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ABSTRACT 

 

Productivity Enhancement Through Process Integration (August 2005) 

Meteab Aujian Alotaibi, B.S., King Saud University; 

M.S., King Saud University 

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi 

 

A hierarchical procedure is developed to determine maximum overall yield of a process 

and optimize process changes to achieve such a yield. First, a targeting procedure is 

developed to identify an upper bound of the overall yield ahead of detailed design. 

Several mass integration strategies are proposed to attain maximum yield. These 

strategies include rerouting of raw materials, optimization of reaction yield, rerouting of 

product from undesirable outlets to desirable outlets, and recycling of unreacted raw 

materials. Path equations are tailored to provide the appropriate level of detail for 

modeling process performance as a function of the optimization variables pertaining to 

design and operating variables. Interval analysis is used as an inclusion technique that 

provides rigorous bounds regardless of the process nonlinearities and without 

enumeration. Then, a new approach for identification of cost-effective implementation of 

maximum attainable targets for yield is presented. In this approach, a mathematical 

program was developed to identify the maximum feasible yield using a combination of 

iterative additions of constraints and problem reformulation. Next, cost objectives were 

employed to identify a cost-effective solution with the details of design and operating 

variables. Constraint convexification was used to improve the quality of the solution 
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towards globability. A trade-off procedure between the saving and expenses for yield 

maximization problem is presented. The proposed procedure is systematic, rigorous, and 

computationally efficient. A case study was solved to demonstrate the applicability and 

usefulness of the developed procedure. 
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CHAPTER I 

INTRODUCTION 

 

Processing facilities are facing an increasingly competitive market. Globalization is 

resulting in the growing integration of technologies, resources, and economies around the 

world. It makes chemical manufacturers struggle to ensure sales, protect market share, 

and remain competitive in a global marketplace. In order to face competition, 

manufacturers have to make high quality products with competitive prices and be quickly 

responsive to changing market conditions. Additionally, production constraints are 

continually evolving to address such important issues as resource conservation, 

sustainability, quality, health, safety and environment.  As a result, the processing 

facilities must strive to improve their economic performance. One of the key strategies 

for improving process economics is the increase of capital productivity. Towards this 

objective, enhancing process yield is an instrumental strategy in increasing capital 

productivity.  

 

Yield is one of the most important characteristics impacting overall process economics. 

As such, it is necessary to develop cost-effective ways of enhancing yield. In this context, 

one should distinguish between the process yield and the reactor yield.  

__________ 

This dissertation follows the style and format of Trans IChemE, Part A, Chemical 
Engineering Research and Design. 
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The theoretical yield of a reactor is the maximum stoichiometric amount of the desired 

product obtained from the limiting reactant. The actual yield of a reactor is the amount of 

the desired product actually obtained from the limiting reactant, i.e. 

 

reactor  the tofedreactant  limiting ofAmount 
reactor in the generatedproduct  desired ofAmount 

 reactor  a of yield Actual =  (1.1a) 

 

For instance, consider a reaction which produces an amount “b” of the desired product 

from a certain amount “a” of the limiting reactant.  In this case, we have: 

 

a
b

 "Yield"reactor  a of yield Actual reactor =       (1.1b) 

 

The actual yield may not reach the theoretical yield because of several limitations 

including the side reactions consuming the limiting reactant, reverse reactions, and design 

and operating conditions. 

 

On the other hand, the overall process yield is the amount of desired product going to 

sales obtained from a limiting fresh feed entering the process, i.e. 

 

process  theentering material rawfresh  limiting ofAmount 
sales  toprocess  theleavingproduct  desired ofAmount 

   yield Process =  (1.2a) 
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For instance, consider a process which produces an amount “B” of the desired product 

that is to be sold. The amount of a limiting fresh raw material purchased and fed to the 

process is “A”.  In this case, we have: 

 

A
B

  yiled Process =          (1.2b) 

 

Figure 1.1 illustrates a generic process with the quantities involved in defining the reactor 

and process yields. 

 

Although the reactor yield has a considerable effect on the overall process yield and plant 

economics, the overall process yield directly and considerably affects the process 

economics and capital productivity. Additionally, enhancing the process yield is closely 

tied to the conservation of raw materials and the minimization of waste discharge. 

 

 

Figure 1.1. General process scheme to differentiate between reactor yield and process 

yield. 

Reactor

ΑΑΑΑ

a
ΒΒΒΒ To 

salesb
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For example, isopropanol is produced by reaction of propylene with water. The reported 

process yield is 0.9 Ib of isopropanol / Ib of propylene (Elkin et al., 1979). For plant 

capacity of 600 MMIb/year and propylene price ranges between $0.30-0.40/ Ib, 

increasing the process yield to 0.92 could make annual revenue in the range of 

66 105.8-10$4.35 ×× . Such revenue represents saving the consumption of raw material 

for fixed production capacity.  This show the importance of process yield increase even it 

is slight increase. 

 

1.1 Objective 

 

The objective of this work is to develop a systematic procedure for the enhancing overall 

process yield. Various techniques will be devised to identify maximum achievable 

process yield and to determine cost-effective process changes to reach the true potential 

of the process. Chapter II will present a review of the concepts and literature related to 

the process integration and optimization is presented. This is because the tools utilized in 

this work fall under these two areas. Then, the problem that addressed in this work is 

formally stated in Chapter III. In Chapter IV, a hierarchical approach is proposed to 

optimize several process modifications (e.g., stream rerouting) and process performance 

(e.g., separation, reaction) by manipulation of operating conditions (e.g. temperature, 

pressure, residence time). Inclusion techniques are used to identify bounds on 

performance without enumeration and regardless of the nonlinearity characteristics of 

process models. In chapter V, an optimization formulation is developed to identify cost-

effective implementation of this target. This mathematical optimization problem is 
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expected to be NLP/MINLP (Non-Linear Programming/Mixed Integer Non-Linear 

Programming). A mathematical optimization technique is proposed to improve the 

quality of the NLP/MINLP solution. A case study is presented in Chapters IV and V to 

illustrate the applicability of the developed procedure. Conclusions and recommendations 

for further work are presented in chapter VI. 
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CHAPTER II 

LITERATURE REVIEW 

 

In this chapter, a thorough review for the literature related to the tools that have been 

utilized in this research is presented. These tools fall under the two main areas of process 

integration and mathematical programming. From process integration tools, targeting and 

path equations are used in this research. Here, a review of process integration concept and 

applications is presented. Review of the concepts and applications of targeting and path 

equations are presented in Chapter IV. In mathematical programming, global 

optimization and the available techniques to find the global solution are covered in this 

review. Review for the reformulation and linearization techniques that are used in this 

work is addressed in Chapter V. 

 

2.1 Process Integration 

 

As a result of the environmental and energy challenges facing the process industries, 

researchers over the past two decades have focused their attention on reducing 

environmental impact and energy usage and conserving material. To achieve these 

objectives, the focus has moved from unit-based approach to wide system-based 

approach. In other words, one can say: work on the whole picture first, details later. 

 

These recent research efforts have led to the development of integrated 

methodologies/procedures for process design that seek to conserve energy and reduce 
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waste materials from a wide systems point of view. Towards these objectives, 

understanding the integrated nature of the process is very crucial when working on the 

individual units of that process. Altering operation of a stream or units can affect the 

whole process and has impact on the process operations and economics. The integrated 

approach should cover different process objectives whether they are technical or 

economical. Technical objective can be in the form of productivity enhancement, 

eliminating/reducing environmental impact, or resolving safety concerns. These 

challenges can be tackled via recently-developed tools and techniques that combined 

under a general theme called process integration. 

 

Process integration is a framework of design methodologies which emphasize the unity of 

the process. The main categories of process integration are mass integration and energy 

integration. Mass integration is a holistic approach to the generation, separation, and 

routing of species and streams throughout the process. In other words, it is a systematic 

methodology that involves first, a comprehensive understanding of the global nature of 

mass flow within the process and second, utilizes this understanding to identify 

performance targets and optimum allocation, separation, and generation of streams and 

species (El-Halwagi and Spriggs, 1998). In the past, the concept of end-of-the-pipe 

treatment was the most dominant concept when dealing with waste and their 

environmental impact. The goal here was to come up with a recovery system that results 

in effective recycle and reuse of such wastes. Generally, there will be alternatives of 

process schemes and conditions to achieve this goal. These alternatives will be subjected 

to screening based on their economics. Currently, the development of process integration 
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methodologies has enabled the engineer to apply cost-effective approach that can identify 

a system to reduce the waste to the acceptable figures. The following sections provide 

review for the concepts and applications of process integration tools. 

 

2.1.1 Energy Conservation Systems 

 

Energy integration is a similar approach that globally addresses allocation, generation, 

and exchange of energy throughout the process. More demand for expensive utilities have 

resulted in the development of energy integration techniques. The word of energy here 

covers all forms of energy whether it is heating, cooling, power generation/consumption, 

or compression/expansion. Energy integration task is accomplished through optimal 

allocation of Heat Exchanger Networks (HENs). HEN is network of one or more heat 

exchangers for recovering process heat. The role of energy integration is to synthesize 

cost-effective HEN. A representation of this task is shown in Figure 2.1. 

 

The synthesis of HENs for a certain process carries out several tasks such as (Dunn and 

El-Halwagi, 2003): 

 

• Type and level of heating/cooling utilities to be used. 

• Determining the optimal heating/cooling load to be removed/added by each 

utility. 

• Identifying the optimal configuration of matching the hot and cold streams (i.e., 

stream pairings) including stream splitting/mixing. 
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Review of energy integration methods can be found elsewhere (Linnhoff, 1993; Shenoy, 

1995; Douglas, 1988; Gundersen and Naess, 1988). 

 

Figure 2.1. Graphical representation of the HEN synthesis task. 

 

2.1.2 Wastewater and Water Systems 

 

One of the active research areas in process integration is water conservation and its waste 

reduction. The pressure from the environmental regulators and the concerns about water 

availability drive the efforts in this area. Again, the objective is to identify cost-effective 

design that reduces wastewater and/or conserves fresh water. The design methodology 

may involve direct recycle and reuse options for water. The techniques reported recently 

in the literature include: 
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Hot 

Stream 
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• Water pinch analysis (Wang and Smith, 1994; Hallale, 2000; Bagajewicz, 2000). 

• Mathematical programming approaches (Alva-Argaez’, et al., 2000; Keckler and 

Allen, 1999; Parthasarathy et al., 2001b). 

• The source-sink graphical methodology (El-Halwagi, 1997; Dunn and Dobson, 

1999; Dunn and Wenzel, 2001). 

 

Some of the tasks carried out in the synthesis of waste water reduction and water 

conservation networks (Dunn and El-Halwagi, 2003):  

 

• Identifying the recycled/reused streams among wastewater streams. 

• Identifying the optimal recycled or reused load of each wastewater stream. 

• Developing the optimal allocation and configuration of wastewater streams 

including stream splitting and mixing. 

 

2.1.3 End-of-the-Pipe Waste Minimization Systems 

 

Other area in process integration which drives more attention is separation and recycling 

waste minimization systems. The aim is to identify end-of-the-pipe cost-effective waste 

separation system among many process options. In other word, it is to synthesize mass-

exchange network, MEN (El-Halwagi and Manousiouthakis, 1990a, b). MEN is a 

network of one or more mass exchangers that carry out the task of waste recovery. In 

each mass exchanger, mass-separating agent is employed to enhance the pollutant 

transfer from its waste stream to the MSA-carrying stream. The units of absorption, 
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extraction, stripping, and ion exchange are among the examples of mass exchangers. 

MEN design task involves identifying cost-effective network of mass exchangers that 

optimally transfer certain undesirable species from a group of rich (waste) streams to a 

group of lean (MSA) streams. Figure 2.2 shows graphical representation for a single mass 

exchanger while the whole network (MEN) synthesis task is graphically outlined in 

Figure 2.3. The tasks that carried out here may include (Dunn and El-Halwagi, 2003): 

 

• Identifying type and quantity of mass separating agents to be used. 

• Identifying the optimal mass load of each MSA to be removed/added by each 

MSA. 

• Identifying the optimal configuration of matching the waste and MSA streams 

(i.e., stream pairings) including stream splitting and mixing. 

 

Following are areas that employ MEN synthesis task: 

 

• MENs for multiple component systems (El-Halwagi and Manousiouthakis, 1989b; 

Gupta and Manousiouthakis, 1994).  

• MENs involving regeneration systems (El-Halwagi and Manousiouthakis, 1990b; 

Garrison et al., 1995). 

• MENs involving chemical reactions (El-Halwagi and Srinivas, 1992; Srinivas and 

El-Halwagi, 1994a; Dunn and El-Halwagi, 1993; Warren et al., 1995). 

• MENs combined with heat integration (Srinivas and El-Halwagi, 1994b).  



 

 

12  

• MENs with flexibility (Zhu and El-Halwagi, 1995; Papalexandari et al., 1994; 

Papalexandari and Pistikopoulos, 1994). 

• MENs for wastewater reduction systems (Wang and Smith, 1994; Dunn and El-

Halwagi, 1996). 

• MENs for fixed load removal (Kiperstock and Sharratt, 1995)  

• MENs with controllability (Huang and Edgar, 1995a, 1995b). 

 

 

Figure 2.2. Graphical representation of single mass exchanger (Dunn and El-Halwagi, 

2003). 

Figure 2.3. Mass Exchange Network (MEN) Synthesis (El-Halwagi and 

Manousiouthakis, 1989a). 
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Another class of separations that involves the use of energy-separating agents (ESA) is 

the heat-induced Separation networks (HISEN). Condensation, crystallization, 

evaporation, and drying are among the examples of HISEN. Here, ESA is employed to 

separate species via phase change. Figure 2.4 shows schematic representation of a single 

heat-induced separation unit. The process integration task in HISEN is to identify a cost-

effective system to reduce waste to specified level through stream heating/cooling. The 

HISEN system has heat-induced separators and heat exchangers (Dunn and El-Halwagi, 

1994a, 1994b; Dye et al., 1995; El-Halwagi et al., 1995). That task is graphically outlined 

in Figure 2.5. 

Figure 2.4. Schematic representation of a single heat-induced separation unit (Dunn and 

El-Halwagi, 2003). 

 

Pressurization/depressurization units are included Within the HISEN synthesis task to 

tackle emission of gases that have volatile organic compounds (VOCs). This inclusion 

yields a recovery system named as energy-induced separation network (EISEN) (Dunn et 

al., 1995).   
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Following are some of the tasks handled when synthesizing HISENs/EISENs (Dunn and 

El-Halwagi, 2003): 

 

• Identifying type of energy separating agents to be used. 

• Decision on whether stream pressurization/depressurization is to be employed and 

the level of employed pressurization/depressurization if any. 

• Identifying the optimal mass and heat load to be removed/added by each ESA. 

• Identifying the optimal configuration of matching the waste and ESA streams 

(i.e., stream pairings) including arranging separators, heat exchangers and 

compressors/turbines and stream splitting and mixing. 

Figure 2.5. Representation of Heat-Induced Separation Network Synthesis (Srinivas and 

El-Halwagi, 1994a, Parthasarathy et al., 2001a). 

 

HISEN and EISEN synthesis task is utilized in the following areas: 
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• HISENs for VOC condensation systems with single component (Dunn and El-

Halwagi, 1994b). 

• Graphical approach for HISENs for VOC condensation systems with single 

component (Richburg and El-Halwagi, 1995). 

• HISENs for VOC condensation systems with multiple components (Dunn and El-

Halwagi, 1994a). 

• HISENs for fixed load removal (El-Halwagi et al., 1995). 

• Combined HISEN and membrane systems (Crabtree et al., 1998). 

• A spreadsheet-based approach for HISENs and EISENs applied for condensation-

hybrid processes (Dunn and Dobson, 1998; Dobson, 1998). 

• HISENs for crystallization systems (Parthasarathy et al., 2001b). 

• HISENs for component-less VOC condensation systems using clusters (Shelley 

and El-Halwagi, 2000). 

  

Pressure-based membrane system is another system in which systematic design 

methodologies have been developed for end-of-the-pipe treatment (El-Halwagi, 1992; 

Srinivas and El-Halwagi, 1993).  Also, another application that involves membrane 

systems is the application of MEN and EISEN along with membrane systems in 

designing VOC recovery systems (Dunn and El-Halwagi, 1996). 

 

 

 



 

 

16  

2.1.4 In-plant Waste Minimization Systems 

 

In contrary to end-of-the-pipe recycle/reuse approach for waste minimization, in plant 

separation approach has been developed due to its economical viability. It is obvious that 

dealing with pollution at its source can be proved to be more economical than the 

conventional end-of-the-pipe approach. This approach has been addressed via the four 

main strategies (Dunn and El-Halwagi, 2003): 

   

1. Reaction path strategy: it is applicable if the undesirable species are generated in 

the process via reaction. The strategy calls for finding an alternative reaction path that 

eliminate or minimize the use of raw materials or the production of by-products that has 

environmental impact (Crabtree and El-Halwagi, 1995). 

