7.19) 

 To assess the impact of gas stripping on continuous ABE production, the optimal 

control problem will be solved for an industrially-sized bioreactor (Vr = 400 𝑚3) to 

maximize profitability and determine the control policy for the glucose feed 𝐹1, media 

feed 𝐹2, and gas feed 𝐹𝑔. The results of this optimization will be compared to the 

solution of the same optimal control problem in the absence of gas stripping (𝐹𝑔(𝑡) =

0). While glucose is the main component of the operating cost, the cost of compressing 

the stripping gas and the condensation cost to recover the ABE product after leaving the 

reactor will be evaluated for each case.  
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7.2.3. Large-scale Process Synthesis for ABE Production 

While maximizing the economic potential of the intensified multi-feed bioreactor 

is the first step toward developing an economical feasible process for acetone, butanol, 

and ethanol, the cost of product recovery and source of feedstock must be considered. 

This section discusses the development of a process synthesis framework to design a 

sustainable process to produce ABE using lignocellulosic biomass as the primary 

feedstock. A general process flow diagram is shown in Figure 7.3. The lignocellulosic 

biomass will enter the process and undergo pretreatment and hydrolysis to convert the 

cellulose and hemi-cellulose to the six-carbon glucose and five-carbon xylose 

monomers. These sugars are then converted using the multi-feed, intensified bioreactor 

developed in this work. Multiple bioreactors are considered to employ economy-of-scale 

and increase process profitability. The reactor effluent is processed using a system of 

distillation columns and decanters to produce pure acetone, butanol, and ethanol 

products. The resulting solid waste and water are sent to an energy generation section 

that produces steam for internal heating requirements and electricity as a fourth salable 

product. The general framework emulates that of our previous work for the process 

synthesis of cellulosic ethanol production [405]. The remainder of this section will 

briefly discuss these process subsections in more detail and outline the process synthesis 

framework that will be used to design an economically viable ABE production process. 
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Figure 7.3. Simplified process flow diagram for the continuous production of acetone, 

butanol, and ethanol.  

7.2.3.1. Upstream biomass processing and ABE production 

The first step of the ABE production process is the selection and treatment of the 

biomass feedstock to produce simple sugars. Figure 7.4 shows the selection of prevalent 

biomass options across the United States, including agricultural residues such as corn 

stover (𝐶𝑆), sorghum (𝑆𝑂𝑅), and sugar cane bagasse (𝑆𝐵), energy crops such as 

switchgrass (𝑆𝑊), and forest residues like hybrid poplar (𝐻𝑃). Each biomass type has a 

different composition of the cellulose, hemicellulose, and lignin polymers, resulting in a 

different sugar availability and different delignification requirements. Table 7.2 shows 

the over-dry composition, taken from the United States Department of Energy PLANTS 

database, and price point of the five biomass options considered in this work; prices 

were taken from Gabriel at al. for corn stover, Bain for switchgrass, sugarcane bagasse 

and hybrid poplar, and the World Bank Group for sorghum [96, 319-321]. As biomass 

moisture content is largely variable due to growth conditions such as growth region, 
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weather, soil type and fertilization, and harvesting and storage practices, the price point 

provided considers the off-site drying of the biomass used in the process [303]. 

When using lignocellulosic biomass as a primary feedstock, pretreatment is 

required to delignify and weaken the cell walls and allow for downstream hydrolysis of 

the sugar polymers to monomers. Many different pretreatment options are available that 

either chemically or physiochemically alter the structure of the cell wall. Chemical 

methods such as dilute alkali or acidic treatments, e.g. sodium hydroxide or sulfuric acid, 

cause swelling or decompose the hemicellulose to increase the internal surface area and 

reduce the rigidity of the cell wall, allowing enzymes to more freely attach the cellulose 

polymers [323]. Physiochemical methods typically use steam, liquid hot water, or 

aqueous ammonia utilize the chemical to hydrolyze the hemicellulose portion of the cell 

and then employ a quick pressure change to vaporize the active chemical and expand the 

cells [323]. 

Table 7.2. Oven-dried composition of each biomass type considered in the proposed 

separate hydrolysis and fermentation and consolidated bioprocessing bioethanol 

facilities [96, 319-321]. 

Biomass component Corn stover Switchgrass Poplar Sorghum Bagasse 

Glucan 0.3680 0.3464 0.4724 0.2887 0.3988 

Xylan 0.2150 0.2477 0.1775 0.1454 0.2181 

Water 0.0271 0.0215 0.0318 0.0365 0.0286 

Lignin 0.1869 0.1806 0.2355 0.1372 0.2430 

Other 0.2032 0.2039 0.0827 0.3923 0.1115 

Price per tonne $61.60 $81.50 $101.60 $173.90 $40.00 
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Figure 7.4. General availability of certain biomass types throughout the United States. 

Colors denote the specific types of biomass: blue → hybrid poplar, purple → sorghum, 

orange → sugarcane bagasse, red → corn stover, and green → switchgrass. 

The process developed in this work looks to utilize one or multiple biomass 

options and a corresponding pretreatment for each biomass option selected to select the 

most profitable ABE process. The process is designed to utilize a maximum of 3,500 

U.S. tons per day of lignocellulosic biomass and operates for 350 days per year. The 

general superstructure for upstream processing is shown in Figure 7.5, where five 

biomass types are coupled with four pretreatment methods based on data available from 

literature for their hemi-cellulose and cellulose conversions [324-331]. The data, 

including the biomass-pretreatment pairings, conversion of glucose and xylose, and 

operating temperatures can be found in our previous work [405]. Models based on the 

conversion of hemicellulose and cellulose are used to determine the availability of sugar 

monomers after pretreatment and enzyme hydrolysis, respectively. After the production 

of sugars, the hydrolysis effluent will be processed by a 𝑛 multi-feed, intensified ABE 
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bioreactors discussed in the previous section to demonstrate the impact of economy-of-

scale. 

 

Figure 7.5. Process superstructure for the biomass and pretreatment method options. 

7.2.3.2. Downstream separation and ABE recovery 

Upstream production of ABE is followed by the downstream separation of the 

reactor effluent. This purification of the ABE mixture is complex due to the liquid-liquid 

and vapor-liquid azeotropes between the alcohol products with water. Methods to 

overcome these challenges using the well-known methods of distillation have been 

studied by many researchers, with the consensus process design using a series of 

distillation columns and decanters necessary to overcome the azeotropes and produce 

pure streams of acetone, ethanol, and butanol [406-408]. In this work, the downstream 

separation scheme proposed by Strobel and optimized by Wali will be used as it 

provides two advantages: (1) the predominant component, water, and the major solvent 

component, butanol, are removed as early as possible to reduce flow rates in later units 

and (2) one less column is required to effect the butanol separation [409, 410].  
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The process flow diagram for this separation train is shown in Figure 7.6. The 

first column utilized steam stripping with the reactor effluent to produce a bottoms 

product containing the solid components and most of the water. The distillate stream 

consists of the remaining water, acetone, butanol, and ethanol at a concentration close to 

the water/butanol azeotropic composition. This distillate stream is mixed with the 

bottoms stream of the third column and sent to a decanter where an aqueous-rich phase 

which is refluxed to the first column and a solvent-rich phase that is used as the feed to 

column two. The pure butanol product is removed as the bottoms stream of the second 

column and the remaining components exit the column as the distillate product and feed 

to the third column. This third column separated the mixture of the more volatile 

components, ethanol and acetone, from any remaining water and butanol. The bottoms 

stream of column three is mixed with the distillate from column one and decanted, which 

the acetone is separated from the ethanol in column four. Finally, the remaining ethanol 

and water mixture is sent to a molecular sieve to overcome the vapor-liquid azeotrope 

between the two components, producing a product stream of ethanol. Finally, the water 

outlet of the molecular sieve and the first column are combined and sent to the energy 

generation section of the process. 
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Figure 7.6. Downstream separation system for the recovery of the acetone, butanol, and 

ethanol products. 

With a goal of developing the optimal process topology, models are necessary to 

describe the mass and energy balances of the separation process. Using data from the 

optimized system described by Wali, linear split fraction models are developed to 

determine the component mass balances as functions of the flowrate entering each 

column [410]. Additionally, linear energy balances for the reboilers and condensers are 

utilized by determining the heating and cooling requirements of the columns per 

kilogram of flow processed. These mass and energy balance models are shown in 

Equations 7.20 through 7.23, where 𝑚𝑏
𝑖  and 𝑚𝑑

𝑖  are the bottoms and distillate flowrates 

of column 𝑖, 𝑄𝐶
𝑖  and 𝑄𝑅

𝑖  are the energy requirements of the condenser and reboiler, 

respectively. The parameters 𝜙𝑖, 𝐻𝐶
𝑖  and 𝐻𝑅

𝑖  are the split fraction, reboiler energy 

requirement per kilogram of feed, and condenser energy requirement per kilogram of 

feed for column 𝑖. 

𝑚𝑏
𝑖 = 𝜙 ⋅ 𝑚𝑓

𝑖  (7.20) 

𝑚𝑑
𝑖 = (1 − 𝜙) ⋅ 𝑚𝑓

𝑖  (7.21) 
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𝑄𝐶
𝑖 = 𝐻𝐶

𝑖 ⋅ 𝑚𝑓
𝑖  (7.22) 

𝑄𝑅
𝑖 = 𝐻𝑅

𝑖 ⋅ 𝑚𝑓
𝑖  (7.23) 

7.2.3.3. Steam production and energy cogeneration 

The last section of the ABE process topology uses the combustion of the solid 

residues of the fermentation process to produce low pressure steam for use in the heat 

exchangers found throughout the process as well as salable electricity. The models used 

for both steam generation and electricity production are taken from our previous work 

and are not discussed here for brevity [405].  

7.2.3.4. Process synthesis framework for determining the optimal ABE production 

process 

A process synthesis framework can be developed to determine the topology of 

the optimal, most economically attractive ABE production process. By combining the 

mass and energy balance models discussed in the previous three sections with cost 

models that determine the fixed capital cost, operating cost, labor cost of the process, a 

mixed-integer nonlinear program (MINLP) can be formulated and solved using 

commercially available solvers.  

Equations 7.24 through 7.27 depict the models for the process expenses. First, 

Equation 7.24 calculated the combined purchase and installation cost of each piece of 

equipment by applying a sixth-tenths factor scaling based on a known size-cost pair 

[211, 303]. The size-cost pairs are taken from our previous work [405]. The fixed capital 

investment is then calculated using Equation 7.25, which sums up all the individual unit 

operation costs. The gas cost (𝐺𝐶) for the stripping gas is also included as it is assumed 
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that this gas will be recycled after the condensation step of the reactors. The total capital 

investment (𝑇𝐶𝐼) can be calculated, of which it is assumed 85% is the FCI [342]. The 

labor cost (𝐿𝐶) is calculated using Equation 7.26 and are assumed to be proportional to 

the amount of ABE produced. The operating costs (𝑂𝐶) are calculated as the sum of all 

the required material costs, including the biomass cost (𝐵𝐶), pretreatment cost (𝑃𝐶), 

enzyme cost (𝐸𝐶), process water cost (𝑃𝑊𝐶), the cost of the C. acetobutylicum 

fermentation organisms (𝐶𝐴𝐶), utility cost (𝑈𝐶), and waste cost (𝑊𝐶). 

