
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Doctoral Science

2004-01-01

A Generic Approach to Supporting the Management of A Generic Approach to Supporting the Management of

Computerised Clinical Guidelines and Protocols Computerised Clinical Guidelines and Protocols

Kudakwashe Dube
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/sciendoc

 Part of the Health Information Technology Commons

Recommended Citation Recommended Citation
Dube, K. (2004). A generic approach to supporting the management of computerised clinical guidelines
and protocols. Doctoral thesis. Technological University Dublin. doi:10.21427/D78313

This Theses, Ph.D is brought to you for free and open
access by the Science at ARROW@TU Dublin. It has been
accepted for inclusion in Doctoral by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/sciendoc
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/sciendoc?utm_source=arrow.tudublin.ie%2Fsciendoc%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=arrow.tudublin.ie%2Fsciendoc%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Generic Approach to Supporting the
Management of Computerised Clinical Guidelines

and Protocols

Thesis submitted to the Office of Postgraduate Studies and Research at the Dublin

Institute of Technology in fulfilment of the requirements for the Degree of Doctor

of Philosophy

By

Kudakwashe Dube B.Sc (Gen.), B.Sc (Hons.)

Supervisor: Dr Bing Wu

Advisory Supervisor: Professor Jane Grimson

School of Computing,
Dublin Institute of Technology
Kevin Street, Dublin 8, Ireland.

July 2004

ii

ABSTRACT

Clinical guidelines or protocols (CGPs) are statements that are systematically developed for the

purpose of guiding the clinician and the patient in making decisions about appropriate healthcare for

specific clinical problems. Using CGPs is one of the most effective and proven ways to attaining

improved quality, optimised resource utilisation, cost containment and reduced variation in

healthcare practice. CGPs exist mainly as paper-based natural language statements, but are

increasingly being computerised. Supporting computerised CGPs in a healthcare environment so that

they are incorporated into the routine used daily by clinicians is complex and presents major

information management challenges. This thesis contends that the management of computerised

CGPs should incorporate their manipulation (operations and queries), in addition to their

specification and execution, as part of a single unified management framework. The thesis applies

modern advanced database technology to the task of managing computerised CGPs. The event-

condition-action (ECA) rule paradigm is recognised to have a huge potential in supporting

computerised CGPs.

In this thesis, a unified generic framework, called SpEM and an approach, called MonCooS, were

developed for enabling computerised CGPs, to be specified by using a specification language, called

PLAN, which follows the ECA rule paradigm; executed by using a software mechanism based on the

ECA mechanism within a modern database system, and manipulated by using a manipulation

language, called TOPSQL. The MonCooS approach focuses on providing clinicians with assistance in

monitoring and coordinating clinical interventions while leaving the reasoning task to domain

experts. A proof-of-concepts system, TOPS, was developed to show that CGP management can be

easily attained, within the SpEM framework, by using the MonCooS approach. TOPS is used to

evaluate the framework and approach in a case study to manage a microalbuminuria protocol for

diabetic patients. SpEM and MonCooS were found to be promising in supporting the full-scale

management of information and knowledge for the computerised clinical protocol. Active capability

within modern DBMS is still experiencing significant limitations in supporting some requirements of

this application domain. These limitations lead to pointers for further improvements in database

management system (DBMS) functionality for ECA rule support. The main contributions of this

thesis are: a generic and unified framework for the management of CGPs; a general platform and an

advanced software mechanism for the manipulation of information and knowledge in computerised

CGPs; a requirement for further development of the active functionality within modern DBMS; and a

case study for the computer-based management of microalbuminuria in diabetes patients.

iii

DECLARATION

I certify that this Thesis, which I submit for examination for the award of the degree

of Doctor of Philosophy, is entirely my own work and has not been taken from the

work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

This Thesis was prepared according to the regulations for post graduate study by

research of the Dublin Institute of Technology, hereafter referred to as the Institute,

and has not been submitted in whole or in part for an award in any other institute or

university.

The Institute has permission to keep, to lend, or to copy this Thesis in whole or in

part, on condition that any such use of the material of the Thesis is duly

acknowledged.

Signature __

KUDAKWASHE DUBE

The Candidate

Date ______26 July 2004_____________

iv

ACKNOWLEDGEMENTS

This work could not have been undertaken without funding from the Office of Postgraduate

Studies and Research of the Dublin Institute of Technology (DIT). Throughout the study

period, I got invaluable assistance, support, guidance and encouragement from my research

supervisor, Dr Bing Wu, to whom I’ll forever be grateful for accepting to be my mentor. I

would like to thank my research advisor Professor Jane Grimson for the support and advice

she gave during the entire period of my research project. These two together with the

MediLink Project members, especially Mr Bill Grimson and Dr Lucy Hedermann, provided

an excellent research framework and conducive environment for my interaction with other

researchers in Trinity College Dublin (TCD) and DIT during the best part of my research

project.

I am very grateful to Dr Mourrough Golden, Dr Brendan O’Shea, the staff and secretaries of

the Schools of Mathematical Science and Computing Science of the DIT for providing me

with office/laboratory, computing resources and stationery for the entire duration of my

studies. I am also grateful to Ms Maev Maguire for her encouragements throughout the

study period; for taking a close and caring attention and interest in my progress and general

welfare; and for her crucial representations in support of my research.

Towards the end of my research project, when an injury to my hands almost made it

impossible to write this thesis, I got invaluable help, support and encouragement from my

supervisor, Dr Bing Wu, and my research advisor, Professor Jane Grimson. The DIT Office

of Postgraduate Studies and Research together with the DIT Assistive Technology centre

provided invaluable assistance in alleviating the effects of this injury. Dr Brendan O’Shea,

Mr Dave Carroll, Ms Meav Maguire and Dr Fred Mtenzi were very helpful to me during this

period. With a grateful heart, I thank everyone.

I would like to thank all staff and students who passed through No. 30 Bride Street whose

help, advice and encouragement on many issues kept me motivated. These include: Ms

v

Fiona Knox, Mr Denis Manley, Mr Ken O’brien, Mr Kevin O’Donnell, Mr Ronan

FitzPatrick, Mr Damian Gordon, Mr Dave Carroll, Mr Ciaran O’Leary, Mr Paul Kelly, Mr

Pat Browne, Dr Fredrick J. Mtenzi, Ms Cindy Liu, and Mr Michael Collins. Throughout the

period of study, I enjoyed the help from technical and administrative staff within the former

School of Maths and Computing and the School of Computing. I would like to thank the

following staff for the assistance they gave me over the past four years: Mr Eoin Dunne, Ms

Dennise Murray, Mr Collin White, Ms Brenda Kearneys, Ms Jane Murphy, and Mr David

Ng. I would like to thank my internal reader, Dr Shane Mulligan, for proofreading and

suggesting improvements to this thesis. I am very grateful to Dr Bing Wu and other

members of staff, especially Mr Damian Gordon, for proof-reading technical reports leading

to this thesis and helping to improve my technical writing throughout the study period.

My special thanks go to Professor Gordon Foster and his TRINET Project team especially Mr

Victor Thorne and all African partners in Ghana, Nigeria, Uganda, Zambia and Zimbabwe

for bringing me to Ireland and to the DIT for the very first time in August of 1999. I would

also like to thank the National University of Science and Technology (NUST), Bulawayo,

Zimbabwe, for providing funds for my initial travel to Ireland. This work could not have

been achieved without the constant support and loving attention from my wife, Anotida,

who was always there by my side throughout the difficult moments during the past four

years and assisted in typing this thesis. My young brother, Tinashe, helped in many ways

towards our welfare in Dublin. Special thoughts goes to my two lovely daughters,

Makagonashe and Anokudzwa Tinotenda, who patiently and courageously endured our

absence from home in Zimbabwe while studying in Ireland during a crucial period in their

development, when being with them mattered most. I’m forever grateful to Mr Ezekiel

Chiwowo and Mrs Elita Mazonde for looking after their granddaughters, Maka and Ano,

during our absence. Last but not least, I’m grateful to my parents, Mr Zakaria Mhaka and

Mrs Martha Wanzirai Rukanda, my late brother Artwell, and my uncle, the late Mr Anos

Mutangirwa, for teaching me, from an early age, to stay focused, to persevere, to endure and

to continuously strive towards the attainment of any ideal that I set myself to attain.

Kudakwashe Dube
Dublin, Ireland

12 October 2004

vi

To the memory of my brother

Artwell Dube

vii

ABBREVIATIONS

The following is a list of abbreviations that appear in this thesis.

24CRCL_PL 24 hour cretimine clearance and protein lost

ACE

Angiotsin Converting Enzyme Inhibitors are a group of pharmaceuticals that are
used primarily in the treatment of arterial hypertension and congestive cardiac
failure.

ACR Albumin Creatinine Ratio, a clinical test used in the diagnosis and screening for the
renal complications: albuminuria and proteinuria.

ADB Active Database, a DBMS that incorporates the ECA rule paradigm in addition to the
usual data and meta-data management functionality

ADBMS Active Database Management System:- a DBMS that incoparates an active rule or
ECA rule support mechanism.

ASCII American Starndard Code for Information Interchange

ASTM American Society for Testing and Materials

AUS Annual Urine Screening which is applied to diabetes patients to monitor renal
complications in diabetes patients. The aim of the screening is to detect these
complications early and allow for early intervention, which has been established to
reduce the resulting effects of these complications.

BNF Backus-Naur Form: a formal sentax specification language developed by Backus and
Naur

BP Blood Pressure

CfMS Careflow Management System

CGP Clinical Guidelines and Protocols, which are statements systematically developed to
guide the practicing clinician and the patient on how best to handle specific clinical
problems (Field and Lohr 1992).

CMA Confirmed Microalbuminuria: when microlbuminuria has been diagnosed, it is said
to be confirmed. When a patient’s ACR test result is found to be greater than 3.0 in
two out of three tests performed within six months, microalbuminuria may be
diagnosed and treatment may be initiated (Mogensen 2003).

CPGM Conceptual Protocol and Guideline Model

DBMS Database Management System.

DDO Dirty-depedency Opearation Problem that occurs when an application or a client is
trying to process an uncommitted event signals or messages. The LDO, DDO
problems are found in both active database and distributed databases.

viii

DFD Data Flow Diagram

DUT Dip-stick Urine Test, which is used to detect the presence of protein in urine. This
test is used in the annual urine screening for diabetes patients.

ECA Event-Condition-Action rule, a paradigm with the semantics that when an event
occurs, check the condition and execute the action only if the condition is satisfied
(Widom and Ceri 1996). The basic form of the ECA rule paradigm is supported in
the form of triggers in modern database management system where events are
database operations.

EHCR Electronic Health Care Record, which is defined as “a structured multimedia
collection of health-care data about an individual patient” (Grimson, J, Stephens et
al. 2001).

EON A component-based suite of models and software components for the creation of
guideline-based applications

EPR The E lectric Patient Record, which has the same meaning as EHCR

GALEN General Architecture for Languages and Encylopaeadias and Nomenclatures in
medicine

GASTON A methodology and a framework that facilitates the development and
implementation of computer-interpretable guidelines and guideline-based decision
support systems.

GAUDI Guideline Authoring and Dissemination Tool

GLARE Guideline, Acquisition, Representation and Execution

GLEAM Guideline Editing and Authoring Model

GLIF Guideline Interchange Format

GP General Practioner

GRAIL

 GALEN Representation and Intergration Language

GUIDE A component-based multi-level architecture designed to integrate a formalized
model of the medical knowledge contained in clinical guidelines and protocols with
both workflow management systems and Electronic Patient Record technologies.

HbA1c Haemoglobin (Hb) that type A, subtype 1c. This a specific type of haemoglobin A
that results from the attachment of blood glucose molecules to its molecules.
Diabetes patients have high levels of blood glucose and hence would experience
high levels of HbA1c than non diabetics.

HL7 Health Level 7, an standards organisation whose mission is to provide a framework
and protocol specifications for the exc hange, storage, intergration and retrival of
health information that support clinical practices and the management delivary and
evaluation of health services.

ix

HTTP HyperText Transfer Protocol

ICU Intensive Care Unit

IOM Institute Of Medicine of the United States of America

LAS Laboratory Advisor System

LDO
problem

Loss-Dependependency Operation- a problem that occurs when signalled events or
messages sent by an ECA rule in an active database to external applications may be
lost or not acted upon by external applications.

LIS Laboratory Information Systems

LUMPS Liver Unit Management Protocol System

MAP MicroAlbiminuria Protocol, which is a CGP for the management and treatment of
microalbuminuria in diabetes patients.

MAS MicroAlbuminuria Screening

MLM Medical Logic Module, which is essentially an ECA rule specified by using the
Arden Syntax and is a single software unit that is responsible for making a single
medical decision (HL7 1999)

MonCooS An acronym derived from Monitoring, Coordination and Suggestion. The MonCooS
approach is presented in this thesis as way to support the management of CGPs by
allowing the specification, execution and manipulation of CGP knowledge and
information to be performed in providing clinicians with automated assistance that
focuses only on monitoring vita l indicators, coordinating interventions and making
suggestions as opposed to decisions, which are left to domain experts. The MonCooS
approach tries to make effective use of the ECA rule paradigm in modern DBMS’s.

MS SQL The Microsoft SQL server, a rela tional database management system from Microsoft
Corporation.

MUMPS The Massachusetts (General Hospital) Utility Multi-Programming System, a
computer language developed in the late 1960s and used predominantly in medical
applications (Bowie and Barnett, 1976)

OODBMS Object- Oriented Database Management System

OQL Object Query Language

OS Operating System

PLAN Protocol LANguage originally proposed by Wu (1998) for specifying CGPs by
following the ECA rule paradigm.

PRESTIGE
(DILEMMA)

A project that was focused on the application of telematics technologies to support
the dissemination and implementation of clinical practice guidelines and protocols.

x

PRODIGY A computer-based decision support system (for prescribing in particular) that
integrates with commercial primary care information systems in England.
PRODIGY phase 3 incorporated support for chronic disease management.

PSE Problem Scenario Entity

PSM Problem Solving Method

PSO Problem Scenario Object

RIM Reference Information Model for healthcare applications developed and maintained
by HL7

RuleML Rule Markup Language (Boley et al, 2001)

SAMOS The Swiss Active Mechanism-based Object-Oriented Database System: An active
database system prototype constracted as a wrapper to the passive ObjectStore
object-oriented DBMS.

SCR Serum Creatinine Ratio, a test used in monitoring glycaemia with the purpose of
optimising it.

SIEGFRIED System for Interactive Electronic Guidelines with Feedback and Resource for
Instructional and Educational Development

SpEM An acronym derived from Specification, Execution and Manipulation. SpEM is a
framework introduced in this thesis for supporting the specification, execution and
manipulation of CGPs.

SQL The Structure Query Language for manipulating data in relational database systems.

TOPS Test Ordering Protocol System, a prototype system presented in this thesis.

TOPSQL The TOPS Query Language, a high level declarative query language for
manipulating CGP information and knowledge in TOPS.

UAE Urine Albumin Excretion

UML Universal Modelling Language a modelling language defined and maintained by
Object Management Group

UTI Urinary Tract Infection: In diabetes patients, laboratory tests need to be performed
in oder to detect urinary tract infections during the annual urine screening
performed in diabetes patients

WDL Work flow Definition Language

XML Extensible Mark Up Language

XRML eXtensible Rule Markup Language (Lee and Sohn,2003)

TABLE OF CONTENTS

Abstract.. ii

Declaration .. iii

Acknowledgements ... iv

Abbreviations ...vii

Table of Contents ... 1

List of Figures .. 5

List of Tables ... 9

PART 1 ... 10

INTRODUCTION AND BACKGROUND: SUPPORT FOR THE MANAGEMENT

OF COMPUTERISED CLINICAL GUIDELINE AND PROTOCOLS................. 11

Chapter 1 Introduction ...12

1.1. Motivations ...12

1.2. The Research Problem ...14

1.3. Research Aim and Objectives..18

1.4. Methodology...20

1.5. Contributions..21

1.6. Thesis Organisation...22

1.7. Chapter Summary..24

Chapter 2 Study Context...25

2.1. Introduction..25

2.2. Definitions of Terms and Concepts...26

2.3. Clinical Guideline and Protocols..31

2.4. Guidelines and Protocols for Ordering Clinical Laboratory Tests...32

2.5. ECA Rule-Based Support for Clinical Protocols...36

2.6. Chapter Summary..38

Chapter 3 Computer-Based Clinical Guideline and Protocol Management40

2

3.1. Introduction..40

3.2. Review of the Application Domains ...40

3.3. The SpEM Framework for Supporting the Management of Computerised Clinical

Guidelines and Protocols...42

3.4. Clinical Guideline Management Support Approaches and Systems......................................49

3.5. Implications to this Study..65

3.6. Chapter Summary..66

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database

Systems...67

4.1. Introduction..67

4.2. ECA Rule Paradigm and Active Databases..67

4.3. Applications of the ECA Rule Paradigm and Active Databases...82

4.4. Use of ECA Rules and Active Databases to Support the Management of Clinical

Guidelines and Protocols...86

4.5. Discussion and Chapter Summary ...91

PART 2 ... 92

APPROACH: USING THE ECA RULE PARADIGM AND ACTIVE DATABASE

SYSTEMS FOR SUPPORTING THE MANAGEMENT OF CLINICAL

GUIDELINES AND PROTOCOLS .. 93

Chapter 5 Framework and Approach for Supporting the Management of Clinical

Protocols...94

5.1. Introduction..94

5.2. Supporting the Management of Clinical Protocols..94

5.3. Review of the SpEM Framework for Managing Clinical Protocols.......................................98

5.4. The MonCooS Approach to Supporting Clinical Protocol Management...........................101

5.5. Chapter Summary..106

Chapter 6 Supporting the Specification of Clinical Protocols 107

6.1. Introduction..107

6.2. Background to the Specification Language, PLAN ..108

6.3. Definitions of Terms and Concepts in PLAN..108

6.4. The Protocol Specification Model ...111

6.5. The Protocol Specification Language, PLAN ..119

6.6. A Method for Protocol Modelling and Information Acquisition Using PLAN126

3

6.7. Discussion and Related Work...129

6.8. Chapter Summary..130

Chapter 7 Supporting the Execution of Clinical Protocols .. 132

7.1. Introduction..132

7.2. The Approach to Protocol Execution ...132

7.3. The Conceptual System Architecture for Supporting the Execution of Clinical Protocols

...135

7.4. The Execution Flow for Protocol Management ...138

7.5. The Dynamic Management of Protocols..144

7.6. Discussion..146

7.7. Chapter Summary..148

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge 149

8.1. Introduction..149

8.2. Framework for the Manipulation of Protocols...149

8.3. Manipulation Approach...154

8.4. The Manipulation Language: TOPSQL ..158

8.5. Related Work and Discussion...169

8.6. Chapter Summary..172

PART 3 ... 173

TOPS: DESIGN, IMPLEMENTATION AND CASE STUDY.......................... 174

Chapter 9 TOPS : Design and Implementation.. 175

9.1. Introduction..175

9.2. Background to the Requirements for TOPS..175

9.3. Requirements for TOPS ...177

9.4. The Design of TOPS..182

9.5. TOPS’s Support for the SpEM Framework and the MonCoos Approach...........................204

9.6. The Architecture of TOPS...223

9.7. Discussion and Comparison to Related Work ..226

9.8. Chapter Summary..231

Chapter 10. Case Study: Supporting the Management of the Microalbuminuria

Protocol for Patients with Diabetes Mellitus ... 233

10.1. Introduction..233

10.2. Clinical Background: Diabetes and Microalbuminuria ...234

4

10.3. Description of the Microalbuminuria Protocol (MAP)..235

10.4. Creating a PLAN Specification of the MAP ..237

10.5. The TOPS Database for the MAP Specification...245

10.6. Executing the MAP in TOPS..246

10.7. Managing the MAP in TOPS..248

10.8. Case Study Findings and Discussion ...251

10.9. Chapter Summary ...254

PART 4 ... 255

CONCLUSION.. 256

Chapter 11 Conclusion.. 257

11.1. Introduction..257

11.2. The Research Challenge ..257

11.3. Thesis Review...258

11.4. Summary of Contributions..259

11.5. The Benefits of the Research Outcomes ..260

11.6. Limitations and Future Directions ..260

References ... 264

APPENDIX...279

A. The BNF Syntax of PLAN ...279

B. The Relational Schema for the TOPS Database in Oracle SQL...280

C. The MAP Specification in PLAN..287

D. TOPS Session for Parsing the MAP ...288

E. The MAP Specification as Stored in the TOPS Database ..293

F. TOPS Session for Creating a MAP Patient Plan..303

G. TOPS Session for Executing the MAP Patient Plan..304

H. The BNF Syntax of TOPSQL ...307

I. TOPSQL Queries on the MAP in TOPS...308

J. The TOPS Mechanism for Translating ECA Rules to Oracle Database Triggers.................316

K. The TOPS Command Line Interface ...320

L. TOPS System Packages..321

M. Publications Associated With this Thesis..323

5

LIST OF FIGURES

Figure 1 Thesis structure ...23

Figure 2 The SpEM framework for clinical guidelines or protocol information management...............43

Figure 3 A classification of issues in the support for the management of computerised clinical

guidelines/protocols..50

Figure 4 The CREATE TRIGGER statement in the SQL Standard..74

Figure 5 The syntax of a trigger in Oracle ...77

Figure 6 Algorithm for the Oracle trigger and constraint execution model (Cyran 2002)......................78

Figure 7 The core slots in the knowledge category of a Medical Logic Module (MLM) and the event-

condition-action (ECA) rule paradigm ...87

Figure 8 A example Medical Logic Module (MLM) in the Arden Syntax: CT Study With Contrast in

Patients With Renal Failure (Scherpbier 1995)...88

Figure 9 Aspects of protocol knowledge management ...96

Figure 10 Main aspects of the SpEM framework for supporting the management of clinical protocols

...99

Figure 11 The process of supporting the management of clinical protocols...102

Figure 12 The clinical protocol management support process in the context of the SpEM framework

...103

Figure 13 The enabling technologies for supporting protocol management...105

Figure 14 The detailed model of a protocol specification in terms of the UML class diagram112

Figure 15 The core representation primitive constructs in PLAN ..113

Figure 16 The structure of the representation construct in PLAN ..116

Figure 17 The UML class model of the operational state...117

Figure 18 The PLAN syntax of a protocol ..119

Figure 19 Structure of a protocol specification in PLAN ...119

Figure 20 The PLAN syntax of a schedule ...120

Figure 21 Structure of the specification of a schedule in PLAN ..120

Figure 22 The PLAN syntax of a static rule ...121

Figure 23 An example static rule in PLAN ..121

Figure 24 PLAN syntax of a dynamic rule ...123

Figure 25 An example of a specification of a dynamic rule in PLAN ...124

Figure 26 The PLAN syntax of a patient plan...124

6

Figure 27 The specification of the Viral Hepatitis testing protocol in PLAN ...126

Figure 28 Capturing the ECA rules using the UML state chart transitions...127

Figure 29 Steps for creating ECA rule-based specifications of clinical protocols.....................................128

Figure 30 The approach to the enforcement of protocols..133

Figure 31 Framework and approach for the execution of clinical protocol ..134

Figure 32 Conceptual system architecture for supporting the execution of clinical protocols by using

active mechanism of a modern DBMS...135

Figure 33 The execution flow for supporting the management of clinical protocols139

Figure 34 The execution flow for the creation, execution and manipulation of a patient plan in the

SpEM framework...141

Figure 35 Components of protocols and plans and the mappings between the specifications and

execution planes..142

Figure 36 Algorithm for creating the protocol instance – the plan...143

Figure 37 Dynamic protocol management: the interaction between the protocol management model

and the real world - dynamic and static changes and interaction...145

Figure 38 The view for the management of protocol knowledge..153

Figure 39 The high-level syntax of the TOPSQL statement ...158

Figure 40 Syntax of the TOPSQL query: The SELECT statement ...159

Figure 41 The policy adopted for snapshots and time intervals in TOPSQL queries for an executing

plan ...163

Figure 42 The BNF syntax of manipulation operations on static aspects of protocols............................164

Figure 43 Example ADD statement in TOPSQL..165

Figure 44 Examples of DELETE, EDIT, DISPLAY and LIST statements..166

Figure 45 The BNF syntax of manipulation operations on the dynamic aspects of protocols167

Figure 46 Example DEACTIVATE command in TOPSQL..167

Figure 47 Example ACTIVATE command ..168

Figure 48 Use Cases for TOPS ..179

Figure 49 Data flow diagram for TOPS with a focus on the domain of clinical laboratory test-ordering

protocols ..183

Figure 50 The entity-relationship model for the specification of the ECA rule-based protocols.185

Figure 51 The core object model for TOPS incorporating the Category, Patient, Protocol and Plan

classes ...187

Figure 52 The dynamic model for the protocol specification in TOPS..189

Figure 53 Sequence diagram for creating a TOPS patient ...190

Figure 54 Sequence diagram for changing the category of a TOPS patient ..191

7

Figure 55 Flow chart for the process of creating a TOPS patient plan...192

Figure 56 Sequence diagram for creating a patient plan in TOPS ...194

Figure 57 A sequence diagram for issuing a query in TOPS ...196

Figure 58 A sequence diagram for performing an operation on TOPS patient plan..............................197

Figure 59 Entity-relationship diagram for the protocol specification in TOPS..199

Figure 60 Entity-relationship diagram for the plan specification in TOPS...200

Figure 61 Entity-relationship diagram for the TOPS patient record ..202

Figure 62 Creating the protocol specification in TOPS..204

Figure 63 The abstract process for creating the protocol specification in TOPS......................................205

Figure 64 Class diagram for the PLAN language parser ...206

Figure 65 The TOPS plan execution and management mechanism ..208

Figure 66 A state diagram for the patient plan...208

Figure 67 A high-level state diagram for a TOPS patient execution states..209

Figure 68 Rule implementation architecture and execution flow in TOPS..211

Figure 69 The rule execution and manipulation mechanism in TOPS...212

Figure 70 A state diagram for rule in a TOPS patient plan..213

Figure 71 The execution mechanism for a time-driven static rule in TOPS...214

Figure 72 The execution mechanism for a schedule in TOPS ..216

Figure 73 TOPSQL implementation strategy..220

Figure 74 The TOPS manipulation mechanism ...221

Figure 75 The class diagram for the TOPS manipulation mechanism ..222

Figure 76 The Architecture of TOPS..224

Figure 77 State chart for the microalbuminuria protocol..237

Figure 78 Attributes of protocol specificateons in the TOPS database...293

Figure 79 Schedule sspecifications in the MAP as stored in TOPS ...293

Figure 80 Protocol rule specifications for the MAP in the TOPS database ...294

Figure 81 The specification of MAP rules of the dynamic rule type in the TOPS database295

Figure 82 The specification of MAP rules of the static rule type in the TOPS database295

Figure 83 The attributes of event specifications for MAP rules in the TOPS database296

Figure 84 Condition specifications for the MAP as stored in the TOPS database296

Figure 85 Core attributes of action specifications for the MAP in the TOPS database297

Figure 86 Entry criteria specification attributes for MAP in the TOPS database297

Figure 87 Rule-Action associations for the MAP in the TOPS database. NB: The parameters to a

protocol action is an attribute of the rule-action relationship, hence why the relational table in this

figure has the ACTION_PARAMETERS attribute..298

8

Figure 88 The Protocol-Rule relationship for the MAP ..299

Figure 89 Schedule-Dynamic Rule relationship for the MAP ..299

Figure 90 Schedule-Static Rule relationships for MAP in the TOPS database ...300

Figure 91 Protocol-Static Rule relationships for the MAP in the TOPS database300

Figure 92 Rule-Condition relationships for the MAP in the TOPS database ...301

Figure 93 Criteria-Condition relationship for the MAP in the TOPS database301

Figure 94 Schedule-Criteria relationships for the MAP in the TOPS database ..302

Figure 95 Protocol-Schedule relationships for the MAP in the TOPS database302

Figure 96 The rule MAS5 from the MAP specification..316

Figure 97 The rule MAS5 after processing by the TOPS protocol specification parser together with

the Java class whose instance is an output of the parser ..316

Figure 98 The rule MAS5 translated to the Oracle database trigger, PL$81$1$MAS5...........................317

Figure 99 The MAS5 rule action, PATIENT_STATE, in the ..318

Figure 100 PatientState() Oracle Java stored procedure effecting changes to patient state during

protocol execution in TOPS..318

Figure 101 The TOPS mechanism for database trigger communication with TOPS modules outside

the Oracle DBMS...319

Figure 102 The TOPS command line utility ...320

Figure 103 TOPS system packages for supporting the SpEM framework ..322

9

LIST OF TABLES

Table 2.1 A test-ordering protocol for Viral Hepatitis (in natural language) (Protocol Steering

Committee 1998)...33

Table 2.2 Protocol for the management of renal disease in Type 2 diabetes (in natural language)

(Lanarkshire Diabetes Group 1999)..34

Table 3.1 Guideline representation formalisms and computational techniques46

Table 3.2 Literature review findings for the major systems that support the management of clinical

guidelines and protocols for clinical laboratory test ordering..56

Table 3.3 Diagnosis and therapy guideline models and systems..57

Table 3.4 Literature review findings for systems that support the management of clinical guidelines

and protocols ..64

Table 4.1 Trigger features supported by SQL3 and commercial database systems....................................75

Table 4.2 Trigger management features supported by SQL3 and modern DBMS’s...................................76

Table 6.1 Example specifications of the static rules in PLAN ...122

Table 8.1 Summary of the dimensions of the management model for ECA rules150

Table 8.2 Manipulation Framework for ECA Rule-based Clinical Protocols ..151

Table 8.3 Manipulation of protocols...154

Table 8.4 Effects of manipulation operations on an executing plan, schedule and rule157

Table 8.5 Examples of TOPSQL queries...162

Table 9.1 Table of data flow for the DFD of Figure 9.3 ..184

Table 10.1 Interpretation of the albumin-creatinine ratio (ACR)...236

Table 10.2 Blood pressure targets for diabetes patients..236

Table 10.3 Rules for the annual_urine_screening (AUS) state ...239

Table 10.4 Rules for other_infections_screening (OIS)..240

Table 10.5 Rules for microalbuminuria_screening (MAS) ..241

Table 10.6 Rules for confirmed_microalbuminuria (CMA) ..243

Table 10.7 Rules for nephrology_referral (NPH)...243

Table 10.8 Specification of the Microalbuminuria Protocol (MAP) ...244

PART 1

Part 1

11

INTRODUCTION AND BACKGROUND: SUPPORT FOR THE

MANAGEMENT OF COMPUTERISED CLINICAL GUIDELINE AND

PROTOCOLS

This introductory part of the thesis outlines current trends in the domains under

investigation, presents the motivation for this research work, states the problem,

aim, objectives and methodology adopted and, finally, details the contributions of

this work. This part also exposes the context and the background to the problem

being investigated through a review of the literature. The literature review is two-

pronged: first, a review of current practice in supporting the management of clinical

guidelines and protocols is undertaken; and, second, a review of the applications of

the event-condition-action (ECA) rule paradigm and active database systems is

presented with a view towards harnessing the ECA rule paradigm for supporting the

management of clinical guidelines and protocols (CGPs). This part is organised as

follows: Chapter 1 presents an introduction to the study; Chapter 2 defines the

context of the problem that has been investigated and the review of the state-of-the-

art is presented in two parts: Chapter 3 reviews the computer-based management

support for clinical guidelines; and Chapters 4 reviews the (ECA) rule paradigm and

active systems technology and their applications in general as well as in the

supporting the management of clinical guidelines and protocols.

Chapter 1 Introduction

This chapter introduces the study by first presenting the motivations behind this

research in Section 1.1. In Section 1.2 the problem under investigation is presented

in terms of the statement of the research question, the study hypothesis and, finally,

the method of evaluation of the solution to the research problem. The research

question is presented from both a general perspective and the perspective of the

application domain. In Section 1.3 the aims and objectives of the study are

presented. In Section 1.4, an outline of the methodologies to be used are outlined.

Section 1.5 presents, the contributions of this work. Finally, the organisation of this

thesis is presented in Section 1.6.

1.1. Motivations

This section presents the motivation of the research work presented in this thesis

from the perspectives of the research domains in focus.

1.1.1. Clinical Laboratory Test Ordering Protocols
The cost of clinical laboratory testing has been increasing considerably from year to

year during the past two decades (van Walraven and Naylor 1998). Since the 80’s,

healthcare organisations have been pressurised to control clinical laboratory

utilization without affecting quality of patient care (Grossman 1983; Eisenberg 1985;

Peters, M and Broughton 1993; O'Moore, Groth et al. 1996). It has been established

that the use of clinical test ordering protocols supported by Information Technology

can enhance quality, efficacy and proper usage of clinical laboratory resources

(Matimer, McCauley et al. 1992; O'Moore, Groth et al. 1996; Bates, Kuperman et al.

1999; van Wijk, M .A. M., Bohnen et al. 1999; van Wijk, M.A.M., Mosseveld et al.

1999) and promote best practise in the clinical laboratory environment (Boran,

O'Moore et al. 1996; O'Moore, Groth et al. 1996; Bates, Kuperman et al. 1999; Berry,

Chapter 1 Introduction

13

Wu et al. 1999). Clinical test ordering protocols are systematically developed

statements, usually in natural language, that provide guidance on what clinical

laboratory tests clinicians should order, what clinical laboratories should do in

response to a test order, and what laboratories, clinicians and patients should do in

response to test results in certain clinical circumstances. They are a type of clinical

guidelines and protocols (CGPs), which are statements that express medical

knowledge for guiding patients and clinicians in making decisions about appropriate

healthcare for the specific clinical circumstance of the patient (Field and Lohr 1992).

The application of modern Information Technology offers the potential to facilitate

the incorporation of clinical guidelines, in general, and clinical test-ordering

protocols, in particular, into the routine used daily by clinicians with the aim of

improving patient care quality and optimising clinical laboratory resource

utilisation.

1.1.2. The Event-Condition-Action (ECA) Rule Paradigm
Event-condition-action (ECA) rules are specified by an event, a condition and an

action whose combined behaviour is such that the event must occur in order for the

action to be executed subject to the condition evaluating to true (Widom and Ceri

1996). The ECA rule paradigm provides the means to specify knowledge required to

support functionality such as monitoring and coordination in situations that require

a timely response. The ECA rule paradigm has been used to specify medical

knowledge and proved to be promising in supporting standardisation and sharability

of the resulting knowledge modules (Hripscak, Luderman et al. 1994; HL7 1999).

The ECA rule paradigm represents a potentially useful approach to the

implementation of CGPs. This has received only limited attention in the literature

with the exception of the Arden Syntax for Medical logic Modules (MLMs) (Sailors,

Bradshaw et al. 1998) and HyperCare (Caironi, Portoni et al. 1997), which uses an

active database to implement a specific CGP without providing a generic method

that can be used with other guidelines.

Chapter 1 Introduction

14

1.1.3. Active Databases
Active databases combine the ECA rule paradigm with the data management

functionality of a database management system (DBMS) (Dittrich, Gatziu et al. 1995)

to present a promising environment for supporting CGPs as well as the electronic

medical record and clinical workflow. Up till now, only one limited effort directed

at harnessing active database technology for supporting CPGs is known to the

author (Caironi, Portoni et al. 1997). No attention has yet been paid towards

developing a unified framework that incorporates a generic way to combining the

ECA rule paradigm and active databases to provide support for the full-scale

management of CPGs.

1.1.4. ECA Rule Paradigm Support
On one hand, the ECA rule paradigm and active databases have been thoroughly

investigated and their theoretical foundations are now well known. On the other

hand, the support for management of the ECA rules exists only in very limited form,

e.g., database triggers, within modern systems. There is a need to demonstrate the

practical requirement for a comprehensive ECA rule paradigm support in modern

systems so that important real-life application domains such as healthcare could

benefit.

1.2. The Research Problem

CGPs are a special type of complex domain knowledge. The problem of how to

efficiently and effectively manage computer-based CGPs has continued to pose a

major challenge to the computing domain. The ECA rule paradigm has been proven

to be effective in supporting the specification of medical knowledge (Hripscak,

Luderman et al. 1994; HL7 1999). The ECA rule paradigm and active databases have

also been used successfully in applications that require data management as well as

monitoring and coordination. Such applications include workflow support (Eder,

Chapter 1 Introduction

15

Groiss et al. 1994; Tagg and Lelatanavit 1998) and computer-aided manufacturing

(Berndtsson, M. 1994). Thus, the ECA rule paradigm and active databases offer a

potential solution to addressing the challenges posed by the computerisation of CGP

management.

1.2.1. Research Question
At a general level, this study addresses the question of using the ECA rule paradigm

within the context of database systems in providing a generic and simple way to

manage information in a complex application domain that has several important

requirements. First, the domain information and knowledge need to be specified and

later customised, using current values of the problem attributes, in order to be

applied to a specific instance of the problem scenario or case. Second, constant

monitoring of domain situations is required with a provision for timely reaction to

situations of interest. Third, the dynamic or on-the-fly manipulation and querying

of domain information is required for complex objects and processes associated with

these objects in the domain.

In addressing this general question the study focuses on a important application in

healthcare - supporting the management of computerised clinical

guidelines/protocols (CGPs) - and seeks answers to the two specific question. First,

how can the full-scale manageability of information for the complex domain of

supporting computerised CGPs be supported? In answering this question, the study

tackles the following specific issues and questions:

1. Identification of the component aspects of the full-scale management of a CGP:

What are the component aspects of the management of CGPs?

2. Formal specification of CGPs: How can we formally specify CGPs?

3. Storage of CGP in a way that enables them to be fully managed: How can we

store CGP specification in a way that allows them to be subject to manipulation

operations and queries?

Chapter 1 Introduction

16

4. Customisation of CGP specifications to suit specific needs and situations: How

can we customise a CGP specification to suit specific clinical situations?

5. Instantiation and execution of a customised CGP: How can we execute a

specified CGP by using a computer?

6. Performing on-the-fly manipulation operations on and issuing queries against

both CGP specifications and their executing instances: CGPs and their executing

instances both need to be managed. How can this be achieved?

7. A case study for supporting a real computerised clinical protocol for a specific

clinical problem. Are the methods we develop applicable to a real protocol?

The second aspect of the research problem deals with the question: How can we use

the ECA rule paradigm supported within modern database management systems

(DBMS’s) as a core concept of the domain information modelling and enforcement

frameworks for supporting the full manageability of computerised CGPs? In

answering this question, the study addresses the following issues:

1. Using the ECA rule paradigm in the modelling and specification framework for

computerised CGPs;

2. development of a generic mechanism that is based on the ECA rule paradigm to

execute CGPs;

3. Using the modular nature of the ECA rule paradigm as a basis for the

customisation of CGP specifications in order to suit individual patients;

4. Exploit the ECA rule mechanism of a modern DBMS, such as Oracle9i, as an

engine to support CGP execution and manipulation, i.e., performing operations

and issuing queries;

5. Identify the limitations of the modern DBMS, if they exist, in supporting ECA

rule paradigm-based applications.

Chapter 1 Introduction

17

1.2.2. Problem Statement from the Application Domain
Perspective
The specific focus of the study is on solving the problem of providing a

comprehensive and flexible environment for the full management of clinical

protocol definitions and the process of their enforcement for each patient. Emphasis

is placed on the efficient and effective management of the information and

knowledge that is associated with the computerised clinical test ordering protocols.

The main component parts of the problem are: the specification; the provision for

persistence or storage; the automated enforcement or execution; and the

manipulation, i.e., performing operations and querying, of the domain information

associated with the clinical test ordering protocols.

1.2.3. Research Hypothesis
The study’s hypothesis is that the ECA paradigm supported within database systems

could be an effective and practical tool for supporting important aspects of the

management of complex domain information when used as a core concept within

the domain knowledge model and its implementation. A further hypothesis is that

the use of the ECA rule paradigm in the active database environment would make it

possible to automatically support the dimension of manipulation of information

associated with CGPs.

1.2.4. Evaluation of Solution
The study will demonstrate its solution to the problem under investigation by

focusing on the effectiveness of the developed framework, approach and mechanism

in allowing domain information, within the context of clinical test-ordering

protocols, to be specified using a declarative ECA rule paradigm-based language;

executed using an ECA or trigger mechanism in a modern database system; and

manipulated using a declarative query language. The main challenge is to show that

the management of domain knowledge and information can be supported and

Chapter 1 Introduction

18

managed easily. A prototype system will be developed to demonstrate the feasibility

of the framework and approach developed. The prototype system will be evaluated

in a case study that will be undertaken in consultation with clinical domain experts

at St. James’s Hospital and in the inter- disciplinary research group within the

MediLink Project.

1.3. Research Aim and Objectives

This section presents the aims and objectives of this research.

1.3.1. Aim
The aim of this study is to investigate how to manage domain information in the

provision of assistance to healthcare professionals, in ordering correct, appropriate

and timely interventions, according to a set clinical guideline or protocol. An

example of a clinical intervention of interest to this study are clinical laboratory

investigations, which need to be performed on a patient. Clinical orders need to be

made at the appropriate time and place, with prompt notification of results.

Furthermore, it is important to provide for patient-specific recommendations,

alarms and alerts. In an environment that allows dynamic adaptation and

modification of the regime, important aspect of this aim is to provide monitoring

and coordination without expropriating the task of reasoning from the domain

experts. As has already been pointed out it is proposed that the event-condition-

action (ECA) rule paradigm in the context of active databases is a promising

technology that could be harnessed to effectively achieve this aim. Consequently,

this also incorporates using the ECA rule paradigm and active databases in

developing a generic framework and approach with specification and manipulation

languages, and a software mechanism for the specification, storage, execution and

manipulation of clinical protocols.

Chapter 1 Introduction

19

1.3.2. Objectives
The main objective of this study is to develop a generic way for specifying, storing,

executing and manipulating clinical guidelines or protocols knowledge and

information from both the static and dynamic standpoints. Of interest to this study

is the provision of the functionality that allows clinicians to perform operations and

query both the static and dynamic aspects of the guidelines or protocols within the

system. The specific objectives are as follows:

a) To develop a generic framework and approach for managing domain information

in the form of clinical protocols;

b) To enhance the design of the language, PLAN, for specifying clinical test

ordering protocols. PLAN was initially proposed by Wu (1998) as a declarative

specification language that follows the ECA rule paradigm;

c) To develop a declarative operator and query language for the manipulation of

test ordering protocols;

d) To develop translators for the specification and manipulation languages;

e) To develop a software mechanism to support the management of the domain

information associated with clinical protocol definitions and enforcements;

f) To design and implement a prototype system for the full-scale management of

domain information using a case study involving the support for clinical test-

ordering protocols for the diagnosis and management of micro-albuminuria in

patients with diabetes mellitus; and

g) To test and evaluate the prototype system, together with the underlying

frameworks, concepts and methods, in the care of patients with assistance from

medical experts at a local hospital.

Chapter 1 Introduction

20

1.4. Methodology

To establish the state-of-the-art, a literature review was conducted. The literature

review framework was designed in close attention to the aims and objectives of the

research.

In order to comprehensively address the problem under investigation, use is made of

a unified framework in which the CGP management problem is broken down into

core components. Modularisation (Parnas 1972) and the principle of separation of

concerns (Lopes and Hursch 1995) are used to ensure both the independence and co-

operation/collaboration among components within the framework.

The event-condition-action (ECA) rule paradigm (Dittrich, Gatziu et al. 1995;

Widom and Ceri 1996) is used as a basis for modelling the domain information and

for implementing the enforcement mechanism that applies the domain information

to the real world scenarios. The Object-orientated paradigm (Rumbaugh, JR, Blaha

et al. 1990; Booch 1993) is used as the intermediate model for CGP information

between the specification, enforcement and manipulation mechanisms on the one

hand and the storage mechanism on the other.

The involvement of the actual decision-making at the operational level will be

fostered through external interaction and communication in which the clinician

absolutely dominates and dictates while the system only suggests, prompts and

alerts. Artificial Intelligence methods that involve complex automatic reasoning or

automatic derivation and enforcement of domain knowledge are not employed.

In the task of enhancing and implementing the language, PLAN, use is made of

well-established classical techniques and tools for designing formal languages. The

Backus-Nuar Form (BNF) is used to specify PLAN as a high-level declarative

Chapter 1 Introduction

21

language for allowing domain knowledge to be: a) declaratively specified, b) easily

manipulated and c) declaratively queried. The parser for PLAN is developed from

the principles of recursive descent parsers. Instead of using language translation

techniques, to handle the parser outputs, an object-oriented mechanism is used to

translate the parser output into the database model.

 The Unified Modelling Language (UML) techniques and modelling tools

(Rumbaugh, J, Jacobson et al. 1998; OMG 2001) are used to design software modules.

To model CGPs, UML state charts are used in such a way as to facilitate the

involvement of clinical domain experts. Entity-Relationship modelling (Chen 1976)

and relational database design techniques (Elmasri and Navathe 2000; Ullman and

Widom 2001) are used to design the database.

 Consultations on medical aspects of this Study were conducted with medical

domain experts at Tallaght and St James’s Hospitals in Dublin.

The evaluation of the solution to the problem is attained by: the development of a

prototype system; and the testing and evaluation of the prototype system, which is

conducted both theoretically and through a practical demonstration aimed at

soliciting feedback from clinical domain experts using patient scenarios from St

James’s Hospital.