2. Substitution strategy: it is applicable for species fed/used in the processes (not 

generated via reaction). It calls for substituting undesirable species with more 

environmentally benign material (Hamad and El-Halwagi, 1998; Dunn et al., 1997; 

Joback, 1994; Constantinou et al., 1995). 

3. Heat-integration-based strategy: it is applicable for emissions from or associated 

with in-plant utility systems such as blowdowns. It calls for the implementation of in-

plant modifications based on heat integration. The aim here is to minimize such 

emissions from thermal pollution or associated with utility systems (Linnhoff, 1994; 

Linnhoff, 1995; Dhole, 1995). 

4. Recycling strategy: it is applicable for undesirable species that are not generated 

in the process and cannot be replaced. It calls for implementing in-plant modifications for 
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recycling streams that carry the undesirable species. The design of wastewater 

minimization systems, waste interception and allocation networks (WINs), heat-induced 

waste minimization networks (HIWAMINs) and energy-induced waste minimization 

networks (EIWAMINs) were the outcome of this strategy (Wang and Smith, 1994; Dunn 

and Dobson, 1999; El-Halwagi, et al., 1996; Dunn and Srinivas, 1997).  

 

There are several waste reduction methodologies that have been developed recently based 

on in-plant modifications. They include: 

 

1. Synthesis of waste interception and allocation networks “WINs” (Figure 2.6), (El-

Halwagi et al., 1996; El-Halwagi, 1997).  

2.  Synthesis of heat-induced waste minimization networks “HIWAMINs” (Dunn 

and Srinivas, 1997). 

3. Synthesis of energy-induced waste minimization networks “EIWAMINs” (Dunn 

et al., 1999).   

 

Graphical representation of the HIWAMIN and EIWAMIN design methodologies is 

shown in Figure 2.7. 

 

Recently, other methodologies have been developed to address pollution prevention 

based on material substitution and chemistry changes (El-Halwagi, 1997; Anastas and 

Williamson, 1996; Anastas and Farris, 1994; Chase, 1995). 
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 Figure 2.6. Graphical representation of WIN synthesis (Dunn and El-Halwagi, 2003). 

 

 

Figure 2.7. Graphical representation of HIWAMIN and EIWAMIN synthesis (Dunn and 

El-Halwagi, 2003). 
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2.2 Mathematical Programming 

 

Our objective here is to provide a general review on optimization and in particular the 

techniques that have been applied or studied for nonlinear programming (NLP) and 

mixed integer nonlinear programming (MINLP). Optimization plays major role in 

process systems engineering. This is due to the fact that many problems in this area can 

be formulated as mathematical programming models. Considerable progress has been 

made in these areas for the last five decades. There have been a number of algorithms 

developed for determining the optimum solution for mathematical programming 

problems. However, since the nonlinear models involve nonconvex functions the solution 

that conventional techniques yield is local solution. In general, no algorithm can 

determine smooth global optimum solution for nonconvex NLP problems with certainty 

in a finite number of steps. The exception here is that if pre-specification for tolerance of 

the global solution is applied. 

 

Optimization can be classified according to type of variables and type of solution. In 

terms of variables, there are continuous and discrete variable optimization.   For the 

solution-based classification, there are local and global optimization. Linear (LP) and 

nonlinear programming (NLP) are among problems in continuous optimization. Within 

LP, there is linear complementary programming (LCP). NLP can be quadratic 

programming (QP), semidefinite programming (SP) and others. Any SP problem can be 

convex or nonconvex. The discrete variable optimization can be mixed-integer linear 
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programming (MILP) and mixed-integer nonlinear programming (MINLP). If all 

variables are integer, the problem called integer programming (IP). 

  

The methods that solve global optimization problems can be classified as stochastic and 

deterministic methods. The stochastic methods depend on analogies to physical 

conditions by generating points similar to the equilibrium conditions. These methods 

include simulated annealing (Kirkpatrick et al., 1983), genetic algorithms (Holland, 

1975), and Tabu search (Glover, 1990). A brief review for each of these methods is 

presented later in this section. Deterministic methods for NLP and MINLP include: 

 

1. Lipschitzian methods (Hansen et al., 1992a; Hansen et al., 1992b). 

2. Branch and bound methods (Al-Khayyal, 1992; Al-Khayyal and Falk, 

1983; Horst and Tuy, 1987). 

3. Cutting plane methods (Tuy et al., 1985).  

4. Difference of convex (DC) and reverse convex methods (Tuy, 1987). 

5. Outer-approximation (OA) methods (Horst et al., 1992).  

6. Primal-dual methods (Floudas and Visweswaran, 1990; Shor, 1990).  

7. Reformulation–linearization methods (Sherali and Alameddine, 1992; 

Sherali and Tuncbilek, 1992). 

8. Interval methods (Vaidyanthan and El-Halwagi, 1994; Hansen, 1980). 

 

In process systems engineering, there are many applications of optimization which falls 

under one of the above mentioned classes. Most of process design problems come as NLP 
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or MINLP problems. On the other hand, problems related to scheduling and planning 

tend to be LP or MILP problems.  

 

2.2.1 Continuous Variable Optimization 

 

As mentioned above, NLP, LP and QP are among the continuous variable problems. 

General formulation for NLP can take the following format: 

 

Xx
0g(x)
0  h(x)

s.t.
f(x)Min 

∈
≤
=           (2.1) 

 

Where f(x) is the objective function, h(x) =0 are equality constraints that describe the 

system performance and 0)( ≤xg  are inequality constraints that specify or restrict the 

feasible plans/schedules. The variables x are assumed to be continuous variables. In order 

for the above problem to be convex, objective function must be convex and there should 

be a convex feasible region. For the last condition about convexity of feasible region to 

hold, g(x) and h(x) have to be convex and linear, respectively. In fact, problem (2.1) can 

be nonconvex, convex, or strictly convex. In general, any local solution for the convex 

problem is a global solution while strictly convex problem has only unique global 

solution. 
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Problem (2.1) can be linear (LP) when the objective function and the constraints are 

linear. One main feature of LP is its ability to converge in finite number of steps. Simplex 

method is the standard method for solving LP (Dantziq, 1963; Wright, 1996). 

 

In order for problem (2.1) to be of QP type, there should be at least one quadratic term. 

Positive semidefinite QP implies its convexity. A convex QP can be solved in finite 

number of steps.  Range space methods, Schur complement methods and null space 

algorithms (Gill et al., 1981) are among the famous methods of solving QP. 

 

2.2.1.1 NLP Solution Techniques 

 

1. Successive quadratic programming (SQP) 

 

It finds the solutions by developing search directions at each iteration. SQP can be 

classified according to the following: 

 

a. Active set versus barrier methods: It generates search directions by using 

bounds and inequality constraints. This is accomplished by 

reformulating/linearizing the complementarity conditions of Karush-Kuhn 

Tucker conditions (KKT) (Fletcher, 1987; Nocedal and Wright, 1999). 

Active set methods are preferred for QP problems with few inequality 

constraints or good starting guess while barrier methods are favorable with 

many inequality constraints problems (Biegler and Grossmann, 2004). 
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Examples for applications of these two methods in process systems 

engineering include linear model predictive control (MPC) problems (Rao 

et al., 1998) and nonlinear MPC problems (Albuquerque et al., 1997). 

   

b. Providing second-order information: It uses the second derivatives for 

objective or constraint functions to develop the Hessian matrix for the QP 

problems. Positive definite quasi-Newton approximations to the reduced 

Hessian are developed for functions without second derivatives (Fletcher, 

1987).   

c. Line search versus barrier methods: both methods are used to improve the 

convergence for the problems with poor starting guess. Trust region 

methods are efficient with ill-conditioned NLPs while line search methods 

are efficient for problems with good starting points and well-conditioned 

QP (Byrd et al., 1997). 

  

2. Gradient-based NLP solvers 

 

a. LANCELOT (Conn et al., 2000): it develops an augmented lagrangian for 

NLP in order to find the solution of bound constrained subproblems. Then, 

it updates the penalty parameter and multipliers continuously until 

satisfaction of KKT conditions is achieved. It is efficient for problems 

with exact second derivatives (Biegler and Grossmann, 2004).  
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b. MINOS (Murtagh and Saunders, 1987): it chooses active set at each 

iteration and implements reduced space decomposition to the augmented 

lagrangian NLP. It is efficient for problems with reasonable numbers of 

nonlinear constraints. It has interfaces with GAMS (Brooke et al., 1998) 

and AMPL (Fourer et al., 1992). 

c. Generalized reduced gradient (GRG) methods: After selecting the active 

set and applying reduced space decomposition, GRG methods apply 

unconstrained quasi-Newton method to the variables remaining after 

eliminating the dependent and bounded variables. The GRG-based solvers 

include SOLVER code which is available with MS Excel and CONOPT 

which has interfaces with GAMS and AMPL.  

 

3. Methods for Derivative Free Optimization (DFO) 

 

They are the methods that do not require information on function derivatives. They 

include: 

 

a. Classical direct search methods: these methods were the most dominant 

methods in chemical engineering two decades ago. Values for objective 

function of unconstrained minimization are required with these methods. 

Methods of this type include conjugate direction method (Powell, 1964), 

Simplex and complex searches (Nelder and Mead, 1965), the adaptive 
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random search methods (Luus and Jaakola, 1973; Goulcher and Cesares 

Long, 1978). 

b. Simulated Annealing (SA): It relates multivariate/combinatorial 

optimization to statistical mechanics by making analogy between current 

state of thermodynamic system and current solution to the combinatorial 

problem. The energy equation for the thermodynamic system is analogous 

to the objective function, and ground state is analogous to the global 

minimum (Kirkpatrick et al., 1983). In other words, it makes analogy to 

the motion of molecules in the cooling and solidification (Laarhoven and 

Aarts, 1987). At each iteration, the method changes values of variables 

and objective function. If the change improves the solution, the change is 

accepted. If the solution is not improving, the change is accepted with 

certain probability. Based on the later result, variables are changed in the 

other direction. The method will continue until no further improvement is 

achieved. 

c. Genetic Algorithms (GA), (Holland, 1975): these algorithms use another 

analogy for improving the solution by modifying its gene pool. Two types 

of this modification may used in these algorithm. They are crossover and 

mutation. In crossover modification, vector elements with highest 

objective function values or other criteria are randomly swapped. On the 

other hand, mutation adds random variable to these elements. Applications 

of these algorithms in process engineering include synthesis of mass 

exchange network (Garrard and Fraga, 1998), batch process scheduling 
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(Jung et al., 1998) and (Loehl et al., 1998), and sensor network design 

(Sen et al., 1998). 

d. Tabu search: its concept as described by Glover (1986) is "a meta-

heuristic superimposed on another heuristic”. In this method, moves that 

take the solution are forbidden or penalized in order to avoid cycling. It 

doesn’t accept a new solution unless it is to avoid a path already 

investigated. It begins by searching to a local optimal solution. The 

method records recent moves to avoid retracing the steps used. At the 

beginning, such recording represents a coarse examination of the solution 

space. This process called 'diversification'. The search will have more 

chance to generate local optimal solutions when candidate locations are 

identified in another process called 'intensification' (Perry et al., 1997). 

e. Multidimensional search algorithm: it is developed based on the classical 

search approach that uses Nelder and Mead’s simplex approach (Dennis 

and Torczon, 1991). It uses reflection, expansion, and contraction steps to 

treat the increase in the number of variables that terminates the Nelder-

Mead algorithm. The approach generates local optimal solution for 

unconstrained problems (Torczon, 1991). 
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2.2.2 Discrete Variable Optimization 

 

The importance of discrete variable in process systems engineering comes from the need 

to model selection decision. In this section, techniques developed for MILP and MINLP 

are reviewed. 

 

2.2.2.1 Mixed-Integer Linear Programming 

 

Methods for solving MILP depend heavily on branch and bound method (Nemhauser and 

Wolsey, 1988). In this later method, the integer space is branched into relaxed 

subproblems. In the first node, the integer variables are considered as continuous. This 

step generates lower bound for the optimal solution with noninteger values for some 

integer variables. The branching will continue and the solution at each node assumed as 

lower bound to the following nodes. An upper bound is found if a solution with integer 

values for the integer variables is reached. The procedure will continue until a certain 

tolerance is achieved between the two bounds.  

 

In rare cases, most of the nodes are covered and the optimal solution is not reached. In 

these cases, the problem is assumed as NP-hard. Two techniques were suggested to 

handle this problem. They are the pre-processing and cutting planes techniques. In pre-

processing techniques, one or more of the following actions may be taken: automatic 

elimination of variables and constraints, fixing the integer variables, reducing the bounds, 

reformulating the constraints. In the cutting techniques, part of the feasible region that 
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does not have the integer optimal solution may excluded from further enumeration. The 

outcome of such cutting is a tight lower bound for LP relaxation. MILP solvers include 

CPLEX, XPRESS, and OSL. Recent review on MILP can be found elsewhere (Johnson 

et al., 2000). 

 

2.2.2.2 Mixed-Integer Nonlinear Programming 

 

In contrast to MILP, chemical engineers have been involved heavily in developing 

techniques to solve MINLP. MINLP can be assumed in the following form: 

 

Yy
Xx

0y)h(x,
0y)g(x,

s.t.
y)f(x,Min 

∈
∈

=
≤

         (2.2) 

 

Where f, g, and h are convex and differentiable functions, and x and y are the 

continuous and discrete variables, respectively. 

 

Following are the most popular methods that solve MINLP: 

 

1. Branch and Bound (BB): it is similar to the one for MILP. However, NLP 

subproblems are solved at each node instead of solving LP subproblems in MILP 

case (Borchers and Mitchell, 1994; Gupta and Ravindran, 1985; Leyffer, 2001; 
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Stubbs and Mehrotra, 1999). The search is stopped when all discrete variables 

take integer values.  

In extension to this method, the solution of the MILP master problem at each 

major iteration by can be avoided by initially solving linearized NLP subproblem. 

Then, an LP-based branch and bound method is applied to solve NLP 

subproblems until feasible integer solution is found (Quesada and Grossmann, 

1992). A significant reduction in the number of covered nodes is achieved with 

this extension. Such technique is suitable for problems that have difficulty in 

solving MILP master problem (Biegler and Grossmann, 2004). 

2. Outer-Approximation (OA): it performs iterative calculations for the continuous 

feasible region to generate an upper bound. It alternates between nonlinear 

subproblems and linearized and relaxed MILP. The calculations are stopped when 

a specified tolerance between the two bounds is revealed (Duran and Grossmann, 

1986; Fletcher and Leyffer, 1994; Quesada and Grossmann, 1992). 

3. Generalized benders decomposition (GBD): it differs from OA in the definition of 

MILP master problem in a way that only active inequalities are considered in this 

method (Benders, 1962; Geoffrion, 1972). This method’s lower bounds are 

Generally weaker than OA’s bounds. It is because only one new cut is introduced 

at each iteration. There are two approaches to strength these bounds: 

 

a. Addition of user-supplied constraints to the master problem. 

b. Generation of multiple cuts from the solution of the NLP subproblem 

(Magnanti and Wong, 1981). 
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4. Extended Cutting Plane method (ECP): it requires only the solution of a single 

MILP solution, obtained at the previous iteration due to the presence of an 

additional linear constraint (westerlund and Pettersson, 1995). The method 

linearizes the most violated constraint at the predicted variables. The solution is 

reached when a specified tolerance is achieved for maximum constraint violation.  

 

Quadratic approximations of the Hessian of the lagrangian for the NLP subproblem are 

suggested in case that MINLP (equation 2.2) is not linear in y (Fletcher and Leyffer, 

1994). The advantages of such approximations are the following: 

 

1. Reduction in the number of major iterations due to the improved representation of 

the continuous space (Biegler and Grossmann, 2004). 

2. Generation of rigorous solution with convex objective and constraints functions 

(Biegler and Grossmann, 2004). 

3. Substantial reduction in the number of iterations with OA algorithm when the 

objective function is not linear in the integer variable y (Fletcher and Leyffer, 

1994).   

 

The main disadvantage of these approximations is the need to solve mixed-integer 

quadratic programming (MIQP) instead of MILP. 
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In case of nonlinear equality constraints (h(x, y) in equation (2.2)), two problems arises 

here (Biegler and Grossmann, 2004): 

 

1. The impossibility to enforce such equality when linearized. 

2. Such nonlinearities may cause nonconvexities. 

 

An equality relaxation is suggested through replacing such nonlinear equality by 

linearized inequality (Kocis and Grossmann, 1987). The sign of the multiplier associated 

to the nonlinear equation h(x, y) is utilized with this relaxation. this relaxation is valid 

with OA algorithm as GBD algorithm includes such equations in the lagrangian cuts. The 

relaxation will make the OA procedure a rigorous one provided that these relaxed 

equations will relax as convex inequalities. 

 

The following two problems arise with nonconvex objective and inequality functions 

and/or nonlinear equalities: 

 

1. More than one local optimum solution may present for the NLP subproblem. 

2. Global optimum solution may be cut off due to invalid bounding representation 

for the master problem. 

 

To handle these problems, some approaches are proposed: 
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1. Introduction of exponential transformations: to handle the nonconvexities in the 

geometric constraints.  