𝐶𝑒𝑞
𝑗
= 𝐶𝑒𝑞

𝑗,𝑏𝑎𝑠𝑒
(

𝑆𝑒𝑞

𝑆𝑒𝑞
𝑗,𝑏𝑎𝑠𝑒

)

0.6

 (7.24) 

𝐹𝐶𝐼 =∑𝐶𝑒𝑞
𝑗

𝑛

𝑗=1

+ 𝐺𝐶 (7.25) 

𝐿𝐶 = (
𝐿𝑎𝑏𝑜𝑟 𝑝𝑒𝑟

𝐾𝑖𝑙𝑜𝑔𝑟𝑎𝑚 𝐴𝐵𝐸
) (

𝐴𝐵𝐸
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

) (7.26) 

𝑂𝐶 = 𝐵𝐶 + 𝑃𝐶 + 𝐸𝐶 + 𝑃𝑊𝐶 + 𝐶𝐴𝐶 + 𝑈𝐶 +𝑊𝐶 (7.27) 

 With a set of models for the process economics, a complete formulation of the 

process synthesis problem can be developed. This work looks to minimize the cost of the 

butanol product to allow for a direct comparison with currently used fossil fuels and 

bioethanol processes. To guarantee profitability of the process, this objective will be 

calculated subject to a required discounted cash flow return on investment (𝐷𝐶𝐹𝑅𝑂𝐼) of 

15% over a time span (𝑡) of 20 years. This is done by setting the net present value 

(𝑁𝑃𝑉) of the process to zero with a value of the discount factor (𝑞) equal to 15%. The 

profit 𝑃 is calculated at a tax rate of 35% based on the gross profit (𝐺𝑃) of selling the 

butanol, ethanol, acetone, and electricity produced. The cost of the ethanol and acetone 
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are set at the cost values listed previously in Table 7.2. When the constraints of the mass 

balances, energy balances, and cost correlations are added, the full MINLP formulation 

is postulated. This optimization problem, shown as Equation 2.28, is solved using the 

BARON solver available in the GAMS software package to 1% optimality gap for 

different numbers of bioreactors 𝑛 in the process to determine the economy-of-scale of 

cellulosic butanol production [65]. 

min𝐶𝐵

𝑠. 𝑡.

𝑁𝑃𝑉 = 0 = −𝑇𝐶𝐼 + 𝑃 ⋅ (
(1 + 𝑞)𝑡 − 1

𝑞(1 + 𝑞)𝑡
)

𝑃 = (𝐺𝑃 − 𝑂𝐶 − 𝐿𝐶 − 𝐷)(1 − 𝑟) + 𝐷

𝐺𝑃 = 𝐶𝐵𝑚̇𝐵 + 𝐶𝐸𝑚̇𝐸 + 𝐶𝐴𝑚̇𝐴 + 𝐶𝐸𝑙𝐺̇𝐸𝑙
Mass Balance Equations
Energy Balance Equations

Cost Correlations

 (7.28) 

7.3. Results and Discussion 

7.3.1. Optimal Process Intensification of the Multi-feed ABE Bioreactor 

The solution to the optimal control problem defined as Equation 2.19 will now be 

discussed, beginning with the case of continuous processing in the absence of gas 

stripping, or 𝐹𝑔(𝑡) = 0. The liquid concentration profiles for this case are shown in 

Figure 7.7, with steady-state operation being achieved after approximately 100 hours of 

operation. During start-up, the glucose concentration drops over the first 25 hours as the 

substrate is converted to butyrate and acetate. This sharp spike in acid concentration 

results in a shift to solventogenesis, corresponding to an increase and eventual maximum 

in the butanol, acetone, and ethanol concentrations. After achieving their peaks, the 

concentrations of all components settle into their steady state values. The specific steady 
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state concentrations for each the glucose, biomass, acetone, ethanol, and butanol 

component are listed in Table 7.2. 

To achieve the profiles shown in Figure 7.7, the optimal control policy shown in 

Figure 7.8 for the glucose and media feeds is used. Over the first 50 hours of operation 

these flowrates are slowly elevated until reaching a cyclic steady-state around 20,000 

L/hr and 10,000 L/hr, respectively. A more definitive look at the cycle steady-state 

glucose and media flowrates is shown in Figure 7.8b. Here, the glucose flow rate are 

cyclic within each hour, beginning at a high flowrate, decreasing to an intermediate 

flowrate, and finishing at a low flowrate before returning to the first high flowrate. The 

glucose flowrate varies between values of 25,000 L/hr, decreases by a little over 5,000 

L/hr, and then decreases by another 3,000 L/hr before returning to 25,000 L/hr. The 

media flow rate follows a similar trend, beginning at a value of 14,000 L/hr, decreasing 

to a value of about 6,000 L/hr, and finishing at a value of about 4,000 L/hr before 

returning. These cyclic transitions result in the glucose inlet concentration to have a 

similar cyclic pattern as shown in Figure 7.8c. While the flowrates decrease over the 

course of each hour of operation, the glucose concentration increases due to the relative 

change in each flowrate. The glucose concentration begins at its lowest value of 64 g/L, 

rises to 76 g/L, and the rises again to 80 g/L before returning to the initial value. 

In contrast, the concentration profiles for the multi-feed bioreactor intensified 

with in situ gas stripping. The inclusion of this separation technique complicates the 

operation of the bioreactor, resulting in the pseudo-batch operation that result in the 

addition of substrate, conversion to the desired products, and removal of the products via 



 

195 

 

dilution effects and gas stripping. The optimal concentration profiles for this pseudo-

batch operation are shown in Figure 7.9. Figure 7.9a shows the liquid concentration 

profiles of the glucose, biomass, and normalized RNA concentration, where glucose is 

consumed and added in a cyclic nature that resemble batch operation. Each “batch” is 

approximately 100 hours long, during which the biomass and RNA concentration 

increase with the addition of glucose, decreases as the inhibitory butanol is produced, 

and continues to decrease during the dilution step as the ABE products are recovered. 

Figure 7.9b, 7.9c, and 7.9d show the effects of this pseudo-batch operation on the 

acid concentrations, liquid ABE concentrations, and gas ABE concentrations, 

respectively. As expected, all concentrations follow the same cyclic nature of the 

glucose and biomass concentration. In the liquid phase, the acids acetate and butyrate 

reach a maximum by about 20 hours into the 100-hour “batch”, resulting in a shift 

toward solventogenesis. This results in the production of the butanol, ethanol, and 

acetone until the 50-hour mark, marking the peak of the “batch” and the beginning of the 

removal step. This removal step continuous for the remaining half of the batch time, and 

at the 100-hour mark the solvent concentrations are at their minimum values to minimize 

inhibition and allow for cell growth to occur again. The deviation in the ABE 

concentrations in the gas phase mirror their liquid phase counterparts a result of the 

equilibrium relationships between the products in the two phases. 

Figure 7.10 shows the optimal control policies of the glucose flow, media flow, 

and gas flow that result in the pseudo-batch operation of the multi-feed bioreactor. Like 

the case study without gas stripping, the media flowrate follows a cyclic nature within 
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each 100 hours, beginning the period with little flow and increasing over the first 30 

hours to a flowrate between 50,000 and 60,000 L/hr as shown in Figure 7.10b. The gas 

flowrate shown in Figure 7.10c and Figure 7.10d shows an increase during the end of 

each of these media flow cycles, increasing the ability to remove the ABE productions 

and conditioning the media for the beginning of another 100 hour “batch”. However, the 

optimal control policy for the glucose feed is less intuitive. This result is more complex 

than the typical constant or pulsing flowrate used in current biochemical practices, a 

direct result of the optimal control framework used to limit the glucose addition to only 

that which is required and increasing the profitability bioreactor process.  

The complete comparison of the multi-feed bioreactor with and without the 

inclusion of gas stripping, including the process economics, is shown in Table 7.2. With 

respect to the liquid concentrations, the inclusion of gas stripping has no real effect on 

the average butanol or biomass concentrations; however, it should be noted that a higher 

ethanol, higher acetone, and lower glucose concentration is achieved when selective 

removal is used. A notable difference can also be seen when comparing the average 

media and glucose flowrates, where the inclusion of gas stripping and the need for 

pseudo-batch operation decreases the flowrates and therefore lowers the dilution rate of 

the overall system. The intensification of the continuous bioreactor has a negative effect 

on the process productivity, decreasing the ABE productivity from 0.55 g/L-hr in the 

absence of stripping to a value 0.37 g/L-hr. However, gas stripping results in a higher 

overall glucose conversion, resulting in a value of 72% for the intensified process and 

23% otherwise. 
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As the objective of utilizing the multi-feed bioreactor with gas stripping was to 

maximize process profitability, the gross profit and raw material costs were analyzed. 

Costs of the glucose substrate and ABE products are listed in Table 7.1. In the case of 

gas stripping, the average glucose flowrate added to the bioreactor was 190.51 L/hr. At a 

concentration of 100 g/L, this results in an hourly glucose cost of $15.24 per hour. The 

resulting ABE components produce a gross profit of $192.42 per hour, resulting in a net 

gain of $177.18 per hour or $1,552,049.90 per year. Alternatively, the process without 

gas stripping has an average glucose flowrate of 19,706.24 L/hr at the same 

concentration of 100 g/L. This, coupled with the gross profit made from the resulting 

ABE products, leads to a yearly loss of $11,162,830.36. Without the use of the selective 

removal of ABE products via gas stripping, the continuous production of acetone, 

butanol, and ethanol is not profitable. However, due to the profitability of the reactor 

with gas stripping, the additional cost of a separation system and the use of 

lignocellulosic biomass as a carbon source can be investigated to determine the 

economic viability of ABE production. 
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Figure 7.7. Concentration profiles for the (a) substrate, biomass, and RNA, (b) solvent, 

and (c) acid components of ABE fermentation in the absence of gas stripping. 

 

Figure 7.8. Optimal control policies for the glucose and media flowrates in the absence 

of gas stripping. Figures correspond to (a) the full optimal control profile, (b) the optimal 

control profile during steady state, and (c) the corresponding glucose inlet concentration 

at steady state.  
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Figure 7.9. Concentration profiles for the liquid and gas phases in the multi-feed 

bioreactor with in situ gas stripping. Figures correspond to (a) liquid substrate, biomass, 

and RNA concentration, (b) liquid ABE solvent concentrations, (d) liquid acid 

concentrations, and (d) gas ABE solvent concentrations. 

 

Figure 7.10. Concentration profiles for the liquid and gas phases in the multi-feed 

bioreactor with in situ gas stripping. Plots correspond to (a) the optimal control profile 

for the glucose flowrate, (b) the optimal control profile for the media flowrate, and (c) 

the optimal control profile for the gas flowrate, and (d) a more detailed plot of the gas 

flowrate optimal control profile.  
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Table 7.3. Comparison of the operation parameters as a result of the optimal control of 

the multi-feed bioreactor with and without gas stripping. 

