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Abstract

In this thesis we introduce new models and learning algorithms for the Random

Neural Network (RNN), and we develop RNN-based and other approaches for the

solution of emergency management optimisation problems.

With respect to RNN developments, two novel supervised learning algorithms are

proposed. The first, is a gradient descent algorithm for an RNN extension model

that we have introduced, the RNN with synchronised interactions (RNNSI), which

was inspired from the synchronised firing activity observed in brain neural circuits.

The second algorithm is based on modelling the signal-flow equations in RNN as a

nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory

quasi-Newton algorithm specifically designed for the RNN case.

Regarding the investigation of emergency management optimisation problems,

we examine combinatorial assignment problems that require fast, distributed and

close to optimal solution, under information uncertainty. We consider three dif-

ferent problems with the above characteristics associated with the assignment of

emergency units to incidents with injured civilians (AEUI), the assignment of as-

sets to tasks under execution uncertainty (ATAU), and the deployment of a robotic

network to establish communication with trapped civilians (DRNCTC).

AEUI is solved by training an RNN tool with instances of the optimisation prob-

lem and then using the trained RNN for decision making; training is achieved using

the developed learning algorithms. For the solution of ATAU problem, we intro-

duce two different approaches. The first is based on mapping parameters of the

optimisation problem to RNN parameters, and the second on solving a sequence of

minimum cost flow problems on appropriately constructed networks with estimated

arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer

linear programming formulation, which is based on network flows. Finally, we de-

sign and implement distributed heuristic algorithms for the deployment of robots

when the civilian locations are known or uncertain.
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1. Introduction

The main aim of this thesis is the investigation of different aspects of the Random

Neural Network (RNN) and the development of corresponding algorithms for the

solution of combinatorial optimisation problems. Specifically, we consider assign-

ment problems which involve a number of agents, the decision makers, that need to

act in order to optimise a common objective function subject to a number of global

constraints. The examined problems have a number of challenging characteristics

that should be addressed by any developed algorithms:

• Real-time solution: By “real-time” we mean that the time required by the

optimisation algorithm to solve the problem is negligible compared to the time

needed to execute any action imposed by the solution. For example, if the

problem considered is the dispatching of ambulances to locations of accidents,

then it is sufficient for the algorithm to provide a solution in milliseconds or

a few seconds, since this time is negligible compared to the time that will

be consumed by any of the ambulances to reach an accident. Hence, any

developed algorithm should be fast and desirably of polynomial computational

complexity to ensure that it will be executed in real-time for a given problem.

• Hard Problems: The considered problems are complex and of combinato-

rial nature, resulting in NP-hard optimisation problems with exponentially

increasing search spaces, which almost surely cannot be optimally solved with

polynomial algorithms. As a result, the developed algorithms should provide

close to optimal solutions despite being polynomial.

• Imperfect Information: In many cases, complete information about the

problem dealt with cannot be collected, so that decision making has to rely on

limited information. Limitations can occur in various forms, such as missing or

imprecise data, ambiguity, or even uncertainty in the sense that we may only

know the probability distribution rather than the actual value of particular
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data. Hence, any developed algorithm should be able to appropriately handle

these limitations by incorporating uncertainty into the model and utilising

the available information in the best possible way.

• No central control: Having no central control is highly desirable for several

reasons: (a) there is no central point of failure, (b) there is no communication

bottleneck as there is no need to send all information to a central control

unit, (c) local information can be incorporated into the decisions of individual

agents.

1.1. Application context: disaster management

Problems with the aforementioned characteristics naturally arise in disaster or

emergency management, which deals with physical and man-made incidents that

threaten life, property, operations, or the environment. The process of disaster

management involves four phases: (1) planning to reduce the effect or the risk of

disasters (mitigation), (2) developing plans of actions to be used once a disaster

occurs (preparedness), (3) responding to such situations (response) and (4) restor-

ing the affected environments to their original state (recovery). The main goal of

disaster management is to minimise the human casualties as well as the property

and environmental damages in an emergency event [175, 142].

Perhaps the most challenging of the four phases is the response phase, when

the emergency services have to deal with the effects of the disaster in real-time,

under extremely difficult conditions with imperfect information and usually dis-

rupted communications. The following large-scale disaster scenario demonstrates a

situation where optimisation problems with such characteristics arise:

A major earthquake has struck a large city during the morning hours of a week-

day. As a result, several buildings have partially or fully collapsed and there are

many injured civilians spatially distributed around the city. These civilians have

to be found and collected by emergency units in the least possible time, taking

into account the severity of their injuries, the limited number and capacity of the

emergency units, as well as the fact that a number of roads have been blocked. Also

a number of civilians have been trapped inside the ruins of the buildings so that

search and rescue personnel need to identify their locations, assess their condition,

and launch a rescue operation trying to maximise the number of collected civilians,
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given that each one of them can only survive for a limited amount of time. In ad-

dition, multiple fires have broken out around the city and need to be quickly dealt

with by the fire-brigade taking into consideration the potential effect of each one

of the fires, the weather conditions, and the scarcity of resources. To facilitate the

rescue operations, the roads need to be unblocked starting from roads that accom-

modate more traffic or that significantly increase the connectivity of the city. The

work of the emergency services is further impaired by the fact that the communi-

cation network has been disrupted, so that affected people cannot easily report to

them incidents that require their attention. As the amount of information collected

by the emergency services is limited, their actions need to also rely on a priori

known information. For example, if a number of buildings have collapsed, then the

operations centre can take into consideration probability distributions associated

with the number of people expected to be in each building, so as to prioritise their

search and rescue operations.

The above scenario illustrates that in the event of a disaster, several complex

optimisation problems with imperfect information may arise, requiring real-time

and distributed decision making. In this thesis we will particularly look into three

specific combinatorial optimisation problems of this nature, and develop algorithms

for their solution mainly associated with the RNN. These problems are discussed

in more detail in the next section.

1.2. Review of examined problems

In this thesis we will examine three different combinatorial problems that arise in

emergency management:

1. Assignment of emergency units to incidents (AEUI): In this problem, a num-

ber of incidents have taken place simultaneously and there are a number of

injured civilians at each location. At the time of the incidents, a number

of emergency units are spatially distributed around the area, each having a

different capacity to collect a number of those civilians, as well as a different

response time to each of the incidents. The objective is to collect as many of

the injured as possible and also minimise their total response time.

2. Asset-task assignment under execution uncertainty (ATAU): We investigate a
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general problem associated with the assignment of assets to tasks when each

asset can potentially execute any of the tasks, but assets execute tasks with a

probabilistic outcome of success. There is a cost associated with each possible

assignment of an asset to a task, and if a task is not executed there is also

a cost associated with the non-execution of the task. Thus any assignment

of assets to tasks will result in an expected overall cost which we wish to

minimise. Assets can represent rescuers whose task is to collect a number of

spatially distributed injured civilians. Each rescuer can collect at most one

injured but it is uncertain whether s/he will be able to accomplish his/her

task either because of difficulty in accessing the location of the injured or

because s/he cannot handle the injured alone.

3. Deployment of a wireless ad hoc robotic network for the connection of trapped

civilians (DRNCTC): During a disaster, emergency response operations can

benefit from the establishment of a wireless ad hoc network. We investigate

the use of autonomous robots that move inside a disaster area and estab-

lish a network for two-way communication between trapped civilians with a

priori known or uncertain locations and an operations centre. The civilians

may have uncertain locations, in the sense that we only known a probability

distribution describing the number of civilians at any possible position. The

specific problem considered is to find optimal locations for the robots so that

we maximise the number of civilians connected to the network, assuming that

each civilian carries a short-range communication device. This problem is in

close connection to the other two, as its solution can provide the means for

locating and assessing the health condition of the injured civilians.

1.3. Summary of contributions

The contributions of this thesis can be divided into two main categories: (a) theoret-

ical developments for the RNN and (b) mathematical formulation of the emergency

management problems posed above and development of algorithms for their so-

lution. The proposed algorithms are primarily based on RNN, but we have also

developed network flow and greedy heuristic approaches. Specifically, the contribu-

tions of this thesis are:
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a. Theoretical developments for RNN

i. We have introduced RNNSI model, an extension of the RNN that incorpo-

rates synchronous interactions and developed a gradient descent learning

algorithm of the same computational complexity as the corresponding

RNN algorithm.

ii. We have developed a new supervised learning algorithm for the RNN, called

RNN-NNLS, that can be used both for learning and weight initialisation.

The core of the algorithm is the solution of a nonnegative least squares

(NNLS) problem formulated by approximating the RNN equations. So-

lution to the NNLS problem is accomplished by a limited-memory quasi-

Newton algorithm. We have also derived efficient analytical expressions

for the computation of the objective and gradient NNLS functions, which

speed up the procedure by up to fifty times.

iii. We have conducted the first extended survey on RNN, since its discovery

two decades ago.

b. Investigation of emergency management optimisation problems

i. We have proposed a supervised learning methodology for the real-time solu-

tion of hard combinatorial optimisation problems when distributed and

consistent decision making is necessary. In relation to that we have ex-

amined the AEUI problem using the developed RNNSI and RNN-NNLS

learning algorithms.

ii. For the solution of ATAU problem, we have developed an RNN param-

eter association approach, in which the parameters of the optimisation

problem are associated with parameters of the RNN model. In addition,

we have proposed the use of network flow algorithms that are based on

solving a sequence of minimum cost flow problems on appropriately con-

structed networks with estimated arc costs and introduced three different

estimation schemes. We have also designed an approach for obtaining

tight lower bounds to the optimal solution based on a piecewise linear

approximation of the considered problem.

iii. We have introduced the problem of maximising the number of connected

trapped civilians to a wireless ad-hoc robotic network when the locations
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of the civilians are either a priori known or uncertain. For its optimal

solution, we have derived a mixed-integer linear programming formula-

tion based on network flows. We have also designed and implemented

distributed heuristic algorithms based on clustering possible locations of

civilians both for certain and uncertain civilian locations.

1.4. Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2 we survey the

research work on the RNN, including the description and mathematical properties of

the original model, other extensions that incorporate additional signal capabilities,

RNN-related learning algorithms, as well as applications of the model with emphasis

on those related to the solutions of combinatorial optimisation problems.

In Chapter 3, we present the developed RNNSI and RNN-NNLS learning al-

gorithms. First, we describe the motivation for this work and discuss associated

research. In the next section, we present the RNNSI learning algorithm. We start

with a discussion of the model’s biological relevance and a description of its mathe-

matical properties. Then, we derive the main steps of the algorithm; the details of

the derivation are included in Appendix A. The section finishes with an extensive

analysis of its computational complexity that results in efficient modifications of

the algorithm. In the subsequent section, we discuss the details of the RNN-NNLS

algorithm. Firstly, we illustrate how to obtain the NNLS formulation from the RNN

supervised learning problem when all neurons have desired output values. Next,

we develop a limited-memory quasi-Newton algorithm for the solution of the NNLS

problem, and present the RNN-NNLS algorithm that can be employed for the solu-

tion of problems involving both output and non-output neurons. Before discussing

the computational complexity of RNN-NNLS, we outline two approaches for the

efficient evaluation of the objective and gradient NNLS functions, by manipulating

the special structure of the examined problem; the analysis of the corresponding

expressions is given in Appendix B. The final section is a summary of the chapter’s

outcomes.

The evaluation of the developed supervised learning algorithms is undertaken in

Chapter 4, for the solution of the optimisation problem associated with the assign-

ment of emergency units to incidents. We start with the description and mathemat-
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ical formulation of the problem followed by the proposed solution approach, which

is based on training a neural network tool to act as an “oracle” for decision making.

For this purpose, the RNN and RNNSI models are employed and trained using the

learning algorithms developed in Chapter 3. In the remainder of the chapter an

extensive evaluation is carried out to show the learning ability of the proposed al-

gorithms as well as their efficiency in solving the investigated problem. In addition

to the performance evaluation of RNNSI and RNN-NNLS learning algorithms, we

examine the efficiency of RNN-NNLS as a weight initialisation method and finish

with the main conclusions of the chapter.

In Chapter 5, we examine the asset-task assignment problem under execution

uncertainty. We start with the description and mathematical formulation of the

problem, followed by a discussion of other related problems. Then, we describe two

polynomial deterministic approaches for its solution: (a) an RNN algorithm based

on associating parameters of the optimisation problem with parameters of RNN,

and (b) a minimum cost flow algorithm that is based on estimating the cost values

of specific arcs in the flow network. We also develop a piecewise linear approach

for obtaining tight lower bounds to the studied problem, before examining the

performance of the proposed approaches and concluding.

Chapter 6 studies the problem of deploying a wireless ad-hoc robotic network for

the connection of trapped civilians. First, we discuss the motivation for the solution

of this problem followed by a description of related research topics. Then, we give

a formal description of the problem with the assumptions made and formulate it as

a mixed-integer mathematical program that can be solved by a central processing

unit. Apart from the centralised approach we also describe three versions of a dis-

tributed heuristic algorithm for its solution. The first deals with the problem when

the locations of the civilians are a priori known. The second is a modified version

of the first one, which tackles the problem with uncertain civilian locations using

a risk measure for economic theory, called expected shortfall. The third version is

a modification of the second one, with which the deployment of robots relies on

an appropriately constructed minimum spanning tree, aiming to reduce the connec-

tion time of the civilians and the total energy spent by the robots. Performance

evaluation of the developed algorithms in this section is undertaken throughout the

chapter with respect to the centralised algorithm and between the different versions

of the distributed heuristic.
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Finally, in Chapter 7 we summarise the main contributions of this thesis and

discuss possibilities for exploitation. The thesis finishes by providing directions for

future work for the core research chapters.
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2. The random neural network

This chapter attempts to briefly and comprehensively present the large amount

of research published on the RNN since its introduction two decades ago. Our

intention is to review the theory and present different RNN tools that can be utilised

for the solution of practical problems.

The chapter is organised as follows: In section 2.1, an introduction on RNN is

provided along with its main attractive features. The mathematical model and

its steady-state properties are described in Section 2.2, while extension models are

discussed in Section 2.3. Following is a presentation of the RNN learning algorithms,

as well as algorithms proposed for RNN extension models. The RNN applications

are summarised in Section 2.5, with particular emphasis on the approaches used for

the solution of optimisation problems. The chapter concludes in section 2.6.

2.1. Introduction

The Random Neural Network (RNN) is a neural network model inspired by the

spiking behaviour of biophysical neurons [56]. When a biophysical neuron is excited,

it transmits a train of signals, called action potentials or spikes, along its axon to

either excite or inhibit the receiving neurons. The combined effect of excitatory and

inhibitory inputs changes the potential level of the receiving neuron and determines

whether it will become excited. In RNN these signals are represented as excitatory

and inhibitory spikes of amplitude +1 and -1 respectively, that are transmitted

either from other neurons or from the outside world. Each neuron can fire only

when its potential is strictly positive. The potential is equal to the number of

positive spikes received that have not yet been fired or cancelled by inhibitory

spikes.

RNN has attracted a lot of attention in the scientific community. Various aspects

of it have been explored, while several extension models and learning algorithms
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have been developed. In addition, RNN has found widespread application in di-

verse areas of engineering and physical sciences. The success of the model can be

attributed to its unique features which include the following [82]:

• Although it is a recurrent neural network, its steady-state probability distri-

bution is described by an analytical equation that can be easily and efficiently

computed without the use of Monte Carlo methods

• Its standard learning algorithm has low complexity and strong generalisation

capacity even for a relatively small training data set

• It represents in a closer manner the signals transmitted in a biological neuronal

network than other Artificial Neural Networks (ANN)

• It can be easily implemented in both software and hardware since its neurons

can be represented by simple counters

• There is a direct analogy between the RNN and the connectionist ANN

• The neuron potential is represented as an integer rather than a binary variable

resulting in a more detailed system-state description

• It is a universal approximator for bounded continuous functions

• The stochastic excitatory and inhibitory interactions in the network make it

an excellent modelling tool for various interacting entities

2.2. The random neural network model

In this section, a mathematical description and the main results of the standard

random neural network model are given. We also discuss the stability of the network

as well as its analogy to connectionist ANN.

2.2.1. Mathematical model

RNN is a recurrent network of N fully connected neurons which exchange positive

and negative signals in the form of unit amplitude spikes. At any time t, the state

of neuron i is described by its signal potential ki(t) which is a nonnegative integer
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associated with the accumulation of positive signals at the neuron. We say that

neuron i is excited when ki(t) > 0, else if ki(t) = 0 then it is idle or quiescent. A

closely related parameter is qi(t) = Pr[ki(t) > 0] ≤ 1, which is the neuron excitation

probability.

When neuron i is excited, it can randomly fire according to the exponential

distribution with rate ri resulting in the reduction of its potential by 1. The fired

spike either reaches neuron j as a positive signal with probability p+(i, j) or as

a negative signal with probability p−(i, j), or it departs from the network with

probability d(i). These probabilities must sum up to one yielding

N∑
j=1

[
p+(i, j) + p−(i, j)

]
+ d(i) = 1, ∀i (2.1)

Hence, when neuron i is excited, it fires positive and negative signals to neuron

j with rates:

w+(i, j) = rip
+(i, j) ≥ 0 (2.2)

w−(i, j) = rip
−(i, j) ≥ 0 (2.3)

Combining Eqs. (2.1), (2.2) and (2.3) an expression which associates ri with w
+(i, j)

and w−(i, j) is derived:

ri = (1− d(i))−1

N∑
j=1

[w+(i, j) + w−(i, j)] (2.4)

Positive and negative signals can also arrive from the outside world according to

Poisson processes of rates Λi and λi respectively. Positive signals have an excitatory

effect in the sense that they increase the signal potential of neuron j by 1. Contrary,

negative signals have an inhibitory effect and cancel a positive spike if kj(t) > 0,

while if kj(t) = 0 the negative signal has no effect.

2.2.2. Network behaviour in steady-state

The state of the network is described by the vector of signal potentials at time t,

k(t) = [k1(t), ..., kN(t)]. Due to the stochastic nature of the network we are in-

terested in determining the stationary probability distribution π(k) = lim
t→∞

π(k, t)=
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lim
t→∞

Pr[k(t) = k] which can be described by the steady-state Chapman-Kolmogorov

equations for continuous time Markov chain systems [56]:

π(k)
N∑
i=1

[
Λi + (λi + ri)1{ki>0}

]
=

N∑
i=1

{
π
(
k+
i

)
rid(i) + π

(
k−
i

)
Λi1{ki>0} + π

(
k+
i

)
λi

+
N∑
j=1

[
π
(
k+−
ij

)
rip

+(i, j)1{kj>0} + π
(
k++
ij

)
rip

−(i, j)

+π
(
k+
i

)
rip

−(i, j)1{kj=0}

]}
(2.5)

The values of the stationary parameters of the network, the stationary excitation

probabilities qi = lim
t→∞

qi(t) i = 1, ..., N and the stationary probability distribution

π(k) are derived from Theorem 1.

Theorem 1 [56]: Let the total arrival rates of positive and negative signals

λ+(i) and λ−(i), i = 1, ...N be given by the following system of equations

λ+(i) = Λi +
N∑
j=1

rjqjp
+(j, i) (2.6)

λ−(i) = λi +
N∑
j=1

rjqjp
−(j, i) (2.7)

where

qi = min

{
1,

λ+(i)

ri + λ−(i)

}
(2.8)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the non-linear system

of Eqs. (2.6)-(2.8) such that qi < 1 ∀i, then:

π (k) =
N∏
i=1

πi(ki) =
N∏
i=1

(1− qi) qkii (2.9)

The theorem states that whenever a solution to the signal flow Eqs. (2.6)-(2.8)

can be found such that qi < 1, ∀i, then the stationary joint probability distribution

of the network has the simple product form (2.9) associated with the marginal prob-
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abilities of each neuron, πi(ki). The condition qi < 1 can be viewed as a “stability

condition” that guarantees that the excitation level of each neuron remains finite

with probability one. Product form implies independence of the neurons despite

the fact that the neurons are coupled through the exchanged signals. A result of

their independence is that we can easily compute parameters that are associated

with a single neuron such as the average steady-state excitation level of neuron i

which is equal to qi/(1− qi).
In [56], the case where a number of neurons are saturated is also discussed.

Neuron i is saturated if λ+(i) ≥ ri + λ−(i) so that it continuously fires in steady-

state and its excitation probability is equal to one. It is shown that the product

form solution given by Eq. (2.9) is still valid for the set of non-saturated neurons.

2.2.3. Network Stability

The network is stable if the signal potential of each neuron does not tend to increase

without bounds. Due to the product form stationary probability distribution of the

system, stability is guaranteed if a unique solution exists to the nonlinear system

of Eqs. (2.6)-(2.8) and qi < 1, ∀i. In addition, it can be easily shown that if

a solution to Eqs. (2.6)-(2.8) exists with qi < 1, ∀i then it is unique [57]. The

result stems from the fact that π(k) is unique when 0 < qi < 1, ∀i because the

process {k(t), t ≥ 0} is an irreducible continuous time Markov chain and π(k) is

positive with unit norm which follows from Theorem 1. Furthermore, for any i it

is impossible to have two different values qi and q
′
i satisfying the unique π(k) when

ki = 0; hence existence of the solution implies its uniqueness.

As a result, the key to proving stability is to show the existence of the solution, a

result that is non-trivial due to the non-linearity of the signal-flow equations. Early

studies examined the solution existence in special RNN architectures. In [56], it

is proven that a solution always exists in the feed-forward RNN architecture since

the computation of qi in one layer depends only upon the values of neurons in the

preceding layer which have already been computed. In [57], solution existence is

presented for balanced networks which have identical qi,∀i and damped networks

which are governed by the hyper-stability condition:

ri + λi > Λi +
∑N

j=1
rjp

+(j, i) (2.10)
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Although the hyper-stability condition appears to be strong, it can be used to

appropriately select parameters of the network to guarantee stability [87].

Solution existence to the general case has been established in [60]. The approach

followed is general and has also been used to examine solution existence in extensions

of RNN. Next, the proof to the existence of a solution {λ+(i), λ−(i)} to Eqs. (2.6)

and (2.7) is outlined.

Initially, the qi terms are eliminated from Eqs. (2.6)-(2.7) and the latter are

combined to obtain:

λ− − λ = λ+HP− = Λ(I−HP+)−1HP− (2.11)

λ−, λ+, λ, Λ ∈ R1×N and I, H, P± ∈ [0, 1]N×N

where λ±, Λ and λ are vectors representing the total and exogenous arrival rates

of excitatory-inhibitory signals, P+ and P− are square matrices with elements the

transition probabilities p±(i, j), I is the identity matrix and H is a diagonal matrix

with elements hii = ri/(ri + λ−(i)) ≤ 1.

Because P+ is sub-stochastic and all elements of H are smaller than 1, the series∑∞
m=0(HP+)m is geometrically convergent so that we can write:

(I−HP+)−1 =
∑∞

m=0
(HP+)m (2.12)

Defining y = λ− − λ the system can be written in the fixed point form:

y = g(y) =
∑∞

m=0
(HP+)mHP− (2.13)

where the dependence of g on y comes from H, while g(y) is continuous and

always nonnegative. According to Brouwer’s fixed point theorem, Eq. (2.13) has

at least one fixed point solution. In this case, exactly one fixed point must exist y∗

since solution uniqueness has already been established. As a result, a solution to

Eq. (2.6) - (2.8) always exists and it is unique.

2.2.4. Analogy with the formal neural networks

In [56], the analogy between formal neurons and RNN neurons is discussed. In

formal neural networks, the input to neuron i, vi, is a combination of the weighted

sum of other neuron outputs, yj, and a threshold value θi such that vi =
∑

jw
A
jiyj−
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θi. Whether neuron i will be excited or not is determined by an activation function

according to yi = g(vi). The analogy of RNN with this model is established for the

unit-step activation function.

Because the RNN weights are non-negative, each weight wA
ij ∈ R is represented

by a pair of weights such that:

w+(i, j) = max{0, wA
ij}, w−(i, j) = max{0,−wA

ij}
Moreover, non-output RNN neurons do not dissipate, d(i) = 0, and their firing rate

ri is given by Eq. (2.4), while for output neurons, d(i) = 1. Parameters θi and yi

are associated with λi and qi respectively. When yi is binary, a threshold value, α,

can separate 0 and 1 according to:

[yi = 0]⇔ qi < 1− α and [yi = 1]⇔ qi ≥ 1− α, ∀i.
Note that all RNN parameters are mapped to formal neurons’ parameters except

from the firing rates of the output neurons, the rate of external positive signal Λi

and α. These parameters are set to appropriate values so that output neurons have

the desired behaviour.

2.2.5. Function approximation

One important feature of a neural network model is its ability to approximate func-

tions with an arbitrary degree of accuracy. The authors of [76] have proven that the

feed-forward Bipolar-RNN (BRNN), discussed in section 2.3.1, and Clamped-RNN

(CRNN), same as the RNN with the addition of a constant value to the average

potential of output neurons, have the universal approximation ability for any con-

tinuous function on a bounded set [0,1], i.e. functions of the form f : [0, 1]s →
Rw. Such functions can be separated into one dimensional functions of the form

fw : [0, 1]s → R. To prove universal approximation for the latter case, the authors

first established the result for a 1-input 1-output function and then generalised it

to the s-input 1-output case. Their method is based on constructing an RNN that

reproduces a polynomial that is an estimator of the bounded continuous function

under consideration.

In [77], the approximation capabilities of RNN were further explored to limit the

number of total layers required. The authors proved that for both the BRNN and

CRNN models, functions of the form f : [0, 1]→ R can be arbitrarily approximated

with an architecture of one input, one hidden and one output layers. Extending the

result for the approximation of functions fw : [0, 1]s → R, it was derived that for
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both the BRNN and CRNN models arbitrary approximation can be accomplished

by considering an architecture with s-hidden layers.

2.2.6. Hardware implementations

The processing capabilities of brain neuronal networks rely on their massively par-

allel architecture. Artificial neural networks are parallel as well, but software im-

plementations result in sequential execution. The power of neural processing is

unveiled with their implementation in hardware. In [1], an analog implementation

of RNN that captures the performed addition and multiplication operations has

been proposed. An implementation of RNN using discrete logic integrated circuits

has also been proposed in [37]. The realisation of the network is achieved using four

modules. An input module is needed for the input signals, a second module for the

signal aggregation at each neuron, a random number generator for the generation

of the exponential distributed signals fired by neurons and a routing module for the

propagation of signals between neurons.

The stochastic nature of the RNN has also been manipulated for its efficient

realisation on probabilistic CMOS (PCMOS). PCMOS harness the probabilistic

behaviour of the circuits exhibited in the nanoscale regime, because of process vari-

ations and noise, yielding significant improvements in terms of energy consump-

tion and performance [14]. The authors of [38], realised the RNN on a PCMOS

co-processor for the solution of the minimum vertex covering problem. They im-

plemented the core probabilistic module of RNN associated with the random firing

of neurons on PCMOS, instead of a pseudorandom number generator, and the rest

of the network on a conventional microprocessor. Experimental evaluation showed

that PCMOS RNN co-processor exhibited orders of magnitude less energy con-

sumption and execution speed-up compared to an implementation on a conventional

microprocessor.

2.3. RNN extension models

Apart from the original RNN, models of RNN with additional capabilities have

been developed. Similar to the original RNN, all models maintain a product-form

solution which may differ according to the model considered. In this section we
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describe the Bipolar RNN (BRNN), a model of RNN with State-Dependent Firing

(RNNSDF) and the Multiple Class RNN (MCRNN).

2.3.1. Bipolar random neural network

The bipolar RNN has been introduced in [81] to represent bipolar patterns and fa-

cilitate associative memory capabilities. Contrary to the original RNN there are two

different types of neurons: (a) the positive neurons which have the same behaviour

with the neurons of the original RNN and (b) the negative neurons which have op-

posite behaviour to the positive ones. In other words, negative neurons accumulate

negative signals so that the reception of positive signals has the suppressive role.

Hence, signals emitted from a negative neuron i arrive to neuron j as positive (resp.

negative) signals with probability p−(i, j) (resp. p+(i, j)). The model is governed

by similar signal-flow equations to the original RNN, taking into consideration the

effect of both positive and negative neurons, while it retains a geometric product

form stationary probability distribution for the neuron potentials.

The BRNN has been applied in associative memory to obtain better separation

between bipolar patterns. Moreover, the feed-forward BRNN has been utilised to

prove the universal approximation properties of RNN.

2.3.2. RNN with state-dependent firing

Although in the original RNN the firing rate of neurons is constant, it is more

biologically plausible to assume that the firing rate of neurons depends on the

signal potential. In [170], a model with state-dependent firing has been proposed

and its properties have been investigated. The RNNSDF differs from the original

RNN in two aspects:

1. The firing rate is exponentially distributed but it is potential-dependent in-

stead of constant. Dependence is added as a multiplication factor so that the

firing rate is riψi(ki), where ψi(ki) > 0 for ki > 0 and bounded above by Bi.

2. When a negative signal arrives at an excited neuron j it reduces the potential

of the neuron by 1 with a state-dependent probability ψj(kj)/Bj, otherwise it

has no effect.
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The authors proved that under certain conditions the model has a simple product-

form solution which is dependent on ψi(ki), ∀i; this implies that the RNNSDF can

exhibit a variety of stationary probability distribution structures by altering ψi(ki),

contrary to the RNN whose distribution is geometrical and decreasing with respect

to ki.

2.3.3. Multiple class random neural network

In the Multiple Class Random Neural Network (MCRNN) [66], there are C different

classes of positive signals and a class of negative signals. As a result, the potential

of neuron i is described by a vector of signal potentials, each associated with a

different class of signals, ki = [ki1, ..., kiC ] so that ki =
∑

c kic. Positive exogenous

signals arrive to neuron i according to a Poisson distribution of rate Λic and increase

the potential kic by 1. Negative exogenous signals also arrive according to a Poisson

distribution with rate λi. If at time t a negative signal is received by neuron i, then if

it is excited, ki(t) > 0, the potential of class c signals will become kic(t
+) = kic(t)−1

with probability kic/ki. When a neuron is excited it fires a class c signal with

probability kic/ki at rate ric and the potential kic is reduced by 1. If such an event

occurs the following can happen: (a) with probability p+(i, c; j, ξ) it goes to neuron

j as a positive class ξ signal, (b) with probability p−(i, c; j) it goes to neuron j as

a negative signal, or (c) it leaves the network with probability d(i, c). As the other

models, MCRNN also obeys to a product-form solution for each neuron and each

class of signals.

The MCRNN can be used in applications associated with the concurrent pro-

cessing of different streams of information such as colours in image processing or

attributes in a data network.

2.4. Learning algorithms

One of the most important features of a neural network model is its ability to learn

from examples. In this section we describe the standard gradient descent super-

vised learning algorithm for the RNN [60] and other supervised learning algorithms

proposed for the model and its extensions. Initialisation algorithms that can be

exploited by the supervised learning algorithms are also discussed. The section is

completed with a discussion on RNN reinforcement learning algorithms.
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2.4.1. Gradient descent supervised learning algorithm for

the RNN model

A gradient descent supervised learning algorithm for the recurrent RNN has been

developed by Gelenbe in [60]. In RNN, the kth input training pattern xk is repre-

sented by the vectors Λk = [Λ1k, ... ,ΛNk] and λk = [λ1k, ... , λNk]. Usually the

approach taken is to assign the input training values, xik to the exogenous arrival

rates such that:

• If xik > 0 then Λik > 0 and λik = 0

• If xik ≤ 0 then Λik = 0 and λik > 0

The values of the non-zero elements produced from the above expressions can be

taken equal to |xik|, or some constant value Λ and λ respectively to ensure network

stability.

The desired values of the kth pattern, yk, are represented by the steady-state

excitation probabilities of the neurons qk = [q1k, ... , qNk] emanating from applying

input training pattern k to the network. The RNN weights updated during the

learning process are w+(i, j) and w−(i, j).

Without loss of generality we assume that the error function to be minimised is

a general quadratic function of the form:

E =
K∑
k=1

Ek =
1

2

K∑
k=1

N∑
i=1

c̄i(gi(qik)− yik)2 (2.14)

where Ek is the error function of the kth input-output pair, c̄i ∈ {0, 1} shows

whether neuron i is an output neuron and gi(qik) is a differentiable function of

neuron i.

In the proposed approach by Gelenbe, the training examples are sequentially

processed and the weights of the network are updated according to the gradient

descent rule until a minimum of the error function is reached. If we denote by the

generic term w(u, v) either w+(u, v) or w−(u, v), the rule for updating the weights

using the k − th input-output pair at step (τ + 1) is:

wτ+1(u, v) = wτ (u, v)− η
[

∂Ek

∂w(u, v)

]
τ

(2.15)

41



The partial derivative of the error function with respect to w(u, v) can be calculated

based on (2.14) and yields:

[
∂Ek

∂w(u, v)

]
τ

=
N∑
i=1

c̄i (gi(qik)− yik))×
[
∂gi(qi)

∂qi

]
τ

[
∂qi

∂w(u, v)

]
τ

(2.16)

where the operator [·]τ denotes that all calculations are performed using the

weight values of step τ and the qik values derived from solving Eqs. (2.6)-(2.8) when

the current weights wτ (u, v) are used. The challenging step in the evaluation of Eqs.

(2.15) - (2.16) is the derivation of a closed expression for the term [∂qi/∂w(u, v)]τ

which depends on the nonlinear system of Eqs. (2.6)-(2.8).

Gelenbe [60] proved that the above term can be expressed in the following form:

∂q

∂w+(u, v)
= γ+(u, v) (I−W)−1 (2.17)

∂q

∂w−(u, v)
= γ−(u, v) (I−W)−1 (2.18)

where I is the identity matrix, while W, γ+(u, v) and γ−(u, v) are given by equa-

tions (2.19), (2.20) and (2.21) respectively, when d(i) = 0, ∀i.

W(i, j) =
w+(i, j)− w−(i, j)qj

rj + λ−(j)
, ∀i, j (2.19)

γ+i (u, v) =


−qu/D(i) u = i, v ̸= i

qu/D(i) u ̸= i, v = i

0 otherwise

(2.20)

γ−i (u, v) =



−qu/D(i) u = i, v ̸= i

−quqi/D(i) u ̸= i, v = i

−qu(1 + qi)/D(i) u = i, v = i

0 otherwise

(2.21)

The term D(i) = ri + λ−(i) is the denominator of qi.

The steps of the gradient descent RNN learning algorithm are the following:

(1) Initialise the weights w+(u, v) and w−(u, v) ∀u, v and appropriately choose the

learning rate η.
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(2) For each input-output pattern k do:

(a) Initialise Λik and λik according to xik and define the desired output values

yik for all i, k.

(b) Solve the system of Eqs. (2.6)-(2.8) using the current weight values.

(c) Based on the values attained, calculate W, γ+(u, v) and γ−(u, v), ∀u, v.

(d) Calculate [∂q/∂w+(u, v)]τ and [∂q/∂w−(u, v)]τ according to Eqs. (2.17)

and (2.18).

(e) Update the weights from Eqs. (2.15) and (2.16). To satisfy the weight

nonnegativity constraint either the negative values can be set to zero or

the iteration can be repeated with a smaller value of η.

(3) Repeat the procedure of step (2) until a stopping criterion is met.