2. Development of rigorous global optimization algorithm that Treats specific forms 

of the nonlinearities such as bilinear, linear fractional, trilinear, trilinear fractional, 

and concave separable. Floudas and Visweswaren (1990) proposed a global 

optimization approach for several classes of nonconvex nonlinear problems. If the 

nonconvexity in the problem are due to the presence of bilinear terms, they 

suggested partitioning the variable set into  a new subset in such a way that the 

partition ensures that both objective function and constraints are convex. On the 

other hand, for nonconvex quadratic or polynomial terms, they introduced 

transformation variables so as to reformulate the problem in such a way that the 

nonconvexities are due to bilinear terms in the objective function and/or constraint 

set. The resulting variable set can then be partitioned so as to satisfy convexity 

conditions. 

3. Reducing the effects of nonconvexities through applying heuristic strategy. For 

example, the effect of nonconvexities in the MILP is reduced by adding slacks 

that will reduce cutting-off a feasible solution (Viswanathan and Grossmann, 

1990). 

4. Testing the global convexity followed by checking the linearizations’ validety 

such as testing all linearizations with respect to the current solution (Grossmann 

and Kravanja, 1997). 

 

The available computer codes for solving MINLP include the following: 



 

 

33  

 

1. DICOPT (Viswanathan and Grossmann, 1990): it solves master problem and NLP 

subproblems. The code relaxes the NLP problem to produce a linearization for the 

master problem. It is associated with GAMS. 

2.  MINLP_BB: it uses branch-and-bound method and based on SQP algorithm 

(Leyffer, 2001). This code is available in AMPL. 

3. BARON (Sahinidis, 1996): it uses branch-and-bound method. 

4. SBB: it also uses branch-and-bound method and available in GAMS. 

5. α -ECP: it is based on the extended cutting plane method (Westerlund and 

Petersson, 1995; Pörn and Westerlund, 2000). 

6. MINOPT (Schweiger and Floudas, 1998): It uses OA and GBD methods and 

applicable mainly to dynamic optimization problems. 

 

2.2.3 Global Optimization Techniques for NLP and MINLP 

 

Special structures can be assumed for the continuous terms (bilinear, linear fractional, 

trilinear) to address nonconvexities in NLP and MINLP problems within a rigorous 

global optimization approaches. Uderestimators can be used as lower-bounds for these 

terms to convexify MINLP problems. Then, this convex formulation can be solved using 

global optimization techniques for continuous variables. The most popular techniques in 

this regard is based on the spatial branch and bound methods. Such methods divide the 

feasible region of continuous variables. A comparison is carried out between the two 

subregions in order to eliminate the subregions that have no optimal solution. A spatial 
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branch and bound algorithm have been proposed for nonconvex NLP problems with 

concave separable, linear fractional and bilinear programs (Quesada and Grossmann, 

1995). In this algorithm, linear and nonlinear underestimators have been used. 

 

Methods for nonconvex MINLP based on the spatial branch and bound procedure 

include: 

 

1. Branch and bound method (Ryoo and Sahinidis, 1995; Tawarmalani and 

Sahinidis, 2000): it divides on the continuous and discrete variables and use 

underestimators along with bounds reduction. it is available in BARON. Another 

Branch and bound Method has recently developed (Adjiman and Floudas, 1996) 

that make the same branching task according to certain decisions. 

2. SMIN-BB and GMIN-BB algorithms (Adjiman et al., 1997; Adjiman et al., 

2000): it is applicable for twice-differentiable nonconvex MINLP problems and 

uses convex underestimators for general and special functions. 

3. Spatial branch and bound algorithm with reformulation (Smith and Pantelides, 

1999): it is applicable for nonconvex MINLP problems. It is available in 

gPROMS (Barton and Pantelides, 1994). 

4.  The branch-and-contract method (Zamora and Grossmann, 1998b; Zamora and 

Grossmann, 1999): it is applicable for process models with bilinear, linear 

fractional, and concave separable functions. It contracts the bounds and makes the 

spatial search at each node of the tree using the outer-approximation algorithm. 
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5. Generalized branch-and-cut (GBC) algorithm (Kesavan and Barton, 2000b): it is 

generalization of an earlier decomposition algorithm by the same authors 

(Kesavan and Barton, 2000a) that involves set of heuristics.  

6. Two-level-branch and-bound-method (Lee and Grossmann, 2001): it is applicable 

for nonconvex disjunctive programming problems. 

 

The difference between these methods is in the way they branch on the discrete and 

continuous variables. These branching techniques can be classified according to the 

following (Grossmann and Biegler, 2004): 

 

1. Applying spatial branch and bound on both variables of the bounding problem. 

2. Applying spatial branch and bound on the continuous variables and solving the 

corresponding MINLP problem at each node.  

3. Branching on the discrete variables and apply spatial branch and bound on nodes 

to find a feasible value for the discrete variables.  

 

These techniques make tightening for the lower and upper bounds of the variables to 

improve the quality of the underestimators. Such techniques can find a rigorous global 

optimum. However, the computation of these methods can be expensive because of the 

infinite numbers of tree searches (Grossmann and Biegler, 2004). 

 

Literature on the underestimators for some major nonconvex functions is reviewed 

below. The details of these underestimators are presented in Chapter V. 
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1. Minimization of concave functions 

 

These functions receive a lot of treatment among other classes of global optimization 

problems. Algorithms developed by Tuy and Horst (1988) and Benson and Horst (1991) 

are among the algorithms developed to solve these functions over a convex feasible 

region. Underestimator for univariate concave separable function can be developed by a 

straight line matching concave function at the upper and lower bound (Falk and Soland, 

1969). 

 

2. Bilinear and fractional terms 

 

Bilinear and linear fractional terms are available in many optimization problems such as 

engineering design problems. Underestimators for the bilinear and linear fractional terms 

are derived using the general approach proposed by McCormick (1976). After developing 

the appropriate underestimators, they can be included in global optimization algorithms. 

Linear estimators for the bilinear terms have been proposed in algorithm developed by 

Al-Khayyal and Falk (1983). For a solution at nonextreme point, asymptotic behavior can 

happen in this type of algorithm (Swaney, 1993). Another algorithm for bilinear models 

has been developed based on linearization-reformulation technique (Sherali and 

Alameddine, 1992). This algorithm can produce stronger bounds for the global solution 

but the problem size increases exponentially with the number of original constraints 

(Grossmann and Biegler, 2004). 
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Another algorithm has been developed for solving problems with sum of linear fractional 

terms and linear constraints (Falk and Palocsay, 1992). Bounds on the feasible subsets are 

added and tightened iteratively for a sequence of linear problems. Additionally, 

convergence properties for this algorithm are developed by the same authors. Parametric 

linear programming algorithms have been developed for the minimization of the sum of 

two linear fractional functions over a polytope (Konno et al., 1991). This approach has 

been generalized to the linear fractional terms (Falk and Palocsay, 1992). 

 

Another algorithm to solve bilinear and/or fractional problems has been proposed 

depending on Benders decomposition (Floudas and Visweswaran, 1990). It solves a 

sequence of subproblems and relaxed dual subproblems which can grow exponentially 

with the number of decomposed variables (Grossmann and Biegler, 2004). 

 

3. General functions 

 

A general approach to underestimate continuous and differentiable nonlinear functions is 

to add a sufficiently large quadratic term (Maranas and Floudas, 1994a;b). This 

underestimation along with other understimation have been included within a spatial 

branch and bound method (Adjiman et al., 2000). 
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4. Reduction of variable bounds 

 

Underestimators provide lower bounds to the global solution and the quality of these 

underestimators is strongly dependant upon the bounds on the variables. Reducing the 

size of the range ( UL xxx ≤≤ ) can improve the quality of the convex relaxation at the 

corresponding node. A contraction subproblem for the variables xi has been suggested 

with the assumption that the original optimization problem has linear or convex separable 

discrete variables y (Maranas and Floudas, 1997; Sourlas and Manousiouthakis, 1995; 

Zamora and Grossmann, 1998b). This contraction subproblem is assumed to be as follow: 

 

YyXx

Jjyxg

CUByxfts

xor
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∈∈
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≤

,

0),(
),(..

maxmin

       (2.3) 

 

Where the parameter CUB represents the current upper bound of the objective function. 

If bound L
ix is selected to be contracted, the above optimization will be a minimization 

problem while selecting U
ix direction will make the problem a maximization one. 

 

Optimizing the variable bounds prior to performing the global optimization as proposed 

by Quesada and Grossmann (1993) can be expensive if many variables are exist and the 

above problem is nonlinear. To overcome this problem, two methods have been 

suggested: 
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a. Development of bound contraction strategy (Zamora and Grossmann, 

1999): in this strategy, the variables with high potential to the greatest 

reduction are sequentially chosen.  

b. Range reduction (Ryoo and Sahinidis, 1995; Ryoo and Sahinidis, 1996): in 

this strategy, bounding inequalities for the existing variables when solving 

the relaxed problem can be developed at each node. If  

Jjxx j
L
j ∈≤− ,0  is active at the solution, These inequalities will be in 

the following form: 
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And if Jjxx U
jj ∈≤− ,0 , is active: 
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Where jλ~  is the Lagrange multiplier. 
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CHAPTER III 

PROBLEM STATEMENT 

 

The overall aim of this dissertation is concerned with the determination of maximum 

process yield and optimizing the process changes to reach this target yield. This task can 

be decomposed into the following four hierarchical problems: 

1. The problem of targeting overall yield of a process. 

2. The problem of identifying the attainable process yield. 

3. The problem of identifying cost-based strategies needed to implement the 

attainable yield. 

4. The cost-benefit problem of developing a trade-off between the enhanced 

process yield and its corresponding cost. 

 

Each of these problems is stated more formally below: 

 

1. The problem of targeting overall yield of the process can be stated as follows: 

 

Given a process with certain feed of raw material, it is desired to identify the target for 

maximum process yield. In this problem, we focus our attention to the case when yield is 

to be maximized using existing equipment and without the addition of new pieces of 

equipment. This case typically corresponds to the objective of maximizing capital 

productivity for the design and operating changes are carried out to maximize the 

productivity of the existing capital of the process. 
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The existing units of the process are referred to as sinks. The set of sinks is SINKS= 

{u:u= 1, Nsinks}. Each sink has a set of input streams (INPUTu) and a set of output 

streams (OUTPUTu). The input stream, iu, has a flowrate 
ui

G . Each stream has a set K of 

targeted components. The kth component has a composition referred to as ki ,x
u

. Each 

sink has range of acceptable flowrate and composition of species under study: 

 

max
ii

min
i uuu

GGG ≤≤   iu∈INPUTu, u∈SINKS   (3.1) 

max
,iki

min
,i uuu

, kk xxx ≤≤   iu∈INPUTu, u∈SINKS, k∈K  (3.2) 

 

Any stream must satisfy that range before being fed to that sink  For each sink, there are 

vectors of design and operating degrees of freedom abbreviated as du and pu, respectively. 

These vectors are subject to manipulation and optimization. Du and Pu designates the 

intervals of permissible values of design and operating degrees of freedom for sink u, 

respectively. Hence,  

du ∈ Du          (3.3) 

and 

pu∈  Pu          (3.4) 
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2. The problem of identifying attainable yield of the process can be stated as 

follows: 

 

Given the process described in the first part above and additionally has predetermined 

upper bound for its yield, it is desired to identify the achievable maximum process yield. 

The interval-based approach that is used in addressing the first problem gives upper 

bound value for process yield. In this problem, the attainable overall yield needs to be 

determined. In addition, the changes that are required to achieve this yield need to be 

determined. These changes must fall in the vectors of design and operating degrees of 

freedom. Again, our focus is to the case when yield is to be maximized using existing 

equipment and without the addition of new pieces of equipment. 

 

3. The problem of identifying cost-effective strategies to implement the achievable 

process yield can be stated as follows: 

 

Given the above-stated process with predetermined maximum attainable yield, it is 

desired to identify the cost-effective strategies to implement achievable maximum 

process yield. In addition to maximum achievable yield, solving the second problem has 

identified the design and operating changes need to be implemented in order to achieve 

this level of process yield. Implementing these changes is going to create additional 

operating/capital cost. In this regard, a cost minimization problem needs to be solved. 

Solving this problem will identify the minimum incremental cost for each of the process 

changes and the combined total minimum cost needed to obtain the maximum yield.  
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4. The cost-benefit problem of developing a trade-off between levels of enhanced 

process yield and their correspondent costs can be stated as follows: 

 

Given a process with predetermined maximum achievable yield and its correspondent 

cost, it is required to develop a relationship between different levels for the improvement 

on that yield and the cost needed for each of these levels. The maximum achievable yield 

that is identified in the second problem is not necessarily feasible/economical for each 

operating facility. Such infeasibility may be in the form of technical/financial constraints 

such as limited supply of a specific operating utility or insufficient financial resource to 

implement the changes suggested by the solution of the third problem. Developing this 

trade-off will enable each operating facility to select the level of enhancement in the 

process yield depending on its available resources. 

 

Chapter IV will address the first problem while Chapter V will address problems two 

through four.  
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CHAPTER IV 

INTERVAL-BASED TARGETING OF PROCESS YIELD 

 

A hierarchical procedure is developed to identify maximum targets for the overall yield 

of the process. First, we identify the key causes for loss in overall process yield. Then, 

several mass integration strategies are proposed to attain maximum yield. These include 

rerouting of raw materials, optimization of reaction yield, rerouting of product from 

undesirable outlets to desirable outlets, and recycle of unreacted raw materials. Path 

equations are tailored to provide the appropriate level of details for modeling the process 

performance as a function of the optimization variables pertaining to design and 

operating variables. Interval analysis is used as an inclusion technique that provides 

rigorous bounds regardless of the process nonlinearities. The proposed procedure is 

systematic, rigorous, and computationally efficient. A case study is used to illustrate the 

applicability of the proposed procedure. 

 

4.1  Introduction 

 

The processing facilities are facing an increasingly competitive market. Globalization is 

resulting in the growing integration of technologies, resources, and economies around the 

world. Additionally, production constraints are continually evolving to address such 

important issues as resource conservation, sustainability, quality, and safety.  As a result, 

the processing facilities must strive to improve their economic performance. One of the 

key strategies for improving process economics is the increase of capital productivity. 



 

 

45  

Towards this objective, enhancing process yield is an instrumental strategy in increasing 

capital productivity. It is important to distinguish the process yield from the reactor yield.  

 

The theoretical yield of a reactor is the maximum stoichiometric amount of the desired 

product obtained from the limiting reactant. The actual yield of a reactor is the amount of 

the desired product actually obtained from the limiting reactant, i.e. 

 

reactor  the tofedreactant  limiting ofAmount 
reactor in the generatedproduct  desired ofAmount 

 reactor  a of yield Actual =  (1.1a) 

 

For instance, consider a reaction which produces an amount “b” of the desired product 

from a certain amount “a” of the limiting reactant.  In this case, we have: 

 

a
b

 "Yield"reactor  a of yield Actual reactor =       (1.1b) 

 

The actual yield may not reach the theoretical yield because of several limitations 

including the side reactions consuming the limiting reactant, reverse reactions, and design 

and operating conditions. 

 

On the other hand, the overall process yield is the amount of desired product going to 

sales obtained from a limiting fresh feed entering the process, i.e. 
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process  theentering material rawfresh  limiting ofAmount 
sales  toprocess  theleavingproduct  desired ofAmount 

   yield Process =  (1.2a) 

 

For instance, consider a process which produces an amount “B” of the desired product 

that is to be sold. The amount of a limiting fresh raw material purchased and fed to the 

process is “A”.  In this case, we have: 

 

A
B

  yiled Process =          (1.2b) 

 

Figure 4.1 illustrates a generic process with the quantities involved in defining the reactor 

and process yields. 

 

Although the reactor yield has a considerable effect on the overall process yield and plant 

economics, the overall process yield directly and considerably affects the process 

economics and capital productivity. Additionally, enhancing the process yield is closely 

tied to the conservation of raw materials and the minimization of waste discharge. 

 

It is important to identify bound on process performance before making extensive design 

and optimization computations. In this regard, targeting is an important concept. 

Targeting refers to the identification of bounds on the system performance prior to and 

without commitment to the final design configuration.  Therefore, targeting enables the 

designer to identify benchmarks for improvement opportunities ahead of detailed design. 

Over the past two decades, several important contributions have been made in the area of 
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targeting the performance of complex systems. Examples include the targeting of heat-

exchange networks (e.g., Linnhoff and Hindmarch, 1983), mass-exchange networks (e.g., 

El-Halwagi and Manousiouthakis, 1989), reactor networks (e.g., Hildebrandt and Bielger, 

1995; Glasser et al., 1987), wastewater discharge (e.g., Wang and Smith, 1994), material 

recycle/reuse (El-Halwagi et al., 2003), and distillation networks (e.g., Doherty and 

Malone, 2001).   

 

Figure 4.1. General process scheme to differentiate between reactor yield and process 

yield. 