 No Stripping Gas Stripping 

Average Liquid Concentration (g/L) 

Glucose 55.21 9.56 

Biomass 0.62 0.75 

Acetone 1.86 4.09 

Butanol 5.91 5.60 

Ethanol 0.26 0.71 

Average Gas Concentration (g/L) 

Acetone - 0.15 

Butanol - 0.42 

Ethanol - 0.01 

Average Flowrate (L/hr) 

Glucose Flowrate 19,706.24 190.51 

Media Flowrate 7,751.77 12,485.34 

Total Liquid Flowrate 27,458.01 12,675.85 

Gas Flowrate - 29,366.76 

Average Dilution Rate (1/hr) 

Liquid 0.07 0.03 

Gas - 0.07 

ABE Productivity (L/hr) 

 0.55 0.37 

Total ABE Production (g/hr) 

Acetone 50,944.89 56,210.41 

Butanol 162,266.79 83,367.26 

Ethanol 7,022.87 9,234.36 

Total Gross Profit per Year 

Hourly $302.20 $192.42  

Yearly $2,647,303.78 $1,685,559.85 

Raw Material Expenses 

Average Glucose Inlet Conc. (g/L) 73.52 33.96 

Hourly Glucose Cost $1,576.50 $15.24 

Yearly Total Cost $13,810,134.13 $133,509.94 

Net Profit 

  -11,162,830.36 1,552,049.90 
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7.3.2. Process Synthesis for the Economically Viable Production of ABE 

The process synthesis framework previously discussed is solved to determine the 

choice of lignocellulosic biomass, pretreatment method, and effect of an added 

separation system on the profitability of the intensified bioreactor developed in the 

previous section. Table 7.4 shows the results of this optimization. The optimal topology 

of the ABE process uses sugarcane bagasse with a sodium hydroxide pretreatment in lieu 

of any other biomass or pretreatment combination. This choice maximized the amount of 

glucose available to the process per dollar of operating cost. The process uses 283 U.S. 

tons of biomass to produce a total of 460,000 gallons of ABE product per year in a ratio 

of 4.6:8:1 of acetone to butanol to ethanol. The capital cost of the process is 

approximately $12 million dollars and costs approximately $1.3 million to operate. At 

the butanol price of $14.87 per gallon ($4.96 per kilogram), this process is not 

competitive with current fossil fuel prices or production rates; however, with the 

addition of more reactors the effects of economy-of-scale can be obtained. 

Figure 7.11 shows the effects of multiple bioreactors on the butanol price, ABE 

production, capital cost, operating cost, and the resulting total cost of the ABE 

production process. From Figure 7.11a it can be seen that the addition of more reactors, 

up to a total of fifteen 400,000 L bioreactors, causes a linear increase of the ABE 

produced to a total of seven million gallons of alternative fuel. The butanol price, 

however, decays exponentially toward a lower limit of approximately $7 per gallon ($2 

per kilogram) in response to this increase in product. Figure 7.11b shows the increase in 

the capital, operating, and total cost with an increase in reactor number. The operating 
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cost and capital cost increase linearly and exponentially, respectively, resulting in a total 

capital investment that also increases exponentially at a faster rate than the capital 

investment. While there is no theoretical limit to the number of reactors that can be 

employed, the land area that would be required for the implementation of this process 

would be immense and would restrict the application of this technology. 

Table 7.4. Optimal topology and process economics for the complete ABE production 

process. 

 Value Units 

Butanol Price and Profits 

Butanol Price $14.87 per gallon 

Gross ABE Profit $4,363,606.20 per year 

Gross Electricity Profit $329,722.06 per year 

Production Rates 

Acetone 156,124.77 gallons/year 

Butanol 270,887.73 gallons/year 

Ethanol 33,935.14 gallons/year 

Total ABE 460,947.63 gallons/year 

Electricity Generation 0.59 MW hr 

Optimal Process Topology 

Total Biomass Feed 283.83 U.S. tons/year 

Feed Composition Sugarcane Bagasse  

Pretreatment Selection Sodium Hydroxide  

Process Economics 

Capital Cost $12,076,970.00  

Operating Cost $1,297,275.60 per year 
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Figure 7.11. Economy-of-scale analysis for the complete ABE production process. 

Figures show the effect of additional bioreactors on (a) butanol production and butanol 

price and (b) the operating, capital, and total cost of the process. 

7.3.3. Other Considerations to Improve Process Productivity and Economics 

While the technology considered in this work is not economically competitive 

with current fossil fuels, there are many cellular and process considerations that can be 

made to enhance the process economics of ABE production. The models used in this 

work are for the wild type C. acetobutylicum, and in recent years genetic engineering has 

allowed for increases butanol tolerance and flux of carbon toward the desired butanol 

product [411-413]. However, even with these advancements in ABE fermentation at the 

microorganism level, mathematical models describing the changes in the cellular 

metabolism and product formation have yet to be developed. By exploiting the 

adaptability of the optimal control strategy and process synthesis framework proposed in 

this work, the updated cellular kinetics can be used to examine the improved profitability 

of ABE production at both the unit operation and process level. 
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At the process level, many researchers have considered alternatives to the 

enzymatic hydrolysis step. Consolidated bioprocessing, or CBP, is the use of genetically 

engineered microorganisms capable of fermenting cellulose directly to alcoholic 

products, forgoing the need for expensive enzymatic hydrolysis methods to produce 

simple sugars. This technology has already been shown to greatly improve the process 

economics of bioethanol production systems from lignocellulosic biomass, and 

organisms capable of consolidated bioprocessing for ABE fermentation are being 

developed [414-416]. Other separation methods have also been considered for butanol 

recovery as alternatives to the gas stripping and distillation used in this work. Two 

possible separation systems employing pervaporation membranes or selective adsorption 

have been shown to be profitable for ABE production on a variety of carbon sources 

[378, 380-382, 386]. The optimal control strategy proposed in this work can also be used 

as a tool for analyzing the operability and profitability of these alternative technologies. 

7.4. Conclusions 

Novel methods for the continuous production of alternative liquid fuels are 

needed to compete with currently employed petroleum processes. While certain 

fermentation products, specifically butanol and ethanol, are considered potential options, 

their inhibitory effects on the fermentation process pose challenges to their economic 

viability. To this end, the intensification of a continuous, multi-feed acetone-butanol-

ethanol bioreactor with in situ gas stripping is proposed and optimized to maximize 

process profitability. The optimal intensified bioreactor is compared to a continuous 

ABE bioreactor absent of gas stripping, and results show that gas stripping is necessary 
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for a profitable process due to an increase in glucose utilization despite a loss of process 

productivity. With the determination of a profitable bioreactor, the economic viability of 

a complete ABE process using lignocellulosic biomass as a carbon source is determined 

by calculating the butanol price necessary to achieve a DCFROI of 15%, guaranteeing 

process profitability. Results show that this while not competitive with present 

petrochemical prices, the butanol cost can be reduced through the use of additional 

reactors, achieving the effects of economy-of-scale and opening the door for further 

improvements from genetic engineering, alternative selective separation systems, and 

consolidated bioprocessing. Overall, this work shows that the production of ABE should 

be considered a potential replacement to fossil fuels and requires further investigation. 
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CHAPTER VIII 

A HOLISTIC APPROACH TO THE INSTRUCTION OF PROCESS INTEGRATION 

AND ECONOMICS 

8.1. Introduction 

Learning basic process systems engineering (PSE) methodologies such as heat 

integration [86-88, 417-420], mass integration [421-429], cost estimation, and financial 

integration [430] at the undergraduate level is critical for chemical engineering students 

to be able to design economically viable and environmentally sustainable chemical 

processes. In fact, a sound knowledge on process integration and economics comprises a 

prerequisite for capstone plant design in most chemical engineering curriculum. 

Recognizing the impact that process integration and economic analysis can have on 

profit, environmental footprint, raw material usage, energy needs and capital investment 

risks, many textbooks and teaching materials have been developed in the past on these 

topics [21, 211, 340, 342, 431-438]. Perkins (2002) detailed two complementary 

approaches to teaching PSE concepts in chemical engineering curricula. The first 

approach provides students with the knowledge of PSE tools as they are developed, 

while the second approach looks to develop a general perspective based on “systems” 

thinking that can be applied to a broader range of problems [438]. Seider et al. (2016) 

and Biegler et al. (1997, 2010) described systematic approaches for the design and 

optimization of chemical processes and included product design and life cycle analysis 

in process design [431, 436, 439]. Klemes et al. (2013) discussed visualization 

techniques and interactive multimedia for enhanced learning [437]. Kiss et al. discussed 
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process integration for the biochemical engineering field, remarking that any 

biotechnology based processes exhibit potential for integration to improve performance 

[440].  

The purpose of this chapter is not to introduce new concepts in PSE literature, 

but to elucidate a holistic framework for teaching process integration and process 

economics. Specifically, an approach is proposed that generalizes the common ideas and 

underlying concepts from direct recycling, mass integration, heat integration and 

financial integration. Of particular interest is the pinch method [419, 424] that cuts 

across mass and heat integration in the domains of process integration [342, 434], and 

recently introduced financial integration [430] in the domain of process economics. By 

incorporating the ideas of financial integration with process integration, the generalized 

pinch method is shown to serve as the lynchpin between the core fundamentals of 

chemical engineering, i.e., mass and energy balances, mass transfer, heat transfer, and 

process economics, and their applications in both traditional chemical engineering and 

biochemical processing.  

In this chapter, the instruction of financial integration as a capstone to teaching 

process economics is proposed that can serve as the missing link between topics. The 

concept of financial integration can be considered in the same vein as mass and energy 

integration, used to mitigate the risk associated with the allocation of finances to process 

improvement expenditures. These four integration techniques for seemingly different 

applications represent the quadrants of the holistic instructional framework posed in this 

work. This is shown in detail in Figure 8.1., with definitions given for the typical sources 
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and sinks of each integration type. By introducing the general graphical pinch strategy 

for integration, and developing a novel algebraic approach that emulates that of the other 

integration methods, the connection between process economics and process integration 

will be made apparent to students and help smooth the transition. 

 

Figure 8.1. Four quadrants of the general process integration framework. Definitions of 

the sources (top) and sinks (bottom) for each integration method are listed in each 

quadrant. The dotted line depicts the missing quadrant of the holistic framework. 

We then propose a holistic framework to the instruction of process economics 

and integration based on the collective understanding of pinch analysis for various 

integration strategies, including the newly developed methods for financial integration 

discussed in the next section. This framework uses the instruction of more general pinch 

analysis methods to develop a core understanding on the overall methodology, which 

allows for a more in-depth examination of the key subtleties and differences between the 

applications of direct recycle, mass integration, heat integration, and financial 

integration. By separating the methodology from the application, a larger emphasis can 

be placed on the physical meaning behind these analyses as well as the implementation 

of key findings. Additionally, the intent of this work is to seamlessly bridge the gap 
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between process economics and process integration by focusing on the similarities 

between the pinch analyses methods of each discipline. This method will be exemplified 

using a classical chemical engineering application as well as a biochemical application.  

The chapter is organized as follows. First, a brief review of the general graphical 

and algebraic pinch analysis methods will be given for direct recycle, heat integration, 

and mass integration applications. Second, the idea of a graphical method for financial 

integration will be introduced and the methodology for a new algebraic method will be 

developed. Third, the current linear approach to teaching process economics and 

integration will be introduced and compared to a newly proposed holistic approach that 

looks to use financial integration and generalized methods for process integration to 

bridge the gap between core chemical engineering fundamentals and their integration 

applications. Finally, two case studies are presented to demonstrate the use of the 

generalized pinch methodology. Graphical methods for integration are exemplified for a 

generic chemical process and an algebraic approach including the newly developed 

algebraic financial integration method will be demonstrated using a bioprocessing 

example. 

8.2. A Brief Review of Pinch Analysis for Process Integration 

Pinch analysis determines the maximum possible use of currently existing 

process resources to minimize external requirements. These resources, termed as 

sources, provide opportunities for the recovery, recycling and/or reuse of mass and 

energy. Examples of sources in mass integration methodologies include waste streams 

leaving the process. In heat integration, sources primarily include hot process streams 
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with excess heat. Locations that accept these otherwise rejected resources are termed 

sinks and are often constrained by operating conditions such as impurity level or 

temperature. Sinks for mass integration applications are usually process units that utilize 

a raw material. For energy integration, they primarily include cold streams requiring the 

use of a heating utility. Process integration strategies look to match the available 

resources in the source streams with the process sinks to reduce the required external 

sources to their minimum values. Successful integration yields an efficient use of 

process resources and minimizes its financial and environmental impact. Based on the 

laws of conservation of mass and energy, strategies have been developed for direct 

recycle of process streams to recover lost raw materials, for mass integration to reduce 

the use of external solvents for removing stream impurities, and for heat integration to 

lessen external utility usage.  