The complexity of the algorithm for updating one weight w(u, v) is O(N3) because

of the inversion operation in Eqs. (2.17) and (2.18), which is the most demanding

step of the algorithm [60]. Note that according to an iterative algorithm presented in

[55], the complexity of solving the system of Eqs. (2.6)-(2.8) is O(N2) per iteration

and the system converges at a rate better than a geometric sequence; hence it is

less computationally demanding than the inversion operation.

The complexity of the algorithm can be further reduced if (I−W)−1 is approxi-

mated by the linear term (I+W); the approximation holds when ∥W∥ < 1 [98].

Weight initialisation

Supervised learning can be considered as a nonlinear and non-convex optimisation

problem where our goal is to minimise the error function subject to the satisfaction

of the signal-flow equations and the non-negativity constraints for our decision vec-

tor, the weights w+(i, j) and w−(i, j), ∀i, j; hence, convergence to a global optimum

cannot be guaranteed. For this reason, developing efficient weight initialisation al-

gorithms can help us obtain good solutions.

In the context of RNN, two weight initialisation methods have been mainly used:

random initialisation and initialisation based on Hebbian rule.

In random initialisation small random values are used for the weights which are

drawn from the uniform distribution in the range [0, wmax] . In practice, a good

choice for wmax is 0.2.
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Hebbian rule is a simple learning algorithm which has been used in perceptron

neural networks. In the RNN, the weights can be initialised according to Eqs. (2.22)

and (2.23) [106]:

wH
ij =

K∑
k=1

(2xik − 1)(2xjk − 1), xik ∈ {0, 1} (2.22)

w+(i, j) = max{0, wH
ij }, w−(i, j) = max{0,−wH

ij } (2.23)

2.4.2. Alternative RNN supervised learning algorithms

Apart from the standard gradient descent algorithm described in section 2.4.1, other

authors have also examined supervised learning in the context of RNN.

The author of [105] has modified the Resilient Propagation (RPROP) algorithm

and utilised it for RNN supervised learning. In RPROP, the weights are updated

based only on the temporal behaviour of the sign of the error function derivative. It

is considered to be a resilient and transparent method because it is not influenced

by any unexpected behaviour of the value of the error function derivative. Nev-

ertheless, the RPROP-RNN method has the same complexity with the standard

learning algorithm, while the two methods produce comparable results in terms of

recognition of noisy patterns.

In [7], the use of genetic algorithms in conjunction with the gradient descent

RNN learning algorithm is proposed to address the problem of converging to a

local solution. M RNNs are trained in parallel according to an iterative process

that involves RNN gradient descent learning and genetic operations on the network

topologies, such as mutation and crossover, until convergence to a good solution.

The genetic representation of each network is performed through an extended di-

rect coding scheme where both the presence of links and the values of the weights

are included accomplishing both parametric and structural modifications. Apart

from mutation and crossover operations, local search and optimisation are also per-

formed. Although this algorithm performs better than the gradient descent RNN

algorithm it is significantly slower.

In [123], a quasi-Newton algorithm is developed for RNN supervised learning.

Quasi-Newton algorithms are a well established class of iterative nonlinear optimi-

sation techniques which rely on second order gradient information; however, instead

of computing the Hessian matrix, which holds the second-order partial derivatives
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of the error function, an approximation matrix with desirable properties is updated

in each iteration of the algorithm. To update this matrix, the authors employ the

well-known Broyden - Fletcher - Goldfarb - Shanno (BFGS) and Davidon - Fletcher

- Powell (DFP) formulas. Contrary to the standard RNN learning algorithm, their

approach is a batch learning algorithm where the weights are updated after process-

ing all the training examples. The developed quasi-Newton algorithm is evaluated

on the parity problem and comparison with the gradient descent algorithm demon-

strates better performance and convergence to less than half steps compared to the

standard RNN learning algorithm. Nonetheless, the algorithm cannot be used for

online learning because it operates in a batch mode.

A gradient descent algorithm has also been developed for the MCRNN model

[68]. Similar to the standard RNN learning algorithm, the gradient descent rule

is employed to update the weights w+(i, c; j, ξ) = ricp
+(i, c; j, ξ) and w−(i, c; j) =

ricp
−(i, c; j). This is achieved by obtaining the partial derivatives of qic, ∀i, c with

respect to these weights; the equations obtained have the same form with Eq. (2.17).

However, in the multiple class case, the computational complexity of updating a

weight is O((NC)3) because although we have N neurons, they must accumulate

C different classes of positive signals.

2.4.3. Reinforcement learning in RNN

Reinforcement learning (RL) methodologies have also been developed in the context

of RNN. In reinforcement learning a system takes a sequence of cascaded decisions

related to the perceived state of the environment and accordingly receives external

reinforcement either positive (reward) or negative (punishment). The goal is to find

an optimal policy to obtain maximum reward for each perceived state.

Halici proposed a reinforcement learning scheme for a tree RNN-architecture for

single and cascaded decisions [97, 99, 100]. In the general case, the system is

composed of an input, a number of intermediate and an output layer of neurons.

The input neurons perceive the state of the environment, while the neurons of

intermediate layer m represent the possible states that can be reached after the

mth decision step. Each connection (im−1,jm) represents the transition from state

im−1 to state jm when decision aτm of the τth trial is taken.

In each trial a signal is propagated from the input neurons to the output neurons

which dissipate and excite the environment that returns the external reinforcement.
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Decisions in the network are taken probabilistically. When neuron i is excited at

trial τ , which means that it is an activated state, it fires a signal that reaches neuron

j with probability p+τ (i, j) and activates it. The sequence of activated neurons from

the input to the output layer is the decision cascade of trial τ , aτ .

Reinforcement learning in RNN works by updating the weights of the connections

at the end of each trial. The update is related to the attained environmental

reinforcement so that “‘good” decisions are rewarded. The reinforcement Rτ (i, aτ )

that neuron i receives in this cascaded decision environment is a function of several

parameters such as the trial, the external reinforcement associated with the output

neuron and the cost of the activated decision path.

Halici proposed three different weight update rules for single and cascaded deci-

sion rules: the reward rule (R-rule)[97], the reward and punishment rule (L-rule)[99],

and the update rule with internal expectation of the reward (E-rule)[99, 100]. Ex-

perimental analysis showed that the E-rule is superior to the other rules both in

terms of learning and adaptivity to environmental changes.

The success of the E-rule relies on an adaptive internal expectation of the reward.

In this rule, the weights are updated according to the difference between the actual

reinforcement and the internal expectation. For example, if the difference is positive,

the weights of all selected neurons in the decision path are reinforced proportionally

to the difference, while their neighbour neurons are punished. In this way, the

algorithm is adaptive to changes in the environment and results in obtaining time-

varying reinforcement.

In the following subsection we describe a variation of the E-rule that is extensively

used for routing packets in the Cognitive Packet Network (CPN) [155].

RNN reinforcement learning in CPN

The RNN reinforcement learning (RNN-RL) algorithm used in the CPN is a simple

cascaded decision algorithm that employs the idea of the internal expectation of the

reward as the E-rule. However, contrary to the tree-RNN architecture a recurrent

architecture is employed, while decisions are based on the excitation probabilities

of the neurons rather than the connection probabilities.

In this algorithm the reinforcement value is a quality of service (QoS) metric of

the communication system such as path delay or packet loss. The reinforcement

R+
τ (i, aτ ) is also a function of the network node. For instance if the reinforcement is
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associated with the delay experienced in a source-destination pair in the communi-

cation network, then the reward is the inverse value of the delay from the particular

node to the destination.

For each destination and QoS class, a node maintains a recurrent RNN, with

non-dissipating neurons. Each neuron in an RNN, corresponds to a neighbour of

the particular node. The weights and the internal expectation of the reward, R+
τ,β,

are updated whenever a new reward R+
τ+1(i, aτ+1) reaches node i according to the

following rule for all i ̸= j:

• If R+
τ,β ≤ R+

τ+1(i, aτ+1)

w+
τ+1(i, j) = w+

τ (i, j) +R+
τ+1(i, aτ+1),

w−
τ+1(i, k) = w−

τ (i, j) +
R+

τ+1(i,aτ+1)

N−2
, ∀k ̸= j

• Else

w+
τ+1(i, j) = w+

τ (i, j) +
R+

τ+1(i,aτ+1)

N−2
, ∀k ̸= j,

w−
τ+1(i, k) = w−

τ (i, j) +R+
τ+1(i, aτ+1)

In the above equation, index j corresponds to the selected neuron of the network

that resulted in the particular reward value. Numerical instability is avoided by

re-normalising the weights after each update by performing two operations. First,

for each neuron i its new r∗i is computed:

r∗i =
n∑

m=1

[
w+

τ+1(i,m) + w−
τ+1(i,m)

]
.

Second, the weights are re-normalised such that:

w+
τ+1(i, j)← w+

τ+1(i, j)
ri
r∗i

(2.24)

w−
τ+1(i, j)← w−

τ+1(i, j)
ri
r∗i

(2.25)

Whenever an action is to be taken, the system of the signal flow Eqs. (2.6)-(2.8) is

solved for the most recent weights to obtain values for the excitation probabilities

of the neurons. The most excited neuron corresponds to the action to be taken and

in the context of CPN represents the next node in the route of a packet.
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2.5. Applications

In this section we review different applications of RNN with special emphasis on

the solution of optimisation problems. We also review modelling and learning ap-

plications of RNN.

2.5.1. Solution of optimisation problems

Combinatorial optimisation problems routinely arise in many applications. How-

ever, they are usually NP-hard and cannot be optimally solved in a timely manner.

Hopfield and Tank [103] proposed the use of artificial neural networks, such as the

discrete Hopfield Network, for the solution of such problems attracting a lot of at-

tention. Since their seminal work, different types of artificial neural networks have

been employed for the solution of various combinatorial optimisation problems [165]

and several neural techniques have been developed [166]. In this section we investi-

gate the use of RNN for the solution of discrete optimisation problems. Emphasis

is given to explain different solution approaches which include:

1. The parameter association approach

2. The dynamical RNN approach

3. The energy function approach

Parameter association approach

In the parameter association approach, different parameters of the RNN are asso-

ciated with parameters of the optimisation problem under consideration. Binary

decision variables of the problem are represented by the qi parameters of RNN,

while input parameters are usually associated with positive external arrivals Λi.

The positive and negative probabilities of RNN, p+(i, j) and p−(i, j) are employed

to capture the interactions between decision variables, the neurons, that stem from

the constraints of the problem. For example, if in a row of neurons only one must

be selected, then each of these neurons attempts to inhibit the others to be the one

selected. Excitation interactions are also possible when two neurons benefit from

the mutual selection. Some parameters such as the firing rate ri can be selected to

guarantee hyper-stability of the network so that there is a balance between excited

and not excited neurons.
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The procedure for the solution of problems using this approach is very simple.

After the RNN parameters have been given appropriate values, the qi values are

computed and the most excited neuron is selected. Then the problem is reduced

and the procedure is repeated until the final solution is reached.

The approach has been applied for the solution of several NP-hard optimisation

problems including the minimum vertex covering problem (MVCP) [87], a task as-

signment problem with communication and imbalance costs emerging in distributed

systems [8] and the satisfiability problem (SATP) [58].

In the above problems, the RNN approach has been used to construct a solution

from scratch. An alternative approach is to consider a good heuristic for the exam-

ined problem to find an initial solution and then apply the parameter association

method to indicate variables that could be included in the solution to improve its

quality. This method has been proposed in [67] for the solution of the minimum

Steiner tree problem (MSTP). The authors used a known heuristic for the MSTP

problem to obtain a solution and then employed an RNN to select a vertex-neuron

that could be a good “candidate” to be included in the solution. A reoptimisation

algorithm was then adopted to find a new solution based on the current MSTP

and the selected vertex. The new solution is definitely not worse than the current

one. By repeating this procedure until all vertices have been considered, the final

solution is at least as good as the initial. Experimentation illustrated that the par-

ticular method can improve the solution quality by 10−20% without increasing the

computational complexity.

The RNN approach for the solution of the MSTP problem has also been exploited

for the solution of the Dynamic Multicast problem [13] and the Access Network

Design problem [34], which are closely related to the MSTP problem.

In general, the parameter association approach provides a tradeoff between solu-

tion quality and computational complexity. It has consistently outperformed greedy

heuristics for the different problems, but exhibited worse performance than meta-

heuristic techniques such as simulated annealing and genetic algorithms which are

very computationally demanding. The performance of the parameter association

approach has also been compared against a Hopfield neural network algorithm in

the MVCP problem [91]. It was shown that the RNN is substantially better in

solving the particular problem especially for large problems. Despite its success

in many optimisation problems, one of the limitations of this approach is that it
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cannot be easily generalised. Hence, it cannot be directly adopted for new problems

but different parameter mappings must be tested to discover a good association.

Dynamical RNN approach

The idea behind the use of the Hopfield recurrent neural network for the solution

of optimisation problems relies on mapping the parameters of the problem to the

energy function of this dynamic network. The energy function of the Hopfield net-

work is guaranteed to converge to an attractor of the energy landscape, which is

hopefully a good solution to the problem. Although the RNN is a recurrent neural

network as well, it cannot perform dynamic behaviour in terms of its output pa-

rameters in the form dq
dt

= f(q), because of its unique equilibrium point. Therefore,

the Dynamical Random Neural Network (DRNN) has been developed to exhibit

dynamic evolution with regard to its input [148, 72].

DRNN uses only positive inputs and negative weights with no signals leaving

the network (d(i) = 0) whereas its dynamical equation is similar to the Cohen-

Grossberg equation with time delayed feedbacks:

dΛi

dt
= a(qi)

(
B(qi)−

∂F (q)

∂qi

)
, ∀i (2.26)

where function a(qi) regulates the convergence rate while B(qi) is appropriately

selected to place the attractors of the dynamical system in the best possible posi-

tions. F (q) is the penalty function associated with the optimisation problem we

are dealing with. Any constraints associated with the problem can be incorpo-

rated into F (q) using the Lagrange multipliers method. The negative weights are

assigned appropriate values so that a neuron inhibits the neurons that cannot be

simultaneously excited with it.

After assigning appropriate values to the parameters of the DRNN model, the

procedure progresses by iteratively computing the qi values based on Eqs. (2.6)-

(2.8) and updating the Λi values according to Eq. (2.26) until the Λi values have

stabilised.

The DRNN has been exploited for the solution of several optimisation problems

including the independent set [148] and travelling salesman problems [72], as well as

a problem of optimal resource allocation with minimum and maximum activation

levels for each resource and fixed costs [184]. Interestingly, the latter problem
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includes both binary and continuous variables. For modelling each of the continuous

variables, the authors used n neurons. Neuron ir, 1 ≤ ir ≤ n is associated with

variable ar and represents value 2−ir so that: ar=
∑n

ir=1qir2
−ir .

Performance comparison in the various problems has demonstrated the superi-

ority of the DRNN over heuristic and Hopfield neural network approaches. An

advantage of the DRNN compared to the parameter association approach is that

it incorporates into the formulation the penalty function F (q); nevertheless, some

parameters such as the B(qi) and w
−(i, j) are assigned values in an ad-hoc manner.

Energy function approach

In the DRNN the dynamic evolution of the input parameters Λi is used for the

solution of optimisation problems. Another approach is to evolve Λi according to

the gradient of the cost function F (q) [117]:

Λτ+1
i = Λτ

i − η
[
∂F (q)

∂Λi

]
τ

= Λτ
i − η

[
∂F (q)

∂qi

∂qi
∂Λi

]
τ

, ∀i (2.27)

In the above equation, the term ∂qi
∂Λi

can be computed based on Eqs. (2.6) - (2.8),

similar to the derivation of ∂qi
∂w(u,v)

performed for the RNNSI model in Appendix A,

yielding a linear system of equations [9]. Furthermore, to simplify the computation

of the term ∂F (q)
∂qi

the general quadratic energy function E(q) has been proposed:

E(q) =
∑N

i=1

∑
j<i
aijqiqj +

∑N

i=1
aiiq

2
i +

∑N

i=1
biqi + c (2.28)

A result of the above formulation is that if the optimisation problem at hand is

of similar form, then by mapping the parameters of the problem to the energy

function, the term ∂E(q)
∂qi

can be easily computed without any additional effort.

The other parameters of the RNN are initialised so that the constraints associated

with the problem are strengthened through the neuron interactions, as discussed in

previous approaches.

The solution procedure is similar to that of the DRNN approach, with the dif-

ference that the Λi values are updated not based on Eq. (2.26), but based on Eq.

(2.27). Additionally, both the RNN and the energy function parameters must be

assigned appropriate values.

The approach has been evaluated with respect to two optimisation problems: the
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graph partitioning problem and the minimum vertex covering problem [9]. The

method exhibits comparable or better performance compared to greedy heuristics,

simulated annealing and genetic algorithms.

2.5.2. Modelling applications

The RNN is a prominent modelling tool that can capture the behaviour of inter-

acting entities in complex systems such as biological and queueing networks.

To begin with, due to the direct analogy between the RNN and queueing networks

[83], the notion of inhibitory signals in RNN inspired the use of negative customers

in queueing networks for work removal [86]. This model attracted a lot of attention,

resulting in a generalised class of networks called G-networks [85].

In G-networks positive and negative customers (excitatory and inhibitory signals)

circulate in the network. When a positive customer arrives at a server (neuron),

it increases the size of the queue (neuron potential) by 1, while the arrival of a

negative customer cancels a positive one, if at least one is present in the queue.

Service completion (neuron firing) decreases the queue size by one and causes the

movement of a customer that will reach another node as a positive or negative

customer or depart from the network in a probabilistic manner.

Negative customers may be replaced by signals that have a more general role.

They can be used to trigger the instantaneous movement of a customer from one

queue to another [59], or reset the queue to a new value when it is empty [88].

It is also possible to have multiple classes of positive and negative customers [54],

as well as multiple classes of signals with triggering effect [89]. As in RNN, the

stationary probability distribution of the queue lengths have product form under

certain conditions. Furthermore, it has been proven that two G-networks of the

same size that have the same stationary rates of positive customers and signals

for all queues (flow equivalence) are also governed by the same joint queue length

probability distribution (stationary equivalence) [53]. An extended survey of G-

networks can be found in [15].

In [84], an analytical solution for a class of stochastic genetic algorithms is de-

rived according to the behaviour of a population of different chromosome types.

Different genetic operations are modelled using first and second order probabilistic

interactions including the birth and death of a type i chromosome, the mutation

of a type i chromosome to a type j chromosome, as well as the crossover operation
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where a type i chromosome combines with a type j chromosome to produce a type

k chromosome.

In [62], the modelling of a gene regulatory network with interacting genes or other

biochemical substances is studied. As in the genetic algorithms model, interactions

between agents include not only first order interactions but also second order inter-

actions where more than two agents have a combined effect on a third one. Logical

dependencies among agents are also modelled and an analytic steady-state solution

of the overall system is derived.

Moreover, RNN has been used to model interactions between different areas of

the human brain to predict the oscillatory behaviour of those areas with response

to somatosensory inputs [63]. In particular, a recurrent RNN is constructed with

three neurons, each representing a neuronal layer associated with the thalamus, the

cortex and the reticular layer. The strength of excitatory and inhibitory interac-

tions betweens these areas, the measured firing rates and the delays in the signal

propagation from one area to the other are considered in the model. The parame-

ters of the constructed model are estimated using experimental data and exploited

to predict the oscillatory behaviour of the system relating to different interaction

strengths and delays.

2.5.3. Learning applications

RNN has not only been successful in optimisation and modelling, but also in applica-

tions that exploit its learning capabilities such as image processing, communication

systems, simulation, pattern recognition and classification.

A number of applications utilise the RNN supervised learning algorithm to group

items into two or more different classes according to related inputs. For the solution

of a problem involvingM different classes, one trains either an RNN withM output

neurons orM different RNNs, each having one output neuron. The excitation value

of an output neuron is close to one for training instances of its associated class,

otherwise its value is close to zero. For each testing instance, the class corresponding

to the most excited neuron is selected. This technique have been exploited for

texture classification [173] and image segmentation [65, 127], for the identification

of mines [2, 3], the detection of denial of service attacks in communication networks

[144], as well as for target [20], vehicle [107] and noisy pattern recognition [167, 122].

In other applications, supervised learning is used to construct an RNN that rep-
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resents the input-output mapping of an unknown continuous function. In this case,

the desired excitation values of the output neurons correspond to the function values

for the specific training instance. Several applications are based on this approach

including the modelling and generation of gray [18, 69] and colour textures [68, 17],

image fusion [21], compression of still and moving images [41, 64, 43, 42], quantifica-

tion of the quality of service in multimedia services [137, 138, 44] and the prediction

of the profile of cross-section wafer surface images in semiconductor fabrication [71].

Despite the widespread applicability of the RNN supervised learning algorithm,

it cannot be utilised for the solution of problems with unknown desired output.

Such problems are solved using reinforcement learning, where the desired outputs

are discovered by trying different actions and observing the received reward. For

this reason, the RNN-RL algorithm has been mostly exploited in dynamic and

unknown environments, where information needs to be collected before finding the

best course of action. Therefore, RNN-RL has been utilised to control the routing

of packet in the Cognitive Packet Network [75, 74, 48, 78], a connectionless packet

switching network with “intelligent” packets, and to design learning agents with

realistic behaviour in augmented reality simulation environments [70, 79].

Table 2.1, summarises the different problems addressed in various application

areas of RNN.

2.6. Conclusions

In this chapter we have surveyed the research work undertaken in the Random

Neural Network. RNN is a biologically inspired, open, recurrent neural network

with closed form expression for the probability steady-state and analytically solv-

able signal-flow equations. The properties of the model as well as different learning

algorithms and extension models have been described. Furthermore, numerous

applications of the model have been reviewed with emphasis on optimisation and

modelling applications. The plethora and diversity of applications reflect the promi-

nence of the RNN either as a modelling tool or as a learning tool that can be trained

fast and exhibit strong generalisation capabilities.
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Table 2.1.: Summary of RNN applications

Application

Area

Investigated problems and related references

Modelling G-networks [15, 53, 54, 59, 83, 85, 86, 88, 89], genetic chro-

mosome population [84], gene regulatory networks [62], cor-

ticothalamic oscillatory behaviour [63]

Optimisation minimum vertex covering [87], task assignment in distributed

systems [8], satisfiability problem [58], Minimum Steiner Tree

[67], Dynamic Multicast [13], Access Network Design [34], in-

dependent set [148], travelling salesman [72], optimal resource

allocation [184], graph partitioning [9]

Image

Processing

texture generation of gray [18, 69] and colour [17, 68] images,

texture classification and retrieval [173], biomedical image

segmentation [65, 127], image fusion [21], image enlargement

[21, 22], image and video compression [41, 42, 43, 64]

Communication

Systems

cognitive packet network [48, 61, 73, 74, 75, 78, 101], DoS

attack detection [144], automatic quantification of the PSQA

metric for multimedia applications [44, 137, 138, 153], call

admission control in ATM networks [19], multimedia server

modelling [80]

Simulation learning agents[79], injection of autonomous agents in aug-

mented reality[70]

Pattern

Recognition &

Classification

associative memory [10, 81, 105, 106, 122, 167] target recog-

nition [20], laser intensity vehicle classification system [107],

wafer surface reconstruction [71], mine detection [2, 3]
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3. Learning extensions of the

random neural network model

In this chapter we propose two novel supervised learning algorithms related to

the RNN. The first, is a gradient descent learning algorithm for the RNN with

synchronised interactions (RNNSI). In the RNNSI apart from the excitatory and

inhibitory interactions, neurons can also exhibit synchronised interactions where two

neurons can jointly act to excite a third one. We derive the steps of the algorithm

and show that it retains the form and complexity of the standard RNN learning

algorithm [60].

The second is a learning algorithm for the RNN that is mostly suitable for prob-

lems where the ratio of the number of output to the total number of neurons is

large. This approach is based on modelling the signal-flow equations of the network

as a nonnegative least squares (NNLS) problem; this can be accomplished when all

the neurons have desired values. We then solve the NNLS problem by developing

a large-scale projected gradient descent algorithm. To deal with the case that the

network is also composed of non-output neurons, we develop the RNN-NNLS algo-

rithm, a procedure in which we iteratively solve an NNLS problem and the RNN

signal-flow equations with respect to the NNLS solution. The obtained weights can

serve as the final trained weights and as a good initialisation point of the standard

RNN learning algorithm.

Chapter 3 is structured as follows: section 3.1 describes the motivation of this

work and discusses associated research approaches. In section 3.2, we present the

RNNSI learning algorithm. We start with a discussion of the model’s biological

relevance and a description of its mathematical properties. Then, we derive the

main steps of the algorithm and finish with an extensive computational complexity

analysis that results in efficient modifications. In Section 3.3, we develop the RNN-

NNLS algorithm. Firstly, we formulate RNN supervised learning when all neurons
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have desired output values as an NNLS problem. For its solution we develop a

limited memory quasi-Newton algorithm, and present the RNN-NNLS algorithm

that can be employed for the solution of problems involving both output and non-

output neurons. We also outline two approaches for the efficient evaluation of the

objective and gradient NNLS functions by manipulating the special structure of

the examined problem and discuss the computational complexity of the approach.

Section 3.4 summarises the main outcomes of the chapter.

3.1. Introduction

One of the salient features of an artificial neural network is its ability to learn from

the environment to improve its performance on a given task. There are various

learning paradigms including unsupervised and reinforcement learning but the most

important is supervised learning in which the neural network is presented with a

set of input-output pairs, the training data, and its task is to learn how to map

specific inputs to outputs.

Although the majority of the literature in supervised learning is concerned with

feedforward neural networks [108], recurrent neural networks are much more pow-

erful because they possess many degrees of freedom and they exhibit nonlinear

dynamic behaviour [150]. Also their recurrent structure, that allows every neuron

to interact with all other neurons, offers a natural approach to problems where each

neuron represents an element of the problem under investigation. For example, in

image processing if each image element is associated with a neuron then the rela-

tionship between neighbouring elements can be captured by local neighbourhood

neuron interactions. Also, in combinatorial optimization the decision variables can

be represented by different neurons so that the relationship between these variables

can be captured through recurrent interactions between the neurons. As a result,

designing efficient learning algorithms for recurrent neural networks is an active

area of research for the past twenty years [149, 102, 109, 156].

In addition, to further enhance the ability of recurrent neural networks of dealing

with hard learning tasks and solving combinatorial optimisation problems, inves-

tigators have considered networks with high-order connections, where more than

one state variables may appear in product terms in the model equations. It has

been shown that high-order networks can converge faster while they have better
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generalisation and storage capacity [95, 172]. Applications of high-order neural

networks include the representation and identification of finite state automata [93]

and dynamical systems [116], as well as the solution of combinatorial optimisation

problems [4, 5, 40].

In the context of RNN, general supervised learning algorithms have been designed

for the original RNN and MCRNN (see chapter 2). However, no algorithms have

been developed for RNN related models with higher-order connections. In section

3.2, we develop a learning algorithm for an extension of RNN with second-order

interactions, the RNNSI. We also examine the complexity of the developed RNNSI

algorithm and show that it matches the complexity of the gradient descent algorithm

of the original RNN [60].

Apart from the introduction of the RNNSI gradient descent algorithm, we also

develop a supervised learning algorithm for the RNN based on NNLS. The idea

associated with this algorithm is that we can approximate the equations governing

the RNN as a linear system, when each neuron in the network is an output neuron

and hence has a desirable value for each input pattern. This approximation yields

a linear least squares problem with nonnegativity constraints which is a convex

optimization problem and can be solved to optimality. We also extend the approach

to deal with cases involving non-output neurons. The trained weights produced by

the algorithm can serve both as the final weights used in testing or as “good”

initial weights of the standard learning algorithm which can potentially lead to a

better minimum of the supervised learning problem and hence improve the learning

capacity of the network; or they can reduce the starting error of the gradient descent

algorithm leading to a substantial reduction in the execution time of the overall

procedure.

Linear least squares techniques for learning and weight initialisation have been

utilised in feedforward connectionist neural networks. These methods are based on

the observation that the inputs to the neurons of a given layer is a linear function

of the outputs of the preceding layer. The nonlinearity arises from the application

of the activation function (a sigmoidal monotonically increasing function) to the

input of each neuron in order to obtain its output. Hence, if the outputs of two

consecutive layers are known then the optimal weights connecting the two layers

can be derived by minimising the Mean Square Error (MSE) between the actual

and the desired input to the second layer. The actual inputs to the second layer

58



are a linear function of the outputs of the first layer, while the desired inputs of the

second layer are the values obtained by applying the inverse activation function to its

outputs. Furthermore, if the weights of a given layer and the desired outputs of the

succeeding layer are known then the “best” in the least squares sense neuron outputs

of the preceding layer can be computed. Konig and Barmann [27] where the first to

suggest this approach for training multilayer perceptron neural networks. In their

approach the weights were randomly initialised and the outputs for each layer were

computed. Then, starting from the output layer and considering preceding layers,

the “best” weights and required outputs of the preceding layers were obtained using

least squares.

One problem with this approach is that it does not take into consideration the

scaling effect of the nonlinear activation function. This means that if the MSE

between the actual and the desired input is small, the MSE between the actual

and the desired output may not be necessarily small. Attempts to improve this

deficiency include approximating the activation function with a linear combination

of convex functions [35], considering the slope of the activation function at the

desired output values to achieve better scaling [49] and restricting the output neuron

values in the non-saturation region of the activation function either directly [181]

or indirectly by obtaining adaptive threshold values for the network weights [180].

Least squares have also been considered in hybrid algorithms. One approach is

to obtain the weights of all layers by standard backpropagation algorithms, apart

from the output layer where least squares are used to exploit the desired output

values from the training data [52, 96]. Other hybrid algorithms have sophisticated

iterative methods for choosing the desired weights or output values of the non-

output neurons such as penalised functions [164] and sensitivity analysis [36], but

employ least squares to optimise the performance of the network for given values

of those parameters.

In terms of performance, the aforementioned studies have illustrated that least

squares supervised learning approached are very efficient techniques that can obtain

smaller training errors and better results much faster than backpropagation tech-

niques; also they can boost the convergence of backpropagation techniques when

used as initialisation methods.

In the context of RNN, least squares have been utilised for the task of texture

reconstruction where all neurons have desired values, while the neural network is
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not fully recurrent as each neuron can interact only with its local neighbours and

is partially symmetric with respect to its weights [16]. The author proposed an

active-set algorithm based on the Kuhn-Tucker optimality conditions. However,

this approach is only suitable for the particular problem; the general problem of

NNLS learning in RNN has not been considered, while the applicability of the

approach is limited to small-size problems.

To confront the general case that the network is fully recurrent, and comprised of

not only output neurons there are two main difficulties: a) the formulated problem

is of very large dimensionality (NK equations and 2N2 unknowns) and b) we must

deal efficiently with the non-output neurons. In section 3.3, we propose a projected

gradient algorithm for the NNLS problem suitable for large-scale problems as well

as an approach to deal efficiently with networks involving non-output neurons. Our

approach also differs from existing least squares techniques for connectionist neural

networks because it is developed for a different neural network model and hence

requires a different approximation approach; moreover, it is applied to a fully re-

current network with the least squares method applied to the whole network rather

than on a layer-by-layer basis.

3.2. Gradient descent learning in the RNN with

synchronised interactions

In this section we introduce the RNNSI model and derive the steps of its supervised

gradient descent learning algorithm which is of computational complexity O(N3)

for an N -neuron network.

3.2.1. Synchronised interactions in biological neural

networks

Synchronised firing (SF), where several cells fire simultaneously, and neurons jointly

act upon other cells, provide a richer form of inter-cellular interaction than the bi-

nary (excitatory-inhibitory) action between pairs of cells. SF has been observed

among cultured cortical neurons [140, 152] and it is believed that it serves a promi-

nent role in information processing functions of both sensory and motor systems

[115]. Temporal firing synchrony may be a result of functional coupling which dy-
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namically varies according to the internal state of the neural system and the stimuli,

and it appears both in homogeneous and clustered neuronal networks [159]; it has

been observed that under special population density conditions a neuronal culture

can self-organize into linked clusters [158], to generate synchronous bursts of spikes

similar to the one observed in homogeneous networks [133, 158]. This behaviour

may also be related to the correlation in connectivity, which is usually measured in

neuron cultures because it is difficult to identify the synaptic strength among neu-

rons and hence determine the characteristic node connectivity [110]. Furthermore,

studies on synchronised firing in the retina have indicated that pairwise interac-

tions between spatially neighbouring neurons are sufficient to explain the spatial

scale and structure of synchronised firing [161, 162, 160].

The random neural network with synchronised interactions can exhibit synchro-

nised firing between cells, where one cell may trigger firing in another one. In fact,

cascades of such triggered firings can occur in the model that we study. It appears

that some experimental observations of synchronised firing in cultured or sliced neu-

ron cell ensembles are in fact bursts of firing resulting from the nonlinear dynamics

of the neuronal interactions. Our model describes the triggering of firing between

two cells and also allows triggered firing by cascades of cells, and these cascades can

also include feedback loops so that lengthy bursts of firing can also be modelled.

Thus the present model can to a certain extent be used to mimic the spike bursts

which have been experimentally observed.

3.2.2. RNNSI mathematical model

The RNNSI model exhibits not only the ordinary excitatory and inhibitory interac-

tions of RNN but also synchronised interactions. When neuron i fires the resulting

spike can travel to neuron j as an excitatory spike with probability p+(i, j) or

as an inhibitory spike with probability p−(i, j), or the spike departs the network

going to the outside world with probability d(i), or it creates a synchronous in-

teraction together with neuron j to affect some third neuron m, with probability

Q(i, j,m). When a synchronous interaction from neurons i and j on neuron m takes

place at time t then the following happen: of course ki(t
+) = ki(t) − 1, but also

kj(t
+) = kj(t)−1 and km(t

+) = km(t)+1 if kj(t) > 0. However if kj(t) = 0 then the

only thing that will occur is that ki(t
+) = ki(t)− 1, and the firing of i will have no

other effect. Thus, synchronous interactions take the form of a joint second order
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excitation by cells i, j on m only if both neurons i and j are excited. Note also that:

N∑
j=1

[
p+(i, j) + p−(i, j) +

N∑
m=1

Q(i, j,m)

]
+ d(i) = 1 (3.1)

An important feature of this network is that synchronised interactions can gen-

eralise to an arbitrary number of neurons so that the model can capture some quite

general forms of synchronised firing. Indeed, if we have a sequence of neurons

j1, ... , jn+1, jn+2 such that Q(jl, jl+1, jl+2) = 1 for 1 ≤ l ≤ n, then if neurons j1 and

j2 are excited, then eventually all the neurons j1, ... , jn+1, jn+2 will fire.