 

4.2  Objective 

 

The purpose of this work is to develop a systematic procedure for the targeting of 

maximum process yield. First, we identify the key causes for loss in overall process yield. 

Then, we review the basic concepts of interval analysis which will be used as a key 

element in the targeting procedure. Next, a hierarchical approach is proposed to optimize 

several process modifications (e.g., stream rerouting) and process performance (e.g., 

separation, reaction) by manipulation of operating conditions (e.g. temperature, pressure, 

Reactor

ΑΑΑΑ

a
ΒΒΒΒ To 

salesb
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residence time). Next, inclusion techniques are used to identify bounds on performance 

without enumeration and regardless of the nonlinearity characteristics of process models. 

A case study is used to illustrate the applicability of the developed procedure.  

 

4.3  Problem Statement 

 

The problem of targeting overall yield of the process can be stated as follows: 

 

Given a process with certain feed of raw material, it is desired to identify the target for 

maximum process yield. In this research, we focus our attention to the case when yield is 

to be maximized using existing equipment and without the addition of new pieces of 

equipment. This case typically corresponds to the objective of maximizing capital 

productivity for the design and operating changes are carried out to maximize the 

productivity of the existing capital of the process. 

 

The existing units of the process are referred to as sinks. The set of sinks is SINKS= 

{u:u= 1, Nsinks}. Each sink has a set of input streams (INPUTu) and a set of output 

streams (OUTPUTu). The input stream, iu, has a flowrate 
ui

G . Each stream has a set K of 

targeted components. The kth component has a composition referred to as ki ,x
u

. Each 

sink has range of acceptable flowrate and composition of species under study: 

 

max
ii

min
i uuu

GGG ≤≤   iu∈INPUTu, u∈SINKS   (3.1) 

max
,iki

min
,i uuu

, kk xxx ≤≤   iu∈INPUTu, u∈SINKS, k∈K  (3.2) 
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Any stream must satisfy that range before being fed to that sink  For each sink, there are 

vectors of design and operating degrees of freedom abbreviated as du and pu, respectively. 

These vectors are subject to manipulation and optimization. Du and Pu designates the 

intervals of permissible values of design and operating degrees of freedom for sink u, 

respectively. Hence,  

 

du ∈ Du          (3.3) 

and 

pu∈  Pu          (3.4) 

 

4.4  Solution Strategy 

 

While the above-stated problem can be formulated as a mixed-integer nonlinear program 

(MINLP), its global solution may be quite elusive because of the highly nonlinear and 

non-convex nature of most chemical processing models. Therefore, our strategy will 

depend on the following three elements: 

 

1. Description of process model that are tailored at the right level of details to enable 

yield maximization 

2. Inclusion techniques that provide rigorous bounds on process performance 

regardless of the nature of nonlinearity and non-convexity of process model. 

3. Decomposition of the yield targeting procedure through a hierarchical approach. 
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Hence, we first develop the path equations to provide the right appropriate level of 

process-modeling details. Next, we use interval analysis as a powerful inclusion 

technique. Finally, we propose a hierarchical procedure that decomposes the problem into 

successive stages that are globally solvable then merges the solution fragments into an 

overall process target.  In the following, we review the basic concepts and literature 

survey of path equations and interval analysis. Then, the targeting procedure will be 

described. 

 

4.5  Path Equations 

 

The appropriate level of the process model may be described using the concept of the 

path equations and its graphical analogue (the path diagram). It is analytical tool that 

tracks the flow and composition of the specific targeted species within the process 

through material balances and unit performance equations that are constructed based on 

the manipulated design and operating variables (e.g., El-Halwagi et. al., 1996; Noureldin 

and El-Halwagi, 1999). For instance, this concept can be used to describe interactions 

among sources (streams containing the targeted species) and sinks (process units that can 

process the sources).   

 

Consider a unit, u, with a set of input streams INPUTu = }N1,2...,i |{i in
uuu = and a set of 

output streams OUTPUTu = }N1,2...,j |{j out
uuu = .  The input stream, iu, has a flowrate 

ui
G . Each stream has a set K of targeted components. The kth component has a 
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composition referred to as ki ,x
u

. Similarly the output streams have flowrates and 

compositions referred to as 
uj

G and kj ,x
u

, respectively. It is useful to limit the variables 

included in the model to the optimization (manipulated) variables that are allowed to be 

changed. For unit u, let the vectors representing design and operating manipulated 

variables be designated as du and pu, respectively.  Therefore, the process model for unit u 

can be expressed as: 

 

)p,d K,k andN1,2,...,i:x,(G

K)k andN1,2,...,j:x,(G

uu
in
uuk,iiu

out
uuk,jj

uu

uu

∈=

=∈=

f
     (4.1) 

 

Additionally, the overall and component material balances for unit u can be written as: 

 

��
==

=
in
u

u

u

out
u

u

u

N

1i
i

N

1j
j GG                           (4.2) 

and 

 

ku,

N

1i
k,iik,j

N

1j
j Net_Genx*Gx*G

in
u

u

uuu

out
u

u

u
+=��

==
   Kk ∈                 (4.3) 

 

where Net_Genu,k is the net rate of generation of component k in unit u. 
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4.6  Interval Analysis 

 

Interval analysis is a useful concept that has enabled the researchers to estimate and 

control floating-point computational errors. Interval arithmetic was first introduced by 

Moore (1966). Methods and applications of interval analysis have been addressed by 

many authors (e.g. Moore 1979; Ratscheck and Rokne, 1984; Hansen, 1992; 

Vaidyanathan and El-Halwagi, 1994). 

 

There are some interval-based applications in chemical engineering that are reported in 

the literature. Schnepper and Stadtherr (1996) used interval analysis for solving a system 

of nonlinear equations in process simulation problem. Other applications of interval 

analysis include thermodynamic calculations (Hua et al., 1999; Gau et al., 2000), 

parameter estimation (Gau and Stadtherr, 2000; 2002) and optimal design of solvent 

blending (Sinha et al., 2003; Achenie and Sinha, 2003). Additionally, interval analysis 

can be used as an effective targeting framework. For instance, Noureldin and El-halwagi 

(1999) used the inclusion arithmetic of interval analysis to develop the targeting 

procedure for the pollution prevention.  In the following, we quickly review the basics of 

interval analysis. 
 

Consider a real variable x, bounded by the ranges, xl � x � xu. The interval X can be 

defined such as Xx ∈  where X=[ xl , xu]. In the same manner, an interval Y can be 

defined for a real variable y such that Yy ∈ . In order to deal with processing the 

intervals that bound real numbers, interval arithmetic could be utilized. Let us designate * 
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as an interval arithmetic operation (e.g. addition, subtraction, multiplication, division) 

such that: 

 

Y}yX, x:y*{xY*X ∈∈=         (4.4) 

 

Constructive rules for interval operations include the following: 

 

X+Y = [ xl , xu] + [ yl , yu] = [ xl + yl, xu + yu]     (4.5) 

X-Y = [ xl , xu] - [ yl , yu] = [ xl – yu, xu – yl]      (4.6) 

X Y = [ xl , xu][ yl , yu] = [min( xlyl, xuyu, xlyu, xuyl), max( xlyl, xuyu, xlyu, xuyl)]    (4.7) 

X / Y = [ xl , xu]/[ yl , yu] =[ xl , xu][1/yu , 1/yl]  when 0 ∉  [ yl , yu]   (4.8) 

 

Another useful property is the inclusion isotonicity of interval operations 

 

If X ⊂  W and Y ⊂  Z then X*Y ⊂   W*Z      (4.9) 

 

Interval arithmetic can be used to identify bounds on the range of the function. Consider a 

function f(x) whose range over interval X is defined as �f(X), i.e. � f(X) = {f(x):x∈X} 

where x is an n-dimensional vector and x∈X. An inclusion function F is called an 

inclusion function for f over interval X if 

 

� f(X) ⊆  F(X)         (4.10) 
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This inclusion is generally applicable regardless of the nonlinearity and non-convexity of 

the function. 

 

4.7  Hierarchical Procedure 

 

In order to develop the targeting procedure, it is first necessary to diagnose the causes of 

loss in overall process yield. The following are the principal causes: 

 

� Inefficient allocation of raw materials to the reaction system 

� Reaction yield not reaching its maximum 

� Loss of product in terminal streams other than the desired outlet stream to sales 

(e.g., losses in byproduct streams, waste discharges) 

� Inefficient recovery and recycle of unreacted raw materials 

 

Consequently, the proposed hierarchical procedure consists of the following steps: 

 

1. Maximize routing of targeted raw material to the reaction system 

2. Maximize reactor yield 

3. Reroute desired product from undesirable outlets to the desirable outlet 

4. Minimize the fresh consumption of the targeted raw material through recovery 

and recycle 

 

The following is a description of these steps. 
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Step I: Maximizing routing of raw material to reactor: 

The first step in this procedure is aimed at the maximization of reactor feed. Let us 

consider Figure 4.2a. In this process, A is the total fresh feed of the targeted raw material. 

As a result of losses prior to the reactor, a fraction (α ) of the fresh feed reaches the 

reactor leading to a load (a = α A) of the targeted reactant fed to the reactor. Based on the 

path equations for all the units leading to the reactor, we can express the fraction α as a 

function of the design and operating variables of the units preceding the reactor, i.e. 

 

reactor)  theprecedingu p,(d uu ∀=ψα       (4.11) 

 

Since 

 

uu Dd ∈           (4.12) 

 

and 

 

uu Pp ∈           (4.13) 

 

Therefore, using interval inclusion, we get 

 

reactor)  theprecedingu P,(D]�[ uu
maxmin ∀Ψ=α      (4.14) 
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where Ψ is the inclusion function of ψ . Therefore, the maximum value of the fraction 

α can be readily calculated as: 

 

maxmax Ψ=α           (4.15) 

 

where maxΨ is the upper bound of the inclusion domain of Ψ . Consequently, 

 

Aa maxmax α=           (4.16) 

 

This is a rigorous bound which is independent of the nature of nonlinearity and non-

convexity of the function Ψ . Figure 4.2b is an illustration of the maximum rerouting to 

the reactor. 

 

Figure 4.2a. Evaluating feed to reactor. 
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Figure 4.2b. Maximizing routing of raw material to reactor. 

 

Step II: Maximizing reactor yield: 

Let the actual yield of the reactor (defined by Eq. 1.1a) be given by this expression: 

 

)p ,d ,(Feed Yield reactorreactorreactorreactor ω=       (4.17) 

 

where Feedreactor, dreactor, preactor are the vectors of feed conditions, design variables, and 

operating variables, respectively. Their interval inclusions are referred to as FEEDreactor, 

Dreactor, Preactor, respectively. Using interval analysis to evaluate the inclusion function for 

the yield, we get 

 

)P ,D ,(FEED ] [ YIELD reactorreactorreactor
maxmin

reactor Ω== ωω     (4.18) 

 

Recalling the definition of the reactor yield (Eq. 1.1a), one can determine the maximum 

value of product leaving the reactor (Figure 4.3) as: 

 

maxmaxmax ab ω=          (4.19) 

Reactor

ΑΑΑΑ
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�maxA
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Figure 4.3. Maximization of the reactor yield. 

 

Step III: Rerouting the product from undesirable outlets to desirable outlets: 

After the reactor, the generated product along with byproducts, wastes, and unreacted raw 

materials are processed through separation and finishing units. As a result, a certain 

amount, l, of product is lost with terminal streams leaving in undesirable outlets (i.e., 

streams other than the main product stream going to sales). Hence, our objective is to 

manipulate the separation and finishing units so as to minimize the losses and reroute 

them to the desirable outlet (main product stream). Figure 4.4 illustrates this rerouting. 

The product losses can be expressed through the path equations for the separation and 

finishing units as a function of the design and operating variables of these units, i.e., 

 

reactor)  thefollowingu p,(d uu ∀= φl       (4.20) 

 

Since 

 

uu Dd ∈           (4.21) 
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and 

 

uu Pp ∈           (4.22) 

 

Therefore, using interval inclusion, we get 

 

reactor)  thefollowingu P,(D][ uu
maxmin ∀Φ=ll      (4.23) 

 

where Φ is the inclusion function of φ . Therefore, the minimum value of the product 

losses can be readily calculated as: 

 

minmin Φ=l           (4.24) 

 

where minΦ is the lower bound of the inclusion domain of Φ  based on the interval 

inclusion. With the losses minimized, the net effect is that the product will be rerouted 

from undesirable outlets to desirable outlets. 
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Figure 4.4. Routing product from undesirable outlets to desirable outlets. 

 

Step IV: Minimizing fresh feed usage through recycle: 

In this step, the unreacted raw material is recycled. The existing recovery devices can 

recover an amount, r, which can be expressed through the path equations for the recovery 

units as a function of the design and operating variables of these units, i.e., 

 

nits)Recovery U u p,(d uu ∈∀= ξr        (4.25) 

 

Substituting the intervals for the design and operating variables of the recovery units and 

performing interval inclusion calculations, we get 

 

reactor)  thefollowingu P,(D][ uu
maxmin ∀Ξ=rr      (4.26) 

 

where Ξ is the inclusion function of ξ . Therefore, the maximum recoverable raw 

materials correspond to rmax. 
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It is worth noting that the maximum recyclable raw materials are the lower of two loads: 

the maximum recoverable load and the fresh feed requirement of the reactor (Noureldin 

and El-Halwagi, 1999), i.e. 

 

 Maximum recyclable load of raw material = argmin {rmax, Fresh feed requirement of the 

reactor}          (4.27) 

 

Figure 4.5 is a schematic presentation of the flowchart for the targeting procedure. It 

illustrates the aforementioned hierachical steps. 

 

 

Figure 4.5. Flowchart for hierarchical yield-targeting procedure. 
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The computed target is a global upper bound on the process yield regardless of the 

nonlinearities involved in the process. bounding characterisitics and iclusion isotonicity 

of interval analysis are independent of nonlinearities and nonconvexities of the system. 

Additionally, the inclusion techniques are computationally efficient. To illustrate the 

applicabilty of the developed procedure, we solve the following case study on identifying 

the maximum yield for an ethanol oxidation process. 

 

4.8  Case Study: Yield Targeting in Acetaldehyde Production through Ethanol 

Oxidation 

 

Consider the process of producing acetaldehyde via ethanol oxidation. A schematic 

process flowsheet is shown in Figure 4.6.  Ethanol feedstock (50% ethanol, the rest being 

mostly water and some organic impurities, (Miller, 1968)) is partially vaporized in a flash 

drum, mixed with preheated air, and fed to a catalytic reactor. Ethanol reacts with oxygen 

to form acetaldehyde and water according to the following equation: 

 

CH3CH2OH + ½ O2 → CH3CHO + H2O 

 

The reactor yield (designated by Yreactor and defined as the ratio of mass of acetaldehyde 

formed in the reactor to mass of ethanol fed to the reactor) is given by (McCabe, 1983): 

 

Yreactor = 0.33 – 4.2*10-6*(Trxn - 580)2        (4.28) 
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where Trxn is the reactor temperature (K). At present the reactor is operated at 500 K and 

the current reactor yield is 0.3 kg acetaldehyde formed in the reactor per kg ethanol fed to 

the reactor.  

 

The reactor product is scrubbed first with cold dilute solvent to cool the reactor offgas 

and to scrub several species (primarily ethanol and water). The gases leaving the top of 

the scrubber are scrubbed again with water to remove additional alcohol and 

acetaldehyde (Faith et al., 1965). The off-gas leaving the second scrubber, mostly 

nitrogen and trace amounts of oxygen, acetaldehyde, ethanol and water are released to 

atmosphere (Aguiló and Penrod, 1999). The liquid from the second scrubber is recycled 

as scrubbing agent for the first scrubber with 5% of fresh alcohol as make up for the 

purge and the losses. The liquid from the first scrubber is distilled and acetaldehyde is 

recovered as the overhead product of the first distillation column. The bottoms of this 

column are fed to a second distillation column where light organic wastes (including 

some acetaldehyde) are collected from the top and passed to waste treatment. The 

bottoms of the second distillation column are fed to a third distillation column where 

ethanol (with some water) is separated as the overhead product and is subsequently fed to 

a boiler to utilize its heating value. The bottoms of the ethanol recovery column are 

mostly water and are fed to the biotreatment facility. 
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Figure 4.6. Schematic representation of acetaldehyde process. 

 

The objective of this case study is to maximize the overall process yield without adding 

new process equipment. The overall process yield (Process yield) is defined as:  

 

feedstock as process  tofed ethanolFresh 
streamproduct  finalin  deAcetaldehy

yield Process =     (4.29a) 

 

In the definition of the process yield the use of the phrase “ethanol fed to the process as a 

feedstock” excludes the use of ethanol for non-reactive purposes such as solvents (e.g., 

stream S6). Therefore, the process yield is given by:  
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E1
A14

yield Process =          (4.29b) 

 

where A14 is the mass flowrate of acetaldehyde in the final acetaldehyde product (in 

stream S14) and E1 is the mass flowrate of ethanol in the fresh feedstock to the process 

(in stream S1).  

 

The following flows may be assumed to hold throughout the case study (even after 

process changes): 

 

• No ethanol in S4, S12, S14, or S16. 