8.2.1. Graphical Approach 

A general pinch diagram is shown in Figure 8.2 to help illustrate the graphical 

pinch analysis technique. Pinch analysis begins with the development of a source 

composite curve (shown in red in Figure 8.2) that contains the information for available 

resources in the nominal process. A sink curve (shown in blue in Figure 8.2) is also 

developed illustrating the information for the available locations within a plant that these 

excess resources may be utilized. The solution to a pinch diagram is found by shifting 

either the source or sink curve, depending on application, until the pinch point is found. 

The pinch point is defined by the point at which the sink and source curves touch at a 

single or multiple location(s), with the source curve lying solely underneath the sink 
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curve. Physically, the pinch signifies the location below which no waste should be 

discharged from the sources and above which no fresh resources should be used in the 

sinks [342]. The solution of the pinch analysis provides three key values for the 

integration implementation: the minimum external resource to be used (region 1 in 

Figure 8.2), the optimal amount of integration between sinks and sources (region 2 in 

Figure 8.2), and the minimum excess of resources that cannot be used due to operational 

constraints (region 3 in Figure 8.2). Using these values, a strategy for minimum targets 

can be developed. 

 
Figure 8.2. A generalized pinch diagram for process integration applications including 

the source curve (red), sink curve (blue), and pinch point location. Regions denote the 

minimum external resource to be used (region 1), the optimal amount of integration 

between sinks and sources (region 2), and the minimum excess of resources that cannot 

be used due to operational constraints (region 3). The value of interest and load quantity 

varies with each integration application. 

The difficulty in understanding when using pinch analysis for process integration 

is the small subtleties of each application. These differences are mainly two-fold: (a) the 

important values to be plotted on the axes of the pinch diagram and (b) how to shift the 

graph to locate the correct pinch point. Regarding the axis values, the vertical axis for 

the pinch integration relates to a transferrable load important to the specific integration 
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strategy; these loads are to be passed directly from the sources to the sinks. The load is 

the impurity load in direct recycle, the mass exchanged in mass integration, and the heat 

load (Q) in heat integration. The corresponding horizontal axis values in a pinch diagram 

relates to the unit of interest driving the transfer of that load. This includes the 

cumulative flowrate (F) in direct recycle, rich stream mass fraction (y) in mass 

integration, and hot stream temperature (T) in heat integration. 

The method to determine the location of the pinch point also differs between 

specific applications of these process integration strategies. For a strategy like direct 

recycle, where the horizontal axis is based on the cumulative flow of the sources and 

sinks, horizontal translation of the source curve indicates the addition of a pure source 

stream, typically an external fresh resource. However, horizontal translation in heat or 

mass transfer would require changing defined compositions or temperatures, inherently 

changing the integration problem. In these methods, the pinch is found by vertical 

translation of the sink curve, which represents the use of an external mass exchange 

agent to help remove the impurity load from the rich streams or the addition of an 

external source of heating to provide energy to the cold streams. Figure 8.3 depicts the 

methods for translating the source or sink curve for the three integration methods. 
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Figure 8.3. Translation methods for the determination of the pinch point in (a) direct 

recycle and (b) heat and mass integration. The resulting regions correspond to (1) 

external resource requirement, (2) integration of resources within the process, and (3) 

excess process resources. 

The correct translation of the pinch diagram results in three distinct regions that 

correspond to physical properties of the integrated system. The integration region, 

labeled (2) in both Figure 8.3a and Figure 8.3b, denotes the overlapping region of the 

source and sink curves that indicate the ability to transfer mass or energy between 

process streams. The region labeled (1) represents the need for the addition of resources 

to compensate for the lack of complete integration. More specifically, in Figure 8.3a 

region (1) spans from the vertical axis to the beginning of the source curve and depicts 

the amount of fresh raw materials needed to supplement the recycled raw materials. In 

Figure 8.3b, this same region stretches from the horizontal axis to the bottom of the lean 
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or cold curve and signifies the external mass exchange agent or cooling utility needed in 

the system. Similarly, the region labeled (3) in Figure 8.3 signifies excess resources in 

the process. In the direct recycle case of Figure 8.3a, this value is the excess source 

streams that have a level of impurity too high to segregate and mix to reutilize per the 

sink specifications. In Figure 8.3b, these excess resources come in the form of excess 

mass exchange agent due to thermodynamic equilibrium limitations (mass integration) 

or excess cold utility that needs to be heated using an external heating utility (heat 

integration). Due to the significance of these three regions of the pinch diagram, 

understanding the correct way to translate the pinch diagrams is vital to determining the 

maximum amount of allowable integration and the minimum resource requirements 

within a process. 

8.2.2. Algebraic Approach 

Like the graphical methods previously discussed, algebraic methods for pinch 

analysis have been developed for heat, mass, and direct recycle applications to determine 

the maximum integration of process resources, thereby minimizing external resource 

usage [342, 441-443]. These methods focus on the idea of an interval diagram, where 

the two-dimensional nature of the graphical pinch method is converted to a one-

dimensional visualization to determine intervals where resources can be exchanged. The 

specific representation of data in an interval diagram is unique to the application of the 

graphical pinch method. The implementation for direct recycle is called the load interval 

diagram (LID) and is depicted in Figure 8.4. Similar to the graphical method, the NI 

available process sources are arranged in order of increasing impurity level (𝑦1 < 𝑦2 <
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⋯ < 𝑦𝑘−1 < 𝑦𝑘) while the NO available process sinks are arranged in order of the 

increasing maximum allowable impurity level (𝑧1
𝑚𝑎𝑥 < 𝑧2

𝑚𝑎𝑥 < ⋯ < 𝑧𝑘−1
𝑚𝑎𝑥 < 𝑧𝑘

𝑚𝑎𝑥). 

Using this arrangement, arrows representing the source streams are aligned tip-to-tail 

vertically beginning at the top of the diagram where the impurity load is defined as zero; 

similarly, the process sinks are separately stacked starting from the zero point.  

 

Figure 8.4. Load-interval diagram (LID) for the algebraic approach to direct cycle. 

Sources and sinks are ordered based on increasing impurity level (y1 < y2 < ⋯ < yN 

for sources and z1
max < z2

max < ⋯ < zN
max for sinks) and arranged tip-to-tail to 

determine the cumulative load [443]. 

Horizontal lines are then drawn across the diagram at each tip and tail of the 

source and sink arrows; the horizontal regions between these lines are known as 

intervals, in this case load intervals, where the flow from the source curves can be 

administered to the sinks. Finally, the source flow per interval, denoted Δ𝑊𝑘, is 

determined by Equation 8.1, where the load range in interval k Δ𝑀𝑘 is divided by the 

impurity load of the source in that interval. A similar procedure is done to calculate the 

sink flow per interval, or Δ𝐺𝑘, by dividing Δ𝑀𝑘 by the maximum allowable impurity 

load for the sink in interval k. This is also shown in mathematical form as Equation 8.2. 
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ΔWk =
ΔMk

ysource in interval k
 (8.1) 

ΔGk =
ΔMk

ysink in interval k
 (8.2) 

Algebraic pinch methods can also be used for the integration of heat and mass. 

These methods also begin with the development of an interval diagram, specifically the 

composition interval diagram (CID) and the temperature interval diagram (TID) for heat 

integration. Examples of these diagrams are shown in Figure 8.5 and Figure 8.6, 

respectively. While like the implementation of the LID, these two interval diagrams are 

more complex as they use multiple vertical axes that allow for more than a single source 

or sink to exist in any given interval. For the CID, rich streams are plotted on a single 

axis based on their supply (𝑦𝑠) and target compositions (𝑦𝑡). To ensure feasibility, each 

lean stream has its own scale that converts the rich compositions 𝑦 to the corresponding 

lean compositions x for every given lean stream by using the equilibrium data 𝜖𝑖 and 𝑏𝑖. 

The supply composition (𝑥𝑖
𝑠) and target composition (𝑥𝑖

𝑡) for each lean stream are 

plotted against their respective x-scale. For example, Figure 8.5 uses a single scale for all 

process rich streams, but employs a separate scale for each of the three lean streams in 

the process based on mass transfer equilibrium. Similarly, the TID uses a multi-scale 

system; the first scale represents hot stream temperatures (𝑇) while the second 

represents cold stream temperatures (𝑡). These two scales are separated by a minimum 

temperature difference (Δ𝑇𝑚𝑖𝑛) that acts as the driving force for heat transfer and ensure 

feasibility. The NH hot streams are plotted against one scale based on their supply (𝑇𝑖
𝑠) 

and target (𝑇𝑖
𝑡) temperatures, whereas the NC cold streams are plotted against the 



 

217 

 

alternate scale based on their own supply (𝑡𝑖
𝑠) and target (𝑡𝑖

𝑡) temperatures. Figure 8.6 

exemplifies the complete TID for a process that has two hot streams and two cold 

streams available for heat integration. 

 

Figure 8.5. Composition-interval diagram (CID) for the algebraic approach to mass 

integration. Rich stream arrows are arranged based on their supply (𝑦𝑖
𝑠) and target (𝑦𝑖

𝑡) 

compositions. Supply streams are arranged by their supply (𝑥𝑗
𝑠) and target (𝑥𝑗

𝑡) 

compositions after converting to their equilibrium y values [342].  

 

Figure 8.6. Temperature-interval diagram (TID) for the algebraic approach to heat 

integration. Hot and cold streams are arranged by descending temperature against their 

respective temperature scales that are separated by an amount of Δ𝑇𝑚𝑖𝑛 [342]. 

Once the sink and source streams have been placed on the CID or TID, intervals 

can be determined by placing horizontal lines across the tips and tails of each source and 



 

218 

 

sink arrow. Within each interval, the available resource load and resource needs can be 

calculated for each stream i. For mass integration, this corresponds to the available 

impurity load (ΔRk
i ) and the amount of impurity that can be removed by the lean 

stream (ΔLk
i ). For heat integration, this is the energy available from hot streams (ΔHk

i ) 

and the energy needed to heat cold streams (ΔCk
i ). Equations for calculating these values 

is shown in Equation 8.3 and Equation 8.4, where Fi is the flowrate of stream i, Δyk is 

the rich stream composition range for interval k, Δxi
k is the lean stream composition 

range for stream i in interval k, the quantity (FCp)i
 is the product of the flowrate and 

heat capacity for a hot stream i, the quantity (fcp)i
 is the product of the flowrate and heat 

capacity for a cold stream i, and ΔTk is the temperature range in interval k. Finally, the 

total amount of available resources (ΔRk
T or ΔHk

T) and total amount of needed resources 

(ΔLk
T  or ΔCk

T) in each interval can be calculated using Equation 8.5 and Equation 8.6. 

Here, the total amount of available resources is simply the sum of all ΔRk
i  or ΔHk

i  for 

source streams in interval k and the total amount of needed resources is the sum of all 

ΔLk
i  or ΔCk

i  for sink streams in interval k. 