3.2.3. Steady-state solution

Let the state of the network be k(t) = [k1(t), k2(t), ..., kN(t)]. With the pre-

vious assumptions, the system state is a continuous time Markov chain, and the

probability distribution of the system state {k(t) : t ≥ 0} satisfies a set of Chapman-

Kolmogorov equations. Let us use the following vectors to denote specific values of

the network state, where all of these vectors’ values must be non-negative:

k = [k1, ..., kN ]

k+
i = [k1, ..., ki + 1, ..., kN ]

k−
i = [k1, ..., ki − 1, ..., kN ]

k+−
ij = [k1, ..., ki + 1, ..., kj − 1, ..., kN ]

k++
ij = [k1, ..., ki + 1, ..., kj + 1, ..., kN ]

k++−
ijm = [k1, ..., ki + 1, ..., kj + 1, ..., km − 1, ..., kN ]

If the steady-state distribution π(k) = lim
t→∞

P [k(t) = k] exists, it satisfy the

Chapman-Kolmogorov equations given in steady-state:
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π (k)
N∑
i=1

[
Λ(i) + (λ(i) + ri)1{ki>0}

]
=

N∑
i=1

{
π
(
k+
i

)
rid(i) + π

(
k−
i

)
Λ(i)1{ki>0} + π

(
k+
i

)
λ(i)

+
N∑
j=1

[
π
(
k+−
ij

)
rip

+(i, j)1{kj>0} +
N∑

m=1

π
(
k+
i

)
riQ(i, j,m)1{kj=0}

+ π
(
k++
ij

)
rip

−(i, j) + π
(
k+
i

)
rip

−(i, j)1{kj=0}

+
N∑

m=1

π
(
k++−
ijm

)
riQ(i, j,m)1{km>0}

]}
(3.2)

where 1{Y } is equal to 1 if Y is true and 0 otherwise.

The following theorem can be proven by following a similar procedure to that used

for the proof of Theorem 1 in [59].

Theorem: Let λ−(i) and λ+(i), i = 1, ...N be given by the following system of

equations

λ+(i) =
N∑
j=1

rjqjp
+(j, i) +

N∑
j=1

N∑
m=1

qjqmrjQ(j,m, i) + Λ(i) (3.3)

λ−(i) = λ(i) +
N∑
j=1

rjqj[p
−(j, i) +

N∑
m=1

Q(j, i,m)] (3.4)

where

qi = λ+(i)/
(
ri + λ−(i)

)
(3.5)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the non-linear system

of equations (3.3), (3.4), (3.5) such that qi < 1 ∀i ,then:

π (k) =
N∏
i=1

(1− qi) qkii (3.6)

Thus whenever a solution can be found to equations (3.3), (3.4), (3.5) such that

all the qi < 1, then the network’s steady-state has the simple product form (3.6).
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The condition qi < 1 can be viewed as a “stability condition” which guarantees that

the excitation level of each neuron remains finite with probability one. Note also,

that the average excitation level of neuron i in steady-state is qi/(1− qi).
We will now introduce a notation which is similar to the one used in [60], where

we replace the firing rates ri and the probabilities p+(i, j), p−(i, j) and Q(i, j, l) by

“weights”, which in this model represent the rates at which the neurons interact.

Let:

w+(i, j) = rip
+(i, j), (3.7)

w−(i, j) = rip
−(i, j), (3.8)

and

w(i, j, l) = riQ(i, j, l) (3.9)

As a result we can write:

ri =

N∑
j=1

[
w+(i, j) + w−(i, j) +

∑N
m=1w(i, j,m)

]
1− d(i)

(3.10)

The denominator of qi can be written as:

D(i) = ri +
N∑
j=1

qj[w
−(j, i) +

N∑
m=1

w(j, i,m)] + λ(i) (3.11)

while its numerator becomes:

N(i) =
N∑
j=1

qjw
+(j, i) +

N∑
j=1

N∑
m=1

qjqmw(j,m, i) + Λ(i) (3.12)

so that qi = N(i)/D(i). The results summarised in this section will now be used to

design an efficient learning algorithm for this network with second order effects.

3.2.4. RNNSI gradient descent supervised learning

In order to perform gradient descent learning with the RNNSI we need to update

the weights of the network w+(i, j), w−(i, j) and w(i, j, l) according to the gradient

descent rule and the procedure introduced in section 2.4.1.

In general we can select the w(i, j, l) in an arbitrary manner as long as w(i, j, l) ≥
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0, and w+(i, j), w−(i, j) ≥ 0. However, we see that w(i, j, l) in fact acts as an

inhibitory term from i to j, followed by an excitatory term from j to l. Thus we

propose to simplify the computation involved in seeking a minimum of the error

function by writing:

w(i, j, l) = w−(i, j)a(j, l),∀i, j, l (3.13)

where a(j, l) ≥ 0.

We will therefore design a gradient descent algorithm to obtain the unknown

parameters of the network i.e. the matrices W+ = {w+(i, j)} ,W− = {w−(i, j)}
and A = {a(i, j)} for i, j = 1, ..., N in order to minimise the cost function. In the

sequel we will use the generic term w(u, v) to represent either w(u, v) ≡ w+ (u, v)

or w(u, v) ≡ w− (u, v) or w(u, v) ≡ a (u, v).

The weights are updated based on the gradient descent rule using Eqs. (2.15) and

(2.16). As noted in section 2.4.1, the difficult step is the derivation of [∂qi/∂w(u, v)]τ ,

which in the RNNSI model is even more challenging as the expressions involve

second-order terms with respect to qi.

By taking the derivatives of qi = N(i)/D(i) with respect to the generic variable

w(u, v) one obtains after some calculations each of the terms of interest. The

detailed derivation of the expressions given below can be found in Appendix A.

Writing the vector q = [q1, q2, ... , qN ] and using matrixW ∈ RN×N with elements:

W (i, j) =
1

D(j)
·

{
w+(i, j)− qjw−(i, j) +

N∑
m=1

qmw
−(i,m)a(m, j)

+a(i, j)
N∑

m=1

qmw
−(m, i)− qjw−(i, j)

N∑
m=1

a(j,m)

}
∀i, j (3.14)

we obtain:
∂q

∂w+(u, v)
=

∂q

∂w+(u, v)
W + γ+(u, v) (3.15)

∂q

∂w−(u, v)
=

∂q

∂w−(u, v)
W + γ−(u, v) (3.16)

∂q

∂a(u, v)
=

∂q

∂a(u, v)
W + γa(u, v) (3.17)

where we have used:

γ+(u, v) = [γ+1 (u, v), γ
+
2 (u, v), ..., γ

+
N(u, v)], (3.18)
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γ−(u, v) = [γ−1 (u, v), γ
−
2 (u, v), ..., γ

−
N(u, v)], (3.19)

and

γa(u, v) = [γa1 (u, v), γ
a
2 (u, v), ..., γ

a
N(u, v)], (3.20)

The above parameters are given by the following equations:

γ+i (u, v) =
1

D(i)
·


qu − qu/(1− d(i)) u = i, v = i

−qu/(1− d(i)) u = i, v ̸= i

qu u ̸= i, v = i

0 u ̸= i, v ̸= i

(3.21)

γ−i (u, v) =
1

D(i)
·



quqv[a(v, i)− 1−
∑N

m=1 a(v,m)]

− qu[1 +
∑N

m=1 a(v,m)](1− d(i))−1 v = i, u = i

quqv[a(v, i)− 1−
∑N

m=1 a(v,m)] v = i, u ̸= i

quqva(v, i)− qu[1 +
∑N

m=1 a(v,m)](1− d(i))−1 v ̸= i, u = i

quqva(v, i) v ̸= i, u ̸= i

(3.22)

γai (u, v) =
1

D(i)
·


−qiw−(i, u)(1− d(i))−1 v = i, u = i

−qiw−(i, u)(1− d(i))−1 + qu
∑N

j=1qjw
−(j, u) v = i, u ̸= i

−qiw−(i, u)(1− d(i))−1 − qu
∑N

j=1qjw
−(j, u) v ̸= i, u = i

−qiw−(i, u)(1− d(i))−1 v ̸= i, u ̸= i

(3.23)

Notice that (3.15) - (3.17) can also be written as:

∂q

∂w+(u, v)
= γ+(u, v) (I−W)−1 (3.24)

∂q

∂w−(u, v)
= γ−(u, v) (I−W)−1 (3.25)

∂q

∂a(u, v)
= γa(u, v) (I−W)−1 (3.26)

where I is the N ×N identity matrix. We now summarise the steps of the learning

algorithm:
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(1) Initialise the matrices W+, W− and A and choose a value for η.

(2) For each input-output pattern k do:

(a) Set appropriate values for the inputs [Λk,λk]
T = xk and desired outputs

yk for the particular pattern.

(b) Solve the system of the N non-linear equations (3.3)-(3.5) based on the

above values.

(c) Based on the values attained, calculateW, γ+(u, v), γ−(u, v) and γa(u, v),

∀u, v.

(d) Using the values obtained from Steps (2a)-(2c), solve the three systems

of the N linear equations (3.24), (3.25) and (3.26) for all values of u and

v.

(e) Using the results from the previous steps, update the matrices W+ =

{w+(i, j)}, W− = {w−(i, j)} and A = {a(i, j)} using (2.15) and (2.16).

Set any negative weights to zero.

(3) Repeat the procedure of step (2) until a stopping criterion is met.

3.2.5. Computational complexity

To examine the computational complexity of the RNNSI gradient descent algorithm

we need to consider the costly steps of the algorithm. In this way, we can establish

the complexity of computing one or all weights in one iteration of the algorithm.

Specifically, we will investigate the computational complexity of the following steps:

1. Solution of the RNNSI signal-flow equations (3.3)-(3.5).

2. Derivation of W based on Eq. (3.14).

3. Computation of the terms γ+(u, v), γ−(u, v) and γa(u, v).

4. Evaluation of the terms ∂q/∂w(u, v).

Let us start our examination with the RNNSI signal-flow equations. Similar to

the RNN case, the number of iterations required to compute qi,∀i is small so that

the total complexity of this calculation depends on the complexity of one iteration.

As w(i, j, l) = w−(i, j)a(j, l) Eqs. (3.3) and (3.4) become:
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λ+(i) = Λ(i) +
N∑
j=1

qjw
+(j, i) +

N∑
j=1

N∑
m=1

qjqmw
−(j,m)a(m, i)

λ−(i) = λ(i) +
N∑
j=1

qjw
−(j, i) +

N∑
j=1

N∑
m=1

qjw
−(j, i)a(i,m)

If we follow the direct way of updating λ+(i) and λ−(i) then each of these terms

requires O(N2) operations due to the presence of
∑

j

∑
m[·] terms. Hence, as we

have N such terms the computational complexity of one iteration is O(N3). How-

ever, we can reduce the complexity of these calculations by an order of magnitude,

by rewriting the terms λ+(i) and λ−(i) as:

λ+(i) = Λ(i) +
N∑
j=1

qjw
+(j, i) +

N∑
m=1

qma(m, i)
N∑
j=1

qjw
−(j,m)

= Λ(i) +
N∑
j=1

qjw
+(j, i) +

N∑
m=1

qma(m, i)σ1(m) (3.27)

λ−(i) = λ(i) +
N∑
j=1

qjw
−(j, i) +

N∑
j=1

qjw
−(j, i)

N∑
m=1

a(i,m)

= λ(i) + σ1(i)(1 + σ2(i)) (3.28)

where σ1(u) and σ2(u) are given by:

σ1(u) =
N∑
j=1

qjw
−(j, u), u = 1, ..., N

σ2(u) =
N∑
j=1

a(u, j), u = 1, ..., N

Note that the terms σ2(u) need to be computed once at the beginning of the

algorithm execution, while the terms σ1(u), u = 1, ..., N need to be computed at

the start of each iteration and require O(N2) operations in total. Having derived

σ1 and σ2 the evaluation of λ+ and λ− requires O(N2) operations per iteration as

well. Hence, the total complexity of computing qi, ∀i is O(N2) similar to the RNN
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case.

The derivation of matrix W is of computational complexity O(N3) as it requires

the evaluation of N2 terms of the form
∑N

m=1 qmw
−(i,m)a(m, j), ∀i, j each needing

O(N) operations. Furthermore, the most computational demanding terms amongst

γi(u, v) are the γ−i (u, v). By setting σ2(v) =
∑N

m=1 a(v,m) in γ−i (u, v), we can

obtain these terms in O(N3) time, as each term requires O(1) operations and there

are N3 such terms.

Finally, the evaluation of ∂q/∂w(u, v) requires the derivation of V = (I−W)−1

which is of computational complexity O(N3) or O(mN2) if a relaxation method

with m iterations is followed. Note that matrix V needs to be computed only once.

Additionally, to derive a ∂q/∂w(u, v) term the matrix-vector product γ(u, v)V

needs to be computed that takes O(N2) operations. Consequently, the complexity

of updating one weight w(u, v) is equal to O(N3), due to the derivation of the terms

W, V and γ−(u, v) , while the total complexity of one iteration of the algorithm

is O(N4) as there are 3N2 terms ∂q/∂w(u, v) that need to be computed. However,

the total time complexity of one iteration can be reduced to O(N3) as explained

below.

Let us assume that ai = {c̄i(gi(qik)− yik)∂gi(qi)∂qi
}, ∀i, where ai is the i-th element

of vector a at the kth iteration. Substituting Eq. (2.17) or Eq. (2.18) into Eq.

(2.16) yields:

∂Ek

∂w(u, v)
= a

[
∂q

∂w(u, v)

]T
= a

[
γ(u, v)(I−W)−1

]T
= aVTγT (u, v)

= aV γ
T (u, v), ∀ u, v (3.29)

where aV = aVT and γ(u, v) is used to represent γ+(u, v) or γ−(u, v) or γa(u, v).

In order to update w(u, v), ∀u, v it is required to compute once matrixV and vectors

a and aV . According to Eq. (3.29) the complexity of computing ∂Ek

∂w(u,v)
is O(N) so

that the complexity of computing all N2 weights is O(N3). We can further reduce

the complexity of each ∂Ek

∂w(u,v)
term to O(1), by substituting Eqs. (3.21)-(3.23) into
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the generic Eq. (3.29) to obtain:

∂Ek

∂w+(u, v)
=

N∑
i=1

aV (i)γ
+
i (u, v) = qu

aV (v)

D(v)
− qu

aV (u)

D(u)
(1− d(u))−1 (3.30)

∂Ek

∂w−(u, v)
=

∑N

i=1
aV (i)γ

−
i (u, v)

= quσ3(v)−
aV (u)

D(u)
qu(1 + σ2(v))(1− d(u))−1

−qu
aV (v)

D(v)
qv(1 + σ2(v))(1− d(v))−1 (3.31)

∂Ek

∂a(u, v)
=

N∑
i=1

aV (i)γ
a(u, v) = −σ4(u)− qu

aV (u)

D(u)
σ1(u) + qu

aV (v)

D(v)
σ1(u) (3.32)

where the sum terms σ1(u) and σ2(u) have already been defined, while σ3(u) and

σ4(u), u = 1, ..., N are given by:

σ3(u) = qu

N∑
j=1

aV (j)

D(j)
a(u, j), u = 1, ..., N

σ4(u) =
N∑
j=1

aV (j)

D(j)
qjw

−(j, u)(1− d(j))−1, u = 1, ..., N

We can now outline an improved version of the RNNSI algorithm:

(1) Initialise the matrices W+, W− and A and choose a value for η.

(2) For each input-output pattern k do:

(a) Set appropriate values for the inputs [Λk,λk]
T = Xk and desired outputs

yk for the particular pattern.

(b) Solve the system of the N non-linear equations (3.3)-(3.5) based on the

above values.

(c) Compute matrix W from Eq. (3.14) and derive aV = aV = a(I−W)−1.

(d) Based on the values obtained, calculate the terms σi(u) for i = 1, 2, 3, 4

and u = 1, ..., N .
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(e) Derive the terms ∂Ek

∂w+(u,v)
, ∂Ek

∂w−(u,v)
and ∂Ek

∂a(u,v)
, ∀u, v according to expres-

sions (3.30),(3.31) and (3.32) respectively.

(f) Using the results from the previous step, update the matrices W+ =

{w+(i, j)}, W− = {w−(i, j)} and A = {a(i, j)} using Eq. (2.15). Set all

negative weights to zero.

(3) Repeat the procedure of step (2) until a stopping criterion is met.

In terms of computational complexity the computation of the terms σi(u) for

i = 1, 2, 3, 4 and u = 1, ..., N are of O(N) complexity, so that all these terms

can be computed with O(N2) operations. With respect to the derivation of Eqs.

(3.30)-(3.32), we have not only achieved to reduce the complexity of evaluating
∂Ek

∂w(u,v)
, ∀u, v by one order of magnitude, but also made the evaluation of γi(u, v)

redundant. The reduction in the computational complexity by O(N) has been

achieved by the replacement of steps (2c)-(2d) of the original RNNSI learning al-

gorithm with steps (2c)-(2e) of the improved one.

Taking everything into account, the complexity of one step of the algorithm is

O(N3), due to the derivation of W and V. The overall complexity of the algo-

rithm is NGD−RNNSI ×O(KN3), where NGD−RNNSI is the number of times that all

patterns are processed until a stopping criterion is met. The procedure described

above can also be extended to the gradient descent algorithm of RNN to reduce its

computational complexity as well.

3.3. RNN supervised learning using nonnegative

least squares

In this section, we propose a novel supervised learning algorithm and weight initial-

isation method for the RNN. Firstly, we show how to approximate the supervised

learning problem in RNN to produce a Non-Negative Least Squares (NNLS) for-

mulation, when all the neurons of the network have known desired qik values. The

weights obtained from the solution of the NNLS problem can either be considered

as the learnt weights or as good initial values for the standard supervised learning

RNN algorithm. Then, we describe an improved version of a projected gradient

algorithm for the solution of the NNLS problem as well as an iterative algorithm
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that has been developed to deal with the case that not all neurons have desired

values. We also derive efficient expressions for the function and gradient evaluation

of the NNLS formulation, which are a result of the special structure of the NNLS

problem in the RNN case and discuss the computational complexity of the proposed

approach.

3.3.1. Problem formulation

In supervised learning an optimal set of weights must be found, such that the

error associated with the observed and desired output is minimized. As already

mentioned the observed output in RNN is associated with parameters qik, i ∈ Iout
and k = 1, ..., K. Ideally we would like to observe the desired output yk for all

patterns. This means, that for all patterns we should have: qik = g−1
i (yik), i ∈ Iout,

where g−1
i (·) is the inverse function of gi(·) and Iout is the set of output neurons.

This is achieved, if the qik values for all the patterns and for i belonging to the

set of indices of non-output neurons Iout, as well as the weights are appropriately

selected. Without loss of generality, in the sequel we assume that gi(qik) = qik, so

that g−1
i (yik) = yik.

Combining Eqs. (2.6)-(2.8) we obtain:

qik = min

{
1,

λ+(i, k)

ri + λ−(i, k)

}
= min

1,

Λik +
N∑
j=1

qjkw
+(j, i)

ri + λik +
N∑
j=1

qjkw−(j, i)

 ∀i, k (3.33)

If we further assume that λ+(i, k) < ri+λ
−(i, k) ∀i, k and also substitute Eq. (2.4)

into Eq. (3.33) we obtain:

qik(1− d(i))−1
N∑
j=1

(w−(i, j) + w+(i, j))

+qik
N∑
j=1

qjkw
−(j, i)−

N∑
j=1

qjkw
+(j, i) = Λik − qikλik, ∀i, k

(3.34)

If the network is only composed of output neurons, and if we assume that qik =

yik, ∀i, k, then Eq. (3.34) becomes a linear system of NK equations with 2N2

nonnegative unknowns, the weights w+(i, j) and w−(i, j). If there are both output

and non-output neurons then by selecting appropriate values for the excitation
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probabilities of the latter we can still obtain a linear system, as discussed in Section

3.3.2.

However, an accurate solution to Eq. (3.34) may not be available for two reasons.

First, the number of equations may be larger that the number of unknowns; this is

true when K > 2N . Second, the nonnegativity constraints restrict the values of the

variables and a solution may not exist even if K < 2N . As a result we formulate

Eq. (3.34) as an NNLS problem in order to approach equality as much as possible

in the least square sense.

min
w≥0

f(w) =
1

2
∥Bw − b∥22, (3.35)

B ∈ RNK×2N2

, b ∈ RNK×1, w ∈ R2N2×1

NNLS is a convex quadratic optimisation problem [119] that can be solved to

optimality using various methods as will be explained in the next section. The

gradient of the objective function is given by:

∇f(w) = BTBw −BTb (3.36)

In order to improve the generalisation ability of the model we can also introduce

regularisation. Specifically we consider two regularisation terms: (a) the squared

l2-norm of the weights, |w|22 = wTw =
∑

iw
2
i , and (b) the l1-norm of the weights,

|w|1 =
∑

i |wi|. The former, improves the numerical stability of BTB and restricts

the weights in taking large values that improves the generalisation ability of the

network by avoiding overfitting. The latter, reduces the number of nonzero weights

in the solution, but can also perform better compared to l2-norm regularisation in

some cases [185]. Because in our case the weights are nonnegative, the regularisation

term |w|1 is equal to 1Tw =
∑

iwi. Adding the two regularisation terms with

appropriate regularisation weights to the NNLS problem yields:

min
w≥0

freg(w) = 1
2
(Bw − b)T (Bw − b) + θ1|w|1 + θ2|w|22

= 1
2
(Bw − b)T (Bw − b) + θ11

Tw + 1
2
θ2w

Tw (3.37)

The gradient of the regularised NNLS problem ∇freg(w) is given by:

∇freg(w) = BT (Bw − b) + θ11+ θ2w (3.38)
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Notice that the computational complexity of the objective and gradient NNLS func-

tions are not affected by the introduction of the regularisation terms.

The ik row of matrix B and vector b in Eqs. (3.35) and (3.37), which corre-

spond to the ith signal flow equation of the kth pattern, are given by the following

expressions:

B(ik, ij+) = qik(1− d(i))−1, ∀ j ̸= i

B(ik, ij−) = qik(1− d(i))−1, ∀ j ̸= i

B(ik, ji−) = qikqjk, ∀ j ̸= i

B(ik, ji+) = −qjk, ∀ j ̸= i

B(ik, ii+) = qik(1− d(i))−1 − qik, j = i

B(ik, ii−) = qik(1− d(i))−1 + q2ik, j = i

B(ik, otherwise) = 0,

(3.39)

b(ik) = Λik − qikλik, ∀ i, k (3.40)

The column indices of B, ij+ and ij−, indicate the position of the variables

w+(i, j) and w−(i, j) in w respectively. Notice that every value of B can be found

by only using matrix Q = [q1, ...,qk, ...,qK ], Q ∈ RN×K , which holds the qik values

of both output and non-output neurons; the d(i) values are usually constant and

for simplicity we assume that d(i) = 0, ∀i. Also, despite the fact that every row of

matrix B has 2N2 elements, only 4N of them are nonzero and hence the density of

nonzero elements in B is 2/N .

One difficulty associated with the above formulations is the large dimensionality

of B which implies that it may not be possible to be stored in memory. For example,

in Chapter 4 we consider supervised RNN problems with dimensions up to N =

300 and K = 1000, in which case matrix B has dimensions 300000 × 180000 so

that it is impossible to be stored in memory. Moreover, initial experimentation

showed that B is ill-conditioned. Therefore, we want to develop an approach for the

solution of the NNLS problem that does not require either storing large matrices or

performing matrix inversion operations. It is important that only simple operations

are performed, such as matrix-vector products, avoiding inefficient matrix-matrix

multiplications or matrix inversion operations. To achieve the requirements of the

solution approach, it is also important to consider the sparseness of B.

In the next section, we discuss the proposed solution approach both for the case
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that the network is only composed of output neurons as well as for the case that

the network is composed of output and non-output neurons.

3.3.2. Solution approach

Algorithms for the solution of the NNLS problem

The algorithms proposed in the literature for the solution of the NNLS problem can

generally be classified into active set algorithms and iterative approaches.

In active set algorithms variables are divided into two sets: the active set and

the passive set. A variable belongs to the active set if it is negative or zero at a

particular iteration, otherwise it belongs to the passive set. When the unconstrained

least squares problem is solved, negative or zero variables do not contribute to

the constrained problem; therefore, if the active set corresponding to the optimal

solution is known then the solution can be found by solving the unconstrained

problem for the passive set of variables and setting the active variables equal to

zero.

The most widely known active set algorithm is the one proposed by Lawson and

Hanson [119]. In this approach, initially all the variables are inserted into the active

set. Then an iterative procedure is followed where in each iteration variables that

result in a strictly better evaluation of the cost function are identified and removed

from the active set. The procedure continues until no more active variables can

be freed to reduce further the cost function. Although it is possible to free many

variables at a single iteration, general practice has shown that it is better to free

from the active set only one variable at a time [45].

A modified version of this algorithm identifies calculations that can be computed

beforehand to reduce the computational cost. The algorithm called FNNLS (Fast

Nonnegative Least Squares) [29] speeds-up the procedure, but requires the stor-

age of the square matrix BTB as well as matrix inversion operations. Active set

methods are in general not appropriate in our case because they involve matrix

inversion operations, which are undesirable due to memory limitations and high

computational cost.

Iterative approaches adhere to nonlinear optimisation methods to update the

decision vector at iteration τ ,wτ . Usually the update of the current solution is based

on projected gradient methods which can identify several active set constraints in one
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iteration. They generally require simple matrix vector operations and can perform

well in ill-conditioned systems. In iteration τ of a projected gradient method, a

search direction dτ and a step-size sτ are appropriately selected; then to obtain

wτ+1 the projection operation is applied to ensure that the new point is within the

feasible region as shown in Eqs. (3.41) and (3.42).

wτ+1 = P [wτ − sτdτ ] = P [wτ − sτSτ∇f(wτ )], sτ ≥ 0, Sτ ∈ R2N2×2N2

(3.41)

P [wi] =

{
wi, wi > 0

0, otherwise
(3.42)

Projected gradient methods usually differ in the procedure used for the selection

of the step-size sτ and the update of the gradient scaling matrix Sτ , which must be

symmetric and positive definite. With respect to the step-size selection, one of the

most successful methods is the “Armijo rule along the projection arc” (APA) [25]

which will be discussed later in this section. The selection of Sτ is also important

because it utilises second order gradient information and results in fast convergence

to the solution. However, this selection involves a tradeoff between computational

time, memory and convergence speed.

For the solution of the NNLS problem (or the closely related convex bound or

box constrained quadratic programming problem) several schemes for updating the

scaling matrix have been proposed. In [124] and [139], first order gradient projection

methods that do not utilise the scaling matrix (Sτ = I) were considered, resulting in

short execution time per iteration but slow convergence. A gradient scaling matrix

with only diagonal entries was proposed in [23], achieving convergence in fewer

iterations compared to [139]. Despite the fact that diagonal scaling is better than

no scaling, the use of non-diagonal Sτ matrices results in faster convergence, but

can be prohibitive in terms of memory and computation.

Newton methods consider the inverse of the Hessian matrix ((∇2f(w))−1) for

updating the scaling matrix at each iteration, which is prohibitive both in terms of

computation and storage. Quasi-Newton methods provide an attractive alternative

by constructing an approximation of the Hessian or its inverse based on information

provided by the change in the decision and gradient vectors ∆wτ−1 = wτ −wτ−1

and ∆gτ−1 = ∇f(wτ ) − ∇f(wτ−1) at successive iterations. Nevertheless, quasi-

Newton methods also require full storage of Sτ . Note that in order to guarantee
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convergence for the solution of the NNLS problem, Newton [24] and quasi-Newton

methods [111] construct a reduced gradient scaling matrix S̃τ at each iteration which

is the principal submatrix of Sτ corresponding to the set of free variables (see Eq.

(3.43)).

Limited-memory quasi-Newton methods offer a good trade-off between having

a diagonal or a full scaling matrix by updating the search direction based on a

positive definite approximation of Sτ obtained by the difference vectors ∆wτ and

∆gτ of the last M iterations. Two quasi-Newton methods that can be applied for

the solution of the NNLS problem are the L-BFGS-B [31] and PQN-SPG [157].

Each iteration of the L-BFGS-B involves three important steps: (a) a projected

gradient line-search along d = ∇f(wτ ) on the quadratic model constructed by the

limited-memory approximate Hessian matrix to obtain wτ
c , (b) the approximate

solution of the quadratic model over the set of free variables at wτ
c followed by

projection of the free variables in the feasible region to obtain w̄τ+1, and (c) line-

search along the feasible direction df = w̄τ+1−wτ applied to the original objective

function. The PQN-SPG method also constructs a quadratic model based on the

limited-memory approximate Hessian matrix, but directly attempts to solve the

constrained quadratic model using a Spectral Projected Gradient (SPG) method.

Then it employs a line-search along the feasible direction for the original objective

function. Notice that both methods do not consider projected gradient search

along the direction d = Sτ∇f(wτ ); they employ a line-search along the feasible

direction for the original objective function. However, the APA line-search can

lead to faster convergence than a line-search along the feasible direction because

the iterates produced by the former are more likely to be at the boundary of the

constraint set, resulting in the identification of the final active set in fewer iterations

(p.228 in [25]).

The PGNNLS algorithm

We have developed a Projected Gradient NNLS (PGNNLS) algorithm based on up-

dating the search-direction using a limited-memory BFGS formula and performing

an APA line-search, which is outline in Algorithm 3.1. Our approach is a modi-

fied version of the quasi-Newton NNLS algorithm proposed in [111]; nevertheless

it is different both in terms of the employed line-search (hyper-exponential instead

of standard APA) and the procedure for updating the search direction (limited
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memory instead of full BFGS).

The key aspect of Algorithm 3.1 is that at iteration τ we only perform a line-

search for the variables that are in the free-set F τ defined as:

F τ = {i|wτ
i > 0 or (wτ

i = 0 and [∇f(wτ )]i ≤ 0)} (3.43)

To understand the reason behind this, let us define the complement of F τ , called

the binding set Bτ :

Bτ = {i|wτ
i = 0 and [∇f(wτ )]i > 0} (3.44)

For the variables belonging to the binding set there are two possibilities about

the search direction: (a) dτi ≥ 0, and (b) dτi < 0. In the first case, we have that xτ+1
i

= P [xτi − sτdτi ] = P [−sτdτi ] = 0 so that this variable remains constant and does not

affect the cost function. In the second case, we have that xτ+1
i = P [xτi − sτdτi ] =

P [−sτdτi ] = −sτdτi > 0; however, the fact that −dτi [∇f(wτ )]i > 0 is undesirable, as

it contributes negatively towards the condition that guarantees function reduction

at the particular direction (−(dτ )T∇f(wτ ) < 0).

As a result, variables belonging to Bτ should not affect the line-search procedure

of iteration τ . This is achieved by considering a modified direction d̃ defined as:

d̃τi =

{
d̄τi , i ∈ F τ

0, i ∈ Bτ
, ∀i (3.45)

where d̄τ = Sτ∇Pf(w
τ ) and ∇Pf(w

τ ) is the projected gradient given by Eq.

(3.46).

[∇Pf(w
τ )]i =

{
[∇f(wτ )]i, i ∈ F τ

0, i ∈ Bτ
,∀i (3.46)

In this way, Eq. (3.41) becomes:

wτ+1 = P [wτ − sτ d̃τ ]

An equivalent expression can be obtained by updating only the variables belonging

to the free-set: wτ+1
F = P [wτ

F − sτ S̃τgτ
F ], where S̃τ ∈ R|F|×|F| is the principal sub-

matrix of Sτ corresponding to the free variables and similarly, gτi,F = [∇f(wτ )]F(i),

i = 1, ..., |F|.
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Algorithm 3.1 - PGNNLS: Projected Gradient Algorithm for the NNLS problem

Input: Q = [q1, ...,qK ], b, M
Output: wτ

Initialise: τ ← 0; wτ ← 0; sτ−1 ← 1;
Set f τ ← f(wτ ) and gτ ← ∇f(wτ ) using Eqs. (3.35) and (3.36);
Find the binding set Bτ according to expression (3.44)

Set d̃τ = ∇Pf(w
τ ) using Eq. (3.46);

repeat
%Perform an APA line-search
if (τ < NIHE) then

[wtemp, stemp, flag] ← lineSearchHE(f τ , ∇f(wτ ), d̃τ , wτ , sτ−1, Q, b);
if (flag = FALSE) then

[wtemp, stemp] ← lineSearchLin(f τ , ∇f(wτ ), d̃τ , wτ , sτ−1, Q, b);
end if

else
[wtemp, stemp] ← lineSearchLin(f τ , ∇f(wτ ), d̃τ , wτ , sτ−1, Q, b);

end if
sτ ← stemp; τ ← τ + 1; wτ ← wtemp;
Set f τ ← f(wτ ), gτ ← ∇f(wτ ) using Eqs. (3.35) and (3.36);
Find the binding set Bτ according to expression (3.44);
%Update the search direction
if (sτ ≥ smin) then
if (τ > M) then
Discard the vector pair {∆wτ−1−M ,∆gτ−1−M} from storage;

end if
Store ∆wτ−1 = wτ −wτ−1; ∆gτ−1 = gτ − gτ−1;
dτ ← updateLBFGS(∇Pf(w

τ ),∆wk,∆gk, k = max{0, τ −M}, ..., τ − 1);

Define d̃τ according to Eq. (3.45)
else
Discard all stored vector pairs {∆wk,∆gk};
Set d̃τ = ∇Pf(w

τ ) using Eq. (3.46);
end if

until a stopping criterion is met
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As mentioned above, Algorithm 3.1 relies on a limited-memory BFGS update of

the scaling matrix. In each iteration, the BFGS formula is updated so that the

new matrix is symmetric, satisfies the secant equation and also is the closest to

the current approximation matrix in the least squares sense. In addition, if the

associated problem is strictly convex and an appropriate line-search is considered,

then the updated matrices are also positive definite [157]. The BFGS formula for

updating Sτ is given by:

Sτ = (Vτ−1)TSτ−1Vτ−1 + ρτ−1∆wτ−1(∆wτ−1)T (3.47)

where

ρk =
1

(∆gk)T∆wk
, Vk = I− ρk∆gk(∆wk)T , and S0 = σBFGSI, σBFGS > 0

Notice that Sτ is a rank-two modification of Sτ−1 which can be obtained using

∆wτ−1 and ∆gτ−1. Hence, if we store all vectors ∆wk and ∆gk from the start of

the algorithm, we can obtain Sτ without storing any matrix.

In the limited-memory variant of BFGS, instead of storing all vectors, we update

Sτ based on the M most recent ∆wk and ∆gk vector pairs. This is achieved with

the use of the following recursive formula which is directly derived from (3.47) [32].

Sτ = (Vτ−M · · ·Vτ−1)TSτ
0(V

τ−M · · ·Vτ−1)

+ρτ−M(Vτ−M+1 · · ·Vτ−1)T∆wτ−M(∆wτ−M)T (Vτ−M+1 · · ·Vτ−1) (3.48)

ρτ−M+1(Vτ−M+2 · · ·Vτ−1)T∆wτ−M+1(∆wτ−M+1)T (Vτ−M+2 · · ·Vτ−1)

+ · · ·

+ρτ−1∆wτ−1(∆wτ−1)T

Using Eq. (3.48) we can efficiently update the search direction dτ = Sτ∇f(wτ ),

without storing Sτ at any iteration. As a result, the required memory for the quasi-

Newton update is reduced from 2N2 × 2N2 to 2M × 2N2. This is a substantial

memory saving, as it has been observed in practice that even small values of M

(sayM ∈ [3, 7]) provide satisfactory results [32]. Nocedal and Wright [143] describe

in detail the limited memory BFGS method and outline an iterative procedure

for updating the search direction based on (3.48); we outline this procedure in

Algorithm 3.2.
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Algorithm 3.2 - updateLBFGS: Compute the product of the limited memory
scaling matrix and the gradient

Input: g,∆wk,∆gk, k = max{0, τ −M}, ..., τ − 1
Output: d
for (k = τ − 1, ...,max{0, τ −M}) do
ρk ← 1/((∆gk)T∆wk);
αk
1 ← ρk(∆wk)Tg;

g← g − αk
1∆gk;

end for
d← Sτ

0g;
for (k = max{0, τ −M}, ..., τ − 1) do
α2 ← ρk(∆gk)Td;
d← d+ (αk

1 − α2)∆wk;
end for

The use of the limited-memory BFGS scheme also provides computational ben-

efits. Note that updating the scaling matrix using the BFGS method requires sev-

eral matrix-vector operations whose computational complexity is O((2N2)2). On

the hand, the use of Algorithm 3.2 requires 5M vector-vector products so that

its computational complexity is O(5M(2N2)) which is significantly less than the

complexity of a single matrix-vector product.