• E6 = 400 ton ethanol/yr 

• No acetaldehyde in S1, S2, S4, S6, S12, or S15. 

 

The following are additional constraints and path equations to track ethanol and 

acetaldehyde in terms of the optimization variables. 

Reactor: The reaction temperature affects the reactor yield as given by Eq. (4.28). The 

feasibility range for the reaction temperature is given by: 

 

300 � Trxn (K) � 860         (4.30) 

The reactor yield can also be written in terms of the amounts of generated acetaldehyde 

and consumed ethanol in the reactor, i.e. 
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feed
reactor E

AR
Y =           (4.31) 

 

where Efeed is the ethanol fed to the reactor and AR is the generated acetaldehyde in the 

reactor. The ethanol consumed in the reactor is related to AR through stoichiometry and 

molecular weights. Therefore, 

 

ER = (46/44)*AR         (4.32) 

 

Flash Column: The ethanol losses in the bottoms stream of the flash drum may be 

reduced by manipulating the flash temperature according to the following relationship: 

 

E2= �*E1          (4.33) 

 

Where 

 

� = 10.5122 -0.0274*Tflash        (4.34) 

where Tflash is the temperature of the flash drum in K and is bounded by the following 

range: 

 

380 � Tflash (K) � 384         (4.35) 



 

 

67  

 

First Distillation Column: The acetaldehyde recovered in the first distillation column is a 

function of reboiler heat duty of that column. The relationship is given by: 

 

A14= � *A9          (4.36) 

 

Where 

 

� = 0.14*QR + 0.89         (4.37) 

 

where QR is the reboiler heat duty in MW. The range of the reboiler duty is: 

 

0.55 � QR (MW) � 0.76        (4.38) 

 

For the base case, the reboiler duty is 0.55 MW. 

Third Distillation Column: To reduce ethanol losses (with the aqueous waste going to 

biotreatment), the reflux ration of the third distillation column may be manipulated. The 

following relations may be used: 

 

E17= γ *E15          (4.39) 

 



 

 

68  

where  

 

γ  =0.653*e(0.085*RR)         (4.40) 

 

where RR is the reflux ratio in the third distillation column. Currently, the reflux ratio for 

the column is 2.5 and the working range for the reflux ratio is: 

 

2.5 � RR � 5.0          (4.41) 

 

Direct recycle is allowed only from the top of the third distillation column to the flash 

column.  

 

In addition to the given path equations and constraints, one can also write the material 

balance equations for acetaldehyde and ethanol throughout the process. The plant is to 

produce 100,000 ton/yr of acetaldehyde (i.e., A14 = 100,000 ton/yr). The present (base 

case) value of the overall process yield is 0.65. It is desired to explore the process 

potential using existing units and without adding new pieces of equipment. What is the 

target for maximum overall process yield? 
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4.8.1 Solution 

 

Let us apply the hierarchical procedure to identify the target for maximum yield of the 

process. In maximizing the routing of raw materials to the reactor, we use the inclusion of 

Eqs. (4.33) and (4.34) over the interval given by Eq. (4.35). Then, we maximize the 

reactor yield by calculating the inclusion of Eq. (4.28) over the interval given by Eq. 

(4.30). Routing of the desired product from undesirable outlets to the desirable outlet 

involves calculating the inclusion of Eqs. (4.36) and (4.37) over interval (4.38). Finally, 

the recyclable ethanol stream (overhead of the third distillation column) can be 

maximized by calculating the inclusion of Eqs. (4.39) and (4.40) over interval (4.41). The 

maximum recoverable ethanol from the top of the third distillation column is recycled to 

the flash column to minimize the usage of fresh ethanol.  The procedure is followed and 

the material balance equations along with the given path equations are used to evaluate 

the revised flows of ethanol and acetaldehyde. The result is that the target for maximum 

process yield is 0.955.  This is approximately four times the overall process yield at the 

base case. With such a promising result, the detailed design of the process should be 

considered. In this context, mass integration strategies (e.g., Dunn and El-Halwagi, 2003) 

can be instrumental in detailing the design. 

 

4.9    Special Cases of Overall Process Yield Targeting and Maximization 

 

There are some cases where the maximum achievable yield can be identified by 

observation and/or minimal calculations and without detailed enumeration like the one 
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technique discussed in our work. It is the objective of this work to predict overall yield 

for any process without the need to go through the process insights. This study will cover 

some process categories which differ from each other in the number of reactions that take 

place in each reactor and the assumption of losses of fresh feed and desired product 

within the process. Here, two process categories are addressed as follow: 

 

 4.9.1 Process with One Reaction and No Losses 

 

For this category, the following assumptions are considered: 

 

1) Only one reaction is taking place in the reactor. 

2)  No losses of desired product. In another word, all reactor effluents of desired 

product are going with the product stream. 

3) No losses of process feed. All process feed is going to the reactor.  

 

Figure 4.7 shows typical process of this category where the reaction is assumed to take 

place in the reactor: 

 

     A � B  

 

This reactor yield (YR) can be predicated from the stoichiometic data as follow: 

 

feedreactor in A  ofamount 
reactorin  produced B ofamount 

 YR =       (4.42) 
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Figure 4.7. Typical process with one reaction and no losses. 

 

In other words, it represents the stoichiometic ratio of reaction product to reactant. 

The process yield (YP) is defined as: 

 

feedfresh  processin A  ofamount 
streamproduct  desired processin  B ofamount 

 YP =     (4.43) 

 

Since there are no losses of reactant A ahead of reactor then amount of A in the process 

feed is equal to the amount of A in reactor feed. The same applies for the product (B) i.e. 

amount of B in the process desired product stream is equal to the amount of B in reactor 

effluent. Based on this, the process yield will be equal to the reactor yield. Hence, the 

only way to maximize the process yield with such conditions is to maximize the reactor 

yield. When applying the targeting procedure presented in this work, the only applicable 

strategy (step) is step II (i.e. maximizing the reactor yield). 
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4.9.2 Process with More Than One Reaction and No Losses 

 

The following assumptions will hold for this category: 

 

1) Two or more reactions  taking place in the reactor 

2) No losses of feed or product within the process or with byproduct/waste streams. 

 

For example, Figure 4.8 shows certain process where the following reactions are assumed 

to take place in the reactor: 

 

     A � B  

     A � C 

 

 

 

 

 

 

 

Figure 4.8. Typical process with two reactions and no losses. 

 

Additionally, it has been assumed that the first reaction (A � B) is the main reaction (i.e. 

B represents the desired product) while the second reaction (B � C) is assumed to be the 
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side reaction (i.e. C is the side product). In addition to the definitions of reactor and 

process yields above, reactor selectivity (S) and conversion (X) is defined as: 

 

reactorin  consumedA  ofamount 
reactorin  produced B ofamount 

 S =       (4.44) 

reactor  tofedA  ofamount 
reactorin  consumedA  ofamount 

 X =       (4.45) 

 

The amount of reactant A consumed in the reactor is subset of the amount of A fed to the 

reactor. When tracking A in the reactor, it has three possibilities: 

 

• It reacts to form the desired product B; 

• It reacts to form the undesired product C; 

• It doesn’t react and leaves the reactor as effluent. 

 

The selectivity represented here by the first possibility above. The only way to maximize 

yield for this category of processes is increase the selectivity.  

  

Additionally, if we assume that there is no desired product fed to the process or produced 

in the process except the amount produced in the reactor, the reactor yield is equal to the 

product of multiplying selectivity by conversion i.e.: 

 

YR= S*X       (4.46) 
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When applying the assumption of no losses of feed and desired product as in category I, it 

is concluded that process yield is equivalent to reactor yield, i.e.: 

 

YP= S*X       (4.47) 

 

The only way to enhance the yield of this category is to increase the reactor yield which 

in turn can be increased by improving the selectivity and/or conversion. 

 

The case where there could be one or more reactions and losses of feed and/or desired 

product within the process represents the general case. It is the case for which the 

procedure in this research has been developed. 

 

4.10  Conclusions 

 

A targeting procedure was developed to identify an upper bound on the overall yield of 

the process. This target is identified ahead of detailed design. A hierarchical approach 

was devised to optimize several process modifications (e.g., stream rerouting) and 

process performance (e.g., separation, yield, recovery) by manipulation of operating 

conditions (e.g. temperature, pressure, residence time). Next, inclusion techniques were 

used to identify bounds on performance without enumeration and regardless of the 

nonlinearity characteristics of process models. Tailored process models were developed 

using the concept of path equations to provide the appropriate level of details and degrees 
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of freedom for yield maximization. A case study was solved to demonstrate the 

usefulness of the developed procedure. 

 

Having the identification of process yield target, a detailed design of the process is to be 

considered. In this regard, an optimization formulation is to be developed to identify cost-

effective implementation of this target. This task is addressed in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

76  

CHAPTER V 

 

MATHEMATICAL PROGRAMMING APPROACH FOR YIELD 

MAXIMIZATION AND COST MINIMIZATION 

 

5.1 Introduction 

 

The methodology developed in Chapter IV generates a target (upper bound) for the 

process yield. Once a target is identified, it is important to devise cost-effective, 

implementable solution that attaints the target. In this chapter, an optimization procedure 

is developed to achieve this target and to identify cost-effective strategies to attain this 

yield target. The proposed approach is based on the following key steps: 

 

• Formulation of the yield-maximization problem as an optimization problem 

• Reformulation of optimization program to enhance solution quality 

• Identification of a feasible target for yield 

• Determination of cost-effective implementation of attainable target 

 

Figure 5.1 shows a flowchart that outlines the proposed procedure. The procedure starts 

by developing a formulation for maximization of process yield. This objective function is 

subject to two main sets of constraints: 
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Figure 5.1. Flow chart of process yield implementation. 
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I. Material balance on desired product and fresh feed: Fresh feed and desired product for 

a certain process are targeted species to be evaluated for yield maximization problem. 

Based on that, material balance for both species is to be developed on overall process, 

part of the process ahead of reactor, part of the process after reactor and around reactor. 

These equations are part of the problem constraints. The development of these equations 

and their general format are shown later in the formulation section. 

 

II. Unit performance equations: In Chapter IV, four strategies were developed. Each of 

these strategies is represented by unit performance equations and lower and upper bounds 

of manipulated variables. The performance equations are formulated as equality 

constraints while variable bounds are in the form of inequality constraints. 

 

The developed formulation is generally a Mixed Integer Non-Linear Program (MINLP). 

Survey for the literature on this kind of problem is presented in chapter II. One of the 

available techniques that improve the solution quality is the problem reformulation and 

linearization of the nonlinear terms. This technique is suggested for the problem under 

study in order to generate global or close to global solution. 

 

The procedure in Chapter IV identified an upper bound on the attainable target for yield. 

As such, it is important to determine the maximum attainable target. In this regard, an 

iterative procedure is proposed whereby one yield constraint is added to the optimization 

formulation. First, the upper bound constraint is added and the optimization program is 

solved with the objective of maximizing yield. If a feasible solution is found, then the 
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upper bound is attainable. Otherwise, a yield value that is slightly lower than the upper 

bound is added as a constraint and the program is resolved. If a feasible solution is found, 

then the maximum attainable target has been identified. Otherwise, the process is 

repeated until a feasible solution is found. Following the identification of maximum 

achievable yield, a cost minimization program is to be developed for this yield. This is to 

be done by replacing the objective function of yield maximization problem by cost 

minimization function. This latter function involves cost figures of manipulated 

parameters in unit performance equations. Multiple runs are conducted for different 

yields in order to generate yield versus cost curve (Figure 5.2). 

 

 

Figure 5.2. Typical process yield vs. cost curve. 
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(Kg feed/ Kg product) 

Ymax 
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5.2 Formulation of Process Yield Maximization 

 

The objective function here is the process yield (Y) which generally defined by equation 

(1.2). In more specific, is defined as:  

 

f f,f

p,pp

x*G

x*G
=pY          (5.1) 

 

Where pG  represents flow rate of desired product stream p while p,px is composition of 

desired product p in that stream. fG is the flow rate of fresh feed stream f and ffx is the 

composition of fresh feed f in that stream.  

 

In order to develop the constraints, the material balance is first developed for the overall 

process for both fresh feed and desired product is developed. Figure 5.3 shows graphical 

representation of the process material balance (the dashed oval represents the boundary of 

this balance) for the feed. Similar representation applies for desired product. The 

developed equations will take the form: 

 

For the desired product: 

 

p

N

1i
p,iip,j

N

1j
j Net_Genx*Gx*G

inout
process

+= ��
==

process

      (5.2) 

- set of process input streams (i): i = {i=1,2, …, 
in

processN } 
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- set of process output streams (j): j = {j=1,2, …, 
out

processN } 

 

For the fresh feed: 

 

f

N

1i
f,iif,j

N

1j
j Net_Genx*Gx*G

in
process

out
process

+= ��
==

      (5.3) 

 

- set of process input streams (i): i = {i=1,2, …, 
in

processN } 

- set of process output streams (j): j = {j=1,2, …, 
out

processN } 

 

 

 

 

 

 

 

 

                                                             

Figure 5.3. Graphical representation of process feed overall material balance. 

 

Where Gj and Gi are the flow rates of process output stream j and process input stream i, 

respectively. p,jx and p,ix  are compositions of process desired product (p) in each 
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stream, respectively and f,jx and f,ix  are compositions of process fresh feed (f) in each 

of these streams, respectively. The set i is set of process input streams (i): i = {i=1,2, …, 

in

processN } and set j is set of process output streams (j): j = {j=1,2, …, out

processN }. Net_Genp and 

Net_Genf are the net depletion (or generation) of process desired product (p) and fresh 

feed (f), respectively. 

 

In the same manner, similar equations are developed for the part of process ahead of 

reactor and the part after reactor. Figure 5.4 represents fresh feed balance for the part 

ahead of reactor. 

 

For the fresh feed ahead of reactor: 

 

��
==

=
inout N

1i
f,iif,j

N

1j
j x*Gx*G

aheadahead

       (5.4) 

 

The set i here is set of input streams (i) for part of process ahead of reactor, i: i = {i=1,2, 

…, 
in

aheadN } and set j is set of output streams (j) for part of process ahead of reactor, j: j = 

{j=1,2, …, out

ahead
N }. 

 

Figure 5.5 shows desired product balance for the part after reactor. Here, two set of 

equations are developed, one for the fresh feed and one for the desired product.  
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Figure 5.4. Fresh feed balance for the part ahead of reactor.  

 

 

 

For the fresh feed after reactor: 
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        (5.5) 

 

Figure 5.5. Desired product balance for the part after reactor. 

 

For the desired product after reactor: 
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Similarly, set i is set of input streams (i) for part of process after reactor, i: i = {i=1,2, …, 

in

afterN } and set j is set of output streams (j) for part of process after reactor, j: j = {j=1,2, 

…, out

after
N }. 

 

Next, material balance around the reactor for both reactor’s feed (i.e. reactant) and 

reactor’s main product (reaction product) are constructed. 

 

Reactant balance around reactor: 

 

fR,

N

1i
f,iif,j

N
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inout
R
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R

      (5.7) 

 

Desired product balance around reactor: 

 

pR,

N

1i
p,iip,j

N

1j
j Net_Genx*Gx*G

in
R

out
R

+=��
==

      (5.8) 

 

Where set i is set of input streams (i) to the reactor, i: i = {i=1,2, …, 
in

R
N } and set j is set 

of output streams (j) to the reactor, j: j = {j=1,2, …, out

RN }. fR,Net_Gen is net rate of 

generation of feed f from reactor R and pR,Net_Gen is net rate of generation of desired 

product p from reactor R. 
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From the previous chapter, four strategies have been identified to maximize the process 

yield. These strategies are: 

 

1. Maximize routing of targeted raw material to the reaction system 

2. Maximize reactor yield 

3. Reroute desired product from undesirable outlets to the desirable outlet 

4. Minimize the fresh consumption of the targeted raw material through recovery 

and recycle 

 

The equations which represent each of these strategies can be mathematically formulated. 

These equations are performance equations for units that handle targeted species in the 

above strategies and upper and lower bound of the manipulated variables. Performance 

equations will be listed as equality constraints and the upper and lower bound of each 

manipulated variable will be listed as inequality constraints.  