  ΔRk
i = FiΔy

k ∀ NR ∈ k           or          ΔHk
i = (FCp)i

ΔTk ∀ NH ∈ k (8.3) 

ΔLk
i = FiΔxi

k  ∀ NL ∈ k          or          ΔCk
i = (fcp)i

ΔTk ∀ NC ∈ k (8.4) 

ΔRk
T =∑ΔRk

i

NR

i=1

           or           ΔHk
T =∑ΔHk

i

NH

i=1

 (8.5) 
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ΔLk
T =∑ΔLk

i

NL

i=1

           or           ΔCk
T =∑ΔCk

i

NC

i=1

 (8.6) 

Once the important resource loads and resource needs for each interval have been 

calculated for any integration strategy, balances around the interval are calculated as 

shown in Figure 8.7. Process resources, including the flow of raw materials (direct 

recycle), energy (heat integration), and stream impurities (mass integration), are added to 

each interval based on the source process streams in interval k. Additionally, excess 

process resources from the previous interval k-1 can be passed down to interval k. 

Process sinks in interval k utilize these resources, and any excess resources are provided 

to the following interval k+1. These balances are done for all intervals K in the interval 

diagram, and the set of interval balances are stacked upon each other into a cascade 

diagram as seen in Figure 8.8a. 

Each 𝛿𝑘 between the intervals is the amount of resources passed between interval 

k and interval k-1, and the pinch point is defined as the 𝛿𝑘 value(s) that are equivalently 

zero. To determine this location, the cascade diagram is revised by adding absolute value 

of the most negative 𝛿𝑘 value to the top of the cascade diagram (𝛿0). This results in 

modified 𝛿𝑘
′  values in the revised cascade diagram shown in Figure 8.8b; at least one of 

these values will correspond to the pinch point. The value of 𝛿0
′  at the top of the revised 

cascade diagram corresponds to the minimum amount of resources that need to be added 

to the process, i.e. flow of fresh raw materials, impurity load to be removed using 

external lean process streams, or hot utility to be used in a process. Alternatively, the 𝛿𝐾
′  

value at the bottom of the revised cascade diagram represents the minimum amount of 
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excess process resources that cannot be integrated in the process, i.e. flow that must be 

discarded as waste, internal mass exchange agents with equilibrium compositions too 

large, or cold utility needed to cool the remaining hot stream requirements. 

The understanding of process economics is fundamental in understanding the 

impact of process integration strategies on cost savings and sustainability, either in the 

form of reducing raw material requirements, mitigating energy needs, or eliminating 

process units. Topics in process economics include the estimation of capital and 

operating costs, the evaluation of the impact of time on the value of money, and the 

development of economic indicators, e.g. net present value (NPV), return on investment 

(ROI), payback period (PBP) and discounted cash flow return on investment (DCFROI), 

that demonstrate the economic viability of a given process design and act as a 

springboard to introduce integration as a method for improving this viability.  

 

Figure 8.7. Generalized resource balance around a single interval. Resources from 

process sources introduced at interval k or excess resources from previous intervals 

(𝛿𝑘−1) can be utilized for sinks introduced at interval n or sent to subsequent 

intervals (𝛿𝑘). 
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Figure 8.8. (a) Cascade and (b) revised cascade diagrams for the generalized algebraic 

pinch method. The initial cascade diagram is revised by equating 𝛿0 to the absolute value 

of the most negative 𝛿𝑘 value (𝛿𝑚𝑎𝑥) at the top of the cascade diagram and recalculating 

all 𝛿𝑘
′ . The pinch point is recognized as the 𝛿𝑘

′  value which is equal to zero. The 𝛿0
′  value 

is the minimum amount of external resources that need to be added and the 𝛿𝑁
′  value is 

the excess amount of process resources. 

8.3. Closing the Loop with Financial Integration 

While the synergy between process economics and process integration cannot be 

refuted, in our experience the currently disjointed teaching methodologies for these 

topics often leave students lost and confused during the transition between topics. The 

association of numerical calculations for process economics with graphical methods 

often comes across as jarring. One of the ways this can be overcome is through a project 

that connects the two topics seamlessly. Students are asked to choose a process from the 

process flow diagrams made available from SRI International and utilize their 

knowledge of process economics and process simulation, e.g. ASPEN Plus and ASPEN 

Economic Analyzer, to evaluate the existing process design. They are then asked to 
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suggest, implement, and evaluate integration strategies to improve the process 

economics. Typically, the evaluation of the integration strategies follows a sequential 

approach – first mass flows are addressed, via direct recycle or mass integration, then 

energy flows are integrated via heat integration. The economic improvement offered by 

these integration strategies is then evaluated. In this way, students can see the direct 

connection between process design, integration, and economics when applied to real 

chemical processes. 

While this approach is effective for exemplifying the connections between topics, 

a project that combines topics in the way described must be done after the necessary 

material is covered during instruction periods. Like the methods of direct recycle, mass 

integration, and heat integration, financial integration relies on pinch analysis to 

maximize the use of monetary resources and minimize spending waste. The specific 

details of financial integration, while described here and depicted in Figure 8.9, were 

developed by Bandyopadhyay et al [430]. Financial integration examines the optimal 

distribution of monetary sources, e.g. grants, company budgets, etc., toward various 

monetary sinks, e.g. capital projects, to maximize budgetary use and mitigate the risk 

associated with the allocation of finances to process improvement expenditures. The 

transferable load, equivalent to the heat load in heat integration or impurity load in mass 

integration, is the annual returns (in $/year) of each capital project. These are plotted as a 

function of the investment cost for each capital project, with the slope of each line 

segment denoting the payback period of the project. Determining the optimum level of 

financial integration is done via pinch analysis, albeit differently than any other 
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integration method; the pinch point is located by the shifting of the source curve along 

each vertex of the sink composite curve until it lies completely underneath. Locating the 

pinch point results in three distinct methods as depicted in Figure 8.9. Region (1) 

signifies all projects that are not able to be funded with their current investment cost and 

annual return. Projects that can be funded are shown by the overlap of the sink and 

source curves, highlighted by region (2). Finally, excess financial resources that cannot 

be used in the current projects being considered are shown in region (3).  

 

Figure 8.9. Economic equivalent pinch point method for the determination of funding 

allocations to capital projects. The resulting regions correspond to (1) projects without 

funding resources, (2) projects that can be funded, and (3) excess financial resources. 

[430]. 

Although it has been demonstrated that a graphical pinch approach to financial 

integration is like those for the other integration applications, an algebraic pinch 

approach has not been developed until now. Figure 8.10 depicts the novel fiscal-interval 

diagram (FID) to be used similarly to the load-interval diagram (LID) in direct recycle 

integration strategies. The algebraic method begins by calculating the maximum 

allowable payback period (𝑀𝐴𝑃𝑃) for all available funding sources and the expected 
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payback period (𝐸𝑃𝑃) for projects that need funding, defined as the ratio of the 

investment cost (IC) and the annual returns (AR). These are shown as Equation 8.7. 

MAPPi =
ICi
ARi

         or           EPPi =
ICi
ARi

 (8.7) 

To begin the FID, the NS available funding sources are arranged in order of 

decreasing MAPP (𝑀𝐴𝑃𝑃1 > 𝑀𝐴𝑃𝑃2 > ⋯ > 𝑀𝐴𝑃𝑃𝑁𝑆−1 > 𝑀𝐴𝑃𝑃𝑁𝑆) while the NP 

available projects are arranged in order of the decreasing EPP (𝐸𝑃𝑃1 > 𝐸𝑃𝑃2 > ⋯ >

𝐸𝑃𝑃𝑁𝑃−1 > 𝐸𝑃𝑃𝑁𝑃). Arrows representing the annual returns of each funding source are 

aligned tip-to-tail beginning at the top of the diagram that indicated zero annual returns; 

arrows representing the annual returns for the projects are aligned in a similar 

representation also beginning at zero annual returns. Intervals are determined by drawing 

horizontal lines across the diagram at the tips and tails of all source and project arrows. 

Once the intervals have been determined, the investment cost in each interval can be 

calculated. For the funding sources the investment cost (Δ𝐼𝑘) is calculated as the product 

of the annual returns in each interval (Δ𝐹𝑘) and the MAPP of the funding source in 

interval k, as shown in Equation 8.8. A similar calculation is used to determine the 

investment cost of the projects (Δ𝑃𝑘), where Δ𝐹𝑘 is multiplied by the EPP of the funding 

source in interval k as in Equation 8.9.  

Δ𝐼𝑘 = Δ𝐹𝑘 ⋅ 𝑀𝐴𝑃𝑃𝑘 (8.8) 

Δ𝑃𝑘 = Δ𝐹𝑘 ⋅ 𝐸𝑃𝑃𝑘 (8.9) 
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Figure 8.10. Fiscal-interval diagram (FID) for the algebraic approach to financial 

integration. Sources and sinks are ordered based on decreasing payback period 

(MAPP1 ≥ MAPP2 ≥ ⋯ ≥ MAPPNS for funding sources and EPP1 ≥ EPP2 ≥ ⋯ ≥ EPPNP 

for projects) and arranged tip-to-tail to determine the cumulative investment cost. 

The Δ𝐼𝑘 and Δ𝑃𝑘 values in the algebraic method for financial integration are 

synonymous with the Δ𝐺𝑘 and Δ𝑊𝑘 values for direct recycle and will be used in the 

cascade diagram in the same way in the interval resource balances shown in Figure 8.7. 

A cascade diagram can be developed using these interval balances like the one shown in 

Figure 8.11a. However, financial integration is performed under the restriction that a 

project is either completely funded or not funded at all. This restriction makes 

determining the pinch point in a revised cascade diagram more challenging than adding 

the most negative 𝛿𝑘 value to the 𝛿0 value as done in other integration methods; the 

pinch point is not defined by have one or more δk
′  values of zero. To determine the pinch 

point for the investment cost, the cumulative sum of the investment costs of the projects 

is added to the top of the cascade diagram (𝛿0) until all 𝛿𝑘 values are greater than or 

equal to zero. This is defined as a simple optimization program in Equation 8.10. The 
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value at the top of the revised cascade diagram (𝛿𝑘
′ ) and is the minimum amount of 

additional external finances needed to fund the projects. The 𝛿𝐾
′  value at the bottom of 

the cascade diagram will represent the excess funding available from the current funding 

sources. The complete revised cascade diagram is shown in Figure 8.11b 

δ0
′ = ICmin = min

k ∈ 1,2,…,NP
∑IC𝑘

𝑘

i=1

 

 s. t.  δk
′ ≥ 0 ∀ k ∈ K 

(8.10) 

 

Figure 8.11. (a) Cascade and (b) revised cascade diagrams for the algebraic pinch 

method for financial integration. The initial cascade diagram is revised by equating δ0 to 

the cumulative sum of the investment costs (IC) for the project streams and recalculating 

until all δk
′  values are positive. Unlike the other algebraic methods, the pinch point is not 

defined by δk
′  of zero due to the all-or-nothing restriction of funding capital projects. The 

δ0
′  value in the revised cascade diagram is the minimum investment cost that needs to be 

added to fully fund all projects and the δK
′  value is the excess amount of currently 

available funding resources. 
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8.4. A General Pinch Approach to Process Economics and Integration 

Due to the similarities of both the graphical and algebraic methods of financial 

integration with the other pinch methods, we suggest their inclusion within the course 

materials of process economics to seamlessly bridge the gap between process economics 

and process integration. The traditional framework for teaching process economics and 

integration is illustrated in Figure 8.12a. In this sequential approach, the instruction is 

linear and may lack any feed-back necessary to solidify student understanding of both 

the similarities of the integration methods as well as how they relate to chemical 

engineering fundamentals. The inclusion of financial integration, as shown in dotted 

outline in Figure 8.12a, does little to help these shortcomings, since the fundamentals of 

process economics are coupled nicely with the financial integration method but do not 

exemplify the same connections with its heat and mass counterparts. While viable, this 

approach does not take the full advantage of the similarities between the fundamental 

concepts or the integration methods they utilize. 