1.5. Contributions

The main contribution of this thesis is a generic framework and approach for the

management of information and knowledge for supporting the management of

computerised CPGs. Further contributions of this research are:

a) A characterisation of the problem of managing CGP information as consisting of

the three generic planes of specification, enforcement/execution and

Chapter 1 Introduction

22

manipulation, with each plane having its own levels of abstraction and

interacting, in a dynamic fashion, with the other two planes.

b) A generic software mechanism for supporting the framework and approach for

managing CGP knowledge and information. This software mechanism is based

on the ECA rule paradigm within the context of database systems and lays the

groundwork for easy integration of the CGP support mechanisms within the

electronic healthcare record (EHCR) (Grimson, W, Berry et al. 1998; Grimson, J,

Stephens et al. 2001) and clinical workflow.

c) An approach to the use of the ECA rule paradigm for both conceptual modelling

and implementation of CGP management within a unified framework by using a

ECA rule mechanism of a modern DBMS. This approach creates a basis for the

demonstration of the ECA rule paradigm as a viable technology for supporting

real applications (particularly the management of CGPs), thus, pointing to the

need for further enhanced support in modern DBMS;

d) A prototype system, TOPS, for supporting the management of CGPs for clinical

test-ordering, which supports the framework and approach developed in this

study by making use of a declarative specification language to specify protocols,

an ECA rule mechanism of a modern DBMS and its extension as the execution

engine, and a query and manipulation language to query and manipulate domain

information and knowledge, in the form of CGPs and patient data, within the

system; and

e) A case study for the management of a computerised protocol for

microalbuminuria in diabetes patients.

1.6. Thesis Organisation

Figure 1 illustrates the structure and organisation of this Thesis. This Thesis consists

of four major parts. Part I describes the problem under investigation. The context

of the problem is also set. The background to the problem is presented in the form of

Chapter 1 Introduction

23

a review of the state-of-the-art in the support for CPG management and in the

applications of active database systems and the ECA rule paradigm. The later is

presented with a view to harnessing for supporting CPG management. Part I consists

of chapters 1 to 4 as illustrated in Figure 1. Part II presents the framework and

approach, which resulted from this study, for managing clinical protocols. This part

also discusses, in depth, the approach and methods developed in this Study for

supporting the specification, execution and manipulation of information and

knowledge for clinical protocol management. Part II consists of chapters 5 to 8 as

illustrated in Figure 1. Part III presents the design and implementation of the

prototype system, TOPS, and the case study in which TOPS is used in the

management of the microalbuminuria protocol for diabetes patients. Part III consists

of chapters 9 and 10 as illustrated in Figure 1. Part IV presents a review of this thesis

and a conclusion. This Part consists of chapter 11 as illustrated in Figure 1.

Figure 1 Thesis structure

Chapter 1 Introduction

24

1.7. Chapter Summary

This chapter has introduced the problem under investigation. It presented the

motivation for this research from the perspectives of both the clinical domain and

active systems applications. The aims and objectives were discussed and the

methodology outlined. The chapter also identified the contributions to knowledge

made by this research work. Finally, the chapter described the organisation of this

thesis.

Chapter 2 Study Context

2.1. Introduction

Attempts to reduce costs and practice variation and optimise resource utilisation in

healthcare have led to the formalisation of medical domain information and

knowledge, acquired through experience and medical research, to create clinical

guidelines and protocols (Field and Lohr 1992). The event-condition-action (ECA)

rule paradigm, as found in active databases (Dittrich, Gatziu et al. 1995) and

originating from production rules (Newell and Simon 1972) in traditional expert

systems, promises to be an effective means of representing, sharing, enforcing and

manipulating information and knowledge. The ECA rule paradigm in active

database systems (Dittrich, Gatziu et al. 1995) could be used to provide an excellent

framework for facilitating the solution to the problem of the integration of clinical

guideline, patient record and clinical workflow systems. This thesis consentrates on

the problem of supporting the management of clinical protocols, with focus on

clinical laboratory test-ordering protocols. The aim of the investigation is to develop

a generic approach that makes use of the ECA rule paradigm in active database

systems within a unified modelling and implementation framework for supporting

computerised CGPs. This Chapter sets the context by first presenting, in Section 2.2,

some definitions of the main concepts and terms as used in this Thesis. The main

aspects of the research are then set into the context of the clinical guideline domain

in Section 2.3, clinical test-ordering protocols in Section 2.4 and the ECA rule-based

support for clinical guidelines in Section 2.5. Finally, Section 2.6 presents a

discussion and summary of this Chapter.

Chapter 2 Study Context

26

2.2. Definitions of Terms and Concepts

This section presents definitions of a number of key concepts as they are used in this

thesis.

Clinical Guideline

The American Institute of Medicine defines a clinical guideline as: “… a set of

systematically developed statements to assist the medical practitioner and the

patient in making decisions about appropriate healthcare for specific clinical

circumstances.”(Institute of Medicine (IOM) 1992) . The following is an analysis of

this definition:

• “systematically developed”: The development of clinical guidelines involves an

orderly and lengthy process that takes into consideration recent scientific

knowledge, experiential evidence, consensus among healthcare experts and

current practice.

• “assist the medical practitioner and patient” : Guidelines are not meant to be

compulsory but to uphold the domain expert’s dominance and discretionary

rights, i.e., they are meant to assist not dictate to the clinician and the patient,

who have a right to override them when necessary.

• “making decisions”: medical decision-making is the primary task of clinicians.

Patients make decisions about their own health. Patients also have the final say

in major decisions on what is done to them by clinicians during the process of

care. Clinical guidelines help clinicians and patients to make informed decisions

with regard to the appropriate care for the patient.

• “appropriate healthcare”: All medical decisions made by the clinician and the

patient are aimed at achieving the best patient outcomes in an effective and

efficient way. Consequently, appropriate healthcare is patient care that leads to

the attainment of this aim.

Chapter 2 Study Context

27

• “specific clinical circumstances”: each clinical guideline that is developed deals

with a specific clinical problem. However, they do not take into consideration

the specific circumstances of an individual patient. It is the task of the clinician

to put the guideline knowledge and advice into the specific context of the

patient.

Clinical guidelines can also be viewed as “knowledge models of preferred processes

of care” (OpenClinical 2001). The guidelines need to be locally adapted to be

applicable to the local patient and disease scenarios, since while medical knowledge

is universal, clinical practice is local (Nykanen 2000). A clinical guideline can be

combined with the organisational model in order to harness workflow technologies

to create a care flow (Quaglini, S., Stefanelli et al. 2000b) environment for

dissemination, medical knowledge utilisation and healthcare team communication

and coordination.

Clinical guidelines encode domain knowledge and need to be managed in order to

be useful. Therefore, the incorporation of clinical guidelines into the routine used by

the clinicians can be seen as a domain knowledge management task. This work

investigates the support for the management of computerised clinical guidelines.

Supporting computerised clinical guideline management involves formally

representing medical knowledge and assisting clinicians by using information

technology to make this knowledge available for use during decision-making and by

performing routine tasks that are amenable to computerisation.

Clinical protocol

The main difference between a clinical guideline and a clinical protocol is that a

clinical guideline is clinical or medical knowledge that is context-insensitive while a

clinical protocol is context-sensitive because it is clinical or medical knowledge

Chapter 2 Study Context

28

incorporated into daily routine and is derived from customising and enhancing the

guideline with localised and patient-specific detail. This is why Miksch (1999) views

a clinical protocol as a highly detailed clinical guideline, which, she states, is usually

mandatory. In essence, a clinical protocol, just like a clinical guidelines, encapsulate

knowledge about medical concepts and knowledge about how to carry out specific

activities (Gordon, Herbert et al. 1997). Consequently, the terms “clinical guideline”

and “clinical protocol” refer to the same basic concept and, in this thesis, may be

used interchangeably.

Computerised Clinical Guidelines and Protocols

Clinical guidelines or protocols generally exist as human expertise, organisational

custom and paper or text-based publications. They are meant to be read by clinicians

who are expected to apply the knowledge contained in the guidelines to clinical

problems that they encounter during their daily practice. When clinical guidelines

or protocols are formally specified and enforced by using appropriate computational

techniques implemented in a computerised mechanism, they are then referred to as

computerised clinical guidelines or protocols. This thesis is concerned mainly with

computerised clinical guidelines or protocols.

Clinical Test-Ordering Protocol

Clinical laboratories and clinicians use clinical test-ordering protocols to define:

what tests clinicians should order; what laboratories should do in response to an

order; and what both laboratories and clinicians should do in response to test results

in certain clinical circumstances. These protocols may be incomplete, informal,

unwritten and tend to represent the experiences and wishes of senior medical and

administrative staff (Peters, M, Broughton et al. 1991). The differences between

protocols and the difficulty in enforcing them result in variations in clinicians’

utilisation of clinical laboratory services and in the clinical laboratories’ responses to

Chapter 2 Study Context

29

test orders. This problem can be resolved by defining consensus protocols, which

Peters et al (Peters, M., Clarke et al. 1991) refer to as locally agreed protocols, which

can be enforced with the support of a computerised system.

Clinical Guideline or Protocol Management

In this thesis, the term management of clinical guidelines or protocols refers to the

following aspects:

• Specification: This involves the formal representation of the clinical guideline

knowledge by using a model and a language in order to allow the guideline

knowledge to be stored and manipulated by computer-based methods.

• Execution or enforcement: This is the computer-based application of the formal

guideline or protocol specification to the solution of a clinical problem. This

thesis will take guideline execution and guideline enforcement to refer to the

same concept – the computer execution of a computerised clinical guideline or

protocol with respect to a patient. The issues of a clinician’s compliance to

clinical guidelines or protocols and the methods by which this can be achieved

are outside the scope of this thesis. Guideline or protocol execution will be

achieved through a computer-based mechanism. The guideline execution or

enforcement mechanism involves collaboration between human agents, the

clinician and the patient, on the one hand, and a software mechanism, on the

other.

• Manipulation: the manipulation of the clinical guidelines knowledge and

information through use of operators and issuing of queries as well as sharing the

guidelines knowledge among healthcare professionals and organisations.

Operators and queries are performed on both the static and dynamic aspects of

the clinical guidelines knowledge as well as their specifications and instances.

Sharing of clinical guidelines consist of two aspects: the customisation of the

Chapter 2 Study Context

30

generic clinical guidelines to suit local situations and the dissemination of the

guidelines to the healthcare professionals and/or organisations.

The Event-Condition-Action Rule Paradigm

An ECA rule consists of events, conditions and actions whose combined semantics

mean that when the event occurs, the condition is evaluated and, if it evaluates to

true, then the action is executed (Gatziu, Geppert et al. 1991). Thus, each ECA rule

consists of three components:

• an event part, containing a so-called transition predicate that lists all possible

events which are of concern to the rule;

• a condition part, which can be an arbitrary predicate, and

• an action part, which is an arbitrary list of executable functions.

The event and the condition together constitute a situation that the rule has to

monitor. Situation monitoring involves detecting an event of interest and evaluating

a condition associated with the event. The situation is said to have occurred only if

the event has been detected and the condition evaluates to true. The action is

performed only if the situation has occurred (Dittrich, Gatziu et al. 1995).

Characteristics of ECA rules and their collective behaviour in both relational and

object-oriented database systems have been analysed by various researchers in the

area of active databases and are now well known (Paton and Diaz 1999). In clinical

guidelines, events are detectable happenings that occur to a patient and range from

disease progression to what clinicians do to a patient; conditions are checks on

patient clinical attributes that are made based on clinical laboratory measurements

and observations; and actions are clinical interventions that are triggered by

occurrences of events or conditions or both and can generate events and/or give rise

to satisfaction of conditions. Consequently, the ECA rule paradigm contains the

compositional primitives for clinical guidelines.

Chapter 2 Study Context

31

2.3. Clinical Guideline and Protocols

Tu et al. (1999) have characterised the clinical guideline domain as consisting of

health-care providers, patients, and the decision support systems. These multiple

agents interact at different time points, called encounters (Tu, S. W. and Musen

1999), which may simply be times when a monitoring system detects the arrival of

new data. At each encounter the following three things may happen: observations

about the patient are recorded; decisions are made; and actions are carried out (Tu,

S. W. and Musen 1999). It is also possible for healthcare providers and patients to

take actions outside encounters (Tu, S. W. and Musen 1999) but this may still be

within the context of the guideline or may mean that both the patient and the

clinician are exercising their discretion. The rationale for introducing clinical

guidelines and protocols is to reduce unjustified variations in clinical practice,

improve healthcare quality and contain costs (Grimshaw and Russell 1993).

Clinicians need to be made aware of the guidelines. They also need to be

encouraged to comply with the guidelines during routine practice. Studies have

established that clinician compliance to guidelines is improved when the guidelines

are presented to them at the point of care when they are treating the patient and

also accessing the patient's record (Grimshaw and Russell 1993; Tu, S.W. and Musen

2001). The presentation of the guidelines and the point of care must not be intrusive.

An examination of a variety of clinical guidelines by Tu et al. (Tu, S. W. and Musen

2000) led to the abstraction of a set of the following generic guideline tasks:

decision-making; setting goals; work specification; and interpretation of data.

Decision-making is the main tasks for guidelines as highlighted in the definition by

the Institute of Medicine (1992). The following are two classes of clinical guidelines

that are based on the distinction between the notions of time points and timeline:

consultation guidelines, which specify guideline tasks whose consequences are not

being tracked over time; and management guidelines, which model guideline tasks

that lead to dependent changes in patient states over time (Tu, S. W. and Musen

Chapter 2 Study Context

32

1999). Studies have established that when clinical decision support systems are

developed to provide, at the point-of-care, patient-specific assistance in decision-

making and integrated with clinical workflow, they can improve clinicians’

compliance with clinical guidelines and hence patient outcomes (Grimshaw and

Russell 1993; Lobach and Hammond 1994). The development of computer-based

management strategies to implement clinical guideline-based decision-support

systems has become a critical issue in promoting the use of clinical guidelines in

daily practice (Nykanen 2000). During the past decade, the healthcare community

has paid more attention to guideline development than to guideline implementation

for routine use in clinical settings (Audet, Greenfield et al. 1990). Recently, this has

improved significantly as a number of guideline systems have emerged (Wang, Peleg

et al. 2002), for example EON (Musen, M.A. , Tu et al. 1996), Asbru (Shahar, Miksch

et al. 1998), Proforma (Fox, Johns et al. 1998) and PRESTIGE (Gordon and Veloso

1996).

2.4. Guidelines and Protocols for Ordering Clinical
Laboratory Tests

During the past decade, the unit cost of performing a single clinical laboratory test

has decreased relative to inflation (van Walraven and Naylor 1998). In the same

period, the number of tests ordered has increased dramatically(van Walraven and

Naylor 1998). As a result, the cost of clinical laboratory testing has increased

considerably (van Walraven and Naylor 1998). This has prompted the introduction

of research and initiatives aimed at controlling clinical laboratory utilisation without

adversely affecting the continued improvement of the quality of patient care. The

initiatives that have been introduced include feedback, participation, education, cost

awareness, financial incentives, penalties or risk-sharing, administrative change and

rationing (Grossman 1983; Eisenberg 1985; Peters, M, Broughton et al. 1991). One of

the most effective and proven approach to clinical laboratory utilisation

Chapter 2 Study Context

33

Table 2.1 A test-ordering protocol for Viral Hepatitis (in natural language) (Protocol
Steering Committee 1998)

Suspected Condition

(Please, write on requisition)

Laboratory Test(s) Performed

Acute Hepatitis Inti-HAV IgM

à if positive, no further testing required

à if negative, test for: HBsAg*

à if positive, further testing only on request

à if negative, test for anti-HCV*

Hepatitis B Carrier HBsAg

Previous/Chronic Hepatitis Anti-HBc (total) à if positive, test for anti-HBs*, and HBsAg*

and

Anti-HCV
*Tests can be added automatically

management is the use of clinical test ordering protocols, which are mandatory

clinical practice guidelines (Grimshaw and Russell 1993). Test-ordering protocols are

generally available to clinicians in natural language form in the medium of paper or

electronic text on the Internet. Table 2.1 presents an example of a protocol for Viral

Hepatitis testing, whose aim is to assist physicians in selecting the most appropriate

laboratory tests for conditions of suspected Viral Hepatitis (Protocol Steering

Committee 1998). Some protocols are not presented as test-ordering protocols per se

although they heavily involve guidelines on ordering laboratory tests. Table 2.2

presents an example of such a protocol for the management of renal disease in type 2

diabetes (Lanarkshire Diabetes Group 1999).

To have a marked effect on costs and to be functional, clinical test ordering

protocols must: address high-volume ordering areas; be amenable to a few simple

rules that can easily be remembered by clinicians; be conveniently expressed in the

test order; be easily carried out by the clinical laboratory staff, and require general

agreement among clinicians, laboratories, and payment agencies (Smith and

McNeely 1999).

Chapter 2 Study Context

34

Table 2.2 Protocol for the management of renal disease in Type 2 diabetes (in
natural language) (Lanarkshire Diabetes Group 1999)

Guideline Title Management of renal disease in Type 2 diabetics – prevention and detection
Objective To reduce patients entering end stage renal failure by one third.

M
U

S
T

D
O

1. Annual early morning first void urine:
• If blood and leucocytes present - look for appropriate pathology e.g. Urinary Tract Infection

(UTI).
• If free of blood and leucocytes - send to local hospital laboratory for MICROALBUMIN

measurement.
• If 20 - 200mg/l - repeat TWO separate mornings
• if 2 of 3 readings are 20 - 200mg/l - then MICROALBUMINURIA.
• If < 20mg/l - then normal and re-test in one year.

2. If MICROALBUMINURIA, prescribe an ACE inhibitor for type 1, but avoid in potentially
pregnant woman. Control BP (<140/80 mmHg) in type 2.

3. If DIPSTICK POSITIVE PROTEINURIA (stages 3, 4 See Appendix 2).
• control BP < 140/80 mmHg.
• in type 1 refer to STATE REGISTERED DIETICIAN for dietary protein assessment and

modification if appropriate.
4. Keep record of results. (See page 7).

S
H

O
U

LD

D
O

1. Refer stage 3, 4 to hospital diabetic clinic. (See Appendix 2)
2. Refer stage 5 to hospital nephrologist (See Appendix 2). (Dr. Bill Smith or Dr. Malcolm Hand at

Monklands Hospital).

Stage Abnormality Condition

1 Urinary albumin < 20 mg/l Normoalbuminuria

2 Urinary albumin 20-200 mg/l Microalbuminuria

3 & 4 Urinary albumin >20 mg/l (= dipstick albuminuria):
ACTION REQUIRED

Macroalbuminuria

A
pp

en
di

x
2:

S

ta
g

es
 o

f
D

ia
be

tic

N
ep

hr
op

at
hy

5 Plasma creatinite > 200 umol/l: ACTION
REQUIRED

End stage renal failure

These constraints have severely limited the number of areas that clinical test

ordering protocols can be implemented. Furthermore, a drawback to the use of test

ordering protocols for laboratory utilisation control is that clinicians do not show a

sustained test-ordering-behaviour change in response to the deployment or

dissemination of clinical guidelines even when they are in agreement (Kanouse and

Jacoby 1988; Elson and Connelly 1995a; Elson and Connelly 1995b). There are many

explanations to this one of which is the fear of litigation. Despite these constraints, it

is beneficial to provide computerised support for clinical test ordering protocols as

this would give rise to a number of desirable results, which include reduction of the

following: unnecessary test orders, which will lower laboratory costs; the number of

sample collections through sample and result re-use; and turn-around time required

to reach a diagnosis (Smith and McNeely 1999). Further to this, a system

Chapter 2 Study Context

35

implemented as an interface between the clinician and the laboratory offers the

possibility of solving some of the difficult problems of developing, disseminating and

adhering to test ordering protocols. The major benefits of such a system include the

ability to:

• represent more sophisticated and widely applicable protocols than can currently

be implemented with traditional approaches;

• make those protocols available to clinicians at the time of ordering and viewing

the results;

• make test ordering protocols specific to the clinical circumstances of the patient;

and

• provide a complete record for retrospective review of the clinical problem, test

orders and test results.

Two major approaches have emerged in the support of clinical laboratory test

ordering protocols. The first approach is the proactive approach in which support

for test ordering protocols is based on proposing appropriate investigations, and the

second approach is the reactive approach in which support involves denying

inappropriate investigation (Peters, M., Clarke et al. 1991; Boran, O'Moore et al.

1996; van Wijk, M .A. M., Bohnen et al. 1999; van Wijk, M.A.M., Mosseveld et al.

1999). The net effect is that only those tests that the clinicians and the laboratory

staff agree to be necessary for the management of the patient are ordered routinely.

This work addresses the support for the management of clinical laboratory test-

ordering protocols through a unified framework that covers specification, execution

and manipulation, and applies the ECA rule paradigm and database systems in the

modelling and implementation framework. The aim is to provide assistance to

clinicians in which test-ordering protocols that have been agreed with the

laboratory are declaratively and generically specified and stored, customised for

specific patients, enforced or executed by a computerised mechanism, and

Chapter 2 Study Context

36

manipulated through operations, queries and sharing mechanisms such as healthcare

middleware like the Synapses electronic healthcare record (EHCR) server (Grimson,

W, Berry et al. 1998). The test-ordering protocol enforcement takes the proactive

approach with the exception that the system proposes tests that have been subject to

agreement or consensus.

2.5. ECA Rule-Based Support for Clinical Protocols

In terms of the ECA rule paradigm, a clinical guideline can be seen as “a method,

that identifies actions, that are to be performed and that specifies conditions that

govern when it is appropriate to perform them” (Pattison-Gordon, Cimino et al.

1996). From this definition, it can be noted that a clinical guideline also includes

situation monitoring, i.e., event monitoring with condition or appropriateness

criteria determination. Thus, it can be seen that, by definition, a clinical guideline

embodies the ECA rule paradigm. The recognition of the usefulness of the ECA rule

paradigm in supporting the management of information and knowledge in the

medical and clinical guideline domains has led to the development of the Arden

Syntax for Medical Logic Modules (Hripscak, Luderman et al. 1994), which is the

first, and currently the only, established standard for representing medical

knowledge (HL7 1999).

In the clinical test-ordering domain, from the ECA paradigm point of view, a test

order activity in a clinical test-ordering protocol can be expressed generically as:

when any of the specified events occur, check the test-ordering condition; if the

condition is true, then a test order is issued. Therefore every test order could be a

result of a recognisable event followed by a decision-making process that includes

appropriateness criteria determination that is made before the test is ordered. A

possible event that triggers a test order may be the emergence of a patient with a

problem, the passage of time, the occurrence of abnormalities in a patient's

Chapter 2 Study Context

37

condition, or a combination of these events. A possible condition can be a

specification of the medical condition of a patient. A possible action can be the

issuing of a test order, the sending of an alarm or the issuing of a reminder to a

clinician. Other actions can affect the test-ordering plan itself such as adding a new,

suspending or even removing a scheduled test order for a patient.

It is important to observe that the working scenario described here has some

interesting and unique features: First, the scenario is event-driven and can also be

time-driven. A clinical test can be ordered based on the patient’s condition. It can

also be triggered on certain time points for some scheduled regular tests. For

example, for a Liver-transplant patient, a U&K test (the clinical meaning is not

important here) may be scheduled on days -1, 0, 1, 2, 3, 4, 6, 8, 11(+3). Here –1

means the day before the operation, 0 the day of operation and +3 means every 3

days later on until further notice. Second, the actions of a test-ordering rule can be

alarm-oriented or alert-oriented. It can also be dynamic-modification-oriented. An

action of a test-ordering rule may specify that on arrival of a test result, send paging

information to a clinician. However, there is a much more complicated scenario. On

checking the new test result, some more tests may need to be ordered immediately

or at some later time – if the ordering logic is pre-determined. Obviously, it can also

be the case that an action may be pending, awaiting a medical expert’s decision, and

this involves external actions. Finally, the reaction time for a test-ordering rule

would generally not be in terms of ‘seconds’ or ‘minutes’, but a test order may be

repeated at time points within a long time interval as the previous example

indicated. Therefore this may be seen as an interesting application domain for the

ECA rule paradigm, which falls under ad-hoc triggers identified by Ceri et al. (Ceri,

S., Cochrane et al. 2000) but incorporating special requirements for temporal ECA

rules and comprehensive high-level facilities for dynamically manipulating the rule

automatically with human concurrence from the application.

Chapter 2 Study Context

38

2.6. Chapter Summary

This chapter has set the context of this work by defining the major concepts that are

involved in the research topic under investigation and outlining the context of the

issues being dealt with in this investigation. Clinical guidelines and protocols are a

form of domain information and knowledge whose management is critical to

attainment of desirable healthcare outcomes. Previous research has already

established that computerised test-ordering protocol systems can be helpful to both

clinicians and clinical laboratories if they are integrated with other healthcare

information systems such as the electronic patient record (EPR) and the laboratory

information system (LIS) (O'Moore, Groth et al. 1996). The main aim of such a

system would be to provide the automatic enforcement and dynamic management of

the locally agreed protocols and “prompt rather than dictate” (Peters, M, Broughton

et al. 1991). This study contends that the management of clinical guidelines is

achieved through the three dimensions: specification, execution and manipulation.

These three dimensions constitute the essential functionality that should be aimed at

by a clinical guideline management approach. Most existing approaches have

focused mainly on the specification and execution only and provides minimal

support for manipulation management. This study is unique in that it incorporates

the three aspects within a unified framework. This study proposes the use of the

ECA rule paradigm for supporting the management of domain knowledge for

clinical guidelines in clinical laboratory test-ordering domain. The event-condition-

action (ECA) rule paradigm within the context of active databases (Dittrich, Gatziu

et al. 1995) can be used to enable the electronic patient record to issue prompts and

reminders to clinicians so that they can perform tasks that need to be carried out,

and to suggest patient-specific decisions or procedures. An additional advantage is

that active databases have also been shown to be a viable technology for supporting

workflow processes (Eder, Groiss et al. 1994). Active databases with temporal

features are a promising technology for supporting clinical guidelines within an

Chapter 2 Study Context

39

organisational setting requiring timely communication and coordination among

healthcare team members. Since clinical processes are often highly unpredictable

and safety critical (OpenClinical 2001), active database can be used to monitor

clinical process while providing sufficient flexibility for clinicians and patients to

override ECA rules when necessary and ensuring that clinicians retain the final

decisions. Further to this, databases systems are efficient in managing data

generated by clinical processes.

Chapter 3 Computer-Based Clinical Guideline

and Protocol Management

3.1. Introduction

This chapter presents the state-of-the-art in the form of a review of the literature on

the domains under investigation. Before the literature review is presented, this

chapter presents a brief review of the core issues in the domains understudy as well

as the framework, SpEM (short for Specification, Execution and Manipulation of

CGPs), which are developed for supporting the management of computerised

clinical guidelines and protocols. The SpEM framework is then used as a basis for the

literature review. The rest of this Chapter is organised as follows: Section 3.2

presents a brief review of the application domains relevant to the problem under

investigation. Section 3.3 presents the SpEM framework for guideline or protocol

management support. Section 3.5 presents a literature review of the approaches and

systems to the support for the management of clinical guidelines and protocols. The

literature review closely follows the SpEM framework. Section 3.6. outlines the

implications of the literature review findings. Section 3.7 summarises this Chapter.

3.2. Review of the Application Domains

This presents a review of the domains covered by this research. The aim of the

section is to outline the core issues constituting the background to the problem

being investigated.

In the clinical laboratory test ordering domain, there has been an increase in tests

that are ordered by clinicians per individual patient. This has given rise to an

increase in the overall number of test orders processed by clinical laboratories

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

41

leading to dramatic increase in overall costs (van Walraven and Naylor 1998). The

main explanation to this increased workload for clinical laboratories are increased

number of tests available due to advances in medical science and the clinician’s fear

of litigation. Many of the ordered tests may be either inappropriate or do not

contribute to diagnostic decisions (Peters, M and Broughton 1993). As a result, a

need has been identified to find a way of ensuring that a clinician orders tests that

are relevant to the medical decision-making tasks that faces him or her (Peters, M,

Broughton et al. 1991).

Clinical guidelines and protocols have been identified as the most effective means of

ensuring that only appropriate tests are ordered for each patient and ultimately

reducing costs without negatively impacting on the quality of patient care (van

Walraven and Naylor 1998; van Wijk, M .A. M., Bohnen et al. 1999). Clinical

guidelines are usually paper-based and difficult for a busy practitioner to access at

the point of care. There is a need to develop strategies that facilitate the

dissemination, sharing and improvement of the method of presenting clinical

guidelines and protocols for ease of accessibility and promotion of clinicians’

compliance with the clinical guidelines or protocols being presented. Moreover,

clinicians do not show a sustained test-ordering behaviour-change in compliance

with test-ordering guidelines, even if they agree with them (Kanouse and Jacoby

1988). However, studies have established that if the guidelines are presented to the

clinicians at the time when they are making a decision to order a test or accessing

the test results or treating the patient, clinicians tend to comply with the guidelines

more than at any other time (Grimshaw and Russell 1993). This study seeks to help

in the promotion of compliance to clinical guidelines and protocols for clinical

laboratory test-ordering.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

42

The development of computer-based guideline or protocol systems have been

proposed in order to present clinical guidelines to clinicians at the time when the

clinicians need them (Peters, M and Broughton 1993). Attempts have been made to

build such systems for the domain of clinical laboratory test-ordering, for example

LUMPS (Peters, M., Clarke et al. 1991; Matimer, McCauley et al. 1992) and

BloodLink (van Wijk, M.A.M., Mosseveld et al. 1999), but these guideline systems

have not adequately addressed the problem of the full-scale management of domain

knowledge contained in clinical guidelines that they support.

Most approaches in the literature have used the production rule paradigm (Newell

and Simon 1972) to model and implement clinical test-ordering protocols. The need

to:

• manage the guideline knowledge and its enforcement;

• consider the clinical situations, which includes events and appropriate actions;

and

• consider other attributes of the patient possibly contained in the electronic

patient record,

makes the ECA rule paradigm in active databases (Dittrich, Gatziu et al. 1995) a

promising technology for supporting the management of clinical laboratory test-

ordering protocols. A literature review of the ECA rule paradigm and its applications

is presented in Chapter 4.

3.3. The SpEM Framework for Supporting the
Management of Computerised Clinical Guidelines and
Protocols

This section presents the framework developed for supporting the management of

computerised clinical guidelines and protocols. The framework specifies that the

management of clinical guidelines should be achieved through the three dimensions:

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

43

specification, enforcement and manipulation. Specification is the definition of a

clinical guideline or protocol by using a formal language. Enforcement is to the

computerised enactment or execution of the formal guideline or protocol

specification with respect to a specific clinical case. Manipulation includes:

performing operations on, and querying guideline information as well as the

information on the objects, subjects and effects of applying the information to

specific clinical cases. These three dimensions constitute the three components of

the CGP management framework, which will be called, SpEM , (Specification,

Enforcement/execution and Manipulation).

3.3.1. Architecture of the SpEM Framework
Figure 2 illustrates the SpEM architecture in terms of the three planes each

concerned with one of the three aspects: specification, enforcement and

manipulation. In the specification plane, the guideline information is captured,

formally specified and stored for easy access, use and maintenance. As illustrated in

Figure 2, specifications of the captured guideline information are customized to suit

the problem scenario and then prepared for enforcement.

Specification
Plane M

an
ip

u
latio

n
P

lan
e

Enforcement
Plane

C
u

sto
m

isatio
n

,
E

xecu
tio

n
A

n
d

 C
h

an
g

e
p

ro
p

ag
atio

n

Query, dynamic
interaction and
manipulation

Query,
Manipulation
and version
maintenance

Specification
Plane M

an
ip

u
latio

n
P

lan
e

Enforcement
Plane

C
u

sto
m

isatio
n

,
E

xecu
tio

n
A

n
d

 C
h

an
g

e
p

ro
p

ag
atio

n

C
u

sto
m

isatio
n

,
E

xecu
tio

n
A

n
d

 C
h

an
g

e
p

ro
p

ag
atio

n

Query, dynamic
interaction and
manipulation

Query, dynamic
interaction and
manipulation

Query,
Manipulation
and version
maintenance

Query,
Manipulation
and version
maintenance

Figure 2 The SpEM framework for clinical guidelines or
protocol information management

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

44

In the enforcement plane, the specified guideline information is put to use in the

solution to problems within the domain. This application of information can be

manual or computerised or their combination. In the manipulation plane, both the

guideline information and its application process are manipulated through the

performance of defined operations and queried by using a declarative language. It

should be noted that both the specifications and execution process are subject to

manipulation within the manipulation plane.

3.3.2. CGP Support in the Specification Plane
The specification plane provides a means to specify the global properties or meta-

data for clinical guidelines. These global properties define their purpose and when

they may be or should be used. The global properties are necessary to allow a

computerised system to provide assistance to a clinician in deciding what guideline

or protocol could be applicable to particular patient circumstances. Gordon et al.

(1996) summarised these most commonly specified properties in guideline systems

as including: guideline task: e.g., diagnosis and management of chronic asthma;

entry criteria: what a patient must satisfy in order for the guideline to be applicable

to them; exclusion criteria: conditions that define when the protocol must not be

applied; indications and contra-indications: patient-specific factors that need

consideration in order to decide whether or not the protocol can be used.

In order to effectively support CGPs, the specification plane must provide a

guideline representation model for expressive guideline knowledge representation,

Such a model must incorporate representation primitives that make up the basic

components of a guideline representation model; structural arrangement of the

representation primitives that makes up the application process of clinical

guidelines; and modelling of patient data (Wang, Peleg et al. 2002). The following

are the typical generic representation primitives that are required in a guideline or

protocol representation model:

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

45

• action: clinical or administrative task that is recommended to perform, maintain,

or avoid during the process of guideline application;

• decision: a selection from a set of alternatives based on predefined criteria in a

guideline;

• patient state: a materialisation of a treated individual’s clinical status based upon

the actions that have been performed and the decisions that have been made;

• execution state: a description of a guideline implementation system based on the

stage of the task such as the action and decision during the process of guideline

execution (Wang, Peleg et al. 2002).

Patient and execution states are two sides of the guideline application process. The

two concepts are closely related to each other. However, patient state can be

affected by changes outside the control of a guideline system. Consequently, patient

state and execution state may diverge from one another. Most guideline models

support either patient state or execution state but not both without loosing

expressiveness (Wang, Peleg et al. 2002). In this study, the approach taken views

patient state as a domain-dependent property while execution state is viewed as a

generic property of the execution mechanism for the guideline application process.

A formal guidelines representation model within the specification plane has the

following benefits:

• Provides in-depth understanding of the clinical care processes addressed by

clinical guidelines (Greenes, Peleg et al. 2001);

• Can be used to identify different requirements by clinicians for assistance during

the process of decision-making ;

• Supports automatic verification and validation of clinical guidelines;

• Can be used to facilitate standard approaches to guideline dissemination;

• Can be used as a generic template in the integration of clinical guidelines with

the healthcare information system at a local institution (Wang, Peleg et al. 2002).

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

46

3.3.3. CGP Support in the Execution Plane
The execution plane depends on the guideline representation model and language

provided by the specification plane in order to support the computer-based

execution of the guideline-based care process. The computational method used in

the execution of guidelines is dependent on the guideline/protocol representation

formalisms used. In this work, the execution plane uses event-condition-action

(ECA) rules to execute clinical guidelines. ECA rules have the general form: ON

event IF condition DO action. The ECA rule paradigm encapsulates the core

elements for capturing and enforcing guideline knowledge. Table 3.1 summarises

the guideline/protocol representation formalisms and computational methods from

the literature (Tu, S. W. , Johnson et al. 2001; Tu, S.W. and Musen 2001). In the

rule-based paradigm, productions rules of the form: IF condition DO action, have

been used to support clinical event monitoring as well as clinical protocols

(Shortliffe, Axline et al. 1973; Starren and Xie 1994). Logic-based methods represent

guideline knowledge in a declarative knowledge base with logical criteria forming

the basis for selecting a guideline for application to a patient. Examples of logic-

based guidelines representation method are PROforma (Fox, Johns et al. 1996) and

PRESTIGE (Gordon, Herbert et al. 1996).

Table 3.1 Guideline representation formalisms and computational techniques

Model of
Representation

Example Method of
Representation

Computational
Method

Tasks

Rule based
MLMs using Arden

Syntax (Clayton, Pryor
et al. 1989), Decision

Table (Shiffman 1997)

Event-condition-action
rule paradigm

Mix of production system and
procedural program

Primarily Decision Making, Data
Interpretation, Goal Setting, and Action
Sequencing possible but not supported

explicitly

Logic-based PROforma (Fox,
Johns et al. 1996)

Declarative formal logic

Activation of PROforma tasks
through evaluation of

constraints/ preconditions
and assertion of post-

conditions

Decision Making, Action Sequencing,
Data Interpretation, Goal Setting and

Action refinement through
decision/actions

ONCOCIN (Shortliffe,
Scott et al. 1981)

Augmented Tranistion
Networks(ATNs), Rules

Episodic Skeletal Plan
Refinement

Action Sequencing through ATN, Rule-
based Decision Making and Action

refinement, Data Interpretation through
temporal Queries

PROGIGY III
(Shortliffe, Scott et al.

1981)

ATNs of patient states
and decisions, Hierarchy

of actions

ATN Traversal, Action
Refinement as Decisions

Decision Making, Sequencing of
Decisions, Action Refinement

Network-based

GUIDE/Pavia Models
(Quaglini, S., Stefanelli

et al. 2000b)
GL/Petri Nets/WPDL Petri Net, Workflow

Management System (WfMS)
Action and Decision Sequencing,

Decision Making

Decision Theory
GUIDE/Pavia Model

(Quaglini, S., Stefanelli
et al. 2000b)

Decision tree, Influence
diagram

Decision Theory Techniques Decision making

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

47

In network-based models, guideline knowledge is represented as graphical

flowcharts or networks that have arcs specifying sequencing of actions and

hierarchical decomposition for controlling complexity. Logical criteria using

patient-specific data are used to further control the execution of actions. The

semantics of the flowchart languages are those for formal network modelling tools

such as augmented transition networks and Petri Nets. Examples of network-based

models include: ONCOCIN (Musen, M.A. , Tu et al. 1992), PRODIGY (Johnson,

P.D., Tu et al. 2000) and GUIDE (Quaglini, S. , Stefanelli et al. 2001). In another

approach to the classification of guideline representation formalisms, de Clercq et al.

views the formalisms developed to-date as falling into one of the following two

classes (de Clercq, Blom et al. 2000): Primitive-based approaches: model guidelines

in terms of explicit primitives that characterise the stereotypical tasks that a

guideline is to perform, e.g., actions and decisions. Examples of primitive-based

guideline modelling approaches include Arden Syntax (Hripscak, Luderman et al.

1994), PROforma (Fox, Johns et al. 1996), and GLIF (Ohno-Machado, Gennari et al.

1998). In generic problem-solving method (PSM)-based approaches , the modelling

methods do not focus specifically on guideline-based care, but focus more on

abstract behaviour of decision-support systems in general. The works of Schreiber et

al. (Schreiber, Akkermans et al. 1999), Motta (1999), and Musen et al.(1995) would

fall into this category. System behaviour is modelled in terms of independent classes

of re-usable components presented as: domain ontologies that describe concepts and

their relationship in a domain; and domain-independent algorithms, known as

problem-solving methods (PSMs), for performing generic tasks such as classification,

planning, critiquing and constraint satisfaction. Examples of PSM-based guideline

approaches are those that are based on Protégé 2000 (Musen, M. A. , Gennari et al.

1995; Grosso, Eriksson et al. 1999) such as EON (Musen, M.A. , Tu et al. 1996).

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

48

3.3.4. CGP Support in the Manipulation Plane
The manipulation plane provides the operations on and queries against guideline

knowledge and information. The operations add, delete and modify may be

performed at high-level on the collection of guideline specifications, the

specification database, e.g., adding a new protocol to or deleting an existing protocol

from the database. The operations may also be performed at a low-level on the

individual guideline specification when components are added, deleted or modified

from the specification. Manipulation of the individual guideline instance may

involve execution-oriented operations like start, stop or truncate. Queries may be

issued in order to obtain information about guideline composition and/or execution.

An example of a high-level query could be: Which protocols (specifications) in the

system would involve blood pressure measurements? An example of a low-level

query could be: Within a given protocol (specification) in the system, which part or

component requires waiting for a period of 3 months? Another important aspect of

the manipulation plane is the re-play of what happened during some period in the

past history of executing a guideline or protocol.

In guideline systems that support the creation of guideline specifications, it is usually

the case that these specifications are used to create protocol instances that execute

with respect to each individual patient. It is also possible that the generic

specification and its instances are clearly separated. Changes could be made to either

the specification or to any of the instances. If such changes are made, the

manipulation plane needs to support any form of change propagation or consistency

maintenance that may be required between components within the system. For

instance, in the Asgaard/Asbru system (Shahar, Miksch et al. 1998), during

execution, the clinician may decide to deviate from the guideline and the system

captures these deviations together with the associated intentions and allows

execution to proceed (Miksch 1999). The captured deviations may represent new

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

49

knowledge which may be used to change either the specification to create a new

version or the other instances that are already executing.

3.3.5. Requirements for Realising the SpEM Framework
In the specification plane, a declarative language is required to specify guideline or

protocol information. In the execution plane, a suitable mechanism is required to

enforce the guideline information. In the manipulation plane, manipulation

operators and a query language are required to manipulate and query the both the

specification and the execution planes. When these requirements are fully met, the

SpEM Framework ensures the full-scale manageability of information. Supporting

information management involves providing facilities for specifying, storing,

enforcing, maintaining and disseminating the information (Borghoff and Pareschi

1997; Benjamins, Fensel et al. 1998; Buckingham Shum 1998). The main aspects of

the problem of supporting guideline information management that are of interest to

this work are the three components of the SpEM Framework. Guideline information

is required to be formally specified to create generic computerised specifications,

which should be subject to persistence, execution, and manipulation in a specific

problem context. This requires: a specification model and language; a persistence

mechanism such as a database system; an execution mechanism; and a manipulation

and query language.

3.4. Clinical Guideline Management Support
Approaches and Systems

This Section presents a review of the literature on Clinical Guideline and Protocol

(CGP) modelling approaches and management support systems.

The literature review follows the SpEM Framework presented in Section 3.3. The

aim of the review framework, illustrated in Figure 3, is to establish the state-of-the-

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

50

art in the support for the full management of computerised CGPs in terms of the

SpEM framework.

Figure 3 A classification of issues in the support for the management of computerised clinical
guidelines/protocols

Of interest to the review is the support for the three planes of specification,

enforcement and manipulation. For each work or guideline system reviewed, the

several aspects will be of interest. The first aspect of interest is the support provided

by the guideline system for the specification of guidelines/protocols, which is

provided for through a specification model and its language as well as some form of

persistence for the specifications. The specification model and language for

computerised guidelines/protocols may follow one or a hybrid of paradigms which

may be rule-based (e.g., using production or ECA rules), logic-based (e.g., using

some logical criteria or constraints), network-based (e.g., using a graphical flowchart

or a network model such as augmented transition networks or Petri nets);

The second aspect of interest is the support provided by the guideline systems for

the computer-based execution of a guideline specified by using the system’s

specification language. The software mechanism to execute a guideline uses a

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

51

computational formalism that may be rule-based, network-based or a hybrid of

computational formalisms.

The third aspect of interest is the support provided by the guideline systems for the

manipulation of guidelines/protocol knowledge and information, which may be

provided from both the static and dynamic perspectives. The static perspective

includes guideline/protocol specifications and patient demographics. The dynamic

perspective includes knowledge and information about the execution process and its

output as well as modification and version information associated with

specifications. Replaying what has happened during a specified time interval is a

useful feature to include as part of the dynamic perspective for supporting

guideline/protocol manipulation. Manipulation would be made possible by

providing manipulation and query languages to handle operations and queries on the

guideline/protocol information.

 Among the pioneering works related to some aspects of the specification and

execution of clinical protocols, are that of MacDonalds et al. (1980) and East et al.

(1990). MacDonalds et al. (1980) developed a computerised medical record system

that detected and reminded the responsible clinician about clinical events that might

need corrective action. East et al. (1990) developed a computerised protocol system

to direct the management of arterial hypoxemia in critically ill patients with adult

respiratory distress syndrome. Since these early works of MacDonalds et al. and East

et al., a number of clinical guideline systems have emerged in various areas of

healthcare especially in the domains of diagnosis and therapy planning and clinical

laboratory test-ordering. The next sections present a review of some of the major

guidelines systems and works that are of interest to this study.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

52

3.4.1. Computerised Clinical Laboratory Test-Ordering
Protocol Systems
The class of clinical guidelines or protocols that are of interest to this study is that

for guiding clinicians in ordering clinical laboratory tests. Hence, before reviewing

works on computer-based support for clinical guidelines in general, this section

starts by reviewing major works that address computer-based support for clinical

test ordering guidelines or protocols.