 

1. Unit performance equation for maximizing reactor feed: 

 

)p,(d� uuψ=           (5.9) 

 

Where α  as explained in chapter IV is fraction of the fresh feed reaches the reactor out 

of total fresh feed to the process. du and pu are manipulated design and operating 

variables for sink u ∀ u preceding the reactor. The lower and upper bounds of these 

variables are to be listed as follow: 
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max
uu

min
u d   d ≤≤ d          (5.10) 

max
uu

min
u p   p ≤≤ p          (5.11) 

 

Another equation is to be included that relates fraction α  with process fresh feed and 

reactor feed: 
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process N

1i
f,ii

N

1i
f,ii x*G*x*G

R

α        (5.12) 

 

2. Reactor performance equation for maximizing reactor yield: The reactor yield as 

defined by equation (1.1) is desired product that produced in the reactor divided by 

reactant fed to the reactor, i.e.: 

 

�
=

= inN

1i
f,ii

pR,

x*G

Net_Gen
R

RY          (5.13) 

 

Reactor performance is normally represented by reactor yield as function of reactor feed, 

design and operating properties as follow: 

 

)p ,d ,(Feed Y RRRR ω=         (5.14) 

 



 

 

87  

And the lower and upper bounds of each of these variables: 

  

max
RR

min
R Feed  Feed Feed ≤≤         (5.15) 

max
RR

min
R d  d d ≤≤          (5.16) 

max
RR

min
R p  p p ≤≤          (5.17) 

 

Following are reactor stiochiometric ratio:  

 

pp

pR,

ff

fR,

M*S

Net_Gen

M*S

Net_Gen
=         (5.18) 

 

For reactor balance equations above, Net_GenR, f and Net_GenR, p are the net depletion (or 

generation) of reactor feed (f) and desired product (p), respectively. set i is set of reactor 

input streams i: i = {i=1,2, …, 
in

R
N } and set j is set of reactor output streams j: j = {j=1,2, 

…, out

RN }. Sf and Sp are the stiochiometric coefficients of reactant (f) and reaction product 

(p), respectively. Mf and Mp are their molecular weights. 

 

The following logical constraint is added to make sure that there is no reactant (f) 

consumed in the reaction more than what is available of it in the reactor feed: 
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        (5.19) 
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3. Unit performance equation for maximizing desired product: 

 

)p,(d uuφ=l           (5.20) 

 

Where l  as previously explained is the amount of product that is lost with terminal 

streams leaving in undesirable outlets. du and pu are manipulated design and operating 

variables for sink u ∀ u following the reactor. The lower and upper bounds of these 

variables are to be listed as follow: 

 

max
uu

min
u d  d d ≤≤          (5.21) 

max
uu

min
u p  p p ≤≤          (5.22) 

 

The amount l  represent the difference between the total amount of desired product 

leaving in all outlet streams and amount of that product in the desired outlet i.e.: 

 

p,ppp,j
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l        (5.23) 

 

4. Unit performance equation for minimizing fresh feed: 

 

)p,(d uuξ=r           (5.24) 
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Where r as previously explained is the amount of unreacted fresh feed that can be 

recovered through recovery devices. du and pu are manipulated design and operating 

variables for sink u ∀ u recovery unit. The lower and upper bounds of these variables are 

as follow: 

 

max
uu

min
u d  d d ≤≤          (5.25) 

max
uu

min
u p  p p ≤≤          (5.26) 

 

Since r is the recyclable amount, it is greater than or the equal the actual recycled 

(unreacted) feed: 
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j x*G
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�
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≥r          (5.27) 

Where set j is set of output recycled feed streams (j), j = {j=1,2, …, 
in

recycleN }. The set 

recycle is subset of unreacted fresh feed (set j in equation (5.3)). The rest of later set is 

assumed to be waste j, j = {j=1, 2, …,
in

wasteN }. 
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The recycled and fresh feed balance in front of the process is:  
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The developed formulation for yield maximization problem can now be stated in the 

following general format: 

Maximize Yp, 

This objective function is subject to the following constraints: 
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)p,(d� uuψ=           (5.9) 
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)p,(d uuξ=r           (5.24) 
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From the above formulation, equations (5.1)-(5.8), (5.12), (5.19), (5.23), (5.27)-(5.29) 

have bilinear terms while equations (5.1), (5.12) and (5.13) have trilinear terms. 

Equations (5.9), (5.14), (5.20) and (5.24) can be linear, bilinear or nonlinear. The rest of 

equations in the formulation are linear. In this analysis, equation (5.1) was assumed to 

take the form: 

 

p,ppf f,f y*Gx*G* =pY          

 

With this nonlinearity in the above formulation, finding global and unique solution is not 

guaranteed using available optimization programs. In the next section, techniques are 

presented to tackle these nonlinearities. 

 

 



 

 

93  

5.3 Reformulation of Yield Maximization Model 

 

Special structures have been identified in the formulation above such as bilinear and 

trilinear terms. This categorization enables the researcher to develop a suitable global 

optimization approach through addressing the nonconvexities in these terms. Most of the 

deterministic methods depend on the development of valid convex underestimators for 

the nonconvex functions. The generation of the global optimal solution of the original 

nonconvex problem can be accomplished through iterative improvements of the above-

mentioned estimators and identifying the global solution of the convex problem (Adjiman 

et al., 1998). The generation of convex underestimators is based on reformulation of the 

problem in order to transforms complex nonconvex terms into simpler terms such as 

bilinear, univariate concave, convex, linear fractional and simple power terms. This is 

done by adding new variables and constraints to the original problem. The approach here 

is to use underestimators to formulate lower-bounding convex MINLP (see Figure 5.6), 

(Grossmann and Biegler, 2004). This underestimation is to be used with global 

optimization techniques and in particular spatial branch and bound methods. These later 

methods divide the feasible region and eliminate subregions that don’t contain optimal 

solution. 

 

General approach for deriving underestimators of bilinear models was presented by 

McCormick (1976). It involves the addition of one more variable to the problem and 

more inequality constraints. Al-Khayyal and Falk (1983) presented a branch and bound 

algorithm for problems with bilinear objective functions and linear constraints. In this 
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algorithm, linear estimators were used for the bilinear terms. Sherali and Alameddine 

(1992) developed a linearization reformulation technique (RLT). The method firsts 

reformulates the problem by constructing a set of nonnegative variable factors using the 

problem constraints. Then, this nonlinear program is linearized by defining a new set of 

variables, one for each nonlinear term. A linear programming problem whose optimal 

value provides a tight lower bound on the optimal value to the bilinear programming 

problem. This technique generates tight linear bounds. A review of models and 

application for bilinear programming can be found in Al-Khayyal (1992).  

 

Consider the following programming problem: 

 

YyXx

Jjyxgts

yxfZ
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        (5.30) 

where ),( yxf and ),( yxg are generally nonconvex.  

 

5.3.1 Bilinear Terms 

 

Let us assume that the bilinear term xy has the domains ],[],,[ ULUL yyxx for variable x 

and y, respectively. In accordance with Al-Khayyal and Falk (1983), new variable BT 

can be proposed as convex underestimators. This variable will replace the bilinear term of 

xy in the problem and satisfies the following relationship: 
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Figure 5.6. Convex underestimator for nonconvex function (Grossmann and Biegler, 

2004). 

 

];max{ UUUULLLL yxxyyxyxxyyxBT −+−+=     (5.31) 

The following two linear inequality constraints are added to the formulation to represent 

the lower bound of the underestimator: 
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UUUU yxxyyxBT −+≥         (5.32) 
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And the following two linear inequality constraints represent the upper bound for BT: 

 

LULU yxxyyxBT −+≤   

ULUL yxxyyxBT −+≤         (5.33) 

 

5.3.2 Trilinear Terms 

 

The products of N univariate functions can be developed by applying the convex lower 

bounding of products of two univariate functions (Maranas and Floudas, 1995). Based on 

this, new variable TT can be proposed as convex lower bounding function for trilinear 

terms xyz inside the region ],[],[],[ ULULUL zzyyxx ×× : 
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These three convex lower bounding alternatives can be combined to produce the 

following eight linear inequality constraints which make tight convex underestimator for 

the term xyz: 
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5.3.3 Fractional Terms 

 

For the linear fractional term x/y inside the region ],[],[ ULUL yyxx × , the following 

convex lower bound is proposed (Maranas and Floudas, 1995): 
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For linear fractional terms with negative sign (i.e. –x/y): 
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The underestimator (FT) can represent the fractional term x/y by adding the following 

constraints to the formulation: 
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Zamora and Grossmann (1998b) derived convex quadratic/linear underestimators for the 

heat transfer area of heat exchangers, which can be applied to any linear fractional term 

(Grossmann and Biegler, 2004): 
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Another convex underestimator developed by Tawarmalani and Sahinidis (2001) of x/y as 

long as y = 0: 
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The convex hull of xL/y and xU/y represents the convex envelope of the last 

underestimator which can be shown to be stronger than the first two underestimators for 

the fractional term (Grossmann and Biegler, 2004). 

 

5.3.4 Fractional Trilinear Terms 

 

Maranas and Floudas (1995) derived the following three convex lower bounding 

alternatives for the fractional trilinear term xy/z inside the region 

],[],[],[ ULULUL zzyyxx ××  with 0,, ≥LLL zyx : 
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The following eight convex constraints are obtained by combining the above three 

alternatives: 
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5.3.5 Univariate Concave Terms 

 

Univariate concave functions can be underestimated by linearizing these functions at the 

lower bound of their variable range (Adjiman et al., 1998). The following linear function 

of x represents the convex envelope of the concave function ut(x) over the region 

],[ UL xx : 
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5.3.6 General Functions 

 

A convex lower bounding function L for a continuous and differentiable f(x) can be 

developed by adding a quadratic term (Maranas and Floudas, 1994): 
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α  is a nonnegative parameter which must be greater than or equal to the negative one 

half of the minimum eigenvalue of f(x) over the region ],[ UL xx : 
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Detailed discussion on the derivation of α can be found elsewhere (Adjiman et al., 1998; 

Maranas and Floudas, 1994). 

 

The following example which has bilinear tem is considered for underestimators: 
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Underestimator (b) is developed for the bilinear term xy using equations (5.32) & (5.33). 

In addition to replacing xy in the above formulation, the following constraints of lower 

and upper bounds for b are included in the reformulated model: 
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≥

         (5.50) 

 

When solving the reformulated model above using Lingo program (Schrage, 2003), the 

global solution found to be -8.5 at x=0.5 and y-8. This result conforms with the one 

reported in the literature (Floudas and Visweswaren, 1990).  

 

5.4 Case Study: Yield Maximization for Acetaldehyde Production Process 

 

Here the case study in Chapter IV is revisited by developing a mathematical 

programming for the problem. Previously, linear and/or convex equations were assumed 

in the whole formulation. The linear equations could be developed for the fresh feed and 

desired product balance equations by using the species flowrate instead of the bilinear 

term in the species composition and stream total flowrate. In addition to the typical 

constraints listed in the general formulation of the previous section, additional constraint 

on the process yield to restrict its value to be less than or equal to the value predicted by 

interval analysis (Chapter IV). This is as explained before because chapter IV procedure 

gives upper bound for the process yield that can’t be exceeded provided that only process 
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parameters are to be manipulated with the existing equipment. This means that there is no 

additional equipment to be added in order to enhance the process yield. 

 

5.4.1 Problem Formulation 

 

 The developed formulation is shown below (refer to Figure 4.6 of process flow sheet): 

 

The objective function that needs to be maximized is the process yield (YP): 

 

YP=A14/E1          (5.51) 

 

The problem constraints are as follows: 

 

1. Process overall material balance for the desired product (acetaldehyde): 

 

A1 + A4 + A6 + A12 + AR = A11 + A18 + A14 + A2+A16 + AW   (5.52) 

 

Where 

 Ai: acetaldehyde flowrate in metric ton per year (MT/yr) in stream i, i=1,2,…n. 

AR: acetaldehyde produced in the reactor (MT/yr), 

AW: portion of acetaldehyde from stream 17 subject to waste treatment (MT/yr). 
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2. Process overall material balance for the fresh feed (ethanol): 

 

E1 + E4 + E6 + E12 = ER + E11 + E18+ E14 + E2+E16 + EW   (5.53) 

 

Where  

Ei is ethanol flowrate in stream i (MT/yr), i=1,2,3,…..n. 

ER: ethanol consumed in reactor (MT/yr), 

EW: portion of ethanol from stream 17 subject to waste treatment (MT/yr), 

 

3. For the fresh feed ahead of reactor: 

 

EG = E2 + E3          (5.54) 

 

Where 

EG: combined flowrate of ethanol fed to the process (consist of fresh feed and recycled 

feed) (MT/yr). 

 

4. For the fresh feed after reactor: 

 

E9=E14 + E16 + E15         (5.55) 

E15=E17+E18          (5.56) 
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5. For the desired product after reactor: 

 

A5 + A6 + A12 = A11 + A18+A16 + A14 + A17     (5.57) 

A9 = A5 + A6 + A12 - A11        (5.58) 

A9=A14+A15+A16         (5.59) 

A15=A17+A18         (5.60) 

 

6. Reactant balance around reactor: 

 

E5 = E3 - ER + E4         (5.61) 

 

7. Desired product balance around reactor: 

 

AG + A4 + AR = A5 + A2        (5.62) 

 

8. Unit performance equation for maximizing reactor feed: 

 

E2= α *EG          (5.63) 

α  = -0.0274*TF + 10.5122        (5.64) 

TF ≥  380          (5.65) 
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TF ≤  384          (5.66) 

 

9. Reactor performance equation for maximizing reactor yield: 

 

YR = 0.33 - 0.0000042*(TR - 580)*(TR - 580)     (5.67) 

TR ≥  300          (5.68) 

TR ≤  860          (5.69) 

 

From reactor yield definition: 

 

YR*E3 = AR          (5.70) 

 

Reactor stiochiometric ratio: 

 

ER = (46/44)*AR         (5.71) 

 

Logical constraint: 

 

ER ≤  E3          (5.72) 
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10. Unit performance equation for maximizing desired product: 

 

� = 0.14*QR + 0.89         (5.73) 

A14= � *A9          (5.74) 

QR ≤  0.76          (5.75)  

QR ≥  0.55          (5.76)  

 

11. Unit performance equation for minimizing fresh feed: 

 

γ  =0.653*exp(0.085*RR)        (5.77)  

E17= γ *E15          (5.78) 

RR ≥  2.5          (5.79)  

RR ≤  5          (5.80) 

Recyclable and waste unreacted feed balance: 

 

E17 = EC + EW         (5.81) 

 

Where  

EC: flowrate of ethanol that is subject to recycling from stream 17 (MT/yr). 

 

The recycled and fresh feed balance in front of the process is:  
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EG = EC + E1          (5.82) 

 

 

Other equality constraints stated in the problem statement in Chapter IV: 

 

E4 = 0           (5.83) 

E6 =400          (5.84) 

E14 =0           (5.85) 

E16=0           (5.86) 

E12 =0           (5.87) 

A1 = 0           (5.88) 

A2 = 0           (5.89)  

A4 = 0           (5.90) 

A6 = 0           (5.91) 

A12 = 0          (5.92) 

A15 = 0          (5.93) 

 

The plant capacity constraint: 

 

A14 = 100000          (5.94) 
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One last constraint is inequality constraint that assures the calculated process yield will 

not exceed the upper bound came out of interval analysis procedure: 

 

YP ≤ 0.955          (5.95) 

 

The above formulation was solved using Lingo software and the optimal solution for the 

yield found to be 0.955. The code for the problem and its solution by Lingo is shown in 

Appendix A. The optimal values for the manipulated variables are also listed in the 

solution which tell the designer/operator the changed that he/she need to implement to 

achieve the maximum process yield. 

 

5.4.2 Problem Reformulation 

 

It is known that mathematical programming software such as Lingo gives upper bound 

for minimization problem and lower bound for maximization problem. In this context, the 

maximum process yield predicted above is lower bound. Next, the reformulation for the 

problem to count for nonlinearity in the general problem is considered. The reformulation 

is accomplished through using the underestimators for nonlinear terms in the original 

formulation. Underestimation for nonlinear/nonconvex maximization problem gives 

upper bound. In the formulation above, there are two bilinear terms that are considered 

for underestimation in equations (5.51) and (5.70). Here we assumed that equation (5.51) 

is in the following form: 
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YP*E1=A14          

 

In order to overcome the problem of nonconvexity in these bilinear terms, we are going 

to reformulate the problem using equations 5.32 and 5.33. The following ranges are 

assumed for the four parameters: 

 

000,35030 ≤≤ E         (5.96) 

35.03.0 ≤≤ YR         (5.97) 

000,25010 ≤≤ E         (5.98) 

955.00 ≤≤ YP         (5.99) 

 

The following constrains which represent the underestimators for the two bilinear terms 

are added to the formulation in addition to replacing bilinear terms that appeared in 

equations 5.51 and 5.70 by BP1 and BR3: 

 

YR ≥  0.3          (5.100) 

YR ≤  0.35          (5.101) 

E3 ≥ 0           (5.102) 

E3 ≤  350000          (5.103) 

BR3 ≥  0.3*E3+350*YR        (5.104) 

BR3 ≥  0.35*E3+350000*YR-122500      (5.105) 

BR3 ≤  0.35*E3         (5.106) 
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BR3 ≤  0.3*E3+350000*YR-105000       (5.107) 

YP ≥  0          (5.108) 

YP ≤  0.955          (5.109) 

E1 ≥  0           (5.110) 

E1 ≤  250000          (5.111) 

BP1 ≥  0          (5.112) 

BP1 ≥  0.955*E1+250000*YP-238750      (5.113) 

BP1 ≤  0.955*E1         (5.114) 

BP1 ≤  250000*YP         (5.115) 

 

This reformulated model generates identical process yield as the one generated by the 

original model (Appendix A). Because of this match between the upper and lower bound 

of the yield, this solution represents a global solution for the problem. This indicates the 

successful usage of underestimators for the bilinear terms. The reformulated model along 

with its results is shown in Appendix B. This global solution is equivalent to the one 

predicted by interval-based procedure (chapter IV) for the same case study. This match 

tells us that the upper bound figure for the process yield is in fact achievable. 