Contrary to the linear instructional framework, a holistic framework can be 

developed for the instruction of process economics and integration due to the otherwise 

similar nature of these strategies. This method, depicted in Figure 8.12b, stresses the 

interconnectivity between the integration methods and their underlying fundamentals by 

using the general integration strategy as the lynchpin. This framework looks to develop 

an understanding that allows the instructional focus to be placed on the concepts of 

process economics and a general pinch analysis strategy, allowing for an increased 

emphasis on understanding the key differences that make these analyses unique. 
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Figure 8.12. (a) Sequential and (b) holistic frameworks for the instruction of process 

economics and integration. In the sequential method, integration applications are taught 

in a specified order with no feedback or connectivity between non-sequential topics. In 

the holistic framework, a generalized pinch concept serves as the bridge between the 

innermost level of fundamental chemical engineering concepts and the outermost level 

of integration applications. The sequential method is not influenced by the inclusion of 

financial integration, whereas financial integration is required in the holistic method for 

completeness.  

The development of a general integration methodology will bridge the gap 

between chemical engineering fundamentals and the applications of the integration 

strategies discussed. This would include the generalized algebraic (interval and cascade 

diagrams) methods and optimization-based methods (transshipment models). The focus 

of this work will be the instruction of the general graphical and algebraic pinch methods, 

beginning with the defining of the typical sources and sinks of each integration type. 

These generalized methods are applicable to all four integration strategies (mass, heat, 

direct recycle, and financial integration) and focuses on the identification of the pinch 
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point to determine the optimal opportunities for integration within a process. This 

analysis also results in the determination of the minimum level of external resources 

required in a process and the minimal waste of available process sources, leading to an 

increase in process sustainability. 

Applications of the general integration strategy are then introduced for each 

specific application, including the translation method to locate the pinch point and the 

meaning of the resulting regions of the pinch diagram. Specific applications are financial 

integration, direct recycle, mass integration, and heat integration. This way, it is possible 

to provide a complete picture of integration strategies and how they can be used to 

influence decision-making, promote economic viability, and ensure sustainability during 

process design.  

Based on our experience in the instruction of a senior-level Process Integration, 

Simulation, and Economics course at Texas A&M University, we propose the holistic 

framework to be included in the course following the suggested weekly itinerary shown 

in Table 8.1, beginning with an introduction to process economics. This would typically 

include four to five weeks of a general fourteen-week semester. After a sufficient 

treatment of process economics, an introduction of the general integration strategy 

would be conducted, specifically teaching the pinch analysis that is central to all four 

integration methods. This section of the course would constitute one or two weeks of the 

semester, during which a strong understanding of the method can be built. After the 

introduction of the general pinch method, each specific application can be the focus of 

the instruction. The focus on the central ideology of the pinch method allows for any of 
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the integration applications to be taught in any order, providing adaptability to how the 

course is instructed. It is suggested that each integration application be given about one 

week of treatment to dissect the nuances of each, specifically the use of thermodynamic 

equilibrium in heat and mass transfer, the appropriate translation methods, and the 

meaning of the regions of the successful integration pinch diagram. Any additional time 

in the course can be allotted to teaching a brief introduction to the optimization based 

methods of process integration. The holistic method outlined in this work utilizes the 

student’s knowledge of the specific chemical engineering fundamentals in combination 

with the pinch strategy to bridge the gap of knowledge and increase understanding of 

integration. By predicating the teaching on an understanding of chemical engineering 

fundamentals, including process economics, teaching process integration can focus on 

similarities and interchangeability between the integration methodologies. 

Table 8.1. Suggested incorporation of General Pinch Analysis and financial integration 

within a semester schedule for the holistic instruction of process economics and 

integration. 

Weeks Topics 

1 Introduction to Process Economics and Integration 

2-6 Process Economics (Capital and Operating Cost, Depreciation, Time-value of Money, 
   Net Present Value, Payback Period, Return on Investment, etc.) 

7 Introduction to the Generalized Pinch Concept (Graphical Method) 

8 Introduction to the Generalized Pinch Concept (Algebraic Method) 

9 Financial Integration 

10 Direct Recycle 

11 Mass Integration 

12 Heat Integration 

13-14 Process Integration (Optimization Based Methods) 
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8.5. Case Studies 

This section outlines two case studies that exemplify the benefits of the proposed 

holistic teaching method in this work. The first case study applies the concepts of mass, 

heat, and financial integration to a general chemical process to demonstrate the ability to 

teach the applications of process integration in any order once the understanding of the 

generalized pinch method has been established. This case study depicts the adaptability 

of the holistic method for integration applications while also showing how financial 

integration can be incorporated with heat and mass integration to suggest priority for the 

integration projects. The second case study demonstrates the use of pinch methodologies 

for a biochemical process, giving insight into applying the use of conventional chemical 

engineering strategies to non-traditional processing methods. Explanations and solutions 

to these case studies are kept short to allow the focus to be placed on the implementation 

of the holistic teaching framework; additional information and full solutions can be 

found in the Supplemental Materials. 

8.5.1. Case Study I: Chemical Processes 

This illustrative example follows the structure of analyzing the opportunities of 

heat integration and mass integration before using financial integration to determine the 

economic feasibility of implementing these improvements. This case study is designed 

for instruction after the general pinch methodology has been established, beginning 

approximately Week 7 per the suggested schedule in Table 8.1.  This example problem 

was designed to mimic the role of a term project: first the students are asked to 

investigate integration strategies for sustainable process improvement, and then students 
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are asked to determine if these proposed improvements make are feasible based on their 

knowledge of process economics. However, due to the necessity of teaching this 

problem over a multi-week span as more integration applications are covered, this 

problem should be used to demonstrate the merits, requirements, and expectations of a 

term project and not as a direct replacement. Additionally, this example problem and the 

solution that follows illustrates the advantages of using a holistic method in lieu of a 

more linear approach; by using a holistic method, the order of instruction for the 

integration applications does not matter, whereas instruction of an example problem of 

this nature would be required to be taught in the final weeks of the semester per the 

linear teaching method in Figure 8.12a.  

More specifically, this case study applies the pinch method to the generalized 

chemical process shown in Figure 8.13. The process consists of two reactors, a 

separation network, a scrubbing unit and a flash tank. Four heat exchangers exist within 

the system for heating (labeled in blue) and cooling (labeled in orange), providing 

opportunities for heat integration. Data for these exchangers, including inlet 

temperatures, outlet temperatures, heat duties, and 𝐹𝐶𝑃 values, are shown in Table 8.2 

below. A minimum driving force of 10 K is desired. Additionally, it is desired to clean 

the wastewater stream (labeled in green) by using the off-gas stream (labeled in red). 

Table 8.3 and Table 8.4 give the data for the mass integration problem, including supply 

and target compositions, mass flowrates, and equilibrium data. Using the data provided, 

it is desired to use the pinch methodology to maximize heat and mass integration using 

available internal resources; doing so will determine the minimum amount of heating 
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and cooling utilities and the minimum amount of external mass separation agent 

necessary for this process. Additionally, due to the limited monetary resources available 

to finance these projects, it is desired use financial integration methods to determine 

which of these projects should be prioritized for implementation.  

Reactor 1 Reactor 2
Feed

C-1

H-1

420 K 490 K

Separation
Network

Scrubber
460 K 350 K

Solvent

Spent Solvent
(To Regeneration)

Off-Gas
(To Gas Treatment)

320 K

C-2

Flash
Column

390 K

Wastewater

400 K
H-2

300 K Product
(to sales)

 
Figure 8.13. Generalized chemical process to exemplify the methods of process 

integration. Adapted from textbook by El-Halwagi [342]. 

Table 8.2. Heat exchanger data for the generalized chemical process example. 

Stream 

FCP 
(kW K⁄ ) 

Supply 

Temperature (K) 

Target 

Temperature (K) 

Enthalpy 

Change (kW) 

H1 300 460 350 -33,000 

H2 500 400 300 -50,000 

C1 600 420 490 42,000 

C2 200 320 390 14,000 

Table 8.3. Data for the wastewater stream for the generalized chemical process example. 

Stream 

Flowrate 

(𝑘𝑔 𝑠⁄ ) 
Supply Composition 

𝑦𝑖
𝑠 (ppmw) 

Target Composition 

𝑦𝑖
𝑡 (ppmw) 

Process wastewater 0.2 350 200 
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Table 8.4. Data for the process mass separation agent (MSA) for the generalized 

chemical process example. 

Stream 

Flowrate 

(𝑘𝑔 𝑠⁄ ) 
Supply Composition 

𝑥𝑖
𝑠 (ppmw) 

Target Composition 

𝑥𝑖
𝑡 (ppmw) 𝑚𝑗 

𝜖 

(𝑝𝑝𝑤𝑚) 
Off Gas 0.012 300 1000 0.2 50 

Figure 8.14 below shows the pinch analysis for the heat and mass integration of 

the generalized chemical process. In Figure 8.14a, the composite curves are determined 

using the temperature and enthalpy data provided in Table 8.2. The determination of the 

cold composite curve also considers the necessary temperature difference (Δ𝑇𝑚𝑖𝑛) of 10 

K by adding this amount to all the cold stream temperatures. Once these composite 

curves are plotted, the cold composite curve can be shifted vertically to locate the pinch 

point of the system. As described in Section 8.2.1, we see three distinct regions by 

locating the correct pinch point, as shown in Figure 8.14b. Regions (1) and (3) denote 

the minimum amount of cooling and heating utility needed for the process, respectively; 

the minimum utility requirements amount to 60,000 kW of heating and 33,000 kW of 

cooling. These minimum values are due to the integration opportunities within the 

process, resulting in a total amount of 46,000 kW of saved utilities as shown by region 

(2) in Figure 8.14b. By using pinch methodologies to minimize the excess heating and 

cooling in the process, the total external energy requirement can be reduced from 

139,000 kW to 93,000 kW. 

Similar observations can be made about the mass integration by using the same 

pinch methodology. In this case the rich and lean composite curves are plotted using the 

rich compositions 𝑦, after adjusting the lean stream compositions 𝑥 to 𝑦 using the 



 

235 

 

equilibrium data, and load of impurities. This is shown in Figure 8.14c. After shifting the 

lean composite curve vertically to find the pinch point of the system, three distinct 

regions can be observed in Figure 8.14d. Region (1) denotes the amount of external 

resources needed to remove the impurity load, in this case a load of 23 mg/s. This is 

reduced from the initial 30 mg/s due to the ability for the off-gas to accept 7 mg/s of 

impurity, as shown by region (2) in Figure 8.14d. Finally, the process mass separation 

agent is not fully utilized due to thermodynamic limitations, and 3 mg/s of potential is 

not utilized as denoted by the existence of region (3) in Figure 8.14d. 

 

Figure 8.14. (a) Heat integration and (b) mass integration solution for the classical 

chemical engineering example. The resulting regions correspond to (1) external resource 

requirement, (2) integration of resources within the process, and (3) excess process 

resources. 
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After successfully analyzing the benefits of both heat and mass integration, the 

economic feasibility of implementing these strategies can be considered. In addition to 

the annual returns these projects provide, they are also subject to an investment cost for 

implementation. By using another pinch analysis, this time for financial integration, it is 

possible to determine which of these projects should be implemented based on the 

financial resources available. Equations 8.11 and 8.12 outline simple functions relating 

the minimum external resource requirements with the investment cost and annual 

returns, respectively, of the heat and mass integration projects. These equations follow 

the typical form of the six-tenths scaling for capital costs and linear scaling for annual 

returns that are demonstrated in the economics portion of the class. The values for 

parameters A and B in each equation are given in Table 8.5 and Table 8.6. Additionally, 

funding is available for these projects from two different sources, and the investment 

cost, annual returns, and maximum allowable payback period data are outlined in Table 

8.7. 