Peters et al (1991) implemented a computerised management protocol system

(mainly for liver transplant patients), called the Liver Unit Management Protocol

System (LUMPS). The system was developed in MUMPS (Bowie and Barnett 1976) ,

a general purpose programming language with a native hierarchical database facility

which was targeted towards applications in the healthcare domain. Test ordering

protocols in LUMPS were represented in the form of production rules, which were

encoded directly in MUMPS. The aim of LUMPS was to provide the “automatic

reinforcement of locally agreed protocols of patient care, expressed as simple rules,

which prompt rather than dictate” (Peters, M., Clarke et al. 1991). The main

emphasis in LUMPS was to provide, for user-specified patient categories, from

hospital wards to the clinical laboratory information system, personalised, editable

laboratory medicine investigation protocols based on locally agreed guidelines and

dynamically reflecting current pathology (Peters, M., Clarke et al. 1991). While it

was recognised that the rules or protocols in LUMPS should be flexible, readily

upgradeable and updatable, LUMPS did not facilitate interactive modification of, or

addition of new rules or protocols. This work obtains its inspiration from the

approach developed in LUMPS.

LUMPS uses the production rule paradigm to computerise problem-oriented or

patient category based test ordering protocols for delivering a patient-specific test

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

53

order plan, which a clinician can edit and/or modify. LUMPS differs from the two

systems, BloodLink and Laboratory Advisor System (LAS), which are reviewed next,

in that it issues patient-specific suggestive prompts for test orders that would have

been locally agreed and pre-defined for a given patient category without necessarily

eliciting information from the user.

van Wijk et al (1999) developed a decision-support system, called BloodLink-

Guideline, for ordering blood tests based on clinical guidelines designed by the

Dutch College of General Practitioners for general practitioners (GPs) in the

Netherlands. The GPs use the electronic patient record to activate BloodLink-

Guideline to order blood tests (van Wijk, M.A.M., Mosseveld et al. 1999). When

using the system, a GP initially selects the appropriate guideline, e.g., liver disease.

BloodLink-Guideline then queries the GP about the reasons for requesting the tests

with the objective of identifying an indication. Based on the indication, the system

proposes the relevant tests. The GP decides whether or not to comply with the

protocol and may also add tests to or remove tests from the proposed list.

BloodLink-Guideline subsequently prints a patient-specific blood test request form

that includes the necessary patient data, the indication, the tests requested, and the

additional instructions for the laboratory. Finally, BloodLink-Guideline updates the

patient record to show what tests have been requested. If the GP’s indication cannot

be established in BloodLink, the GP can select the option “other indication”. If this

option is selected, then the system is not able to provide recommendations for test

ordering. Instead, the GP has to select the required tests by typing the initial letters

of tests (van Wijk, M.A.M., Mosseveld et al. 1999). Blood link is a pro-active system

that suggests certain tests to the clinician according to a given clinical protocol. The

authors did not discuss how guideline information is represented in the BloodLink-

Guideline system.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

54

The BloodLink-Guideline System computerises national and regional guideline

information and provides guideline-based recommendations of test orders after

having obtained a clinical indication or working hypothesis on the patient by

interviewing the clinician.

The Laboratory Advisor System (LAS) is a guideline-based expert system that works

interactively with clinicians to assist them with test selection and result

interpretation throughout the laboratory investigation of a patient (Smith and

McNeely 1999). It uses its underlying information base to optimise the laboratory

investigations for better care and low cost by optimising patient specific test

ordering strategies, providing patient-specific result interpretation, and offering

contexts-sensitive assistants throughout the process. In LAS, guideline information is

represented using two formalisms: the standard production rule representation and

an information representation scheme that is based on pattern recognition that

conceptualises expertise as a highly developed pattern recognition skill and

captures information in “pattern-consequence" relationships. In LAS, patterns are

relevant clinical information, and consequences are testing recommendations and

interpretations (Smith and McNeely 1999).

LAS uses the production rule paradigm together with a pattern recognition approach

to capture guideline information and uses the information to make appropriate

recommendations based on patient-specific information elicited from the clinician.

LAS is similar to LUMPS in its use of the production rule paradigm and to

BloodLink-Guideline in eliciting patient-specific information from the clinicians in

order to recommend which tests to order.

Bindels et al. (Bindels, de Clercq et al. 2000) developed a real-time automated

reminder system aimed at changing physicians’ test ordering behaviour. The system,

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

55

which is called The Maastricht System for the purpose of this review, uses practice

guideline information and focuses on appropriateness of test orders. The approach

of the Maastricht System is to critique the rationality of test orders at the moment

the clinicians order a test. The system consists of five components: the information

base, an order entry system, a reactive support module for issuing reminders, a

passive support module that allows clinicians to request background information

about the guideline, and a database for the electronic patient record (EPR) (Bindels,

de Clercq et al. 2000). Guideline information is implemented as independent

production rules, which are based on patient-specific data from the EPR and leads to

a reminder if the corresponding guideline is not complied with. The decision to

represent information using the production rule paradigm was made after studying

regional and national guidelines in the Netherlands. To enable reasoning about the

medical domain, an ontology built using Protégé (Musen, M. A. , Gennari et al.

1995) is used. Objects in the ontology are diagnostic tests, patient information,

medical information and reasons for the test order. Unlike the BloodLink-Guideline

system, the Maastricht system focuses on appropriateness leaving decision-making

to clinicians. It reacts only if the test order is not in compliance with the clinical

guidelines. The accuracy of the Maastricht system depends on rule management, i.e.,

with the maintenance of reminders in the rule base, and on the completeness of the

medical data provided by clinicians, i.e., the complete electronic medical record.

The Maastricht System is similar to the other systems in its use of the production

rule paradigm to represent guideline information. However, the Maastricht System

takes a different approach in its enforcement of the guideline information. It

monitors a clinician’s test orders and uses guideline information to react with

feedback when test orders do not comply with guidelines. The monitoring and

reactive feedback occurs at the moment when the test orders are being made.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

56

Table 3.2 presents a summary of the review on systems that support CGP

management for the domain of clinical laboratory test ordering.

Table 3.2 Literature review findings for the major systems that support the management of clinical
guidelines and protocols for clinical laboratory test ordering

SpEM Framework Support
Key: v - full support, * - weakly supported,

 X – no support,
Manipulation

Guideline/Protocol System Computational Formalism
Used

Specification Execution
Operation Query

LUMPS (Peters, M., Clarke et al.
1991)

Production rule * v * X

BloodLink (Bindels, de Clercq et al.
2000)

Hybrid: logic, production rule X v X X

Maastricht (van Wijk, M.A.M.,
Mosseveld et al. 1999)

Hydrid: production rule,
reactive rule

X v X X

LAS (Smith and McNeely 1999) Hybrid: production rule,
pattern rercognition X v X X

The reviewed systems support the enforcement of guideline or protocol knowledge.

Only LUMPS partially support the specification of protocols. Other systems do not

explicitly support specification of protocols. The guideline or protocol does not exist

as an explicit conceptual, logical or physical entity. In LUMPS, a guideline or

protocol is identifiable as an explicit entity, which can also be manipulated by

editing it. However, LUMPS did not provide a generic specification and

manipulation languages; In overall, the SpEM Framework is inadequately supported

as only the execution plane is supported by all systems while the specification and

manipulation planes are either not supported or are partially or weakly supported.

Furthermore, none of the systems provided a generic and unified framework and

mechanism to support different guidelines or protocols from the ones they were

designed to support.

Guideline support approaches for the clinical test ordering domain depend mainly

on the traditional production rule paradigm for knowledge representation and take

either the pro-active or reactive approach (Boran, O'Moore et al. 1996; O'Moore,

Groth et al. 1996) to the enforcement of the guideline knowledge. The pro-active

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

57

approach suggests test orders and allows the clinician to decide to accept, modify or

reject the suggested test orders. The reactive approach performs real-time

monitoring of the clinician’s test orders and reacts with feedback whenever a test

order represents non-compliance with the guideline, i.e., it critiques test orders at

the moment the orders are being made. Existing approaches and systems do not

clearly separate the specification, execution and manipulation aspects of guideline

knowledge management.

3.4.2. Guideline Models and Systems for the Domain of
Diagnosis and Therapy Planning
The major works on computer-based support for the management of guideline and

protocol information in the domain of diagnosis and therapy planning during the

past decade are presented in Table 3.3.

Table 3.3 Diagnosis and therapy guideline models and systems

Guideline
Approach/System

Organisation Reference

DILEMMA/PRESTIGE The Dilemma Consortium (Thomson 1995; Gordon and Veloso
1996)

EON/Dharmma Stanford Medical Informatics (Musen, M.A. , Tu et al. 1996; Tu, S.W.

and Musen 2001)

PROforma Imperial Cancer Research Fund and Intermed Ltd, London (Fox, Johns et al. 1996)
SIEGFRIED
GLIF Intermed Collaboratory (Ohno-Machado, Gennari et al. 1998)
Asgaard/Asbru Vienna University of Technology & Stanford Medical Informatics (Shahar, Miksch et al. 1998)
GUIDE Pavia University (Quaglini, S., Stefanelli et al. 2000b)
PRODIGY University of Newcastle-upon-Tyne (Johnson, P.D, Tu et al. 1999)
GASTON Medical Engineering Division at the Eindhoven University of Technology, the

Netherlands
(de Clercq, Blom et al. 2000)

GLARE Dipartomento di Informatica, Universita de Piemonte Orientale “Amedeo
Avogadro”, Alessandria, Italy, in collaboration with the Laboratorio di
Informatica, Azienda Ospedaliera S. Giovanni Battista, Torino, Italy

(Terenziani, Molino et al. 2001)

Arden Syntax & Medical
Logic Modules (MLM)

Columbia University (Clayton, Pryor et al. 1989; ASTM 1992;
HL7 1999)

HyperCare Politecnco di Milano (Caironi, Portoni et al. 1997)

In Table 3.3, the Arden Syntax for Medical Logic Modules (HL7 1999) and

HyperCare (Caironi, Portoni et al. 1997) are different from the rest because they

make use of the ECA rule paradigm. The following sub-sections present a brief

review on each of the major guideline models and systems with the exception the

Arden Syntax and HyperCare, whose review will be covered in Chapter 4 where the

ECA rule paradigm applications are reviewed.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

58

DILEMMA/PRESTIGE

DILEMMA (Thomson 1995) was an 1991-4 European Community (EC) AIM

Programme while PRESTIGE (Gordon and Veloso 1996) was a project under the EC

4th Framework Health Telematics Programme. The DILEMMA Project produced a

generic approach to the representation of knowledge from clinical guidelines and

protocols, which was subsequently enhanced and implemented in the PRETIGE

Project (Gordon, Herbert et al. 1996). The DILEMMA/PRESTIGE conceptual

protocol and guideline model (CPGM) is an object model that defines: the kinds of

objects or entities which may appear in a guideline or protocol; the relationships

between these objects or entities; and the attributes of these objects or entities

(Gordon, Herbert et al. 1996; Gordon, Herbert et al. 1997). The types of objects

defined include: the general concepts such as activities, acts and case-specific

phenomena, e.g., diagnosis and symptoms; the protocol structure and version; and

the expressions with several roles such as conditions defining entry-criteria, patient

characteristics, attributes of activities and contexts of care, clinical procedures, and

templates for data collection (Gordon, Herbert et al. 1997). The

DILEMMA/PRESTIGE Model consists of two main components: the first describes

healthcare in general, and the second describes clinical guidelines or protocols. The

PRESTIGE Projects guideline authoring tools include: the guideline authoring and

dissemination tool (GAUDI), which incorporates a terminology server and model

(GRAIL and GALEN); and the Guideline Editing And Authoring Module (GLEAM) .

EON/Dharmma

The EON/Dharmma (Musen, M.A. , Tu et al. 1996; Tu and Musen 2001) clinical

guideline model and system was developed at the Stanford Medical Informatics

(SMI), Stanford University. The model uses a component-based approach and the

system is a suite of re-usable software components for creating clinical guideline

applications. Therefore, as stated in Section 3.3.3, the EON/Dharmma approach is a

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

59

problem-solving method (PSM)-based approach to guideline modelling. The

approach uses an extensible set of models among which the clinical guideline model

is the core. The other models in the set are: the patient data information model, the

medical-specialty (ontology) model and a temporal abstractions model. Definitions

of decision-support services are based on a task-based approach. These decision-

support services can be implemented using alternative/different techniques. In the

EON guideline execution server, patient-specific recommendations are generated

using formalised clinical guidelines and patient data linked together through the

ontology of medical concepts in the medical-specialty model. The EON system also

includes two further components: a temporal data mediator for supporting queries

on temporal abstractions and relationships; and an explanation facility that provides

explanation services to other components within the system.

PROforma

PROforma (Fox, Johns et al. 1996; Fox, Johns et al. 1998) was developed by the

Advanced Computation Laboratory of Cancer Research in the UK. PROforma is

based on the R2L language (Fox and Das 2000) and combines object-oriented

modelling with logic programming (Fox, Johns et al. 1996). The PROforma guideline

model strives to be expressive while using, by design, only a minimal set of

modelling primitives. PROforma’s guideline model consists of a task ontology that

has four types of tasks, which are: actions, compound plans, decisions and enquiries

(Fox, Johns et al. 1996). All tasks have common attributes that describe goals,

control-flow, pre- and post-conditions.

SIEGFRIED

The SIEGFRIED (System for Interactive Electronic Guidelines with Feedback and

Resources for Instructional and Educational Development) (Lobach, Gadd et al.

1997) approach uses a relational database to construct a generalized guideline

knowledge base. The SIEGFRIED knowledge representation scheme was developed

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

60

to capture guideline content and logic within the constraints of a relational database

model (Lobach, Gadd et al. 1997). The relational database model for CPGs uses a

hybrid of structured and procedural knowledge representation formalisms to

represent guideline content and logic. In the SIEGFRIED system, a database schema

based on a relational model is used for computerizing CPGs using a hybrid of

structured and procedural knowledge representation schemes, which accommodated

all necessary representational requirements (Lobach, Gadd et al. 1997). The

SIEGFRIED knowledge representation scheme for CPGs conforms to a relational

database model without compromising expressivity or completeness. This

knowledge base was designed for use with Internet-based decision support

applications. SIEGFRIED uses the Internet to present interactive CPGs that are

customized to an individual patient and available at the point of care (Lobach, Gadd

et al. 1997). The advantages of the relational schema-based guideline knowledge

representation are:

1) ease-of-maintenance resulting from the availability of the database query

language, the SQL;

2) The generic nature of the relational model permits standard accessibility of

the clinical guideline knowledge to many applications; and

3) Since the medical record could be implemented using the relational model, it

may share the same format as guideline knowledge, making it easier to

address some of the problems of integration.

GLIF

The Guideline Interchange Format (GLIF) (Ohno-Machado, Gennari et al. 1998;

Peleg, M, Boxwala et al. 2000) is a clinical guideline specification language. It is a

product of collaboration among various research groups at Columbia, Stanford and

Harvard Universities, which constituted the InterMed Collaboratory. The main aim

of GLIF is the sharing of clinical guideline specifications among different healthcare

organisations and software systems. As a result, GLIF builds on the useful and

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

61

common features of other guideline models and emphasises on incorporating

standards used in healthcare. For instance, GLIF uses a medical data model that is

based on the Health Level 7 (HL7) Reference Information Model (RIM) (Schadow,

Russler et al. 2000). Furthermore, the expression language of GLIF was initially

based on the Arden Syntax (Hripscak, Luderman et al. 1994), an HL7 standard (HL7

1999). Currently, an object-oriented clinical guideline expression language, called

GELLO (Ogunyemi, Zeng et al. 2002), is being considered as an HL7 standard and

may subsequently replace the Arden Syntax as GLIF’s expression language.

Asgaard/Asbru

The Asgaard/Asbru (1998) clinical guideline model and system is collaborative work

between Vienna University of Technology and Ben Gurion University of the Negev,

Israel. Clinical guidelines are specified using the Asbru language, which is a time-

oriented, intention-based, skeletal-plan specification language (Shahar, Miksch et al.

1998). In the Asbru language, procedures in a clinical guideline are expressed as

skeletal plans. The Asgaard system emphasises on execution-time flexibility in the

achievement of particular intentions (Miksch 1999). Skeletal plans in the Asbru

language are made more expressive by:

1) the characterisation of plan attributes such as intentions, conditions, and

effects;

2) addition of a rich set of ordering constructs for plans; and

3) the definition of temporal dimensions for states and plans.

4) Bounding intervals are used in the language to express uncertainty in both

temporal scope and parameters (Shahar, Miksch et al. 1998).

GUIDE

The GUIDE (Quaglini, S., Stefanelli et al. 2000b) modelling approach was developed

at Pavia University and is sometimes referred to as the Pavia Model. GUIDE

integrates clinical and organisational workflow issues (Dazzi, Fassino et al. 1997). It

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

62

does so by addressing communication, coordination and medical problems which are

relevant in supporting the management of a clinical guideline or protocol in a

healthcare organisation. The GUIDE modelling approach leads to the development

of a patient workflow management system, called a careflow management system

(CfMS) (Quaglini, S., Stefanelli et al. 2000b; Quaglini, S. , Stefanelli et al. 2001),

from a detailed model of the medical work process and the organisational structure.

The medical work process is represented through clinical practice guidelines while

the organisational structure is expressed through an ontological description of the

organisation (Dazzi, Fassino et al. 1997; Quaglini, S. , Stefanelli et al. 2000a). To be

able to support the representation of sequential, parallel and iterative logic flows the

Pavia guideline model, GUIDE, uses the Petri Net formalism. The major advantage

of the Petri Net formalism, when applied to healthcare, is its ability to support the

modelling of complex concurrent processes and to integrate clinical tasks specified

in guidelines with the organisational models to manage patient careflow (Quaglini,

S. , Stefanelli et al. 2001; OpenClinical 2003).

PRODIGY

PRODIGY (Johnson, P.D, Tu et al. 1999; Johnson, P.D., Tu et al. 2000) was

developed at the University of Newcastle upon Tyne. The PRODIGY approach

focuses on supporting clinical guidelines for the area of chronic disease management

in primary healthcare. The PRODIGY guideline model is composed of two distinct

components, which are: the disease state map to model decision-making. In the

disease state map, a chronic disease is represented as a number of ‘patient states’.

Each patient state is called a scenario. At each state, a clinician has a number of

choices of actions. Actions have outcomes, i.e., a patient remains in the same or

moves to a different state at the next consultation; and a consultation template to

model the care process which consists of actions and information management that

are relevant whenever patient is seen. There is one consultation template for each

scenario.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

63

GASTON

The GASTON (de Clercq, Hasman et al. 2001) clinical guideline modelling approach

was developed in the Medical Engineering Division at the Eindhoven University of

Technology, in the Netherlands. In the GASTON approach, the guideline

representation formalism uses an ontological representation to specify a guideline in

the form of: domain ontologies, which hold domain-specific knowledge; and

method ontologies, which hold primitive and complex problem-solving methods

(PSMs) (de Clercq, Blom et al. 2000). In the GASTON framework, the Ontology

Editor is used to develop both the Method Ontology and the Domain Ontology

while the Method Library contains all methods required by the clinical guideline

and the Method Manager maps concepts in the Domain Ontology to knowledge

roles in the Method Ontology (de Clercq, Blom et al. 1999).

GLARE

GLARE (guideline acquisition, representation and execution) (Terenziani, Molino et

al. 2001) was developed by the Dipartomento di Informatica, Universita de

Piemonte Orientale “Amedeo Avogadro”, Alessandria, Italy, in collaboration with

the Laboratorio di Informatica, Azienda Ospedaliera S. Giovanni Battista, Torino,

Italy. GLARE is a modular approach for managing clinical guidelines. The GLARE

approach uses a modular architecture that allows the separation between the

specification and the execution of clinical guidelines (Terenziani, Molino et al.

2001). The GLARE representation language or formalism consists of two main

different types of actions: plans or composite actions, and atomic actions, which can

be queries, decisions, work actions and conclusions (Guarnero, Marzuoli et al. 1998).

The order of execution of these actions are defined by control relations, which

include: concurrent, sequence, alternative, and repetition constructs (Terenziani,

Mastromonaco et al. 2000; Terenziani, Molino et al. 2001).

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

64

Findings and Discussion

Table 3.4 summarises the findings of the literature review on the support for the

SpEM framework and the computational formalisms employed. Guideline support

approaches and systems for the domain of diagnosis and therapy planning provide

advanced and comprehensive modelling concepts and frameworks, and

computational formalisms. However, these guideline support approaches provide

guideline support mainly in terms of the specification and enforcement or execution

of guideline knowledge and pay little or no attention to the comprehensive support

of the manipulation, i.e., performing operations and querying of the guideline

knowledge and information about the execution process of their instances.

Table 3.4 Literature review findings for systems that support the management of clinical guidelines
and protocols

SpEM Framework Support
Key: v - full support, * - weakly supported,

 X – no support,
Manipulation

Guideline/Protocol
System Computational Formalism Employed

Specification Execution
Operation Query

DILEMMA/
PRESTIGE (Gordon,
Jackson-Smale et al.
1994; Gordon and
Veloso 1996)

Network-based: network of components, state-
transition model of action execution v v X X

EON/Dharmma
(Musen, M.A. , Tu et
al. 1992; Tu, S.W.
and Musen 2001)

Hybrid: network-based core model, Boolean
criteria, temporal patterns and selected
formalisms for suitable for each task
components

v v X X

PROforma (Fox,
Johns et al. 1996)

Hybrid: network of plans and procedures,
declarative formal logic v v X X

SIEGFRIED
(Lobach, Gadd et al.
1997)

Hybrid: Structured and procedural
representation with a relational data model v v * *

GLIF (Ohno-
Machado, Gennari et
al. 1998)

Network-based: flowchart of structured actions
and decisions.

v * X X

Asgaard/ Asbru
(Shahar, Miksch et
al. 1998)

Hybrid: hierarchical skeletal planners with a
library of various problem-solving methods. v v * *

GUIDE (also Pavia
Model) (Quaglini, S.,
Stefanelli et al.
2000b)

Network-based: flowcharts based on Petri Nets v v X X

PROGIDY (Johnson,
P.D, Tu et al. 1999)

Network-based: augmented transitions of
patient states and decisions v v X X

GASTON (de Clercq,
Hasman et al. 2001)

Hybrid: frame-based model with flowcharts and
production rules v v * X

GLARE (Terenziani,
Molino et al. 2001)

Network-based: a control network of actions
and their composites v v X X

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

65

Manipulation of guideline knowledge and the information about its enforcement is

important to allow flexibility and the ease-of-use of guideline support mechanisms.

Flexibility and ease-of-use are the major determining factors in the acceptability of

guideline systems by clinicians. In terms of the SpEM framework, the guideline

systems and models reviewed in this section support mainly the specification and

execution planes. With the exception of the Asgaard/Asbru guideline system

(Shahar, Miksch et al. 1998), most systems do not provide support for the

manipulation plane.

3.5. Implications to this Study

The literature review revealed a number of important issues that need further

research attention. First, it is necessary to develop a generic modelling and

implementation framework and its associated specification and manipulation

language for supporting the management of clinical guidelines/protocols. Second,

instead of placing emphasis merely on the specification and execution, there is a

need to comprehensively and explicitly support the manipulation (operations,

querying) of the information on computerised guidelines/protocols and their

executing instances. Thus, generic clinical protocols need not only to be

declaratively specified, stored, and executed but also to be dynamically manipulated

(i.e. operated on and queried) at the individual patient level, with both the

specification and its instances being subject to the manipulation. Third, a clear line

need to be drawn between generic guideline/protocol, and its specific instance. Most

work within the clinical test-ordering protocol domain has concentrated mainly on

developing expert systems that detect errors in test orders and abnormal test orders

and test results and reason in order to issue alerts, reminders and pagers (Overhage,

Tierney et al. 1997; Kuperman, Teich et al. 1999), without separating the guideline

specification from other aspects of the system.

Chapter 3 Computer-Based Clinical Guideline and Protocol Management

66

3.6. Chapter Summary

In summary, the literature review points to the need to address the limitations of

current approaches to supporting the management of clinical guidelines by:

• supporting both the generic guideline knowledge and the specific instances of

that knowledge resulting from the application of the generic knowledge to

specific problem circumstances; and

• supporting dynamic customisation and manipulation to allow operations and

querying of both the guideline knowledge and the objects, subjects and effects of

its enforcement.

This work recognises that the problem of managing clinical guidelines as a type of

the problem of managing knowledge and information for a given domain. This

involves the information management tasks of acquisition, formal representation

and specification, storage, enforcement in solving domain problems, manipulation

and dissemination. The development of a unified framework, a generic approach and

its implementation mechanism for addressing the problem of the management of

information for the case of clinical guidelines or protocols and similar applications is

required. This work is an effort that is directed towards addressing this requirement.

Chapter 4 The Event-Condition-Action (ECA)

Rule Paradigm and Active Database Systems

4.1. Introduction

This Chapter presents the state-of-the-art in the form of a review of the literature on

the event-condition-action (ECA) rule paradigm and active databases (ADBs), the

use of the ECA rule paradigm and active database guideline in various domains, and

the use of the ECA rule paradigm and active databases in supporting clinical

guidelines and protocols. The rest of the chapter is organised as follows: Section 4.2

presents a review of the state-of-the-art in the basic concepts and support of the

ECA rule paradigm and active databases. Section 4.3 presents a review of the

applications of the ECA rule paradigm and active databases in domains other than

the clinical guideline management domain. Section 4.4 presents a review of

approaches that make use of the ECA rule paradigm and active databases to support

the management of clinical guidelines. Section 4.5 summarises and concludes this

chapter.

4.2. ECA Rule Paradigm and Active Databases

This section presents a review of the state-of-the-art in the concepts and

applications of ECA rules and active databases.

4.2.1. ECA Rule Paradigm
In Chapter 2, the definition of the event-condition-action (ECA) rule paradigm was

presented and the context of its use in this work for supporting clinical guidelines

and protocols was also set. The introduction of the ECA rule paradigm in database

systems was necessitated by the need to free individual applications from

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 68

behavioural knowledge (Widom and Ceri 1996). This was achieved by pushing this

knowledge into database management systems. Having behavioural knowledge in

the database gives rise to knowledge independence because it freed applications

from tasks like monitoring database events arising from activities or multiple users

or applications, and periodically polling the database for events of interest (Paton

and Diaz 1999).

4.2.2. Active Databases
An active database management system (ADBMS) is a database management system

that incorporates an event-condition-action (ECA) rule mechanism and provides

ECA rule support facilities that are stipulated in the Active Database System

Manifesto (Dittrich, Gatziu et al. 1995). Passive database systems execute operations

invoked in response to external requests from users or external applications.

ADBMS extend passive ones by supporting ECA rules.

There is a subtle difference between the active and reactive systems. On the one

hand, active systems focus mainly on the task of monitoring changes in the state of a

system through criteria evaluation that uses dynamic state data and information. On

the other hand, the primary task of reactive systems is to coordinate activities

through mainly real-time sensing of the environment for the attainment of some

goal or state and usually functions with no explicit criteria evaluation. Knowledge-

based systems differ from active and reactive systems in that their primary task is to

reason using facts within the system in order to solve some problem. However, it is

important to point out that the three tasks (monitoring, coordination, and

reasoning) can overlap in each of the three systems. For clinical guideline

management, systems that lie somewhere between active and reactive systems are

the most suitable. In healthcare, emphasis is placed more on assistance in monitoring

with the aim of prompting clinicians as opposed to assistance with the reasoning

task, which is generally best left to the clinical domain experts. Furthermore, there

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 69

is a need for tools to assist with coordination and information exchange among

clinicians and healthcare organisations. The ECA rule paradigm is capable of both

monitoring and coordination as has been demonstrated in the literature (Eder,

Groiss et al. 1994; Berndtsson, M., Chakravarthy et al. 1996).

4.2.3. Advantages of Active Systems Technology
The advantages of ECA rules in the form of triggers in database systems have been

identified by Simon et al. (1995) and Appelrath et al. (1995). Triggers enable a

uniform and centralised description and maintenance of domain knowledge such as

business rules (Simon and Kotz-Dittrich 1995). The ECA rule paradigm provides a

means to express event-action dependencies in active environments. In many

application domains, event-action dependencies occur whereby an action is

performed as a result of the occurrence of one or more events. For example, in a

hospital, the action to allocate a hospital bed follows the occurrence of the patient

admission event. By using the ECA rule paradigm, these event-action dependencies

could be mapped directly into the system (Appelrath, H-J, Behrends et al. 1995).

Triggers are reliable since they are automatically invoked whenever an appropriate

event is issued by a transaction (Simon and Kotz-Dittrich 1995). ECA rule paradigm

provides an opportunity for active behaviour to be modified and extended

dynamically. This allows the customisation of an application. New behaviour and

explicit control can be added when necessary (Appelrath, H-J, Behrends et al. 1995).

Triggers are also expected to improve the performance of applications due to

applicability of better optimisation techniques made possible by the centralisation of

application semantics and their use as an effective tuning instrument to make

applications run faster (e.g. by elimination of polling, and introduction of trigger-

maintained materialised views) (Simon and Kotz-Dittrich 1995). Furthermore,

exceptions can be represented as events in a system. Thus, the ECA rule paradigm

provides an opportunity to handle exceptions in accordance with the users’

expectations (Appelrath, H-J, Behrends et al. 1995).

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 70

4.2.4. Dimensions of Active Behaviour
The main characteristics of active systems can be described in terms of the so-called

dimensions of active behaviour introduced by Paton et al. (1999). These dimensions

constitute a framework for describing active system functionality. The aspects of

active behaviour that are characterised by these dimensions are the knowledge

model, the execution model, and rule management (Paton and Diaz 1999). The

following sub-sections outline the core concepts of active behaviour in terms of the

dimensions of active behaviour. For a more detailed discussion of the dimensions of

active behaviour and related concepts, the reader is referred to (Paton and Diaz

1999).

The Knowledge Model

This model deals with what can be said about ECA rules in an active system (Paton

and Diaz 1999). In other words, the knowledge model provides the structural

characteristics of individual ECA rules as a means to define and specify the rules in

an active system. The knowledge model have the following three main components

(Paton 1999; Paton and Diaz 1999):

Event: The event specification defines the events that trigger the rule. An event

occurs at a specific time point and is instantaneous. A rule can be processed

immediately before or just after the occurrence of the event that triggers the rule.

Events can be atomic/primitive or composite. The types of atomic or primitive

events are: database events such as data manipulation events, transaction events, and

method events; time events, which can be an absolute time point, a relative time

point or periodic events; and external or abstract events originating from outside the

system, e.g.; from users, external devices or application programs. Composite events

are made up of primitive events combined using operators of the types: Boolean

operators, history operators and interval-based operators.

Condition: is a predicate, which can be a database predicate, a database query that

tests the existence of some data or information, or an external function that returns a

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 71

Boolean value. A rule condition may accept parameters from the event or pass its

own parameters to the action of the rule.

Action: The action of a rule can perform a task such as updating the database schema

or the rule-base, invoking some internal or external behaviour module, informing

the user of some situation, aborting a transaction. The rule action can also use the

do-instead construct to perform some alternative action.

Rule Execution Model

The execution model describes how a set of ECA rules are evaluated or handled by

the active system at run-time. Paton and Diaz (1999) describe six dimensions of the

execution model. Coupling modes is a dimension of the rule execution model, which

determines when the ECA rule components are processed relative one another. The

event-condition coupling mode determines when the condition is evaluated relative

to the event that triggers the rule and this can be immediate, deferred or detached.

The condition-action coupling mode determines when the action is executed

relative to the evaluation of the condition and can be immediate, deferred, or

detached. Transition granularity is a dimension that defines the relationship

between the event occurrence and the number of rules it triggers. The transition

granularity can be tuple when a single event occurrence triggers a single rule or set

when several event occurrences are used to trigger a single rule. Net effect policy is a

dimension that indicates whether or not the net effect of multiple event occurrences

should be considered in triggering a rule. If the net effect is not considered, then

each individual event occurrence is considered. Cycle policy is a dimension that

determines what happens when events are signalled by the evaluation of the

condition or execution of the rule action. The cycle policy can be iterative in which

case rule execution is not suspended to allow responses to events signalled by the

rule’s condition or action. Alternatively, the cycle policy can be recursive in which

case rule execution is suspended to allow response to events signalled by the rule’s

condition or action, i.e., rule triggering is allowed to cascade. The scheduling and

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 72

priority dimension determines how multiple rules that are triggered simultaneously

are handled. Principal tasks are the selection of the next rule to be fired and the

determination of the number of rules to be fired. Rule selection can be made easier

by assigning a priority to each rule using some priority mechanism. The last

dimension is Error handling, which determines how errors that occur during rule

firing is supported. Most modern database systems simply abort the transaction in

which the error occurs. Alternatives include ignoring the rule that causes the error,

backtracking to the point when the rule started executing and restart or proceed

with the transaction, or use some contingency plan to recover from the error, e.g.,

using an exception mechanism.

Rule Management Model

Paton and Diaz (1999) also introduced this class of dimensions of active behaviour,

which deals with the operations that can be performed on rules, how the rules are

represented, and programming support for the rules. Four dimensions are included

in rule management (see Paton 1999). Rule description is a dimension that deals

with how rules are specified. Rule description can be achieved by using a

programming language, a query language (e.g., SQL), or objects. Operations on rules

is another dimension of the rule management model. Mandatory operations are the

create and delete rule operations. Other operations that may be supported include

activate, deactivate and signal or fire a named rule. The dimension, rule adaptability,

concerns when rules may be modified. Some systems allow modification of rules at

compile-time others at run-time. Systems that support run-time adaptability may

also allow rule actions to add or delete other rules. The data model constituting the

rule environment is the last dimension for rule management. Since the data model

associated with the active rule system affects the way the rule system is designed, it

is an important dimension for rule management. When using ECA rules to support

computerised clinical guidelines and protocols, ECA rule management is of special

significance because, to support guideline knowledge management, the modelling

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 73

and implementation primitives, the ECA rules, must be manageable on a full-scale.

If rule management is fully supported in an active system, then using the ECA rule

paradigm in the modelling and implementation framework for managing clinical

guidelines would guarantee the full-scale manageability for the guidelines.

4.2.5. Support for the ECA Rule Paradigm in Modern Database
Management Systems
Modern database management systems support the ECA rule paradigm in the form

of triggers e.g. Oracle, Ingres, Sybase, DB2, MS SQL Server, Informix, Interbase and

AllBase. However, Li et. al (1999) observed that there was no modern DBMS that

supports full active capability as stipulated in The Active DBMS Manifesto (Dittrich,

Gatziu et al. 1995), although the premises of the active rule paradigm and database

technology are now well understood (Li and Chakravarthy 1999). Rule capability is

provided in many modern systems, but the capability is not sufficient as it provides

only basic triggering capability. In the next subsections, the DBMS trigger systems

or mechanisms will be reviewed as a representative form of the ECA rule support.

ECA Rule Support in Modern DBMS’s

In the SQL standard (Melton 2003), a trigger is a named ECA rule that is activated

by a transition in the database state and must be created by using the CREATE

TRIGGER statement, which is a specification of the trigger. A trigger specification

consists of the trigger table, a triggering SQL operation (the event), a trigger

condition, and a trigger action. The syntax of the creation of SQL Standard triggers is

illustrated in Figure 4.

In the SQL Standard, trigger name must be unique within a schema and the subject

table is required to be a base table (Melton 2003). The only triggering operations

allowed are INSERT, DELETE and UPDATE statement.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 74

<trigger-definition>::=CREATE TRIGGER <trigger-name> <trigger-action-time> <trigger-event> ON <table-
name> [REFERRENCING <old-or-new-value-alias -list>] <trigger-action>
<trigger-action-time>::=BEFORE|AFTER
<trigger-event>::=INSERT|DELETE|UPDATE [OF <column-name-list>]
<old-or-new-value-alias -list>::=<old-or-new-value-alias> …
<old-or-new-value-alias>::= OLD [AS] <identifier> | NEW [AS] <identifier> | OLD_TABLE [AS] <identifer> |
NEW_TABLE [AS] <identifer>
<trigger-action>::=[FOR EACH {ROW|STATEMENT}] [<trigger-condition>] <triggered-SQL-statement>
<trigger-condition>::=WHEN <left-paren> <search-condition> <right-paren>
<triggered-SQL-statement>::=<SQL-procedure-statement> | BEGIN ATOMC {<SQL-procedure-
statement><semicolon>} … END

Figure 4 The CREATE TRIGGER statement in the SQL Standard

The trigger activation time determines whether the trigger is activated before or

after the triggering operation. The trigger condition is any SQL predicate, whose

specification is not mandatory. The trigger granularity determines how many times

the trigger is activated when its triggering operation executes and occurs at two

levels: the tuple- or row-level granularity, which is specified by the FOR EACH

ROW clause; and the statement-level granularity, which is specified by the FOR

EACH STATEMENT clause. The transition tables and values are specified by the

OLD_TABLE/NEW_TABLE and OLD/NEW tuple references respectively in order to

allow the trigger action and condition to access the old and new states of the

database. Trigger priority defines when a trigger is executed relative to other

triggers. Although the SQL Standard trigger specification does not specify trigger

priority, the standard defines a default priority based on the time the triggers are

created. Table 4.1 presents a summary of the support of these trigger features in the

SQL Standard and the four main modern DBMS’s: Oracle, Informix, DB2 and the

Microsoft (MS) SQL Server.

It can be seen that Oracle and Informix offer the most comprehensive support while

MS SQL Server offers the least support when all are compared with the SQL

Standard. There are a number of limitations of the ECA rule support in DBMS

trigger systems that have been identified in the literature (Kotz-Dittrich and Simon

1999; Li and Chakravarthy 1999).

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 75

Table 4.1 Trigger features supported by SQL3 and commercial database systems

Trigger Feature SQL3 Oracle Informix DB2 MS SQL
Multiple events N Y Y N Y
Trigger activation time Y Y Y Y N
Condition present Y Y Y Y N
Tuple-level granularity Y Y Y Y N
Statement-level
granularity Y Y Y Y Y

Old/New tuple references Y Y Y Y N
Old/New table reference Y N N Y Y
Priorities Y N N N N
Cascaded triggering Y Y Y Y Y
Self triggering N Y Y N Y
Maximum cascaded/self
triggering depth 00 32 61 00 32

Explicit Authorisation Y Y Y Y Y
Time Events N N N N N

As can be seen from Table 4.1, there is a lack of support for time and temporal

events, which are important in healthcare in general and in supporting the

execution of clinical guidelines in particular. Furthermore, complex data definition

is not allowed within trigger actions. While trigger actions are allowed to call stored

procedures within the DBMS, only atomic values may be passed as parameters to

these stored procedures. Another limitation of database triggers is that there is no

direct access to other programs or external systems in the underlying operating

system. The support for events in database triggers is limited to database operations

INSERT, DELETE and UPDATE, which cannot be applied to more than one table.

An event can not be named as a separate logical entity. Although one trigger can

combine these events using the OR-operator, more meaningful composite events

cannot be specified. User-level facilities to manipulate triggers are not directly

available. Table 4.2 presents the review findings for support for the manipulation of

database triggers.

All DBMS’s support the creation and deletion of triggers. Only compile-time

modification is supported by the Oracle and MS SQL Server DBMS’s. Activation and

deactivation are not explicitly supported except by the Oracle DBMS.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 76

Table 4.2 Trigger management features supported by SQL3 and modern DBMS’s

Management Operation on Triggers SQL Oracle Informix DB2 MS SQL
Server

Creation Y Y Y Y Y

Deletion Y Y Y Y Y
Modification OR replacement N Y N N Y
Query N N N N N
Activation/ Deactivation N Y N N N
Signal from external event sources N N N N N
Separation of action execution and triggering
processor or transaction

N N Y N N

Only one of the reviewed DBMS’s, Informix, supports the separation of action

execution and the triggering transaction. Furthermore, in all of these modern

systems the only way to change rules is by recompiling the application code. In

such systems rules are generally changed or modified at compile-time only. There is

no support for dynamic management of ECA rules in all the modern systems.

ECA Rule Support in the Oracle DBMS

In this section, ECA rule support in the Oracle DBMS is reviewed. The Oracle

database system has been selected here for a more detailed review because it

provides more comprehensive ECA rule support than existing DBMS’s.

The Dimension of the Knowledge Model in the Oracle DBMS

The knowledge model of the Oracle DBMS consists of three dimensions that

correspond to the ECA rule components (Cyran 2002):

Event: The first part is the triggering event or statement, which can be one, two or

all of DELETE, INSERT or UPDATE statement on the table. For an UPDATE

triggering statement, affected columns can be optionally specified.

Condition: The second part of an Oracle trigger is the trigger restriction, which

specifies a Boolean (logical) expression that must be true for the trigger to execute its

action.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 77

Action: The third part of an Oracle trigger in the trigger action, which contains the

SQL statements and Oracle-specific language (PL/SQL) code to be executed when

the triggering statement is issued and the trigger restriction evaluates to true. The

trigger action can contain SQL and/or PL/SQL statements, define PL/SQL constructs

such as data structures and variables, and call stored procedures.

The Dimensions of Rule Management in the Oracle DBMS

Rule description: Oracle uses SQL and its extensions to describe or specify triggers.

The first part of Figure 5 illustrates the syntax for specifying a trigger to be created

in Oracle.

<Oracle trigger>::= CREATE [OR REPLACE] TRIGGER< trigger name>
{BEFORE|AFTER}<trigger events>
On <table name>
[[REFERENCING<references>]
FOR EACH ROW
[WHEN<condition>]]
<PL/SQL block>
<trigger event>::=INSERT|DELETE|UPDATE {OF<column names>]
<REFERRENCE> ::=OLD AS <old value tuple name > |NEW AS <new value
tuple name>

Figure 5 The syntax of a trigger in Oracle

The name of the trigger must be unique among all triggers within the database but

not with respect to other schema objects such as tables.

Operations on rules: Oracle supports creation and deletion of rules. Modification and

signalling operations on trigger are not explicitly supported.

Rule adaptability: Modifying an Oracle triggers can be achieved only by recompiling

with the REPLACE option or by deleting the old trigger and creating a new one to

take its place (Russell 2002). Consequently, Oracle supports the lowest level of

trigger adaptability, i.e., compile-time adaptability.

Data model: A The Oracle database system supports the object-relational data model

(Gietz and Dupree 2002). However, since Oracle triggers are defined on relations or

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 78

tables (Cyran 2002), the effective data model for Oracle triggers is the relational

model.

The Dimensions of the Rule Execution Model in the Oracle DBMS

Oracle uses the execution model whose algorithm is given in Figure 6 to maintain

the proper firing sequence of multiple triggers and cons traint checking. A single

SQL statement can potentially fire up to four types of triggers: BEFORE row triggers,

BEFORE statement triggers, AFTER row triggers, and AFTER statement triggers

(Cyran 2002). A triggering statement or a statement within a trigger can cause one

or more integrity constraints to be checked. Also, triggers can contain statements

that cause other triggers to fire giving rise to cascading triggers (Cyran 2002). An

important property of the Oracle execution model is that all actions and checks done

as a result of a SQL statement must succeed. If an exception is raised within a trigger,

and the exception is not explicitly handled, all actions performed as a result of the

original SQL statement, including the actions performed by fired triggers, are rolled

back (Cyran 2002). Thus, triggers cannot compromise integrity constraints. The

Oracle execution model takes into account integrity constraints and disallows

triggers that violate declarative integrity constraints. It is important to be aware that

triggers of different types are fired in a specific order. However, triggers of the same

type for the same statement are not guaranteed to fire in any specific order (Cyran

2002).

1. Execute all BEFORE statement triggers that apply to the statement.
2. Loop for each row affected by the SQL statement.

i) Execute all BEFORE row triggers that apply to the statement.
ii) Lock and change row, and perform integrity constraint checking.

(The lock is not released until the transaction is committed.)
iii) Execute all AFTER row triggers that apply to the statement.

3. Complete deferred integrity constraint checking.
4. Execute all AFTER statement triggers that apply to the statement.

Figure 6 Algorithm for the Oracle trigger and constraint execution
model (Cyran 2002)

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 79

For example, all BEFORE row triggers for a single UPDATE statement may not

always fire in the same order. As a result, applications must be designed in such a

way that they should not rely on the firing order of multiple triggers of the same

type.

Limitations of the Oracle Trigger Mechanism and their Implications to

this Study

ECA rule capabilities of the Oracle trigger mechanism have a number of restrictions.

The following is an outline of the restrictions together within the implications to

this study drawn from the clinical environment:

1. Oracle row triggers cannot access the table being altered by the triggering

transaction. This is called the mutating table (MT) problem (Russell 2002).

Implication I: This problem forces the use of set or statement level triggers,

which can access the table being altered but cannot access the OLD state of the

database. Only row triggers are able to refer and access the past state of data

(Russell 2002). This may force the translation of ECA rules into row triggers. An

example of a clinical domain rule that cannot be implemented due to the MT

problem is: When a new clinical lab result arrives, retrieve the last two results,

for the same test for that patient, and determine if 2 of the 3 most recent results

are above a stipulated value. Section 9.4 (c) describes how this limitation can be

addressed.

2. Oracle triggers, by their definition (Cyran 2002), monitor only one table. The

same trigger cannot monitor operations on several tables in a database.

Implication II: In the clinical environment, the execution of one action may

depend on a logical condition that involves attributes from more than one table.

