330 research outputs found

    A Generic Approach to Supporting the Management of Computerised Clinical Guidelines and Protocols

    Get PDF
    Clinical guidelines or protocols (CGPs) are statements that are systematically developed for the purpose of guiding the clinician and the patient in making decisions about appropriate healthcare for specific clinical problems. Using CGPs is one of the most effective and proven ways to attaining improved quality, optimised resource utilisation, cost containment and reduced variation in healthcare practice. CGPs exist mainly as paper-based natural language statements, but are increasingly being computerised. Supporting computerised CGPs in a healthcare environment so that they are incorporated into the routine used daily by clinicians is complex and presents major information management challenges. This thesis contends that the management of computerised CGPs should incorporate their manipulation (operations and queries), in addition to their specification and execution, as part of a single unified management framework. The thesis applies modern advanced database technology to the task of managing computerised CGPs. The event-condition-action (ECA) rule paradigm is recognised to have a huge potential in supporting computerised CGPs. In this thesis, a unified generic framework, called SpEM and an approach, called MonCooS, were developed for enabling computerised CGPs, to be specified by using a specification language, called PLAN, which follows the ECA rule paradigm; executed by using a software mechanism based on the ECA mechanism within a modern database system, and manipulated by using a manipulation language, called TOPSQL. The MonCooS approach focuses on providing clinicians with assistance in monitoring and coordinating clinical interventions while leaving the reasoning task to domain experts. A proof-of-concepts system, TOPS, was developed to show that CGP management can be easily attained, within the SpEM framework, by using the MonCooS approach. TOPS is used to evaluate the framework and approach in a case study to manage a microalbuminuria protocol for diabetic patients. SpEM and MonCooS were found to be promising in supporting the full-scale management of information and knowledge for the computerised clinical protocol. Active capability within modern DBMS is still experiencing significant limitations in supporting some requirements of this application domain. These limitations lead to pointers for further improvements in database management system (DBMS) functionality for ECA rule support. The main contributions of this thesis are: a generic and unified framework for the management of CGPs; a general platform and an advanced software mechanism for the manipulation of information and knowledge in computerised CGPs; a requirement for further development of the active functionality within modern DBMS; and a case study for the computer-based management of microalbuminuria in diabetes patients

    A Generic Approach and Framework for Managing Complex Information

    Get PDF
    Several application domains, such as healthcare, incorporate domain knowledge into their day-to-day activities to standardise and enhance their performance. Such incorporation produces complex information, which contains two main clusters (active and passive) of information that have internal connections between them. The active cluster determines the recommended procedure that should be taken as a reaction to specific situations. The passive cluster determines the information that describes these situations and other descriptive information plus the execution history of the complex information. In the healthcare domain, a medical patient plan is an example for complex information produced during the disease management activity from specific clinical guidelines. This thesis investigates the complex information management at an application domain level in order to support the day-to-day organization activities. In this thesis, a unified generic approach and framework, called SIM (Specification, Instantiation and Maintenance), have been developed for computerising the complex information management. The SIM approach aims at providing a conceptual model for the complex information at different abstraction levels (generic and entity-specific). In the SIM approach, the complex information at the generic level is referred to as a skeletal plan from which several entity-specific plans are generated. The SIM framework provides comprehensive management aspects for managing the complex information. In the SIM framework, the complex information goes through three phases, specifying the skeletal plans, instantiating entity-specific plans, and then maintaining these entity-specific plans during their lifespan. In this thesis, a language, called AIM (Advanced Information Management), has been developed to support the main functionalities of the SIM approach and framework. AIM consists of three components: AIMSL, AIM ESPDoc model, and AIMQL. The AIMSL is the AIM specification component that supports the formalisation process of the complex information at a generic level (skeletal plans). The AIM ESPDoc model is a computer-interpretable model for the entity-specific plan. AIMQL is the AIM query component that provides support for manipulating and querying the complex information, and provides special manipulation operations and query capabilities, such as replay query support. The applicability of the SIM approach and framework is demonstrated through developing a proof-of-concept system, called AIMS, using the available technologies, such as XML and DBMS. The thesis evaluates the the AIMS system using a clinical case study, which has applied to a medical test request application

    An Event-Driven Approach to Computerizing Clinical Guidelines Using XML

    Get PDF
    Clinical events form the basis of patient care practice. Their computerization is an important aid to the work of clinicians. Clinical guidelines or protocols direct clinicians and patients on when and how to handle clinical problems. Thus, clinical guidelines are an encapsulation of clinical events. Hence, an event-driven approach to computerizing the management of clinical guidelines is worthy of investigation. In our framework, called SpEM, the main clinical guideline management dimensions are specification, execution, and manipulation. This paper presents an event-driven approach, within the context of the SpEM framework, to manage clinical guidelines. The event-driven approach is based on the event-condition-action (ECA) rule paradigm in which the ECA rules are specified using an XML-based language over an electronic healthcare record (EHCR) implemented using an XML-enabled DBMS. This approach facilitates the easy querying, operations and execution replay for clinical guidelines. The approach provides a ready solution to the problem of the integration of clinical guideline management systems (CGMS) and the EHCR. This creates an “active EHCR” in which reactivity is defined by the medical logic in the clinical guideline. The paper practices the approach presented here by using a simplified clinical guideline/protocol from the domain of clinical laboratory investigation for microalbuminuria screening