(
Investment

Cost
) = A ⋅ (

Minimum
External

Requirement
)

B

 (8.11) 

(
Annual
Returns

) = A ⋅ (
Minimum
External

Requirement
) + B (8.12) 

Table 8.5. Parameters for the estimation of investment cost based on external resources 

using Equation 8.11. 

Project A B 

Mass Integration $250,000 0.279 

Heat Integration $100,000 0.141 
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Table 8.6. Parameters for the estimation of annual returns based on external resources 

using Equation 8.12. 

Project A B 

Mass Integration 2.0 $19,507 

Heat Integration 50.0 $73,850 

Table 8.7. Data for the available funding sources. MAPP is the maximum allowable 

payback period. 

 

Investment 

Costs 

Annual 

Returns MAPP (yr) 

Source 1 $400,000 $20,000 20 

Source 2 $750,000 $250,000 3 

Using the investment costs from Equations 8.11 and 8.12 and the data for 

available funding sources found in Table 8.7, we can perform a financial integration 

analysis using the pinch method to determine which of the projects we have considered, 

i.e. heat and mass integration, are worth investing monetary resources into. The results 

for that pinch method are shown in Figure 8.15, first starting with the plotting of the 

composite curves in Figure 8.15a and then demonstrating the translation of the funding 

source curve to find the pinch point. Like heat and mass integration, three distinct 

regions are recognizable in the pinch analysis once the correct pinch point is determined; 

region 1 denotes projects that cannot be funded, region 2 shows projects for which 

funding is available, and region 3 shows how much of your financial resources would be 

in excess. In this example, funding is available for the heat integration project in region 

2, but should not be used for the mass integration project in region 1 due to its longer 

payback period, 8 years, when compared to the heat integration project’s 2.86 years. 
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Ultimately, it can be seen from region 3 that $0.65 million is excess funding that should 

not be utilized for these projects. 

 

Figure 8.15. Financial integration solution for the classical chemical engineering 

example. The resulting regions correspond to (1) additional external funding required, 

(2) use of funding sources for integration projects, and (3) excess financial resources. 

As expressed earlier, the development of this problem is not possible until the 

end of the semester based on the linear approach to teaching process economics and 

process integration. Even with the addition of financial integration into the curriculum, 

the requirement that each integration strategy be discussed in a specific order requires 

that all three integration strategies be discussed before this example problem can be 

examine, making it no more effective than a term project that relies on the same strategy. 

However, under the holistic approach proposed in this work, the focus on a generalized 

integration method means the order of instruction of each integration application does 

not matter. This problem can then be used through a semester to full effect as a way of 

serving as an illustrative example to how students should approach their term project, 

adding a new layer of understanding for students. 
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8.5.2. Case Study II: Biochemical Conversion of Corn Stover to Ethanol 

While often considered a method for reducing the operating cost of a chemical 

process, process integration is also useful for increasing the sustainability of a process. 

This characteristic of process integration is of interest in biotechnology applications; 

these processes often involve solids handling that require the use of substantial amounts 

of fresh water to maintain continuous flow. One important example is the biochemical 

production of biofuels from lignocellulosic biomass. Though fuel-grade ethanol is 

currently produced using corn as a raw material, the food versus fuel debate has sparked 

an increased interest in its production from energy crop or agricultural waste sources 

[96, 298, 300, 301, 308, 311, 444]. Though not considered a main contributor to the 

operating cost for these lignocellulosic systems, the large water requirements for biofuel 

production processes puts a strain on the surrounding environment [445-447]. In these 

instances, integration methods can be utilized to reduce the fresh water consumption and 

increase the sustainability of the existing facility. While financial factors will always be 

considered, sustainability will ultimately play a significant role in determining the 

feasibility of biofuels as a main alternative energy source. 

The example problem discussed in this section examines the use of the direct 

recycle methodology for water recycle in the biochemical production of ethanol from 

pretreated corn stover. The simplified process flow diagram, shown in Figure 8.16, 

consists of three reactors in series, a distillation column, and a molecular sieve. The first 

two reactors, responsible for biomass pretreatment and enzyme hydrolysis to liberate the 

sugar monomers from the solid corn stover, require a specific solid loading achieved by 
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the addition of water. These units are considered the process sinks. After the 

fermentation step, the distillation column and molecular sieve are used to concentrate the 

ethanol product, resulting in two reject streams that contain mostly water and can be 

used as process sources for recycle. The data for the process sinks and sources are shown 

in Table 8.8 and  

Table 8.9, respectively. In this example, it is desired to know what the minimum 

fresh water usage is after applying direct recycle to the biofuels process. 

Biomass
Pretreatment

Enzyme
Hydrolysis

Corn
Stover

Sodium Hydroxide
Water

Enzymes
Water

Fermentation Distillation

Ethanol
Water
Solids

Carbon Dioxide
Water (< 1%)

Water (90%)
Solids (10%)

Ethanol
Water

Molecular
Sieve

Water (95%)
Ethanol (5%)

Ethanol
Product

 

Figure 8.16. Simplified process flow diagram for the biochemical production of ethanol 

from corn stover. Process sources for the direct recycle are shown in blue, and process 

sinks are shown in red. 

Table 8.8. Data for the water sources for the biomass to ethanol example. 

Stream 

Flowrate 

(kg/hr) 

Impurity Concentration 

(wt%) 

Load 

(kg/hr) 

Molecular Sieve 500 5 25 

Distillation Column 5500 11 605 
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Table 8.9. Data for the water sinks for the biomass to ethanol example. 

Stream 

Flowrate 

(kg/hr) 

Impurity Concentration 

(wt%) 

Load 

(kg/hr) 

Pretreatment Reactor 3000 2 210 

Hydrolysis Reactor 4000 7 80 

The generalized algebraic pinch method is utilized for the direct recycle of water, 

with the load-interval diagram (LID) shown in Figure 8.17. The integration of two 

process sources and two process sinks results in a total of four intervals where 

integration can occur. The source (Δ𝑊𝑘) and sink flows (Δ𝐺𝑘) are calculated for each 

interval and used in the cascade diagram in Figure 8.18a. The pinch point is determined 

by the most negative 𝛿𝑘 value and is in red between intervals 3 and 4 in Figure 8.18a. 

This value is added to the top of the revised cascade diagram in Figure 8.18b to 

determine the minimum resource requirements of the biochemical process, which are 

marked in green. Based on the operating parameters of the bioethanol production plant, 

the minimum amount of external fresh water that would need to be supplied to the 

biochemical process is given as the 𝛿0
′  value in the revised cascade diagram and is 

4090.9 kg/hr. A total of 3,090.9 kg/hr of process water cannot be recycled, the value 

which is denoted by 𝛿4
′ , and will need to be sent to wastewater treatment. Overall, 

process integration results in a 50% reduction in wastewater in the biochemical process. 
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Figure 8.17. Load-interval diagram (LID) for the direct recycle of water in the 

biochemical engineering example. The integration of the two sources and two sinks 

results in four intervals. 

 

Figure 8.18. (a) Cascade diagram and (b) revised cascade diagram for the direct recycle 

of water in the biochemical engineering example. The pinch point is indicated in red 

between intervals 3 and 4 and the external fresh water requirement (δ0
′ ) and excess 

internal water resources (δ4
′ ) are denoted in green. 

After determining the base case scenario, two water treatment methods are 

proposed to improve the effectiveness of a direct recycle strategy: enzyme digestion and 

filtering. These purification techniques will be used to reduce the impurity level of the 
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distillation bottoms stream from 10% impurities to 6% for enzyme digestion and 8% for 

filtration; these data are also shown in Table 8.10. Direct recycle techniques can again be 

used to understand the benefits of adding additional purification techniques to the 

bioethanol process. Each technology reduces the impurity content of the bottoms stream 

of the distillation column, reducing this concentration to levels closer to the maximum 

allowable concentrations of the process sinks. This, in turn, will increase the maximum 

water recycle and decrease the amount of fresh water needed and wastewater sent to 

treatment. Figure 8.19 shows the results of direct recycle algebraic pinch point analysis 

for both (a) enzyme digestion and (b) filtration. The application of both methods results 

in a reduction of fresh water usage when compared to the base case scenario in Figure 

8.17, from 4,090.9 kg/hr to 2,583.3 kg/hr for enzyme digestion and 3,187.5 kg/hr for 

filtration. While these results suggest that enzyme digestion should be implemented over 

filtration to achieve a larger level of integration, each technology is associated with a 

capital cost that needs to be considered. These capital costs, including the investment 

costs, annual returns based on the freshwater savings, and expected payback period 

(EPP) are shown in Table 8.10. 
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Figure 8.19. Revised cascade diagrams for the improved direct recycle solution with the 

implementation of (a) enzyme digestion and (b) filtering to improve the impurity 

concentration of the distillation column bottoms. The impurity reduction reduces the 

necessary fresh water usage from 4,090.9 kg/hr in the base case to 2,583.3 kg/hr and 

3,187.5 kg/hr for the digestion and filtration, respectively. 

Table 8.10. Cost data for the available wastewater treatment methods. EPP is the 

expected payback period. 

Unit 

New Distillation Waste 

Impurity Concentration (wt%) 

Investment 

Cost 

Annual 

Returns EPP (yr) 

Enzyme 

Digestion 6% $250,000 $140,000 

1.79 

Filtering 8% $500,000 $80,000 6.25 

Table 8.11. Funding data available to be applied to wastewater treatment in the biomass 

to ethanol example. MAPP is the maximum allowable payback period. 

 

Investment Costs Annual Returns MAPP (yr) 

Source 1 $100,000 $100,000 1 

Source 2 $300,000 $120,000 2.5 
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Two funding sources are available for the implementation of these new water 

treatment methods; the investment costs, annual returns, and maximum allowable 

payback period (MAPP) details for each of these sources are shown in Table 8.11. Using 

this data with the project data in Table 8.10, the new algebraic method for financial 

integration is used to determine which treatment strategy is financially feasible to 

implement to improve the efficacy of the direct recycle implementation and further 

reduce the demand on natural resources. The implementation of the fiscal-interval 

diagram is shown in Figure 8.20. The two funding sources and two projects result in 

three intervals. Within these intervals, the values of the investment cost of the funding 

sources (Δ𝐼𝑘) and investment costs of the projects (Δ𝑃𝑘) can be calculated. These values 

are used to develop the cascade diagram in Figure 8.21a for the financial integration 

problem. The pinch point can be determined using a guess-and-check methodology 

beginning with adding the investment cost of the filtering project to 𝛿0 and checking to 

see if all 𝛿𝑘
′  values are greater than zero. If they are not all zero, the investment cost of 

the enzyme digestion project is also added to 𝛿0 and the 𝛿𝑘
′  values are checked again. 

Alternatively, Equation 8.10 can be solved for the number of projects NP that need to be 

added before all the 𝛿𝑘
′  values are greater than zero. Either method will result in a 

solution of only the investment cost of the filtering, a value of $0.50 MM, being needed, 

as shown in green at the top of the revised cascade diagram in Figure 8.21b. This results 

in the value of 𝛿3
′ , and therefore the amount excess funding, being $0.15 MM as shown 

in green at the bottom of the cascade diagram. This result is a result of a complete 

funding of the enzyme digestion project that was also selected when performing the 
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direct recycle analysis. The filtration project cannot be funded due to a restrictively high 

payback period and requires external outside funding to finance. 