This forces one to create a distinct trigger for each table to be monitored and

some form of a convergence mechanism to combine the results from the distinct

triggers. An explanation of how this limitation can be resolved is found in

Section 9.4 (c).

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 80

3. In Oracle, trigger processing is immediate (Cyran 2002) and only the immediate

processing mode is supported.

Implication III: Rules requiring triggers to be processed some time after and

detached from the triggering transaction cannot be implemented. The only

option is to adapt such rules to the immediate coupling mode. The reader is

referred to Section 9.4 (c), for an explanation of how this limitation can be

addressed.

4. Oracle triggers are executed in a fixed order and always have a lower priority

than integrity constraints. In other words, triggers that violate integrity

constraints can be prevented from executing and cause the whole transaction to

rollback.

Implication IV: This results in the possible occurrence of interference within

trigger processing or between triggers and built-in constraints. This may have

undesirable effects, if the DBMS trigger mechanism is to be used as a CGP

execution engine. See Section 9.4 (c) for a description of the strategy for voiding

possible problems that could arising from this limitation during protocol

execution.

5. In Oracle, as in most commercial database systems, events are restricted to

database operations on tables. Also atomic events can only be combined with the

OR operator.

Implication V: This means that any conceptual or domain-dependent event, such

as patient admission or discharge, needs to be mapped to or represented by

database operations on tables. This study has not addressed the important issue of

a comprehensive event algebra to support composite events. This is left to future

work.

6. Oracle triggers lack communication functionality with their environment.

Implication VI: Oracle triggers cannot control the processing of external actions

or tasks. Also synchronising external actions, tasks or programs with Oracle

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 81

triggers is difficult, especially when an ECA rule action is common to several

tasks.

7. In the Oracle DBMS, as in most other DBMS’s, management operations on

triggers are part of the Data Definition Language (DDL) (Cyran 2002; Russell

2002) as opposed to Data Manipulation Language (DML).

Implication VII: This limits the ability to effectively perform operations on and

issues queries against triggers or ECA rules by both applications and users at run-

time.

8. In the Oracle DBMS and other DBMS, triggers that specify time and/or temporal

events are not supported.

Implication VIII: All ECA rules that involve temporal events cannot be directly

implemented by using the trigger mechanism of the DBMS.

Discussion

 From the clinical guideline domain point of view, the ECA rule paradigm is useful

in that it can be used to express guideline knowledge and enforce it using the ECA

rule mechanism of a database system that holds the electronic patient record and the

patient management workflow information. The specification and execution of ECA

rules are supported, in a limited way, in modern database systems, such as Oracle 9i,

where they are commonly referred to as triggers. To use these modern database

systems to implement the ECA rule paradigm, it may be necessary to build

extensions or enhancements to address the limitations of existing facilities in the

systems and call upon system vendors to incorporate generic aspects of application

requirements into these systems.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 82

4.3. Applications of the ECA Rule Paradigm and Active
Databases

This sections presents a review of the application of the ECA rule paradigm in

active databases.

ECA rules have been used for database system extensions such as supporting

integrity constraints (Widom and Ceri 1996), for closed database applications such as

monitoring sales in a stock control database (Simon and Kotz-Dittrich 1995), and for

open database applications in which there is need to respond to situations outside

the database such as warning clinicians of changes in patient’s condition. As a

result, applications of the ECA rules in databases are also commonly classified into

two. Internal applications extend the functionality of databases. Examples of such

applications include: implementations of advanced transaction models (Geppert, A.

and Dittrich 1993); dynamic displays of database objects (Diaz, Jaime et al. 1994);

and database system monitoring and tuning (Graeser 1994). External applications use

the ECA rules in active databases to support domain-specific behaviour that requires

situation monitoring and reaction. Examples of such applications include: computer

integrated manufacturing (Berndtsson, M. 1994); coordinating knowledge and

discovery algorithms in a dynamic environment (Kawano, Nishio et al. 1994);

software development process control (Jasper 1994); banking environments (Simon

and Kotz-Dittrich 1995); and workflow and process management (Eder, Groiss et al.

1994).

From functional and behavioural points of view, Ceri at al. classified triggers into

the following nine types: constraint-preserving, constraint-restoring, invalidating,

materialized, meta-data, replication, extenders, alerters, and ad-hoc triggers. Ceri et

al. further observed that for the nine trigger types and many applications, the

primary purpose is to monitor and maintain some kind of constraint. This is in

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 83

agreement with the observation that active systems’s primary task is that of

monitoring as opposed to coordination – the primary task of reactive systems -and

reasoning – the primary task of knowledge based systems.

4.3.1. Applications of ECA Rules in Database Systems
Recently, Ceri et al (2000) noted that business rules, scheduling, supply chain

management, web applications and workflow management constitute the majority

real-world applications of active databases. ECA rule paradigm has been applied to a

wide variety of applications in an equally wide variety of domains. Schwiderski

(1996) used ECA rules with both primitive and composite event semantics that are

based on the notion of “physical time” in a distributed environment to monitor the

behaviour of distributed components of a system. To implement declarative

conceptual integrity rules found in the development of information systems, Wu

(1996) used the ECA rule paradigm based on an active mechanism of a database

system . ECA rules in an OODBMS, the O2 System, have been used to support tasks

such as: user notification, application access logging, organising related domain

objects (e.g programs), tools communication, change propagation, and maintaining

data consistency in the framework of the GOODSTEP project (Collet, Habraken et

al. 1994). The GOODSTEP Project’s main aim was to create a computer-aided

software engineering platform. The AI community has investigated static and

dynamic coordination protocols among agents. The database community has

investigated system level support for coordination in distributed/federated databases

and the specification and execution of relaxed notions of transactions/activities. In

an effort to combine these two approaches, Berndtsson et al. (1996) used pre-defined

and dynamically created ECA rules to coordinate static and dynamic plans in the

domain of cooperative problem solving. An ECA rule mechanism coupled to a

relational database was used to detect cancer clusters in tumour registries

(Appelrath, HJ, Behrends et al. 1994). ECA Rules were used to detect relevant events

that determined when it was necessary to generate hypothesis on clusters of cancer

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 84

cases in both time and space. Kawano et al. (1994) integrated active database

technology with machine learning techniques by using ECA rules as a data sampling

and knowledge discovery initiators. The ECA rules triggered the data sampling or

knowledge discovery process based on the importance or freshness of facts in the

system (database). The rules in the database were also used to perform knowledge

rule verification, modification and invalidation when certain conditions were

detected in the knowledge discovery process (Kawano, Nishio et al. 1994). Kawano

et al. (1994) also noted that the specification, refinement and assessment of

appropriate conditions and actions of ECA rules may need the use of knowledge

discovery tools, i.e., knowledge-assisted ECA rule specification. In a GUI used to

display database objects, Diaz et al. (1994) updated dynamic displays automatically as

changes occur to the database objects being displayed. ECA rules, being declarative

and modular, were used to allow the support of dynamic displays with minimal

changes to the GUI and the underlying database. Diaz et al. (1994) also used ECA

rules to support dynamic interaction between the database system and external

applications. In environmental systems there is a need for providing knowledge for

reacting to certain situations that depend on measurement values. Gutleber et al.

(1997) used ECA rules in a real-time database to reduce flooding of data from

measuring instruments to central stations and to support the management of

different alarm prescriptions on these stations. Eder et al. (1994) expressed workflow

specifications in a graphical language, compiled them into ECA rules, and executed

them in an active database-based system, thus, allowing dynamic execution of

workflows to be handled by triggers of an active database system. In another effort

in workflow management, Ceri at al. (1997) used ECA rules to support exception

handling. Events of interest included data events (modifications to workflow data),

external events (raised by external applications), workflow events (describe

workflow evolution or progress in execution), and time events (absolute or relative

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 85

time points). Data events were captured by low-level triggers installed in the DBMS

(Ceri, S. , Grefen et al. 1997).

4.3.2. Discussion and Implications
The ECA rule paradigm in active databases, as can be observed from the literature

and as noted by Ceri et al. (2000), is primarily used to address the problem of

monitoring some form of constraints that can be expressed as logical criteria. Most

of the applications are external applications in which the ECA rules are used to

support the management of domain-specific knowledge. The work of Berndtsson et

al. (1996) illustrates that ECA rules can support both monitoring and coordination

tasks such as patient monitoring and patient workflow management (termed, care

flow) respectively. The use of knowledge discovery techniques for automatic rule

specification, refinement and assessment by Kawano et al. (1994) is interesting from

the point of view of managing clinical guidelines modelled and implemented using

ECA rules and active technology. The use of ECA rule as information filters

(Gutleber, Schimak et al. 1997) can assist in addressing the problem of information

overload experienced by clinicians in data intensive healthcare domains such as

intensive care units (ICUs). Of special interest to this study is a new application

domain for active databases, which addresses the problem of managing information

and knowledge in clinical guidelines. Guideline knowledge can be represented as

ECA rules. Such an application of ECA rules would fall under the type, ad-hoc

triggers, identified in (Ceri, S., Cochrane et al. 2000). This new application may

bring into light further demands for the incorporation of special ECA support

requirements into modern DBMS. For instance, some of the important requirements

from the healthcare application domain are comprehensive and high-level facilities

for modularising, querying and dynamically manipulating ECA rules. The dynamic

manipulation of the rules should occur through other ECA rules and either

automatically with user concurrence or manually.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 86

4.4. Use of ECA Rules and Active Databases to Support
the Management of Clinical Guidelines and Protocols

This Section reviews state-of-the-art in Clinical guideline and protocol management

support approaches that make use of the ECA paradigm and active databases.

Of special interest to this study are the guideline support approaches that make use

of the ECA rule paradigm in database systems. The most significant effort that apply

the ECA rule paradigm in supporting clinical guidelines/protocols are: the Arden

Syntax and Medical Logic Modules (MLMs) (Jenders, R.A., Hripcsak et al. 1995); and

HyperCare (Caironi, Portoni et al. 1997).

4.4.1. The Arden Syntax for Medical Logic Modules
The Arden Syntax is a language for encoding medical knowledge bases that consists

of independent modules called the medical logic modules (MLMs). The Arden

Syntax and MLMs constitute the first approach that made use of the ECA rule

paradigm to support medical knowledge management. The Arden Syntax is

currently the only standard for sharing and encoding medical knowledge among

systems in various medical institutions (ASTM 1992; HL7 1999), which is an

indication of the promise the ECA paradigm has as a viable technology.

A MLM is essentially an ECA rule, which is stored as a separate ASCII file. Each

MLM is organised as a set of statements, called slots, which are categorised into

maintenance information, library information, and the actual medical knowledge

(Clayton, Pryor et al. 1989). The maintenance category of slots hold information

about the MLM such as title, filename, version, author, organisation and date. The

library category of slots hold information that is important in archiving, searching

and retrieval of the MLM such as its purpose, keywords, explanation and optional

items such as links and citations. The knowledge slot is expressed in the ECA rule

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 87

Evoke slot

Logic slot

Action slot

Data slot

When is the MLM pertinent?
• data storage
• another MLM
• application

Set of medical criteria or algorithm:
• concludes TRUE or FALSE

Executed when logic concludes
true:
• store message
• send e-mail
• return value

Mapping: MLM terms to entities
within a healthcare institution

event

condition

action

database

ECA Paradigm

MLM

Evoke slot

Logic slot

Action slot

Data slot

When is the MLM pertinent?
• data storage
• another MLM
• application

Set of medical criteria or algorithm:
• concludes TRUE or FALSE

Executed when logic concludes
true:
• store message
• send e-mail
• return value

Mapping: MLM terms to entities
within a healthcare institution

event

condition

action

database

ECA Paradigm

MLM

Figure 7 The core slots in the knowledge category of a Medical Logic
Module (MLM) and the event-condition-action (ECA) rule paradigm

format and is the core of a MLM. Figure 7 illustrates the core slots in the knowledge

category of a MLM and how these slots relate to the components of the ECA rule

paradigm. Other slots that are not shown in Figure 7 are the type, priority and

urgency slots, whose purpose have been described the ASTM Standard (1992),

which specifies the Arden Syntax for MLMs. Of interest to this study are the

knowledge slots that form the basis of the execution of a MLM according to the

ECA rule paradigm. As illustrated in Figure 7, the evoke slot specifies the events that

trigger an MLM execution. Examples of events include the passage of time, arrival of

a piece of information and invocation by another MLM. The evoke slot corresponds

to the event in the ECA rule paradigm. The logic slot specifies a set of medical

criteria, which ends with one of two possible conclude statement: either conclude

true or conclude false. The logic slot corresponds to a condition in the ECA rule

paradigm. The action slot specifies the action that must be carried out if the logic

slot concludes true. The action slot corresponds to the action in the ECA rule

paradigm. The data slot maps terms in the MLM to medical record attributes in a

database. The data slot corresponds to the database link, which is implicit in the

ECA rule paradigm.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 88

maintenance:

title: CT study with contrast in patient with renal failure;;
filename: astm_ct_contrast;;
version: 1.00;;
institution: ASTM E31.15; SMS;;
author : Harm Scherpbier, M.D.;;
specialist: ;;
date: 1995-09-11;;
validation: testing;;

library:

purpose:

Issue alert when physician orders CT study with contrast in patient with renal failure;;
explanation:

If physician orders CT scan with contrast, this rule retrieves most recent serum creatinine. If
the value is less than 1 week old, and more than 1.5, the system issues an alert to the
physician to consider the possibility that his patient has renal failure, and to use other
contrast dyes.
;;

keywords: ;;
citations: ;;
links: ;;

knowledge:

type: data_driven;;
data:

last_creat := read last {"Creatinine level"};
last_BUN := read last {"BUN level"};
;;

evoke: ct_contrast_order;;
logic:

if last_creat is null and last_BUN is null then
alert_text := "No recent serum creatinine available. Consider patient's kidney
function before ordering contrast studies.";
conclude true;

elseif last_creat > 1.5 or last_BUN > 30 then
alert_text := "Consider impaired kidney function when ordering contrast studies
for this patient." ;
conclude true;

else conclude false;
endif;
;;

action:
write alert_text || "\nLast creatinine: "||last_creat||" on: "||time of last_creat || "\nLast BUN:
"||last_BUN||" on: "||time of last_BUN ;
;;

urgency: 50;;
end:

Figure 8 A example Medical Logic Module (MLM) in the Arden Syntax: CT Study
With Contrast in Patients With Renal Failure (Scherpbier 1995)

Figure 8 presents a example MLM taken from the MLM Library (Scherpbier 1995) of

the Columbia-Presbyterian Medical Centre, New York City. This MLM is also a

sample used for the ASTM standard for the Arden Syntax for MLMs (ASTM 1992).

The medical relevance, accuracy or semantics of this MLM are not important here.

The focus of this study is on the use of the ECA rule paradigm, by using the Arden

Syntax, to express and enforce medical knowledge within a MLM. The MLM is

triggered by a physician’s order for a CT study with contrast,

ct_contract_order. Once triggered, the MLM checks if the patient, for whom

the order was made, has renal failure, and if so, the MLM issues an alert. The alert is

intended to prompt the clinician to consider alternative contrast dyes instead of

ordering the CT study with contrast, which is not suitable for patients with renal

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 89

failure. The MLM uses previous results for the serum creatinine tests that were

performed on the patient in order to determine the renal condition of a patient.

The MLMs have been applied to generating alerts, patient management suggestions,

management critiques and diagnostic scores for a wide variety of clinical domains.

Attempts have also been made to build complex care plans and clinical

guidelines/protocols by chaining MLMs in such a way that the action of one MLM

evokes the next MLMs (Starren and Xie 1994; Sherman, Hripcsak et al. 1995; Sailors,

Bradshaw et al. 1998).

Since MLMs specifications are stored as individual text files, they cannot be queried

or easily manipulated. For instance, in a study to quantify changes that occur as an

MLM knowledge base evolves, 156 MLMs developed over 78 months were studied

and 2020 distinct versions of these MLMs were observed. It was also found out that

38.7% of changes occur primarily in the logic slot while 17.8% and 12.4% of the

changes occur in the action and data slots respectively (Jenders, R.A, Huang et al.

1998). In another study, it was found out that changes in laboratory testing can

cause disruptions in MLM execution unless the code of these MLMs is revised and

modified (Jenders, R.A., Hripcsak et al. 1995). As a result, a limitation of the Arden

Syntax, which is important and of interest to this work, is the lack of support for the

manipulation, and querying and hence for maintenance of the MLMs specifications.

4.4.2. The HyperCare Guideline System
HyperCare (Caironi, Portoni et al. 1997) is a prototype system that employs the ECA

rule paradigm in the active object-oriented database, Chimera, to capture medical

knowledge. HyperCare is the first guideline system to use an active database system

for guideline management support. HyperCare does not provide a generic protocol

specification model and was created specifically to manage a domain- and

organisation-specific guideline for a specific medical condition. Consequently,

example clinical protocol specifications used by HyperCare could not be found.

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 90

HyperCare was designed solely for supporting clinical guideline compliance in the

domain of essential hypertension.

The architecture of HyperCare consists of an object-oriented schema and an active

computational paradigm implemented through ECA rules. The entities that make up

the hypertension treatment domain are represented by an object-oriented schema

through object classes. Such entities include physician, patient, drug, test, and visit.

The ECA rules representing guideline knowledge are stratified into the following

stratum in their order from top to bottom with rules in a higher stratum generating

events that trigger rules in a lower stratum: a start stratum, diagnosis stratum, start-

therapy stratum, decision stratum, increase-decrease dosage stratum, add-drop rule

stratum, consistency (integrity constraints) stratum, patient visits stratum. The

strategy for the stratification is based on the event-based stratification model (Ceri

and Ramakrishnan 1996) that imposes modularisation, readability, maintainability

and guarantees termination of the rules (Caironi, Portoni et al. 1997).

The limitations of HyperCare are:

• The difficulty in managing the rules making up the protocol;

• The lack of support for dynamic manipulation, querying, versioning and

customisation of clinical protocol specifications and instances; and

• It is an implementation of a specific guideline and does not attempt to provide a

generic formalism to support similar protocols.

4.4.3 Review Findings
Arden Syntax and HyperCare both make use of the ECA rule paradigm to specify

clinical protocols. The Arden Syntax allows the generic clinical protocols to be

specified and executed. Protocol specifications are stored as programming language

code in text files. Furthermore, there is no flexible support for the management of

both specifications and their instances. HyperCare does not support the creation of

Chapter 4 The Event-Condition-Action (ECA) Rule Paradigm and Active Database
Systems

 91

generic clinical protocol specifications. Instead, the system was built for a specific

clinical protocol, which it implements using ECA rules of an active database system.

Both the Arden Syntax and HyperCare do not create patient-specific instances.

Instead, rules in a protocol operate at a global level or have a global scope covering

all patients.

4.5. Discussion and Chapter Summary

This Chapter has presented the state-of-the-art in the ECA rule paradigm and active

database systems. The main concepts and support for the ECA rule paradigm and

active behaviour were presented. A review of the applications of active behaviour in

various domains and in the support for the management of clinical guidelines was

undertaken. The study focuses on investigating the use of the ECA rule paradigm as

a unifying concept that can be incorporated into both the conceptual modelling and

the implementation frameworks of the management clinical guidelines or protocols.

The ECA rule paradigm would offer the opportunity to make use of existing ECA

mechanisms in modern database systems. Further benefits would be that the ECA

rule mechanism can be combined with other existing technologies, such as web

technologies and database systems, for supporting integration with medical

vocabularies and the electronic medical record. In this Study, an approach that

allows the management of ECA rule-based clinical protocols is adopted. The

approach allows generic clinical protocols to be declaratively specified, stored,

executed and dynamically manipulated. Both the specification and its instances are

manageable on a full-scale.

PART 2

Part 2

 93

APPROACH: USING THE ECA RULE PARADIGM AND ACTIVE

DATABASE SYSTEMS FOR SUPPORTING THE MANAGEMENT OF

CLINICAL GUIDELINES AND PROTOCOLS

This part of the thesis first reviews the unified and generic framework, SpEM

(Specification, Execution and Manipulation), for the management of Clinical

Guidelines and Protocol (CGP) knowledge. The approach, called MonCooS

(Monitoring, Coordination and Suggestion), incorporating the method and

mechanism for computer-based management of information and knowledge for

supporting CPGs in the healthcare domain, is then presented. A specification

language, PLAN (Protocol LANguage is also presented. In the MonCooS approach,

the event-condition-action (ECA) rule paradigm and active database technology are

used as the basis for the specification and execution within the unified SpEM

framework. The rest of this part is organised as follows: Chapter 5 presents the

framework and approach for supporting the management of computerised clinical

protocols. The next chapters then give a more in-depth treatment of the three main

aspects of the problem; Chapter 6 presents PLAN, a declarative protocol

specification language that follows the ECA rule paradigm and the PLAN

specification model for specifying and storing clinical protocols; Chapter 7 presents a

generic approach and mechanism for executing formally specified clinical protocols;

and, finally, Chapter 8 presents the approach and method for the manipulation of

the information associated with the protocol specifications and protocol executing

instances.

Chapter 5 Framework and Approach for
Supporting the Management of Clinical

Protocols

5.1. Introduction

This chapter presents the generic framework, approach and method developed for

supporting the management of clinical protocol or guideline information and

knowledge. Full support for the management of clinical protocols can be provided in

terms of clinical domain information and knowledge capturing, modelling,

specification, storage, execution, manipulation and dissemination. The rest of this

chapter is organised as follows: Section 5.2 presents the problem of supporting the

management of clinical protocols and the challenge that the problem poses. For the

purpose of further clarification, Section 5.3 presents a brief review of the SPEM

framework, which was introduced in Chapter 3, for supporting the management of

clinical protocols. Section 5.4 presents the approach for managing clinical protocols

and discusses the use of the event-condition-action rule paradigm within the SPEM

framework. Section 5.5 presents the method for managing clinical protocols by first

presenting the process for managing clinical protocols, then showing how this

process fits into the framework, and, finally, identifying the enabling technologies

that are necessary to accomplish the tasks that are described in the processes. Section

5.6 presents a discussion and review of related work. Section 5.7 summarises this

chapter.

5.2. Supporting the Management of Clinical Protocols

Clinical protocols contain domain knowledge that represents best practice in

healthcare. The problem of incorporating clinical protocols into the daily routine

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 95

used by clinicians is currently a subject of special interest in Healthcare Informatics.

This Section presents a description of this problem and the challenges it offers.

5.2.1. The Problem
Ensuring clinician’s compliance to clinical guidelines is a multi-faceted problem that

involves, among many other aspects, cultural issues such as “cookbook medicine”. IT

support is only one aspect to the solution of the problem of ensuring compliance to

CGPs. As a contribution to this solution, there is a need to support and facilitate

clinical protocols through the use of computer-based mechanisms. Figure 9

illustrates the main aspects of the problem. At the core of the problem, there is

domain knowledge that exists mainly in the form of text based guidelines and

human expertise. This domain knowledge needs to be captured and expressed in a

generic format in order to allow its general usage and manipulation. To apply the

knowledge to a specific problem requires that the knowledge be enhanced through

customisation using clinical knowledge (patient data) in order to be applicable to the

specific problem situation. As part of this problem, there is a need for a specification

model and language and an execution and manipulation models and mechanisms.

There is also a need to provide support for the full-scale management of this

knowledge. Here full-scale management means that the knowledge and information

must be specifiable and executable with the output of each of these aspects being

able to be manipulated, that is, to perform operations and to issue queries. These

requirements constitutes the core of the problem of the management of information

and knowledge for supporting CGPs. In order to support the full-scale management

of CGP knowledge, a number of aspects need to be addressed. The domain

knowledge need to be specified. In order to provide support for managing clinical

protocol, the protocol knowledge must be captured into a generic and formal

specification. This requires the use of a formal specification model and language.

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 96

E
xecution and

M
anipulation M

odels
and M

echanism
s

SPECIFY EXECUTE

MANIPULATE
(queries and operations)

S
pecification
M

odel and
Language

Management of
Domain Information

and Knowledge

Domain
Knowledge

Generic
Specification

Customised
Instance

Full-Scale Management
E

xecution and
M

anipulation M
odels

and M
echanism

s
SPECIFY EXECUTE

MANIPULATE
(queries and operations)

S
pecification
M

odel and
Language

Management of
Domain Information

and Knowledge

Domain
Knowledge

Generic
Specification

Customised
Instance

Full-Scale Management

Figure 9 Aspects of protocol knowledge management

Once the specified domain knowledge in the form of the generic specifications are

created, it needs to be stored. The method of the storage must allow the knowledge

to be manipulated and queried. Before the knowledge can be used, it needs to be

customised to suit existing circumstances. The protocol knowledge needs to be

applied to a specific problem situation. This requires the generic specifications to be

customised or augmented with specific characteristics of the problem. For instance,

domain knowledge in the form of clinical protocols needs to be customised at two

important levels: the organisational level and the patient level. This customisation or

augmentation process leads to the creation of the operational instance of the

protocol. It is also important for the generic protocol specifications to be expressed

using a formal model and language in order to make it possible to execute the

customised instance of the protocol using a suitable computer-based execution

mechanism. Furthermore, in order to achieve the full-scale management of

knowledge in clinical protocols, provision must be made for the clinical protocols to

be specified, executed and manipulated. The manipulation of both the specifications

and execution aspects of the clinical protocols include three aspects. The first aspect

involves performing operations on the knowledge and the effects of the knowledge’s

application. The second aspect involves querying or browsing the knowledge and

the results of its application. The third and last aspect involves disseminating the

knowledge and the results of its application to relevant places. Providing for the

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 97

specification, execution and manipulation of domain knowledge and information in

clinical protocols insures that the mechanism for supporting clinical protocols

facilitates the incorporation of CGPs into daily clinical practice.

5.2.2. The Challenges
The complexity of information and knowledge management in the support for

clinical protocols poses a number of challenges. First, a clinical protocol is a complex

object that has multiple views. The protocol has both static and dynamic aspects that

are also evolutionary in nature. The protocol is information that can be viewed

from both a maintenance and usage viewpoint. The protocol is required to exist at

both the generic and specific levels of information requiring

transformations/translations back and forth between these two levels. Second, the

operations of addition, deletion and modification on parts of the specifications lead

to the need to support versioning. Operations on specifications and patient plans

give rise to the need for keeping the two in synchrony, that is, change propagation

between specifications and patient plans, which are the instances generated from the

specifications. Third, a patient plan goes through the processes of creation,

execution, manipulation and termination through its life. Termination occurs on

completion of execution or truncation of the patient plan. During its life, the plan

changes with time. Furthermore, due to these changes throughout its life, the

patient plan becomes a complex entity whose state and composition at time t1 may

be different from those at time t2. An interesting challenge is to make these aspects

of the plan subject to queries along the time. Fourth, the protocol is a complex entity

in the sense that it is composed of entities, which may also be complex.

Furthermore, a protocol instance has a specification as well as an executing process.

In other words, the patient plan has a static and dynamic aspect in the sense that it is

an executing process and has a retrievable specification, which is independent of the

executing process. When the operations are allowed to be performed on the static or

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 98

dynamic aspects of a patient plan, any changes introduced must be propagated

between the static and dynamic aspects.

Finding the solution to the problem of providing computer-based support for the

management of computerised clinical guidelines entails the following:

• Developing an expressive and formal representation model for the clinical

protocol knowledge;

• Automation of the enforcement of the protocol knowledge which is made

possible by a formal model and representation model and language; and

• Sharing of the protocol knowledge, which is enabled by methods and

mechanisms for customising of the knowledge to suit local and specific

circumstances and distribution of the knowledge to locations where it is needed

to be applied.

5.3. Review of the SpEM Framework for Managing
Clinical Protocols

The framework for the management, i.e., the Specification, Execution and

Manipulation, of clinical guidelines and protocols, SpEM, has been introduced in

Chapter 3, Section 3.3. The aim of the SpEM framework is to support the full scale

management of domain knowledge for computer-based clinical protocols. By full-

scale management is meant the specification, execution and manipulation of the

domain knowledge. Manipulation involves performing predefined operations and

querying. The aspect of interest to this research, which has received little attention

in the literature, is that of enabling these protocol specifications and their executing

instances to be manipulated through operations and queries. In other words, the

static specification and dynamic process of the protocol should be easy to manage.

Since the SpEM Framework for supporting protocol management has been

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 99

introduced in Chapter 3, this Section only briefly reviews the framework and

provides some further explanation.

The major aspects of the framework of the management of protocol information are

illustrated in Figure 10. The three planes, namely the specification, execution and

manipulation of the protocol specifications and their instances constitute the core of

the framework. Protocol instances are the individual patient care plans. Protocol

specifications are created in the specification plane. In the execution plane, the

customisation of protocols produces patient plans, which are then instantiated and

executed. The protocol specifications and their instances are operated on and

queried in the manipulation plane.

Specification

Management

Enforcement
Enabling

Information
Technologies

Query, dynamic

interaction and

manipulation

Query
,

Manipulati
on

and ve
rsio

n

main
ten

ance

Customisation,
instantiation and

change propagation

Specification

Management

Enforcement
Enabling

Information
Technologies

Query, dynamic

interaction and

manipulation

Query
,

Manipulati
on

and ve
rsio

n

main
ten

ance

Customisation,
instantiation and

change propagation

Figure 10 Main aspects of the SpEM framework for supporting
the management of clinical protocols

The interaction between the specification, execution and manipulation planes of the

framework consist of the manipulation of protocol specifications; the translation of

protocol specifications to executing patient plans, which involves the customisation

of protocol specifications and the enactment/execution of protocol instances; the

manipulation of the executing protocol instances. At the core of the management

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 100

planes are the enabling technologies that are based on the information technologies

for supporting tasks in each of the three planes.

Within the SpEM Framework, the ECA rule paradigm is used in a number of ways.

The model for the protocol specification uses the ECA rule paradigm as the main

knowledge representation construct. The method of execution of protocol instances

uses the ECA rule mechanism that has been described in the active database

literature (Dittrich, Gatziu et al. 1995). The mechanism for performing operations

and querying specifications and their instances, while not based on the ECA rule

paradigm, can be triggered by an ECA rule mechanism. For example, an ECA rule

fired during the execution of a protocol can execute a task that may involve

operations and queries that constitute manipulation within the framework.

Most frameworks in the literature incorporate the process of translating clinical

protocols into formal specifications that are expressed in especially designed formal

languages. Also, in these frameworks, some form of storage or persistence

mechanism of the protocol specifications is provided. However, most existing

frameworks do not pay much attention to the manipulation and querying of the

stored protocol specifications. A mechanism for executing protocol instances is

provided in almost all the works found in the literature. What makes the SpEM

framework developed in this study stand out from other solutions is the emphasis on

the manipulation and querying of both the stored protocol specifications and the

executing protocol instances. The SpEM framework’s uniqueness is based on that it

addresses the problem of computer-based clinical protocol management in terms the

three aspects of specification, execution and manipulation for supporting the

management of clinical protocols. Most approaches found in the literature address

specification and execution only and pay little or no attention to the manipulation

aspect of clinical protocol management.

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 101

5.4. The MonCooS Approach to Supporting Clinical
Protocol Management

This Section presents the MonCooS approach developed to support computer-based

clinical protocol management within the SpEM framework.

The approach developed in this study for the management of information and

knowledge in supporting computer-based clinical protocols has been named

MonCooS, an acrogym for (Monitoring, Coordinating and providing Suggestions)

The approach focuses on Monitoring, Coordinating and providing Suggestions to the

clinicians. In the literature, the common practice is to make use of AI methods that

strongly emphasise on assisting to domain experts with the task of reasoning and/or

problem-solving (Musen, M.A. , Tu et al. 1992; Miksch 1999). The MonCooS

approach makes use of protocol information in monitoring patient conditions and

coordinating interventions for purposes of suggesting further appropriate clinical

interventions such as ordering appropriate clinical laboratory tests whose outcomes

are also monitored. The aim is to provide a tool that assists domain experts while

allowing them to perform the reasoning task.

5.4.1. Use of the ECA Rule Paradigm within the MonCooS
Approach
The ECA rule paradigm plays a crucial role in the MonCooS Approach. First, an

important advantage of making the MonCooS Approach database-based is that

modern database systems already support, in a very basic way, the mechanism for

monitoring and coordination in the form of the active rule mechanism. In other

words, in a modern database system forms the basis for an execution engine for

clinical protocols. Second, by being database-based, the approach can harness the

excellent facilities available in database systems for manipulating information in the

tasks of monitoring and coordinating. Third, a further advantage of the MonCooS

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 102

approach being database – based is that future sharing of information is guaranteed

by the generic nature of databases, e.g., tools already exist to map data from

databases to XML for information exchange between systems.

5.4.2. The Protocol Management Support Process In MonCooS.
The process illustrated in Figure 11 allows clinical protocols to be formally specified,

stored, enforced or applied in problem solving, and manipulated through querying

and operations.

=

Domain Information
And Knowledge

Clinical
Test -Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Querying Operations

Domain Information
And Knowledge

Clinical
Test -Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Querying Operations

Figure 11 The process of supporting the
management of clinical protocols

As illustrated in Figure 11, to comprehensively support the management of

computerised clinical protocols, several aspects need to be incorporated and

coordinated as components of the management process. Domain knowledge that

exists in the form of expertise and literature on recent advances and discoveries in

medical knowledge is the source of clinical protocols. The translation of this domain

knowledge into clinical protocols is done by clinicians and is outside the scope of

this thesis. Formal representation of protocols and creation of formal specifications

and their subsequent storage is an important aspect of the computerisation of CGPs.

The instantiation and execution/enforcement of computerised CGPs with respect to

specific individual patient cases is a vital component of the management of

computerised CGPs. The manipulation of both the formal specifications and the

enforcement process consists of the two aspects: querying; and performing pre-

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 103

defined manipulation operations on them. The process illustrated in Figure 5.3

covers all aspects that ensure that the interaction and information related to the

clinical protocol are manageable.

The SpEM framework for protocol management, presented in Section 3.3 of Chapter

3, and further explained in Section 5.3, is made up of the specification, execution,

and manipulation planes. Figure 12 enhances Figure 11 by illustrating how the

clinical management process fall into the three planes of the SpEM framework. The

management process is fitted into the framework as follows:

• Specification plane: protocols are translated into formal specifications which are

stored in a suitable form;

• Enforcement plane: the stored specifications are used to create patient plans that

are executable by a computer-based execution mechanism; and

• Manipulation plane: the stored specifications and the executing patient plans are

manipulated using pre-defined operations and queried.

..

Domain Information
And Knowledge

Clinical
Test-Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Querying Operations

Specification
Plane

Manipulation

Plane

Enforcement or
Execution Plane

..

Domain Information
And Knowledge

Clinical
Test-Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Querying Operations

Specification
Plane

Manipulation

Plane

Enforcement or
Execution Plane

Figure 12 The clinical protocol management support process in
the context of the SpEM framework

It is interesting to note that storage is at the intersection and, hence, plays a central

role in the SpEM framework. This suggests the crucial role in which database

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 104

technology can play in supporting protocol management. An interesting question is:

To what extent can a database system support every process in each of the three

planes? The answer to this question is presented next.

Use of the Database for Supporting the SpEM Framework and the

MonCooS Approach

Supporting the specification plane: Formal protocol specifications are stored in the

database. However, the process of translating guidelines to formal protocol

specifications may not be directly supported by using database technology.

Supporting the execution plane: Important tasks in the execution plane are: the

execution of protocols and the storage of information resulting from the execution.

Execution can be supported by database technologies such as triggers, stored

procedures and integrity constraints. Storage is the core function of a database

system. Therefore, the whole of the execution plane can be supported through the

use of database technology.

Supporting the manipulation plane: The manipulation plane involves queries and

operations, which are performed on the information and knowledge that form part

of managing clinical protocols. The database systems provide querying and

operations on the data that they hold. Therefore, the manipulation plane can be

fully supported by the use of database technology.

The Method for Protocol Management Support

Figure 13 is an enhancement of Figure 12 by adding information on the enabling

technologies to illustrate the method of supporting the management of clinical

protocols.

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 105

Model and Language: e.g.,
structured plain text- or XML-based

Execution Mechanism:
e.g., ECA rule paradigm,

database systems

Domain Information
And Knowledge

Clinical
Test-Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Guidelines,
Medical Records &

Workflow
Manipulation and Query

Language: e.g.,
SQL- or XQL-Based

Querying
Operations

Specification
Plane

Manipulation

Plane

Enforcement or

Execution Plane

Model and Language: e.g.,
structured plain text- or XML-based

Execution Mechanism:
e.g., ECA rule paradigm,

database systems

Domain Information
And Knowledge

Clinical
Test-Ordering

Protocols

Enforcement
(Execution)

Formal
Protocol

Specification

Storage of
Protocol

Specification

Guidelines,
Medical Records &

Workflow
Manipulation and Query

Language: e.g.,
SQL- or XQL-Based

Querying
Operations

Specification
Plane

Manipulation

Plane

Enforcement or

Execution Plane

Figure 13 The enabling technologies for supporting protocol
management

The method for supporting the management of protocols involves the provision, to

the process within the framework, of following enabling technologies:

• Model and language for supporting the Specification Plane;

• Execution mechanism for supporting the Enforcement Plane; and

• Manipulation and query language for supporting the Manipulation Plane.

A declarative language, the Protocol LANguage, PLAN, together with its model,

were developed. PLAN uses the event-condition-action (ECA) paradigm as the core

representation construct for specifying clinical protocols. The storage of the ECA

rule-based protocol specifications is achieved by the use of the relational database

model. For each patient, the relevant protocol is customised and installed as an

instance within the ECA rule mechanism of a database system. The execution of the

patient plan proceeds according to the ECA rule mechanism which monitors events

in the local patient record and the time points of interest to the protocol. Thus, the

same database where protocol specifications and the patient record are held can also

be used as the execution mechanism for the protocols. Provision is made to perform

operations and to issue queries against the protocol and instance specifications and

Chapter 5 Framework and Approach for Supporting the Management of Clinical
Protocols

 106

the instance’s execution process and state. A suitable query and manipulation

language is used for this purpose.

5.5. Chapter Summary

This Chapter has presented a description of the general problem of supporting the

management of clinical protocols. At the core of this general problem, clinical

guidelines need to be formally specified to create generic specifications, which later

require customisation in order to be applied to a specific clinical problem scenario.

This chapter has also reviewed the SpEM framework, which was presented earlier

on in chapter 3, for supporting the management of clinical protocols. An important

feature of this framework is the inclusion of a plane for the manipulation of

information and knowledge as one of the core and essential aspects in addition to

the usual specification and execution planes. This chapter has also presented the

MonCooS approach for supporting the management of clinical protocols by using an

active database-based approach that the places more emphasis on monitoring and

coordination than on reasoning. The protocol management support method is

centred on the knowledge and information database. This database is where

specifications are held. The execution mechanism relies for its initial enactment, its

progress and the information it generates on this database. It is also against this

database that the manipulation of protocols and their executing instances through

queries and operations is applied. Central to the SpEM framework, and the

MonCooS approach, is the use of the ECA rule paradigm for supporting the

management of clinical protocols. The next three chapters will discuss in detail the

MonCooS approach from the perspective of the three identified management planes:

specification, execution and manipulation.

Chapter 6 Supporting the Specification of

Clinical Protocols

6.1. Introduction

Clinical guidelines and protocols exist as natural language documents promulgating

results of medical research or clinical trials. They may also exist as human expertise

or as an unwritten part of organisational custom and culture. To support the

effective management of knowledge in clinical guidelines and protocols there is a

need to support the creation of computer-based specifications of clinical guidelines

or protocols. These specifications should be generic so that they can be applied to

different patients or to different organisations. The specification must be formal so

that computational techniques could be used in supporting the management of these

specifications. To support the specification of clinical protocols, the Protocol

specification LAN guage, PLAN (Wu, B. 1998), was developed. The aim of this

chapter is to present the protocol representation model, a description of the

language, PLAN, and the methodology for modelling protocols, which were

developed for supporting the specification of clinical protocols by using the event-

condition-action (ECA) rule paradigm.

This chapter is organised as follows: a brief background to PLAN is presented in

Section 6.2; some definitions of terms and concepts as they are used in PLAN are

presented in Section 6.3; the protocol specification model is presented in Section 6.4;

the syntax of protocol specification language, PLAN, is presented in Section 6.5; the

methodology for modelling protocols with domain expert involvement and

specifying the resulting protocols in PLAN is described in Section 6.6; a discussion of

Chapter 6 Supporting the Specification of Clinical Protocols

 108

issues in this chapter and related work is presented in Section 6.7; and, finally,

Section 6.5 presents a summary of this Chapter.

6.2. Background to the Specification Language, PLAN

PLAN, the Protocol specification LANguage, was initially proposed by Wu (1998).

PLAN is a generic and declarative language that uses the ECA rule paradigm to

specify domain knowledge, which needs to be enforced by a computerised

mechanism. In this thesis, PLAN is used for defining or specifying clinical protocols.

In his original proposal, Wu (1998) stated the aims of the design of the protocol

specification language, PLAN, as being to allow the language to be:

• Easily usable by domain experts such as doctors and nurses in daily practice;

• Rich enough to specify a wide range of domain situations and tasks in the form

of ECA rules;

• Flexible enough to describe different domains;

• Able to be implemented easily by using an Active Mechanism;

• Easy to integrate with systems and data that are in routine use within the

application domain, in this case, healthcare; and

• Generic enough to be used in other domains with similar requirements (Wu, B.

1998).

The following sections present PLAN and the concepts and model behind PLAN as

enhanced and refined in this work (Dube 2000b, 2000a; Wu, B. and Dube 2001).

6.3. Definitions of Terms and Concepts in PLAN

This section presents some definitions and explanations of terms and concepts as

they are used in PLAN for specifying clinical protocols.

A patient category is a problem, disease or symptom-based classification of patients.

Patient categories are created for the purpose of grouping patients with the same

Chapter 6 Supporting the Specification of Clinical Protocols

 109

clinical problem. A single clinical protocol (defined next) is defined for each patient

category. A clinical protocol contains domain knowledge that is applicable to the

solution of the problem that forms the basis of a patient category. This research aims

at providing automated assistance or support to the task of applying or complying

with clinical protocols to a specified patient category. A patient is placed into a

given category by the clinician who decides whether or not the patient satisfies the

criteria for entry into that category.

A clinical protocol is a generic specification of a programme of clinical

tasks/interventions to be applied to patients in a given patient category based on

locally agreed or consensus clinical guidelines. As conceptualised in PLAN and its

model, the clinical protocol is used as a template that is to be customised in order to

construct a patient plan (defined next) for a particular patient in a patient category.

A clinical protocol contains two main components: a set of criteria-based schedules

to cover all the variations in the condition of patients in the patient category, and a

set of protocol rules.

A patient plan is a description of performing a set of situation- or time-dependant

actions for the care of an individual patient. A patient plan is derived from a

specification of a protocol associated with a given patient category. The derivation of

a patient plan from a protocol involves customising the protocol using patient-

specific attributes. Every patient plan is associated with an individual patient for a

particular time duration. During its life time, a patient plan can be in any one of the

states:

• Ready: when a plan has been created from the protocol specifications by

customising and linking it to an individual patient;

• Active: when one or more rules in the plan can be fired and executed

• Suspended: when all rules in a plan are temporarily deactivated; and

• Terminated: when the plan expiry period has passed or then the plan has been

stopped by a user.

Chapter 6 Supporting the Specification of Clinical Protocols

 110

A static Rule is a rule that performs a clinical task, activity or action subject to time

being at a specified absolute value or within a specified time interval. A Static Rule

can be regarded as an event-condition-action (ECA) rule with a condition that

always yields a value of ‘True’. The term static rule for describing a rule refers to the

idea that the firing time of the rule is predetermined and definite on creation of the

rule. Further to this, the rule is not associated with any logical event except a time

event. In the specification of a Clinical Protocol, a Static Rule exists as either a

Protocol Rule or a Schedule Rule.

A dynamic rule is an ECA rule that performs a clinical task, activity or action for the

care of a particular patient, in reaction to some condition being satisfied after some

event has occurred. In the specification of a clinical protocol, a Dynamic Rule exists

as either a Protocol Rule or a Schedule Rule. A Dynamic Rule in a Patient Plan is an

instance of a Protocol Rule, a Schedule Rule or a Global Rule, which is contained in

a Protocol associated with a Patient Category to which the Patient belongs. The

term dynamic rule refers to the fact whether or not the rule will fire and/or execute

is determined dynamically depending on the situation at any point during the

execution process.

The state of a rule indicates if the corresponding rule is applicable at any moment

during the lifetime of the containing protocol or schedule. There are basically three

types of rule states. In the active state, the rule is applicable now. An active rule can

be in either the executing or the waiting sub-state. In the inactive state,: the rule is

not applicable now. Sub-states include pending, stopped, finished or deleted.

Schedule: a Schedule is a set of static and dynamic rules that apply to a specific

clinical variation in patient condition within a given Clinical Category. Schedules

form part of the specification of a Protocol.

A protocol rule is a static or dynamic rule in a protocol specification that is

independent of any schedule in the protocol. The scope of a protocol rule is entire

protocol or a single patient category. The protocol rule dynamically monitors an

Chapter 6 Supporting the Specification of Clinical Protocols

 111

event of interest and performs actions (order tests, page medic, modify schedule,

etc.) based on certain inputs e.g. test results and vital signs data.

A schedule rule is a static or dynamic rule that is similar to a Protocol Rule only that

its scope is the Schedule that is contained in a Protocol.