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Continuous Process Auditing (CPA): an Audit Rule Ontology Approach to Compliance and Operational Audits

    Get PDF
    Continuous Auditing (CA) has been investigated over time and it is, somewhat, in practice within nancial and transactional auditing as a part of continuous assurance and monitoring. Enterprise Information Systems (EIS) that run their activities in the form of processes require continuous auditing of a process that invokes the action(s) speci ed in the policies and rules in a continuous manner and/or sometimes in real-time. This leads to the question: How much could continuous auditing mimic the actual auditing procedures performed by auditing professionals? We investigate some of these questions through Continuous Process Auditing (CPA) relying on heterogeneous activities of processes in the EIS, as well as detecting exceptions and evidence in current and historic databases to provide audit assurance

    Agent-based management of clinical guidelines

    Get PDF
    Les guies de pràctica clínica (GPC) contenen un conjunt d'accions i dades que ajuden a un metge a prendre decisions sobre el diagnòstic, tractament o qualsevol altre procediment a un pacient i sobre una determinada malaltia. És conegut que l'adopció d'aquestes guies en la vida diària pot millorar l'assistència mèdica als pacients, pel fet que s'estandarditzen les pràctiques. Sistemes computeritzats que utilitzen GPC poden constituir part de sistemes d'ajut a la presa de decisions més complexos amb la finalitat de proporcionar el coneixement adequat a la persona adequada, en un format correcte i en el moment precís. L'automatització de l'execució de les GPC és el primer pas per la seva implantació en els centres mèdics.Per aconseguir aquesta implantació final, hi ha diferents passos que cal solucionar com per exemple, l'adquisició i representació de les GPC, la seva verificació formal, i finalment la seva execució. Aquesta Tesi està dirigida en l'execució de GPC i proposa la implementació d'un sistema multi-agent. En aquest sistema els diferents actors dels centres mèdics coordinen les seves activitats seguint un pla global determinat per una GPC. Un dels principals problemes de qualsevol sistema que treballa en l'àmbit mèdic és el tractament del coneixement. En aquest cas s'han hagut de tractar termes mèdics i organitzatius, que s'ha resolt amb la implementació de diferents ontologies. La separació de la representació del coneixement del seu ús és intencionada i permet que el sistema d'execució de GPC sigui fàcilment adaptable a les circumstàncies concretes dels centres, on varien el personal i els recursos disponibles.En paral·lel a l'execució de GPC, el sistema proposat manega preferències del pacient per tal d'implementar serveis adaptats al pacient. En aquesta àrea concretament, a) s'han definit un conjunt de criteris, b) aquesta informació forma part del perfil de l'usuari i serveix per ordenar les propostes que el sistema li proposa, i c) un algoritme no supervisat d'aprenentatge permet adaptar les preferències del pacient segons triï.Finalment, algunes idees d'aquesta Tesi actualment s'estan aplicant en dos projectes de recerca. Per una banda, l'execució distribuïda de GPC, i per altra banda, la representació del coneixement mèdic i organitzatiu utilitzant ontologies.Clinical guidelines (CGs) contain a set of directions or principles to assist the health care practitioner with patient care decisions about appropriate diagnostic, therapeutic, or other clinical procedures for specific clinical circumstances. It is widely accepted that the adoption of guideline-execution engines in daily practice would improve the patient care, by standardising the care procedures. Guideline-based systems can constitute part of a knowledge-based decision support system in order to deliver the right knowledge to the right people in the right form at the right time. The automation of the guideline execution process is a basic step towards its widespread use in medical centres.To achieve this general goal, different topics should be tackled, such as the acquisition of clinical guidelines, its formal verification, and finally its execution. This dissertation focuses on the execution of CGs and proposes the implementation of an agent-based platform in which the actors involved in health care coordinate their activities to perform the complex task of guideline enactment. The management of medical and organizational knowledge, and the formal representation of the CGs, are two knowledge-related topics addressed in this dissertation and tackled through the design of several application ontologies. The separation of the knowledge from its use is fully intentioned, and allows the CG execution engine to be easily customisable to different medical centres with varying personnel and resources.In parallel with the execution of CGs, the system handles citizen's preferences and uses them to implement patient-centred services. With respect this issue, the following tasks have been developed: a) definition of the user's criteria, b) use of the patient's profile to rank the alternatives presented to him, c) implementation of an unsupervised learning method to adapt dynamically and automatically the user's profile.Finally, several ideas of this dissertation are being directly applied in two ongoing funded research projects, including the agent-based execution of CGs and the ontological management of medical and organizational knowledge
    corecore