Let us now turn our attention to the discussion of the line-search procedure. As

mentioned above, the step-size sτ is found by employing the “Armijo rule along

the projection arc” (APA) [25]. In APA rule the step-size is chosen to be equal to

sτ = βm, where m is the smallest nonnegative integer satisfying the APA condition:

f(wτ+1
cand(β

m))− f(wτ ) ≤ σAPA∇f(wτ )T (wτ+1
cand(β

m)−wτ ) (3.49)

where wτ+1
cand(β

m) = P [wτ − βmd̃τ ], 0 < σAPA < 1/2 and 0 < β < 1. An important

advantage of the APA over other step-size rules is that it identifies many active con-

straints in one iteration. In addition, it is proven that the sequence {wτ} produced
when applying the APA rule, converges to a stationary point {w∗}[25], which in

our case is a global minimum. In [33], a more detailed analysis of projected gra-

dient algorithms further relaxed the convergence conditions. The authors showed

that convergence to a stationary point can be achieved by choosing any step-size

satisfying condition (3.49), under the assumptions that sτ is not too small, the cost

function is bounded below and the gradient is uniformly continuous (Theorem 2.3
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in [33]), which are true in the NNLS case. Hence, convergence is guaranteed even if

we choose any value of m satisfying (3.49) rather than the smallest integer, as long

as the selected βm are not too small.

Nevertheless, identifying the appropriate m value may require a large number

of function evaluations and projections. To alleviate this problem, Lin proposed

a different strategy for the identification of m [124]. Lin’s approach manipulates

the fact that the value of sτ is similar to sτ−1 to start the line-search from sτ−1

(Algorithm 3.3). If condition (3.49) is satisfied then this value is stored and the

step-size is increased (division of the current step-size by β), until we find a value

that violates the APA condition. Otherwise, if the APA condition is not satisfied

the step-size is decreased (multiplication of the current step-size by β) until we find

a value that satisfies (3.49).

Algorithm 3.3 - lineSearchLin: Lin’s APA line-search procedure

Input: f(wτ ), ∇f(wτ ), dτ , wτ ,sτ−1, Q = [q1, ...,qK ], b
Output: wτ+1, sτ

Initialise: σ ← 0.01; β ← 0.9; sτcand ← sτ−1;
wτ+1

cand ← P [wτ − sτcanddτ ];
if ((3.49) is satisfied) then
repeat
sτ ← sτcand;
sτcand ← sτcand/β;
wτ+1

cand ← P [wτ − sτcanddτ ];
until (((3.49) is not satisfied) or (w(sτcand/β) = w(sτcand)))

else
repeat
sτcand ← sτcandβ;
Set wτ+1

cand ← P [wτ − sτcanddτ ];
until ((3.49) is satisfied)
sτ ← sτcand;

end if
wτ+1 ← P [wτ − sτdτ ];

Although the particular line search is quite efficient after the first iteration, no

suggestion has been made in efficiently obtaining s1. In a typical execution of this

algorithm, if 100 iterations are undertaken, the first may require 90 trials while the

rest 250 trials in total. Hence, the first iteration requires a significant amount of

the execution time.

As described in Algorithm 3.4, we propose to hyper-exponentially alternate sτ
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Algorithm 3.4 - lineSearchHE: Hyper-exponential APA line-search procedure

Input: f(wτ ), ∇f(wτ ), dτ , wτ , sτ−1, Q = [q1, ...,qK ], b
Output: wτ+1, sτ , flag
Initialise: σ ← 0.01; β ← 0.9; sτcand ← sτ−1; sτinit ← sτ−1; k ← −1; flag ←
TRUE;
wτ+1

cand ← P [wτ − sτcanddτ ];
if ((3.49) is satisfied) then
repeat
sτ ← sτcand; k ← k + 1; sτcand ← sτinit/β

2k ;
wτ+1

cand ← P [wτ − sτcanddτ ];
until ((3.49) is not satisfied)
low ← ⌊2k−1 + 1⌋; high← 2k;
while (low < high) do
mid← ⌊(low + high)/2⌋; sτcand ← sτinit/β

mid;
wτ+1

cand ← P [wτ − sτcanddτ ];
if ((3.49) is not satisfied) then
high← mid;

else
sτ ← sτcand; low ← mid+ 1;

end if
end while

else
repeat
if (sτcand < smin) then
flag ← FALSE; break;

else
k ← k + 1; sτcand ← sτinit · β2k ;
wτ+1

cand ← P [wτ − sτcanddτ ];
end if

until ((3.49) is satisfied)
low ← ⌊2k−1 + 1⌋; high← 2k; sτ ← sτcand;
while (low < high)AND(flag) do
mid← ⌊(low + high)/2⌋; sτcand ← sτinit · βmid;
wτ+1

cand ← P [wτ − sτcanddτ ];
if ((3.49) is satisfied) then
high← mid; sτ ← sτcand;

else
low ← mid+ 1;

end if
end while

end if
wτ+1 ← P [wτ − sτdτ ];

83



for the identification of an appropriate step-size value. In the hyper-exponential

line-search (lineSearchHE), the first trial also starts from sτ−1. If the APA con-

dition is satisfied, which means that sτ ≥ sτ−1, we hyper-exponentially increase

the step-size (division of the initial step-size by β2k , k = 0, 1, 2...) until a step-

size sτinit/β
2kv violating condition (3.49) is found; hence, the step-size value is in

the region [sτinit/β
2kv−1

, sτinit/β
2kv ). Then, a divide-and-conquer procedure is fol-

lowed, until the largest value βm satisfying the APA rule is identified. In the

case that the APA condition is initially not satisfied (0 < sτ < sτ−1), we hyper-

exponentially decrease the step-size (multiplication of the initial step-size by β2k ,

k = 0, 1, 2...) until a step-size sτinitβ
2ks satisfying condition (3.49) is found, so that

sτ ∈ [sτinitβ
2ks , sτinitβ

2ks−1
). Then, we follow a divide and conquer procedure to find

the largest value βm in the identified region that satisfies Eq. (3.49).

At this point, it is important to mention that function f(wτ+1
cand(s)), s ≥ 0 is

generally non-convex. As a result, if the initial trial does not satisfy the APA

condition, it is possible that no trial with sufficiently large step-size will satisfy it,

in which case the step-size will go to zero. If this situation occurs, we stop the

hyper-exponential line-search and restart with procedure lineSearchLin, which

is guaranteed to be successful. It is also possible due to the hyper-exponential

reduction of the step-size, to overleap a region of sτ values where the APA condition

is satisfied. In this case the algorithm’s convergence is still not affected, as either

another satisfactory value will be found, or the restarted lineSearchLin procedure

will find the overleapt value.

The proposed line search requires approximately 2log2(NT
τ ) trials to compute sτ

if the procedure is successful, where NT τ is the number of trials required by Lin’s

approach. Otherwise, the additional number of trials performed is ⌈log2(ln(smin/

sτinit)/ln(β))⌉. For example, if smin = 10−8, sτinit = 0.3 and β = 0.9 then an

additional number of 8 trials will be performed.

After the first few iterations the step-sizes of subsequent iterations are similar

and the benefit of using the hyper-exponential line search is small. Hence, we

can employ lineSearchLE only for the first NIHE iterations as indicated in the

PGNNLS algorithm.

Formally the stopping criterion that should be met for the termination of the

PGNNLS algorithm is related to the Karush-Kuhn-Tucker (KKT) optimality con-

ditions. As the NNLS problem is convex, the KKT conditions are both necessary
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and sufficient for optimality (see Section 5.5.3 in [28]). For the NNLS problem,

these conditions are satisfied when:

[∇f(w)]i = 0, if wi > 0

[∇f(w)]i ≥ 0, if wi = 0

In the first case, the violation of the condition is equal to the value of the gradient

[∇f(w)]i, while in the second case it is equal to the value of the gradient if it is neg-

ative, min(0, [∇f(w)]i). These violations are exactly represented by the projected

gradient ∇Pf(w) defined in Eq. (3.46), so that the KKT optimally criterion for

the NNLS problem can be expressed as:

∥[∇Pf(w)]∥ ≤ ϵ

However, we do not require the accurate solution of the NNLS problem as it

is only used to approximately train the RNN. Hence, we may use other stopping

criteria such as the maximum number of iterations and the relative change in the

cost function or the decision variables.

The most costly operations that need to be performed at each iteration of Algo-

rithm 3.1 involve the computation of f(w) and ∇f(w), which require matrix-vector

product operations. In particular, at the start of each iteration, it is needed to

evaluate f(w) and ∇f(w) once. Additionally, each trial of the line-search proce-

dure requires the evaluation of f(wτ+1
cand). In Section 3.3.3, we discuss two different

approaches for the efficient evaluation of f(w) and ∇f(w) and derive efficient an-

alytical expressions.

The RNN-NNLS algorithm

The PGNNLS algorithm can be used to deal with the RNN supervised learning

problem when our recurrent network is only composed of output neurons. Next, we

extend this approach to the case that the network is composed of both output and

non-output neurons.

The approach that we take is the following: if neuron i ∈ Iout then we set qik =

yik, ∀k, while if neuron i ∈ Iout then we set qik = U(a, b), ∀k, where 0 ≤ a ≤ b ≤ 1

and U(a, b) denotes a sample from the uniform distribution in the interval [a, b].

Following this approach, we obtain qik values for all neurons and patterns; thus,
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an NNLS problem is derived (Eqs. (3.35),(3.39),(3.40)), which can be solved using

the PGNNLS algorithm. As a result, the larger the portion of output neurons the

better the obtained weights will be.

As already mentioned, due to the nonnegativity constraints and depending on

the dimensions N ,K the system of Eqs. (3.34) may not have a solution; therefore,

the obtained weights from the solution of the NNLS optimisation problem will not

accurately satisfy Eqs. (2.6)-(2.8), and the obtained weights will not result in good

performance. To deal with this issue, we use the weights acquired from the execution

of Algorithm 3.1, to compute qik from Eqs. (2.6)-(2.8). Then, a weighted version of

the desired values qdik and the exact values qik is computed and used as the new qdik
values in PGNNLS. Using this iterative procedure, we progressively move towards

weights that satisfy qdik ≈ qik.

To retain our original goal of achieving the desired output values yik, i ∈ Iout

we update the output qdik values in two different ways: (a) there is a different

weighting parameter for these neurons, 0 ≤ αo ≤ 1, typically close to one so that

their desired values slowly vary, and (b) we restrict the neuron values within a

desired region so that neurons corresponding to “0” decisions must have qik ≤ 0.4

and neurons corresponding to “1” decisions must have qik ≥ 0.6. By selecting the

specific boundary values, we achieve to constrain each qik in the desired region and

to have a large variation range for the parameters.

The overall procedure is outlined in Algorithm 3.5, called RNN-NNLS. It is im-

portant to note that the NNLS algorithm does not require matrix B as input, which

would be prohibitive for a large network. Due to Eq. (3.39), we can perform all the

computations involving B using matrix Q which holds all the qik values. Thereby,

the order of memory required is the same with the standard RNN learning algo-

rithm. The iterative procedure RNN-NNLS needs only a small number of iterations,

NIRNN−NNLS, before the error stabilises.

Finally, we should highlight that the RNN-NNLS algorithm can be used both for

supervised learning and weight initialisation. When used as a supervised learning

algorithm a more accurate solution of problem (3.35) may be found, while when

used as a weight initialization method it is sufficient to find a close to optimal

solution.

Before we discuss the computational complexity of the PGNNLS and RNN-NNLS

algorithms, we propose two different approaches to efficiently evaluate functions
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Algorithm 3.5 -RNN-NNLS: RNN supervised learning algorithm based on
NNLS formulation, for the solution of problems involving both output and non-
output neurons

Input: xk, yk,∀k
Output: w
Initialise Λik and λik ∀ i, k based on xik;
Set qdik = yik, i ∈ Iout;
Set qdik = U(a, b), i ∈ Iout;
Form matrix Qd = [qd

1, ...,q
d
K ], where qd

k(i) = qdik, ∀i, k;
for l = 1 to NIRNN−NNLS do
Update b according to Eq. (3.40);
w← PGNNLS(Qd,b);
for all k do
Obtain qik, i ∈ Iout by solving Eqs. (2.6)-(2.8);

end for
Set qdik ← αnoq

d
ik + (1− αno)qik, i ∈ Iout, ∀k;

Set qdik ← αoq
d
ik + (1− αo)qik, i ∈ Iout,∀k;

for i ∈ Iout, k = 1, ..., K do
if ((yik = 1) AND (qdik < 0.6)) then
qdik = 0.6;

end if
if ((yik = 0) AND (qdik > 0.4)) then
qdik = 0.4;

end if
end for

end for

87



f(w) and ∇f(w).

3.3.3. Efficient computation of NNLS costly functions

As mentioned earlier, the most computationally expensive functions in Algorithm

3.1 are f(w) and ∇f(w). However, computing these functions directly is very

inefficient, so that the structure and sparsity of matrix B should be exploited to find

efficient ways to compute ∇f(w). In this section we develop two such approaches.

The first is based on the efficient computation of BTz1 and Bz2 where z1 and z2

are vectors of appropriate dimensions. The second is based on first computing

and storing BTB in order to compute (BTB)z. We show that the computational

complexity of the former approach is O(KN2) per evaluation, while the complexity

of the latter is O(N3) per evaluation plus an initialisation cost of O(KN3). This

indicates that each of the two approaches can be faster than the other depending

on the problem dimensions (number of training pairs, K, and number of neurons,

N). If K ≫ N then the second approach is faster that the first one, otherwise the

first one is better.

The structure of matrix B

Matrix B is composed of many different matrix blocks which correspond to entries

associated with positive or negative weights as well as different input-output training

pairs. As a result we can represent B as:

B =


B+1, B−1

...
...

B+K , B−K

 ,B ∈ RKN×2N2

and B±k ∈ RN×N2

, k = 1, ..., K (3.50)

where B+k and B−k represent the entries associated with the kth input-output

training pair of the positive and negative weights respectively. These matrices are

sparse and are also of particular structure, as shown below for the case that N = 3,

when d(i) = 0, i = 1, ..., N .

B+k =

values corresponding to w+(i,j)︷ ︸︸ ︷ 0 q1k q1k −q2k 0 0 −q3k 0 0

0 −q1k 0 q2k 0 q2k 0 −q3k 0

0 0 −q1k 0 0 −q2k q3k q3k 0


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B−k=

values corresponding to w−(i,j)︷ ︸︸ ︷ q1k+q21k q1k q1k q1kq2k 0 0 q1kq3k 0 0

0 q1kq2k 0 q2k q2k+q22k q2k 0 q2kq3k 0

0 0 q1kq3k 0 0 q2kq3k q3k q3k q3k+q23k



Note that the structure of the above matrices allows their further decomposition

into:

B+k = Ck +D+k (3.51)

B−k = Ck +D−k (3.52)

For example, for the case that N = 3 matrices Ck, D+k and D−k take the form:

Ck =

 q1k q1k q1k 0 0 0 0 0 0

0 0 0 q2k q2k q2k 0 0 0

0 0 0 0 0 0 q3k q3k q3k



D+k =

 −q1k 0 0 −q2k 0 0 −q3k 0 0

0 −q1k 0 0 −q2k 0 0 −q3k 0

0 0 −q1k 0 0 −q2k 0 0 −q3k



D+k =

 q1kq1k 0 0 q2kq1k 0 0 q3kq1k 0 0

0 q1kq2k 0 0 q2kq2k 0 0 q3kq2k 0

0 0 q1kq3k 0 0 q2kq3k 0 0 q3kq3k


Notice that matrices Ck, D+k and D−k also have a special structure while all can

be decomposed further into N ×N sized submatrices. In particular, we have that:

Ck = [Ck1, . . . ,Cki, . . . ,CkN ]

D+k = [D+k1, . . . ,D+ki, . . . ,D+kN ]

D−k = [D−k1, . . . ,D−ki, . . . ,D−kN ]
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where sub-matrices Cki, D+ki, D−ki ∈ RN×N are given by:

Cki=qik(ei1
T ) (3.53)

D+ki = diag([−qik,−qik, . . . ,−qik]) = −qikI (3.54)

D−ki = qikdiag([q1k, q2k, . . . , qNk]) = qikdiag(qk) (3.55)

where I is the N×N identity matrix and diag(x) is a diagonal matrix with elements

of the main diagonal given by the entries of vector x, while all the other elements

of the matrix are equal to zero.

The first approach for the computation of f(w) and ∇f(w)

As discussed in section 3.3.1, functions f(w) and∇f(w) can be computed according

to Eqs. (3.35) and (3.36) respectively, which can be written as:

f(w) =
1

2
(Bw − b)T (Bw − b)

=
1

2
(ẑ− b)T (ẑ− b)

=
1

2
zTz (3.56)

∇f(w) = BT (Bw − b)

= BTz (3.57)

where we have defined ẑ = Bw, ẑ ∈ RNK×1 and z = ẑ − b. As a result, for

the computation of f(w) the only expensive step is the calculation of ẑ = Bw.

Similarly, the expensive steps for the computation of ∇f(w) are the calculation of

ẑ = Bw and z̃ = BTz, where z̃ ∈ R2N2×1. Note that the matrix-vector product Bw

appears in both terms. As a result, only two matrix-vector products are needed for

the evaluation of both functions at the same point wc: ẑc = Bwc and z̃ = BTzc,

where zc = ẑc − b.

As the naive calculation of these matrix-vector products is not efficient, we ma-

nipulate the special structure and sparsity of matrix B to derive expressions of low

computational complexity.

Let us first examine the term ẑ = Bw. Expanding B and w we obtain:
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ẑ = Bw =


C1 +D+1, C1 +D−1

...
...

CK +D+K , CK +D−K


[

w+

w−

]

=


C1w

+ +C1w
− +D+1w

+ +D−1w
−

...

CKw
+ +CKw

− +D+Kw
+ +D−Kw

−



=


ẑ1
...

ẑK

 , ẑk ∈ RN×1 (3.58)

where w+ represents the positive weights so that value w+(iN−N+j) ≡ w+(i, j)

and w− the negative weights such that w−(iN − N + j) ≡ w−(i, j). Note that to

evaluate ẑ it is sufficient to derive expressions for terms ẑk:

ẑk = Ckw
+ +Ckw

− +D+kw
+ +D−kw

− (3.59)

Hence, the computation of ẑk requires the efficient evaluation of Ckw
+, Ckw

−,

D+kw
+ and D−kw

−. Manipulation of these terms (see Appendix B.1.1) yields:

ẑk = qk

⊙
(σW+ + σW−)− (W+)Tqk + qk

⊙(
(W−)Tqk

)
(3.60)

where operator
⊙

denotes element-wise multiplication. In the above expression

the N × 1 vectors σW+ and σW− are given by:

σW+ = W+1 (3.61)

σW− = W−1 (3.62)

where 1 is a N × 1 vector of all ones, 1 = [1, ..., 1]T . This definition implies that

ith element of σW+ or σW− is equal to the sum of the elements belonging to the ith

row of the associated matrix. Having computed ẑ and hence z, we can now proceed

with the computation of z̃ = BTz. If we define zT =
[
zT1 , ..., z

T
K

]
, where zk ∈ RN×1,
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and use Eq. (3.50) to expand matrix B we obtain:

z̃ = BTz =

[
BT

+1 · · · BT
+K

BT
−1 · · · BT

−K

]
z1
...

zK


=

[ ∑K
k=1 B

T
+kzk∑K

k=1 B
T
−kzk

]
=

[ ∑K
k=1(C

T
k zk +DT

+kzk)∑K
k=1(C

T
k zk +DT

−kzk)

]
(3.63)

It Appendix B.1.2 we derive expressions for the appearing terms CT
k zk, D

T
+kzk

and DT
−kzk and show that z̃ is given by:

z̃ =

 (∑K
k=1(qk

⊙
zk)
)⊗

1−
∑K

k=1(qk

⊗
zk)(∑K

k=1(qk

⊙
zk)
)⊗

1−
∑K

k=1(qk

⊗
(qk

⊙
zk))

 (3.64)

where, operator
⊗

denotes the Kronecker product. When this operator is applied

on x ∈ RN×1 and y ∈ RM×1 the result is:

x
⊗

y = [x1y
T , ..., xNy

T ]T ∈ RNM×1

Having derived expressions to efficiently derive functions f(w) and ∇f(w) we

will now examine the computational complexity of this approach. For the compu-

tation of Bw the most costly operations are the evaluation of the matrix-vector

products (W+)Tqk and (W−)Tqk that appear in vectors ẑk in Eq. (3.60). The

time complexity of these operations is O(N2), as 2N2 operations are required (N2

multiplications and N2 additions), and as there are K such terms to be computed,

the total complexity of evaluating Bw is O(KN2). For the computation of term

BTz, for each k we need to evaluate δk = qk

⊙
zk, qk

⊗
zk and qk

⊗
δk which take

O(N), O(N2) and O(N2) time respectively. In addition, summation of the latter

two terms for all k requires O(KN2), as we need to perform K additions of N2

elements. If we perform the required multiplications naively, then the computation

of both Bw and BTz matrix-vectors products would require O(2KN3), as the di-

mensions of B are KN × 2N2, while the dimensions of w and z are 2N2 × 1 and

KN × 1 respectively. Hence this approach provides an O(N) complexity reduction

compared to naive matrix-vector multiplication.

With respect to memory requirements, this approach involves the storage of the
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necessary vectors i.e. matrices W+ and W− which have N2 elements, and matrix

Q which have KN elements in total, as well as a small number of auxiliary vectors

of the same dimensions. Naively storing B requires memory for 2KN3 elements

which is min{KN, 2N2} times larger than the memory required for our approach.

In sum, the computational complexity of computing f(w) and∇f(w) is O(KN2).

In terms of arithmetic operations, these functions require approximately, 4KN2 and

8KN2 operations respectively. Finally, the approach does not require the storage

of additional matrices other than the necessary W+, W− and Q which require

KN + 2N2 memory in total.

The second approach for the computation of ∇f(w)

A second approach for the evaluation of functions f(w) and ∇f(w) is based on

computing (during the initialisation phase) the quantities Γ = BTB and β = BTb.

Then, functions f(w) and ∇f(w) can be expressed with respect to these quantities

as:

f(w) =
1

2
(Bw − b)T (Bw − b)

=
1

2
wTBTBw −wTBTb+

1

2
bTb

=
1

2
wT (Γw)−wTβ +

1

2
bTb

= wT (
1

2
Γw − β) +

1

2
bTb (3.65)

∇f(w) = BTBw −BTb

= Γw − β (3.66)

Based on the above expressions only the matrix-vector product Γw is required

for their evaluation and hence at a particular point both functions can be computed

by just evaluating Γw. Notice that B ∈ RKN×2N2
and Γ ∈ R2N2×2N2

so that the

computation of f(w) and ∇f(w) are depended both on K, N in the first approach

and only on N in the second. Expansion of matrix B according to Eq. (3.50) yields:
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Γ = BTB =

[
BT

+1 · · · BT
+K

BT
−1 · · · BT

−K

]
B+1 B−1

...
...

B+K B−K


=

[ ∑K
k=1 B

T
+kB+k

∑K
k=1 B

T
+kB−k∑K

k=1 B
T
−kB+k

∑K
k=1 B

T
−kB−k

]
=

[
Γ11 Γ12

Γ21 Γ22

]
(3.67)

In order to derive expressions for the comprising terms of Γlm, l,m = 1, 2, we

substitute Eqs. (3.51) and (3.52), associated with B+k and B−k, into Eq. (3.67) to

obtain:

Γ11 =
K∑
k=1

CT
kCk +

K∑
k=1

CT
kD+k +

K∑
k=1

DT
+kCk +

K∑
k=1

DT
+kD+k (3.68)

Γ12 =
K∑
k=1

CT
kCk +

K∑
k=1

DT
+kCk +

K∑
k=1

CT
kD−k +

K∑
k=1

DT
+kD−k (3.69)

Γ21 =
K∑
k=1

CT
kCk +

K∑
k=1

CT
kD+k +

K∑
k=1

DT
−kCk +

K∑
k=1

DT
−kD+k (3.70)

Γ22 =
K∑
k=1

CT
kCk +

K∑
k=1

CT
kD−k +

K∑
k=1

DT
−kCk +

K∑
k=1

DT
−kD−k (3.71)

In Appendix B.2.1 we examine each of the terms of Γlm and derive expressions that

can be used for the efficient computation of Γw. Our analysis shows that in order

to reproduce these terms we only need to store five vectors/matrices that can be

computed during the initialisation phase. Specifically, we define vector σq ∈ RN×1

and matrices M ∈ RN×N ,Ms ∈ RN×N ,Ri ∈ RN×N and Rs,i∈ RN×N , i = 1, ..., N

with elements:

σq(i) =
K∑
k=1

q2ik (3.72)

Mi,j =
K∑
k=1

qikqjk (3.73)
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M s
i,j =

K∑
k=1

q2ikqjk (3.74)

Ri
j,l =

K∑
k=1

qikqjkqlk (3.75)

Rs,i
j,l =

K∑
k=1

qikqjkq
2
lk (3.76)

Let us now examine the derivation of Γw. We have that:

z = Γw =

[
Γ11 Γ12

Γ21 Γ22

][
w+

w−

]
=

[
Γ11w

+ + Γ12w
−

Γ21w
+ + Γ22w

−

]
=

[
z1

z2

]
(3.77)

where vectors w+and w− have already been defined in the first approach, while

vectors zl = Γl1w
+ + Γl2w

−, zl ∈ RN2×1, l = 1, 2 can be further decomposed into

zTl = [zTl1, ..., z
T
lN ] with elements zli ∈ RN×1. In order to obtain low complexity

expressions for these terms, we take advantage of the expressions derived for the

composing matrices of Γlm, and of Eqs. (3.72)-(3.76). As shown in Appendix B.2.2

terms z1i and z2i, i = 1, ..., N are given by the following expressions:

z1i = σz(i)1−mc
i

⊙
(σW+ + σW−) + (W+)Tmr

i − (Ri
⊙

W−)T1 (3.78)

z2i = σz(i)1+ms,c
i

⊙
(σW+ +σW−)− (Ri

⊙
W+)T1+ (Rs,i

⊙
W−)T1 (3.79)

where vectors σW+ and σW− have already been defined in the first approach, vectors

mc
i , m

r
i ∈ RN×1 are the ith column and row of matrix M, while the vector σz ∈

RN×1 is defined as:

σz = σq

⊙
(σW+ + σW−)− (M

⊙
(W+)T )1+ (Ms

⊙
(W−)T )1 (3.80)

Let us now examine the computational complexity of computing z which corre-

sponds to the computational complexity of computing f(w) and ∇f(w). As men-

tioned above, it is required to compute a number of vectors/matrices given by Eqs.

(3.72)-(3.76) in the initialisation phase. Specifically, the computation of vector σq

requires O(KN) operations, the computation of matrices M and M s O(KN2) op-

erations while the derivation of matrices Ri and Rs,i, i = 1, ..., N are the most
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expensive requiring O(KN3) multiplications; nevertheless, these terms are com-

puted once. Furthermore, every time we need to obtain the gradient we have to

compute vectors z1i and z2i, for i = 1, ..., N given by Eqs. (3.78) and (3.79), as

well as vector σz according to Eq. (3.80). The most expensive operations for the

computation of σz are (M
⊙

(W+)T )1 and (Ms
⊙

(W−)T )1 each requiring O(N2)

operations for the computation of the matrix element-wise products and O(N2) for

the multiplication of the resulting matrix by 1. Hence, the computational com-

plexity of σz is O(N2). The most computationally expensive terms for the com-

putation of z1i are the last two terms (W+)Tmr
i and (Ri

⊙
W−)T1 which are of

complexity O(N2). Similarly, for the evaluation of z2i the most expensive terms are

(M
⊙

(W+)T )1 and (Ms
⊙

(W−)T )1, which are of the same complexity. Hence,

the computation of either z1 or z2 is O(N3) as there are N terms zli, for l = 1, 2.

Hence, the time complexity of evaluating Γw is O(N3); in terms of arithmetic op-

erations this matrix-vector product requires approximately 8N3 multiplications or

additions. If we perform the required multiplications naively, then the computation

of Γ = BTB and Γw are of time complexity O(2N2×KN × 2N2) or O(KN5), and

O(2N2 × 2N2 × 1) or O(N4) respectively. Hence, our approach achieves an O(N2)

complexity reduction of the initialisation phase and an O(N) complexity reduction

per objective function or gradient evaluation.

In terms of memory requirements, this approach requires the storage of σq, M,

M s, Ri and Rs,i for i=1,...,N apart from the necessary W+, W− and qk, k =

1, ..., K. As each matrixRi orRs,i has N2 elements, the total storage space required

for this approach is O(N3+KN) which is limiting for large values of N . As a result,

this approach is more suitable for cases that K > N and N is small enough so that

we can store at least 2N3 + KN elements. Notice that if the above matrices are

not used, then Γ requires the storage of 4N4 elements.

In sum, the computation of f(w) and ∇f(w) has time complexity O(KN3) for

initialisation and O(N3) per evaluation and requires approximately 4KN3 arith-

metic operations for initialisation and 8N3 operations for evaluating each or both

functions, while it requires the storage of approximately O(2N3 +KN) elements.

3.3.4. Computational complexity

Having derived efficient expressions for the computation of f(w) and ∇f(w) we

will now examine the computational complexity of the PGNNLS and RNN-NNLS
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algorithms.

To examine the computational complexity of PGNNLS, we must count the num-

ber of objective function and gradient evaluations required at each iteration of the

algorithm. At the start of iteration τ , the functions f(wτ ) and ∇f(wτ ) need to be

computed once; additionally, the step-size trial of the line search procedure requires

the evaluation of f(wτ+1
cand). If the total number of iterations performed with the

PGNNLS algorithm is NIPGNNLS and the average number of trials is NTavg then

the total time complexity of the PGNNLS algorithm is equal to:

NINNLS × (complexity(∇f(w)) +NTavgcomplexity(f(w))) (3.81)

where complexity(f(w)) and complexity(∇f(w)) denote the time complexity for

computing the cost function and the gradient respectively. The reason for not

including the evaluation of f(w) at the start of each iteration is that when the

gradient is evaluated at one point the cost function can be computed with no ad-

ditional cost. Due to the efficiency of the employed hyper-exponential line-search,

NTavg is a small number which in our experiments was always smaller than 3.

According to expression (3.81), the number of arithmetic operations performed

by the PGNNLS algorithm when the first approach proposed in section 3.3.3 is used

for the evaluation of f(w) and ∇f(w) is equal to:

NINNLS × (8KN2 +NTavg4KN
2) (3.82)

If the second approach proposed in section 3.3.3 is used for the evaluation of f(w)

and ∇f(w) the number of arithmetic operations becomes:

4KN3 +NINNLS × (8N3 +NTavg8N
3) (3.83)

We should highlight once more that the second approach is more appropriate when

K > N and N is small enough so that we can store at least 2N3 +KN elements.

If we consider the computational complexity of Algorithm 3.5, the main com-

putational task at each iteration is the execution of the PGNNLS algorithm. The

computation needed for the solution of Eqs. (2.6)-(2.8) for all patterns is of the

order O(KN2) which is negligible compared to the complexity of the PGNNLS

algorithm: the cost of the first approach (expression (3.82)) is NINNLS × NTavg
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times higher than O(KN2), while for the second approach even the initialisation

cost is higher O(KN3). As a result the computational complexity of the proposed

RNN-NNLS algorithm is:

NIRNN−NNLS×NINNLS×(complexity(∇f(w))+NTavgcomplexity(f(w))) (3.84)

Because NIRNN−NNLS is small, the complexity of the RNN-NNLS algorithm is

not larger than the complexity of the standard RNN supervised learning algorithm

which is equal to O(KN3) per iteration. As a result RNN-NNLS can also serve as a

weight initialisation algorithm for the standard RNN supervised learning algorithm.

3.4. Conclusions

In this chapter we have proposed two supervised learning algorithms related to

the RNN. The first, is a gradient descent learning algorithm for the RNN with

synchronised interactions. We have derived the steps of the algorithm and studied

the computational complexity of the approach showing that it is the same with the

standard RNN learning algorithm, although the RNNSI model is a generalisation of

RNN. We have also proposed an improved version of the RNNSI gradient descent

algorithm that reduces the computational complexity of the method by an order of

magnitude; the approach followed for the RNNSI can also be used to reduce the

complexity of the RNN gradient descent learning algorithm.

The second is a learning algorithm for the RNN that is mostly suitable for prob-

lems where the ratio of the number of output to the total number of neurons is

large. This approach is based on modelling the signal-flow equations of the net-

work as a nonnegative least squares problem which can be accomplished when all

neurons have desired values. For its solution, we have developed PGNNLS, a large-

scale projected gradient NNLS algorithm that employs the limited-memory BFGS

formula to update the search direction. PGNNLS also combines two advanced line-

search procedures to obtain an appropriate step-size in each iteration. We further

examine how to efficiently obtain the cost and gradient NNLS functions which are

the most costly operations in the PGNNLS algorithm. We propose two different

approaches for their efficient evaluation that reduce the execution time and storage

requirements of the algorithm by one or two orders of magnitude. We also de-

velop, RNN-NNLS algorithm to deal with the case that the network is composed of
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both output and non-output neurons. In RNN-NNLS we iteratively solve an NNLS

problem and the RNN signal-flow equations with respect to the NNLS solution and

modify accordingly the weights and the desired output neuron values. The obtained

weights can serve either as the final trained weights or as a good initialisation point

of an RNN supervised learning algorithm.

So far the performance of the developed learning algorithms has not been as-

sessed experimentally. This is done in the next chapter, where a combinatorial

optimization problem is considered and the learning algorithms are utilised for the

off-line training of a random neural network in order to provide fast close to optimal

decisions to the problem considered.
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4. Assignment of emergency units

to incidents

In this chapter, we start the discussion of emergency management optimisation

problems by considering the assignment of emergency units to incidents. In this

problem, the assignment of emergency units to incidents (AEUI), a number of emer-

gency incidents have taken place simultaneously and there are a number of injured

civilians at each incident. The objective is to dispatch the available emergency units

to the incidents, which are spatially distributed, in order to collect as many people

as possible and also minimise the average response time to the incidents.

Although formulation of this problem can be easily achieved through integer

programming, its optimal solution relies on time-consuming non-polynomial time

algorithms. Nevertheless the problem at hand needs to be solved rapidly, with lim-

ited computational resources, and preferably in real-time, so that heuristic solutions

are the approach of choice.

We propose the use of random neural networks in a supervised learning context

for the solution of this assignment problem. The idea is to train the RNNs us-

ing several problem instances in the same physical context as the emergency, and

then use the trained system for real-time decision making. Specifically, we will

consider both the gradient descent RNNSI learning algorithm and the RNN-NNLS

approach, developed in Chapter 3, to assess the performance of supervised learning

algorithms for the examined problem. Additionally, we will be able to examine the

computational performance of several aspects of the developed learning algorithms,

especially of RNN-NNLS, such as the speedup from the use of analytical expressions

for the function and gradient evaluation of the NNLS problem, the benefit from us-

ing the hyper-exponential line search procedure and the convergence properties of

the algorithm.