 

5.5  Yield-Cost Trade-Off 

 

The next step in our methodology (Figure 5.1) of implementing the targeted process yield 

is making criteria based on the cost for the decision on the implementable process yield. 

The criteria will involve optimizing the cost of implementing the changes in the 
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manipulated variables at different levels of the process yield. The goal here is to develop 

relationship between that cost and its equivalent yield. We know from the beginning that 

this relationship is of exponential form. This is because the cost will increase with 

increasing the yield until it reaches the maximum yield calculated in the previous section 

(Figure 5.2). 

 

This criteria is implemented through using the same formulation developed in the 

previous section with some changes. These changes include changing the objective 

function to be minimizing the cost of changing the manipulated variables to their 

optimum values. The original objective function (process yield) would go as inequality 

constraint equivalent to the maximum yield predicted in the preceding section. The cost 

function covers the partial ranges of manipulated parameters from the base case to the 

optimum. This new formulation is to be solved to predict the cost of implementing the 

highest achievable process yield. 

 

In order to make it easy for the decision makers in increasing the process yield and 

because of some limitations, the next task is to develop multiple cost figures at different 

levels of process yield. The limitations here might be in the form of technical limitations 

such as utilities availability or financial one like budget limitations. This task is 

accomplished through changing the equality constraint on process yield in the cost 

minimization model. The outcome of these multiple model calculations is a relationship 

between the cost of manipulating the process parameters and their equivalent process 

yield (Figure 5.2).  
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Another helpful relationship can be developed to study the impact of enhancing the 

process yield on either the saving of fresh feed or increase in desired product flow rate. 

This is because the flowrate of either fresh feed or desired product is fixed. 

 

5.6 Case Study (Revisited): Cost Minimization for Acetaldehyde Production Process 

 

To demonstrate the yield-cost trade-off procedure, the case study of ethanol oxidation to 

produce acetaldehyde is revisited. The cost functions for the different process 

performance parameters (in $/year) are as follows: 

 

1. Cost of manipulating reactor performance parameters for maximizing reactor yield: 

 

C1 =3570*(TR-500)         (5.116)  

 

2. Cost of manipulating unit performance parameters for minimizing fresh feed: 

 

C2=6400*(RR-2.5)         (5.117) 

 

3. Cost of manipulating unit performance parameters for maximizing reactor feed: 

 

C3=2100*(TF-380)         (5.118) 
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4. Cost of manipulating unit performance parameters for maximizing desired product: 

 

C4=160*(QR-0.55)         (5.119) 

 

The above four functions will form the objective function for the cost model. Another 

inequality constraint is added to formulation to make the yield is greater than or equal to 

the achievable value for process yield computed in the yield maximization case study 

(section 5.4). 

 

The formulation in this format was solved using Lingo and the resultant annual cost was 

$23,700. This value represents the annual additional cost of implementing the optimum 

values for the manipulated variables in order to achieve the maximum process yield. This 

cost minimization model along with its results is shown in Appendix C.  

 

The next step is to calculate the cost at multiple lower process yields. This is done 

through changing the value of yield constraint to be less than the maximum yield value. 

Multiple runs using Lingo software were made. Based on these results, the relationship 

between the process yield and cost of its implementation is represented in Figure 5.7. 

 

Another graph can be developed to study the impact of enhancing the process yield on the 

fresh feed saving. The base case annual consumption of fresh ethanol feed is 185000 

Metric ton. This relationship is presented in Figure 5.8 based on the ethanol price of 

$418/ metric ton. 
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Figure 5.7. Trade-off relationship between process yield and its implementation cost.  
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Figure 5.8. Effects of process yield improvements on fresh feed saved. 
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5.7 Conclusions 

 

This chapter has presented a new approach to the identification of cost-effective 

implementation of maximum attainable targets for yield. First, a mathematical program 

was developed to identify the maximum feasible targets using a combination of iterative 

additions of constraints and problem reformulation. Next, cost objectives were employed 

to identify a cost-effectives solution with the details of design and operating variables. 

Constraint convexification was used to improve the quality of the solution towards 

globability. Various forms on non-convex terms were addressed using underestimation 

techniques. The case study presented in Chapter IV was revisited and a detailed solution 

was globally identified. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

A targeting procedure was developed to identify an upper bound on the overall yield of 

the process. This target is identified ahead of detailed design. A hierarchical approach 

was devised to optimize several process modifications (e.g., stream rerouting) and 

process performance (e.g., separation, yield, recovery) by manipulation of operating 

conditions (e.g. temperature, pressure, residence time). Tailored process models were 

developed using the concept of path equations to provide the appropriate level of details 

and degrees of freedom for yield maximization. Next, inclusion techniques were used to 

identify bounds on performance without enumeration and regardless of the nonlinearity 

characteristics of process models.  

 

Since this inclusion-based approach generates upper bound on the process yield, a new 

approach to the identification of cost-effective implementation of maximum attainable 

targets for yield has presented. In this regard, a mathematical program was developed to 

identify the maximum feasible targets using a combination of iterative additions of 

constraints and problem reformulation. Next, cost objectives were employed to identify a 

cost-effectives solution with the details of design and operating variables. Constraint 

convexification was used to improve the quality of the solution towards globability. 

Various forms on non-convex terms were addressed using underestimation techniques. A 
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trade-off procedure between the saving and expenses for yield maximization problem is 

presented. This procedure will be a useful tool for the operating facilities to select the 

level of productivity enhancement to be implemented based on their constraints and 

available resources. A case study was solved to demonstrate the usefulness of the 

developed procedure. In this case study, a detailed solution was globally identified. 

  

6.2 Recommendations for Future Work 

 

The research conducted in this dissertation can be extended to address even broader 

areas. These include: 

 

• Extending the problem to cover multiple objectives such as mitigating 

environmental impact and eliminating/reducing safety issues in addition to the 

objective of maximizing the overall yield. 

• Incorporating the energy integration tasks along with the objective of yield 

maximization. 

• Incorporating the detailed modeling of the whole process and the modeling of the 

individual units such as reactor into the targeting procedure. 

• Incorporating process dynamics and targeting maximum yield under time-based 

disturbances using an integrated approach to design and operation. 
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NOMENCLATURE 

 

A  process targeted fresh feed 

Ai  flow rate of acetaldehyde in stream i, ton/year 

AR  flow rate of acetaldehyde produced in the reactor, ton/year 

a  targeted reactant fed to the reactor 

amax  maximum possible amount of reactant fed to the reactor 

argmin  refers to after recycling and generation minimization  

B  process desired product 

b  reactor product 

bmax  maximum possible amount of reactor product 

BP1  product of multiplying process yield (YP) by ethanol fresh feed (E1) 

BR3  product of multiplying reactor yield (YR) by ethanol fed to the reactor(E3) 

C  process undesired /byproduct 

Ci  cost function for process manipulated parameter i 

CUB  current upper bound of the objective function 

Dreactor  interval inclusion of dreactor 

dreactor  vector of reactor design variables 

Du  permissible values of design degrees of freedom for sink u 

du   vector of design degrees of freedom for sink u 

Efeed  Flow rate of ethanol fed to reactor, ton/year 

Ei  flow rate of ethanol in stream i, ton/year 

ER  flow rate of ethanol generated in the reactor, ton/year 
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f(x)  function of vector x 

F(X)  inclusion of function f over interval X 

FEEDreactor interval inclusion of Feedreactor 

Feedreactor vector of reactor feed conditions 

g  inequality constraint  

Gf  flowrate of fresh feed stream f  

Gp  flowrate of desired product stream p  

iG   flowrate of the input stream i 

ui
G   flowrate of the ith sources entering sink u 

max
iu

G   maximum flowrate of the ith inlet to sink u 

min
iu

G   maximum flowrate of the ith inlet to sink u 

jG   flowrate of output stream j 

h  equality constraint 

i   index for entering source (input stream) 

iu  index for an entering source to sink u 

J  set of real numbers 

j  index for exiting source (output stream) 

uj   index for an exiting source from sink u 

INPUT  set of input streams 

INPUTu set of input streams to sink u 

K  index for targeted components set K 

l  amount of process product lost in terminal streams 
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maxl   maximum possible value of process product losses 

minl   minimum possible amount of process product losses 

L(x)  lower bounding function of continuous and differentiable f(x)  

Mf   molecular weight of reactant f 

Mp   molecular weight of reaction product p 

in
afterN   set of input streams to process after reactor 

in
aheadN   set of input streams to process ahead of reactor 

in
processN   set of input streams to the process 

in
RN   set of input streams to the reactor 

in
uN   set of input streams to sink u 

out
afterN   set of output streams from process after reactor 

out
aheadN   set of output streams from process ahead reactor 

out
processN   set of output streams from the process 

out
recycleN   set of recyclable output streams 

out
wasteN   set of waste output streams 

out
uN   set of output streams from sink u 

Nsinks  total number of sinks 

fNet_Gen  net rate of generation of process fresh feed f 

pNet_Gen  net rate of generation of process desired product p  

fR,Net_Gen  net rate of generation of feed f from reactor R 
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pR,Net_Gen  net rate of generation of desired product p from reactor R 

ku,Net_Gen  net rate of generation of component k in sink u  

OUTPUT set of output streams 

OUTPUTu set of output streams from sink u 

Preactor  interval inclusion of preactor 

preactor  vector of reactor operating variables 

pu  vector of operating degrees of freedom for sink u 

Pu  permissible values of operating degrees of freedom for sink u 

QR  reboiler heat duty, MW 

S  reactor selectivity 

Si  stands for stream i 

Sf   stiochiometric coefficient of reactant f 

Sp   stiochiometric coefficient of reaction product p 

SINKS  set of process unit processing the targeted species 

r   amount of raw material that can be recovered and recycled 

rmax  maximum recoverable amount of raw material 

rmin  minimum recoverable amount of raw material 

RR  reflux ratio 

Tflash  temperature of the flash drum, K 

TR  reactor temperature, K 

Trxr  reactor temperature, K 

U  index for a unit 

Ut(x)  concave function 
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x  real variable, reactor conversion 

xl  lower bound on interval X 

xu  upper bound on interval X 

xf,f  composition of fresh feed f in process main feed stream f 

xi,f  composition of fresh feed f in input stream i 

xi, p  composition of desired product p in input stream i 

xj,f  composition of fresh feed f in output stream j 

xj, p  composition of desired product p in output stream j 

xp,p  composition of desired product p in process desired outlet stream p  

X  interval 

W  interval 

y  real variable 

yl  lower bound on interval Y 

yu  upper bound on interval Y 

kj ,y
u

   Composition of the kth component in the jth outlet stream to sink u 

Y  interval, process yield 

achievableY  achievable process yield 

maxY   maximum process yield 

pY    overall process yield 

RY    reactor yield 

reactorY    reactor yield 

ettY arg   process yield target 
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reactorYield  reactor yield 

reactorYIELD  inclusion function of reactorYield  

Z  interval, objective function 

z  real variable 

 

Greek 

 

�  fraction of feed that reaches reactor, parameter, lagrange multiplier 

maxα   upper bound of feed fraction that reaches reactor 

minα    lower bound of feed fraction that reaches reactor 

�  fraction of recoverable desired product 

γ   fraction of recoverable raw material 

ξ   path operator for recoverable raw material as defined by Eq. (4.25) 

Ξ   inclusion function of ξ  

Φ   inclusion function of φ  

minΦ   upper bound of Φ  

φ   path operator for product losses as defined by Eq. (4.20) 

ψ   Path operator for reactor feed as defined by Eq. (4.11) 

Ψ   inclusion function of ψ  

maxΨ    upper bound of inclusion function Ψ  

ω    path operator for reactor yield as defined by Eq. (4.17) 

maxω   upper bound of ω  
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minω   lower bound of ω  

Ω   inclusion function of ω  

 

Subscripts 

 

f  index for feed 

i  index for entering stream 

j  index for exiting stream 

k  index for component 

p  index for product 

R  index for reactor 

u  index for sink 

 

Superscripts 

 

in   index for entering stream 

l  lower bound of an interval 

max  index for maximum  

min  index for minimum 

out  index for exiting stream 

u  upper bound of an interval 
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Abbreviations 

 

BB  branch and bound method 

BT  product of bilinear term 

DFO  derivative free optimization 

FT  product of fractional term 

ECP  extended cutting plane method 

EISEN  energy-induced separation network 

ESA  energy-separating agent 

EIWAMIN energy-induced waste minimization network 

GA  genetic algorithm  

GBC  generalized branch-and-cut method 

GBD  generalized benders decomposition method 

GRG  generalized reduced gradient method 

HEN  heat exchanger network 

HISEN  heat-induced separation network 

HIWAMIN heat-induced waste minimization network 

IP  integer programming 

KKT  karush-kuhn tucker conditions 

LCP  linear complementary programming 

LP  linear programming 

MEN  mass exchanger network 

MILP  mixed-integer linear programming 
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MINLP mixed-integer nonlinear programming 

MIQP  mixed-integer quadratic programming 

MPC  model predictive control 

NLP  nonlinear programming 

OA  outer approximation method 

QP  quadratic programming 

SA  simulated annealing 

SP  semidefinite programming 

SQP  successive quadratic programming 

WIN  waste interception and allocation network 

TT  product of trilinear term 
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APPENDIX A 

LINGO PROGRAM FOR CHAPTER V CASE STUDY 

(ORIGINAL FORMULATION OF YIELD MAXIMIZATION) 

 
A.1 Lingo input code for maximization of acetaldehyde process yield (Original 

formulation) 

 

max = YP; 

YP<=0.955; 

YP = A14/E1; 

E1 + E4 + E6 + E12 = ER + E11 + E18+ E14 + E2+E16 + EW; 

A1 + A4 + A6 + A12 + AR = A11 + A18 + A14 + A2+A16 + AW; 

E15=E17+E18; 

A15=A17+A18; 

A14 = 100000; 

E4 = 0; 

E6 =400; 

E14 =0; 

E16=0; 

E12 =0; 

A1 = 0; 

A2 = 0; 

A4 = 0; 

A6 = 0; 
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A12 = 0; 

A15 = 0; 

YR*E3 = AR; 

YR = 0.33 - 0.0000042*(TR - 580)*(TR - 580); 

TR >= 300; 

TR <= 860; 

ER = (46/44)*AR; 

E5 = E3 - ER + E4; 

ER <= E3; 

EG = EC + E1; 

EG = E2 + E3; 

E9=E14 + E16 + E15; 

E17 = EC + EW; 

A17 = AC + AW; 

AG + A4 + AR = A5 + A2; 

A5 + A6 + A12 = A11 + A18+A16 + A14 + A17; 

Gama = 0.653*@exp(0.085*RR); 

E17= Gama*E15; 

RR>=2.5; 

RR<=5; 

E2= Alfa*EG; 

Alfa = -0.0274*TF + 10.5122; 

TF>=380; 
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TF<=384; 

Beta = 0.14*QR + 0.89; 

A14= Beta*A9; 

A9 = A5 + A6 + A12 - A11; 

A9=A14+A15+A16; 

QR<=0.76; 

QR>=0.55; 

 

A.2 Lingo output code for maximization of acetaldehyde process yield (Original 

formulation) 

 

  Local optimal solution found at iteration:            121 

  Objective value:                                0.9545792 

 

 

                       Variable           Value        Reduced Cost 

                             YP       0.9545792            0.000000 

                            A14        100000.0            0.000000 

                             E1        104758.2            0.000000 

                             E4        0.000000            0.000000 

                             E6        400.0000            0.000000 

                            E12        0.000000            0.000000 

                             ER        104923.2            0.000000 
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                            E11        0.000000           0.9101481E-05 

                            E18        235.0225            0.000000 

                            E14        0.000000            0.000000 

                             E2        0.000000            0.000000 

                            E16        0.000000            0.000000 

                             EW        0.000000           0.9112210E-05 

                             A1        0.000000            0.000000 

                             A4        0.000000            0.000000 

                             A6        0.000000            0.000000 

                            A12        0.000000            0.000000 

                             AR        100361.3            0.000000 

                            A11        0.000000           0.9547697E-05 

                            A18        0.000000           0.9547697E-05 

                             A2        0.000000            0.000000 

                            A16        361.3007            0.000000 

                             AW        0.000000           0.9547697E-05 

                            E15        199602.0            0.000000 

                            E17        199367.0            0.000000 

                            A15        0.000000            0.000000 

                            A17        0.000000            0.000000 

                             YR       0.3300000            0.000000 

                             E3        304125.2            0.000000 

                             TR        579.9999            0.000000 
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                             E5        199202.0            0.000000 