A global Rule is a static or dynamic rule whose scope includes all patient categories

or all protocols defined in the system. Global rules are defined to apply irrespective

of the protocol being followed for the patient. In other words, a global rule applies

to all protocols and monitors every patient in the system. Thus global rules

organisation-specific.

6.4. The Protocol Specification Model

The model of protocol specifications for use with the specification language, PLAN,

is illustrated by means of the UML class diagram, in Figure 14 The figure shows the

entities and relationships between the protocol representation constructs and the

problem domain-specific entities. At a generic level, the model of protocol

specifications consists of representation primitives, structure constructs, patient

model and operational state representation.

Representation primitives form the basic building blocks in the protocol

specification model. Structure constructs are high-level compound entities that are

built by combining the representation primitives together. The patient model, while

it is not explicitly part of the specification language, PLAN, forms the application

domain basis and provides the vocabulary for the other components of the model.

Operational state models the dynamic aspects of the support system such as the

states of execution objects and processes, and domain objects, such as patients.

Chapter 6 Supporting the Specification of Clinical Protocols

 112

Figure 14 The detailed model of a protocol specification
in terms of the UML class diagram

A protocol is associated with one and only one patient category. A patient category

may contain many patients. Patients in the same category will be subject to the same

protocol. For simplicity, a patient may belong to one category. However, in the real

world, a patient experiencing co-morbidities may belong to more than one category

and become subject to more than one protocol since a patient may suffer from more

than one disease. For example, a patient with diabetes may also have renal and

vascular diseases, and may be required to be assigned to the corresponding disease

categories. The case for co-morbidities is left to future work.

Each patient will have a patient plan based on the general protocol for a given

category. Such a patient plan will take into consideration the patient-specific

circumstances. A protocol may be associated with many patient plans. A patient plan

is associated with only one protocol from which it is derived. For simplicity, each

patient will have only one patient plan at any time and each patient plan must be

associated to one Patient. In the real world, it is necessary to allow a patient to have

more than one patient plan each derived from the protocol associated with each of

Chapter 6 Supporting the Specification of Clinical Protocols

 113

the categories to which the patient is assigned. The patient plan can be viewed as a

customised version of the protocol.

A clinical protocol’s logic is contained in one or more protocol rules (static and

dynamic rules) as well as one or more schedules. A protocol can contain many

schedules, each of which may not be mandatory for every patient. The logic of a

schedule is contained in one or more schedule rules (static and dynamic rules).

Protocol and schedule rules differ only in scope. The scope of a schedule rule are the

patients for whom the schedule applies. The scope of protocol rules is simply the

entire set of patients in a category. In other words, protocol rules may also be

viewed as category rules and are mandatory for all patients who are subject to the

protocol. A protocol rule may not be shared by many protocols. Global rules, which

may be static or dynamic rules, do not belong to a protocol but stand alone as rules

that apply to all patients across all categories or the entire health care unit or

organisation.

6.4.1. Protocol Representation Primitives in PLAN
This section describes the protocol representation primitives, which are the basic

lowest-level building blocks for protocol specifications. Figure 15 illustrates the core

representation primitives for PLAN.

Figure 15 The core representation primitive constructs in PLAN

Chapter 6 Supporting the Specification of Clinical Protocols

 114

The Event

An event is an occurrence of interest in a given domain and requires some reaction,

which may be manual or automated. From a theoretical perspective, a primitive

event is instantaneous, atomic and bound to a specific point in time. This makes

event detection easier as it eliminates contentious issues such as when to signal the

occurrence of a day-long event. However, in real life, events can be long running

activities consisting of one or more processes. This thesis focuses on events within

the clinical domain and borrows ideas and concepts on clinical events found in

literature, especially the work of Hripcsak et al (1996). A broad range of

occurrences are covered by the generic term clinical event. Hripcsak et al (1996)

researched into the design of a clinical event monitor and identified the following

examples of simple clinical events: registration and administrative events patient

visit, admission, discharge and transfer; laboratory test-related events such as

ordering and receiving results of tests; distribution of medication by the pharmacy

in response to prescriptions; and scheduling of major procedures. Anything that can

happen to a patient can be considered a clinical event. Event monitoring is an

important task in the care of patients. Hripcsak et al (1996) also identified the

benefits of automated monitoring of clinical events to include:

• The interpretation of laboratory results; warning clinicians about medication in

cases of allergies;

• The detection of drug-to-drug interactions and side-effects;

• Automated prompts for suggesting a diagnosis or a new treatment option; and

• The co-ordination of complex tasks that are part of a clinical guideline.

Besides the simple events mentioned above, there are also other types of events.

Temporal Events are a type of events that refers to occurrences of instances in time.

The following are subtypes of the type, temporal events: absolute time events;

relative time events: these are time points that occur relative to some reference time

point (the zero time); and periodic time events. Abstract Events are conceptual

events. This thesis will leave the support for temporal and composite events in

Chapter 6 Supporting the Specification of Clinical Protocols

 115

clinical guidelines to future work. While the significance of these type of events in

guideline systems is recognised, the prototype system developed in this thesis will

initially support only simple clinical events and focus more on supporting the

overall management framework.

The Condition

Clinical events trigger the logical criteria evaluation that leads to a determination of

whether or not an appropriate clinical intervention is warranted. Examples of

conditions in the clinical domain are: the presence of a disease, a result that exceeds

a threshold and an age limits. Clinical criteria may be difficult to express as

computable conditions. Such criteria may require eliciting the experts (clinicians) in

order to evaluate them. Clinical protocols may be expressed as sets of criteria and

actions. For purposes of this study, support is provided only for simple conditions

that can be specified as logical expressions that are meaningful to the application

domain. Within the ECA rule paradigm context, a condition is a Boolean expression

that is evaluated when an event of interest occurs. A simple condition involves the

comparison of a single attribute with an absolute value while a compound condition

consists of conditions combined with the AND-OR connectives

The Action

An action is a set of operations meaningful to the application domain. The action of

a rule may be to give suggestions, e.g., relating to clinical laboratory investigations

and prescriptions; send messages of any of the types: alert, interpretation,

maintenance, screen and patient state information; communicate with other systems

such as workflow and patient record systems; and perform operations on other rules

such as causing another rule to execute, scheduling the firing of other rules,

terminate other rules, and adding or deleting another rule. Ideally, a single rule may

perform several actions.

Chapter 6 Supporting the Specification of Clinical Protocols

 116

6.4.2. Representation Constructs in PLAN
Representation constructs in PLAN are illustrated in Figure 16. These constructs are

named entities that are composed of the representation primitives. In this PLAN, the

protocol representation constructs are the ECA rule, the schedule and the protocol.

The next paragraphs describe these constructs

Figure 16 The structure of the representation construct
in PLAN

The Rule

The rule is a protocol modelling construct that combines the three basic primitives,

event, condition and action, into a single entity. A rule in the specification model is

expressed in the form of the Event-Condition-Action (ECA) paradigm (Dittrich,

Gatziu et al. 1995), with the semantics that the action specified in the rule will be

performed when the rule is triggered by some events and the rule’s condition is

satisfied. In clinical protocol modelling, the only approaches that use the ECA

paradigm as a modelling construct are the Arden Syntax for Medical Logic Modules

(Hripscak, Luderman et al. 1994) and HyperCare (Caironi, Portoni et al. 1997).

The Schedule

The Schedule is a protocol modelling construct that combines static and dynamic

rules into a single module. However the schedule in a protocol is different from the

schedule in a patient plan in that the schedule in a patient plan only holds static

Chapter 6 Supporting the Specification of Clinical Protocols

 117

rules whilst in a protocol it holds both static and dynamic rules. This is so because

when a plan is created, all rules are placed into one of two sets: the set of static rules,

which becomes the plan’s schedule, and the set of dynamic rules.

The Protocol

The protocol is the highest level construct in the protocol representation model for

PLAN. It combines the set of protocol rules and the set of schedules into a single

module, the protocol itself.

6.4.3. The Patient Record, Patient States and Execution States
in PLAN
Patient record: In the model used in this Study, the patient record plays an

important role. The ECA rules that make up the protocol are designed to monitor

the patient record for events of interest. Our model assumes that the patient record

and the ECA rule paradigm are based on the relational data model. It is the changes

that occur within the patient record that determine whether or not rules in a patient

plan will execute.

Operational state: Figure 17 illustrates the UML class model of the operational state

for a clinical protocol.

Figure 17 The UML class model of the operational
state

The state of a patient within a given protocol is modelled during the specification of

the protocol. The UML state chart is the tool used to model the patient states that

are relevant to a protocol. The protocol rules are derived from the UML state chart.

Chapter 6 Supporting the Specification of Clinical Protocols

 118

Section 6.6 presents the method developed for modelling protocols using the UML

state chart.

The states of the execution of a protocol instance are regarded, as an important

property of the execution mechanism. In general, patient states and execution states

are closely related concepts to the extent that most systems model only one or the

other but not both (Wang, Peleg et al. 2002). This study takes the approach that

patient states are important in modelling the protocol knowledge while execution

states are important in the protocol execution phase.

6.4.4. Discussion
This Section has presented the protocol specification model and its basic concepts

and terms. The information representation primitives in PLAN are the event,

condition and action. These primitives were described from the clinical domain

perspective. The section also introduced the higher-level protocol representation

constructs in PLAN, which are the ECA rule, the schedule and the protocol. The

later two are essentially collections of ECA rules. The important role in PLAN of the

patient record was highlighted. The patient record plays a central role in the

execution of a PLAN-based protocol since the changes in the patient record drive

the execution ECA rules. This study takes the approach in which the patient record

and the ECA rule mechanism are combined within a database management system

environment. Patient states may play a important role during the protocol

knowledge modelling and specification phase. Patient states may also form the basis

of the execution of a protocol. Execution states are more relevant during the

execution phase of protocol instances. This section has described the protocol

specification model on which PLAN is based by using the UML class model to

illustrate the relationship among the protocol representation constructs and between

these construct and relevant problem domain entities such as patient categories and

patients.

Chapter 6 Supporting the Specification of Clinical Protocols

 119

6.5. The Protocol Specification Language, PLAN

This section describes the protocol specification language, PLAN, and presents an

example of a clinical protocol specification expressed in natural language and in

PLAN.

6.5.1. Description of PLAN
In PLAN, a protocol specification has the BNF syntax illustrated in Figure 18. (See

Appendix A for a full listing of the Backus – Naur Forum (BNF) syntax of plan)

<protocol> ::= PROTOCOL <protocol_header>; <protocol_body>; END PROTOCOL.
<protocol_header> ::= <protocol_name>,<description>,<creator>,<category>;
<protocol_body> ::= <schedule_set> ; <protocol_rule_set>;
<schedule_set> ::=SCHEDULE_SET <schedule_list> END SCHEDULE_SET
<protocol_rule_set> ::= RULE_SET <protocol_rule_list> END RULE_SET

Figure 18 The PLAN syntax of a protocol

A protocol consists of a header followed by a body started and terminated by the

words PROTOCOL and END PROTOCOL respectively. The protocol header

consists of the name and description of the protocol and associates the protocol with

its creator and the patient category.

 PROTOCOL microalbuminuria;
 DESCRIPTION: protocol for micro-albuminuria patients;
 CREATOR: Dr John Doe;
 CATEGORY: MA1;
<set of schedules>;
<set of protocol rules>
END PROTOCOL.

Figure 19 Structure of a protocol specification
in PLAN

For instance, Figure 19 illustrates an hypothetical example for the specification of a

protocol header. The name of the protocol is microalbuminuria. This protocol was

Chapter 6 Supporting the Specification of Clinical Protocols

 120

created by Dr John Doe for patient category MA1. The body of the protocol consists

of the set of schedules and the set of protocol rules.

The Schedule: In PLAN, a schedule specification has the BNF syntax illustrated in

Figure 20.

<schedule> ::= SCHEDULE <schedule_header>;<schedule_body> END SCHEDULE
<schedule_header> ::= <schedule_name>,<schedule_description>
<schedule_body>::= <entry_criteria>; <schedule_rule_set>;
<schedule_rule_set> ::= SCHEDULE_SET <schedule_list> END SCHEDULE-SET
<schedule_list> ::= <schedule> | <schedule>;<schedule_list>
<schedule> ::= <schedule_rule>| <schedule_rule>; <schedule_rule_list>
<schedule_rule> ::= <static_rule>|<dynamic_rule>

Figure 20 The PLAN syntax of a schedule

The Schedule specification is started by the word SCHEDULE, followed by the

schedule header and body, and terminated by the words END SCHEDULE. The

schedule header consists of the schedule’s name and description while the schedule’s

body is a list of static and dynamic rules. For example, Figure 21 illustrates the

structure of the specification of a schedule in PLAN.

SCHEDULE microalbuminuria_sch,
 DESCRIPTION: micro-albuminuria schedule for patients with confirmed
 diabetes;
 ENTRY_CRITERIA,
 CONDITION: confirmed_diagnosis = DIABETES,
 DESCRIPTION: pre-condition for entry to the micro-albuminuria schedule;
 <list of schedule rules>
END SCHEDULE

Figure 21 Structure of the specification of a schedule in PLAN

In Figure 21, a schedule named microalbuminuria_sch that is applicable for patients

who are confirmed diabetics is specified. The body of the schedule is a list of

schedule rules, which are represented in Figure 21 by the place holder <list of

schedule rules>.

Chapter 6 Supporting the Specification of Clinical Protocols

 121

The static rule: Figure 22 illustrates the BNF syntax of the specification of a static

rule.

<static-rule> ::= <rule_header>,[<description>,]<time_events_spec>,<action_spec>
<rule_header> ::= STATIC_RULE <rule_name>
<time_events_spec> ::= <zero_point>,<start_point>,<end_point>,<time_event>
<zero_point> ::= FROM: <identifier> | <domain_term>
<start_point>::= STARTING: <time_length>
<end_point>::= ENDING: <time_length>
<time_event> ::= ON: “{“<time_event_list>”}” <time_unit> | ON_EVERY: <time_length>
 <time_event_list> ::= <integer> | <integer>, <time_event_list>
<time_length> ::= <integer><time_unit>
<time_unit> ::= MINUTES | HOURS | DAYS | WEEKS | MONTHS | YEARS

Figure 22 The PLAN syntax of a static rule

The static rule’s specification consists of a rule header, followed by an optional

description, then time event specification and, finally, the specification of the rule’s

action. The header is made up of the label, STATIC_RULE, followed by the name of

the rule. Time event specification consists of a zero time point, <zero_point>, a start

time point <start_point>, an end time point, <end_point>, and a frequency interval,

<interval>. Figure 23 illustrates the structure of a static rule in PLAN.

STATIC_RULE ma1sr1,
DESCRIPTION: rule orders test during the period of the diagnosis of
microalbuminuria,
FROM: start_of_protocol,
STARTING: 1 WEEK,
ENDING: 3 MONTHS,
ON_EVERY: 1 MONTH,
DO: order_test ('A');

Figure 23 An example static rule in PLAN

In Figure 23, the name of the static rule is ma1sr1. The static rule ma1sr1 orders test

‘A’ every month for the three months from one week after the protocol is

instantiated. Using a static rule, actions may be scheduled for one-time execution,

or for repeated execution at regular intervals.

Chapter 6 Supporting the Specification of Clinical Protocols

 122

Table 6.1 Example specifications of the static rules in PLAN

DOMAIN EXAMPLE FORMAL DEFINITION GENERIC
SPECIFICATION PLAN SPECIFICATION

Order a test or perform
appropriate action at a
given absolute time point

sr1 = <d, a> where d -
absolute date, a – action

ON 30-Jul-04
DO order anti-DCV

STATIC_RULE sr1
DECRIPTION: once-off order of a
test
FROM: start_of_protocol
STARTING: 30-July-04
ENDING: 30-July-04
ON: 30-July-04
DO: order_test(“anti-DCV”)

Order a test or perform
appropriate action at
regular time intervals
from a one specified
time point to another

sr2 = <T0, T, a>. where T =
(T1, T2), T1 is time length of
the same unit as that of T0 ,
T2 is the either a time length
or an absolute time point or
a domain-dependent
conceptual time point.

FROM date-of-
conception
ON EVERY 3
months UNTIL 9
months
DO order “blood-
test”

STATIC_RULE sr2
DECRIPTION: once-off order of a
test
FROM: date-of-conceptin
STARTING: 1 week
ENDING: 9 months
ON: 4 weeks
DO: order_test(“blood-test”)

Order a test or perform
appropriate action at
each point in a specified
sequence of time points
all measured from a
specified time point

sr3 = <T0, T, a> where T =
(t1, t2, … tn) and ti are time
lengths all of one arbitrary
time granularity.

FROM date-of-
admission
ON {2, 3, 5, 8}
days
DO order {U, K}

STATIC_RULE sr3,
DECRIPTION: repeated order of a
test on irregular time points;
FROM: date-of-admission
ON: {2, 3, 5, 8} days
DO: order_test(“U,K”)

FROM onset-of-
pain
ON PERIOD 4 TO
6 days
DO order K

STATIC_RULE sr4a
DECRIPTION: once-off order of a
test within a given time interval
FROM: start_of_protocol;
STARTING: 4 days;
ENDING: 6 days;
ON: any day;
DO: order_test(“K”);

Order a test or perform
appropriate actions
within a given interval
optionally from a
specified time point

sr4 = <T0, T, a> where T =
[T1, T2] is the time interval
during which the action a is
to be carried out.

ON PERIOD 25-
Jan-01 TO 30-Jan-
01
DO order K

STATIC_RULE sr4b
DECRIPTION: once-off order of a
test within a given time interval
FROM: start_of_protocol
STARTING: 25-Jan-04
ENDING: 30-Jan-04
ON: any day
DO: order_test(“K”)

In PLAN language, static rules are used to define schedules of clinical actions to be

performed at certain points or periods in time depending on clinical requirements. It

can be noted that static rules can be used to express generic scenarios in which

actions need to be performed at specified time points relative to a starting time,

which may be a conceptual time point.

Table 6.1 presents the example scenarios that need to be expressible using static

rules in PLAN. From these example scenarios, it can be noted that static rules

monitor time events and perform a specified action, such as prompting for, or

issuing, a test order, on detecting the occurrence of a time event of interest. The

Chapter 6 Supporting the Specification of Clinical Protocols

 123

time events may be specified to be a single absolute time point, regular or irregular

time lengths measured from a single time reference point up to a specified time

point, or a specified time interval or period measured from a specified time reference

point or expressed as an absolute time interval.

The dynamic rule: As illustrated in Figure 24, a dynamic rule has two main parts :

the Rule-Header and the Rule-Body. Rule-Header consists of the Rule-Name and

the rule description. Rule-Body consists of the ECA component parts of the rule :

the event specification defines the event which triggers the rule; the condition

specification defines a logical expression about either patient’s states or timing

events; and the action specification defines the action or tasks to be performed when

necessary. A possible operation from the domain of clinical laboratory test ordering

protocols can be to suggest the order of a specified test.

<dynamic-rule> ::= <rule-header><rule_body>
<rule-header> ::= RULE <rule-name>,[<description>,]
<rule_body>::= ON: <event_spec>, IF: <condition_spec>, DO: <action_spec>;
<event_spec> ::= <event_name> ([<parameter_list>])
<condition_spec> ::= <condition> | <condition> {AND | OR} <condition_spec>
<action_spec> ::= <action> | <action>, <action_list>
<condition> ::= logical condition
<action> ::= <action_name> ([<parameter_list>])

Figure 24 PLAN syntax of a dynamic rule

Dynamic rule specifications exist in a protocol specification as a protocol and

schedule rules whose scopes are the protocol and schedule respectively. In a patient

plan, the dynamic rule exists simply as the plan’s dynamic rule with no distinction

regarding whether it belongs to a protocol or a schedule.

Figure 25 illustrates an example PLAN specification of a dynamic rule named

ma1sdr1, which monitors the arrival of a clinical laboratory test result for a test

named A and suggests the order of a further test named B if the incoming result is

above 8.5.

Chapter 6 Supporting the Specification of Clinical Protocols

 124

 RULE ma1sdr1,
 DESCRIPTION: rule to order test B if A result is abnormal,
 ON: result_arrival('A'),
 IF: A > 8.5,
 DO: order_test ('B');

Figure 25 An example of a specification of a dynamic rule in PLAN

The Patient Plan: The protocol specification acts as a template that is used to create

the patient plan. A patient plan is derived from tailoring a protocol to a specific

patient in a particular category and is active for a finite time period. A patient plan

is an instance of a test protocol that is relevant for a particular patient during a given

time duration. A patient plan has the same syntax as a protocol except that it has the

patient identification and/or the protocol from which it is derived. Figure 26

illustrates the syntax of a patient plan in PLAN.

<patient_plan> ::= PLAN <name>; <patient_detail>; <plan_body> END PLAN
<plan_body> ::= <static_rule_set>; <dynamic_rule_set>

Figure 26 The PLAN syntax of a patient plan

A Patient Plan has only one schedule composed from one or more protocol

schedules whose selection is based on whether or not the schedules’ entry criteria

are satisfied by the patient. Protocol rules are instantiated to become dynamic rules

within the patient plan. The two key components of a patient plan specification in

PLAN are: a set of static rules followed by built from all the static rules selected from

the relevant protocol, and a set of dynamic rules which is built from the protocol

and schedule rule sets in the relevant protocol specification. Thus, the Patient Plan

is essentially a set of rules which when triggered and executed, determine when

clinical interventions that may be suggested with respect to an individual patient.

The sequence of suggested actions may result from time alone as a stimulus in static

rules. In addition the patient plan may employ dynamic rules which allow action

Chapter 6 Supporting the Specification of Clinical Protocols

 125

suggestions to be sequenced or enabled in response to a combination of time and

other asynchronous events which might occur during an episode of care.

ECA rules are the building blocks for higher-level constructs in PLAN: the schedule

and the protocol. In the Arden Syntax (Hripscak, Luderman et al. 1994), the ECA

rule is the highest level construct that stands alone as a module the medical logic

module (MLM). It is interesting to note that it would be possible to define PLAN

specifications using the Arden Syntax modules as the building blocks.

This section has presented a protocol specification language, PLAN. The design of

the PLAN follows the ECA rule paradigm. This does not necessarily mean that the

implementation of PLAN has use on an Active Database. However, it should be

easier to implement the language if an Active Database is used. In this study, a

prototype system called, TOPS, that implements PLAN language by using the trigger

mechanism of a modern database system was developed (see Part III of thi s Thesis).

6.5.2. An Example Protocol Specification in PLAN
Figure 27 presents the specification for the Protocol for Viral Hepatitis Testing

(Protocol Steering Committee 1998) in PLAN. The structured natural language

version of the viral hepatitis testing protocol, meant for clinicians, has already been

presented in Section 2.4 of Chapter 2. Figure 27 serves to illustrate the use of PLAN

in specifying a real life protocol for the purpose of providing clinicians with

computerised assistance in applying the protocol to individual patients. The

specification consists of three schedules each covering one of the suspected

conditions among acute viral hepatitis, hepatitis B carriers and previous or chronic

hepatitis. Each schedule consists of rules to suggest test orders appropriate for the

suspected patient condition.

Chapter 6 Supporting the Specification of Clinical Protocols

 126

@PROTOCOL@ viral_hepatitis_testing;
DESCRIPTION: a protocol for ordering tests for patients suspected to
have the three conditions of acute hepatitis, heppatitis B carrier, and
previous/chronic hepatitis;
CREATOR: Dr John Doe;
CATEGORY: hepatitis_testing;

#SCHEDULE_SET#

^SCHEDULE^ acuteVH,
DESCRIPTION: a schedule for patients with a suspected condition of
acute viral hepatitis;

ENTRY_CRITERIA,
CONDITION: ‘suspected_condition = acute_viral_hepatitis’
DESCRIPTION: this schedule is applicable to only those patients
suspected to have acute viral hepatitis;

STATIC_RULE avh1,
 DESCRIPTION: a rule to order the Anti-HAV on entry to this schedule,
 FROM: entry,
 STARTING: 0 minutes,
 ENDING: 5 minutes,
 ON EVERY: 4 minutes,
 DO: order ('Anti-HAV');

RULE avh2,
DESCRIPTION: a rule to terminate execution if the anti_HAV result is
positive,
ON: new_result('Anti_HAV') ,
IF: result = 'positive',
DO: stop();

RULE avh3,
DESCRIPTION: a rule to order the HBsAg on entry to this schedule,
ON: new_result('Anti_HAV'),
IF: result = 'negative',
DO: order('HBsAg');

RULE avh4,
DESCRIPTION: a rule to order the HBsAg on entry to this schedule,
ON: new_result('HBs Ag'),
IF: result = 'posetive',
DO: check_further_test_requests();

RULE avh5,
DESCRIPTION: a rule to order the HBsAg on entry to this schedule,
ON: new_result('HBsAg,),
IF: results = 'negative',
DO: oder('Anti-HCV');

^END SCHEDULE^

^SCHEDULE^ Hepatitis_B_Carrier
DESCRIPTION: a schedule for ordering test for patients who are
suspected Hetatitis B carriers;

ENTRY_CRITERIA,
CONDITION: suspected_condition = 'hepatitis_B_carries';

STATIC_RULE hbc1,
 DESCRIPTION: a rule to order the HBsAg on entry to this schedule,
 FROM: entry,
 STARTING: 0 minutes,
 ENDING: 5 minutes,
 ON EVERY: 4 minutes,
 DO: order('HBsAg');

^END SCHEDULE^

^SCHEDULE^ chronic_hepatitis,
DESCRIPTION: a schedule for odrering tests for patients with suspected
chronic hepatatitis;

ENTRY_CRITERIA,
CONDITION: suspected_condi tion='previous_hepatitis' OR
suspected_condition='chronic_hepatitis';

STATIC_RULE ch1,
 DESCRIPTION: a rule to order the Anti-HAV on entry to this schhedule,
 FROM: entry,
 STARTING: 0 minutes,
 ENDING: 5 minutes,
 ON EVERY: 4 minutes,
 DO: order('anti_HBc_total');

STATIC_RULE ch2,
 DESCRIPTION: a rule to order the Anti-HCV on entry to this schhedule,
 FROM: entry,
 STARTING: 0 minutes,
 ENDING: 5 minutes,
 ON EVERY: 4 minutes,
 DO: order('anti_HCV');

RULE ch3,
DESCRIPTION: a rule to order the two tests Anti-HBs and HBsAgs if the
result for Anti-HBc happens to be positive,
ON: new_result(Anti_HBc),
IF: result = 'positive',
DO: order('anti_HBs, HBsAgs');

^END SCHEDULE^

#END SCHEDULE_SET#

@END PROTOCOL@

Figure 27 The specification of the Viral Hepatitis testing protocol in PLAN

6.6. A Method for Protocol Modelling and Information
Acquisition Using PLAN

This section presents a method for modelling clinical guidelines and protocol for the

purpose of specifying them in PLAN.

6.6.1. Outline of the Method for Modelling a Protocol.
Protocol information is captured with help from local domain experts. The UML

state chart is used as a tool for modelling the domain information. In the method

presented in this section, the states of the patient in the context of a particular

protocol are modelled with ECA rules defined as transitions between states. Once

Chapter 6 Supporting the Specification of Clinical Protocols

 127

the clinical protocol is fully modelled and expressed in the UML state chart diagram,

ECA rules can be extracted manually or automatically and then modularised in a

hierarchical fashion using state and sub-state hierarchies in the state chart to create

the protocol specification.

6.6.2. The UML State Chart as a Tool for Modelling ECA Rules
It has been shown that the state chart can be used as a tool for modelling ECA rules

(Berndtsson, Mikael and Calestam 2001). The UML state chart models dynamic

aspects of a single class and may need to be extended to allow a rule to be given a

name as required in the active database manifesto (Dittrich, Gatziu et al. 1995).

Further extensions may be required to allow modelling of composite events in the

clinical protocol (Berndtsson, Mikael and Calestam 2001). Every transition in the

UML state diagram corresponds to at least one ECA rule can be seen in Figure 28.

Patient
State A

event(params)[condition]/action(params)
Patient
State B

Entry/
Do/action
Exit/

Event-Condition-Action

Patient
State A

event(params)[condition]/action(params)
Patient
State B

Entry/
Do/action
Exit/

Event-Condition-Action

Figure 28 Capturing the ECA rules using the UML state
chart transitions

6.6.3. Method for Creating the Protocol Specification
Figure 29 presents a summary of the steps for capturing domain knowledge for

creating protocol specifications using the UML state chart as tool for modelling the

knowledge in terms of the ECA rule paradigm. The method of modelling the clinical

protocols involves the following steps:

Chapter 6 Supporting the Specification of Clinical Protocols

 128

Steps for the UML state chart-based method of modelling the
clinical protocols

1. Interpretation and customisation of the text-based or flowchart guideline;

2. Identification of patient states in the context of the customised/localised
protocol;

3. Specification of the events, conditions and actions or clinical interventions
that make up transitions from one patient state to another;

4. Construction of a UML state diagram: the state chart diagram is constructed
from the identified states and transitions;

5. Generation of protocol ECA rules from the UML state diagram; and

6. Specification of ECA rules into a suitable executable language.

Figure 29 Steps for creating ECA rule-based specifications of
clinical protocols

Customisation: The domain experts, mainly clinicians, need to interpret their

experience, current practice and the published text-based or flowchart guidelines in

order to create a clinical protocol that is enhanced with local context.

Modelling: In the modelling approach adopted here, patient states are identified in

the context of the localised protocol. The patient states are derived from the clinical

logic of the guideline or protocol context and corresponds to the states in the state

chart. The construction of a UML state chart that represents the protocol is based on

these identified patient states. The specification of the events, conditions and actions

that make up the protocol representation primitives are based on the transitions

from one patient state to another in the state chart and the actions contained in each

state.

Specification: The process of generating ECA rule specifications from the state chart

can be manual or automatic. Every transition in the UML state diagram corresponds

to at least one ECA rule. This process can be manual or automatic using UML-based

tools such as Rational Rose. Thus, a formal specification is created in PLAN based on

the ECA rules that are generated from the UML state chart that is produced in the

Chapter 6 Supporting the Specification of Clinical Protocols

 129

previous step. The schedules are created from rules generated from lower-level sub-

states with the super-state representing the protocol.

Storage and Manipulation: A database of formal specification of protocol

information is created. The ECA rule-based specifications are stored in the database

in a manner that allows the ECA rules to be manipulated both individually and as

collections making up the protocol specifications. In the prototype system presented

in Chapter 9, the ECA rule -based specification of the clinical protocol is stored in a

relational database, which permits the protocol knowledge to be manipulated, i.e.,

operated upon and queried, using the SQL.

This Section has presented a method for modelling clinical domain knowledge for

the purpose of creating protocol specifications. UML state charts are created, with

the help of a domain expert, from the clinical logic of the guideline or protocol. The

rules that make up the protocol specification are obtained from the states and

transitions of the UML state chart. In the literature, most clinical protocol modelling

approaches model either the patient states or the execution states of the clinical

protocol (Peleg, M. , Tu et al. 2002). In the approach presented in this Section,

patient states are important for modelling domain knowledge for the purpose of

creating protocol specifications. The execution states are considered to be the

property of the execution mechanism.

6.7. Discussion and Related Work

PLAN is a specification language that is higher than database triggers and has the

advantage of being independent from a specific product or trigger language.

Specifications based on triggers are at a low level making such specifications more

difficult to read and debug. Eder et. al. (1994) use a graphical description language to

specify business processes or flow. They translate the resulting specifications into

triggers of an active database. The same approach is taken here except that the

Chapter 6 Supporting the Specification of Clinical Protocols

 130

language, PLAN, is not graphical. In Eder et al’s work (1994), the whole description

of a workflow process in a Workflow Description Language (WDL) is stored in rules

and tables of database. Rules are automatically generated from the declarative

specifications of the task and flows by the language compiler. The active DBMS is

the workflow server and has the functionality described in the process

specifications.

Each patient has his or her own rule set making the patient’s plan. A similar idea is

found in Appelrath et al’s active repository (1995), which uses an active database for

implementing the persistent and reactive parts of a process-centred software

engineering environment. There, they identified the need for rule sets on a project

basis, requiring extensions to their toolbox regarding multi-user and meta-

programming capabilities (Appelrath, H-J, Behrends et al. 1995). The software

engineering project is equivalent to the patient entity. However, their system could

not support this phenomenon as it lacked multi-user support, i.e., the need for

supporting several user groups each having its own set of rules.

Medical Logic Modules (MLMs) are ECA rules expressed in the Arden Syntax

(Hripscak, Luderman et al. 1994). MLMs have been used to specify clinical protocols

with no generic framework nor constructs at a higher-level than the ECA rules. As

part of future work, it would be interesting to investigate the use of the Arden

Syntax to specify PLAN rules.

6.8. Chapter Summary

This Chapter has presented a protocol specification model, which is based on the

ECA rule paradigm. In this model, a clinical protocol is composed from modularised

ECA rules, which are essentially templates that are used to create patient plans. The

protocol specification language, PLAN, was described. PLAN is a simple and

Chapter 6 Supporting the Specification of Clinical Protocols

 131

declarative language for specifying protocols as modules of ECA rules. Finally, this

Chapter has presented the method for modelling protocol knowledge for the

purpose of creating PLAN specifications. The modelling method first uses the UML

state chart as a tool for capturing the domain knowledge, and then generates ECA

rules from the state chart for use as the core protocol representation construct. The

modelling method uses patient states and transitions between these states to

determine what rules are relevant for inclusion in a protocol.

Chapter 7 Supporting the Execution of Clinical

Protocols

7.1. Introduction

The main purpose of creating formal specifications of clinical protocols is to enable

the execution of these protocols. The challenge is to provide an executable care plan

for each patient that is appropriate for the management of the patient’s clinical

problem. It is also necessary to provide the clinician with protocol information at

the moment when that information is most relevant, for example, at the point of

care or the moment when new information on the condition of the patient becomes

available. This chapter presents the conceptual approach and architecture for the

enforcement of clinical protocols. The Chapter is organised as follows: Section 7.2

describes the approach to the execution of computer-based clinical protocols. The

conceptual architecture for supporting protocol execution is presented in Section

7.3. The execution flow for supporting the execution of clinical protocols is

presented in Section 7.4 while Section 7.5 presents the method for instantiating a

clinical protocol for an individual patient thereby creating the patient plan. Section

7.6 presents the types of dynamic protocol management scenarios that need to be

supported by the execution mechanism. Section 7.6 also describes the interaction

between the real world and the protocol model. Section 7.7 reviews related work

and, finally, Section 7.8 summarises this Chapter.

7.2. The Approach to Protocol Execution

The execution of a clinical protocol involves the computer-based application of the

protocol information to a specific clinical problem. The approach for the execution

Chapter 7 Supporting the Execution of Clinical Protocols

 133

of event-condition-action (ECA) rule-based clinical protocols is illustrated in Figure

30 where it is presented in terms of the conceptual, logical and physical levels.

Clinical domain
knowledge and

experience
Disease Patient

Clinical
protocol

Category

Patient plan

C
O

N
C

E
P

T
U

A
L

Clinical domain
knowledge and

experience
Disease Patient

Clinical
protocol

Category

Patient plan

C
O

N
C

E
P

T
U

A
L

Specification
database

ECA rule
mechanism

Patient record
database

P
H

Y
S

IC
A

L

Specification
database

ECA rule
mechanism

Patient record
database

P
H

Y
S

IC
A

L

Protocol
rules Plan rules

Local patient
record

LO
G

IC
A

L

Protocol
rules Plan rules

Local patient
record

LO
G

IC
A

L

Figure 30 The approach to the enforcement of protocols

At the conceptual level, domain knowledge and information, which is usually in the

form of natural language clinical guidelines, is expressed as a formal clinical

protocol specification. In turn, the clinical protocol specification is mapped to a

patient plan. This mapping customises the protocol specification to the needs of an

individual patient. At the logical level, the protocol rules are mapped onto plan

rules. Patient plan rules are derived from protocol rules during the protocol-to-plan

mapping. At the physical level, the ECA rules in a patient plan are mapped onto a set

of database triggers defined within the patient record database schema. These

database triggers implement the execution mechanism for the patient plan. For the

purpose of storage, the protocol and plan specifications are mapped onto a

specification database. The manipulation operations are performed on the protocol

specification database, the patient plans and patient data.

Chapter 7 Supporting the Execution of Clinical Protocols

 134

Clinical Protocol

Patient Plan

ECA Rules

Database Triggers

Protocol
Linked to individual patient

Patient Plan Rules
customised to monitor patient record

Each ECA rule maps
to one or more database triggers

S
P

E
C

IFIC
A

T
IO

N
P

lan
e

E
X

E
C

U
T

IO
N

P
la

n
e

M
A

N
IP

U
LA

TIO
N

 P
lan

e

O
p

eratio
n

s an
d

 Q
u

eries

S
tatic &

 D
ynam

ic
M

anipulation &
 Q

uerying

Clinical Protocol

Patient Plan

ECA Rules

Database Triggers

Protocol
Linked to individual patient

Patient Plan Rules
customised to monitor patient record

Each ECA rule maps
to one or more database triggers

S
P

E
C

IFIC
A

T
IO

N
P

lan
e

E
X

E
C

U
T

IO
N

P
la

n
e

M
A

N
IP

U
LA

TIO
N

 P
lan

e

O
p

eratio
n

s an
d

 Q
u

eries

S
tatic &

 D
ynam

ic
M

anipulation &
 Q

uerying

Figure 31 Framework and approach for the execution of
clinical protocol

Figure 31 illustrates the protocol enforcement approach, in the context of the SpEM

management framework presented in Chapter 5, which consists of the three planes:

specification, execution and management of the protocol specifications and their

instances, the individual patient care plans. Within this framework and approach, a

protocol specification is customised with patient-specific detail to create the patient

plan. For instance, the protocol customisation process involves binding domain-

dependent terms such as date-of-conception and patient-age in the protocol

specification to actual values with respect to a specific patient. This creates a patient

plan specification and occurs in the specification plane. As part of the transition into

the execution plane, the ECA rules in the patient plan are enhanced with

hooks/references to patient data in the database. Each ECA rule in the patient plan is

mapped to one or more database triggers to create a trigger set that implements the

protocol logic for the specific individual patient. Patient plan execution proceeds

according to the semantics of the ECA rule mechanism. Manipulation operations

and queries can be applied dynamically to protocol specifications, the executing

patient plan and to patient data.

Chapter 7 Supporting the Execution of Clinical Protocols

 135

7.3. The Conceptual System Architecture for Supporting
the Execution of Clinical Protocols

Figure 32 illustrates the conceptual system architecture for supporting the execution

of clinical protocols. This architecture has been implemented in the prototype

system to be presented in Chapter 9. In Figure 32, rectangular shapes denotes

modules that are part of the architecture while rectangles with rounded corners

denote external entities. The architecture is based on the wrapper principle. At the

core of the architecture is a modern database management system (DBMS) with an

ECA rule support mechanism, which is commonly referred to as the database trigger

mechanism. Our prototype system, which is presented in Chapter 9, uses the Oracle

DBMS as its core. This ECA rule mechanism of the DBMS serves as the clinical

protocol execution engine.

Modern DBMS
with ECA

mechanism

ECA Rule Extension Module
(reactive wrapper)

CLINICAL PROTOCOL
MANAGEMENT SERVER

Clinical Protocol
Management

Client

External
Systems

External
CommunicatorUser

Modern DBMS
with ECA

mechanism

ECA Rule Extension Module
(reactive wrapper)

CLINICAL PROTOCOL
MANAGEMENT SERVER

Clinical Protocol
Management

Client

External
Systems

External
CommunicatorUser

Figure 32 Conceptual system architecture for supporting the
execution of clinical protocols by using active mechanism of a

modern DBMS

An ECA rule extension module extends the basic ECA rule support within the

DBMS. This ECA rule extension module is required to extend the ECA mechanism

of the DBMS and provide features that are lacking within the database trigger

mechanism. The clinical protocol management server provides the higher level

functionality for delivering the protocol management operations. The protocol

Chapter 7 Supporting the Execution of Clinical Protocols

 136

management client serves the purpose of providing the user with access to the

management functionality. The user of system interacts with the clinical protocol

management client, which interacts with the management server. The management

client can be distributed and could be presented as a suitable user-friendly graphical

interface. An external communicator module serves the purpose of linking the

system to external systems such as the laboratory information system and patient

record systems.

7.3.1. Advantages of the Conceptual Architecture
The use of a wrapper architecture that incorporates a DBMS that contains a basic

ECA rule mechanism to provide support for the management of clinical protocols

has a number of advantages. The capabilities of database system like safety,

authorisations and, most importantly, recovery, are immediately available. The

database is not only the blackboard for the execution process, but it is also the

execution engine itself. The execution of protocols enjoys a high degree of

concurrency because the architecture permits the increase in concurrency in a safe

way. The usage of a standard modern database system also brings the benefits of a

stable system that is available on different platforms. The tight integration of the

ECA-based protocol manager and the database could form a strong basis for easy

integration with other health care applications such as care flow systems. Additional

functionality, such as a distributed architecture, can easily be added later. Once a

wrapper-based approach has been developed, it may be ported to other DBMS.

Furthermore, the wrapper architecture allows for the ability to enhance and add

active capability without the changing the client program.

From the clinical guideline and protocol support point of view, the conceptual a

number of benefits. The target user can be the clinicians since no fully-featured

programming language with complex structures need to be created. ECA rule-based

protocol are meant to be written and used by clinicians with little or no training.

Chapter 7 Supporting the Execution of Clinical Protocols

 137

ECA rules can provide explicit links to data, trigger events and messages to target

users. The rules clearly define hooks to the clinical databases. The need for

intelligent data–based monitoring of critical situations in patient care points to a

number of further benefits that can be enjoyed from the ECA rule paradigm and

database-based architecture. Round the clock physiological data collection can be

attained through the use of the ECA rule-based mechanism. The difficulty in

continuous monitoring and recording of generated data leading to mistakes that are

not affordable in a critical environment, such as patient care, can be avoided by

using ECA mechanism for automated continuous monitoring. The difficulty

experienced by humans in keeping track of several parameters for a long time or in

combining or synthesising many different parameter values for judgement or

decision can be made easier by the database enhanced with the triggering ability of

the ECA mechanism. Need for automated mechanisms that can handle repeated data

collection and analysis for detection of alert situations can be easily met. The need

for providing real time status alerts in order to save precious time as a way to assist

domain experts (clinicians) in making decisions (treatment) can be addressed by the

architecture. The need for alerts to occur, or for alert conditions to be checked, at

the right moment, when the alert is relevant (e.g. when a doctor is proposing some

medication - for adverse drug events alerts) is best achieved by this architecture.

7.3.2. Disadvantages of the Conceptual Architecture
An architecture that is based on the ECA rule paradigm within a modern DBMS as

the core has a number of limitations. ECA rules in a modern DBMS have limited

support through triggers. The main limitations of triggers include the lack of support

for time triggers and temporal features, the inability to be applied to more than one

table; no support for naming and user-defined events; and lack of support for

composite events within most existing DBMS trigger mechanisms. Furthermore, the

action part of the ECA rule is implemented in DBMS as a stored procedure. Complex

data definition in not allowed and only atomic values may be passed as parameters to

Chapter 7 Supporting the Execution of Clinical Protocols

 138

stored procedures within the database. In addition to this, there is no direct access to

other programs and external systems in the underlying DBMS and the operating

system (OS). Another important limitation with ECA rules or active databases is the

lack of development methods and tools, including the lack of transformation tools

from higher level description formalisations to ECA rules. For instance, Petri Nets

and state charts allow specification of event-action dependencies.

From the clinical guideline or protocol management support point of view, the ECA

rule paradigm-based support for clinical protocol execution suffers several

limitations. Guideline’s overall logic is obscured by the detail of the individual ECA

rule or decision module. ECA rules are suitable primarily for the task of monitoring

and are very limited in their support for decision-making. They also do not model

related decisions well leading to unexplained or complex interactions. Tu et al

(2001) observed that chaining ECA rules as a method of modelling related decisions,

sequencing of tasks and setting of goals breaks the desired modularity of Medical

Logic Modules (MLMs), which are essentially ECA rules, and introduces

maintenance problems of interdependent rules. The ECA rules, per se, as a

mechanism for implementing protocols do not represent execution state or patient

state, which are considered in the literature to be important primitives for guideline

knowledge specification and execution (Pattison-Gordon, Cimino et al. 1996; Peleg,

M, Boxwala et al. 2000).

7.4. The Execution Flow for Protocol Management

The aspects of the protocol management process that are of focus are the

specification, customisation, installation and execution phases as well as the

manipulation and querying that are applied to the four phases. Figure 33 illustrates

the execution flow for supporting the management of protocols within the SpEM

framework presented in Chapter 5.

Chapter 7 Supporting the Execution of Clinical Protocols

 139

Specification
Phase

Customisation
Phase

Installation
Phase

Execution
Phase

Manipulation
(querying &

maintenance)

Problem-specific
information, e.g.,
patient data

Output and effects: e.g., interventions
suggestions, alerts and alarms.

Category and
protocol specification

Patient
plan

Instantiated
patient plan

Specification
Phase

Customisation
Phase

Installation
Phase

Execution
Phase

Manipulation
(querying &

maintenance)

Problem-specific
information, e.g.,
patient data

Output and effects: e.g., interventions
suggestions, alerts and alarms.