The structure of the chapter is as follows: In section 4.1 we start with the de-
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Figure 4.1.: Dispatching of emergency units to locations of injured civilians

scription and mathematical formulation of the problem followed by the proposed

solution approach. In sections 4.3 and 4.4 we empirically evaluate the performance

of the RNNSI and RNN-NNLS learning algorithms for the solutions of AEUI . Next,

the performance of RNN-NNLS as an initialisation algorithm is examined. Section

4.6 is a summary of the chapter.

4.1. Problem description

Consider that NL incidents occur simultaneously at different locations with Ij peo-

ple injured at incident j. NU emergency units or ambulances (say) are spatially

distributed before the time of the incident with unit i being able to collect ci > 0

injured and having response time to incident j given by Tij > 0 as shown in Fig.

4.1. We also assume that decisions are irrevocable so that after a unit is allocated

to some incident, it cannot be re-assigned to some other incident. An additional

requirement is to have no central control unit so that decisions are taken by the

emergency units in a distributed but globally consistent manner.

If the capacity of the ambulances is sufficient to collect all the injured, then our

goal is not only to collect the injured, but also to minimise the average response

time of the ambulances; this is essential to ensure the quick collection and treatment

of the civilians. If we want to state the problem in mathematical terms then our
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goal is to find the optimal allocation matrix X with elements:

Xij =

{
1 if unit i is allocated to incident j

0 if unit i is not allocated to incident j
(4.1)

so that the total response time to the incidents is minimised

min f(X) =

NU∑
i=1

NL∑
j=1

TijXij (4.2)

subject to the constraints:
NL∑
j=1

Xij = 1 ∀i (4.3)

NU∑
i=1

ciXij ≥ Ij ∀j (4.4)

Xij ∈ {0, 1} ∀i, j (4.5)

Constraint (4.3) indicates that an emergency unit must be allocated to exactly

one incident, while (4.4) expresses the fact that the total capacity of the units

allocated to an incident must be at least equal to the number of people injured

there. The above problem is NP-hard in the strong sense since it is a generalisation

of the 0-1 Multiple Knapsack Problem which is of the same complexity class [136].

This means that no known algorithms exist to solve the problem in polynomial

time. Optimal solution can be achieved by enumeration or integer programming

algorithms, such as branch and bound algorithms, which may potentially search

all possible combinations. However, the search space increases exponentially with

respect to the problem size so that these algorithms are not of polynomial time.

Because AEUI needs to be solved rapidly with limited computational resources and

preferably in real-time, we cannot resort to integer programming methods; for this

reason we rely upon heuristic algorithms that can provide fast and close to optimal

solutions to the problem. In the next section we discuss a heuristic method based

on supervised learning that will be used to obtain fast and distributed decision

making, as well as close to optimal results.
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4.2. Supervised learning solution approach

The approach taken for the solution of AEUI problem is to train a random neural

network using numerous instances of the optimisation problem, with exact solutions

which are obtained off-line. Then, if a problem instance is presented to the trained

neural network, it will be able to provide a solution that is close to optimal, due to

its ability to generalise well. As a result, the trained RNN can be “handed out” to

all decision agents (emergency units) to serve as an “oracle” for decision making.

When the emergency happens, each individual agent uses its “oracle” to obtain fast

and distributed decisions. Since all agents have the same “oracle”, if they have the

same information there will be no conflicts in their decisions; the “oracle” provides

the same allocation matrix X to each agent, so that agent i is allocated to incident

j′ with Xij′ = 1. Information about the emergency (whereabouts of the incidents,

estimate of the number of victims) can be broadcast to the agents if they do not

have access to the information. If the decision agents collect the information about

the event themselves, then they can exchange any locally available data, so that all

agents share the same information during the decision stage.

Fast decision making can be achieved because the RNN signal-flow equations can

be solved by an analytical polynomial time algorithm which scales quadratically

to the network size. Because the solution to the RNN signal-flow equations always

exists and it is unique, decision consistency is accomplished. It is important to men-

tion, that consistent decision making cannot be achieved by all heuristic methods

for combinatorial optimization problems. A large number of methods such as simu-

lated annealing [113], genetic algorithms [94] and chaotic Hopfield neural networks

[118], rely on stochastic search procedures which may result in different decisions

for each agent. Furthermore, even if the same random number generator is used at

different agents, so that the agent outcomes are the same at all iterations, there is

no way to ensure that a good solution will be found fast enough.

Fixing the Tij and ci parameters, the problem can be mapped to a supervised

learning context by representing the inputs to the network by Ij and the outputs

by Xij. Because Ij ≥ 0 ∀j, in the RNN they will be represented by the parameters

Λ(j) of the input neurons. The output variables are associated with the excita-

tion probabilities of output neurons. Specifically, output neuron with index (i, j)

represents decision variable Xij. During the training phase, we represent decision

Xij = 1 with q(i,j) = 1 − ϵq, 0 ≤ ϵq < 1/2 and decision Xij = 0 with q(i,j) = ϵq.
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During the testing phase, if the value of the particular neuron is q(i,j) > 0.5 then

we assume that Xij = 1, otherwise we take Xij = 0.

With respect to the number of hidden neurons, we consider three different config-

urations: (a) there are no hidden neurons (b) the number of hidden neurons is equal

to the number of output neurons, and (c) the number of hidden neurons is twice

the number of output neurons. Furthermore, we always assume that our network is

fully connected in terms of the W+ and W− weight matrices, while for the weight

matrix A we take either that it is fully connected (RNNSI case) or that A = 0

(RNN case).

For the solution of the problem we considered two general NN architectures.

In the “collective” NN architecture we construct a single neural network for all

decisions which is comprised of NO = NUNL output neurons. As the output of the

neural network provides the actions for all agents, each agent only performs the

action corresponding to him/her. In the “individual” NN architecture we construct

and train a different NN for each agent’s decision, so that we need to train NU

architectures of NL output neurons. In this case, the ith NN is trained using as

outputs only the variables Xij, j = 1, ..., NL to advise agent i. Despite the fact

that each NN provides a single action, decision making is still consistent because

training is performed using the optimal solutions to the problem instances which

are globally consistent.

To train the NNs, we have first generated at random 1000 problem instances for

different numbers of emergency units and locations of incidents. The remaining

parameters have been chosen at random with Tij = U(0, 1) and ci = U int(1, 4),

where U(a, b) and U int(a, b) represent real and integer numbers generated from the

uniform distribution in the interval [a, b] respectively. For each problem instance,

the number of injured at location Ij is also chosen from the uniform distribution

such that: Ij = U int(0.5ct/NL, ct/NL), where ct =
∑

i ci is the total capacity of the

emergency units.

To evaluate the performance of the RNNSI and RNN-NNLS learning algorithms

(the results are presented in subsequent sections) we have performed experiments

with the following numbers of emergency units and incidents: NU = {5, 10, 15, 20}
and NL = {3, 5}. Among the test cases considered, we only chose those whose

required capacity was within the total available capacity of the emergency units.

The optimal solution in each case was then obtained accurately by solving the com-
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binatorial optimisation problem in Matlab using function bintprog which employs a

branch and bound procedure for the solution of binary combinatorial optimisation

problems.

Testing after training was performed using a distinct but similarly generated set

of 250 test cases so that the training and testing were disjoint, but with the same

probability distributions for all parameters.

The effectiveness of the learning algorithms was evaluated on the basis of the

following metrics:

• The percentage of instances that were solved so that all of the injured were

evacuated

• The percentage of people collected averaged over all testing instances

• The average relative percentage deviation from the optimal, σopt,which eval-

uates the closeness of the solution to optimality, taken over the number of

problem instances that the emergency units covered all casualties NF , defined

as:

σopt =
1

NF

NF∑
i=1

f i
NN(X)− f i

opt(X)

f i
opt(X)

× 100 (4.6)

where f i
NN(X) and f i

opt(X) are the cost function values obtained from the

heuristic neural network learning algorithm and the exact algorithm for in-

stance i respectively.

In the following sections we present the results obtained from the RNNSI and

RNN-NNLS learning algorithms for the neural network architectures describe above.

4.3. Performance evaluation of the RNNSI

learning algorithm

To solve AEUI using the RNNSI tool, we have employed the algorithm developed in

section 3.2. For training we have used the input-output mapping between parame-

ters of the optimisation problem and the RNNSI discussed in the previous section.

We have also normalised the inputs of the RNNSI so that Λ(i) ∈ [0.2, 1], while for

the output neurons we have chosen ϵq = 1/3, so that “low” and “high” neurons take

values 1/3 and 2/3 respectively. In order to select the best set of weights for each
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data set, W+, W− and A, we perform 2000 iterations and check every 10 iterations

the quality of the weights for the training set (chosen based on empirical experi-

ence); the weights selected are those producing the best results for the training set

in terms of percentage of problem instances were all injured have been collected.

Figs. 4.2 and 4.3 illustrate the results obtained for the “collective” NN archi-

tecture for varying number of hidden neurons when all synchronised interaction

weights are trained (RNNSI case) and when they are set to zero (RNN case) re-

spectively. As can be seen from Fig. 4.2 the performance of the RNNSI learning

algorithm is similar for different numbers of hidden neurons except for the (NU = 20,

NL = 3) and (NU = 20, NL = 5) cases where having 0 and NO hidden neurons

respectively, produce the best results for all solution quality metrics considered.

Furthermore, in all cases the percentage of injured collected is more than 95%,

while for a large percentage of problem instances complete collection is achieved

especially for NL = 3. Additionally, the best average relative percentage deviation

from optimality achieved for different cases is less than 3.5%.

The results obtained with the RNN learning algorithm depicted in Fig. 4.3 are of

similar and slightly better quality to those of Fig. 4.2 for small problem instances,

while for large problems with RNNSI model produces better results. Similar to

the previous case, no clear conclusion can be drawn on the best number of hidden

neurons to use in the neural network architecture to achieve the best collection

results. The only conclusion that can be drawn, is that the RNN architecture with

no hidden neurons achieves the best results in terms of the response time to the

incidents.

Figs. 4.4 and 4.5 illustrate the results obtained for different numbers of hidden

neurons for the “individual” RNNSI and RNN architectures respectively. Concern-

ing the RNNSI case, this architecture produces similar results in terms of the first

two solutions metrics and better results for the σopt metric, as in all cases the best

result is at most within 1% from the optimal solution. This architecture is also more

robust in the sense that the performance for all three metrics is almost identical

irrespective of the number of hidden neurons.

On the contrary, the performance of the “individual” RNN architecture fluctuates

significantly for different number of hidden neurons for all three metrics, while its

overall performance is worse than the other cases considered so far.

Fig. 4.6 depicts the best results obtained for each (NU , NL) pair for the two
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“feasible” in the graphs, for want of a better term
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.2.: Performance of the RNNSI gradient descent algorithm for the “collec-
tive” neural network architecture
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.3.: Performance of the RNN gradient descent algorithm for the “collective”
neural network architecture
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.4.: Performance of the RNNSI gradient descent algorithm for the “individ-
ual” neural network architecture
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.5.: Performance of the RNN gradient descent algorithm for the “individ-
ual” neural network architecture
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(b) Percentage of solutions in which all injured civilians are collected; these solutions are called
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.6.: Performance evaluation of the four architectures considered: (a) “Col-
lective” RNNSI , (b) “Collective” RNN, (c) “Individual” RNNSI, and
(d) “Individual” RNN
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architectures under investigation. With respect to the percentage of injured col-

lected and percentage of instances where all injured were collected, the “collective”

architectures are better for small problems, while the “individual” ones are better

for the larger problems. This is possibly due to the large number of local minima

that can appear on the error surface when the number of variables is large, which

hinders the discovery of good solutions. On the other hand, having a “collective”

architecture for all agent solutions also captures the dependencies among different

agents’ actions which leads to better solutions for small problems. Regarding the

performance of the RNN and RNNSI algorithms, the former is better for small prob-

lems (NU = 8, 12), while for large problems the “individual” RNNSI architecture

provides the best results. This architecture also yields excellent results in terms of

optimality, as in all cases σopt < 2.5%. In fact, we could argue that the “individual”

RNNSI architecture has the best overall performance, as it provides the best results

for large problems (NU = 16, 20), while for small problems it always leads to good

solutions for all solution quality metrics considered.

Let us now examine the computational efficiency of RNN and RNNSI gradient

descent algorithms. As discussed in section 3.2.5, each iteration of the RNNSI gra-

dient descent algorithm requires the computation of one matrix-matrix product and

the solution of a linear system of equations, while the RNN algorithm only requires

the solution of a linear system of equations. If the linear system is solved using

Gaussian elimination then RNNSI requires approximately 2N3 +2N3/3 arithmetic

operations while RNN requires only 2N3/3 operations which means that the RNN

learning algorithm can be at most four times faster. Figure 4.7 depicts the execution

time ratio between the RNNSI and RNN learning algorithms for the “collective”

architecture when NH = 2NO. It is evident that the RNN is on average two times

faster for the considered cases. The main reason why the RNNSI to RNN execution

time ratio is not close to four, is because highly optimised routines are used for the

computation of matrix-matrix products.

4.4. Performance evaluation of the RNN-NNLS

algorithm

To solve AEUI using the RNN-NNLS learning algorithm, we have employed the

regularised NNLS formulation (3.37). In order to find a good pair of regularisation
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Figure 4.7.: RNNSI to RNN execution time ratio

weights {θ1, θ2} we have repeated Algorithm 3.5 for several combinations of the two

parameters. Specifically, we considered θ1, θ2 ∈ {0, 2i}, i = −5,−4, ..., 2 and ex-

amined all possible combinations between the two weights. For each regularisation

pair we have performed ten iterations (NIRNN−NNLS = 10), checking the solution

quality after each iteration and storing the weights corresponding to the largest

percentage of instances where all injured were collected. For updating the desired

values of the non-output and output weights we have set αno = 0.75 and αo = 0.9

respectively. Furthermore, the inputs and outputs to the RNN model were set ac-

cording to the approach discussed in the previous section, while the initial desired

excitation probabilities of the non-output neurons were generated according to the

uniform distribution in the interval [0.25, 0.75]. Concerning the PGNNLS algo-

rithm itself, we have chosen to perform 100 iterations with five correction vectors

(M = 5) and hyper-exponential line search with parameters β = 0.4, σAPA = 0.25

and Sτ
0 = I, ∀τ (see Eqs. (3.49) and (3.48)).

Before discussing the effectiveness of the RNN-NNLS algorithm for the solution

of the investigated problem, we present preliminary results concerning the computa-

tional efficiency and convergence speed of the developed PGNNLS and RNN-NNLS

algorithms.

4.4.1. Preliminary results

In this section we investigate the computational performance of two PGNNLS pro-

cedures, and present convergence results. Specifically, we investigate the compu-
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(b) “Collective” RNN with NH = 0
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(c) “Collective” RNN with NH = NO
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(d) “Collective” RNN with NH = 2NO

Figure 4.8.: Performance of approaches for computing the objective and gradient
NNLS function compared to a “naive” one; the metric used is the ratio
of execution times between the naive and another approach

tational performance of the approaches developed to speedup the computation of

the objective and gradient NNLS functions, as well as the efficiency of the hyper-

exponential line search procedure in terms of matrix vector products. Furthermore,

we examine the convergence of PGNNLS and RNN-NNLS for the solution of the

NNLS and supervised learning problems respectively.

To evaluate the efficiency of the two developed approaches for the computation

of the costly NNLS functions, we have measured the execution time required for the

evaluation of 200BT (Bw) operations which involve two matrix-vector products; the

execution time also includes the initialisation time. To demonstrate the benefit from

using these approaches, a “naive” method for the computation of these products

was implemented, that takes into consideration the sparsity of B, but performs no
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Figure 4.9.: Comparison of line search procedures lineSearchLin and lineSearchHE
in terms of matrix vector products (the y-axis is their ratio) for NL = 3
and NL = 5 when NH = NO

analytical manipulation.

Fig. 4.8, illustrates the execution time ratio of the “naive” against the developed

approaches (speedup) for different RNN architectures. In the figures, Approaches 1

and 2 correspond to the first and second computation methods discussed in section

3.3.3. Fig. 4.8(a), shows the results of the “individual” RNN architecture when

NL = {3, 5} and various ratios of hidden to output neurons. In this case the NU

parameter is not important as the size of the network for each emergency unit

depends only on NL. Because the constructed neural network for the “individual”

architecture is small, Approach 2 is significantly better than Approach 1, while

both approaches have an order of magnitude speedup compared to the “naive”

implementation. In fact, Approach 2 reaches an overall speedup of fifty for NL = 5

and NH/NO = 2. On the contrary, for the “collective” architecture the number

of neurons is significantly larger that the “individual” one, which is in favour of

Approach 1. Indeed, this is verified by the results which show that Approach 1 is

better than Approach 2 by up to seven times. Also as the network size increases,

with the addition of more hidden neurons, Approach 1 becomes more efficient and

Approach 2 less efficient. These results show that both architectures are useful, as

they perform better in different cases, while they both provide a significant speedup

over a “naive” implementation, as discussed in the derivation of these approaches.

To examine the efficiency of the hyper-exponential search we have measured

the number of matrix-vector product evaluations during the first 10 iterations of
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PGNNLS with or without the use of the particular line search. Experiments were

conducted for several values of β under the “collective” RNN architecture with

NH = NO, for all NU , NL pairs. Fig. 4.9, illustrates the ratio of the number of

matrix-vector product evaluations required for lineSearchLin and lineSearchHE. It

is clear that for β < 0.7 the benefit from using lineSearchHE is small but for larger

values the benefit grows exponentially; in fact for {16, 5} and {20, 5} the number

of matrix-vector product evaluations with lineSearchLin is four times larger. It is

important to mention that in all cases considered the objective function value was

always the same at the end of the 10th iteration. Additionally, the smallest number

of matrix-vector product evaluations is obtained for β = 0.4, without affecting the

convergence of PGNNLS, and for this reason we have adopted the particular β value

in our experiments.

To examine the efficiency of the proposed PGNNLS algorithm, we have compared

its convergence in terms of iterations and execution time with two other algorithms,

gradNNLS [124] and PQN-SPG [157]. The former is a projected gradient algorithm

with first-order information (Sτ = I) that employs the efficient line-search described

in Algorithm 3.3. The latter is a limited-memory projected quasi-Newton algorithm

introduced in section 3.3.2. It is evident from Fig. 4.10 that the PGNNLS algorithm

outperforms gradNNLS and PQN-SPG both in terms of iterations and execution

time. In fact, the larger the problem under consideration the better the performance

of PGNNLS is compared to the other algorithms.

Finally, Fig. 4.11 depicts the mean squared error (MSE) with respect to the

desired and attained excitation probabilities for the output neurons for ten iterations

of the RNN-NNLS algorithm with θ1 = θ2 = 0. It is clear that the MSE error

decreases for subsequent iterations leading to the converge of the algorithm. In

fact, stabilisation of the MSE is accomplished after a very small number of iterations

(around five). Although monotonic convergence cannot be guaranteed, the observed

behaviour is sufficient to produce good trained weights that will derive high quality

solutions.

4.4.2. Solving the AEUI problem

In this section the performance of the RNN-NNLS algorithm for the solution of the

AEUI problem is evaluated. Fig. 4.12 summarises the results for the “collective”

RNN architecture. As can be seen, the configuration with NH = 2NO neurons is the
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(a) Results for NU = 16 and NL = 3
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(b) Results for NU = 12 and NL = 5
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(c) Results for NU = 20 and NL = 5

Figure 4.10.: Comparison of convergence between algorithms gradNNLS, PQN-SPG
and PGNNLS with respect to iterations and execution time
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Figure 4.11.: Convergence of RNN-NNLS algorithm for NL = 3 and NL = 5 when
NH = 2NO

most effective in finding solutions where all injured have been collected as in almost

all cases it provides the best performance (apart from the NU = 16, NL = 5 case).

However, in terms of percentage of injured collected and deviation from optimality

it is not so efficient. The most robust performance is observed for the NH = NO

configuration, as it is always close to the best performing in terms of collecting

injured, while in term of solution quality, σopt is smaller that 3% in all cases.

The particular configuration is the most robust in term of solution quality for

the “individual” RNN architecture as well (Fig. 4.13), always achieving σopt within

4%. Another interesting characteristic is that the small configurations (NH = 0 and

NH = NO) have the best performance in terms of percentage of instances where all

injured were collected in almost all cases.

Comparing the efficiency of the RNN-NNLS to the RNN learning algorithm,

it is evident that the RNN-NNLS algorithm is more robust as it provides no low

quality results for any of the metrics considered. On the contrary, the RNN learning

algorithm provides low quality results for the deviation from optimality and the

percentage of solutions were all injured were collected in some problem sets.

Fig. 4.14 summarises the best results for the “collective” and “individual” NN

architectures of the RNN-NNLS and RNN approaches. It is evident that the “col-

lective” RNN-NNLS algorithm yields the best results in terms of percentage of

instances were all injured were collected, as it is the most effective for NL = 5 and

highly competitive for NL = 3. On the other hand, the “individual” RNN archi-

tecture produces the best results in terms of deviation from the optimal but has
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(a) Percentage of injured that are collected
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(b) Percentage of solutions in which all injured civilians are collected; these solutions are called
“feasible” in the graphs, for want of a better term

8 12 16 20
0

1

2

3

4

5

6

Number of emergency units (when N
L
=3)

A
vg

. r
el

at
iv

e 
%

 d
ev

ia
ti

o
n

 f
ro

m
 o

p
ti

m
al

it
y

 

 

N
H

 = 0

N
H

 = N
O

N
H

 = 2N
O

8 12 16 20
0

1

2

3

4

5

6

Number of emergency units (when N
L
=5)

A
vg

. r
el

at
iv

e 
%

 d
ev

ia
ti

o
n

 f
ro

m
 o

p
ti

m
al

it
y

 

 

N
H

 = 0

N
H

 = N
O

N
H

 = 2N
O

(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.12.: Performance of the NNLS-RNN algorithm for the “collective” neural
network architecture
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(b) Percentage of solutions in which all injured civilians are collected; these solutions are called
“feasible” in the graphs, for want of a better term
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.13.: Performance of the NNLS-RNN algorithm for the “individual” neural
network architecture
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NH = 0 NH = NO NH = 2NO

NU NL θ1 θ2 θ1 θ2 θ1 θ2
8 3 0.000 0.031 0.000 0.000 0.000 0.000
12 3 0.125 0.250 0.031 0.000 0.250 0.063
16 3 0.031 0.250 0.000 0.000 0.016 0.125
20 3 0.016 0.063 0.063 0.250 0.016 0.063
8 5 0.000 0.016 0.000 0.063 0.031 0.250
12 5 0.063 0.125 0.500 0.031 0.125 0.031
16 5 0.063 0.000 0.250 0.063 0.031 1.000
20 5 0.000 0.500 0.125 0.063 0.125 2.000

Table 4.1.: Optimal regularisation weights for the “collective” RNN architecture

the worst performance in terms of the other two metrics. Among the other three

architectures the “collective” RNN is the one with the best performance in terms

of σopt but it is not as effective in collecting injured, especially for larger problems.

Finally, to illustrate the importance of the regularisation terms, the values of

the regularisation parameters corresponding to the selected trained weights for the

collective “architecture” are presented on Table 4.1. Three observations that can

be drawn from this table:

• The case {θ1 = 0, θ2 = 0} is scarcely the optimal combination.

• Both parameters are important as in most of the cases both are non-zero.

• Most of the optimal regularisation coefficients are not larger than 0.5.

These observations support the decision to include these two regularisation terms

in the objective function of the NNLS problem.

4.5. Using RNN-NNLS algorithm for weight

initialisation

As has been shown in the previous section, the RNN-NNLS algorithm yields small

MSE in few iterations, while it can also lead to good quality solutions. For this

reason it would be interesting to examine the case where RNN-NNLS is used to

initialise the weights for the RNN algorithm, instead of using random initialisation.

To compare the performance of the RNN gradient descent algorithm with random

or NNLS initialisation the “collective” RNN architecture with no hidden neurons
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(b) Percentage of solutions in which all injured civilians are collected; these solutions are called
“feasible” in the graphs, for want of a better term
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.14.: Comparison between the RNN-NNLS and RNN learning algorithms.
The four architectures considered are: (a) “Collective” RNN-NNLS,
(b) “Collective” RNN, (c) “Individual” RNN-NNLS, and (d) “Indi-
vidual” RNN 122



was employed. For the initialisation of the weights according to the NNLS formu-

lation, we used the best set of weights obtained after running the RNN-NNLS algo-

rithm with the following parameters: NIRNN−NNLS = 10; NINNLS = 50; {θ1, θ2}
∈ {{0, 0}, {0, 2−i}, {2−i, 0}} where, i = 4, 5, 6.

Fig. 4.15 demonstrates the performance of the two weight initialisation methods

for the three solution quality metrics, while Fig. 4.16 depicts the time required to

derive the best weights from the RNN gradient descent algorithm; in the NNLS

initialisation case, the time to execute RNN-NNLS is also included. It is clear

that weight initialisation with the NNLS approach is superior to random weight

initialisation both in terms of solution quality and execution time. The NNLS ini-

tialisation scheme achieves significantly better performance for the first two metrics

especially for the case that NL = 5 and at the same time it provides solution with

small deviation from optimality. Furthermore, the specific scheme results in faster

derivation of the best weights found by the RNN gradient descent algorithm. In

fact, the performance improvement is higher as the size of the network increases,

which shows that the NNLS initialisation scheme is appropriate for large networks.

4.6. Conclusions

In this chapter, we have studied the AEUI problem which is a combinatorial opti-

misation problem associated with the dispatching of emergency units to locations

of injured civilians, to collect as many as possible in the least possible time. For

its solution, we have proposed the use of random neural networks in a supervised

learning context. To train the neural network model, instances of the optimisation

problem and the corresponding optimal solutions are supplied as training patterns.

In this way, the emergency units can employ the trained neural network tool as an

“oracle” that provides fast, globally consistent and close to optimal solutions in a

distributed manner.

Specifically, we have considered two different neural network models, RNN and

RNNSI, which were trained using the related supervised learning algorithms devel-

oped in the previous chapter. Performance evaluation of the particular algorithms

concentrated on two different aspects: (a) solution quality of the AEUI problem,

and (b) supervised learning efficiency.

With respect to the solution of the AEUI problem, the RNNSI model that uses
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(b) Percentage of solutions in which all injured civilians are collected; these solutions are called
“feasible” in the graphs, for want of a better term
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(c) Average relative deviation from optimality for the solutions where the units are able to
remove all the casualties (i.e. the “feasible” ones)

Figure 4.15.: Performance of the RNN learning algorithm with random or NNLS
initialisation for the “collective” NN architecture, with no hidden
neurons.
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Figure 4.16.: Execution times of the RNN learning algorithm with random or NNLS
initialisation

a different network for the decision of one agent, called “individual”, was the most

successful. This model resulted in collecting more than 95% of the injured with

less than 3% deviation from the optimal in all cases, while for a large percentage of

instances all injured were collected. Nonetheless, as RNNSI is a generalised version

of RNN, it is more complex and hence requires more train training time (roughly

speaking, RNN training is two times faster).

The RNN-NNLS algorithm, developed in the previous chapter for the training

of RNN, also exhibited good performance in solving AEUI . In addition, this algo-

rithm was the most robust in the sense that in all different topologies considered it

obtained good results with no large variations for the solution metrics considered.

Moreover, it was shown that the algorithm converges in a very small number of

iterations (around five).

We also examined the efficiency of three different aspects of PGNNLS, the core

of the RNN-NNLS algorithm that solves the NNLS problem. Firstly, we com-

pared the efficiency of the two proposed approaches for the objective and gradient

NNLS function evaluation to a “naive” implementation; it was shown that both

approaches are useful because they provide better results for different cases, while

they are up to fifty times faster compared to the “naive” implementation. Sec-

ondly, we demonstrated that the proposed hyper-exponential line-search can be up

to four times faster than another efficient line-search. Thirdly, convergence speed

of the PGNNLS algorithm was compared against two other algorithms; the results

illustrated the superiority of PGNNLS both in terms of iterations and time.
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Finally, the use of RNN-NNLS to provide an initial set of weights for the RNN

gradient descent algorithm was investigated. Performance evaluation showed that

the use of RNN-NNLS algorithm for weight initialisation is beneficial both in terms

of solution quality and time required to obtain the best set of weights.
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5. Asset-task assignment under

execution uncertainty

In this chapter, we investigate the asset-task assignment under execution uncer-

tainty (ATAU) problem, where each asset can potentially execute any of the tasks,

but assets execute tasks with a probabilistic outcome of success. There is a cost

associated with each possible assignment of an asset to a task, and if a task is not

executed there is also a cost associated with the non-execution of the task. Thus any

assignment of assets to tasks will result in an expected overall cost which we wish

to minimise. We formulate the allocation of assets to tasks in order to minimise

this expected cost, as a nonlinear combinatorial optimisation problem. A neural

network approach for its approximate solution is proposed based on selecting pa-

rameters of an RNN, solving the network in equilibrium, and then identifying the

assignment by selecting the neurons whose probability of being active is highest.

We also propose the use of network flow algorithms which are based on solving

a sequence of minimum cost flow problems on appropriately constructed networks

with estimated arc costs. We introduce three different schemes for the estimation

of the arc costs and we investigate their performance. We also develop an approach

for obtaining tight lower bounds to the optimal solution based on transforming

the problem into an equivalent form and approximating the nonlinear terms of the

latter with piecewise linear functions.

The structure of the chapter is as follows. We start with a general introduction to

the problem in section 5.1. Then, we provide the description and the mathematical

formulation of the ATAU problem, followed by a brief discussion of related problems

in section 5.3. Next, we describe the RNN parameter association and network

flow approaches for the solution of ATAU , in sections 5.4 and 5.5 respectively. In

section 5.6 we describe an algorithm for obtaining tight lower bounds to the studied

problem, while in the last two sections we examine the performance of the proposed
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approaches and conclude.

5.1. Introduction

Assignment problems is a fundamental class of combinatorial optimisation problems

which involve assigning assets to tasks to minimise a desired cost function. Several

variations of these problems have been studied over the years finding widespread

application in diverse fields such as telecommunications, transportation systems

and signal processing [30]. Nevertheless, an important assumption made in such

problems is that the desired result of an assignment always occurs, e.g. a job

assigned to a particular machine is executed successfully.

Clearly, in real-world applications assigning an asset to a task does not necessarily

imply successful execution. The outcome of an assignment can depend on several

factors such as the surrounding environment and an asset’s ability in achieving its

task. For example, when dispatching emergency personnel to treat injured civilians,

one may fail either because of difficulty in accessing the location of the injured from

the route followed, or because his/her skills do not suffice to treat the injured

successfully.

Additionally, uncertainty in successfully completing a task can even be inherent.

For instance in cancer therapy, the possibility of destroying a targeted tumour with

a certain therapeutic tool (chemotherapy, radiotherapy, immunotherapy) can only

be expressed probabilistically. Therefore, in such cases it is beneficial to apply

more than one therapy tools to targeted areas to minimise not only the possibility

of failure but also the cost and the side effects of the overall therapy [50].

In this chapter we investigate a general assignment problem where the outcome

of any assignment is uncertain. We model uncertainty by assuming that one asset

has a certain probability in executing a particular task. In the examined problem,

one asset suffices to execute one task, while more than one assignments can be made

for the same purpose to increase the probability of success. We further assume that

the assignments made to the same task have an independent overall effect so that

the total failure probability of the particular task is given by the product of the

individual failure probabilities. The objective is to minimise the overall expected

cost, given that there is a cost for each asset-task assignment, and a cost for the

non-execution of each task.
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We have two additional requirements with respect to any developed algorithms.

First, we want all decisions to be made separately for all the assets; i.e. the assets

are allocated independently of each other. Second, any developed algorithm should,

in all cases, be fast. This implies that the decision algorithm cannot be based on

enumerating all possible solutions and selecting the one that has the least cost

among the enumerated solutions, but rather be of low polynomial complexity.

Apart from the dispatching of emergency personnel to treat injured and the cancer

therapy problems discussed above other application areas that are covered by this

abstract representation include examples where:

• Tasks represent “jobs”, and assets represent “resources” and the goal is to find

an assignment matrix in order to minimise the expected cost of not executing

successfully the “jobs” as well as the assignment cost,

• Tasks are “targets to be detected” and assets are sensors and the goal is to

find as many targets as possible when a sensor can detect a target in its

monitoring sector with a certain probability [135].

• Tasks are “entities that need to communicate” and assets are “communication

channels or frequencies” and the objective is to maximise the expected number

of entities that will successfully communicate when communication in each of

the channels is uncertain, etc.

The contribution of this chapter is three-fold:

1. We develop an RNN solution approach by associating parameters of the op-

timisation problem with parameters of the neural network model, solving the

network in equilibrium, and then identifying assignments by selecting the neu-

rons whose probability of being active is highest, which is discussed in section

5.4.

2. We develop network flow algorithms for the solution of the considered asset-

task assignment problem. These algorithms are based on solving a sequence of

minimum cost flow problems on appropriately constructed networks with es-

timated arc costs. Specifically, we consider three different estimation schemes

MCFmax, MCFmin and MCFrnn as described in section 5.5.
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3. We propose an approach for obtaining tight lower bounds to the optimal

solution by transforming the problem to an equivalent one and approximating

the latter using piecewise linear functions. We derive analytical expressions

for the upper and lower bounds of the approximation intervals and introduce

an adaptive scheme for the selection of the piecewise linear segments that

restricts the maximum approximation error to a desired value, as explained

in section 5.6.

5.2. Problem description and mathematical

formulation

Consider a set of tasks T that need to be executed by a set of assets A. Task t

carries a penalty U(t) if it is not executed, while there is also a cost Ca(a, t) for

assigning asset a to task t. We assume that any one of the tasks can be executed

by any one of the assets and that one asset suffices to execute one task. It is also

possible that the task execution may fail despite the fact that an asset has been

assigned to it, and this will be represented by the probability 0 ≤ pf (a, t) ≤ 1 that

asset a will fail in executing task t when it is assigned to it.

To compensate task execution failures more than one assets can be assigned to

one task to increase the probability of successful execution. It is assumed that the

assets assigned to the same task t have an independent overall effect so that the

overall failure probability for the particular task, pof (t), is given by the product of

the failure probabilities of the assets assigned to it. For example, if a particular

task is associated with three assignments with failure probabilities 0.4, 0.2 and 0.1,

then the total failure probability for the particular task will be equal to pof (t) =

0.4 × 0.2 × 0.1 = 0.008. We also assume that after an asset is allocated to some

task, it cannot be re-assigned again to some other task; this corresponds to cases

where the assets are expendable or to real-time situations where, for the given time

epoch considered, decisions are irrevocable. It is also possible for one asset not to

be assigned to any of the tasks, as the incurred assignment cost can increase the

overall cost instead of decreasing it. Our objective if to find an allocation matrix

X with elements X(a, t) ∈ {0, 1}, representing whether asset a is assigned to task
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t, that minimises our cost function defined below:

C =
∑
t∈T

∑
a∈A

Ca(a, t)X(a, t) +
∑
t∈T

U(t)pof (t) (5.1)

where pof (t) =
∏

a∈A{1 − ps(a, t)X(a, t)} is the overall failure probability of task t

and ps(a, t) = 1 − pf (a, t) is the probability that asset a will successfully execute

task t if it is assigned to it.