                             EG        304125.2            0.000000 

                             EC        199367.0            0.000000 

                             E9        199602.0            0.000000 

                             AC        0.000000            0.000000 

                             AG        0.000000            0.000000 

                             A5        100361.3            0.000000 

                           GAMA       0.9988225            0.000000 

                             RR        5.000000            0.000000 

                           ALFA        0.000000            2.771252 

                             TF        383.6569            0.000000 

                           BETA       0.9964000            0.000000 

                             QR       0.7600000            0.000000 

                             A9        100361.3            0.000000 

 

                            Row    Slack or Surplus      Dual Price 

                              1       0.9545792            1.000000 

                              2       0.4207928E-03        0.000000 

                              3        0.000000            1.000000 

                              4        0.000000          -0.9101481E-05 

                              5        0.000000          -0.9547697E-05 

                              6        0.000000           0.9101481E-05 

                              7        0.000000            0.000000 
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                              8        0.000000          -0.3640064E-07 

                              9        0.000000           0.9101481E-05 

                             10        0.000000           0.9101481E-05 

                             11        0.000000          -0.9101481E-05 

                             12        0.000000          -0.9101481E-05 

                             13        0.000000           0.9101481E-05 

                             14        0.000000           0.9547697E-05 

                             15        0.000000          -0.9547697E-05 

                             16        0.000000           0.9547697E-05 

                             17        0.000000           0.9547697E-05 

                             18        0.000000           0.9547697E-05 

                             19        0.000000           0.9547698E-05 

                             20        0.000000          -0.3251280E-07 

                             21        0.000000           0.9887960E-02 

                             22        279.9999            0.000000 

                             23        280.0001            0.000000 

                             24        0.000000          -0.9101481E-05 

                             25        0.000000            0.000000 

                             26        199202.0            0.000000 

                             27        0.000000           0.1072922E-07 

                             28        0.000000          -0.1072922E-07 

                             29        0.000000            0.000000 

                             30        0.000000          -0.1072922E-07 
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                             31        0.000000            0.000000 

                             32        0.000000            0.000000 

                             33        0.000000            0.000000 

                             34        0.000000            1.818815 

                             35        0.000000           0.9112210E-05 

                             36        2.500000            0.000000 

                             37        0.000000           0.1544173 

                             38        0.000000          -0.9112210E-05 

                             39        0.000000            0.000000 

                             40        3.656934            0.000000 

                             41       0.3430657            0.000000 

                             42        0.000000           0.9616814 

                             43        0.000000           0.9582193E-05 

                             44        0.000000            0.000000 

                             45        0.000000           0.9547697E-05 

                             46        0.000000           0.1346354 

                             47       0.2100000            0.000000 
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APPENDIX B 

LINGO PROGRAM FOR CHAPTER V CASE STUDY 

(CONVEXIFIED FORMULATION OF YIELD MAXIMIZATION) 

 
 

B.1 Lingo input code for maximization of acetaldehyde process yield (convexified 

formulation case) 

 

max = YP; 

YP<=.955; 

BP1 = A14; 

E1 + E4 + E6 + E12 = ER + E11 + E18+ E14 + E2+E16 + EW; 

A1 + A4 + A6 + A12 + AR = A11 + A18 + A14 + A2+A16 + AW; 

E15=E17+E18; 

A15=A17+A18; 

A14 = 100000; 

E4 = 0; 

E6 =400; 

E14 =0; 

E16=0; 

E12 =0; 

A1 = 0; 

A2 = 0; 

A4 = 0; 
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A6 = 0; 

A12 = 0; 

A15 = 0; 

BR3 = AR; 

YR = 0.33 - 0.0000042*(TR - 580)*(TR - 580); 

TR >= 300; 

TR <= 860; 

ER = (46/44)*AR; 

E5 = E3 - ER + E4; 

ER <= E3; 

EG = EC + E1; 

EG = E2 + E3; 

E9=E14 + E16 + E15; 

E17 = EC + EW; 

A17 = AC + AW; 

AG + A4 + AR = A5 + A2; 

A5 + A6 + A12 = A11 + A18+A16 + A14 + A17; 

Gama = 0.653*@exp(0.085*RR); 

E17= Gama*E15; 

RR>=2.5; 

RR<=5; 

E2= Alfa*EG; 

Alfa = -0.0274*TF + 10.5122; 
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TF>=380; 

TF<=384; 

Beta = 0.14*QR + 0.89; 

A14= Beta*A9; 

A9 = A5 + A6 + A12 - A11; 

A9=A14+A15+A16; 

QR<=0.76; 

QR>=0.55; 

YR>=0.3; 

YR<=.35; 

E3>=0; 

E3<=350000; 

BR3>=0.3*E3+350*YR; 

BR3>=0.35*E3+350000*YR-122500; 

BR3<=.35*E3; 

BR3<=0.3*E3+350000*YR-105000; 

YP>=0; 

YP<=0.955; 

E1>=0; 

E1<=250000; 

BP1>=0; 

BP1>=0.955*E1+250000*YP-238750; 

BP1<=0.955*E1; 
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BP1<=250000*YP; 

B.2 Lingo output code for maximization of acetaldehyde process yield (convexified 

formulation case) 

  Local optimal solution found at iteration:             18 

  Objective value:                                0.9548443 

 

 

                       Variable           Value        Reduced Cost 

                             YP       0.9548443            0.000000 

                            BP1        100000.0            0.000000 

                            A14        100000.0            0.000000 

                             E1        104752.8            0.000000 

                             E4        0.000000            0.000000 

                             E6        400.0000            0.000000 

                            E12        0.000000            0.000000 

                             ER        104923.2            0.000000 

                            E11        0.000000           0.3815502E-05 

                            E18        229.6210            0.000000 

                            E14        0.000000            0.000000 

                             E2        0.000000            0.000000 

                            E16        0.000000            0.000000 

                             EW        0.000000           0.3820000E-05 

                             A1        0.000000            0.000000 
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                             A4        0.000000            0.000000 

                             A6        0.000000            0.000000 

                            A12        0.000000            0.000000 

                             AR        100361.3            0.000000 

                            A11        0.000000           0.4003927E-05 

                            A18        0.000000           0.4003927E-05 

                             A2        0.000000            0.000000 

                            A16        361.3007            0.000000 

                             AW        0.000000           0.4003927E-05 

                            E15        195014.5            0.000000 

                            E17        194784.9            0.000000 

                            A15        0.000000            0.000000 

                            A17        0.000000            0.000000 

                            BR3        100361.3            0.000000 

                             YR       0.3300000            0.000000 

                             TR        579.9967            0.000000 

                             E5        194614.5            0.000000 

                             E3        299537.7            0.000000 

                             EG        299537.7            0.000000 

                             EC        194784.9            0.000000 

                             E9        195014.5            0.000000 

                             AC        0.000000            0.000000 

                             AG        0.000000            0.000000 
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                             A5        100361.3            0.000000 

                           GAMA       0.9988225            0.000000 

                             RR        5.000000            0.000000 

                           ALFA        0.000000            1.144234 

                             TF        383.6569            0.000000 

                           BETA       0.9964000            0.000000 

                             QR       0.7600000            0.000000 

                             A9        100361.3            0.000000 

 

                            Row    Slack or Surplus      Dual Price 

                              1       0.9548443            1.000000 

                              2       0.1556920E-03        0.000000 

                              3        0.000000           0.4000000E-05 

                              4        0.000000          -0.3815502E-05 

                              5        0.000000          -0.4003927E-05 

                              6        0.000000           0.3815502E-05 

                              7        0.000000            0.000000 

                              8        0.000000          -0.8018393E-05 

                              9        0.000000           0.3815502E-05 

                             10        0.000000           0.3815502E-05 

                             11        0.000000          -0.3815502E-05 

                             12        0.000000          -0.3815502E-05 

                             13        0.000000           0.3815502E-05 
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                             14        0.000000           0.4003927E-05 

                             15        0.000000          -0.4003926E-05 

                             16        0.000000           0.4003927E-05 

                             17        0.000000           0.4003927E-05 

                             18        0.000000           0.4003927E-05 

                             19        0.000000           0.4003927E-05 

                             20        0.000000          -0.1499294E-07 

                             21        0.000000           0.5247528E-02 

                             22        279.9967            0.000000 

                             23        280.0033            0.000000 

                             24        0.000000          -0.3815502E-05 

                             25        0.000000            0.000000 

                             26        194614.5            0.000000 

                             27        0.000000           0.4497881E-08 

                             28        0.000000          -0.4497881E-08 

                             29        0.000000            0.000000 

                             30        0.000000          -0.4497881E-08 

                             31        0.000000            0.000000 

                             32        0.000000            0.000000 

                             33        0.000000            0.000000 

                             34        0.000000           0.7449554 

                             35        0.000000           0.3820000E-05 

                             36        2.500000            0.000000 
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                             37        0.000000           0.6324665E-01 

                             38        0.000000          -0.3820000E-05 

                             39        0.000000            0.000000 

                             40        3.656934            0.000000 

                             41       0.3430657            0.000000 

                             42        0.000000           0.4032912 

                             43        0.000000           0.4018393E-05 

                             44        0.000000            0.000000 

                             45        0.000000           0.4003927E-05 

                             46        0.000000           0.5646076E-01 

                             47       0.2100000            0.000000 

                             48       0.3000000E-01        0.000000 

                             49       0.2000000E-01        0.000000 

                             50        299537.7            0.000000 

                             51        50462.33            0.000000 

                             52        10384.50            0.000000 

                             53        2523.117            0.000000 

                             54        4476.883            0.000000 

                             55        0.000000           0.1499294E-07 

                             56       0.9548443            0.000000 

                             57       0.1556920E-03        0.000000 

                             58        104752.8            0.000000 

                             59        145247.2            0.000000 
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                             60        100000.0            0.000000 

                             61        0.000000          -0.4000000E-05 

                             62        38.92301            0.000000 

                             63        138711.1            0.000000 
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APPENDIX C 

LINGO PROGRAM FOR CHAPTER V CASE STUDY 

(COST MINIMIZATION) 

 
C.1 Lingo input code for cost minimization of acetaldehyde process 

 

min=C1+C2+C3+C4; 

BP1 = A14; 

YP>=0.9545; 

E1 + E4 + E6 + E12 = ER + E11 + E18+ E14 + E2+E16 + EW; 

A1 + A4 + A6 + A12 + AR = A11 + A18 + A14 + A2+A16 + AW; 

E15=E17+E18; 

A15=A17+A18; 

A14 = 100000; 

E4 = 0; 

E6 =400; 

E14 =0; 

E16=0; 

E12 =0; 

A1 = 0; 

A2 = 0; 

A4 = 0; 

A6 = 0; 

A12 = 0; 
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A15 = 0; 

BR3 = AR; 

YR = 0.33 - 0.0000042*(TR - 580)*(TR - 580); 

TR >=300; 

TR <= 860; 

ER = (46/44)*AR; 

E5 = E3 - ER + E4; 

ER <= E3; 

EG = EC + E1; 

EG = E2 + E3; 

E9=E14 + E16 + E15; 

E17 = EC + EW; 

A17 = AC + AW; 

AG + A4 + AR = A5 + A2; 

A5 + A6 + A12 = A11 + A18+A16 + A14 + A17; 

Gama = 0.653*@exp(0.085*RR); 

E17= Gama*E15; 

RR>=2.5; 

RR<=5; 

E2= Alfa*EG; 

Alfa = -0.0274*TF + 10.5122; 

TF>=380; 

TF<=384; 
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Beta = 0.14*QR + 0.89; 

A14= Beta*A9; 

A9 = A5 + A6 + A12 - A11; 

A9=A14+A15+A16; 

QR<=0.76; 

QR>=0.55; 

C1=3570*(TR-500); 

C2=6400*(RR-2.5); 

C3=2100*(TF-380); 

C4=160*(QR-0.55); 

YR>=0.3; 

YR<=.35; 

E3>=0; 

E3<=350000; 

BR3>=0.3*E3; 

BR3>=0.35*E3+350000*YR-122500; 

BR3<=.35*E3; 

BR3<=0.3*E3+350000*YR-105000; 

YP>=0; 

YP<=0.955; 

E1>=0; 

E1<=250000; 

BP1>=0; 
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BP1>=0.955*E1+250000*YP-238750; 

BP1<=0.955*E1; 

BP1<=250000*YP; 

 

C.2 Lingo output code for cost minimization of acetaldehyde process 

 

Local optimal solution found at iteration:             57 

  Objective value:                                 23695.44 

 

 

                       Variable           Value        Reduced Cost 

                             C1        0.000000           0.9998967 

                             C2        15982.28            0.000000 

                             C3        7679.562            0.000000 

                             C4        33.60000            0.000000 

                            BP1        100000.0            0.000000 

                            A14        100000.0            0.000000 

                             YP       0.9545000            0.000000 

                             E1        104842.9            0.000000 

                             E4        0.000000            0.000000 

                             E6        400.0000            0.000000 

                            E12        0.000000            0.000000 

                             ER        104923.2            0.000000 
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                            E11        0.000000           0.3326086 

                            E18        319.7540            0.000000 

                            E14        0.000000            0.000000 

                             E2        0.000000            0.000000 

                            E16        0.000000            0.000000 

                             EW        0.000000           0.3330791 

                             A1        0.000000            0.000000 

                             A4        0.000000            0.000000 

                             A6        0.000000            0.000000 

                            A12        0.000000            0.000000 

                             AR        100361.3            0.000000 

                            A11        0.000000           0.3492955 

                            A18        0.000000           0.3492955 

                             A2        0.000000            0.000000 

                            A16        361.3007            0.000000 

                             AW        0.000000           0.3492955 

                            E15        226374.5            0.000000 

                            E17        226054.7            0.000000 

                            A15        0.000000            0.000000 

                            A17        0.000000            0.000000 

                            BR3        100361.3            0.000000 

                             YR       0.3031200            0.000000 

                             TR        500.0000            0.000000 
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                             E5        225974.5            0.000000 

                             E3        330897.7            0.000000 

                             EG        330897.7            0.000000 

                             EC        226054.7            0.000000 

                             E9        226374.5            0.000000 

                             AC        0.000000            0.000000 

                             AG        0.000000            0.000000 

                             A5        100361.3            0.000000 

                           GAMA       0.9985874            0.000000 

                             RR        4.997231            0.000000 

                           ALFA        0.000000            33572.77 

                             TF        383.6569            0.000000 

                           BETA       0.9964000            0.000000 

                             QR       0.7600000            0.000000 

                             A9        100361.3            0.000000 

 

                            Row    Slack or Surplus      Dual Price 

                              1        23695.44           -1.000000 

                              2        0.000000           0.3487739 

                              3        0.000000           -87193.49 

                              4        0.000000          -0.3326086 

                              5        0.000000          -0.3492955 

                              6        0.000000           0.3326086 
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                              7        0.000000            0.000000 

                              8        0.000000          -0.1783528E-02 

                              9        0.000000           0.3326086 

                             10        0.000000           0.3326086 

                             11        0.000000          -0.3326087 

                             12        0.000000          -0.3326087 

                             13        0.000000           0.3326086 

                             14        0.000000           0.3492955 

                             15        0.000000          -0.3492955 

                             16        0.000000           0.3492955 

                             17        0.000000           0.3492955 

                             18        0.000000           0.3492955 

                             19        0.000000           0.3492955 

                             20        0.000000          -0.1568309E-02 

                             21        0.000000            548.9081 

                             22        200.0000            0.000000 

                             23        360.0000            0.000000 

                             24        0.000000          -0.3326086 

                             25        0.000000            0.000000 

                             26        225974.5            0.000000 

                             27        0.000000           0.4704927E-03 

                             28        0.000000          -0.4704927E-03 

                             29        0.000000            0.000000 
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                             30        0.000000          -0.4704927E-03 

                             31        0.000000            0.000000 

                             32        0.000000            0.000000 

                             33        0.000000            0.000000 

                             34      -0.2764131E-07        75400.62 

                             35      -0.1252547E-01       0.3330791 

                             36        2.497231            0.000000 

                             37       0.2769135E-02        0.000000 

                             38        0.000000          -0.3330791 

                             39        0.000000           -76642.34 

                             40        3.656934            0.000000 

                             41       0.3430657            0.000000 

                             42        0.000000            35182.41 

                             43        0.000000           0.3505575 

                             44        0.000000            0.000000 

                             45        0.000000           0.3492955 

                             46        0.000000            4765.537 

                             47       0.2100000            0.000000 

                             48        0.000000          -0.1033237E-03 

                             49        0.000000           -1.000000 

                             50        0.000000           -1.000000 

                             51        0.000000           -1.000000 

                             52       0.3120000E-02        0.000000 
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                             53       0.4688000E-01        0.000000 

                             54        330897.7            0.000000 

                             55        19102.33            0.000000 

                             56        1092.000            0.000000 

                             57        955.1166            0.000000 

                             58        15452.88            0.000000 

                             59        0.000000           0.1568309E-02 

                             60       0.9545000            0.000000 

                             61       0.5000000E-03        0.000000 

                             62        104842.9            0.000000 

                             63        145157.1            0.000000 

                             64        100000.0            0.000000 

                             65        0.000000          -0.3487739 

                             66        125.0000            0.000000 

                             67        138625.0            0.000000 
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