Category and
protocol specification

Patient
plan

Instantiated
patient plan

Figure 33 The execution flow for supporting
the management of clinical protocols

The protocol management process consists of three main phases which are

illustrated in Figure 33. The specification phase allows clinical protocols to be

specified by using PLAN. The customisation phase is designed to ensure that the

protocol is specific to given patient. The installation phase is responsible for the

generation and creation of rule triggers within the DBMS for the implementation of

the protocol’s logic. The execution phase is the actual execution of a patient specific

instance of the protocols. The manipulation phase enables operations and queries to

be performed on objects in both the specification and execution phase. Thus, the

manipulation phase conceptually permeates the other two phases. The next

paragraphs discuss these phases in greater detail.

Specification Phase: During the protocol specification phase, the patient category

and test ordering protocol are specified. The resulting protocol specification is in the

PLAN language and is stored in a database as a set of tables that can be queried and

modified. In the specification phase, domain knowledge, in the form of CGPs, is

captured, formally represented and specified, and made persistent by storing it in a

Chapter 7 Supporting the Execution of Clinical Protocols

 140

relational database. This phase requires the involvement of the domain expert, in

this case, the clinician. The sources of the knowledge are mainly the domain expert

and literature as interpreted by the domain expert. This phase results in the creation

of problem categories with their associated domain knowledge (clinical protocol)

specifications.

Customisation Phase: During the protocol customisation phase, the protocol is

customised to produce a patient test-ordering plan. Data on the patient’s clinical

condition is used to select the appropriate test ordering base schedule. A complete

test-ordering plan for the patient is composed from the base schedule and the

protocol rules. In the customisation phase, the domain knowledge is customised to a

specific problem represented by the problem scenario object (PSO), in this case, the

patient. This phase produces the instances for the individual patient.

Installation and Execution Phases: Figure 34 illustrates the detailed flow for plan

installation and execution in the SpEM framework. During the test plan installation

phase, the patient test plan is interpreted and set up to produce an instantiated

patient test-ordering plan into the active DBMS. The schedule rules and protocol

rules are parsed and translated into a set of ECA rules (triggers) with exact event,

condition and action specifications that can be monitored, evaluated and executed

respectively, by the DBMS trigger mechanism. In the installation phase, the

instances are installed, i.e., all the ECA rules are added to the rule engine and

activated resulting in a ready-to-execute instance. The installation phase is tightly

coupled to the execution phase. During the test plan execution phase, the test plan is

executed. The test plan execution is driven by the ECA rule mode of operation.

Chapter 7 Supporting the Execution of Clinical Protocols

 141

Creation
of a patient

Category Assignment

Patient plan
creation

Patient plan
installation and

Activation

Plan
Customisation detail

Patient plan
execution

Patient plan
manipulation

Operations and queries

Progress &
Feedback

Patient detail

1. A patient is created and assigned
to a category, which has a protocol
associated with it

2. The protocol for the category is
retrieved in order to create the
patient ’s plan.

3. Patient Plan ECA rules are
mapped to database triggers and
activated.

4. Patient Plan execution
proceeds by means of trigger
execution and user interaction

5. The plan can now be managed
as it executes. Queries can be
posed. Operations of addition,
deletion and modification of rules
can be applied

Query or Operation
(add, delete, modify)

Patient plan

categorised patient

Control Trigger execution
(signals)

Alerts,
Suggestion,orders

Protocol
specification

Manipulation
operation

Patient
data

Protocol
Specification

database

Database
Triggers

DBMS

User/
patient record User

User/
patient record

User

User/
Patient record

Alerts,
Suggestion,

orders

Creation
of a patient

Category Assignment

Patient plan
creation

Patient plan
installation and

Activation

Plan
Customisation detail

Patient plan
execution

Patient plan
manipulation

Operations and queries

Progress &
Feedback

Patient detail

1. A patient is created and assigned
to a category, which has a protocol
associated with it

2. The protocol for the category is
retrieved in order to create the
patient ’s plan.

3. Patient Plan ECA rules are
mapped to database triggers and
activated.

4. Patient Plan execution
proceeds by means of trigger
execution and user interaction

5. The plan can now be managed
as it executes. Queries can be
posed. Operations of addition,
deletion and modification of rules
can be applied

Query or Operation
(add, delete, modify)

Patient plan

categorised patient

Control Trigger execution
(signals)

Alerts,
Suggestion,orders

Protocol
specification

Manipulation
operation

Patient
data

Protocol
Specification

database

Database
Triggers

DBMS

Patient
data

Protocol
Specification

database

Database
Triggers

DBMS

User/
patient record User

User/
patient record

User

User/
Patient record

Alerts,
Suggestion,

orders

Figure 34 The execution flow for the creation, execution and manipulation of

a patient plan in the SpEM framework

When an event signal occurs, the reactive mechanism goes on to determine if it is a

test plan event and, if it is, then its associated condition is evaluated; if the condition

is true, a signal is generated to trigger the appropriate action. In the execution phase,

the execution process proceeds in accordance with the ECA paradigm. The next

section presents the queries and manipulation operations on specification and

instances.

Manipulation Phase: There is a need to apply querying and manipulation operations

to both specifications and the executing instances. The manipulation of the protocol

and the patient plan constitutes the querying of the specifications and the history

and state of plan execution. Manipulation also involves the dynamic addition,

deletion and modification of the ECA rules that make up the protocol’s logic. These

operations allow adjustments and changes to be made to a protocol or a plan. The

manipulation of the protocol and the plan specifications depend on how the rule and

Chapter 7 Supporting the Execution of Clinical Protocols

 142

other plan components are specified and stored. As illustrated in Figure 33,

manipulation of protocol information is relevant throughout the other phases of the

execution flow.

The process of instantiating a protocol to create a plan is illustrated in Figure 34 and

Figure 35. This process involves the criteria-based selection of schedules followed

by the assignment of all the rules to one of two sets, i.e., the plan schedule

containing static rules and the dynamic rule set. The evaluation of a schedule’s

entry criteria is done with respect to a specific problem scenario that is represented

by a problem scenario entity (PSE) instance, the problem scenario object (PSO),

which is the patient.

Protocol
Rule Set

Dynamic
Rule Set

Time Trigger
Set

Database
Trigger Set

Static
Rule Set

Schedule
Rule Set

Static Rule
Set

Protocol Schedule Set

Plan Schedule

PROTOCOL SPECIFICATION

PLAN SPECIFICATION

EXECUTING PLAN

CUSTOMISATION

INSTALLATION

Protocol
Rule Set

Dynamic
Rule Set

Time Trigger
Set

Database
Trigger Set

Static
Rule Set

Schedule
Rule Set

Static Rule
Set

Protocol Schedule Set

Plan Schedule

PROTOCOL SPECIFICATION

PLAN SPECIFICATION

EXECUTING PLAN

CUSTOMISATION

INSTALLATION

Fig ure 35 Components of protocols and plans and the mappings
between the specifications and execution planes

The algorithm for plan creation given the protocol specification is illustrated in

Figure 36. In the clinical guideline and protocol domain, the PSO is the patient, who

must satisfy the schedule’s entry criteria in order for the schedule to be selected for

incorporation into a patient plan. It should be noted that a protocol is not associated

Chapter 7 Supporting the Execution of Clinical Protocols

 143

with any patient but with a problem-oriented (clinical) category while its instance -

the plan - belongs to the PSO - the patient. The PSO must satisfy the category entry

criteria in order for a protocol instance, or plan, to be created. In this work, we do

not model the category entry criteria. Instead, this task is assumed to be the preserve

of the domain expert decision-making process such as clinicians, in the case of a

patient, who decide on the appropriate diagnosis and places the patient into a

clinical problem category. Consequently, the algorithm in Figure 36 assumes that

the PSO satisfies the entry criteria for the problem category for which the protocol

was defined.

Input:
Protocol (Pr); and
Problem Scenario Object (PSO)

Output:
Plan (Pl)

Algorithm:
1. Initialise:

a. selected protocol schedule set S to be an empty set;
b. plan Pl to contain:

i. an empty plan schedule PS;
ii. an empty plan dynamic rule set PLDR ; and
iii. a link to the PSO

2. For schedule s in Pr do:
a. Evaluate entry criteria CR for PSO;
b. If CR holds then add s to S;

3. For each s in S do:
for each rule r in s do: addToPlan(r);

4. For each rule r in the protocol rule set R do: addToPlan(r);
5. Return Pl;

addToPlan(Rule r)
Begin
a. Customise r w.r.t PSO;
b. If r is a static rule

then Add r to PS;
else if r is a dynamic rule

then Add r to PLDR;
End

Input:
Protocol (Pr); and
Problem Scenario Object (PSO)

Output:
Plan (Pl)

Algorithm:
1. Initialise:

a. selected protocol schedule set S to be an empty set;
b. plan Pl to contain:

i. an empty plan schedule PS;
ii. an empty plan dynamic rule set PLDR ; and
iii. a link to the PSO

2. For schedule s in Pr do:
a. Evaluate entry criteria CR for PSO;
b. If CR holds then add s to S;

3. For each s in S do:
for each rule r in s do: addToPlan(r);

4. For each rule r in the protocol rule set R do: addToPlan(r);
5. Return Pl;

addToPlan(Rule r)
Begin
a. Customise r w.r.t PSO;
b. If r is a static rule

then Add r to PS;
else if r is a dynamic rule

then Add r to PLDR;
End

Figure 36 Algorithm for creating the protocol instance – the
plan

Once the plan has been created using the algorithm in Figure 36, the plan is installed

mapping each plan rule onto one or more database triggers. As illustrated in Figure

35, dynamic rules in a plan are mapped onto database triggers while static rules are

Chapter 7 Supporting the Execution of Clinical Protocols

 144

mapped onto time triggers, which may be handled by a separate mechanism if the

DBMS does not support time triggers.

The plan has a specification that is separate from that of the protocol specification.

During execution, the plan is an evolving and changing object. Some of the changes

experienced by the plan affect its specification and can also potentially affect the

protocol specification through a background change propagation process. Thus, for

every plan, the following hold with respect to the rule content of plan and protocol

specifications:

a) either plan ⊂ protocol;

b) or plan ∩ protocol ≠ Ø.

The contents of a plan may change over time during its execution as rules are

deleted, added, modified. The state of a plan may also change over time. Rules

deactivated and activated remain in the plan and do not affect the contents of a plan.

Consequently, plan P I after time t1 will be plan PII and after a later time t2 , it will be

PIII thus,

PI → 1t PII → 2t PIII where t1 , t2 are time intervals. PI, PII and PIII denote a

plan at different time points.

The rule content and execution status of plan P at these different time points may or

may not be the same. It is useful to enable information about the temporal

evolution of a patient plan to be queried and replayed.

7.5. The Dynamic Management of Protocols

Management of a protocol, that is, the ability to query, add, delete, and modify

components of both the specification and the running instances of the protocol is

essential for the acceptability and sustainability of a computer-based protocol

management system. Graphical visualisation of the protocol will greatly aid and

simplify the task of protocol management. Figure 37 illustrates the types of dynamic

Chapter 7 Supporting the Execution of Clinical Protocols

 145

protocol management scenarios that are necessary and the interaction between the

real world and the protocol model.

Random changes and adjustments arise due to the need to correlate the patient’s

condition and the patient’s executing test ordering plan. Some changes in patient’s

condition are reflected in previous test results as well as a clinician’s observations,

both will be contained in the patient medical record. Random changes and

adjustments provide flexibility based on adaptation of protocol specification and

instances.

specification

Instance

Authoring and
Manitenance

Encounter

PROTOCOL MODEL REAL WORLD

specification

customisation

Combined execution &
maintenance

random changes &
adjustments

Change
propagation

Dynamic changes

Static changes

specification

Instance

Authoring and
Manitenance

Encounter

PROTOCOL MODEL REAL WORLD

specification

customisation

Combined execution &
maintenance

random changes &
adjustments

Change
propagation

Dynamic changes

Static changes

Figure 37 Dynamic protocol management: the interaction between the protocol
management model and the real world - dynamic and static changes and

interaction

Combined planning and execution is required when protocols cannot be specified

completely in advance or when a complete specification of a protocol is

inappropriate in the circumstances obtaining. Combining clinician's planning and

protocol execution give rise to dynamically evolving protocol instances where

decisions on tests to be ordered may be taken on the basis of already received

previously ordered tests combined with further clinical observation. Specifications

Chapter 7 Supporting the Execution of Clinical Protocols

 146

are created as definitions of new clinical protocols that are associated with new

patient categories. There is a need to provide for continuous improvement in the

form of updates of a protocol specification due to advances in medical knowledge

and corrections of errors on already existing specifications. Customisation involves

the adaptation of a protocol specification to a specific individual patient. This is

realised by determining the schedule of tests whose filter conditions are satisfied by

the patient, and then extending and refining this schedule based on patient-specific

requirements.

7.6. Discussion

An architecture that allows ECA rules to be specified and executed for clinical

protocol management can be used to provide a generic, portable and flexible

mechanism for clinical protocol management. The clinical protocol management

mechanism must be “adaptable” to allow easy extension or adaptation to handle new

clinical protocols. It should be “portable” in order to be easily re-used for different

clinical protocols. It should be “generic” so that it cannot be tied to a particular

database implementation.

Active database characteristics: Chaudhry et al (1998) used an active database in the

implementation of a multi-step control of semi-conductor manufacturing. In this

work, they identified important active database characteristics that were necessary

to satisfy their application requirements. These characteristics are also important in

the use of active databases for clinical protocol management and they include:

• Allowable event sources to include external massages and method invocations;

• Allowable actions must include sending messages to applications outside the

database;

• Event structure must allow the definition of composite events; and

Chapter 7 Supporting the Execution of Clinical Protocols

 147

• Conditions to include function calls to allow external data analysis (Chaudhry,

Moyne et al. 1998).

While in Chaudry et al’s work (1998) time-constrained rule execution was not a

strong requirement, supporting the management of clinical protocols strongly

requires time triggers as well as temporary queries.

The Challenges of the creation of triggers to implement ECA rules: In the

installation phase of executing clinical protocols, patient plans are mapped to one or

more database triggers. Owens suggests two objectives to be attained when

designing ECA rule based trigger code (Owens 1994). The first objective is the

completeness of the ECA rule enforcement, which involves the identification of all

events to which rule enforcement logic must respond. Data integrity could be

compromised if completeness is not assured. Completeness is especially important if

a single ECA rule is implemented by triggers from different tables. This happens

when an object is constrained by an attribute of a related object – the constraining

object- which is stored in a different table. The second objective is the

maintainability of the trigger architecture. As ECA rules are enforced with multiple

triggers for a single rule, and not always on a single table, we want the final trigger

architecture to be maintainable and capable of responding to rule changes.

According to Owens, the key to maintainability is to encapsulate highly cohesive

procedures and functions into a re-usable, testable and manageable system, where

one can trace from rule description to a procedure, and then back from a procedure

to a rule. This allows rule tuning for domain changes and efficient management of

large number of rule-based requirements (Owens 1994).

Customisation of clinical protocols: A rule set is customised so that each rule

monitors a single patient. This guideline customisation that is based on the

customisation of ECA Rules is justified by the need to take both medication

information and patient status into consideration when specifying a rule (the rule

Chapter 7 Supporting the Execution of Clinical Protocols

 148

language grammar should make such a provision). In most systems, all patients are

monitored with the same rules and yet there is a need for each patient to be

monitored with different alert rules according to his / her specific condition.

Allowing ECA rules to be customised for each individual patient may have an

negative impact on system performance due to an enlarged rule-base.

7.7. Chapter Summary

This chapter has presented the conceptual approach and architecture for supporting

the enforcement of clinical protocols. By the use of the approach and architecture

presented in this chapter, the execution of clinical protocols can be attained by

means of a computer-based mechanism. The approach makes use of the ECA rule

paradigm within database systems to drive the execution mechanism. The

architecture is based on the wrapper principle in which rule support within the

database system is extended within the wrapper. Protocol management functionality

is provided at a higher level layer. The chapter also places the enforcement of

protocols within the context of an execution flow for the support of protocol

management. This chapter has also presented the method of creating an instance of

a protocol, the patient plan, which forms the basis of the process of enforcing a

protocol. Once the plan is created and executing, the interaction between the

protocol management model and the real world occurs through a number of

scenarios which were also presented in this chapter.

Chapter 8 Supporting the Manipulation of

Protocol Information and Knowledge

8.1. Introduction

One of the important aspects of supporting computerised clinical protocols is to

support the ability to dynamically perform manipulation operations and query

clinical protocol specifications and the execution process. Users should be allowed to

pose various types of queries to obtain information about objects and their

components in the system. This chapter aims at presenting the framework and

approach together with a language for supporting the manipulation of clinical

protocol knowledge and information. Section 8.2 presents the framework for

supporting manipulation. Section 8.3 presents the approach and method adopted in

providing for manipulation within the overall protocol management framework

presented in chapter 5. Section 8.4 presents the language, called TOPSQL, for

querying and operations on the protocols and associated information. Section 8.5

presents a review of related work together with a discussion of the implications to

this work. Section 8.6 summarises this chapter.

8.2. Framework for the Manipulation of Protocols

This section presents the framework for the manipulation (performing operations

and querying) of information and knowledge associated with clinical protocols. It

also identifies the views from which manipulation of protocol information and

knowledge can be performed. As already pointed out, manipulation refers to

performing operations as well as issuing queries against the protocol information and

knowledge. The subjects of manipulation include protocol specifications, the plan

execution process and the patient. When protocols are specified, stored and later

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 150

executed with respect to a specific patient, the maintenance operations of addition,

modification and deletion need to be supported for specifications as well as for

executing protocol instances. The protocol information and knowledge associated

with protocol specification and execution needs to be made available through

querying. Providing the ability to query the information and knowledge enhances

the support for the flexible management of the protocols.

8.2.1. Description of the Framework
A clinical protocol, which is composed from sets of event-condition-action (ECA)

rules for managing a patient, must be allowed to be dynamically manipulated. This

means that the specifications, the executing instances (processes) and the effects

(outputs) of the clinical protocols can be queried and operated on at any point in

time. For this to be possible, it is necessary that the ECA rules that act as building

blocks of the clinical protocols must also be dynamically manipulated.

Consequently, the framework for manipulating protocols is based on the

management model for active rule behaviour (Paton and Diaz 1999). The

management model, as presented by Paton and Diaz (1999), has the four dimensions

summarised in Table 8.1.

Table 8.1 Summary of the dimensions of the management model for ECA rules

DIMENSION DESCRIPTION - CONTENTS OF DIMENSION

Description Definition language, query language, or objects

Execution operations: activate, deactivate, fire/signal

Operations : add, delete, modify Manipulation*

Query: retrieve, display, and navigate.

Adaptability compile-time or run-time

Data model relational, extended relational, deductive, object-relational, or object-oriented

In Table 8.1, the dimension marked (*) was presented as “operations” by Paton and

Diaz for rule management. The term “manipulation” is preferred here in order to be

in line with the terminology adopted in the framework presented in Chapter 5. The

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 151

term “operations” is reserved for the operations of addition, deletion and

modification. Within the framework, the dimension of the ECA rule management

model are extended to the conceptual entities, which are composed of sets and

subsets of ECA rules. The conceptual entities are the protocols and the plans. Table

8.2 presents the framework for the manipulation of ECA rule-based protocols. The

aspects of the manipulation functions for protocols, patient plans and ECA rules are

described in the next paragraphs.

Manipulation of Protocol Specifications: First, the specification should be able to be

stored. Second, the stored specifications should be retrievable for the purpose of

executing them with respect to an individual patient. In other words, the protocol

specification should be allowed to be customised and linked to a patient to create a

patient plan. Third, components of the specifications and the executing instances

should be allowed to be manipulated. Fourth, the specifications and instances should

be queried, navigated and visualised down to component-level.

Table 8.2 Manipulation Framework for ECA Rule-based Clinical Protocols

DIMENSIONS OF THE
MANIPULATION MODEL DESCRIPTION FOR ECA RULE-BASED CLINICAL PROTOCOLS

Definition
 Language

PLAN: a declarative language to define ECA rule-based clinical protocols and patient plans.

Query
Language

SQL and TOPSQL: Language to query both static and dynamic aspects of protocol rules down to individual
ECA component level.

D
es

cr
ip

tio
n

Objects
a) Inside the DBMS: rules are schema objects described in the system catalogue
b) External to DBMS: rules can be objects and so are their event-condition-action components

Activate Applicable to 1) the patient plan, 2) the base schedule and 3) every rule
Deactivate Applicable to the same objects as “Activate”
Add

Delete

Modify

a) Required for rules as well as sets of rules such as protocols, plans, and schedules;
b) Applicable to specifications as well as to the instances of these specifications;
c) Support for change propagation required between specifications and their instances;
d) Action of a rule should be allowed to perform these operations on other rules. O
pe

ra
tio

ns

Signal/fire Allow a rule to be invoked implicitly or explicitly by the user or by another rule

Compile-time Allow changes to patient plan during its creation from the protocol specification

A
da

pt
ab

ili
ty

Run-time a) All operations to be dynamically applicable to both specifications and their instances at run-time;
b) Support for one rule to manipulate or perform the rule operations on itself or other rules

Relational Definitions or specifications use the relational model;
Execution mechanism is that of a relational DBMS.

Extended Relational None
Deductive None
Object-Relational Query, views and navigation of a protocol and patient plans will use object-relational features D

at
a

M
od

el

Object-Oriented Modules (external to DBMS) that communicate with rules use the object-oriented data model

Manipulation of Patient Plans: The static aspect of a plan is essentially the protocol

specification. It should be pointed out that operations on the plan must take into

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 152

consideration the resulting effects on a patient. Operations on the protocol

specification may bring about changes that may need to be immediately propagated

to patient plans derived from it. The dynamic aspect of a plan refers to the plan’s

executing process. The plan has states and a life-span. Plan components can be

manipulated through change propagation from changes made to a protocol. The

plan’s dynamic aspect can be queried along its state and time dimensions, which

require history and snapshot maintenance. Graphical navigation or browsing and

visualisation facilities could make manipulation easier. Another important feature

that could enhance the ease of management of protocols is that for re-playing the

execution of a plan for time periods that have already occurred.

Manipulation of ECA Rules: The ECA rules in a plan have states and life-spans. The

plan rule sets should also be queried down to the event, condition and action

components. The rules should be allowed to be added, deleted and modified in a

dynamic fashion. A human user or another ECA rule can add, delete or modify

another ECA rule. Another desirable feature that could aid in the management of

the ECA rule-based protocols is that of allowing the execution process and,

consequently, rule activity to be visualised.

8.2.2. Views for Supporting the Manipulation Framework
The manipulation framework is supported through the problem domain, audit and

explanation, manipulation, process and temporal views of managing protocol

knowledge, which are illustrated in Figure 38 These five types of views have the

following functionality: The domain view supports manipulation and queries that

satisfy the requirements of the problem/application domain e.g. the management of

clinical conditions by clinicians and patients. The audit view provides support for

auditing the system and explanation of events and actions performed.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 153

Process
Dynamic View:

e.g.
What is the History

for the Plan N for Patient C
in the Time Interval I?

Domain Operational View:
e.g.

What test orders were made
for Patient A under

Protocol X?

Static Manipulation View:
e.g.

What modifications have been
made to Protocol Y’s

specification?

Audit and Explanation
View:

e.g.
For Patient B, which part of the protocol
was responsible for ordering Test Profile

K?

Temporal
View:

e.g.
For a given time interval,

what test orders
were made?

Process
Dynamic View:

e.g.
What is the History

for the Plan N for Patient C
in the Time Interval I?

Domain Operational View:
e.g.

What test orders were made
for Patient A under

Protocol X?

Static Manipulation View:
e.g.

What modifications have been
made to Protocol Y’s

specification?

Audit and Explanation
View:

e.g.
For Patient B, which part of the protocol
was responsible for ordering Test Profile

K?

Temporal
View:

e.g.
For a given time interval,

what test orders
were made?

Figure 38 The view for the management of protocol knowledge

The management view provides support for administering the system through

manipulation of specifications, instances and domain objects. The process view

provides support for monitoring and controlling instance execution. Temporal view

is a time-based view of the specifications and executing processes. The temporal

view permeates the other four views. The manipulation language for supporting the

these views for managing clinical protocol specifications and their instances is

presented in Section 8.4.

8.2.3. Discussion
Protocol specifications are created, parsed/compiled and the resulting protocol

attributes are stored in the database. The stored protocol specifications are retrieved

and customised using patient-specific attributes to create a patient plan specification.

The patient plan execution is based on the ECA paradigm. The attributes of the

patient plan specification and the results of its execution are also stored in the

database. This approach forms a good basis for supporting the querying and

manipulation of all aspects of clinical protocols using the SQL. This section has

presented the concepts and framework for the manipulation of protocols. The

manipulation framework is based on the management dimensions for active rule

behaviour (Paton and Diaz 1999), which is extended to higher level domain entities

such as patient plans. This manipulation framework is supported by information and

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 154

knowledge management views that cover requirements for the problem domain,

auditing, manipulation and temporal queries. The next section presents the

approach for accomplishing the manipulation framework.

8.3. Manipulation Approach

This section presents the approach and method for supporting the manipulation of

ECA rule-based protocol specifications and their executing instances. The need for

manipulation arises from the need to access protocol specifications, instances and

objects for purposes of update, modification, replacement and obtaining information.

The categories of operations and queries that are useful to perform on aspects of

clinical protocols are illustrated in Table 8.3.

Table 8.3 Manipulation of protocols

PROTOCOL MANIPULATION
Q-query, C-create, M -modify, D-delete, ADT-

activate/deactivate/terminate, ü - defined, û - undefined
Static Dynamic

Operations Operations

Manipulation
Object

Queries C M D Queries C M D ADT
Category ü ü ü ü ü ü ü ü ü
Protocol ü ü ü ü ü ü ü ü ü
Patient ü ü ü ü ü ü ü ü ü

Patient Plan û û û û ü ü ü ü ü

Schedule ü ü ü ü ü ü ü ü ü
Rule ü ü ü ü ü ü ü ü ü
Event ü ü ü ü ü ü ü ü û
Condition ü ü ü ü ü ü ü ü û
Action ü ü ü ü ü ü ü ü û

The protocol manipulation in Table 8.3 is categorised into static and dynamic

aspects. The static aspect of protocol manipulation is targeted towards the

specifications or definitions. Dynamic manipulation is targeted towards the history

and process of the execution of patient plans. Within both the static and dynamic

aspects of manipulation, there are queries and manipulation operations. Static

operations and queries are applicable to the specification elements. Dynamic

operations and queries are applicable to the executing instances. Manipulation

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 155

operations are for creating (C), modifying (M), deleting (D), and activating or

deactivating or terminating (ADT) elements. These manipulation operations include:

• manually activating or de-activating instances and associated protocol rules;

• creating specifications or their components;

• modifying the existing specifications and instances;

• deleting static and dynamic aspects of executing instances; and

• terminating an executing instance.

The operations and queries are achieved through the use of the query and

manipulation language, TOPSQL, which is presented in the Section 8.4.

Manipulation of the category: A category is subject to both static and dynamic

manipulation. Static manipulation is applied to the category specification or

definition. Dynamic manipulation is applied to protocols, patients and executing

plans within a category. Dynamic queries for a category retrieve information about

patients and patient plans within the category. For instance, one may pose queries

such as: List currently active plans in a given category; and How many patients

entered the category during the last two weeks? The manipulation operations

Activate, Deactivate and Terminate, when applied to a category, affect all patient

plans within the category. The deletion of a category means the deletion of its

protocol and all patients in the category together with their plans from the protocol

system. Deletion should not be interpreted to mean physical deletion, instead it

should be taken to mean flagging or labelling with deleted label or flag such that

queries can still be applied while adding patients and patient plans to the deleted

category will be disallowed.

Manipulation of the protocol: Static manipulation of a protocol affects only the

protocol specification. Dynamic manipulation of a protocol affects both the protocol

specification and all the patient plans derived from the protocol. When additions,

deletion and modifications are made to the protocol, these changes may need to be

propagated to the executing patient plans. It is worthy pointing out that a version

concept for the management of the protocol specification is important but its

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 156

investigation will be left to future work. The manipulation operations Activate,

Deactivate and Terminate, when applied to a protocol, affect all patient plans

derived from the protocol and is equivalent to the same operations on a category.

Static queries on protocols are targeted towards the specification whereas dynamic

queries on a protocol are targeted towards the patient plans that are derived from

the protocol.

Manipulation of the patient: Both static and dynamic manipulation are applicable to

the patient. The patient element can be created (C) to become a subject of the

category and its protocol. The patient can also be deleted (D) if he/she is no longer

the subject of the category or protocol. When a protocol is deleted, its associated

patient plan is also deleted. Again, deletion is intended to mean flagging instead of

physical removal. The dynamic modification (M) operation can also be performed

on the patient. Activation, deactivation and termination operations on a patient

affects the patient’s plan, i.e., a patient is activated/deactivated/terminated when the

corresponding patient plan is activated/deactivated/terminated within the system.

 Manipulation of the patient plan: A patient plan, being a executing instance of a

protocol, is subject to dynamic manipulation. Static manipulation of the patient plan

is undefined since it has only a transient specification, which exists only during the

creation of the plan. The manipulation of a patient plan will be performed separately

without affecting the protocol from which the plan is derived.

Manipulation of the schedule, the rule and rule components: Static manipulation

applies only the specification of the schedule and rule or its component in a

protocol. Dynamic manipulation of a schedule, rule or rule component applies only

to the plan schedule, rule or rule component. Since each of the ECA rule

components cannot be executed alone as a separate module outside the rule context,

the operations activation, deactivation and termination are undefined.

The effects of manipulation operations on an executing plan may be complex and

require careful consideration. The effects are of two types: the effects and dynamics

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 157

of rule insertion, deletion and modification in an already executing plan, and change

propagation between plans and protocol specifications. Table 8.4 summaries the

approach adopted for handling the effects of dynamic operations on test plan

execution.

Table 8.4 Effects of manipulation operations on an executing plan,
schedule and rule

Effect (E) on execution state

Freeze/Deactivate Terminate

Add (schedule, plan) (plan, plan)
(schedule, schedule)

Modify (schedule, plan) (dynamic rule, dynamic rule)

O
pe

ra
tio

n
(O

)

Delete (schedule, plan) (x, x)

The rows in Table 8.4 are dynamic operations and columns are effects on the

dynamic operations on the executing plan. The entries of the table are given in the

form (x,y), where x,y ∈ {plan schedule, rule} and (x,y) has the semantics that when

the dynamic operation along that row is performed on x, then first perform the

effect for that column on y. For example, to add a new schedule, freeze the

executing plan and to add a new plan, terminate the currently running plan. It can

be noted that only the plan can be frozen. The plan’s individual components are

never frozen but are only terminated. The plan is frozen only when the plan

schedule is being added, modified and deleted.

What to do with a rule that could have been fired during a dynamic modification

operation is also an issue that requires special attention. However, this issue does not

arise when adding a new plan since no rule exists and is likely to fire during the

process.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 158

8.4. The Manipulation Language: TOPSQL

This section presents the protocol manipulation language, which has been named,

TOPSQL - the TOPS Query Language. TOPS, the Test-Ordering Protocol System, is

a prototype system that is presented in Chapter 9. The aims for the desing of

TOPSQL are:

• easy to read and understand;

• easy to be used by domain experts ;

• easy to define a simple formal mapping to SQL;

The manipulation language, TOPSQL, consists of two main aspects, which are

illustrated by using the Backus-Nuar Form (BNF) in Figure 39. The first aspect is the

query language for querying the protocol specifications, the patient plans and their

execution history. The second aspect of the manipulation language provides the

manipulation operations on specifications and patient plans.

<TOPSQLstatement> ::= <TOPSQL-query> | <TOPSQL-operation>

Figure 39 The high-level syntax of the TOPSQL statement

In the next sections, the two aspects of TOPSQL are described. These aspects are the

query language for protocols and patient plans and the language for manipulation

operations in TOPSQL.

8.4.1. Queries on Protocols and Patient Plans in TOPSQL
The TOPSQL query is specified in the form of a SELECT statement whose syntax is

similar to that of the SQL. Figure 40 illustrates the syntax of the TOPSQL SELECT

statement for specifying queries on protocols and plans in BNF. The purpose of the

SELECT statement is to retrieve information about the target item, <select-item>.

The target item has, from the problem domain’s perspective, a relationship with the

reference item <reference-item>. The reference item is the source link subject to

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 159

which the select item’s information is to be retrieved. The target item must also

satisfy the condition specified by <condition-spec>. The result of the SELECT

statement is the objects whose type is denoted by <select-item>, and satisfies the

query

<TOPSQL-query> ::= SELECT <select-item> [SPEC] {FOR | FROM | IN} <reference-item>
WHERE [TARGET: <condition-spec>; SOURCE:] <condition-spec>
<select-item> ::= {<target-obj-type> | <domain-dependent-obj-type>}
<reference-item> :: = {<source-ref-obj-type> | <domain-dependent-ref-obj-type>}
<target-obj-type> ::= EVENT | CONDITION | ACTION | RULE | SCHEDULE | PLAN |
PROTOCOL| CATEGORY
<domain-depenedent-ref-obj-type> ::= TEST| RESULT | TEST-ORDER | PATIENT | …
<source-ref-obj-type> ::= RULE | SCHEDULE | PLAN | PROTOCOL| | CATEGORY
<condition-spec> ::=<condition>|<time-interval>
<condition> ::= <SQL-condition>
<time-interval>::=<timestamp>,<timestamp>
<timestamp>::=<year>-<month>-dayOfMonth><blankspace><hour>:<minute>:<second>

Figure 40 Syntax of the TOPSQL query: The SELECT statement

condition. In the next paragraphs, the three main components of the SELECT

statement are described in more detail.The query target, <select-item>, must have

some form of relationship with the query source, <reference-item>. This

relationship should be natural, clearly defined and important within the application

domain. For instance, within the clinical test-ordering application domain, every

test order is made with respect to a specific patient. Thus, an order for a test can be a

query target while the patient with respect to whom the order is made can be a

query source in a TOPSQL query.

Select item: The item to be retrieved, <select-item>, is the subject of the query

statement. As illustrated in Figure 40, the <select-item> is either the target object

type, <target-obj-type>, or the domain-dependent object type, <domain-dependent-

obj-type>, which is meant to be retrieved by issuing this query. The target object

type is one of the types defined as the basic components of the protocol specification

model and includes the rule and its ECA components, the schedule, the protocol and

the plan. The domain-dependent object type represents objects that are part of the

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 160

problem domain. For example, in the domain selected for this Study, domain

dependent object types include clinical laboratory test profiles, orders and results.

Reference item: In SQL, selected items are a list of attributes or columns of some

reference relational tables specified in the FROM clause. In TOPSQL, instead of

reference tables, a reference item, the <reference-item>, which is either a source

reference object type, <source-ref-obj-type>, or a domain dependent reference

object type, <domain-dependent-obj-type>, is specified. The selected item should

have some form of dependency relationship or association to the reference item.

Such a relationship must be meaningful and important in the system or domain.

Typical relationships between the selected item and the reference item are:

• Selected item IS CONTAINED IN the reference item, e.g., an event is part of an

ECA rule, and a schedule is part of a protocol;

• Selected item BELONGS TO the reference item, e.g., a plan is created for a

patient, and a protocol is defined for a category.

The query condition: The query condition, <condition-spec>, is specified over the

attributes of the selected item and also covers the attributes of the reference item.

The simple condition generally involves the comparison of the relevant attribute to

an absolute value. The compound condition would consist of two or more simple

conditions connected by the Boolean connectives AND and OR. The query

condition filters the items to be selected for retrieval. Only the items that satisfy the

query condition are retrieved. To answer a TOPSQL query, the query processor

must first apply the source condition to identify the source object. The source object

is then used to determine the target object which should satisfy the target condition.

The target clause specifies the condition that filters the query target and can be a

logical condition over the query target’s attributes or a time interval or window. The

source clause is a condition that filters the query source.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 161

The following is an example of a TOPSQL query:

SELECT ORDER FOR PATIENT

WHERE

TARGET: 2004-7-16 17:48:30, 2004-7-16 17:51:25;

SOURCE: PATIENT_ID=61

This query reads: Select all (test) orders made within the time interval from 17:48:30

to 17:51:25 on 2004-7-16 with respect to a patient whose ID is 61. The target of this

query is the ORDER object since the query is seeking for information on what (test)

orders were made. The query source is the PATIENT object because we are focusing

on a specific patient and we proceed from what we know about the patient, i.e., the

PATIENT_ID. The target condition, in this example, is the time interval [17:51:25,

17:51:25] on a specific date, 2004-7-16, which is applied to the query target. It

should be pointed out here that the granularity of the time interval can be arbitrary.

The source condition identifies the specific query source, the PATIENT object.

Typical examples of queries: Table 8.5 presents some examples of various types of

queries that can be specified using the query and manipulation language, TOPSQL.

The queries presented in Table 8.3 are of two types: The first type of TOPSQL

queries can be directly translated into one or more SQL queries. The main difference

between TOPSQL queries and their SQL equivalent is that TOPSQL queries specify

entities as SELECT items while SQL queries specify attributes of the entities.

TOPSQL queries return a set of objects in the form of attribute values that constitute

specifications of the objects. The second type of TOPSQL queries are more complex

and cannot be directly translated into SQL queries. These two types of queries are

discussed in the next paragraphs. In Table 8.5, Q1 to Q6 are simple TOPSQL queries

that can be translated into SQL queries. These queries can be answered directly by

using the one or more SQL queries against either the tables or the views in the

database. Also in Table 8.5, Q7 to Q9 are more complex TOPSQL queries that may

not have a direct translation to one or more SQL queries.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 162

Table 8.5 Examples of TOPSQL queries

QUERY TOPSQL SQL

Q1: For a given patient and day or
time/date inter val [t1, t2], what test
orders were made?

SELECT actions
FOR patient
WHERE patient.id=k AND time > t1
AND time < t2

1. Select plan.id n
From pl_plan
Where (patient.id = k);
2. select rule_id, action, date_executed
from pl_history_vw
where (plan_id = n) AND (exec_date > t1 and exec_date < t2)

Q2: Which rule triggered a given test
order?

SELECT rule
FOR order
WHERE order.id = n

select rule_id
from pl_plan_rule_order_vw
where pl_plan_rule_order_vw.order_id = n;

Q3: Given the test order , what time
was the order issued?

SELECT time
FOR order
WHERE order.id = k

select exec_date
from pl_plan_rule_order_vw
where pl_plan_rule_order_vw.order_id = k

Q4: Given a test order , what is the
result of the ordered tests?

SELECT result
FOR order
WHERE order.id = k

select test_id, result_id, result, result_date
from patient_order_test_result_vw
where order_id = 40

Q5: For a given category, which is the
protocol?

SELECT protocol
FOR category
WHERE category.id = k

select id, name, date_created, creator_id, schedules n_schedules,
protocol_rules n_rules, description
from pr_protocol
where category_id = 1

Q6: For a given patient, what was the
plan

SELECT plan
FOR patient
WHERE patient.id = k

select id, name, protocol_id, date_created, current_state,
state_change_date
from pl_plan
where patient_id=6

Q7: What was the reaction to a given
result?

SELECT reaction
FOR result
WHERE result.id = k

No direct SQL equivalent
(may include the firing and execution of other rules)

SELECT plan
FOR patient
WHERE (patient.id = k AND time =
t)

Q8: For a given patient, what was the
plan at a given time point t or interval
[t1, t2] ?

SELECT plan
FOR patient
WHERE (patient.id = k AND time >
t1 AND time < t2)

No direct SQL equivalent
(may require maintenance of snapshots)

Q9: For a give n plan OR patient, show
what happened during the time
interval from time t1 to time t2

SELECT replay
FOR plan
WHERE (plan.id = k AND time > t1
AND time < t2)

OR

SELECT replay
FOR patient
WHERE patient.id = n

No direct SQL equivalent

The query Q7 retrieves information on the immediate reaction given to the specific

event, i.e., the occurrence of a new result. In order for the system to answer query

Q7, it will need to keep track of rules fired and executed as a result of a given event,

e.g., “result-arrival”. The query Q8 retrieves the plan or information about the state

of a plan at a given time point, t, or a given time interval, [t1, t2]. To answer queries

like Q8, the system needs to capture snapshots of every executing plan at every

instant. It is interesting to note that it is possible that a snapshot may not have been

taken at an arbitrary time, t, or during an arbitrary time interval, [t1, t2]. In such a

case, the system may not be able to answer query Q8 unless a policy on how to

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 163

handle such a situation is adopted. Figure 41 illustrates the policy adopted for

guaranteeing that all queries of the type of Q8 always return a result.

In the Figure 41, si is the plan snapshots taken at time ti. For example, plan snapshot

s2 is taken at time t3. It can be noted that, in Figure 41, there was no plan snapshot

taken at time t2. It can also be noted that there was no snapshot taken within the

time interval [t4, t5]. If a TOPSQL query selects the plan at t2 or [t4, t5], the query

could return no result.

s1 s2 s3 s4
time

t1

t2

t3

t4 t5

t6

No snapshot at
this time point,
query returns

{s1}

No snapshot within this time
interval, query returns {s2}

t8

t7

Two snapshots within this
interval, query returns

{s3, s4}

Plan snapshot (s)

s1 s2 s3 s4
time

t1

t2

t3

t4 t5

t6

No snapshot at
this time point,
query returns

{s1}

No snapshot within this time
interval, query returns {s2}

t8

t7

Two snapshots within this
interval, query returns

{s3, s4}

Plan snapshot (s)

Figure 41 The policy adopted for snapshots and time intervals in TOPSQL
queries for an executing plan

Since it is known that plan snapshot s1 existed at time t2 and plan snapshot s2

existed during the interval [t4, t5], the policy for guaranteeing that queries that

involve such time points and intervals as t2 and [t4, t5] always return some results

can be stated as:

If no snapshot exists in the database for a plan at a given time point or

interval specified in a TOPSQL query, then the query returns the

plan snapshot that was taken at a time point occurring closest before

the time point or interval being sought in the query.

The query Q9 in Table 8.5 triggers the re-play of the execution of a given plan, or a

given patient’s plan, during the specified interval of time. Queries like Q9 require a

special mechanism that maintains well-formatted execution logs, queries the

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 164

execution log, and uses the query results in a simulation process that represents re-

playing the plan that produced the execution logs. The replaying of a plan involves

the simulation of event occurrences and actions execution that result from the firing

of rules from which the plan is composed.

8.4.2. Manipulation Operations in TOPSQL
This section presents the manipulation requirements associated with both

specifications and instances, the operations required to meet the manipulation

requirements, and the language and syntax for manipulating protocols and their

instances.

Operations on Specifications of Protocols and Plans in TOPSQL

Protocols and patient plans have specifications on which manipulation operations

can be applied. Figure 42 illustrates the general syntax, in BNF, of the manipulation

operations in TOPSQL.

<TOPSOperation> ::= <ADDcmd> | <DELETEcmd> | <EDITcmd> | <DISPLAYcmd> | <LISTcmd>
<ADDcmd> ::= { ADD | INSERT } <tops-object-type> TO <tops-object-type>”.”<attribute> <attribute-vale>
AS “(“ <PLAN_spec>“)” | <tops-object-name>
<DELETEcmd> ::= DELETE <tops-object-type>”.”<attribute> <tops-object-name> FROM <tops-object-
type>”.”<attribute> <tops-object-name>
<EDITcmd> ::= EDIT <tops-object-type>”.”<attribute> <attribute-value> [FOR <tops-object-
type>”.”<attribute> <attribute-value>]
<DISPLAYcmd> ::= DISPLAY <tops-object-type>”.”<attribute> <attribute-value> [FOR <tops-object-
type>”.”<attribute> <attribute-value>]
<LISTcmd> ::= LIST <tops-object-type> WHERE <condition>

Figure 42 The BNF syntax of manipulation operations on static aspects of protocols

Manipulation operations include: the add command for adding new components to

either protocols or plans; the delete operation for deleting a component from a

protocol or a plan; the edit operation for allowing the modification of existing

components of protocols and plans; display command for retrieving the specification

of protocols and their components; and the list command for listing components

without giving detailed specifications.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 165

Creating Protocols and Plans: Protocols are created through the compilation of a

protocol specification expressed in protocol specification language, PLAN, which has

been presented in Chapter 6. Plans are created from the instantiation of a protocol

by customising the protocol specification with respect to an individual patient. No

explicit operations are provided for creating protocols and plans.

Adding or inserting a protocol or plan components: Once a protocol or plan is

created, new rules or schedules may need to be added to it. The addition or insertion

operation allows new protocol or plan components to be added to existing protocols

or plans. An example ADD command is illustrated in Figure 43. In this example, a

rule named r1 is to be added to a patient plan named p1234. Rule r1 monitors the

event result-arrival and if it has occurred, checks if the result is above the normal

value and if it is, the liver-investigation is suggested. It should be pointed out that

the component to be added must be specified in PLAN.