In Eq. (5.1) the first term is the total cost of the assignments made, while the

second term expresses the expected remaining cost of task t. Expression {1 −
ps(a, t)X(a, t)} in pof (t) denotes the failure probability from assigning asset a to

task t without knowing if the assignment will take place. If the assignment is made,

X(a, t) = 1, the failure probability is equal to pf (a, t) = 1 − ps(a, t), otherwise if

X(a, t) = 0 then the failure probability for that assignment is equal to 1. Note that

pof (t) is given by the product of the aforementioned failure probabilities as we have

assumed that assignments to the same task have an independent overall effect.

Moreover, when X(a, t) ∈ {0, 1}, expressions {1− ps(a, t)X(a, t)} are equivalent

to pf (a, t)
X(a,t) so that the cost function can be written with decision variables in

the exponents of assignment failure probabilities, resulting in the following problem

formulation which will be used throughout the chapter:

minC =
∑
t∈T

∑
a∈A

Ca(a, t)X(a, t) +
∑
t∈T

U(t)
∏
a∈A

pf (a, t)
X(a,t) (5.2)

s.t.
∑
t∈T

X(a, t) ≤ 1, a ∈ A

X(a, t) ∈ {0, 1}

The constraint shows that one asset can be assigned to at most one task.

5.3. Related problems

In our formulations, the decision variables appear either in the exponent of param-

eters or as a product and hence the examined problem is a nonlinear combinatorial

optimisation problem which belongs to the general class of nonlinear assignment

problems [147]. A related problem with a product of terms that also have the deci-

sion variables in their exponent is the Weapon Target Assignment (WTA) problem.
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In the WTA problem, we have a set of weapons A and a set of targets T and

the goal is to find an optimal allocation of the weapons to the targets so that the

expected damage on the targets is maximised or equivalently the expected leakage

of the targets is minimised. It is assumed that weapon a has a probability of suc-

cessfully intercepting target t equal to ps(a, t), while each target has a cost equal to

U(t). Therefore, the mathematical formulation of the WTA problem is as follows:

minCWTA =
∑
t∈T

U(t)
∏
a∈A

pf (a, t)
X(a,t) (5.3)

s.t.
∑
t∈T

X(a, t) = 1, a ∈ A

X(a, t) ∈ {0, 1}, a ∈ A, t ∈ T

There are two main differences between formulations (5.2) and (5.3). The first is

that in formulation (5.2) each asset has an associated cost Ca(a, t), while in (5.3)

the weapons carry no cost. The second difference is that in our formulation not all

assets need to be assigned to tasks. This stems from the fact that each asset has

an associated cost and hence a particular assignment might not be beneficial.

In the general case, the WTA-problem is NP-complete [125] and hence exact

algorithms have been mostly proposed for solving special optimally solvable cases of

the problem. One such special case is when the probabilities pf (a, t) are independent

of the weapon, i.e. (pf (a, t) = pf (t), ∀a), while a second one is when we want to

assign at most one weapon to each target. The first special case can be solved

either using the Maximum Marginal Return (MMR) algorithm [46, 114], where the

weapons are assigned in a greedy fashion to the targets that result in the maximum

decrease of the cost function, or using a local search algorithm to identify and swap

any weapon-target pairs that reduce the overall cost [104]. The second special

case results in a linear assignment problem that can be efficiently solved using for

example a network flow algorithm [39].

Exact algorithms for the solution of the general WTA problem have been recently

introduced in [12]. The authors proposed several lower bounding schemes based on

general network flow approximations of the problem and developed a branch and

bound algorithm achieving the exact solution of medium size problems (80 weapons

and 80 targets). However, the time required for the exact solution of the general
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WTA problem is very large and a great amount of research has focus on developing

heuristic algorithms primarily based on metaheuristic techniques such as Hopfield

neural networks [174], ant colony optimisation, [182, 120], genetic algorithms [121]

and very large scale neighbourhoods [12].

Apart from the WTA problem, other problems related to our formulation are

assignment problems where the objective function involves the product of two or

more variables such as the quadratic and biquadratic assignment problems [126].

However, in these problems not only each asset must be assigned once, but also

each task must be associated to only one asset which is not in agreement with

(5.2), where more than one assets can be assigned to one task. The problems with

the particular constraint relaxed are called semi-assignment problems of which the

most widely studied nonlinear problem is the quadratic semi-assignment problem

(QSAP) [151] defined as:

minCQSAP =
∑
t∈T

∑
a∈A

Ca(a, t)X(a, t)

+
∑
t∈T

∑
t′∈T

∑
a′∈A

∑
a∈A

bata′t′X(a, t)X(a′, t′) (5.4)

s.t.
∑
t∈T

X(a, t) = 1, ∀a

X(a, t) ∈ {0, 1}

Note that in this problem we have to assign all assets to tasks, whereas the products

in the cost function involve only two decision variables, contrary to our formulations

where we have |A|. Nevertheless, as in our formulation (5.2), the cost function in

(5.4) has also a linear term associated with the cost of the asset assignments apart

from the nonlinear term.

In the general case, QSAP is NP-hard [154] and in practice optimal solutions

cannot be obtained even for small size problems [129]. As a result exact algorithms

have been developed only for special cases of QSAP that result in algorithms with

polynomial time complexity [131, 132].
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5.4. The RNN parameter association approach

In this section we will develop and evaluate an RNN-based formulation of the asset-

to-task assignment problem (5.2). The solution is based on an algorithm that uses

an RNN whose parameters, including the weights associated with the connections

between neurons, are selected directly by translation of the parameters of the op-

timisation problem. Then the RNN model is solved numerically, and a sequence

of subsequently smaller RNN models are solved where each subsequent RNN is ob-

tained by a greedy reduction of the previous network. The steady-state solutions of

the first and of each subsequent RNN are used to decide on the asset to task assign-

ments that are chosen. A similar approach has previously been used successfully in

other optimisation problems [67, 87].

In the approach that we propose, each allocation decision (a, t) is represented by

a neuron N(a, t) of a RNN, so that X(a, t) corresponds to the probability q(a,t) that

this particular neuron is excited. Thus the computational size of the problem to be

considered will depend on |A| × |T | as indicated below. To specify the RNN used

for the heuristic solution to the optimisation problem, we must specify the arrival

rates of excitation and inhibition signals to each of the neurons N(a, t), and the

excitatory and inhibitory weights between neurons. These parameters are chosen

as follows:

Λ(a,t) = max {0, b(a, t)}

λ(a,t) = max {0,−b(a, t)}

where

b(a, t) = U(t)ps(a, t)− Ca(a, t)

Parameter b(a, t) represents the net expected reduction in the objective function

when asset a is allocated to task t, since U(t)ps(a, t) is the expected remaining cost

of task t if this allocation is made and Ca(a, t) is the cost of allocating this asset to

the given task. To discourage the allocation of distinct assets to the same task, we

also set the inhibitory weights to:

w−(a, t; a′, t) = max {0, b(a, t)}, if a ̸= a′
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Similarly we wish to avoid the same asset being assigned to distinct tasks :

w−(a, t; a, t′) = max {0, b(a, t)}, if t ̸= t′

To keep matters as simple as possible, we choose not to reinforce or weaken any

of the assignments other than what is already done via the incoming excitatory

signals, so that we choose w+(a, t; a, t′) = 0 and w−(a, t; a′, t′) = 0 for all other a, a′

and t, t′, and we end with:

r(a,t) =
∑
a′,t′

w−(a, t; a′, t′) (5.5)

Based on the above parameters the excitation level of each neuron satisfies:

q(a,t) =
Λ(a,t)

λ(a,t) + r(a,t) +
∑

a′ ̸=a q(a′,t)w
−(a′, t; a, t) +

∑
t′ ̸=t q(a,t′)w

−(a, t′; a, t)
(5.6)

and the system of equations (5.6) is then solved iteratively in the following manner

to obtain the assignments of assets to tasks:

1. Initialisation: Arem ← A, S ← ∅ and Ucur(t)← U(t), t ∈ T .

2. Compute the RNN parameters based on Ucur(t),∀t and construct the neural

network for a ∈ Arem and t ∈ T .

3. Solve the system of Eqs. (2.6)-(2.8) to obtain q(a,t).

4. Select asset-task pair (a∗, t∗) that corresponds to the neuron with the largest

positive q(a,t); if all q(a,t) = 0, a ∈ Arem and t ∈ T stop: there is no assignment

that reduces the cost of the objective function.

5. Set S ← S ∪ (a∗, t∗).

6. Set Arem ← Arem\{a∗}.

7. Set Ucur(t
∗)← Ucur(t

∗)pf (a
∗, t∗).

8. If Arem ̸= ∅ go to step (2) otherwise stop: all assets has been assigned.

In the algorithm, Arem represents the assets remaining to be assigned, while the

solution set where the assigned asset-task pairs are stored is S. Ucur(t) is the current
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expected cost of task t given any already made assignments. Note that using this

algorithm, the assignment of some asset a∗ to a task t∗ always results in reducing

the cost of the objective function; otherwise if b(a, t) < 0 then q(a,t) = Λ(a,t) = 0

and the neuron is not selected.

One interesting feature of the algorithm is that once all assets have acquired the

parameters of the problem, then they can decide in a decentralised manner and

arrive at a non-conflicting decision even though their actions are not coordinated.

This is possible because the RNN algorithm is deterministic, while the solution to

the RNN signal-flow equations is unique. Knowledge of the problem parameters

can be accomplished in an initial phase prior to decision making, in which each

asset exchange with other assets nay information associated with it.

The complexity of solving the system of equations (5.6) in the general case is

O(N2), where N = |A||T | is the number of neurons in the network. Therefore, the

complexity of solving the system of equations in the general case is O(|A|2|T |2) and
the overall complexity of the algorithm is O(|A|3|T |2) as we need to execute |A|
iterations. However, we can take advantage of the special structure of the system

and improve the efficiency of the computation. Note that Eq. (5.6) can be written

as:

q(a,t) =
Λ(a,t)

λ(a,t) + r(a,t) +
∑

a′ ̸=a q(a′,t) max {0, b(a′, t)}+
∑

t′ ̸=t q(a,t′)max {0, b(a, t′)}

Based on the above equation the calculation of q(a,t) is of complexity O(|A|+ |T |) so
that the complexity of calculating the values of all neurons once is: O(|A||T |(|A|+
|T |)). We can further reduce the complexity if we define the variables:

σATAU
1 (t) =

∑
a′∈A

q(a′,t)max {0, b(a′, t)}, ∀t

σATAU
2 (a) =

∑
t′∈T

q(a,t′) max {0, b(a, t′)}, ∀a

which require O(|A|·|T |) multiplications and need to be computed only once. Then

we have:

q(a,t) =
Λ(a,t)

λ(a,t) + r(a,t) + σATAU
1 (t) + σATAU

2 (a)− 2q(a,t)max {0, b(a, t)}

Note that in the above equation the computation of q(a,t) requires O(1) time so
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Figure 5.1.: Flow network for the solution of problem (5.2)

that the computation of all q(a,t) values is of complexity O(|A||T |). Because the

solution of system (5.6) dominates the computation of each iteration, and we need

to perform at most |A| iterations, the complexity of the algorithm is O(|A|2|T |).

5.5. Network flow algorithms

Network flow problems are an important class of linear programming problems.

They can be utilised for the solution of many optimisation problems such as the

maximum flow, assignment, transportation and shortest path problems. Due to

their special structure, network flow problems can be solved tens of times faster

than linear programming problems while there are strong polynomial algorithms

that put bounds on their worst case performance. In addition, when a network flow

problem has specific properties, it results in an integer solution without using an

integer programming approach for its solution [11].

The most fundamental problem in network flows is the minimum cost flow (MCF);

most other network flow problems are either special cases or generalisation of the
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MCF. The MCF problem considers a directed graph or network G = (N , E) which
consists of a set of vertices or nodes N and a set of directed edges or arcs E con-

necting the nodes. Each arc (i, j) ∈ E is characterised by two parameters: the

capacity u(i, j) of the particular arc which is the upper bound of flow Xf (i, j) al-

lowed through (i, j) and an associated cost per unit of flow Cf (i, j). Each node

i ∈ N has a supply s(i) that is interpreted as the amount of flow that enters the

node from the outside. Node i is a source or supply node if s(i) > 0, a sink or

demand node if s(i) < 0 and a transshipment node if s(i) = 0. Flow networks are

governed by the flow conservation constraint which states that at each node the

incoming and outgoing flows are equal. Note that the conservation constraint can

hold only if
∑

i s(i) = 0. In the MCF problem, the objective is to find the cheapest

flows that satisfy the nodes’ supply, under the flow conservation constraint and the

capacity constraint. The mathematical formulation of MCF is given by Eq. (5.7).

min
∑

(i,j)∈E

Cf (i, j)Xf (i, j) (5.7a)

s.t. s(i) +
∑

j:(j,i)∈E

Xf (j, i)︸ ︷︷ ︸
incoming flow to i

=
∑

j:(i,j)∈E

Xf (i, j)︸ ︷︷ ︸
outgoing flow from i

, ∀i (5.7b)

0 ≤ Xf (i, j) ≤ u(i, j), (i, j) ∈ E (5.7c)

The approach that we take is to construct a flow network with flow costs associated

with the net expected reduction in the objective function when assigning assets to

tasks.

Fig. 5.1 depicts the network used for the solution of problem (5.2). The network

is comprised of three layers of nodes: the first layer contains the source nodes, the

second layer contains the transshipment nodes and the third layer the demand node

that aggregates the flows sent by the source nodes. Each source node a has supply

s(a) = 1 and corresponds to asset a. Each transshipment node t(mt) denotes the

mtth asset assignment to task t, while node 0 corresponds to the case that an asset

is not assigned to any task. At most Mt assets can be assigned to task t. The role

of the demand node d is to aggregate the flows sent in the network and its demand

is equal to the total supply of the assets, s(d) = −|A|.
A source node a is connected to all transshipment nodes t(mt) and the capacity of

all arcs is equal to 1, so that the associated flows Xf (a, t
(mt)) represent the fact that
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asset a is the mtth assignment to task t. Even though there are |A| arcs arriving at

each transshipment node there is only one arc leaving each such node towards the

demand node d. These arcs also have capacity 1 except from the arc (0, d) whose

capacity is equal to |A| so that even if no assignments are made the source nodes’

supply reaches the demand node via node 0. Thus, flow Xf (t
(mt), d), t ∈ T denotes

whether the mtth assignment for task t has been made.

The resulting configuration guarantees that at most one asset can be assigned to

a particular transshipment node. Moreover, as all arc capacities and supplies/de-

mands of the nodes are integers, the integrality property guarantees that in the MCF

solution all flows Xf (i, j) will be integer (see. p.318 of [11]). Actually, Xf (a, t
(mt))

flows have unit capacity so that the final value of the particular flows will be 0 or

1. We also need to ensure that the assignment of assets to a particular task t is

contiguous in the sense that if there are already mt − 1 assignments, then the next

one should be the mtth one. The contiguous property will be established after we

discuss about the costs of the arcs.

The costs of the arcs represent the net reduction in the cost function from assign-

ing a particular asset to a task so our aim is to maximise the net reduction in the

objective function. Thus, to solve the problem as a minimum cost flow problem we

need to negate all the costs associated with the network.

The cost of the arcs associated with a first assignment (a, t(1)) is given by:

Cf (a, t
(1)) = max{0, U(t)ps(a, t)− Ca(a, t)}, ∀a, t (5.8)

In order to be able to correctly determine the arc costs associated with the second

assignment Cf (a, t
(2)) we need to know the expected cost of the task t after the first

assignment, U (1)(t). If we assume that an oracle provides the first asset allocated to

task t, at(1) , then U
(1)(t) = U(t)pf (at(1) , t). Similarly, if the oracle provides the first

mt assigned assets to task t, at(1) , ..., at(mt) then the arc costs for the next assignment

of task t will be given by:

Cf (a, t
(mt+1)) = max{0, U (mt)(t)ps(a, t)− Ca(a, t)}

= max{0, U(t)
mt∏
m=1

pf (at(m) , t)ps(a, t)− Ca(a, t)} (5.9)

Note that each assigned asset carries a cost so it is possible that a particular as-
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signment will result in a negative net expected reduction; in that case we assign

a zero cost to that arc. The maximum number of transshipment nodes associated

with a task t, Mt can be determined from the fact that Cf (a, t
(Mt+1)) = 0,∀a.

Alternatively, we can assign a maximum value to Mt to limit the network size.

Concerning the cost of the arcs towards node 0 we take Cf (a, 0) = ϵ > 0, ∀a,
where ϵ is a sufficiently small positive value. The use of a positive value for Cf (a, 0)

is important for the avoidance of unbounded solutions due to the zero arc costs

present in the network. Additionally, ϵ should be sufficiently small in order not

to be considered as a beneficial assignment. The arc costs from the transshipment

nodes to the demand node are not important so Cf (t
(mt), d) = 0, ∀t, mt = 1, ...,Mt;

their role is to ensure that at most one asset is related to one task.

In practice, the asset assignments are not known beforehand and hence we cannot

determine the cost values Cf (a, t
(mt)),mt > 1. As a result, we need to develop

approximation schemes. A conservative approach, which we call MCFmax, is to

always assume that the previously assigned asset to a particular task is the least

effective one i.e. the one with the largest execution failure probability pf,max(t) =

maxa∈A pf (a, t). Hence, every term pf (at(m) , t), m = 1, ...,mt in Eq. (5.9) will be

replaced by pf,max(t). An optimistic approach, calledMCFmin, is to always consider

the most effective asset for previous assignments. If pf,min(t) = mina∈A pf (a, t)

then we set pf (at(m) , t)≡pf,min(t). A third approximation scheme, called MCFrnn,

is to solve the problem using the RNN association approach and then use the

derived allocations to obtain the arc costs for the MCF network. Hence, the terms

pf (at(m) , t) are changed to pf,rnn(t
(m)) which denote the probability of execution

failure for themth asset assigned to task t according to the RNN approach. Because

the complexity of the RNN algorithm is small compared to the solution of an MCF

problem the overall execution time is not significantly affected.

An important property of the described flow network is that because 0 < pf (a, t) <

1, the following relationship holds for all cost determination approaches described

above:

Cf (a, t
(1)) > . . . > Cf (a, t

(mt)) > Cf (a, 0) > 0 (5.10)

The fact that inequality (5.10), does not include Cf (a, t
(Mt)) implies that Cf (a, t

(m)) =

0,m = mt+1, ...,Mt, so that after themtth assignment asset a cannot be assigned to

task t. Inequality (5.10) guarantees the contiguous property as the most beneficial

assignment for every asset-task pair is always the first available. For example if for
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task t̂ Xf (at̂(1) , t̂
(1)) = 1 and Xf (at̂(2) , t̂

(2)) = 1, then the next assignment to be made

with be Xf (at̂(3) , t̂
(3)) = 1. That is because Cf (a, t̂

(3)) > Cf (a, t
(mt)),mt = 4, 5, . . .

for all assets a.

The procedure for the solution of problem (5.2) using the proposed MCF approach

is outlined below:

1. Initialise Arem ← A, S ← ∅ and Ucur(t)← U(t), t ∈ T .

2. Compute Cf (a, t
(mt)), a ∈ Arem, t ∈ T and mt = 1, ...,Mt according to Eq.

(5.9) and the desired cost approximation scheme.

3. Construct the flow network for a ∈ Arem and t ∈ T as in Fig. 5.1.

4. Solve the MCF problem with negated arc costs to obtain the optimal flows

Xf (a, t
(k)).

5. Set Aass ← {a : Xf (a, t
(1)) = 1, a ∈ Arem, t ∈ T }.

6. Set Scur ← {(a, t) : Xf (a, t
(1)) = 1, a ∈ Arem, t ∈ T } and S ← S ∪ Scur.

7. Set Arem ← Arem\Aass.

8. Set Ucur(t)← Ucur(t)
∏

a:(a,t)∈Scur
pf (a, t), t ∈ T .

9. If Aass ̸= ∅ and Arem ̸= ∅ go to step (2) otherwise stop:the objective function

cannot be reduced further.

The procedure involves the solution of a sequence of MCF problems. At the be-

ginning, we initialise the assignment pairs stored in set S to zero as well as the

remaining assets set Arem to A. At each iteration, we first compute the arc costs

for the remaining asset nodes according to our desired cost estimation scheme and

the current task costs Ucur(t) and then we construct the network. After solving the

MCF problem with negated arc costs, we select the optimal flows with value one

that indicate first assignments, store the associated asset-task pairs in the solution

set S and remove the assigned assets from the set Arem so that in subsequent itera-

tions they are not considered again. Finally, the task costs are reduced accordingly

and the solution procedure is repeated until either we have assigned all assets or no

beneficial assignment exist.
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The largest MCF problem to be minimised dominates the time required for the

solution of problem (5.2). As already mentioned there are several polynomial time

algorithms for the solution of the MCF problem. Currently the best strong poly-

nomial time algorithm is the enhanced capacity scaling algorithm [146], which has

a time complexity of O(|E|2log(|N |) + |E||N |(log(|N |))2). Our network is com-

prised of |N | = |A| +M |T | + 2 nodes and |E| = (|A| + 1)(M |T | + 1) arcs, where

M = 1/|T |
∑

t∈T Mt is the average number of nodes per task. As a result, the time

complexity for the solution of the largest MCF problem is:

O((M |A||T |)2log(|A|+M |T |) +M |A||T |(|A|+M |T |)(log(|A|+M |T |))2)

It is easy to verify that the time complexity of the RNN approach is better than

the one of the MCF approach by at least a factor of O(M
2|T |log(|A|+M |T |)).

The approach proposed in this section is a modified version of the MCF con-

struction based heuristic that was proposed for the solution of the WTA problem

in [12]. However, our approach is different in several ways. Firstly, the arc costs in

the network are different due to the incurred asset assignment costs Ca(a, t) which

are not present in the WTA problem. Secondly, we have modified the network

structure to address the possibility of not assigning a particular asset to any task.

Thirdly, instead of using a predefined constant number of transshipment nodes for

each task, we have chosen to use a different number of transhipment nodes for each

task according to the maximum possible number of assignments for a specific task.

Finally, we have introduced the MCFrnn approach to efficiently estimate the net-

work arc costs. As will be shown in section 5.7, this approach leads to the best

results overall without adding on the time complexity of the MCF method.

Finally, we should emphasise that the MCF approaches are deterministic. This

means that for given input parameters to the optimisation problem, they will always

produce the same output if executed several times. As a result, these approaches can

be used for decision making in a distributed manner, similar to the RNN parameter

association approach discussed in section 5.4.

5.6. Obtaining tight lower bounds

To assess the performance of the discussed algorithms we have developed a tight

lower bounding scheme which is based on deriving a piecewise linear approximation
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of the cost function of alternative formulation (5.11) of our problem:

minC =
∑
t∈T

U(t)2−zt +
∑
t∈T

∑
a∈A

Ca(a, t)X(a, t)

s.t.
∑
t∈T

X(a, t) ≤ 1, ∀a∑
a∈A

h(a, t)X(a, t) = zt, ∀t

X(a, t) ∈ {0, 1}, ∀a, t and zt ≥ 0,∀t

To derive formulation (5.11) let us assume that:

2−zt =
∏
a∈A

pf (a, t)
X(a,t) (5.11)

Taking the logarithm in both sides of Eq. (5.11) gives:

zt = −
∑
a∈A

X(a, t) log2 pf (a, t) =
∑
a∈A

X(a, t)h(a, t) (5.12)

where h(a, t) = − log2 pf (a, t). Because 0 < pf (a, t) ≤ 1, it is true that h(a, t) ≥ 0

and zt ≥ 0. Substitution of Eq. (5.12) into (5.2) yields formulation (5.11).

Although the objective function remains nonlinear we can approximate the terms

2−zt , ∀t by a piecewise linear approximation function ϕ(zt). In fact, we can obtain

a lower bound to the problem’s cost CLB, if we make sure that 2−zt ≥ ϕ(zt), zt ≥ 0.

This can be achieved by taking the upper envelop of a number of lines tangent

to 2−zt .The piecewise linear approximation approach described above, was firstly

proposed in [134] for the solution of the WTA problem.

Next, we will discuss how we can reduce the approximation interval for the 2−zt

terms and describe a piecewise linear approximation scheme that restricts the maxi-

mum error to a desired value. Then, we will show how we can even remove ϕ(zt), ∀t
from the formulation transforming it into a mixed integer optimisation problem with

a linear objective function [141].

One problem with the piecewise linear approximation is the large approximation

range which in our case is zt ≥ 0. We show that we only need to approximate the

function for a specific range of values. Clearly, the lower bound for variable zt is 0,

attained when no asset is assigned to task t. If there is at least one allocation for
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task t then zt ≥ zmin
t > 0, where zmin

t is the smallest positive value of zt. This value

is acquired by assigning the asset with the largest execution failure probability to

task t,

zmin
t = − log2(max

a
{pf (a, t)}) (5.13)

We can also limit the approximation range by deriving an upper bound for zt.

Due to the asset cost Ca(a, t), assignments are made only when the net expected

reduction in the objective function is positive. In other words, a new asset a can be

assigned to task t if Ucur(t)ps(a, t)−Ca(a, t) > 0, where Ucur(t) is the expected cost

of the task due to other assignments. If we consider the marginal case Umar(t) =

Ca(a, t)/ps(a, t), then the expected task cost after the assignment is made will be

equal to Umar(t)pf (a, t) = Ca(a, t)pf (a, t)/ps(a, t). Hence the smallest expected cost

that we can obtain for task t is Umin(t) = mina∈A{Ca(a, t)pf (a, t)/ps(a, t)} so that:

zmax
t = − log2(Umin(t)/U(t))

= − log2

mina∈A{Ca(a,t)pf (a,t)

ps(a,t)
}

U(t)

 (5.14)

One approach for obtaining the piecewise linear approximation of a function

is to take the upper envelop of the lines tangent to it at integer multiples of a

parameter κ. Nonetheless, using this approach we do not have any knowledge of

the approximation error, while the maximum error for different segments varies.

Our approach is to create lines whenever needed so that the approximation error

does not exceed a predefined value emax. Although this approach may lead to a

large number of segments we can adjust emax to achieve the desirable number of

segments and at the same time maintain the error less than a constant known value.

Fig. 5.2 depicts an example of piecewise linear approximation of term 2−zt when

emax = 0.02, zmin
t = 1.94 and zmax

t = 8.62. The solid thin line represents 2−zt while

the dashed lines represent the various approximating lines. The thick line, which

is the upper envelop of the approximating lines, corresponds to ϕ(zt). On Fig. 5.2

the piecewise linear approximation function is tangent to 2−zt at points P1, P5 and

P7, whereas P2, P4 and P6 are points of maximum approximation error.

In order to create ϕ(zt) we follow an iterative procedure which involves the numer-
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Figure 5.2.: Piecewise linear approximation

ical solution of two equations. The first equation corresponds to the case that a line

segment is tangent to 2−zt at a known point (ztpt , 2
−ztpt ) with slope α = −2−ztpt ln 2;

our aim is to find the point zept > ztpt where the approximation error is equal to

emax, as described in Eq. (5.15).

2−zept − α(zept − z
tp
t ) + 2−ztpt = emax (5.15)

The second equation corresponds to the case that one point of maximum approxi-

mation error, (zept , 2
−zept −emax), of a particular line segment is known and we want

to obtain the point ztpt > zept that is tangent to 2−zt . This point is determined from

the numerical solution of Eq. (5.16):

2−ztpt − (2−zept − emax)

ztpt − z
ep
t

= −2−ztpt ln 2 (5.16)

We now outline the approach followed to derive ϕ(zt). Starting from point (0,1)

we solve Eq. (5.15) to obtain the point zP2
t where the approximation error is equal

to emax. Since no approximation is needed in the interval 0 < zt < zmin
t , we set
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the start of the new segment to zP2
t only when zP2

t > zmin
t otherwise we impose

point (zmin
t , 2−zmin

t − emax) to be a point on the second line segment (point P4).

Then the procedure alternates between the solution of Eq. (5.16) and (5.15). The

second segment is fully determined by solving Eq. (5.16) to obtain point P5. Then,

point P5 is used to find P6 by solving Eq. (5.15); point P6 denotes the end of the

particular line segment and the start of the next one. The described procedure is

repeated until an attained point is larger than zmax
t .

Having obtained an approximating function ϕ(zt), t ∈ T , we now describe how

to obtain a problem formulation with a linear cost function. Let us assume that

the term 2−zt is approximated by Lt linear segments with slopes α
(1)
t ,...,α(Lt) and

start-points z
(1)
t ,...,z

(Lt)
t . Let us also assume that z

(Lt+1)
t = zmax

t . Because 2−zt is

convex, the envelop approximation ϕ(zt) will also be convex and the slopes will have

monotone increasing values: α
(1)
t < α

(2)
t < ... < α(Lt). Let ξ

(l)
t , l = 1, ..., Lt be the

value of zt corresponding to the lth linear segment so that 0 ≤ ξ
(l)
t ≤ z

(l+1)
t −z(l)t , l =

1, ..., Lt. Under the assumption that ξ
(i)
t = z

(i+1)
t − z(i)t , i = 1, ..., l− 1 when ξ

(l)
t > 0,

it is true that zt =
∑Lt

l=1 ξ
(l)
t and also that ϕ(zt) =

∑Lt

l=1 α
(l)
t ξ

(l)
t . In other words, zt

can be replaced by the sum of variables ξ
(l)
t , l = 1, ..., Lt if we can ensure that the

solution of the optimisation problem will always be such that each ξ
(l)
t is nonzero

only when the variables ξ
(i)
t , i = 1, . . . , l − 1 have obtained their maximum value.

As mentioned earlier, α
(1)
t has the smallest slope value and hence ξ

(1)
t will be the

first variable associated with zt to be assigned a nonzero value. Only when ξ
(1)
t

has been assigned its maximum value variable ξ
(2)
t will be assigned a nonzero value

and this procedure will continue until zt becomes equal to the sum of the nonzero

variables. Thus, the assumption stated above is satisfied and formulation (5.11)

becomes:

min
∑
t∈T

U(t)
Lt∑
l=1

α
(l)
t ξ

(l)
t +

∑
t∈T

∑
a∈A

Ca(a, t)X(a, t) (5.17)

s.t.
∑
t∈T

X(a, t) ≤ 1, ∀a

∑
a∈A

h(a, t)X(a, t) =
Lt∑
l=1

ξ
(l)
t , ∀t

0 ≤ ξ
(l)
t ≤ z

(l+1)
t − z(l)t , l = 1, ..., Lt, ∀t

X(a, t) ∈ {0, 1}, ∀a, t
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|A| |T | |A|/|T | RNN MMR MCFmax MCFmin MCFrnn
6 3 2.0 2.23 4.12 4.40 0.61 0.74
6 6 1.0 4.40 7.98 0.98 0.05 0.05
6 9 0.67 1.05 4.84 0.18 0.00 0.00
6 12 0.5 0.78 2.83 0.00 0.00 0.00
6 15 0.4 0.51 1.85 0.00 0.00 0.00
3 6 0.5 0.38 1.66 0.01 0.00 0.00
9 6 1.5 2.02 5.56 4.87 0.28 0.31
12 6 2.0 1.69 4.08 8.15 0.56 0.73
15 6 2.5 1.98 4.05 9.38 0.84 0.87
Overall Perf. 1.67 4.11 3.11 0.26 0.30

Table 5.1.: Average relative percentage deviation from the optimal solutions of data
family 1

Formulation (5.17) is a linear mixed integer program that can be solved using a

standard combinatorial optimisation solver.

We are now ready to outline the steps of the lower bounding algorithm (LBA)

for problem (5.2):

1. For each task compute zmin
t and zmax

t using Eqs. (5.13) and (5.14) respectively.

2. Follow the proposed piecewise linear approximation scheme to compute the Lt

linear segments with slopes α
(1)
t ,...,α(Lt) and start-points z

(1)
t ,...,z

(Lt)
t , z

(Lt+1)
t =

zmax
t based on the desired value of emax.

3. Use an integer programming solver to solve problem (5.17). The obtained

objective function cost corresponds to a lower bound of the original problem.

5.7. Evaluation

The effectiveness of the proposed algorithms was tested with respect to two gen-

erated data families. In data family 1, the problem parameters are independently

generated, while in data family 2 there is positive correlation between the cost of

an asset and its associated execution success probabilities, so that “better” assets

are more expensive.

In both data families, parameters U(t) for each task in T are generated from

the uniform distribution in the interval [10,200]. In data family 1 the other two

problem parameters also follow the uniform distribution. The cost of assignment
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|A| |T | |A|/|T | RNN MMR MCFmax MCFmin MCFrnn
6 3 2.0 4.70 4.21 4.21 2.24 2.55
6 6 1.0 0.95 2.02 0.49 1.05 0.39
6 9 0.67 0.04 0.27 0.01 0.05 0.01
6 12 0.5 0.02 0.05 0.00 0.00 0.00
6 15 0.4 0.01 0.03 0.00 0.00 0.00
3 6 0.5 0.03 0.06 0.00 0.01 0.02
9 6 1.5 2.45 3.16 2.69 1.50 1.36
12 6 2.0 2.94 3.23 5.00 2.72 2.81
15 6 2.5 4.14 4.29 6.65 4.10 4.25
Overall Perf. 1.70 1.92 2.12 1.30 1.26

Table 5.2.: Average relative percentage deviation from the optimal solutions of data
family 2

Ca(a) ∈ [4, 30], a ∈ A is taken to be independent from its assigned task, while

for the execution failure probabilities we have that pf (a, t) ∈ [0.05, 0.4]. In data

family 2, the execution failure probabilities are taken to be independent from the

tasks, i.e. pf (a) ∈ [0.05, 0.4], while the associated asset costs Ca(a) are drawn from

the normal distribution with mean Ca(a) and variance 0.1Ca(a). The parameters

Ca(a) are calculated from linear equation (5.18) that connects points (pf,max =

0.4, Ca,min = 4) and (pf,min = 0.05, Ca,max = 30).

Ca(a) =
(Ca,max − Ca,min)

(pf,min − pf,max)
(pf (a)− pf,max) + Ca,min (5.18)

To test the effectiveness of the proposed algorithms, we have performed two sets

of experiments. The first set of experiments is conducted with small size asset-task

problem sets where the optimal solution can be obtained, while the second set is

conducted with large size problems and the results are compared against the lower

bounding algorithm (LBA).

For the small size problems, we have generated problem instances for constant

number of assets, |A| = 6, and varying number of tasks |T | = {3, 6, 9, 12, 15} as
well as for constant number of tasks, |T | = 6, and varying number of assets |A| =
{3, 9, 12, 15}, for both data families described above. To compare the performance

of the various algorithms we have used as performance criterion the average relative

percentage deviation from the optimal solution (obtained by enumeration), σopt,

defined as:
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σopt =
1

NPI

NPI∑
i=1

Calg,i − Copt,i

Copt,i

× 100 (5.19)

where Copt,i is the cost of the optimal solution obtained from the solution of problem

(5.2) for instance i, Calg,i is the cost obtained from the heuristic algorithm used,

and NPI is the total number of problem instances considered in each case. The

number of problem instances used was NPI = 300 in all cases.