 

Figure 8.20. Fiscal-interval diagram (FID) for the biochemical engineering example. 

The integration of the two funding sources and two projects results in three intervals. 

 

Figure 8.21. (a) Cascade diagram and (b) revised cascade diagram for the direct recycle 

of water in the biochemical engineering example. The pinch point is found by adding the 

investment cost of the filtering project (IC1) to the top of the cascade diagram (δ0). The 

external investment cost requirement (δ0
′ ) and excess funding resources (δ4

′ ) are 

denoted in green. 

This example problem has exemplified the use of the algebraic pinch technique 

for both direct recycle and financial integration in biochemical processing problems. By 

using a generalized framework for teaching pinch-based integration strategies, it is 
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possible to focus on the similarities and implications of the financial and recycle 

applications of the framework. This problem specifically has placed the focus on 

understanding the implications of direct recycle, how the method can be used to evaluate 

the benefits of adding of new process units, and how financial integration can be another 

tool for evaluating processing options and aiding decision making. It also exemplifies 

how these methods can be used for bioprocessing as a way of improving both 

profitability and sustainability. 

8.6. Conclusions 

This chapter develops a holistic framework for the instruction of process economics 

and integration strategies in chemical engineering. The strategy of this framework is to 

use general pinch analysis as the lynchpin between fundamental chemical engineering 

concepts, i.e. heat and mass balances, heat transfer, mass transfer, and process 

economics, and their respective integration applications. This framework is more 

advantageous than the currently employed linear framework for teaching process 

integration that is sequential in nature and lacks the ability to accentuate the similarities 

between the applications of process integration. This holistic framework is also readily 

applicable to the algebraic and optimization methods of process integration. The 

framework developed in this work was exemplified with two case studies. The first case 

study investigated the cost savings via heat and mass integration for a traditional 

chemical engineering process and evaluated using financial integration the economic 

feasibility of implementing these strategies. The second case study utilized direct recycle 

for a biomass-to-bioethanol production facility to minimize the need for fresh process 
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water. Financial integration was used to evaluate the feasibility of two process 

technologies that when implemented increased the ability for water recycle and 

increased sustainability. Overall, this holistic framework outlines an improved approach 

for teaching process economics and integration that introduces a generalized approach 

that relies on the similarities of each integration application to shift the focus of teaching 

to their implications in process design. 
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CHAPTER IX 

CONCLUSIONS AND FUTURE WORK 

9.1. Summary of thesis 

In this thesis, continuous methods for the biochemical production of fuels and 

pharmaceuticals are explored by coupling process systems engineering techniques with 

biochemical engineering applications. Process modeling strategies are used to gain 

insight into the biochemical kinetics of products in the metabolic mevalonate pathway. 

Optimal control methods are applied to a novel, multi-feed continuous bioprocessing 

paradigm to demonstrate an improved productivity and profitability over batch 

production methods. A process synthesis framework is developed to determine the 

optimal process economics of bioethanol and biobutanol production from consolidated 

bioprocessing and acetone-butanol-ethanol processing strategies, respectively. More 

detailed results of these studies discussed in Chapters IV-VIII are summarized as 

follows. 

9.1.1. Kinetic Modeling of 𝜷-carotene from recombinant S. cerevisiae SM14 

Reliable mathematical models for batch cultivation are developed to describe the 

glucose consumption, product formation and depletion, and β-carotene production of the 

Saccharomyces cerevisiae strain mutant SM14 with 20 g/L glucose as the carbon source. 

Parameter estimation for the models employ an objective function minimizing an 

expression that uses the coefficient of determination 𝑅2, which avoids the necessity of

weighting or normalizing the equations. Comparison with experimental data shows that 
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the developed models show a satisfactory prediction of the overflow metabolism that is 

happening in the cell. Additionally, local and global sensitivity analysis of the models 

with respect to the optimal parameters is also studied and further show that the models 

developed here accurately describe trends in the dynamic states of the bioreactor during 

batch fermentation. 

9.1.2. Continuous pharmaceutical development via a multi-feed bioreactor 

This chapter proposes a novel multi-feed bioreactor system composed of multiple 

independently controlled feeds for substrate(s) and media used as a diluent and allows 

for the free manipulation of the bioreactor dilution rate and substrate concentrations to 

maximize bioreactor productivity and substrate utilization while reducing operating 

costs. These optimal flow rates of the bioreactor are determined through the solution to 

an optimal control problem where the kinetic models describing the time-variant system 

states are used as constraints. This new bioreactor paradigm is exemplified through the 

intracellular production of beta-carotene using a three-feed bioreactor consisting of 

separate glucose, ethanol and media feeds. The traditional single feed process is 

compared to a two and three feed process featuring glucose, ethanol and media as feed 

options. Results show up to a 30% reduction in the productivity with the addition of 

multiple feeds, though all three systems show an improvement in productivity when 

compared to batch production. Economic viability is considerably improved through this 

new paradigm as the addition of multiple feeds results in a 45% and 30% reduction of 

the breakeven product selling price for the dual feed and three feed bioreactors, 

respectively, when compared the single feed counterpart. 
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9.1.3. Process synthesis for an optimal lignocellulosic ethanol refinery 

The large-scale production of ethanol via a method of converting lignocellulosic 

material without the need for enzyme hydrolysis, termed consolidated bioprocessing 

(CBP), is analyzed and compared to traditional separate hydrolysis and fermentation 

(SHF) methods to determine the profitability of biochemical ethanol production. Optimal 

process topologies for both the CBP and SHF technologies are selected from 

superstructures considering multiple biomass feeds, chosen from those available across 

the United States, and multiple prospective pretreatment technologies. Steam 

cogeneration is also considered to produce the necessary hot utilities as well as 

electricity as a salable byproduct. Results show the optimal consolidated bioprocessing 

plant produces about 66 million gallons of ethanol to be sold at a breakeven price of 

$1.31 per gallon ($0.35 per liter) from a pure sugarcane bagasse feed and sodium 

hydroxide pretreatment method in addition to 67 MW of electricity per year. These 

results compare favorably to SHF production methods, showing a 20% decrease in the 

minimum ethanol selling price (MESP) and 197.5% increase in electricity generation 

despite a 13.3% drop in ethanol production. A long term economic evaluation is 

performed to determine an attractively profitable selling price for the ethanol produced. 

Additional analysis is done on the effect of a mixed biomass feed on process profitability 

and impact on biomass harvesting radius. 

9.1.4. Continuous biobutanol production using an intensified, multi-feed bioreactor 

The multi-feed bioreactor developed in Chapter V is intensified with gas 

stripping to produce biobutanol via acetone-butanol-ethanol fermentation. Application of 
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an optimal control framework to the reactor, either with or without the presence of gas 

stripping, show that stripping increases glucose conversion to a level necessary for ABE 

production to be economically profitable. When implemented in a complete ABE 

process using lignocellulosic biomass as a carbon source, the single multi-feed reactor 

does not produce enough ABE to be economically competitive with current fossil fuel 

technologies. However, the addition of more bioreactors allows for the benefits of 

economy-of-scale, reducing the butanol price to guarantee profitability and increasing 

the viability of continuous biobutanol production. 

9.1.5. Holistic pedagogy for the teaching of process integration 

We explore the similarities between pinch-based mass, heat and financial 

integration methods for chemical and biochemical process industries, and propose a 

holistic approach to teaching these methods using a ‘generalized pinch’ framework. This 

holistic approach introduces the idea of using a graphical approach and a novel algebraic 

pinch method for financial integration into the semester curriculum to close the loop 

between process economics and process integration applications. In a classroom setting, 

the framework allows the instructor to teach the fundamental aspects of general 

integration at the onset, and then use different mass, heat and financial integration 

problems as applications, as the course progresses. To this end, the generalized pinch 

serves as a lynchpin between different process integration and economic analyses. This 

is exemplified using two case studies, first for a traditional chemical engineering process 

and then in the emerging field of biotechnology for biofuels production. 
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9.2. Conclusions 

The purpose of this research was to investigate novel methods for the continuous, 

sustainable production of fuels and chemical using the marriage of process systems 

engineering and biochemical engineering disciplines. From the results of this work, we 

can conclude that: 

1. The development of reaction kinetics for biochemical pathways is vital to the 

development and understanding of biochemical production processes. Process 

modeling and optimization strategies can be used to determine the optimal 

kinetic parameters that describe the production of products in the mevalonate 

pathway, such as 𝛽-carotene, bisabolene, and taxadiene, with the accuracy 

necessary for future process development purposes. 

2. The multi-feed reactor capable of independently manipulating the dilution rate 

and inlet glucose concentration of a continuous bioreactor provides the 

adaptability necessary to improve process productivity and profitability. The 

use of optimal control method to determine the optimal control policy for the 

manipulated variables stimulates and facilitates the transition from traditional 

batch processing to more economically efficient continuous strategies. 

3. The use of consolidated bioprocessing is shown to be more economically 

attractive that separate hydrolysis and fermentation to produce bioethanol. By 

eliminating the need for enzymatic hydrolysis in favor of the direct conversion 

of cellulose to ethanol, a significant improvement can be made to the 
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economic feasibility of renewable fuel production from lignocellulosic 

biomass. 

4. Process intensification of the multi-feed bioreactor with in situ gas stripping is 

necessary for the economical production of biobutanol. The production of 

biobutanol from lignocellulosic biomass using a single intensified bioreactor 

suffers from a low productivity that leads to a high economic butanol sale 

price. However, the biobutanol process is aided with the inclusion of more 

bioreactors, achieving an economy-of-scale that increases the profitability 

exponentially with a linear increase in butanol production. 

9.3. Future Research Directions 

In Chapter IV of this thesis we describe the modeling and parameter estimation 

for 𝛽-carotene from recombinant S. cerevisiae. While the models described are specific 

to the 𝛽-carotene production process, the parameter estimation techniques defined can be 

applied to many other products both in the mevalonate pathway and from other 

metabolic pathways. Through additional genetic modifications, the kinetic models can 

be used to describe other metabolic products, including bisabolene and taxadiene. 

Additionally, the inclusion of other dependencies can be explored to better predict the 

dynamics of cellular metabolism from online measurements including dissolved oxygen 

content, off-gas oxygen and carbon dioxide measurements, temperature, and acid and 

base addition. 

With more accurate models, the design of model predictive controllers can be 

performed. These controllers combine the predictive nature of state observers with the 
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optimal control framework discussed in Chapter V for the multi-feed bioreactor. By 

integrating the prediction and control capabilities with real time data acquisition the 

bioreactor can be controlled and optimized in real time toward the maximum possible 

productivity. The model predictive controller can also be coupled with state-of-the-art 

fault detection methods for contamination detection to mitigate the concerns over 

continuous bioprocessing. 

In addition to focus placed on the bioreactor, the impact of the multi-feed 

paradigm on the downstream separation processes should be explored. The cyclic nature 

of the optimal control policies seen in Chapters VI and VII will result in a cyclic nature 

in the outlet reactor effluent. Most separation systems operate with an assumed constant 

flowrate from the upstream process, and the variable flowrate exiting the reactor will put 

additional processing constraints on the operation and control of the process 

downstream. This is especially true for intracellular products, which require additional 

downstream separation for cell harvesting and disruption.  

Finally, it is worth mentioning that the methods described in this work is generic 

and can be used for the investigation of the continuous production of a variety of other 

biochemical products. All process systems engineering strategies used in this work only 

rely on knowledge of the biochemical kinetics of the reaction of interest. With this 

knowledge, the models used in the optimal control and process synthesis frameworks 

can be updated and utilized for any system of interest. 
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