ADD rule TO plan.name pl234
AS {

RULE r1,
ON result-arrival,
IF result > normal-value
DO suggest(“liver_investigation”)

}

Figure 43 Example ADD statement in TOPSQL

Deleting a protocol or plan component: It is important to support the deletion of

components that are no longer required from a protocol or a plan. The delete

statement must specify the type and name of the component to be deleted and the

type and name of the entity from which the component must be deleted. Figure 44

illustrates an example of the delete statement. In this example, the rule named r1 is

to be deleted from the plan named p1234. The DELETE statement can be performed

against both the plan and the protocol specifications.

Modifying a protocol or plan object: To modify a protocol or plan component, the

EDIT command is used. The command specifies the type and attribute and its value

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 166

of the component to be modified and also optionally of the entity of containing the

component to be deleted. Figure 44 illustrates an example of the EDIT command,

which specifies that a rule named r1 for plan named p1234 needs to be retrieved for

modification.

DELETE rule.name r1 FROM plan.name p1234
EDIT rule.name r1 FOR plan.name p1234
DISPLAY rule.name r1 FOR plan.name p1234
LIST rules WHERE plan.NAME = p1234
LIST rules WHERE patient.ID = 1234

Figure 44 Examples of DELETE, EDIT,
DISPLAY and LIST statements

Display any item: The purpose of the DISPLAY statement is to retrieve and display

to the screen the specification of the specified item. The DISPLAY command needs

to specify type and name of the object to be displayed as illustrated in Figure 44. In

this example, the specification of a rule named r1 belong to the plan named p1234 is

to be displayed.

List names of items: Sometimes it is useful to list items without showing their

detailed specifications. For instance, one may want to list all plans, protocols,

patients, rules or actions by name that exist within the system. Figure 44 presents

two examples of typical LIST commands. A LIST command needs to specify the

item type to be listed and the condition that must hold for each item in the list. The

first example in Figure 44 lists, by name, all rules in the plan named p1234. The

second example lists, by name, all rules in a plan that belongs to a patient whose ID

number is 1234. If the plan associated with patient ID 1234 is p1234, then the two

commands should produce exactly the same list.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 167

Operations for Manipulating Dynamic Aspects of Executing Patient Plans in

TOPSQL

Patient plans have static specifications as well as dynamic aspects in the form of the

execution process and states. It is important and useful to provide a way to allow

both the static and dynamic aspects of patient plans to be controlled and

manipulated. The specifications of a plan can be manipulated by using the same

operations as those for manipulating protocols. The execution of a plan is

dynamically manipulated by using the commands that are presented in Figure 45.

 The Figure presents the BNF syntax of the most important operations for

manipulating the execution of a plan. These operations are ACTIVATE,

DEACTIVATE, and STOP. The next paragraphs describe the three commands.

<DEACTIVATEcmd> ::= DEACTIVATE {rule | plan | patient} WHERE <tops-object-type>”.”<key-
attribute> “=” <key-attr-value>
<ACTIVATEcmd> ::= ACTIVATE {rule | plan | patient} WHERE <tops -object-type>”.”<attribute> “=”
<attribute-value>
<STOPcmd> ::= STOP {rule | plan | patient} WHERE <tops -object-type> <tops-object-name>

Figure 45 The BNF syntax of manipulation operations on the dynamic aspects of protocols

Deactivating a plan or its component: When a new plan is created from a protocol

for a patient, it is activated automatically on installation. When a plan is deactivated,

it exists but cannot monitor the patient nor can it execute any appropriate action

since all its rules are inactive. Certain situations may arise during the care of a

patient that may render it useful to deactivate a currently active plan. The

DEACTIVATE command in TOPSQL makes possible the deactivation of a plan or

any rule in an active plan. Figure 46 presents an example of the DEACTIVATE

command.

a) DEACTIVATE rule WHERE rule.name = “r1”
b) DEACTIVATE plan WHERE plan.name = “p1234”
c) DEACTIVATE patient WHERE patient.id = 1234

Figure 46 Example DEACTIVATE command in
TOPSQL

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 168

In Figure 46, a rule named r1 is to be deactivated in the first example and a plan

named p1234 is to be deactivated in the second example. The third example

indirectly deactivates the plan that belongs to a patient whose ID is 1234. Since a

plan is composed of rules, deactivating a plan means every rule in the plan is

deactivated.

Activating a plan or its component: There are situations in which it may be useful

to activate a previously stopped or deactivated plan or rule. This is accomplished by

using the ACTIVATE command. Since a deactivated rule or plan already exists

within the system, the ACTIVATE command simply activates then to enable them

to execute. Figure 47 presents two examples of the ACTIVATE command.

a) ACTIVATE rule WHERE rule.name = “r1”
b) ACTIVATE plan WHERE plan.name = “p1234”
c) ACTIVATE patient WHERE patient.id=1234

Figure 47 Example ACTIVATE command

In Figure 47, the first command activates a rule named r1 while the second

command activates a plan named p1234. The third command indirectly activates a

plan that belongs to a patient whose ID is 1234. Activating a plan is achieved by

activating every rule in that plan.

Terminating or stopping a plan or its component: It is important to provide a user

with the means of terminating or stopping a patient plan if it is deemed necessary.

This is the purpose of the STOP command. The syntax and semantics of the STOP

command are similar to those of the ACTIVATE and DEACTIVATE commands.

This Section has presented the protocol manipulation method in terms of the

protocol manipulation requirements and the language, called TOPSQL, for

expressing the queries and operations that address these requirements. In addition,

this Section has also presented a description of how the effects of manipulation

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 169

operations on an executing plan can be managed. The next Section presents the

strategy for implementing the manipulation requirements and method presented in

this Section.

8.5. Related Work and Discussion

Querying Protocol Information and Knowledge: An important aspect of the

management of test ordering protocol and plan specifications and test plan instances

is the ability to query the static protocol and plan specifications and the executing

test plan instances. Issuing various queries to several relations in the protocol

specification and execution databases and then combining these answers into one

would be the suitable approach to providing answers to user queries. This problem is

seen to be similar if not identical, to the problem of answering queries using views,

also known as query rewriting or folding. Query rewriting or folding is the process

of determining whether and how a query can be answered using a given set of

resources (Qian 1996). Resources for answering queries include: materialised views;

cached results of previous queries; or queries answerable by other databases. Gryz

(1998a; 1998b) addresses the problem of Query Rewriting using Views for

conjunctive queries and views in the presence of Inclusion Dependencies and both

Inclusion Dependencies and Functional Dependencies. Most of the work in

answering queries using views focuses on developing strategies that are targeted

towards implementation within the DBMS and are invisible to applications and

users. This work takes an application domain perspective. The TOPS query processor

determines how to answer TOPSQL queries by a simple mapping of the query

entities to their corresponding relational entities and views in the TOPS database

and generates the appropriate set of SQL queries. Each TOPSQL query may span

more than one relational table or view. The TOPS query processor must determine

how to answer a given TOPSQL query by using the set of existing views and tables

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 170

in the database. Currently, the TOPS query processor is very simple and still needs

further work to exploit ideas from the research in query rewriting.

Support for ECA Rule Management in ECA Rule Systems: The management of the

collection of rules in a database system is an important requirement within the

framework for supporting the management of clinical protocols. For a large

collection of rules retrieving a single rule becomes difficult. Therefore, there is a

need for mechanisms for allowing the posing of queries against the rule-base. There

is also need for facilities to manipulate (add, delete, modify) the rules to support the

evolution of the collection of rules in the system. Hence it is interesting to review

the extent of the support for rule manipulation in systems that support ECA rules.

Creation and Deletion of Rules: All active database systems support the creation and

deletion of rules. What differs in database systems is whether or not these operations

are allowed to occur while the database is online. Some systems assume that create

and delete operations on rules are performed when the database is disconnected or

off-line. Other systems allow the operations to be performed while

the database is online or processing other transactions. In the later case, there is a

strong requirement for a special concurrency control mechanism to be provided.

Activation and Deactivation of Rules: The activation and deactivation of rules are

common operations supported by most database systems. Since rules are persistent

and may have a long lifespan, these operations are important for the management of

rules because they allow some rules to be temporarily switched off without deleting

them.

Explicitly Firing Rules and The Signal Operation: There are situations where the

support of the so-called abstract or user-defined events is required. When these

events occur, the signal operation is explicitly invoked to notify the rule system of

the (external) event occurrence. Most modern commercial database systems do not

support the signal operation.

Rule Modularisation and Stratification: Clinical protocols and patient plans are

made up of rules. There is a need for a mechanism that allows rules to be logically

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 171

grouped together to form a single entity that may have a separate lifespan. Some

research prototypes, such as POSTGRES (Stonebraker, Hanson et al. 1988) and

Starburst (Widom and Ceri 1996), introduced the concept of rule sets to allow rules

to be grouped together or to be modularised. These rule sets could be created or

deleted. Rules could also be added or removed from the rule sets. In POSTGRES, one

command could be used to activate or deactivate all rules in a rule set. In Starburst,

only rules in a particular set could be invoked for processing. In object-oriented

systems where each rule is a first-class object, grouping of rules is natural because

the usual structuring mechanism of classes and hierarchies (inheritance) are

available to both rules and data. The addition or deletion of a rule can render a rule

set incorrect. An evolution support mechanism is required to determine the effect of

rule addition or deletion. Rule management can be aided by the stratification

technique (Baralis, Elena , Ceri et al. 1996). In this technique, rules are partitioned

into disjoint strata. The designer can then abstract rule behaviour by reasoning

locally on each individual stratum separately and then reasoning globally on the

behaviour across strata. The partitioning is done based on some criteria and should

result in disjoint subsets of independent rules. Correctness criteria are established at

a higher level of abstraction. Termination is an example of correctness criteria for

which three approaches were proposed for stratification: behavioural, assertional

and event-based (Baralis, Elena , Ceri et al. 1996). In modern commercial database

systems, grouping together of rules is not supported at all.

Querying Rules in a Database: In almost all database systems, rules are treated as

named system objects such as tables in relational database systems. As a

consequence, there are no comprehensive commands or languages that are provided

for retrieving (and manipulating) individual rules or rule sets. Where such an

attempt has been made, only very simple commands are available.

In most database systems, rules are stored as system objects. Further to this, very

limited information relating to the rules is stored in the database system’s catalogues.

Chapter 8 Supporting the Manipulation of Protocol Information and Knowledge

 172

System objects are usually not the target of query languages such as the SQL for

relational database systems. As a result, the query language may not be able to

express useful queries on rules. For instance, a query may be required that cross-

references rules and data. The following are examples of such queries:

• Which rules refer to column AGE of table PATIENTS in their condition?

• Which rules modify column DOSAGE of table MEDICATION in their action?

• This type of rules requires the access to the internal structure of the rule

condition and action.

Object-oriented systems have the advantage that if rules are treated as first-class

objects, as in HiPAC (Dayal, Blaustein et al. 1988), they can be queried using the

standard query language for objects, e.g., the Object Query Language (OQL). In such

a scenario, rules could be viewed in the same way as data within the database.

8.6. Chapter Summary

This chapter has presented a framework and approach for the manipulation of

protocols and their executing instances the patient plan. The framework closely

follows the management of ECA rules according to the dimension of the

management model which was proposed by Paton and Diaz (1999). This chapter

also present an approach to the manipulation of protocol that addresses the static

and dynamic aspect of the objects or subject to be manipulated. The static aspect of

manipulation deals with specification while the dynamic aspect deals with the

execution process and the information it generates. This chapter also presented the

manipulation language, TOPSQL, which provides manipulation operations and

querries to be performed on the protocol specifications, patients and patient plans.

PART 3

Part 3

 174

TOPS: DESIGN, IMPLEMENTATION AND CASE STUDY

The aim of this part is to present the design and implementation of the prototype

system, TOPS, the Test-Ordering Protocol System and a case study that uses TOPS

to manage a clinical protocol. TOPS provides assistance in the management of

clinical protocols for the domain of clinical laboratory test-ordering. TOPS

implements the SpEM framework and the MonCooS approach, which have been

presented in Part II. The case study presented deals with the management of the

micro-albuminuria protocol for patients with diabetes mellitus. This part is

organised as follows: Chapter 9 presents the requirements for TOPS, the design of

TOPS that meet the specified requirements; and Chapter 10 presents a

demonstration of the applicability of the framework, approach and method

presented in Chapters 5-8. This demonstration is undertaken by using the

microalbuminuria protocol developed with the help of clinical domain expert at St.

James’s Hospital in Dublin.

Chapter 9 TOPS : Design and Implementation

9.1. Introduction

A prototype system called TOPS, the Test Ordering Protocol System, for managing

clinical protocols within the domain of clinical laboratory test ordering by clinicians

has been implemented. TOPS uses the SpEM framework and the MonCooS approach

for supporting the management of clinical protocols to implement the functionality

to specify and store protocols, permit the creation and execution of patient plans and

support the manipulation of protocol specifications and patient plans. This chapter

presents the design and implementation of TOPS. The chapter is organised as

follows: Section 9.2 presents the background to the requirements for TOPS. Section

9.3 presents the requirements specifications for TOPS. Section 9.4 presents the

design of TOPS in terms of the functional, object and dynamic models. The section

describes each of the core components of TOPS in detail. Section 9.5 describes the

design of the support for the SpEM framework and the MonCooS approach. The

sections also outlines how the design of TOPS tackles the challenges due to the lack

of the comprehsive support for ECA rules in modern DBMS. Section 9.6 presents the

overall architecture of TOPS. Section 9.7 presents a review of the design TOPS and

compares it to related work. Finally, Section 9.8 summarises this chapter.

9.2. Background to the Requirements for TOPS

This section presents a background to the application requirements for TOPS. There

is a need for a system that supports the management of computerised clinical

protocols. The required system should provide a computer-based environment that

allows users to specify clinical protocol knowledge, which the system represents

formally; create executable instances of the specified clinical protocols for individual

Chapter 9 : Design and Implementation

 176

patients, which the system executes using a suitable mechanism; and manipulate,

i.e., query and perform operations on, the knowledge and information relating to

clinical protocol specifications and executing instances.

Within a clinical setting consisting of clinicians who are responsible for managing

in- or out-patients who suffer from chronic diseases, e.g., diabetes mellitus types I

and II, there is a need to support the management of computerised clinical

laboratory test-ordering protocols. The aim of such support is to improve the

quality, efficacy and effectiveness of patient care as well as containment of costs.

Local consensus-based test-ordering protocols for problem-based patient categories

need to be specified in a formal manner and stored for later use. To each categorised

patient, the appropriate test-ordering protocol needs to be applied with the

necessary customisations. This application of the test-ordering protocol to the

patient needs to be monitored and controlled over time. Since there may be many

categories each with many patients, the monitoring and control of the application of

the test-ordering protocol for each patient cannot be easily done by clinicians

without automated assistance.

The underlying problem to be addressed by TOPS has two significant features that

are worthy being highlighted. Firstly, the problem arises in the context of chronic

diseases. Chronic diseases are usually associated with the three characteristics: they

sometimes last for a lifetime; they progress with time - the patient either getting

worse or getting better with time; and they need to be managed through monitoring

and control. Clinical laboratory tests are one of the major means of monitoring

chronic diseases. Secondly, the problem presents two levels of abstraction in the

sense that there is a need to define a generic protocol for each category of patients.

There is also a need to provide a more specific protocol or plan that is customised to

suit the individual patient in the category. In other words, the protocol must occur

at the category level and also at the patient level. This gives rise to the two levels of

abstraction.

Chapter 9 : Design and Implementation

 177

9.3. Requirements for TOPS

This section presents the application domain and technical requirements for TOPS.

At a high-level, the clinical domain requirement is to provide computer-based

assistance to healthcare professionals in the specification, storage, execution,

manipulation and querying of domain knowledge and/or information for supporting

the management of clinical test-ordering protocols for problem-based clinical

categories of patients. This high-level requirement can be presented in terms of the

following two major areas in which this assistance can be provided:

Specification: Assistance can be provided for healthcare professionals to specify and

manipulate a computerised test-ordering protocol for a particular category of

patients, e.g., patient categories for diabetes mellitus or its complications such as

micro-albuminuria or proteinuria. This assistance needs to be presented in terms of

the creation, storage, and manipulation, i.e., the query and performance of

operations on, the test-ordering protocol knowledge specifications for different

categories of patients.

Execution: Assistance can also be provided for healthcare professionals to

dynamically create and manipulate a patient test-ordering plan for an individual

patient. This patient test-ordering plan is obtained for the patient from a test-

ordering protocol of the particular category to which the patient belongs. The

assistance to healthcare professionals needs to be presented in terms of the creation,

storage, execution, and manipulation, i.e., the query and performance of operations

on the individual patient test-ordering plans.

There are two interesting aspects that need to be understood about these two

important domain requirements:

The levels of assistance required: It is very important to notice the relevance and

difference of the two levels of assistance: at the first level, a test-ordering protocol is

a generic specification of clinical protocol knowledge for a particular patient

Chapter 9 : Design and Implementation

 178

category; and at the second level, an individual patient will only be associated with a

patient test-ordering plan, which is merely an instance of the more general protocol.

The emphasis on manipulation: It should be noted that in meeting the specification

and execution requirements, it is important to provide for the manipulation, i.e., the

issuing of queries and operations on the information and knowledge resulting from

both the specification and execution tasks.

9.3.1. List of Requirements
From a technical perspective, the main requirements can be listed as follows:

1) A representation model is needed to represent the protocol or guideline

knowledge;

2) a specification language is needed for test-ordering protocols and patient test-

ordering plans;

3) a manipulation language is needed to query and perform operations on the

information and knowledge associated with the test-ordering protocols ;

4) Software tools are needed to support the specification, storage, query and

performing operations on computerised test-ordering protocol specifications;

and

5) Tools are also needed to support the creation, from protocols, of patient clinical

test-ordering plans and provide the mechanism for their execution and dynamic

manipulation.

9.3.2. The UML Use Case-Based Requirements Model for TOPS
The TOPS Use Cases are illustrated in Figure 48. There are three system actors, the

Administrator (Protocol Designer), the clinician (Patient Care Provider), the

laboratory information system (LIS). There are five main use cases, namely, 1)

create category, 2) create protocol specification, 3) perform manipulation (of

protocol or plan), 4) create plan and 5) execute plan. The remaining six use cases

each either extends, is included or generalise one of these main uses cases. The next

paragraphs present descriptions of the use cases illustrated in Figure 48.

Chapter 9 : Design and Implementation

 179

Figure 48 Use Cases for TOPS

Create category: The administrator actor creates the clinical category by providing a

specification of the characteristics of the clinical problem being represented by the

category. Each time a new category is created, its associated protocol must also be

specified.

Create protocol specification: In the create protocol specification use case, the

administrator actor creates the protocol specification for a category that has already

been created. The specifications are expressed in PLAN language and are stored in a

relational database table.

Create patient plan: The create patient plan use case is initiated by the Patient Care

Provider, the clinician, who must as a prerequisite also create and categorise a new

TOPS patient. The patient’s plan is then created from the protocol associated with

the patient’s category. Customising the test protocol to the clinical circumstances or

requirements of the patient require access to the patient’s medical record. There is

also a need to update the patient record with the resulting plan.

Create patient: This use case is included in the create plan use case. As part of

creating a plan, a new patient must be created within the system. However, the

Chapter 9 : Design and Implementation

 180

system must also allow for a plan to be created for an existing patient provided that

patient is re-categorised.

Categorise patient: The categorisation of a patient is important in the system because

it determines the protocol that will be relevant for the patient. Consequently, the

patient is categorised on being created within the system. In other words, an

uncategorised patient cannot be allowed to exist in the system. It is important to

point out that it is the clinician who makes the decision to place a patient into a

category and the system only accepts this decision.

Execute patient plan: A patient plan is automatically activated soon after it has been

created. For this reason, the create patient plan use case includes the execute patient

test plan use case. During the test plan execution, test orders are sent to and their

corresponding results are obtained from, the Laboratory Information System (LIS).

Perform manipulation: The administrator and the clinician can perform

manipulation of either the protocol specifications or the patient plans. The clinician

can also browse the issued orders and received laboratory results through the

perform manipulation use case since the patient’s local medical record is updated

accordingly with the orders issued and results received. In the perform manipulation

use case, the clinician queries the execution of the plan and can also modify the

components of the plan. Dynamic modification of the patient test plan is an

important aspect of the system, which needs special attention since it brings in the

issue of dynamic modification of ECA rules which has received little attention in

research related to the ECA rule systems in active databases. In the perform

manipulation use case, the administrator actor queries, retrieves and modifies

protocol specifications contained in the database.

Issue query: The issuing of queries is performed as part of the manipulation of

protocol specifications and patient plans. The issue query use case is the

specialisation of the perform manipulation use case. The querying is done using the

TOPSQL, which has been described in Chapter 8.

Chapter 9 : Design and Implementation

 181

Perform operation: operations are performed as part of the manipulation of

protocols and patient plans. The perform operation use case is the specialisation of

the perform manipulation use case.

9.3.3. Discussion on TOPS Requirements
The major requirement for TOPS is that of providing automatic application, at

category level, of locally agreed clinical laboratory test-ordering protocols,

customisable to individual patient circumstances. The satisfaction of this

requirement provides, from both the clinical and laboratory operational standpoints,

computerised protocol-based ordering of clinical laboratory tests. Excluded from the

requirement is the provision of any attempt at human reasoning that leads to

automatic clinical decision-making or diagnosis. TOPS’s technical requirements

include providing a specification language to specify investigation protocols, a

database for storing these protocols, an execution mechanism based on the ECA rule

paradigm, and a language to manipulate the specification and the execution process.

When clinical guidelines are specified, they presuppose a clearly defined clinical

problem to be addressed and their recommendations include the specification of

well-defined patient categories to which the recommendations apply. TOPS’

requirements do not include that of automating the task of deciding to which

category an incoming patient should be assigned. Instead, TOPS’s requirement is to

leave this task to the domain expert. TOPS is required to accept categorised patients

to whom it applies the protocol for the category to which the patient has been

assigned and creates executable plans for these patients.

In summary, this section has spelt out the problem to which TOPS serves as a

solution. The nature and characteristics of this problem has been described. The

Section has also exposed the requirements that TOPS must satisfy in order to attain

its aim and objectives. These requirements were described from both the application

Chapter 9 : Design and Implementation

 182

domain and the technical perspectives. The next Section focuses on describing the

design and implementation of TOPS.

9.4. The Design of TOPS

This Section presents the design of TOPS. The model of TOPS from the functional,

object and dynamic modelling perspectives is presented. The section describes the

TOPS protocol specification database as well as the design of the TOPS mechanisms

for the specification, execution and manipulation of protocols. The section also

presents the architecture of TOPS. Finally the section ends with a discussion of the

design of TOPS and a brief summary.

9.4.1. The Functional Model of TOPS
The functional model of TOPS is described in terms of a data flow diagram and

describes what the system does. A data flow diagram (DFD) is a network

representation of the system showing the functional relationships of the data that

are computed by the system. The DFD is used to present a description of the high-

level functions of TOPS. Figure 49 illustrates a DFD of TOPS, showing the main

functional processes, data flows, the main data stored as well as the external entities

of the system. The processes illustrated in Figure 49 are as follows:

Managing patient categories: The Category Designer creates a new category, which

is stored in a data store, which can be queried and modified.

Creating a protocol specification: The Protocol Designer creates a new protocol

specification, which is stored in a data store.

Chapter 9 : Design and Implementation

 183

Manage Patient
Category

Manage protocol
specification

Create patient
plan

Execute patient
plan

Patient category Detail

Protocol specification

Clinician:
Category
Designer

Clinician

Clinician:
Protocol
Designer

Clinical
Laboratory

Patient plan data

Execution data
Electronic patient record

Create protocol
specificationCreate new

patient
category

Manage
Patient

plan

Category
specification

Existing
category

Modified
category

New category
specification

Category
name

Protocol
detail

New
protocol
specification

Existing
protocol
element

Modified
protocol
element

Patient’s clinical
data

Patient
ID

updates

changes

New patient
plan

Execution
status

Query,
changes

updates
Patient
plan
rules

Feedback
detail

Test
Order/result

Test
order

Test
result

Patient plan
execution
data

Electronic patient record

Manage Patient
Category

Manage protocol
specification

Create patient
plan

Execute patient
plan

Patient category DetailPatient category Detail

Protocol specification

Clinician:
Category
Designer

Clinician

Clinician:
Protocol
Designer

Clinical
Laboratory

Patient plan dataPatient plan data

Execution data
Electronic patient record

Create protocol
specificationCreate new

patient
category

Manage
Patient

plan

Category
specification

Existing
category

Modified
category

New category
specification

Category
name

Protocol
detail

New
protocol
specification

Existing
protocol
element

Modified
protocol
element

Patient’s clinical
data

Patient
ID

updates

changes

New patient
plan

Execution
status

Query,
changes

updates
Patient
plan
rules

Feedback
detail

Test
Order/result

Test
order

Test
result

Patient plan
execution
data

Electronic patient recordElectronic patient record

Figure 49 Data flow diagram for TOPS with a focus on the domain of clinical laboratory test-ordering

protocols

Managing a protocol specification: The Protocol Designer may query and modify

existing protocol specifications.

Creating a patient plan: An individual patient’s test ordering plan is generated from

a test protocol for the clinician. The process of building a patient test plan required

data from the patient’s medical record.

Managing a patient plan: The clinician queries and gets responses on test plans. The

Clinician can retrieve and update or modify the patient test plan specifications.

Executing a patient plan: During test plan execution, plan rules are set up for

monitoring, execution and feedback on execution is produced. When a patient test

plan is executed, appropriate test orders are issued and test results are received from

clinical laboratory.

Chapter 9 : Design and Implementation

 184

Table 9.1 Table of data flow for the DFD of Figure 9.3

FUNCTIONAL
MODULE

INPUT FROM OUTPUT TO COMMENT

Create patient category Category
specification

Designer Formatted category
specification

Patient category
data store

Designer creates a new
category, which is stored in
a data store

Manage patient category • Changes
• Query

• Designer
• Category data

store

• Formatted changes
• Query response

• Category data
store

• Designer

Designer queries and
modifies existing category
specifications

Create protocol
specification

• New protocol
specification

• Category name

• Designer • Formatted new
protocol
specification

• Protocol
specification
data store

Designer creates a new
protocol specification, which
is stored in a data store

Manage protocol
specification

• Changes
• Query

• Designer
• Protocol data store

• Formatted changes
• Query response

• Protocol data
store

• Designer

Designer queries and
modifies existing protocol
specifications

Get patient test plan • patient ID
• patient’s medical

record
• protocol

specification

• Clinician
• Electronic patient

record
• Protocol

specification data
store

• New patient test
ordering plan

• Patient test plan
data store

An individual patient’s test
ordering plan is generated
from a test protocol for the
clinician

Manage patient test plan • Query
• Patient test plan

specification
• Execution feedback

• Clinician
• Patient test plan

specification data
store

• “Execute test plan”
process

• Query response
• Changes
• Test plan rules

• Clinician
• Test plan

specification
data store

• “execute test
plan” process

The clinician queries and get
responses on test plan, the
test plan specification is
retrieved and updated, test
plan rules are submitted for
execution and feedback on
execution is received

Execute patient test plan • Test plan rules
• Test results

• “Manage test plan”
process

• Clinical laboratory

• Test orders
• Feedback on

execution
• Execution state

data

• Clinical
laboratory

• “manage test
plan” process

• execution state
data store

Patient test plan is executed,
appropriate test orders are
issued and test results are
received from clinical
laboratory

Table 9.1 presents a detailed description of each process illustrated in Figure 49 in

terms of the inputs and where they are coming from, and the outputs and where

they are going to from the process.

9.4.2. Entity-Relationship and Object Models for TOPS
This section presents the static model of TOPS in the form of an entity-relationship

model for the most significant entities in the system and the object model for the

most significant classes within the system.

The TOPS Entity-Relationship Model

Figure 50 illustrates the entity-relationship model for TOPS in the notation of Chen

(1976). The entity-relationship model in Figure 50 expresses that patients are placed

into clinical categories. A separate protocol is specified for each category. For each

categorised patient, a patient plan for ordering clinical investigations is created as an

instance of the category’s protocol.

Chapter 9 : Design and Implementation

 185

Figure 50 The entity-relationship model for the specification of the ECA
rule-based protocols.

The clinical protocol specifies circumstances for ordering each laboratory tests

through a set of protocol rules and schedules. Each schedule is composed of a set of

static rules and schedule rules. Protocol rules and schedule are the two types of the

dynamic rule. The dynamic rule and static rules are two types of the generic ECA

rule. When the protocol is instantiated with respect to a patient to create the

patient plan, only two rule sets are created: the set of static rules, which form the

plan schedule, and the set of dynamic rules, which is created from the sets of

schedule and protocol rules.

The Object Model for TOPS

Figure 51 illustrates the object model for the prototype system TOPS, which is made

up of the following components:

The TOPS patient: The Patient class provides for the specification of patient

demographics as well as a link to the patient’s category. The Patient class also

provides methods for adding the patient details to the database, managing the

Chapter 9 : Design and Implementation

 186

patient and creating the patient plan. The PatientHistory class allows the system to

maintain the history of the patient in the database while the PatientState class

provide facilities for maintaining the state of a patient within a protocol execution

process.

The clinical category: The Category class has attributes that specify the clinical

category for which each protocol is defined and to which each patient is assigned.

The clinical protocol specification: The Protocol class models the protocol

specification and its instances represent complete specifications of protocols. The

Protocol class has attributes whose types are of the following classes:

ProtocolHeader, PScheduleSet, PSRuleSet and PDRuleSet. The ProtocolHeader class

holds the attributes of the protocol. The PScheduleSet class is a container for the set

of schedules within the protocol. Each schedule is an instance of the PSchedule class

and contains, as attributes, an entry-criteria, a set of static rules and a set of dynamic

rules. The entry–criteria are a special type of a condition (PCondition class) that

must be satisfied by a patient in order for the schedule to be selected for inclusion in

a plan. The PSRuleSet class is a collection of static rules while the PDRuleSet is a

collection of dynamic rules, which are not part of any of the schedules in a protocol.

Each element in a PSRuleSet collection is an instance of the PSRule class, which is a

static rule. Also, each element in a PDRuleSet collection is an instance of the

PDRule class, which is a dynamic rule. From Figure 51, it can be seen that both the

PSRule class and the PDRule class are specialisations of the Rule class. The Rule

class has, as its attributes, an action of type PAction and a condition of type

PCondition.

Chapter 9 : Design and Implementation

 187

Figure 51 The core object model for TOPS incorporating the Category, Patient, Protocol and Plan classes

Mechanism for rule
communication
with modules
external to DBMS

Database access
component

Chapter 9 : Design and Implementation

 188

The patient plan and its execution mechanism: The TOPlan class, which is a

specialisation of the GenericPlan class, serves the purpose of an intermediate

mechanism from the protocol specification to the executing plan within the DBMS’

trigger mechanism. The GenericPlan class, and, by inheritance, the TOPlan class,

has two important attributes: the first one is the schedule of type Schedule class and

the second one is a set of the type DRuleSet class, which is a container for instances

of dynamic rules of the type DRule class. The Schedule class contains a schedule rule

set of type SRuleSet class, which is a container for static rules of type SRule class. At

the implementation level, static rules are implemented by using both time triggers

and Oracle triggers. Time triggers are implemented in a Java-based mechanism.

Dynamic rules are implemented through Oracle database triggers. Appendix J

presents an illustration of how a rule from the case study in Chapter 10 is translated

to the Oracle database trigger. The resulting database trigger incorpates appropriate

customisations.

The system database access mechanism: To access the database, TOPS makes use of

the three classes: SQLOp, TopsDBAccess and TDBC. The SQLOp class dynamically

generates SQL statements required to accomplished tasks that need to access the

database. The TopsDBAccess class manages connections to the database. The TDBC

class uses the Java Database Connectivity (JDBC) to create connections to the

appropriate database server.

The mechanism for rule communication with modules that are external to the

DBMS: The execution of triggers within the database system is complemented by

the ECA rule extension mechanism outside the DBMS. The link between triggers in

the DBMS and extension modules outside the DBMS requires a communication link,

which cannot be achieved through JDBC. Outside the database system, a listener, an

instance of the DBMsgListener class, listens at a secure port and on detecting an

incoming connection, it invokes the reader, an instance of the DBMsgReader class,

to read the message received. Once message reading is complete, an instance of the

DBMsgProcessor class analyses the message and invokes an instance of the

Chapter 9 : Design and Implementation

 189

ExternalAction class in order to execute the external action required. The

DBMsgListener functions in the same way as an HTTP server. Every trigger that

executes within the DBMS invokes a Notifier that connects to the DBMsgListener

using the same strategy as an HTTP client. On establishing the connection to the

DBMsgListener, the Notifier sends attributes of the patient and the ECA rule to be

executed outside the DBMS. Appendix J presents further details on the TOPS

mechanism for allowing database triggers to communicate with applications outside

the DBMS.

9.4.3. Dynamic Model of TOPS
This Section presents the dynamic models of important processes in TOPS. The

UML sequence diagram is used to model the key functionality of TOPS.

Creating a Protocol Specification

A protocol specification is created using a traditional text editor. The specification is

written in PLAN language described in Chapter 6. The flow chart for the process of

creating a protocol specification in TOPS is illustrated in Figure 52.

(a) Flow chart for the creation
of a protocol specification in

TOPS

 (b) Flow chart for the process of
parsing a protocol specification

Figure 52 The dynamic model for the protocol specification in TOPS

Chapter 9 : Design and Implementation

 190

The result of the protocol editing process is a plain text file, which will be the input

to the PLAN language parser. The main outputs of the parser are an instance of the

Protocol class, which is an object-oriented representation of the protocol

specification, and relational database version of the specification. If it is given a

Patient class instance, the protocol object can permit the creation of a plan for the

patient.

Creating the TOPS Patient

For any plan to be created and executed, first a TOPS patient must be created. The

category to which a patient is assigned must exist prior to the creation of a new

TOPS patient. The sequence diagram in Figure 53 illustrates the process of creating a

patient in TOPS.

Figure 53 Sequence diagram for creating a TOPS patient

To create a TOPS patient, a message, select(), is sent to the TOPS category object to

allow a category to be selected from those available. The patient will be assigned to

Chapter 9 : Design and Implementation

 191

the selected category. Next, after obtaining patient demographics, a

<<create>>Patient() message is sent to create a new object instance of the Patient

class, which sends the add() to itself to add the patient to the TOPS database. At this

point, new TOPS patient will have been created and is ready to have a plan created

for him/her using the protocol associated with the category to which the patient

belongs.

Changing the Category of the TOPS Patient

As has been noted earlier, a TOPS patient is categorised on creation and cannot exist

in TOPS without being associated with a TOPS category. It is permissible to assign

an existing patient to a new category if it is necessary to apply a new protocol to the

patient. The sequence diagram in Figure 54 illustrates the process of changing the

category of the patient in TOPS.

Figure 54 Sequence diagram for changing the category of a
TOPS patient

First, the select() message is sent to a Category object to allow for a new category to

be selected. Second, the list of all categories defined within the system is retrieved

Chapter 9 : Design and Implementation

 192

through the message, retrieveCategories(). Third, the ID number for the selected

category is retrieved from the database by using the retrieveId() message. Fourth, a

setCategoryId() message is sent to the Patient object so that it can update the ID

number for the new category to which the patient has been re-assigned. From this

point on, the patient is associated with this new category and any attempt to create a

plan for this patient will automatically use the protocol that is associated with this

new category.

Creating the TOPS Patient Plan

When a patient has been created in TOPS, a plan can be created for the patient. The

flow chart for the process of creating a TOPS patient plan is illustrated in Figure 55.

Figure 55 Flow chart for the process of
creating a TOPS patient plan

An appropriate protocol specification is retrieved from the TOPS database into the

protocol object, which provides for methods to manipulate the specification

including that for creating a patient plan from the specification. The process of

creating a patient plan produces a plan object, which installs and activates the plan

in the TOPS database.

Chapter 9 : Design and Implementation

 193

The sequence diagram in Figure 56 illustrates the process of creating a patient plan

in TOPS.

Firstly, the initiating urgent sends a message to create the patient plan,

createPatientPlan(), to the patient plan manager, PlanManager, instance. The

PlanManager then performs the following actions:

1) An instance of the Category class is created, <<create>>Category();

2) The message, select(), is sent to the Category object to allow a category to be

selected and its ID number to be retrieved from the database;

3) The message, getId(), is sent to the Category object to retrieve the category’s ID

number;

4) If the Patient object is not supplied as a parameter to the createPatientPlan()

message, an instance of the Patient class is created;

5) A plan object is created as an instance of the TOPlan class, <<create>>TOPlan();

and

6) The message, create(), is sent to the plan object with the patient object as a

parameter. This starts the process of creating a patient plan from a protocol

specified for the category to which the patient belongs.

To create a plan from a protocol, the plan object creates an instance of the Protocol

class, <<create>>Protocol() and sends a toPlan() message to convert a protocol

specification into a TOPS patient plan. To achieve this, the protocol object proceed

by performing the following actions:

Chapter 9 : Design and Implementation

 194

Figure 56 Sequence diagram for creating a patient plan in TOPS

Chapter 9 : Design and Implementation

 195

1) The message, toPlanDynamicRuleSet(), is sent to the dynamic rule set object,

drSet, which contains the dynamic rules in the protocol. A similar message,

toPlanDynamicRules(), is sent to the object containing a set of protocol

schedules. The output of these two messages is a combined set of the plan

version of all the dynamic rules that were contained in the protocol;

2) The message, toPlanStaticRuleSet(), is set to the object containing the set of static

rules in the protocol, psrSet, to create the plan version of the protocol static

rules;

3) The message, toPlanSchedule(), is sent to the object instance of the PScheduleSet

class, which is a set of schedules in the protocol. This message has the effect of

the creation of a plan schedule that contains only static rules.

4) The PScheduleSet class creates an instance of the plan schedule,

<<create>>PSchedule(), which contains static rules from the protocol schedules

and also from the protocol static rules. The plan static rules are created by

sending the message, toPlanStaticRuleSet(), to protocol and schedule instances of

the PSRuleSet class.

Once the dynamic and static rule sets are created, the patient plan is assembled and

becomes ready for installation, activation and execution within the DBMS.

Querying in TOPS

The information and knowledge relating to protocol specification and to an

executing patient plan is in TOPS can be queried. The process of querying this

information and knowledge in TOPS is illustrated in the sequence diagram of Figure

57. And the instance, cmd, of the TOPS command line facility, TOPSCmd, is

initiated by sending the start() message, which allows it to display the command line

prompt. At this prompt the user types a query using the manipulation/query

language, TOPSQL. To handle the query, the TOPS command line instance creates

an instance of the manipulation language processor, TOPSQL class, and passes on

the query statement as the argument. The query processor first parses the query

Chapter 9 : Design and Implementation

 196

statement and then instantiates the query handler, <<create>>SELECTCmd(), which

analyses the query condition before it executes the query by invoking a more

specialised query handler such as the plan query, PLANQuery class, which handles

all queries relating to a TOPS plan. Other specialised query handlers include the

PATIENTQuery class and the PROTOCOLQuery class. Each specialised query

Figure 57 A sequence diagram for issuing a query in TOPS

handler uses one or more SQL queries to get information from the TOPS database to

answer the original TOPSQL query.

Chapter 9 : Design and Implementation

 197

Performing a Manipulation Operation

Figure 58 illustrates a sequence diagram for the process of performing an operation

on a TOPS plan. Operations to manipulate protocol specifications, plans and patient

information can be specified by the user through the TOPS command line facility,

which is an instance of the TOPSCmd class. The process of performing a

manipulation operation proceeds in a similar manner to that of performing a query

Figure 58 A sequence diagram for performing an operation on TOPS patient plan

in TOPS. On receiving the statement for the operation, the command line facility

instantiates the manipulation language processor, the TOPSQL class, which parses

the statement and the executes it by invoking a specialised statement handler such

as the AddCmd class, which performs the ADD operation on the relevant TOPS

object, such as adding a new rule to an existing plan.

Chapter 9 : Design and Implementation

 198

9.4.4. The TOPS Database
The database system plays a central role in TOPS: first, it serves the purpose of

storing the protocol specification; second, it holds the local patient record; third, it

holds clinical information that is not patient-specific, such as orderable tests; and

fourth it serves as the protocol execution engine through the ECA rule mechanism

in the DBMS. This Section describes the design of the relational database used by

TOPS.

The Protocol Specification Database

A protocol specification is initially created as a plain text file from an ordinary text

editor. After being parsed using the mechanism described in Section 9.4 the

specification is saved into the TOPS database, which is a relational database. This

Section describes the protocol specification portion of the TOPS database. The

extended entity-relationship diagram illustrated in Figure 59 forms the basis for the

relational schema for the protocol specification database. Boxes in Figure 59

represent entities while ellipses represent entity attributes with underlining of the

attribute implying key attributes. For instance, PR_PROTOCOL is an entity whose

attributes are id, name, date-created and date-authorised. The key attribute, id, is

underlined. Cardinality constraints are represented using line sources and ends with

multiple line sources and ends implying cardinality of greater than one while single

line sources and ends imply unity cardinality. For example, an instance of the entity

PR_PROTOCOL is associated with more than one instance of the entity PR_RULE,

while each instance of the PR_RULE entity is associated with only one instance of

the PR_PROTOCOL entity. The is-part-of relationship is presented by a line

terminating with a diamond shape. For instance, each instance of the entity

PR_ACTION is part of one or more instances of the PR_RULE entity. The is-a or

specialisation-generalisation hierarchy is represented by a line with an arrow at the

generalisation entity. For instance, each instance of the PR_CRITERIA entity is a

specialisation of an instance of the PR_CONDITION entity.

Chapter 9 : Design and Implementation

 199

Figure 59 Entity-relationship diagram for the protocol specification in TOPS

The semantic model of Figure 59 is mapped into a normalised relational schema by

using a mapping described by Ullman et al (Ullman and Widom 2001). The

relational schema in presented in Appendix C.

The Patient Plan Database

This Section presents the database schema for the TOPS plan specification and

execution database. Figure 60 illustrates the extended entity-relationship diagram

for the TOPS plan specification. The notation used in the diagram is the same as that

used in Figure 59. It can be seen that the EER diagram for a plan has less entities

than that for the protocol. Firstly, the TOPS protocol has a set of schedules from

which one or more are selected and combined into one for inclusion in creating a

TOPS plan.

Chapter 9 : Design and Implementation

 200

The TOPS plan contains only one schedule holding static rules only. Secondly, a

TOPS plan consists of rules that are implemented by using database triggers and

external time triggers such that part of the TOPS plan’s specification is contained in

the database system’s catalogue. The TOPS plan specification database serves the

purpose of augmenting the database system’s catalogue. The plan specification and

execution database for a patient plan in TOPS consists of the TOPS plan database,

the DBMS catalogue and the TOPS execution logs.

The semantic model of the entity-relationship model of Figure 60 is mapped into a

normalised relational database schema, which is presented in Appendix C. It should

be pointed out that a TOPS plan belongs to a patient and is derived from a protocol

created for the category to which a patient has been assigned.

Figure 60 Entity-relationship diagram for the plan specification
in TOPS

 Although the entities for the TOPS patient and the TOPS protocol specification are

not illustrated in Figure 60, there is a relationship between the TOPS patient and

plan entities as well as between the TOPS plan and protocol entities. This explains

the presence of the PATIENT_ID and the PROTOCOL_ID attributes in the TOPS

plan relational table. The DATABASE_TRIGGER entity in Figure 60 is mapped to

Chapter 9 : Design and Implementation

 201

the USER_TRIGGERS table which is part of the database system. The relationships

between the two types of rule entities, PL_DYNAMIC_RULE and

PL_STATIC_RULE, on one hand, with the DATABASE_TRIGGER, on the other

hand, are captured through the relational table. A single plan rule instance can be

implemented by one or more triggers but, each trigger instance is part of the

implementation of only one plan rule. This constraint is attained by having the

attribute TRIGGER_NAME to constitute the primary key, thus, requiring the

TRIGGER_NAME attribute to be unique.

The Execution Log Database

The execution of a TOPS plan proceeds through the execution of the rules that make

up the plan. In order for TOPS to be able to allow the monitoring and manipulation

of executing plans, there is a need for TOPS to maintain a number of execution logs.

Plan execution logs: At the plan level, they are two things that need to be

monitored: the activity of the plan and the change of state of the plan over time.

The overall plan activity in TOPS is maintained the system activity log, which uses

the table PL_ACTIVITY_LOG. The TOPS plan activity is entered in the plan

activity log, PL_PLAN_ACTIVITY_LOG. The change in the state of the plan over

time is maintained in the plan state log, PL_PLAN_STATE_LOG.

Schedule execution logs: At the schedule level, only the schedule state is

maintained. A schedule, in a TOPS plan, consists of a set of static rules, which

monitor occurrences of time points and intervals. A schedule is active when any of

its rules are active and finished when all rules have finished executing. The table

PL_SCHEDULE_STATE_LOG is used to maintain the changes in the states of a

TOPS schedule.

Rule execution logs: At the rule level, there a need to maintain changes in rule state

and rule activity over time. The rule activity in the plan is maintained in the rule

activity log, named PL_RULE_ACTIVITY_LOG. The change in the state of a rule is

maintained in the rule state log, named PL_RULE_STATE_LOG. Since static rules

Chapter 9 : Design and Implementation

 202

monitor time events, a time event log, named PL_TIME_EVENT_LOG, is

maintained.