The results are summarised in Tables 5.1 and 5.2 for data family 1 and 2 re-

spectively. The bold letters denote the best performing approach or approaches for

each (|A|, |T |) pair. For data family 1, clearly the best performing method is the

MCFmin with average relative percentage deviation from the optimal not exceeding

1% in all cases, as is the case for the MCFrnn which achieves slightly worse results.

Remarkably, both MCFmin and MCFrnn obtain optimal results in all cases that

the number of assets is smaller than the number of tasks. MCFmax performs well

only when |A| > |T |, while its performance is the worst for the other cases. The

RNN approach clearly outperforms the maximum marginal return algorithm and

in all cases σopt < 5%.

The results obtained for data family 2 are overall worse than those of data family

1. The MCFmin algorithm is better only for the cases that |A| ≥ 2|T |, while for

the other cases the best performing algorithm is MCFrnn. The RNN approach

again outperforms the MMR algorithm, and its performance remains within 5% of

optimality. Moreover, RNN’s effectiveness is comparable to the best performing

methods MCFmin and MCFrnn. From this first set of experiments we can conclude

that the MCFmin and MCFrnn approaches are the best performing algorithms,

whilst the performance of the algorithms significantly depends on the ratio |A|/|T |.
We have performed a second set of experiments with large problem instances, for

several (|A|, |T |) pairs with up to 200 assets and 200 tasks. Due to the large size of

the problems, the optimal solution is difficult to be derived, so the performance of

the algorithms is compared against tight lower bounds obtained from the solution

of (5.17). To obtain tight lower bounds in relatively short execution period, the

parameter emax has been carefully selected for each (|A|, |T |) pair to accomplish a

good trade-off between execution time and optimality. The performance measure

that we use is the average relative percentage deviation from the lower bound, σLB,
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|A| |T | |A|/|T | RNN MMR MCFmax MCFmin MCFrnn LBA
20 80 0.25 0.94 1.31 0.35 0.35 0.35 0.37
40 120 0.33 1.55 2.15 0.67 0.67 0.67 0.75
10 20 0.5 1.14 3.31 0.16 0.15 0.15 0.15
20 40 0.5 1.95 4.07 0.61 0.61 0.61 0.63
40 80 0.5 2.37 4.16 0.92 0.92 0.92 0.98
80 160 0.5 2.54 3.91 1.24 1.24 1.24 1.37
100 200 0.5 2.44 3.66 1.18 1.18 1.18 1.29
10 10 1.0 4.56 8.77 1.62 0.12 0.12 0.09
20 20 1.0 3.32 8.10 2.07 0.10 0.10 0.10
40 40 1.0 2.42 8.56 2.04 0.11 0.11 0.11
80 80 1.0 2.20 7.47 1.82 0.12 0.12 0.12
100 100 1.0 2.14 7.02 1.77 0.12 0.12 0.13
10 5 2.0 1.82 3.67 6.96 0.49 0.66 0.05
20 10 2.0 2.30 6.04 11.07 0.39 0.47 0.06
40 20 2.0 2.68 6.72 14.80 0.24 0.28 0.07
80 40 2.0 2.82 7.20 17.55 0.09 0.12 0.08
100 50 2.0 2.93 7.25 18.27 0.09 0.11 0.09
200 100 2.0 2.87 6.55 20.06 0.09 0.09 0.10
40 10 4.0 2.60 4.13 12.63 1.09 1.16 0.09
80 20 4.0 2.74 5.05 14.19 0.80 0.79 0.10
Overall Perf. 2.42 5.50 6.50 0.45 0.47 0.34

Table 5.3.: Average relative percentage deviation from the lower bound of data fam-
ily 1
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|A| |T | |A|/|T | RNN MMR MCFmax MCFmin MCFrnn LBA
20 80 0.25 0.27 0.28 0.27 0.27 0.27 0.29
40 120 0.33 0.42 0.43 0.42 0.42 0.42 0.45
10 20 0.5 0.49 0.53 0.48 0.48 0.48 0.51
20 40 0.5 0.49 0.54 0.49 0.49 0.49 0.53
40 80 0.5 0.51 0.56 0.51 0.51 0.51 0.55
80 160 0.5 0.68 0.74 0.68 0.68 0.68 0.75
100 200 0.5 0.72 0.77 0.64 0.72 0.72 0.80
10 10 1.0 0.83 2.55 0.64 1.34 0.47 0.07
20 20 1.0 0.71 3.03 0.77 1.58 0.60 0.09
40 40 1.0 0.67 3.38 0.82 1.71 0.65 0.14
80 80 1.0 0.78 3.72 1.01 1.83 0.81 0.52
100 100 1.0 0.93 3.93 1.19 2.02 1.64 0.79
10 5 2.0 3.30 3.61 4.87 2.64 2.54 0.04
20 10 2.0 2.92 3.38 5.58 3.04 2.89 0.05
40 20 2.0 2.62 3.43 5.98 3.15 3.04 0.08
80 40 2.0 2.32 3.32 6.27 3.26 3.09 0.80
100 50 2.0 2.38 3.39 6.44 3.43 3.31 0.58
200 100 2.0 2.12 3.30 6.33 3.53 3.32 1.21
40 10 4.0 6.84 6.76 9.93 7.47 7.68 0.06
80 20 4.0 6.28 6.08 9.86 7.13 7.45 0.09
Overall Perf. 1.81 2.69 3.16 2.28 2.05 0.42

Table 5.4.: Average relative percentage deviation from the lower bound of data fam-
ily 2
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defined as:

σLB =
1

NPI

NPI∑
i=1

Calg,i − CLB,i

CLB,i

× 100 (5.20)

where CLB,i is the cost of the lower bound obtained from the solution of (5.17).

We report σLB for the various algorithms in Tables 5.3 and 5.4. Column LBA

corresponds to the cost of the original problem (5.2), computed using the solution

obtained from the lower bounding algorithm. LBA is only considered to demon-

strate the tightness of the lower bounds and is not compared with the other methods,

as it is not of polynomial complexity. Moreover, the MMR is a greedy heuristic,

where in each iteration we select the assignment corresponding to the maximum

marginal return, represented by term max{0, b(a, t)}.
For data family 1 the most effective algorithms are the network flow approaches

MCFmin and MCFrnn for all (|A|, |T |) pairs, which have almost the same efficiency

and achieve σLB < 1.3% in all cases. In addition, these algorithms even outperform

the LBA approach for the cases that |A|/|T | ≤ 1. Additionally, MCFmax only

performs well when |A|/|T | ≤ 1. The RNN approach is worse than the network

flow heuristics, but performs by approximately 4% better than the MMR algorithm.

Interestingly, for data family 2 the best overall performing algorithm is the RNN.

RNN performs better than the other approaches for large problem instances when

|A| = |T | and 2|A| = |T |, while for the other problems its performance is highly

competitive. MCFrnn achieves better results than the MCFmin approach, especially

for the problem sets with equal number of assets and tasks. The performance

of the MMR approach is well improved compared to data family 1; in fact the

MMR obtains the best results for problem instances with |A|/|T | = 4. Finally, the

MCFmax is again the least effective approach.

Summarising the results, we could argue that the best performing method is the

MCFrnn since it performs similar to the MCFmin for data family 1, whilst it is

more effective on data family 2. At this point, it is important to highlight that the

RNN solution attained in MCFrnn is not considered to improve the performance

of the MCFrnn. If this is taken into account, then the outcome from the MCFrnn

algorithm will always be at least equal to the outcome of RNN, as we can choose

the best solution amongst the two approaches; in that case, the MCFrnn would be

the best performing method for data family 2. Finally, the performance of the RNN

approach should also be emphasised because even though its overall performance is
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by 2% worse than the MCF approaches in the data family 1, it is the most efficient

method for data family 2, while it is of lower polynomial time complexity compare

to the MCF approaches.

5.8. Conclusions

In this chapter we have studied an asset-task allocation problem when an asset may

fail to execute an assigned task. For its solution, we have proposed two approaches

based on the random neural network and the minimum cost flow problem. We

have also proposed an algorithm for obtaining tight lower bounds to the optimal

solution of the examined problem. The proposed RNN and MCF approaches are

deterministic and of polynomial time complexity so that they can be utilised by

the assets (the decision makers) to obtain fast, distributed, close to optimal and

consistent solutions if all assets are provided with the same information.

We have tested the efficiency of the various algorithms with respect to two dif-

ferent data families, the one with all parameters being independent and the other

with the assignment costs having a positive correlation to the execution success

probabilities. The results that we have obtained confirm the usefulness of a simple

RNN based heuristic for the fast and efficient solution of problem (5.2), especially

when there is positive correlation between the asset assignment costs and the suc-

cess probabilities, achieving on average performance within 5% of optimality for

almost all problem sets examined. With respect to the proposed network flow algo-

rithms, we could argue that MCFmin and MCFrnn have better overall performance

than the MMR and RNN heuristics, with the MCFrnn being the most successful;

it performs equally well with the MCFmin for the independent data family and it

is more effective on the dependent data. This indicates that the incorporation of

RNN into the MCF approach has a positive effect. Although the MCF approaches

are more effective than the RNN approach overall, the time complexity of the latter

is better by a factor of O(|T |M2
log(|A|+M |T |)).
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6. Connecting trapped civilians to

a wireless ad-hoc robotic

network

During a disaster, emergency response operations can benefit from the establish-

ment of a wireless ad-hoc network. We propose the use of autonomous robots that

move inside a disaster area and establish a network for two-way communication

between trapped civilians with a priori known or uncertain locations and an op-

erations centre. Our aim is to maximise the number of civilians connected to the

network. We present a centralised approach which is based on network flows, as well

as distributed algorithms which involve clustering possible locations of civilians;

clustering facilitates both connectivity within groups of civilians and exploration

when the civilian locations are uncertain. We proposed an algorithm for the case

that the locations of the civilians are known, as well as two algorithms for the case

that the locations of the civilians are uncertain. The first is based on performing

dynamic clustering of the locations of the civilians as the exploration-connectivity

process evolves and the other is based on constructing a minimum spanning tree of

the initially identified clusters which facilitates the movement of the robots and the

parallel exploration of more than one clusters simultaneously.

The chapter is structured as follows. We start with a general description and

the motivation for the examined problem. In section 6.2 we review related research

topics to set the theoretical ground, followed by the assumptions that we make for

the solution of the problem. In section 6.4, we describe a centralised mathematical

formulation of the problem that can be applied both for a priori known or uncer-

tain locations of civilians and provide numerical results to demonstrate the validity

and the efficiency of the formulation. Apart from the centralised approach we also

describe three versions of a distributed heuristic algorithm for the solution of the
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problem, in section 6.5. The first version of the algorithm, deals with the problem

when the locations of the civilians are a priori known; its efficiency is compared

against that of the centralised approach in terms of the percentage of civilians con-

nected. The second version, which is a modified version of the first one, tackles the

problem with uncertain civilian locations using a risk measure for economic the-

ory called, expected shortfall. The third version extends the algorithm for uncertain

civilian locations to improve its efficiency in terms of the time needed to connect the

civilians and the total energy spend by the robots. Section 6.6 provides a summary

of the conclusions.

6.1. Introduction

Mobile robots are routinely used in disaster management operations to reach areas

that are inaccessible to humans. Usually, they are designed to search for victims,

inspect the structural integrity of buildings, or detect hazardous materials, but

with recent advances in small-size robotics and wireless communications, emergency

response robots can also be used to form ad-hoc networks. Examples of robots,

where this ad hoc networking paradigm applies include the Soryu III [171], which

provides live video streaming and two-way voice connection with trapped civilians,

and the Packbot that is designed for military operations [128]. The following typical

large-scale emergency situation indicates the usefulness of such a robotic network:

An earthquake has demolished a large building block in a city; the rescuers have

arrived and need to assess the situation. Traditionally, the best case scenario is that

the trapped civilians use whistles or some more sophisticated radio-transmitting

personal emergency device that facilitates their detection. From detection to rescue

however, a long period may pass during which establishing and maintaining com-

munication between the rescuers and trapped civilians is vital. During this period,

the rescuers’ job would be immensely assisted if instead of a simple notification

device the civilians carried a device that would provide wireless connection with

the rescuers, in the form of VoIP, live video streaming or even environmental and

biomedical sensor data. In this way, the rescuers would be in position to better

assess the health condition of the victims and the state of their local environment

long before locating them. Given that the existing communication infrastructure

may be partially or completely destroyed, a promising approach would be to em-
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Figure 6.1.: Example scenario: A group of robots establish communication with
trapped civilians

ploy mobile robots to act as wireless routers and form a network with the wireless

devices of the trapped civilians (Fig. 6.1) to establish communication between the

civilians and the operations centre.

For this emergency communication paradigm, the fact that we have a limited

amount of robots means that they need to be deployed efficiently to optimise differ-

ent key objectives, such as time for the formation of the network or energy limita-

tions. Yet, the most important objective is to maximise the number of civilians that

are connected to the operations centre via the robotic network while maintaining

multi-hop connectivity between the robots; this is the problem that we deal with

in this chapter.
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6.2. Related work

Ad hoc networking for the collaboration of search and rescue robotic operations

was first suggested in [176] and further investigated in [47, 145], but their authors

assumed star topology with a control station in the centre of the search area, which

is usually impractical during a disaster. A more general system was proposed in

[168, 169], where networked robots collaborated to detect a single injured civilian

and maintained their connection while moving. In this chapter, we tackle the fun-

damental problem of the optimal allocation of such robots that need to form an

ad hoc network with all or as many static civilians as possible while at the same

time being connected to a wireless sink over multiple hops. Related problems can

be found in the field of network design, but they usually refer to wired networks

and their goal is to select or add links to achieve some network objectives [90, 130].

In the mobile wireless case that we deal with, the addition of links is done implic-

itly with the location selection of the robots. A popular related problem found in

the field of sensor networks is the positioning or scheduling of sensors to maximise

area coverage while maintaining connectivity, which has produced a few interesting

heuristics, such as [183, 179]. In our case, we deal with the connection of civilians

instead of area coverage, and we provide both an exact centralised formulation and

a distributed heuristic. Finally, mobility-assisted relocation has also been explored

in sensor networks, but the focus in such networks is either the area coverage or the

degree of connectivity, and not the connection of specific targets [178].

6.3. Assumptions

Our focus is on the constrained environments. Thus, instead of a continuous or grid

representation of the area, we choose a graph G = (N , E) representation, which

is preferable for environments where there are limited movement options for the

robots. We assume that the civilians carry a wireless device of range Rciv, which is

used to connect with the robots. The wireless device of each robot has range Rrob.

Several wireless coverage models have been proposed in the literature, but for the

sake of simplicity we will use the euclidian distance as the connectivity criterion.

A civilian c ∈ C is considered to be in two-way connection with a robot r ∈ R
if their euclidian distance is smaller than the minimum of their respective ranges:

d(c, r) < min{Rrob, Rciv}. The robots need to maintain multi-hop connectivity
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with a static wireless sink ds, which represents the operations centre. A civilian can

either be directly connected to the sink or via a robot that is in turn connected to it.

Also, we assume that the movement graph G is known to the robots. Concerning the

civilian locations, we examine two cases: (a) they are a priori known and (b) they

are uncertain but we know the probability distribution of the number of civilians

at each vertex.

6.4. A centralised approach

In this section we describe a centralised approach for the solution of the problem

under examination which is suitable both for known locations as well as for uncer-

tain locations of civilians. We also present numerical results to demonstrate the

effectiveness and validity of the formulation. Finally, we examine composite cost

functions which apart from the maximisation of connected civilians achieve the

minimisation of the total number of robots used or the energy spent by the robots.

6.4.1. Formulation

Our goal is to find appropriate positions for the robots so that the number of

connected civilians is maximised and the connectivity of the formed network is

maintained. The robots have identical characteristics and hence do not need to be

explicitly distinguished; we only need to find optimal locations for them. The binary

decision variables x = {xi : i ∈ N} denote whether a robot should be positioned at

vertex i.

To capture connectivity relationships, we use the binary matrices CRR and CRC

to represent robot-to-robot and robot-to-civilian connectivity respectively. CRR is

a |N | × |N | matrix with its CRR
i,j element representing whether vertex j ∈ N is in

range Rrob of vertex i ∈ N . The |C| × |N | matrix CRC has elements CRC
c,i equal to

1 if a robot at vertex i would be connected with civilian c.

To formulate the problem, we also need to introduce the binary variables yc, c ∈ C
which represent whether civilian c is connected to at least one robot. The problem
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can be formulated as follows:

maximize
∑
c∈C

yc (6.1a)∑
i∈N

xi <= |R|, (6.1b)

yc = min{1,
∑
i∈N

xiC
RC
c,i }, c ∈ C (6.1c)

u(i, j) = max{0, CRR
i,j xi + CRR

j,i xj − 1}, ∀i < j, (6.1d)

u(j, i) = u(i, j), ∀i < j, (6.1e)

u(i, i) = 0, i ∈ N (6.1f)

− 1

|R|
xi +

∑
j∈N

Xf (j, i) =
∑
j∈N

Xf (i, j), i ∈ N \ {ds} (6.1g)

1

|R|
∑

j∈N\{ds}

xj +
∑
j∈N

Xf (j, i) =
∑
j∈N

Xf (i, j), i = ds (6.1h)

0 ≤ Xf (i, j) ≤ u(i, j), i, j ∈ N (6.1i)

xi ∈ {0, 1}, i ∈ N (6.1j)

where |R| is the number of robots, while Xf (i, j) and u(i, j) are continuous vari-

ables that denote the amount of flow and the capacity of link (i, j). A link capacity is

nonzero if there are robots at vertices i and j and they are connected. The auxiliary

network flow variables Xf (i, j) and u(i, j) have been employed to help us examine

whether the robots maintain connectivity to each other for a given configuration,

as will be explained below.

In the above formulation, Eq. (6.1b) indicates that we cannot use more than

|R| robots, while Eq. (6.1c) shows whether civilian c is connected to the network.

To formulate the connectivity matrix of the robots for given robot positions x, we

have employed a network flow formulation. If two robots at i and j are connected,

then according to Eq. (6.1d) - (6.1f) the capacities u(i, j) and u(j, i) are equal to

1; otherwise they are equal to zero. Hence, the actual links of the formed network

for specific robot locations are represented by the nonzero capacities. Connectivity

is ensured if small hypothetical traffic flows from the sink ds can reach all robot

nodes. Transmission of traffic flows in the network implies that the flow conservation

equations (6.1g)-(6.1i) are satisfied so that the total incoming traffic to any vertex
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is equal to its total outgoing traffic.

In Eq. (6.1g) and (6.1h), the first term represents the supply s(i) of vertex i

which accounts for the amount of flow that enters the network from the outside.

Note that a source vertex has positive supply s(i) > 0, a sink vertex negative supply

s(i) < 0, and transshipment vertices have s(i) = 0 [26]. If the amount of traffic sent

from the sink vertex to each of the robots is equal to 1/|R|, the total amount of

traffic received by a link never exceeds 1 and the capacity constraint (6.1i) is never

violated. Consequently, the set of Eq. (6.1g), (6.1h) is feasible only when all robots

are connected to the sink. Also, the sink’s supply must be equal to the robots’ total

demand so that
∑

i∈N s(i) = 0; hence, the sink supply is equal to 1
|R|
∑

j∈N\{ds} xj.

Due to the presence of the min and max terms in Eq. (6.1c) and (6.1d) re-

spectively, the above formulation is not linear. However, both expressions can be

transformed into equivalent linear ones 1, which facilitates to a great extend the so-

lution of the problem. In our case, Eq. (6.1c) is equivalent to the combination of Eq.

(6.2b), (6.2c) and the goal function (6.2a). This is because when
∑

i∈N xiC
RC
c,i = 0,

then Eq. (6.2b) and (6.2c) force yc to zero. Additionally, when
∑

i∈N xiC
RC
c,i ≥ 1,

then 0 ≤ yc ≤ 1 and expression (6.2a) ensure that yc will take the maximum value

in that interval, i.e. yc = 1.

maximize
∑
c∈C

yc (6.2a)∑
i∈N

xiC
RC
c,i ≥ yc, c ∈ C (6.2b)

0 ≤ yc ≤ 1, c ∈ C (6.2c)

Furthermore, constraint (6.1d) is equivalent to constraints (6.3a)-(6.3d). Eq.

(6.3b) - (6.3d) force u(i, j) to zero when not both terms CRR
i,j xi and CRR

j,i xj are

equal to 1. In addition, when both terms are equal to 1 then from Eq. (6.3a)

u(i, j) ≥ 1 and from Eq. (6.3b) and (6.3c) u(i, j) ≤ 1 , implying that u(i, j) = 1.

1By linear, we mean here that if we relax the integrality constraints, use xi ∈ [0, 1] instead of
xi ∈ {0, 1}, we get a linear programming formulation
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CRR
i,j xi + CRR

j,i xj − 1 ≤ u(i, j),∀i < j (6.3a)

CRR
i,j xi ≥ u(i, j),∀i < j (6.3b)

CRR
j,i xj ≥ u(i, j),∀i < j (6.3c)

0 ≤ u(i, j) ≤ 1, i, j ∈ N (6.3d)

The described centralised formulation provides an optimal solution to the problem

when the civilian positions are known. However, a slightly modified formulation can

provide an optimal solution also in the case of uncertain locations.

Let E[Zi] represent the expected number of civilians at vertex i and yi show

if the civilians at vertex i are connected. Let also the |N | × |N | binary matrix

CRL represent the connectivity of robots with possible locations of civilians, where

element CRL
i,j shows whether a robot at location i can connect civilians at location

j. To obtain a formulation for the uncertain locations case we need only to replace

expressions (6.1a) and (6.1c) in formulation (6.1) by expressions (6.4a) and (6.4b)

respectively.

maximize
∑
i∈N

E[Zi]yi (6.4a)

yi = min{1,
∑
j∈N

xjC
RL
i,j }, i ∈ N (6.4b)

6.4.2. Numerical results using the general centralised

approach

We have performed numerical evaluation of our approach for varying robot and

civilian ranges as well as number of robots. In all cases with constant number

of robots and civilians we have used |R| = 20 and |C| = 20 respectively. For

the solution of problem (6.1) a standard mixed integer programming solver was

employed.

Fig. 6.2 shows three instances of optimally allocated robots for combinations of

robot and civilian ranges. When the range of the wireless devices carried by the
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civilians is too small, then in practice there must be one robot per each civilian

in order to connect them, but for larger ranges the robots move to areas of higher

civilian density. Fig. 6.3 illustrates the maximum number of connected civilians for

different Rrob and Rciv values. It can be observed that in all cases the maximum

possible number of connected civilians is achieved for Rciv = 8m. On the contrary,

Fig. 6.4 shows that there is a threshold for Rrob in the range [6m,8m); below

this threshold no civilian is connected, while above it the number of connected

civilians increases substantially and reaches a maximum. In Fig. 6.5 the effect of

the number of robots was examined for different combinations of civilian and robot

ranges. Interestingly, the civilian connectivity increases almost linearly with the

number of robots until full coverage is achieved.

6.4.3. Numerical results for uncertain civilian locations

For the case of uncertain civilian locations, we have generated 20 different problem

instances with the number of civilians at each vertex obtained using the truncated

exponential distribution with mean 0.25 civilians per vertex. In this case, the

optimisation problem can be solved in a similar manner, by replacing expressions

(6.1a) and (6.1c) in formulation (6.1) with expressions (6.4a) and (6.4b) respectively.

Figs. 6.6 and 6.7 illustrate the average percentage of civilians connected when the

robot range and the number of robots vary respectively, for different combinations

of civilian and robot ranges. In Fig. 6.6, the transition from no connectivity to

high connectivity is much smoother than in the case where the civilian locations

are known. In addition, for large robot ranges full connectivity is not guaranteed, as

in Fig. 6.4, because due to the uncertainty the robots may take positions where no

civilians can be connected, especially when Rciv = 6m where the best connectivity

achieved is only half of what is achieved for a priori known locations.

Interestingly, when the number of robots changes, the behaviour observed is

similar to the case of certainty but the same connectivity is achieved for a larger

number of robots, as illustrated on Fig. 6.7.
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Figure 6.2.: Robot allocations according to the centralised solutions for (i)Rrob =
8m and Rciv = 4m, (ii)Rrob = 14m and Rciv = 4m, (iii)Rrob = 8m
and Rciv = 14m: When the civilian range is small one robot must
be dedicated to each civilian, whereas when it is large one robot may
suffice to connect multiple civilians. In addition, when the robot range
is not large enough, a significant number of the robots must be used for
maintaining connectivity; hence, they move to locations of high density
of civilians for optimal performance.
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Figure 6.3.: Maximum number of connected civilians for varying Rciv and Rrob =
8m, 10m, 12m

6.4.4. Minimising the number of robots and the energy

consumption

Although our primary goal is to maximise the number of connected civilians, it is

also important to minimise the number of required robots or the locomotion energy

used by the robots to achieve maximum connectivity. By locomotion energy we

refer to the energy consumed by the robots to travel to their destinations. For this,

we include these goals in the objective function and compare the results for the cases

that emphasis is given in minimising a) the number of robots and b) the average

locomotion energy consumed by the robots. We denote Ei,j the normalised energy

consumed by a robot to travel from vertex i to vertex j so that 0 ≤ Ei,j ≤ 1, ∀i, j.
We assume that the locomotion energy consumed by the robots while moving is

analogous to the distance travelled.

Concerning the robot minimisation, the new objective function is the following:

maximize My

∑
c∈C

yc −
∑
i∈N

xi (6.5)
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Figure 6.4.: Maximum number of connected civilians for varying Rrob and Rciv =
2m, 6m, 10m

whereMy is sufficiently large so that any increase of the civilian maximisation term

is larger than the maximum possible value of the robot minimisation term. In

this way, the optimal solution corresponds to the lexicographically greatest of the

feasible ordered sets (
∑

c∈C yc,−
∑

i∈N xi).

When we are interested in minimising the energy instead of the number of robots

the objective function becomes:

maximize My

∑
c∈C

yc −
∑
i∈N

Eds,ixi (6.6)

where again My must be sufficiently large so that the solution is the best lexico-

graphically ordered feasible set (
∑

c∈C yc,−
∑

i∈N Eds,ixi).

We have solved the centralised problem for objectives (6.5) and (6.6) for Rrob

ranging from 10m to 20m and Rciv = 12m, computing the minimum number of

robots required and the total consumed energy. We have selected the particular

robot and civilian ranges because they have feasible solutions for the connection of

all civilians as already shown in Fig. 6.3 - 6.4.
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Figure 6.5.: Maximum number of connected civilians for varying number of robots
and different combinations of ranges

A comparison of the efficiency of the objectives (6.2a), (6.5) and (6.6) in terms

of the minimum number of robots used and the locomotion energy consumed, is

illustrated on Fig. 6.8 and 6.9. In Fig. 6.8, it is clear that when using the objective

function (6.2a) the results are significantly worse because no effort is put on min-

imising the number of robots. Interestingly, the results for the case of minimising

the energy are very close to the optimum values which are obtained using objective

(6.5).

The numerical results presented in Fig. 6.9 correspond to the locomotion energy

consumption being linear with the distance, at 2.0J/m, which is a typical value for

small wireless-equipped robots, such as robomote [163]. Similar observations to the

ones associated with Fig. 6.8 are valid for this case as well. Nonetheless, the energy

consumed when utilising objective (6.5) is always more than the optimal in contrast

to Fig. 6.8 where in some cases minimising the energy resulted in minimizing the

number of robots required as well. Based on the above observations, we can argue

that minimising the number of robots or the locomotion energy consumed are highly

associated goals.
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Figure 6.6.: Average percentage of connected civilians for varying Rrob and Rciv =
2m, 6m, 10m, for uncertain civilian locations

6.5. A distributed heuristic

The above problem is particularly challenging because connectivity between the

robots must be maintained, which constraints their movements and requires their

efficient cooperation to achieve their common goal. We have developed a distributed

heuristic algorithm with which the robots can autonomously relocate in the disaster

area and take appropriate actions independently and in a timely fashion. A general

flow diagram of the algorithm is shown on Fig. 6.10.

The problem can be significantly simplified if the locations of the civilians are

clustered so that their maximum radius is smaller than Rrob+Rciv. In that case, by

locating a robot at the centre of this cluster, the connectivity constraint is always

satisfied within the cluster (Fig. 6.14). Clustering the locations of the civilians in a

disaster scenario is not unrealistic, because the civilians are naturally clustered in

groups, either because they were together when the disaster occurred or grouped

with others in their effort to survive. The robot that settles on the cluster centre

acts as a cluster leader and is responsible to issue an exploration announcement to
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Figure 6.7.: Average percentage of connected civilians for varying number of robots,
for uncertain civilian locations
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Figure 6.8.: Minimum number of robots required to connect all civilians when ob-
jectives (6.2a), (6.5) and (6.6) are utilised.
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Figure 6.9.: Average locomotion energy consumed per robot when objectives (6.2a),
(6.5) and (6.6) are utilised.

Figure 6.10.: General flow diagram of the distributed heuristic algorithm
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all available robots in the network, which in turn explore the cluster for civilians

and connect the ones that they find. Between clusters, chains of robots are formed

to ensure connectivity. Within a cluster, a robots chooses to move to the location

from which a maximum number of discovered and unconnected civilians will become

connected.

Essentially, our heuristic approach is composed of two stages:

• Move to the most attractive cluster of civilians forming a chain of robots to

maintain connectivity between clusters

• Discover and connect the civilians of this cluster and move to the next one

Each of the robots greedily selects the cluster to which it is attracted the most.

Several attractiveness metrics can be used such as the number of civilians in each

cluster, the distance between the robot and each cluster, or a combination of the

two. A good trade-off is to use the ratio of these two metrics so as to maximise

the number of connected civilians and minimise the number of robots that settle to

maintain connectivity between clusters.

In order to avoid having multiple robots at the same location, each one reserves

the location where it intends to settle to act as a cluster leader, to connect civilians,

or to maintain multi-hop connectivity between cluster leaders. A robot does not

reserve a location from where it would lose connectivity, and this ensures that the

final robotic network will be connected.

6.5.1. Simulation results for the distributed algorithm

In order to evaluate our distributed algorithm, we implemented it as the movement

decision model of robot agents in the Building Evacuation Simulator [92]. Figure

6.11 shows the final allocation of the robots for the given civilian clustering, where

the larger circles represent the clusters and the smaller circles are the ranges of the

civilians. The robots moved first to cluster 1, which was closer to their starting

point and had the most civilians, connected all its civilians, and the remaining

robots moved to clusters 2, 3 and 4 according to the attractiveness metric. The

distributed heuristic reached comparable results with the centralised solution (Fig.

6.12 and 6.13), but with an average increase in the locomotion energy consumption

of approximately 40%. This was expected since with the centralised approach,
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Figure 6.11.: Solution of the distributed algorithm for the given clustering of
civilians

the robots know their destination before they start moving and go there directly,

while in the distributed case, the robots need to move inside the area and gradually

identify their final positions.

6.5.2. Introducing uncertainty

If the robots do not have complete knowledge of the locations of the civilians they

must move so that they first cover areas of high probability of existence of civilians

with low risk. For this reason, we employ a risk measure for the number of civilians

on each location, the Expected Shortfall ESq(i), borrowed from the field of financial

risk management. ESq(i) shows the expected number of civilians on location i in the

worst q% cases [6]: ESq(i) = E(Zi|Zi < m) where m is determined by Prob(Zi <

m) = q and q is the given threshold. Note that for q = 100%, the expected shortfall

is equal to the expected number of civilians on the particular vertex. In practice,

by using the ESq measure, the operation centre determines the risk with which the

autonomous robots will perform their exploration and connection tasks.

The introduction of uncertainty naturally leads to the need for dynamic explo-

ration. At the beginning, the robots set a predetermined threshold l and take into

account only the locations where ESq > l. They cluster these locations accord-

ing to the k-means clustering algorithm [177], where the value of k is the smallest

feasible value for which all clusters have radius smaller than Rrob + Rciv. When

the cluster leader issues the exploration announcement, the available robots move

to unexplored areas within the range of the cluster leader and identify locations

of civilians until all have been explored. Each time a robot moves to the nearest
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Figure 6.12.: Comparison between the distributed and centralised approach in terms
of number of connected civilians against the number of robots
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Figure 6.13.: Comparison between the distributed and centralised approach in terms
of number of connected civilians against the wireless range of the
robots
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Figure 6.14.: Connectivity is guaranteed within a cluster if its radius is smaller than
Rrob +Rciv

candidate location for exploration. A necessary number of robots stay to connect

these civilians and the rest continue to the next cluster centre. When both the ex-

ploration of the cluster and the connection of its civilians are completed, the cluster

leader dynamically computes a new set of clusters by reducing the ESq limit. It

then informs the other robots so that they select a new cluster. Thus, as soon as

high-ESq locations are completed, less probable locations start to be considered

by the robots. In other words, the robots tend to move from locations of high

probability of finding civilians towards less probable ones, until they connect them

all.

We have evaluated our heuristic for 10, 15 and 20 robots and for varying risk pa-

rameter q for truncated exponential distribution of civilians with mean 0.25 civilians

per vertex (Fig. 6.15).

Moderate-risk strategies (q = 80− 90%) yielded better results than the high-risk

(q = 100%) and low-risk strategies (q = 70%). The latter on several occasions

missed distant high-reward clusters, while the former allocated robots to locations

where their expectations were not met.
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6.5.3. MST-based modification

The above algorithm has two significant weaknesses: (i) it does not allow the robots

to move towards different clusters at the same time if they start from the same

location because they all adhere to the same rules and (ii) it selects the next best

cluster without planning its next steps. To address these issues we look at the

clusters of the civilian locations as the vertices of an overlay graph. The robots

again need to move from cluster to cluster to connect the civilians, but this time

they do so probabilistically. Whenever they are to choose a new cluster, they consult

the minimum spanning tree (MST) of the overlay cluster graph as seen in Fig. 6.16.

The MST is computed by one of the robots at the beginning and is communicated to

the rest of the robots. Whenever a cluster is completely explored and all its civilians

connected to the network, the remaining robots need to move to a new cluster.

If more than one options exist, the probability of choosing each new direction is

proportional to the estimated ratio of robots needed at the specific direction. The

estimation is based simply on the expected number of civilians and the distances

between clusters. By choosing probabilistically, the robots do not have to negotiate
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Figure 6.16.: Illustration of the Minimum Spanning Tree formed by the clusters and
the movement options of the robots

with each other, they spread more quickly in the area and essentially they decide

by taking into account their future options. This is a significant improvement

over the algorithm shown in Section 6.5.2, where the robots were looking for the

most attractive cluster ignoring their future options. However, unlike the previous

algorithm, the MST-based approach dictates the use of static clustering, since the

MST will not provide dependable paths if the overlay cluster graph keeps changing.

We investigate this tradeoff with experiments for 10, 15 and 20 robots, the results

of which are shown in Fig. 6.17. For 10 robots, the first approach presented in

section 6.5.2 performs better than the MST-based one. The reason is that the

number of robots is not sufficient to connect many civilians and the planning of

the MST-based algorithm does not bring the desired outcome. On the contrary,

for 15 and 20 robots the MST-based approach outperforms the first one since there

is sufficient number of robots that can deploy effectively using the MST. We can

argue that the first approach is more efficient when the number of robots as well

as the connectivity achieved is small, while the MST-based modification is better

when the robots suffice to achieve high connectivity.
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Figure 6.17.: Percentage of trapped civilians connected against time for 10, 15 and
20 robots.
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6.6. Conclusions

In this chapter we have examined the problem of maximising the number of con-

nected injured civilians to an operations centre via a wireless ad-hoc robotic network

when the locations of the civilians are known or uncertain. We have introduced a

centralised formulation which is based on network flows to find the optimal posi-

tions of the robots which is useful in both certain and uncertain civilian locations.

We have also examined the effect of composite terms and we have seen that we

can significantly reduce the total number of robots used or the energy consumed

without affecting our primary goal which is the maximisation of the civilian con-

nectivity to the network. We have also introduced distributed algorithms to deal

with the problem under examination. We have shown that for the case of known

civilian locations the distributed algorithm, which is based on clustering the lo-

cations of civilians, achieves results close to optimality. For the case of uncertain

civilian locations we have introduced two algorithms. The one is based on dynami-

cally clustering the possible civilian locations, after one cluster is explored and the

discovered civilians are connected. The other is based on building the minimum

spanning tree of the clusters centres so that the robots can explore and connect

more than one clusters at the same time. Numerical evaluation showed that the

first approach performs better when the number of robots is small and only a small

percentage of civilians are finally connected, while the second is better when the

number of robots is sufficiently large to connect almost all civilians.
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7. Conclusions and future work

In this thesis we have aimed at the introduction of new learning algorithms for RNN,

as well as the development of RNN-based and other algorithms for the solution of

combinatorial optimisation problems arising in emergency management. With re-

spect to supervised learning, we have introduced two new approaches. The first is a

gradient descent algorithm for RNNSI, an extension model that we have introduced

inspired by observations in vitro. The second is based on approximating the RNN

equations into a nonnegative least squares problem, when all neurons have desired

values, which is solved using the PGNNLS algorithm. We also develop the RNN-

NNLS algorithm to deal with networks composed of both output and non-output

neurons.

The developed supervised learning algorithms have been applied to the solution of

emergency management problems that require fast, distributed and close to optimal

solution, despite their large complexity (NP-hard problems) and uncertainty of

information. Specifically, three assignment problems with the above characteristics

are considered that are associated with: (1) the dispatching of emergency units to

locations of injured civilians, (2) the allocation of assets to tasks under execution

uncertainty, and (3) the deployment of a team of networked robots for establishing

communication with trapped civilians in a disaster area. Apart from supervised

learning algorithms, for the solution of these problems we considered fast approaches

based on RNN parameter association, network flows and greedy heuristics. In the

remainder of this chapter, we summarise the thesis contributions and discuss open

issues and directions for future work.

7.1. Thesis contributions

The contributions of this thesis can be divided into two main categories:

a. Theoretical developments for the random neural network model
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i. We have introduced an extension of the RNN model that incorporates syn-

chronous interactions (RNNSI), which are based on two neurons that jointly

excite a third one, inspired by observations of synchronised firing in cortical

and retinal neuronal circuits. In addition, a gradient descent learning algo-

rithm for the RNNSI model has been developed, which retains the computa-

tional complexity of the respective RNN algorithm for updating one weight

(O(N3)), despite the fact that RNNSI is a generalisation of the RNN model.

Analytical manipulation of the related learning expressions, showed that all

the weights of the network can be updated in O(N3), reducing the complex-

ity of updating all weights in one iteration by an order of magnitude. This

result extends to the RNN learning algorithm as well. Details can be found

in Chapter 3.

ii. We have proposed RNN-NNLS, an RNN method that aids supervised learning

both in terms of learning and weight initialisation. The method relies on

approximating the signal-flow equations of the network to obtain a linear

system of equations with nonnegativity constraints, which can be solved as a

nonnegative least squares problem (NNLS) when all neurons in the network

have desired values. For the solution of NNLS, a quasi-Newton projected

gradient algorithm with limited-memory requirements has been developed.

In this algorithm we have introduced two novel characteristics: (a) a hyper-

exponential line-search procedure that reduces the number of matrix vector

products required for the completion of one iteration, and (b) we derived

efficient analytical expressions for the evaluation of the NNLS objective and

gradient functions, resulting in an order of magnitude speedup. Apart from

the computational speedup, the developed NNLS algorithm is suitable for

large-scale problems, as it only requires the storage of a few vectors of the

same size as the decision vector. We have also addressed successfully the case

that the neural network is composed of both output and non-output neurons.

More details can be found in Chapter 3.

iii. We have conducted an extended survey of the RNN which covers the main

theory, as well as other extension models, associated learning algorithms and

applications. This is the first extended survey on RNN since its introduction

two decades ago. More details can be found in Chapter 2.
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It is important to highlight that the applicability of the developed supervised

learning RNN algorithms is not limited to the problems studied in this thesis; they

can be used for the solution of other appropriate supervised learning problems, aug-

menting the pool of RNN learning algorithms. Furthermore, the RNNSI learning

algorithms could be particularly useful in applications that combine learning with

modelling. The reason is that the RNNSI model incorporates second order interac-

tions, which could be useful in modelling complex systems such as gene regulatory

networks and synchronously firing neuronal brain circuits. Finally, the RNN survey

is a rich source of information about the RNN theory and different RNN tools that

can be utilised for the solution of practical problems, contributing to the dissemi-

nation of scientific knowledge.

b. Investigation of optimisation problems in Disaster Management

During a large-scale disaster the allocation of the right emergency services to the

right place in order to minimise the impact of the disaster is an extremely challeng-

ing operation. The evolving situation is complex, the collected information is incom-

plete, the communications can be disrupted and at the same time instant decisions

are required. Therefore, it is imperative that decision-makers utilise mathemati-

cal algorithms to help them take appropriate actions. Any developed algorithms

should be able to provide close to optimal solutions to the underlying problems in

real-time, deal efficiently with information uncertainty, and operate in a distributed

manner when communication with a central coordinator is not possible. In the con-

text of my research, three problems that may arise in disaster response have been

identified and solved. Next, the investigated problems are briefly described and the

associated research contributions are outlined:

i. Dispatching of emergency units to incidents : In this problem, we investigate

how to collect a number of spatially distributed injured civilians in the least

possible total response time, when there is a limited number of emergency

units with different capabilities. For the solution of this problem, we have

proposed the use of supervised learning when distributed and fast decision

making is required. The idea is to provide each of the emergency units,

which are the decision makers, with a trained random neural network tool,

an “oracle” that advises each agent on what actions to take. The “oracle” is

trained prior to the actual event using as input the parameters of numerous
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problem instances in the same physical context as the disaster and, as output,

the optimal solutions of those instances. When the real-world problem occurs,

each agent consults its “oracle” on the actions to be taken. If all the agents

share the same information then the decision taken will be non-conflicting

and their actions will be coordinated as if all agents had cooperated to find a

consensus solution. We have employed RNN-NNLS and the RNNSI gradient

descent learning algorithms for its solution. Extensive performance evaluation

showed that by using these algorithms we can collect almost all the injured

with very small deviation from optimality, while for a large number of problem

instances we can collect all the injured. More details about this problem can

be found in Chapter 4.

ii. Asset-task assignment with uncertain execution: We investigate a general prob-

lem associated with the assignment of assets to tasks when each asset can

potentially execute any of the tasks, but assets execute tasks with a proba-

bilistic outcome of success, so as to minimise the cost of the tasks. Assets can

be emergency personnel that need to be dispatched to treat injured civilians,

when there is possibility of failure either because of difficulty in accessing

the location of the injured from the route followed, or due to insufficient

skills. For this problem, we have developed an RNN parameter association

approach, where the parameters of the optimisation problem are associated

with parameters of the RNN model. In addition, we have introduced network

flow algorithms that are based on solving a sequence of minimum cost flow

problems on appropriately constructed networks with estimated arc costs and

introduced three different estimation schemes. Performance evaluation indi-

cates that both algorithms are useful, as each performs better than the other

for different data sets, while both algorithms can solve large-scale problems

in real-time and within 5% from optimality. We have also designed an ap-

proach for obtaining tight lower bounds to the optimal solution based on a

piecewise linear approximation of the considered problem. More details about

this problem can be found in Chapter 5.

iii. Connecting trapped civilians to a wireless ad hoc robotic network : We investigate

the use of autonomous robots that move inside a disaster area and establish a

network for two-way communication between trapped civilians with a priori
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known or uncertain locations and an operations centre. The specific problem

considered is to find optimal locations for the robots in order to maximise the

number of civilians connected to the network, given that each civilian carries

a short-range communication device. This problem is important because it

provides the means for locating and assessing the condition of the injured.

For its optimal solution, we have derived and solved a mixed-integer linear

programming formulation based on network flows. We have also designed

and implemented distributed heuristic algorithms based on clustering possible

locations of civilians for both a priori known and uncertain civilian locations.

Simulation results indicate that the performance of the distributed algorithms

is close to the optimal one. More details about this problem can be found in

Chapter 6.

From a practical applications perspective, the above investigated problems could

help the emergency services improve their effectiveness in dealing with large scale

disasters.

7.2. Future work

There are several interesting directions for future research based on the work un-

dertaken in this thesis. Next, we provide suggestions for further work and discuss

open issues for Chapters 3-6 in which the research contributions of this thesis have

been elaborated.

We begin our suggestions from the developed supervised learning algorithms dis-

cussed in Chapter 3. One direction of future research involves the development

of new learning algorithms for RNN or its extension models. Learning algorithms

related to RNN are mostly gradient descent based although it is well known that

these methods are not the most efficient. It would be interesting to investigate

rigorous nonlinear programming techniques such as interior point or Newton trust-

region methods that guarantee convergence to a local optimum and examine their

computational and memory efficiency, as well as their ability in finding good lo-

cal optima. Another interesting direction is to apply the idea of the RNN-NNLS

algorithm for the RNNSI model. This problem is even more challenging as it is

a nonconvex problem and further considerations are needed for the development

of an efficient algorithm. An open issue related to the RNN-NNLS algorithm is
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the selection of the desired excitation probabilities of the non-output neurons. To

address this issue, either analytical techniques could be employed to derive the op-

timal distribution of the excitation probabilities of the non-output neurons, or a

metaheuristic technique could be exploited to efficiently explore the search-space

of these values. The developed algorithms could also be exploited in other appli-

cations. For example, RNN-NNLS is ideal for image processing applications where

each pixel is represented by a neuron and has a desired output value [69]. More-

over, the ability of the RNNSI model to represent in a close manner the interactions

in complex systems could be combined with its learning capabilities to investigate

open questions arising in biological networks. One such question is related to the

understanding of the operation of gene regulatory networks. In fact, the RNNSI

model is already under investigation for the specific research goal [112].

Concerning the assignment of emergency units to incidents, further research could

be undertaken to consider generalisations of it or relax the problem assumptions.

In the problem, we have made the assumption that one unit can be allocated to

exactly one incident. Nevertheless, if the capacity of the emergency units is less than

the number of injured, then each unit should perform multiple trips delivering the

injured each time to collection points. Another assumption that has been made is

that emergency units allocated to one incident cannot be re-assigned to some other

incident. However, it would be possible to assign one emergency unit to more than

one incidents if excess capacity is available or dynamically re-assign it to incidents

that have more injured than expected. In addition, each injured civilian could have

an expected remaining lifetime so that an emergency unit would have to be able

to arrive in time in order to save the particular person. These conditions impose

significant challenges both in terms of modelling and solving the problem.

The assets to tasks assignment with execution uncertainty problem and the de-

veloped algorithms could also be extended in several directions. One such direction

is associated with the allocation of the assets in stages. First some assets can be

allocated to tasks, and then the resulting outcome, in terms of the set of tasks

which are actually executed, is observed. As a consequence of the outcome the

remaining assets can then be used in the next stage, based on the work that was

not completed in the first stage. This would correspond to an approach in which

assets are maintained in reserve and re-allocated during the course of the process

that one is studying. Moreover, because the particular problem is quite general, it
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would be interesting to address other real-world problems in diverse fields that can

be modelled with the specific formulation. As briefly discussed in Chapter 5, poten-

tial applications include, for example, communication over an unreliable medium,

cancer therapy treatment and sensor coverage. Another interesting extension of

this work would be to examine complete decentralisation of the decision process, so

that each asset decides on what task to execute, based only on local information

and communication with its neighbours. It is the author’s belief that this could

be accomplished by the considered network flow algorithms, as each network flow

subproblem is a linear program that can be solved in a completely decentralised

manner [51].

Finally, regarding the problem of connecting trapped civilians to a wireless ad-

hoc robotic network, there are a number of research challenges that need to be

addressed. Firstly, the employment of clusters for civilian exploration and connec-

tivity leads to interesting optimisation problems, such as the optimal exploration

choices within a cluster in order to minimise the exploration time or the energy

expenditure. Secondly, robust approaches that take into account any robot or com-

munication failures should be developed to ensure the uninterrupted connectivity

of the robotic network. Thirdly, in many situations, especially in disaster manage-

ment, the assumption that the robots know the building graph may not be valid so

that robots will have to rely on pure exploration to navigate through the building

and connect civilians. Fourthly, the centralised approach should be exploited for the

development of efficient heuristic algorithms similar to the network flow algorithms

developed in the asset-task assignment problem.
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[136] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. Wiley, 1990.

[137] S. Mohamed and G. Rubino. A study of real-time packet video quality using

random neural networks. IEEE Transactions on Circuits and Systems for

Video Technology, 12(12):1071–1083, 2002.

[138] Samir Mohamed, Gerardo Rubino, and Martin Varela. Performance evalua-

tion of real-time speech through a packet network: a random neural networks-

based approach. Performance Evaluation, 57(2):141–161, 2004.
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A. Derivative calculations of

RNNSI gradient descent

algorithm

We present the calculations required to derive equations (3.15)-(3.17).

Firstly we differentiate qi = N(i)/D(i) with respect to the generic variable

w(u, v), which yields:

∂qi
∂w(u, v)

=

∂N(i)
∂w(u,v)

D(i)

D2(i)
−

∂D(i)
∂w(u,v)

N(i)

D2(i)
=

1

D(i)

[
∂N(i)

∂w(u, v)
− ∂D(i)

∂w(u, v)
qi

]
(A.1)

Next we derive expressions for the derivatives ∂N(i)
∂w(u,v)

and ∂D(i)
∂w(u,v)

for all three pa-

rameters w+ (u, v), w− (u, v) and a (u, v).

∂N(i)

∂w+(u, v)
=

N∑
j=1

∂qj
∂w+(u, v)

w+ (j, i)

+qu1{v=i} +
N∑
j=1

∂qj
∂w+(u, v)

N∑
m=1

w− (j,m) qma(m, i)

+
N∑
j=1

qj

N∑
m=1

∂qm
∂w+(u, v)

w− (j,m) a(m, i) (A.2)

∂N(i)

∂w−(u, v)
=

N∑
j=1

∂qj
∂w−(u, v)

w+ (j, i) +
N∑
j=1

∂qj
∂w−(u, v)

N∑
m=1

w− (j,m) qma(m, i)

+
N∑
j=1

qj

N∑
m=1

∂qm
∂w−(u, v)

w− (j,m) a(m, i) + quqva(v, i) (A.3)
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∂N(i)

∂a(u, v)
=

N∑
j=1

∂qj
∂a(u, v)

w+ (j, i) +
N∑
j=1

∂qj
∂a(u, v)

N∑
m=1

w− (j,m) qma(m, i)

+
N∑
j=1

qj

N∑
m=1

∂qm
∂a(u, v)

w− (j,m) a(m, i)

+
N∑
j=1

qjquw
−(j, u)1{v=i} (A.4)

∂D(i)

∂w+(u, v)
=

1{u=i}

1− d(i)
+

N∑
j=1

∂qj
∂w+(u, v)

[
w−(j, i) +

N∑
m=1

w−(j, i)a(i,m)

]
(A.5)

∂D(i)

∂w−(u, v)
= 1{u=i}

1 +
∑N

m=1 a(v,m)

1− d(i)
+ qu1{v=i} + qu

N∑
m=1

a(v,m)1{v=i}

+
N∑
j=1

∂qj
∂w−(u, v)

[
w−(j, i) +

N∑
m=1

w−(j, i)a(i,m)

]
(A.6)

∂D(i)

∂a(u, v)
=

w−(i, u)

1− d(i)
+

N∑
j=1

qjw
−(j, u)1{u=i}

+
N∑
j=1

∂qj
∂a(u, v)

[
w−(j, i) +

N∑
m=1

w−(j, i)a(i,m)

]
(A.7)

Substituting (A.2) and (A.5) into (A.1) gives:

∂qi
∂w+(u, v)

=
1

D(i)

N∑
j=1

∂qj
∂w+(u, v)

{
w+(j, i) +

N∑
m=1

qmw
−(j,m)a(m, i)

+a(j, i)
N∑

m=1

qmw
−(m, j)− qiw−(j, i)

N∑
m=1

a(i,m)− qiw−(j, i)

}

+
qu
D(i)

[
1{v=i} −

1{u=i}

1− d(i)

]
(A.8)
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To derive the above equation we used the fact that:

N∑
j=1

qj

N∑
m=1

∂qm
∂w+(u, v)

w−(j,m)a(m, i) =
N∑

m=1

∂qm
∂w+(u, v)

N∑
j=1

qjw
−(j,m)a(m, i)

=
N∑
j=1

∂qj
∂w+(u, v)

N∑
m=1

qmw
−(m, j)a(j, i)

Similarly, for ∂qi
∂w−(u,v)

and ∂qi
∂a(u,v)

we obtain:

∂qi
∂w−(u, v)

=
1

D(i)

N∑
j=1

∂qj
∂w−(u, v)

{
w+(j, i) +

N∑
m=1

qmw
−(j,m)a(m, i)

+a(j, i)
N∑

m=1

qmw
−(m, j)− qiw−(j, i)

N∑
m=1

a(i,m)− qiw−(j, i)

}

+
1

D(i)

[
quqva(v, i)− qu1{u=i}

1 +
∑N

m=1 a(v,m)

1− d(i)

−qvqu1{v=i}[1 +
N∑

m=1

a(v,m)]

]
(A.9)

∂qi
∂a(u, v)

=
1

D(i)

N∑
j=1

∂qj
∂a(u, v)

{
w+(j, i) +

N∑
m=1

qmw
−(j,m)a(m, i)

+a(j, i)
N∑

m=1

qmw
−(m, j)− qiw−(j, i)

N∑
m=1

a(i,m)− qiw−(j, i)

}

+
1

D(i)

[
qu(1{v=i} − 1{u=i})

N∑
j=1

qjw
−(j, u)− qiw

−(i, u)

1− d(i)

]
(A.10)
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B. Derivation of expressions

associated with the efficient

computation of NNLS costly

functions

In this appendix, we elaborate on the equations used without derivation in section

3.3.3 for the efficient computation of the objective and gradient NNLS functions,

f(w) and ∇f(w), given by Eqs. (3.35) and (3.36) respectively. For the first evalu-

ation approach, we show in detail how Eqs. (3.60) and (3.64) are derived. For the

second, we obtain low complexity expressions both for the composing matrices of

Γ and for vector Γw.

B.1. The first approach

B.1.1. Derivation of Eq. (3.60)

According to Eq. (3.58) each of the terms ẑk, k = 1, ..., K can be computed indepen-

dently, so that the computation of ẑ requires the efficient evaluation ofCk(w
++w−),

D+kw
+ and D−kw

−.

For the examination of expression Ck(w
+ + w−) we use the fact that Ck =

[Ck1, · · ·,CkN ] and define (w±)
T

=
[(
w±

1

)T
, ...,

(
w±

N

)T]
so that the jth element

of w±
i is the same as w±(i, j). By performing the appropriate calculations and
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exploiting the fact that Cki is given by Eq. (3.53) yields:

Ck(w
+ +w−) = [Ck1, · · ·,CkN ]


w+

1 +w−
1

...

w+
N +w−

N

 =
N∑
i=1

Cki(w
+
i +w−

i )

=
N∑
i=1

qik(ei1
T )(w+

i +w−
i ) =

N∑
i=1

qikei

N∑
j=1

(w+(i, j) + w−(i, j))

= qk

⊙
(σW+ + σW−)

where σW+ and σW− are N × 1 vectors given by Eqs. (3.61) and (3.62). This

definition implies that their ith element is equal to the sum of the ith row elements

of the associated matrix. Similarly for the other two terms we obtain:

D+kw
+ =

N∑
i=1

D+kiw
+
i = −

N∑
i=1

qikw
+
i = −


∑N

l=1 qlkw
+(l, 1)

...∑N
l=1 qlkw

+(l, N)

 = −(W+)Tqk

D−kw
− =

N∑
i=1

D−kiw
−
i =

N∑
i=1

qikqk

⊙
w−

i =


q1k
∑N

l=1 qlkw
−(l, 1)

...

qNk

∑N
l=1 qlkw

−(l, N)


= qk

⊙(
(W−)Tqk

)
The above two expressions have been derived by replacing D+k and D−k with

the expressions of Eqs. (3.54) and (3.55) respectively. Combining the above three

expressions into Eq. (3.59) yields Eq. (3.60).

ẑk = qk

⊙
(σW+ + σW−)− (W+)Tqk + qk

⊙(
(W−)Tqk

)
B.1.2. Derivation of Eq. (3.64)

In order to derive Eq. (3.64) we need to analyse the terms CT
k zk, D

T
+kzk and DT

−kzk

that appear in Eq. (3.63). Utilising Eqs. (3.53), (3.54) and (3.55) and performing

the appropriate calculations yields:
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CT
k zk =


CT

k1
...

CT
kN

 zk =


CT

k1zk
...

CT
kNzk

 =


q1k(1e

T
1 )zk

...

qNk(1e
T
N)zk

 = (qk

⊙
zk)
⊗

1

DT
+kzk =


DT

+k1
...

DT
+kN

 zk =


D+k1zk

...

D+kNzk

 = −


q1kINzk

...

qNkINzk



= −


q1kzk
...

qNkzk

 = −qk

⊗
zk

DT
−kzk =


DT

−k1
...

DT
−kN

 zk =


D−k1zk

...

D−kNzk

 =


q1kdiag([q1k, q2k, · · · , qNk])zk

...

qNkdiag([q1k, q2k, · · · , qNk])zk



=


q1k(qk

⊙
zk)

...

qNk(qk

⊙
zk)

 = qk

⊗
(qk

⊙
zk)

If we combine the above expressions into Eq. (3.63) we obtain Eq. (3.64):

z̃ =

[ ∑K
k=1 [(qk

⊙
zk)
⊗

1− qk

⊗
zk]∑K

k=1 [(qk

⊙
zk)
⊗

1+ qk

⊗
(qk

⊙
zk)]

]

=

 (∑K
k=1(qk

⊙
zk)
)⊗

1−
∑K

k=1(qk

⊗
zk)(∑K

k=1(qk

⊙
zk)
)⊗

1−
∑K

k=1(qk

⊗
(qk

⊙
zk))


B.2. The second approach

In this section of the appendix we provide the details for the derivation of Γw. We

start with the derivation of the individual terms of Γlm according to Eqs. (3.68)-
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(3.71). Then, based on the obtained expressions for those terms we examine Γw.

B.2.1. Derivation of Γlm

As discussed in section 3.3.3, in order to derive an expression for Γ ∈ R2N2×2N2

we need to examine the terms Γlm ∈ RN2×N2
, l,m = 1, 2, which are given by Eqs.

(3.68)-(3.71). Let us start with the examination of term Γ11 given by Eq. (3.68)

which is rewritten here for convenience:

Γ11 =
K∑
k=1

CT
kCk +

K∑
k=1

CT
kD+k +

K∑
k=1

DT
+kCk +

K∑
k=1

DT
+kD+k

There are four terms that need to be analysed and all of them are of the form∑K
k=1 G

T
kHk, where Gk,Hk ∈ RN×N2

. Moreover, these matrices can be further

decomposed such that Gk = [Gk1,Gk2, ...,GkN ] and Hk = [Hk1,Hk2, ...,HkN ],

with Gki,Hki ∈ RN×N . For the general term
∑K

k=1 G
T
kHk we have that:

K∑
k=1

GT
kHk =

K∑
k=1


GT

k1
...

GT
kN

 [Hk1,Hk2, · · · ,HkN ]

=


∑K

k=1 G
T
k1Hk1 · · ·

∑K
k=1 G

T
k1HkN

...
. . .

...∑K
k=1 G

T
kNHk1 · · ·

∑K
k=1 G

T
kNHkN

 (B.1)

Consequently, as all terms that have to be analysed are of the form
∑K

k=1 G
T
kHk, it

is sufficient to analyse the terms
∑K

k=1 G
T
kiHkj, whenGT

ki andHkj represent different

matrix combinations. For example, for the second term of Γ11,
∑K

k=1 C
T
kD+k, it is

sufficient to analyse
∑K

k=1 C
T
kiD+kj. Next, we derive expressions for each one of the

four terms of Γ11 in the order that they appear in Eq. (3.68). This is accomplished

by utilising Eqs. (3.53), (3.54) and (3.55).
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K∑
k=1

CT
kiCkj =

K∑
k=1

qikqjk(ei1
T )T (ej1

T ) =
K∑
k=1

qikqjk1e
T
i ej1

T

=


0N×N i ̸= j(

K∑
k=1

q2ik

)
(1× 1T ) i = j

K∑
k=1

CT
kiD+kj =

K∑
k=1

qik(ei1
T )TD+kj =

K∑
k=1

qik1e
T
i (−qjkIN) = −

(
K∑
k=1

qikqjk

)
(1eTi )

K∑
k=1

DT
+kiCkj =

K∑
k=1

D+kiCkj =
K∑
k=1

(−qikIN)(ej1T )qjk = −

(
K∑
k=1

qikqjk

)
(ej1

T )

K∑
k=1

DT
+kiD+kj =

K∑
k=1

D+kiD+kj =
K∑
k=1

(−qikIN)(−qjkIN) =

(
K∑
k=1

qikqjk

)
IN

Let us proceed now with the examination of the terms composing Γ12 given by

Eq. (3.69). Since the first two terms of Γ12 are the same with the first and third

terms of Γ11, we only have to analyse the terms
∑K

k=1 C
T
kD−k and

∑K
k=1 D

T
+kD−k.

We have that:

K∑
k=1

CT
kiD−kj =

K∑
k=1

qik(ei1
T )T (qjkdiag(qk)) =

K∑
k=1

qikqjk1(e
T
i diag(qk))

=
K∑
k=1

qikqjk1(qike
T
i ) =

(
K∑
k=1

q2ikqjk

)
(1eTi )
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K∑
k=1

DT
+kiD−kj =

K∑
k=1

D+kiD−kj =
K∑
k=1

(−qikIN) (qjkdiag(qk))

= −
K∑
k=1

qikqjkdiag(qk) = −diag([
K∑
k=1

qikqjkq1k, . . . ,

K∑
k=1

qikqjkqNk])

Similarly, for Γ21 we only need to analyse
∑K

k=1 D
T
−kCk and

∑K
k=1 D

T
−kD+k as its

first two terms are identical with the first two terms of Γ11. We have that:

K∑
k=1

DT
−kiCkj =

K∑
k=1

D−kiCkj =
K∑
k=1

(qikdiag(qk)) qjk(ej1
T )

=
K∑
k=1

qikqjk(diag(qk)ej)1
T =

K∑
k=1

qikqjk(qjkej)1
T =

(
K∑
k=1

qikq
2
jk

)
(ej1

T )

K∑
k=1

DT
−kiD+kj =

K∑
k=1

D−kiD+kj =
K∑
k=1

qikdiag(qk) (−qjkIN) = −
K∑
k=1

qikqjkdiag(qk)

= −diag([
K∑
k=1

qikqjkq1k, . . . ,
K∑
k=1

qikqjkqNk]) =
K∑
k=1

DT
+kiD−kj

Finally, for Γ22 the only term that has not already been analysed is
∑K

k=1 D
T
−kiD−kj.

K∑
k=1

DT
−kiD−kj =

K∑
k=1

D−kiD−kj =
K∑
k=1

qikdiag(qk)qjkdiag(qk)

=
K∑
k=1

qikqjkdiag(qk

⊙
qk) = diag([

K∑
k=1

qikqjkq
2
1k, . . . ,

K∑
k=1

qikqjkq
2
Nk])

An important observation with respect to the terms of Γlm is that the values

of all their elements will be known if the following five expressions are known: (1)∑K
k=1 q

2
ik, (2)

∑K
k=1 qikqjk, (3)

∑K
k=1 q

2
ikqjk, (4)

∑K
k=1 qikqjkqlk, and (5)

∑K
k=1 qikqjkq

2
lk.

These expressions have been defined in Eqs. (3.72)-(3.76) in vector/matrix form

and are given by σq, M, M s, Ri, i = 1, ..., N and Rs,i, i = 1, ..., N respectively.
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B.2.2. Derivation of Γw

In section 3.3.3, we have shown that in order to obtain a low complexity expression

for z = Γw we need to examine the terms zl = Γl1w
+ + Γl2w

−, where zl ∈
RN2×1, l = 1, 2 can be further decomposed into zTl = [zTl1, ..., z

T
lN ] with elements

zli ∈ RN×1(see Eq. (3.77)). However, as each of the terms composing Γlm (Eqs.

(3.68)-(3.71)) are given by the general expression (B.1) we can write the product

of any of these matrices with the generic vector w, which represents either w+ or

w−, as:

z̆ =

(
K∑
k=1

GT
kHk

)
w =


∑K

k=1 G
T
k1Hk1 · · ·

∑K
k=1 G

T
k1HkN

...
. . .

...∑K
k=1 G

T
kNHk1 · · ·

∑K
k=1 G

T
kNHkN




w1

...

wN



=


∑N

j=1(
∑K

k=1 G
T
k1Hkj)wj

...∑N
j=1(

∑K
k=1 G

T
kNHkj)wj

 =


z̆1
...

z̆N


Based on the above expression, it is sufficient to only analyse the terms z̆i =

N∑
j=1

(
K∑
k=1

GT
k1Hkj)wj, z̆i ∈ RN×1, i = 1, ..., N , using the already derived expressions

for the composing terms of Γlm. Let us start our examination with the terms of

Γ11w
+. We have that:

N∑
j=1

(
K∑
k=1

CT
kiCkj

)
w+

j =

(
K∑
k=1

q2ik

)
(1× 1T )w+

i = 1σq(i)
N∑
j=1

w+(i, j)

= 1σq(i)σW+(i)

N∑
j=1

(
K∑
k=1

CT
kiD+kj

)
w+

j = −
N∑
j=1

(
K∑
k=1

qikqjk

)
(1eTi )w

+
j = −1

N∑
j=1

Mijw
+(j, i)

= −1σMW+(i)
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N∑
j=1

(
K∑
k=1

DT
+kiCkj

)
w+

j = −
N∑
j=1

(
K∑
k=1

qikqjk

)
(ej1

T )w+
j

= −
N∑
j=1

ejMij

N∑
l=1

w+(j, l) = −
N∑
j=1

ejMijσW+(j)

= −


Mi1σW+(1)

0
...

0

− · · · −


0
...

0

MiNσW+(N)



= −


Mi1σW+(1)

...

MiNσW+(N)

 = −mr
i

⊙
σW+

N∑
j=1

(
K∑
k=1

DT
+kiD+kj

)
w+

j =
N∑
j=1

(
K∑
k=1

qikqjk

)
INw

+
j =

N∑
j=1

Mijw
+
j = (W+)Tmr

i

where σMW+ = (M
⊙

(W+)T )1. For the derivation of the above expressions we

have used Eqs. (3.72) and (3.73), as well as Eq. (3.61).

Let us know examine the composing terms of Γ12w
−. We have that:

N∑
j=1

(
K∑
k=1

CT
kiCkj

)
w−

j = 1σq(i)σW−(i)

N∑
j=1

(
K∑
k=1

DT
+kiCkj

)
w−

j = −mr
i

⊙
σW−

N∑
j=1

(
K∑
k=1

CT
kiD−kj

)
w−

j =
N∑
j=1

(
K∑
k=1

q2ikqjk

)
(1eTi )w

−
j = 1

N∑
j=1

M s
ijw

−(j, i) = 1σMsW−(i)
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N∑
j=1

(
K∑
k=1

DT
+kiD−kj

)
w−

j = −
N∑
j=1

diag([
K∑
k=1

qikqjkq1k, . . . ,
K∑
k=1

qikqjkqNk])w
−
j

= −


∑N

j=1R
i
j1w

−(j, 1)
...∑N

j=1R
i
jNw

−(j,N)

 = −(Ri
⊙

W−)T1

where σMsW− = (Ms
⊙

(W−)T )1. For the derivation of the above expressions

we have used Eqs. (3.72), (3.73), (3.74) and (3.75), as well as Eq. (3.62).

Let us now proceed to the examination of Γ21w
+. As we have already examined

terms
(∑K

k=1 C
T
kCk

)
w+ and

(∑K
k=1 C

T
kD+k

)
w+ we analyse the other two terms:

N∑
j=1

(
K∑
k=1

DT
−kiCkj

)
w+

j =
N∑
j=1

(
K∑
k=1

qikq
2
jk

)
(ej1

T )w+
j =

N∑
j=1

ejM
s
ji

N∑
l=1

w+(j, l)

=
N∑
j=1

ejM
s
jiσW+(j) = ms,c

i

⊙
σW+

N∑
j=1

(
K∑
k=1

DT
−kiD+kj

)
w+

j =
N∑
j=1

(
K∑
k=1

DT
+kiD−kj

)
w+

j = −(Ri
⊙

W+)T1

Finally, for Γ22w
− we only need to analyse the terms (

∑K
k=1 D

T
−kCk)w

− and

(
∑K

k=1 D
T
−kD−k)w

−. We have that:

N∑
j=1

(
K∑
k=1

DT
−kiCkj

)
w−

j = ms,c
i

⊙
σW−

N∑
j=1

(
K∑
k=1

DT
−kiD−kj

)
w−

j =
N∑
j=1

diag([
K∑
k=1

qikqjkq
2
1k, . . . ,

K∑
k=1

qikqjkq
2
Nk])w

−
j

=


∑N

j=1R
i
j1w

−(j, 1)
...∑N

j=1R
i
jNw

−(j,N)

 = (Rs,i
⊙

W−)T1

For the derivation of the last two expressions we have used Eqs. (3.74) and (3.76),
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as well as Eq. (3.62).

Combining the above expressions yields:

z1i =
(
1σq(i)σW+(i)− 1σMW+(i)−mr

i

⊙
σW+ + (W+)Tmr

i

)
+
(
1σq(i)σW−(i)−mr

i

⊙
σW− + 1σMsW−(i)− (Ri

⊙
W−)T1

)
= σz(i)1−mr

i

⊙
(σW+ + σW−) + (W+)Tmr

i − (Ri
⊙

W−)T1

where

σz = σq

⊙
(σW+ + σW−)− (M

⊙
(W+)T )1+ (Ms

⊙
(W−)T )1

Also for the vector z2 we have that:

z2i =
(
1σq(i)σW+(i)− 1σMW+(i) +ms,c

i

⊙
σW+ − (Ri

⊙
W+)T1

)
+
(
1σq(i)σW−(i) +ms,c

i

⊙
σW− + 1σMsW−(i) + (Rs,i

⊙
W−)T1

)
= σz(i)1+ms,c

i

⊙
(σW+ + σW−)− (Ri

⊙
W+)T1+ (Rs,i

⊙
W−)T1
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