The Patient Record

The patient record is a complex, distributed and heterogeneous medical information

that spans the entire life time of a patient (Grimson, W, Berry et al. 1998). A single

application captures only a portion of the entire patient record. TOPS maintains

only a small part of the patient record and uses it to perform its functions. The

patient record in TOPS consists of three parts: patient and clinician demographics,

clinical laboratory investigations and advice (e.g., relating to diagnosis and

medication). Figure 61 illustrates an entity-relationship diagram of the local patient

record that it is used in TOPS. The attributes of entities are not presented in Figure

61 to avoid cluttering the diagram.

Figure 61 Entity-relationship diagram for the TOPS patient record

In TOPS, a clinician instance is associated with several clinical category instances

and may take care of several patient instances. Each patient instance has at any one

time only one instance of a TOPS plan. A TOPS patient instance may have several

Chapter 9 : Design and Implementation

 203

history and state instances. Both the TOPS plan and patient instances may be

associated with several test order instances, each of which may specify one or more

test profile instances. A test profile instance is a set of test instances, each of which

must have ranges of values that represent a normal patient condition. The normal

range of values for a test may differ with patient age or sex – one test may have more

that one normal range depending on the patient’s attribute (sex or age). A test

instance may have several result instances and several statistics may be monitored

for it. Part of the TOPS plan actions may involve giving suggestions and advice

relating to the patient associated with the plan. Three types of advice may be given

and these are: medication (drug dosage), specialist referral and diagnosis-related

advice.

The semantic model of the entity-relationship is mapped onto the normalised

relational database schema, which is presented in Appendix B The entities

PR_PROTOCOL and PL_PLAN have already been presented in Figure 59 and Figure

60 respectively. The resulting database schema includes database storage objects for

clinical categories, patient demographics and clinicians as well as tables for clinical

laboratory investigations and the advice available and given to a patient.

Views for the TOPS Database

To support a variety of queries that are expressed in the high-level language,

TOPSQL, a number of SQL views a provided. The aim of the views is to enable the

easy implementation and execution of queries expressed in TOPSQL. Appendix B

presents a list of the SQL views that are defined in the TOPS database. The TOPS

views are defined over the database schemes that have presented in previous

sections.

Chapter 9 : Design and Implementation

 204

9.5. TOPS’s Support for the SpEM Framework and the
MonCoos Approach

This section presents the design of the TOPS components for supporting each of the

three planes within the SpEM framework. The architecture for the TOPS protocol

specification mechanism is presented. This section also describes the protocol

execution mechanism, which allows patient plans to be executed. Finally, the

mechanism for manipulating the information and knowledge for supporting

computerised protocols is presented.

9.5.1. The TOPS Specification Mechanism
The architecture for creating a TOPS protocol specification is illustrated in Figure

62. The process of creating the protocol specification involves editing, parsing and

storing the specification in the database. The important components to support this

task are the editor, the parser and the specification database. The editing process

creates the text file-based protocol specification in PLAN language. The parser

parses the PLAN specification and instantiates the protocol specification class. The

resulting protocol specification object insert the protocol specification attributes into

the corresponding relations of the specification database.

Protocol editor

PLAN parser/
compiler

Protocol specification
database

PLAN text file

Protocol editor

PLAN parser/
compiler

Protocol specification
database

PLAN text file

Figure 62 Creating the protocol specification in TOPS

Chapter 9 : Design and Implementation

 205

The abstract form of the process for creating a protocol specification can be

visualised as illustrated in Figure 63. A protocol specification is expressed in PLAN

and takes the format of a plain text file. The protocol specification is translated into

an object-oriented instance of the protocol specification, the protocol specification

object. This protocol specification object maps the protocol specification object into

tables in the relational database.

PLAN protocol
specification

(plain text file)
Protocol specification

class instantiation
(specification objects)

Protocol specification
Database

(relational tables)

PLAN protocol
specification

(plain text file)
Protocol specification

class instantiation
(specification objects)

Protocol specification
Database

(relational tables)

Figure 63 The abstract process for creating the protocol specification
in TOPS

In TOPS, the PLAN protocol specification is initially created and stored as a text file.

The protocol specification parser scans the PLAN specification text file and extracts

the attributes of a protocol specification, which it uses to create objects for ECA

components, rules and schedules. These objects are used to instantiate the protocol

specification class. In other words, the parser output is an object instance of the

Protocol class. Figure 63 illustrates the abstract process for creating a protocol

specification in TOPS. The parser for PLAN language protocol specifications has

been developed and implemented. The object-oriented model of the TOPS

specification parser is illustrated in Figure 64.

The Protocol class provides the mechanism for manipulating the protocol

specification including adding the protocol specification to the database.

Chapter 9 : Design and Implementation

 206

In Figure 64, classes whose names are in upper-case are parsers for the protocol

component bearing the same name. For example, the PROTOCOL class is the parser

for the protocol specification and creates a new instance of the Protocol class, while

the SCHEDULE class is a parser for the protocol schedule and creates instances of

the PSRuleSet and PDRuleSet classes, which are then used to create an instance of

the PSchedule class. All the parsers in Figure 64 are specialisations of the Parser

class. All the parsers follow the recursive descent parsing strategy (Aho and Ullman

1973).

Figure 64 Class diagram for the PLAN language parser

The protocol specification object is used to view a text or graphical version of the

specification, to instantiate a patient plan, and to store the protocol specification in

the database. When the protocol specification is retrieved from the database, it is

also held and manipulated in the form of the specification object.

Chapter 9 : Design and Implementation

 207

9.5.2. The TOPS Execution Mechanism
This section describes the design and implementation of the ECA rule execution

mechanism for TOPS. The section presents the design of the execution mechanism

for time-driven static rules and the mechanism for executing the plan schedule in

TOPS. The section also presents the design of ECA rule mechanism which services

as the execution mechanism for TOPS. The aim of the design of the TOPS execution

mechanism is to be generic enough to be applicable to any application scenario that

could benefit from the ECA rule paradigm and the underlying database system.

A TOPS plan is composed of a time-driven schedule containing static rules and a set

of dynamic rules. The execution mechanism of a TOPS plan is therefore made up of

the execution mechanisms of the static and dynamic rule sets. This section presents

the plan execution architecture and then describes the design of the execution

mechanisms for the static and dynamic rules in TOPS.

The Plan Execution and Management Mechanism

Figure 65 illustrates the TOPS plan execution and management mechanism. The

TOPS Plan Manager sets up, activates and permits a TOPS plan to be managed

during its execution. The TOPS generic ECA Rule Mechanism extends the database

trigger mechanism with time-driven rules and dynamic management functionality

that is not supported by the database system database triggers. The TOPS Dynamic

SQL Module dynamically builds the required SQL statements, submits the SQL

statements the database system via JDBC, and receives results of queries from the

database for onward transmission to the other components. The TOPS database

contains specifications, execution state data and test orders and results part of the

patient record. Test results are pushed to TOPS by the clinical laboratory or a

laboratory simulator designed for the purpose of testing TOPS.

Chapter 9 : Design and Implementation

 208

TOPS
Database

Time-driven
ECA rule

mechanism

Database
ECA Rule
(trigger)

Mechanism

DBMS
(Oracle8i)

TOPS
Generic
ECA Rule
Mechanism

ECA/Dynamic
Rule

Mechanism

Patient Test Plan TOPS
Plan
Managerhigh level

external
events

Data pushed
To TOPS e.g.
Lab results

Dynamic
SQL

Module

TOPS
Database

Time-driven
ECA rule

mechanism

Database
ECA Rule
(trigger)

Mechanism

DBMS
(Oracle8i)

TOPS
Generic
ECA Rule
Mechanism

ECA/Dynamic
Rule

Mechanism

Patient Test Plan TOPS
Plan
Managerhigh level

external
events

Data pushed
To TOPS e.g.
Lab results

Dynamic
SQL

Module

Figure 65 The TOPS plan execution and
management mechanism

The resulting storage of the laboratory test result is eventually detected as an event

of interest that triggers some patient plan rules. Certain high-level events can

originate externally, for instance, from the clinician during an encounter with a

patient. The next section describes the implementation of the TOPS database and its

access component.

The core component of TOPS is the generic execution mechanism, which consists of

the generic ECA rule mechanism and the database access component that handles

connections and access to the database. The generic ECA rule mechanism accesses

the database via the TOPS Database Access component.

Figure 66 A state diagram for the patient plan

Chapter 9 : Design and Implementation

 209

Plan Execution States

A TOPS plan goes through state transitions during its execution. These states and

transitions of a TOPS plan are predefined and context-independent, that is, are

independent of the plan’s logic, content or protocol from which the plan is derived.

Figure 66 presents the state chart diagram for a TOPS plan.

When a TOPS plan is created, it is automatically installed and activated. Its state

changes from the initial state to the waiting state, which is a sub-state of the active

state. In the waiting state, all rules in a plan are active and can react to any event

that is of interest to the plan. When a new event of interest is detected by any rule

in the plan, the plan changes state from waiting to executing , a sub-state of the

active state, and the rule is executed. When rule execution completes, the plan

returns to the waiting state. When all rules have completed executing or their

expiry period has passed, the plan changes state to the finished, a sub-state of the

terminated state. This can happen at any point when the plan is in the active state.

When a user stops an active plan, the plan changes state to the truncated state,

which is also a sub-state of the terminated state. A plan that it is in the truncated

state can be re-activated.

Figure 67 A high-level state diagram for a TOPS
patient execution states

Chapter 9 : Design and Implementation

 210

Patient Execution States

Figure 67 presents a context-independent state chart for a TOPS patient. A TOPS

patient who is subject to a TOPS plan experiences state transitions that are of two

types: context-independent predefined state transitions; and context-dependent and

protocol-specific state transitions, which all occur as sub-state transitions of the on-

protocol state. The on-protocol state is one of the context-independent predefined

states in Figure 67.

A protocol may define states and transitions as part of clinical logic. Such states as

these are incorporated into the context-independent state chart of Figure 67 as sub

states of the on-protocol state. A TOPS patient initially starts in the ready state. On

being categorised, the patient changes state to the on-protocol state in which a plan

is created from the relevant protocol and then executed. When in the on-protocol

state, the patient may be subject to states and transitions that are specific to the plan

or protocol until plan execution completes. On completion of the plan’s execution,

the patient state changes to the completed state, in which the patient may be re-

called into the ready state if there is a need to put the patient on another protocol.

The General Architecture for Rule Implementation and Execution Flow

in TOPS

A TOPS plan consists of two sets of rules: the set of dynamic rules which are typical

ECA rules; and the set of static rules, which are a special type of ECA rule that

automate a timetable of clinical tasks that must be performed with respect to a given

patient. These two types of rules in the TOPS plan are translated into one or more

triggers. Figure 68 illustrates the implementation architecture and execution flow

for the static and dynamic rules in TOPS. A dynamic rule is automatically translated

into one or more triggers that are entirely in SQL and execute within the standard

database management system (DBMS) trigger mechanism.

Chapter 9 : Design and Implementation

 211

Figure 68 Rule implementation architecture and
execution flow in TOPS

Dynamic rule database triggers monitor the local patient record. A static rule is

automatically translated into a time trigger that is implemented outside the database

system in a Java-based trigger mechanism, which monitors time events; and a

database trigger implemented in SQL to realise the action part of the static rule. The

time trigger signals time events through the time event log (a database table), which

is being monitored by the static rule database trigger.

As illustrated in Figure 68, static and dynamic rule database triggers, when they

execute, send messages containing execution information to the notifier, a Java-

based module that is stored inside the DBMS. The notifier connects to and forwards

the message to the listener, which is also a Java-based module residing outside the

DBMS. The notifier invokes the ECA rule extension module, which executes the rest

of the rule’s logic within the Java-based environment outside the DBMS.

Once an ECA rule is mapped or translated into database triggers, it is added to the

database schema through the Dynamic SQL Module, which automatically builds the

CREATE TRIGGER SQL statement and submits it to the database system for

execution. Figure 69 illustrates the implementation of the ECA rule execution and

manipulation mechanism in TOPS.

Chapter 9 : Design and Implementation

 212

deleteadd query

TOPS
Database

modify

Dynamic SQL
Module

Database

ECA rule (trigger)

Mechanism
DBMS

ECA Rule Dynamic Management

Events

Extenal
Actions

deleteadd query

TOPS
Database

modify

Dynamic SQL
Module

Database

ECA rule (trigger)

Mechanism
DBMS

ECA Rule Dynamic Management

Events

Extenal
Actions

Figure 69 The rule execution and manipulation
mechanism in TOPS

When an event of interest occurs, the database triggers representing the ECA rules

are each fired, and executed in accordance with the rule execution model of the

underlying database system. For instance, Oracle uses the execution model

presented in Chapter 4 to maintain the proper firing sequence of multiple triggers

and constraints checking. Examples of events in TOPS are data storage events

associated with the creation of a new test order, the arrival of a new test result or

the admission of a new patient.

The actions of a TOPS rule currently include database events, external actions such

as sending an alert or an e-mail message or displaying a message on the screen. As

illustrated in Figure 69, the ECA rule dynamic manager provides operations that are

to be performed on ECA rules in a dynamic fashion. These operations include add,

query, delete and modify a rule. These four operations can be performed at any time

in a dynamic fashion on any rule without affecting other rules.

Rule Execution States

Triggers in most database management systems are in one of two states, which are

the disabled and the enabled states. Disabled triggers exist within the system but are

prevented from monitoring and reacting to occurrences of events of interest.

Chapter 9 : Design and Implementation

 213

TOPS plan rules are at a higher level than database triggers. States and transitions for

TOPS plan rules need to be comprehensive enough to make it easier to provide

information about the execution process and to perform manipulation operations

without disrupting the plan’s execution process.

Figure 70 presents the state chart for a rule in a plan in TOPS. A rule first goes into

the ready state from the initial state. On the first occurrences of its events of

interest, the rule is fired and enters the executing state in which its action is

executed if its condition is satisfied. When execution completes rules state changes

to be waiting state, where it stays until the next event is detected. From this point

onwards, the rule’s state changes to and fro between the execution and waiting state

until it is retired, disabled or removed. The ready, waiting and executing states are

sub-states of the active state.

Figure 70 A state diagram for rule in a TOPS patient
plan

When a rule in the active state is removed, the state changes to the deleted state. If

it is disabled, the state changes to the disabled state. If the rule’s active period

expires, then its state changes to the retired state. If a disabled or retired rule is

Chapter 9 : Design and Implementation

 214

removed, its state changes to the deleted state, which marks its death. The disabled,

retired and deleted states are sub-states of the inactive state.

Static Rule Execution Mechanism

A static rule executes a specified set of actions after every fixed interval of time,

starting from a given time point and ending at a specified time point. Figure 71

illustrates the general design for executing a time-driven static rule.

In Figure 71, a static rule has a start date, which we denote ds, and an end/expiry

date, which we denote de. The static rule also has the time event interval such that

the action is executed at time points e1, e2, … along the time axis, where ei – ej = I,

for every i = j+1 and ei < de. Thus the rule action is executed as long as the time point

after the interval falls before the rule’s expiry date, de.

Static Rule
Action/Task

e1 e2 e3

Rule event
interval p

Rule start
date

Rule end
(expiry) date

Schedule
start

e4

Rule retires soon after
this point and does
not wait for expiry date Next firing event

occuerrence
if rule were to
remain active

Rule activity period

Schedule
end

time

The Static Rule

Static Rule
Action/Task

e1 e2 e3

Rule event
interval p

Rule start
date

Rule end
(expiry) date

Schedule
start

e4

Rule retires soon after
this point and does
not wait for expiry date Next firing event

occuerrence
if rule were to
remain active

Rule activity period

Schedule
end

time

The Static Rule

Figure 71 The execution mechanism for a time-
driven static rule in TOPS

The rule’s period of activity, pa, is given by pa = de - ds. The number of times any

given static rule will execute before its expiry date is give by pa/(time event interval).

The period between the last time event, denoted el (in Figure 71, el = e3), and de is

denoted by p = de - el. The length of the time interval, p, depends on the size of the

Chapter 9 : Design and Implementation

 215

rule’s time event interval and can be of arbitrary time unit including seconds,

months or even years. We also note that p ≤ 0 always. If p = 0, then rule’s last event

of interest coincides with its expiry date and so the rule should terminate

immediately after executing its action. If p < 0, then the rule’s last event of interest

occurs before the expiry date (de) of the rule and the rule executes its action for the

last time and then waits for period p, for the expiry date, de.

Since p can be of any size, allowing a rule to wait for its expiry date can lead to a

situation where a number of rules are waiting for a long period (months or years) for

nothing besides the occurrence of their expiry date. This unnecessarily prolongs the

life of a rule. Since every rule knows its own expiry date and can calculate its next

execution date, the rule can determine its last time event and can, therefore, decide

to retire immediately after its last execution rather than waiting for period p to

expiry.

The TOPS design of the execution mechanism of a static rule is based on a timer that

evokes the rule’s action repeatedly after a fixed interval of time. The rule has a start

time and an end/expiry time. The rule’s first time event may or may not coincide

with the start time of the rule. If the two do not coincide, then a delay period must

be specified. The default is that the rule’s start time coincides with its first time

event. On the occurrence of the time event of interest based on the rule’s interval

and last execution time point, the rule’s action performs the relevant task and then

determines whether or not the time event that invoked it is the last event before the

rule’s expiry date. If the time event is the last one, the action detaches itself from the

timer and deactivates the rule instead of waiting for the expiry date. If the event is

not the last event of interest before the rule expires, the rule “sleeps” only to “re-

awaken” on the occurrence of the next time event of interest. A single rule shares

the timer with other rules. A rule cannot terminate the timer to avoid one rule to

forcibly deactivate other rules.

Chapter 9 : Design and Implementation

 216

In a TOPS plan, a schedule is a set of time-driven ECA rules, which are grouped

together into a single collection. All rules in a schedule contribute to one overall

objective. Figure 72 illustrates the execution mechanism designed for the TOPS

schedule. The schedule consists of a single timer with a start and an end/expiry time

stamps, a schedule monitor in form of a single ECA rule, Rmonitor, and a set of time-

driven static rules. In Figure 72, Ri where i = 1, 2, …, (n-1), n, is a static rule, and ej,

where j = 1,2, …, is a time event of interest to one or more rules in a schedule.

Rmonitor is a schedule monitor, which is an ECA rule that monitors rules in the

schedule and the end/expiry date of the schedule. The monitor is defined in the

Schedule
start
timestamp

Schedule
end
timestamp

R1
R(n-1)R2

Rn

time

Rmonitor

e2e1 e3 e4 e6 e7 e9e8 e10e5

Rule R(n-1)
retires

Rule R1
retires

Rule R2

retires

Rule Rn
retires

The Static Rule Schedule

Schedule
start
timestamp

Schedule
end
timestamp

R1
R(n-1)R2

Rn

time

Rmonitor

e2e1 e3 e4 e6 e7 e9e8 e10e5

Rule R(n-1)
retires

Rule R1
retires

Rule R2

retires

Rule Rn
retires

The Static Rule Schedule

Figure 72 The execution mechanism for a schedule in TOPS

same way as static rules with an interval that is less or equal to the lowest interval in

the rule set. The schedule’s start time is the time stamp at which it is invoked. When

a schedule starts, it first determines its own expiry date by examining the expiry

dates of all the rules it holds. The schedule takes the expiry date of the rule with the

latest expiry date. The schedule then activates all its static rules. Each rule attaches

itself to the schedule’s timer and uses it as an event source. The schedule monitor,

Rmonitor, also attaches itself to the schedule’s timer. Each rule then proceeds

independently as described in the first part of this sub-section.

Chapter 9 : Design and Implementation

 217

The schedule monitor (Rmonitor) executes to scan all rules in the schedule checking

their execution status. When the schedule monitor discovers that all rules in a

schedule have finished executing and are inactive or terminated, it then terminates

the timer and deactivates the schedule. When all static rules are terminated, the

timer continues to execute but does not generate any time event since all rules are

inactive and there is no time event that is of interest to any rule. All rules in a

schedule can terminate before the schedule’s end date. In this case, the schedule

monitor terminates the schedule and does not wait for the schedule’s expiry date.

Rules in an executing schedule can be dynamically manipulated. The rules can be

added, deleted, or modified dynamically without affecting the execution of other

rules in the schedule.

TOPS’s Handling of the Challenges from the Lack of Comprehensive

DBMS Support for ECA rules

TOPS’ implementation of the SpEM framework and MonCooS approach with the

specification model, PLAN, and its language, PLAN, that uses a modern DBMS poses

a number of challenges due to the lack of comprehensive and flexible support for the

ECA rule paradigm. The following summarises how TOPS handles the limitations of

ECA rule support in the underlying DBMS.

The mutating table problem: To protect a trigger from seeing an inconsistent data

set, Oracle prevents a trigger from accessing the table that is being altered by the

triggering transaction. Although Russell (Russell 2002) provides a solution for by-

passing this problem using a temporary table and two triggers, TOPS solves this

problem by separating the ECA rule action (in the protocol) from the trigger action

and, therefore, also from the triggering transaction. The trigger action simply passes

a message to an external action processor so that when the ECA rule action

eventually executes the triggering transaction will have committed and the table

Chapter 9 : Design and Implementation

 218

being altered is no longer mutating and will, therefore, be accessible. In other

words, TOPS uses the deferred coupling mode for action execution which does not

experience Oracle’s mutating table problem.

Trigger restriction to monitoring one table: To monitor more that one table, TOPS

uses a combination of the deferred execution mode with an event queue so that each

trigger monitors one table and sends event messages to the event queue, which will

be monitored for events on several tables.

Support for a domain expert (clinician) to make a decision before a rule’s action is

executed: TOPS avoids the immediate coupling mode in preference to the detached

coupling mode since, in addition to avoiding the mutating table problem, it also

allows a clinician to make a decision before taking any action. This is achieved by

making trigger actions execute immediately while restricting their actions to passing

a message to a detached action execution mechanism, which can prompt a clinician,

possibly in asynchronous mode.

Fixed trigger execution order under lower priority with respect to integrity

constraints: Two problems that may arise due to this limitation are: a) protocol

execution may be interfered with if an integrity constraint is violated and triggering

transaction associated with a protocol rule is rolled back; and b) if a trigger

associated with a protocol rule fails to execute, this may cause the rollback of a

legitimate and important transaction, e.g., a vital update to a patient record. TOPS

cannot avoid experiencing the first problem since it has no control over integrity

constraints. However, TOPS avoids the second problem during CGP execution by

restricting the effects of trigger actions to message passing involving an external rule

listener. This means that triggers that implement CGP rules are guaranteed to

execute successfully all the time since: 1) they cannot violate any integrity

constraint because they do not affect database state; and 2) in TOPS, the trigger

Chapter 9 : Design and Implementation

 219

action that performs the message passing is guaranteed to succeed all the time, even

if the receiver of the message is unavailable.

Lack of trigger communication functionality with external environment: In TOPS,

triggers that implement protocol rules communicate with an external Java

environment by using HTTP sockets (see Appendix J). This communication is

currently unidirectional from the trigger to the external rule listener. As a result,

there is no way a trigger can gain control of external actions or receive feedback

from the execution of external actions.

Summary

This section has presented the design of the TOPS rule execution mechanism. ECA

rule or protocol rule execution in TOPS is mainly based on the underlying database

trigger execution mechanism. TOPS’ contribution is in the following aspects:

1) The provision of the functionality to allow the dynamic management of the

rules;

2) The mapping of high-level logical ECA rules to database triggers; and

3) The provision of a high-level event service to extend the limited set of possible

events provided by current DBMS and generally extending the database trigger

mechanism to support those aspects of ECA rules that are not adequately

supported.

9.5.3. The TOPS Manipulation Mechanism
This Section presents the design of the manipulation mechanism in TOPS. The

manipulation mechanism in TOPS allows specifications to be maintained and patient

plans to be managed by using the TOPS Query Language, TOPSQL, while they are

in the process of execution.

Chapter 9 : Design and Implementation

 220

General Strategy for the Implementation of TOPSQL

In supporting the management of clinical protocols, use is made of the relational

database model and its mechanism for supporting ECA rules as the core operating

environment. The implementation strategy for the manipulation language, TOPSQL,

is to define the language to be at a level higher than the SQL such that it can be

implemented using the SQL at a lower level. Figure 73 presents the implementation

strategy adopted for TOPSQL.

The strategy is to implement TOPSQL through an object-oriented environment that

maps easily or can easily access, through the use of SQL, the relational model-based

protocol system database.

TOPSQL

Re-play Object Classes

TOPSQL Object Classes

Structured Query
Language

(SQL)
SQL Views

Protocol Specification and Execution Database

TOPSQL

Re-play Object Classes

TOPSQL Object Classes

Structured Query
Language

(SQL)
SQL Views

Protocol Specification and Execution Database

Figure 73 TOPSQL implementation strategy

TOPSQL queries can be supported by a set of TOPSQL object classes that access a

rich set of the protocol system’s logs, views and protocol and plan specification

tables using the SQL. Queries that involve the replay of plans are implemented

through re-play simulator classes which have access to execution logs and views by

using the SQL. The implementation strategy for TOPSQL illustrated in Figure 73 has

Chapter 9 : Design and Implementation

 221

the advantage that it guarantees portability and ease-of-maintenance through the

use of the object-oriented paradigm and SQL.

The TOPS Architecture for the Implementation of TOPSQL

The conceptual architecture for the TOPS manipulation mechanism, which

implements TOPSQL, is illustrated in Figure 74. The TOPS client provides the

interface for the user to specify either the query or the operation he/she desire to be

performed on either specifications or patient plans.

The manipulation manager interfaces with the TOPS clients and determines

whether the user’s request is for a query or an operation on TOPS objects and

invokes the appropriate handler. The query parser parses the query statement and

TOPS
DB

TOPS
Client

Query
parser

TOPS
object

Operator
Parser

msg

ms
g

query/
operation

operation

que
ry

query result/
feedback

Manipulation
manager

TOPS

manipulatio
n

component

TOPS
DB

TOPS
Client

Query
parser

TOPS
object

Operator
Parser

msg

ms
g

query/
operation

operation

que
ry

query result/
feedback

Manipulation
manager

TOPS

manipulatio
n

component

Figure 74 The TOPS manipulation mechanism

analyses the requirements of the query. The results of the analysis are passed as

parameters for the message sent to the TOPS object, which should be the subject of

the query.

The operator parser parses and analyses the statement representing the operation

required to be performed. The results of analysis are passed on to the appropriate

TOPS object. The query and operator parsers together implement TOPSQL, the

Chapter 9 : Design and Implementation

 222

manipulation language described in Chapter 8. The subject of a query or an

operation requested by the user is one of the objects in TOPS, the TOPS object.

The TOPS object can be a protocol, plan, patient, category, or rule. The TOPS

database holds information about protocol specifications and the patient plan

execution process. All the information that is the subject of a query or an operation

is held in the TOPS database. Each TOPS object performs the user query or

operation by accessing the TOPS database.

The object model of the TOPS manipulation mechanism

The manipulation of protocols, plans and patients, which involves issuing queries

and performing operations on the objects, has been implemented in the TOPS

manipulation mechanism whose high-level object model is illustrated in Figure 75.

Figure 75 The class diagram for the TOPS manipulation mechanism

The TOPSCmd class provides a command line interface to the user and accepts

commands in the form of TOPSQL statements and passes them on to the TOPSQL

class. The TOPSQL class is a parser for TOPSQL statements, which invokes either

the TopsqlOp class, for manipulation operations or the QueryCmd, for queries, for

further processing. The specialisations for the manipulation operations class include

Chapter 9 : Design and Implementation

 223

the AddCmd class - for adding objects, the CreateCmd – creating objects, ListCmd

class - for listing names of objects, e.g., listing protocol names, DisplayCmd class for

displaying detailed specification for an object, DeleteCmd class – for deleting objects

and StopCmd class - for stopping the execution of a plan.

QueryCmd class has to distinguish between a query and a request to replay events in

the system. The specialisation for the Query class includes the PLANQuery class –

for handling queries relating to a plan, the PATIENTQuery class – for handling

queries relating to patients, the CATEGORYQuery class - for handling queries

relating categories, and the PROTOCOLQuery class – for handling queries relating

to a protocol. The specialisations for the Replay class are the PLANReplay class – for

allowing the plan’s execution to be replayed, and the PATIENTReplay class – for

allowing the events happening to a patient to be replayed.

9.6. The Architecture of TOPS

This section presents the architecture for TOPS. As illustrated Figure 76, the

architecture has three layers. External to the system are users and external systems.

The top layer is the clinical protocol management functionality that allows users to

specify, store, execute manipulate and query clinical protocols and external systems

to supply and receive information from the system. The middle layer provides

services that 1) extend the ECA rule execution mechanism of the underlying

database system and 2) handle connections to the database. The bottom layer is the

ECA rule execution mechanism, which is the ECA rule mechanism in a modern

database system.

TOPS Clients and External Systems: Users of the system, who may be either

clinicians or patients, use the TOPS clients. Typically, users should be subject to

security checks and authorization. Currently, basic security is provided through

user-names and passwords. Besides users, the system can interacts with external

Chapter 9 : Design and Implementation

 224

External
Communications

Module

Operator
ModuleSpecification

Module

P
rotocol

M
an

ag
em

en
t

Query
Module

Re-Play
Module

Instantiation
& Execution

Module
Management Components

External Systems TOPS Clients

Rule Activity
Listener

Time Event
Generator

ECA Rule
Extension
Module

DB Access
Manager

Dynamic SQL
GeneratorE

C
A

M
ech

an
ism

E
xtension

Rule Activity Notifier

Local
Patient
Record

Protocol
and Plan

Specifications

Plan
Execution

Logs
Database

Trigger Mechanism

P
ro

to
co

l E
x

ecu
tio

n
En

g
in

e (D
B

M
S

)

secure port

Rule Msg
Reader

& Processor

JDBC

External
Communications

Module

Operator
ModuleSpecification

Module

P
rotocol

M
an

ag
em

en
t

Query
Module

Re-Play
Module

Instantiation
& Execution

Module
Management Components

External Systems TOPS Clients

Rule Activity
Listener

Time Event
Generator

ECA Rule
Extension
Module

DB Access
Manager

Dynamic SQL
GeneratorE

C
A

M
ech

an
ism

E
xtension

Rule Activity Notifier

Local
Patient
Record

Protocol
and Plan

Specifications

Plan
Execution

Logs
Database

Trigger Mechanism

P
ro

to
co

l E
x

ecu
tio

n
En

g
in

e (D
B

M
S

)

secure port

Rule Msg
Reader

& Processor

JDBC

Figure 76 The Architecture of TOPS

systems such as the clinical laboratory information system for test order submission

and result receipts. Other systems may want to access information relating to

protocol specifications and execution process of TOPS plans.

The Protocol Management Layer: This generally provides users with the

functionality for managing patients and patient categories, creation of protocol

specifications for patient categories, creating, executing and manipulating patient

plans, and querying the system’s static and dynamic information.

The ECA Rule Mechanism Extension: The ECA Rule Mechanism Extension’s main

purpose is to provide the functionality that is not adequately supported by the ECA

rule execution mechanism in the underlying database system and to perform actions

that need to be performed outside the database system. The Time Events Generator

extends the database trigger mechanism by providing a time event detector. It

generates time events of interest to specific rules within each patient plan.

The mechanism for supporting time triggers is illustrated in Figure 71. The Java-

based time trigger mechanism is used to give signals for the occurrence of only those

Chapter 9 : Design and Implementation

 225

time events that are of interest to rules in the patient plans. The Time Events

Generator was necessitated by the absence of the support for temporal triggers in

modern database systems, including the Oracle DBMS used in TOPS.

The Rule Activity Listener listens and receives messages from rules executing within

the database system. Modern database systems do not provide support for rules to

communicate externally with applications outside the database. For instance,

current database connectivity through the Java Database Connectivity (JDBC) and

the Open Database Connectivity (ODBC) do not support active behaviour or push

functionality (only pull functionality is supported). Hence, there is a need for a

separate mechanism to allow rules to communicate externally. With the Rule

Activity Listener, rules inside the database can communicate with other modules of

the system that are outside the database.

Lastly, the Dynamic SQL Statement Generator and the Database Access Manager are

the two components that are dedicated to handling standard communication

through database connectivity between the database system and external

components. The Dynamic SQL Statement Generator generates the required SQL

statements to allow dynamic manipulation of both rules and data in the database.

The trigger mechanism of a database system is used as the engine for executing the

ECA rule-based clinical protocols. One ECA rule in a patient plan is mapped to one

or more database triggers. The mapping is predefined for each of the two main types

of rules, i.e., the static rules and dynamic rules. A static (time-driven) rule is mapped

to one Java-based time trigger that signals the occurrence of a time event and one

database trigger that reacts to this signal. Dynamic rules are mapped to only one

database trigger. Each ECA rule in a plan monitors either the patient’s record or the

plan’s execution logs such as the time event log.

Chapter 9 : Design and Implementation

 226

9.7. Discussion and Comparison to Related Work

A Relational Database Model-Based Knowledge Representation Scheme for CGPs:

Lobach et. al. (1997) represented guideline content and logic using a hybrid of

structured and procedural knowledge representation formalism. Advantages of the

relational database format for storing CGP knowledge has been identified to include:

compatibility with Internet applications and technologies for information exchange

such as XML; popular model that has evolved into an industry standard; supported

by many DBMS tools; sharability through applications using SQL; easily explained

using a tabular representation (Lobach, Gadd et al. 1997). An advantage the

approach taken by TOPS is the portability afforded by both the object-oriented

environment and the relational model and SQL. Another advantage is that both the

object-based mapping and the relational database are compatible with XML, which

gives TOPS the advantage of future adaptability into a distributed client-server

framework. It has already been demonstrated that TOPS can act as a clinical

protocol management server for distributed clients (Jones, Dube et al. 2003).

Concept or Phenomenon Equivalent to Patient Plan Rule Set in TOPS: In TOPS,

each patient has his or her own rule set making the patient’s plan. The same or

similar idea is found in Appelrath et al’s active repository that uses an active DB for

implementing the persistent and reactive parts of a process- centred software

engineering environment (Appelrath, H-J, Behrends et al. 1995). There, they

identified the need for rule sets on a project basis, requiring extensions to their

toolbox regarding multi-user and meta-programming capabilities. The software

project is equivalent to the patient object in TOPS. However, their system could not

support this feature for customised rule sets as it lacked multi-user support, which

was needed for supporting several user groups each having its own specific set of

rules.

Chapter 9 : Design and Implementation

 227

Rule Modification And Evolution: Geppert et al (1995) describe the implementation

of rule-base evolution with respect to event type modification only. The detection of

composite events was based on Petri Nets called the SAMOS Petri Net (S-PN). The

S-PN also maintains the event history. They gave the algorithm for the event type

modification based on the manipulation and reconstruction of the S-PN structure.

The modification of a rule means changing the rule’s event, condition or action. In

modern commercial database systems such as the Oracle DBMS, deleting and then

replacing the rule by a new rule can achieve rule modification. The rule’s ECA

components are not accessible as separate objects. The rule-base in these commercial

systems cannot be queried at rule component level. In TOPS, rule evolution is a

major aspect that needs to be supported to allow flexibility in changing the

specification of a test-ordering plan. The rule-base in TOPS consists of test-ordering

plans. Each test plan should be considered as a “stand-alone” rule-base that should

be considered in isolation from other plans. The rules of a test plan must not interact

with rules of another plan unless that plan belongs to the same patient. At the test

plan level, there is still need for plan-level operations and queries.

Rule Monitoring Intervals:: Geppert et al (1995) also introduced the concept of a

“monitoring interval” in the SAMOS active database prototype (Geppert, A. and

Dittrich 1993). The monitoring interval is a time interval that can be specified (in

terms of a start time and end time) to determine when an event has occurred in

order to be considered as relevant. In TOPS, monitoring intervals could be applied

to dynamic rules to prevent rules whose plans have expired from executing or to

give the dynamic rules an expiry period. The dynamic rules would automatically

deactivate or retire once the current date is beyond the end time and should not

execute in reaction to events occurring before the start time. Thus, each dynamic

rule would execute only during the specified “monitoring interval”.

Chapter 9 : Design and Implementation

 228

Correctness of TOPS Plans: In TOPS there is need to perform rule analysis (Bailey,

JA 1997; Baralis, E., Ceri et al. 1998) in order to verify the correctness of a protocol

and patient plans. The generation of triggers need to be formalised in order to

guarantee the correctness of the resulting patient plan. The current implementation

of TOPS relies on the domain expert’s analysis of the clinical protocol and the

resulting sets of ECA rules in guaranteeing the correctness of protocol rules.

Development of a formal method for analysing protocol rules and verifying their

correctness has been left as part of future work.

TOPS Plan Manageability: To make clinical test-ordering plan manageable in TOPS,

there is need to introduce rule stratification and modularisation (Baralis, Elena , Ceri

et al. 1996) in a test plan. The division of a plan into a schedule, which is a set of

static rules, and a set of dynamic rules forms the basis of rule stratification in a test

plan. There is need for an explicit formal specification of the stratification criteria.

Global rules could form a stratum that exists external to all test-ordering plans.

Message Transmission by an Trigger-Based TOPS Rule to One or More Applications

External to DBMS: In TOPS, most of the time, rules do not automatically perform

actions on behalf of the clinicians. Instead, the rules either prompt, recommend or

alert. Hence all rules in TOPS need to transmit messages to one or more TOPS

modules that are external to the DBMS. Hanson et al (1998) proposed an integrated,

flexible framework for interaction between an active DBMS and applications.

Possible problems that can occur when a rule signals events or sends messages to

applications that were dealt with by Hanson et al (1998) are: 1) Lost-dependency

operation problem (LDO):- signalled events or messages sent may be lost or not

acted on by the receiving application (the client); and 2) Dirty dependency

operation problem (DDO) when an application or a client is allowed to process an

uncommitted event signal or message. In TOPS, message transmission from database

triggers that implement protocol ECA rules to modules external to the DBMS or

Chapter 9 : Design and Implementation

 229

other systems is achieved via HTTP connections between trigger actions (the HTTP

clients) and an external HTTP server process, which in turn links with the external

applications. These HTTP connections are subject to security authentication.

However this method of communication between triggers and external application

still suffer from the LDO problem. To address the LDO problem, a feedback

tracking system may need to be implemented in TOPS. The DDO problem my not

be an issue in TOPS since the agent that acts on event signals or messages from

trigger is responsible for committing the event signals or messages. The agent is the

clinician who is allowed to choose not to act on TOPS messages.

Creating Specification Using a High Level Description Language: Eder et al use a

graphical description language to specify business processes or flow (Eder, Groiss et

al. 1994). They translate the resulting specifications into triggers of an active

database. In TOPS the same approach is adopted . The only difference being that

the language used in TOPS, PLAN (Wu, B. and Dube 2001), is not graphical. PLAN

is a specification language that is higher than database triggers and has advantages of

being independent from a specific product or trigger language. Specifications based

on triggers are at a low level making such specifications more difficult to read and

debug.

 Li and Chakravarthy’s ECA Agent: Li et al (1999) used a mediator to provide ECA

functionality to Sybase, a relational DBMS. Their ECA agent is similar to TOPS and

can also be considered as a wrapper to the underlying DBMS. Several aspects and

features of Li and Chakravarthy’s ECA agent (1999) bear some similarities to TOPS.

The first aspect of similarity is the use of ECA rule parser to scan and parse ECA

rules for syntax errors. The parser will create events and rules and generate the

required SQL. The event and rule specifications are stored in relational tables.

Events and rules are created from the specifications stored in these tables. A second

similarity is that, in TOPS, a rule execution “notifier” sends a message to a rule

Chapter 9 : Design and Implementation

 230

activity “Listener” each time a rule’s action is executed. The notifier is a java stored

procedure that executes inside the DBS while the listener is an external java stored

procedure that executes inside the DBS while the listener is external java routine.

Furthermore the listener is an HTTP server while the notifier is an HTTP client. Li

and Chakravarthy provide an “event notifier” which sends notifications of primitive

event occurrences to a “local event detector” after receiving a signal from an

executing DB trigger. A third similarity is that after the occurrence of an event,

TOPS involves an “external action” processor which then launches the appropriate

actions. Li and Chakravarthy use an “action handler” which calls the actions defined

as an event that has occurred.

There are a number of differences between TOPS and Li and Chakravarthy’s ECA

agent. In TOPS, a comprehensive treatment of composite events has been left to

become part of future work although they are of fundamental significance to the

problem being handled by TOPS. Li et. al. use the SNOOP event specification

language originally designed for Sentinel. They went even further to enhance the

SQL trigger definition by incorporating the SNOOP event definition. Li and

Chakravarthy (1999) deal mainly with ECA rules that are submitted individually to

the system and they provide no mechanism to group rules together. In TOPS rules

are grouped into sets that form complex objects – the protocol or plan. Furthermore,

it is important to query both the rule specifications and their activity history. As a

result it is necessary that TOPS provides a ECA rule query language for this purpose.

Li and Chakravarthy (1999) do not discuss the issue of querying the rule-base and

rule activity history.

The Paradigms in TOPS: TOPS employs object-orientation and the ECA rule

paradigm within the context of the relational database model. One of the important

issues within these paradigms in TOPS is the synchronisation of objects across the

paradigms. Porto et al (1999) have investigated persistent object synchronisation in

Chapter 9 : Design and Implementation

 231

active relational databases. They propose an architecture that is based on a

replication strategy, which maintains server tuples and client-cached objects

synchronised with respect to state. A combination of the object-oriented paradigm

with the active relational model offers the problem of “impedance mismatch”

between the object-oriented model and the relational model. This challenge points

to the need to deal with structural and behavioural model clashes, which include:

object attributes that are stored in different relational tables; object relationships,

e.g., inheritance, that have no equivalent in the relational model; and state change in

application objects are reflected in persistent versions of these objects and vice-

versa. The main issues to be dealt with include: representing the object life cycle

inside an active relational database system; and implementing object behaviour via

database triggers and stored procedures. This thesis has not addressed these issues

and problems associated with the use of different paradigms that need to interact

across their boundaries

9.8. Chapter Summary

This chapter has described the design and implementation TOPS, the prototype

system for managing clinical protocols for the domain of clinical test ordering by

clinicians. The chapter proceeded to attain its aim and objectives by first describing

the general and specific problem to which TOPS serves the purpose of a solution.

The requirements, from the domain and technical perspectives, have been

presented. The Chapter then presented the design of TOPS in terms of the

functional, object and dynamic models before giving more detailed descriptions of

the design of important aspects and components of the system which include: the

protocol specification database; the three mechanisms for the specification,

execution and manipulation of clinical protocols; the architecture of TOPS; and the

implementation of TOPS. The design of TOPS described in this chapter addresses

the requirements of the protocol management framework that has been introduced

Chapter 9 : Design and Implementation

 232

in Chapter 3 and 5; and implements the approach and method that has been

described in Chapter 5 and explained in detail in chapters 6-8. This Chapter also

presented a review of the related work and discussed the implications to the design

of TOPS. The next chapter demonstrates that TOPS, as described in this chapter,

achieves its aims and objectives by presenting a demonstration and an evaluation of

its functionality.

Chapter 10. Case Study: Supporting the Management
of the Microalbuminuria Protocol for Patients

with Diabetes Mellitus

10.1. Introduction

This chapter presents a case study that uses TOPS to manage a clinical protocol for

the diagnosis and treatment of microalbuminuria (MA) in diabetes patients. The case

study applies the SpEM framework and MonCooS approach in supporting the

management of the microalbuminuria protocol (MAP). The MAP is modelled and

specified in the specification language, PLAN, parsed and stored in the TOPS

database, executed by the TOPS execution mechanism and both the MAP

specification and executing instances are manipulated by using the language

TOPSQL. The medical aspects of the work presented in this Chapter relied on the

assistance of medical domain experts within the MediLink Programme (MediLink

2003), a multi-institutional inter-disciplinary research programme spanning the

Dublin Institute of Technology, Trinity College and St. James’s Hospital. The rest of

this chapter is organised as follows: Section 10.2 presents a brief clinical background

to the microalbuminuria protocol and its significance; Section 10.3 presents a

description of the microalbuminuria protocol; Section 10.4 demonstrates the method

of capturing knowledge and specifying the MAP; Section 10.5 briefly describes the

creation of the MAP specification database in TOPS; Section 10.6 discusses the

execution of the MAP using TOPS; Section 10.7 discusses the manipulation aspect of

the management of the MAP in TOPS; Section 10.8 presents a discussion that

focuses on the strength and limitations of the protocol management framework

presented in this Thesis; and, lastly, Section 10.9 summarises of this Chapter.

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 234

10.2. Clinical Background: Diabetes and

Microalbuminuria

Diabetes is a chronic disease defined as “inappropriate glucose metabolism leading to

impaired removal of glucose from the circulation” (Ristow 2004). The main

characteristic of diabetes is a sustained elevated blood glucose level resulting from

insulin deficiency or from insulin resistance. Insulin deficiency results from an

insufficient secretion of insulin by pancreatic beta cells. With insulin deficiency, the

body does not have enough insulin to metabolise blood glucose and reduce it to

appropriate levels. Insulin resistance is the body’s inability to properly use the

insulin that it produces to reduce blood glucose level in the body to appropriate

levels. Both insulin deficiency and insulin resistance lead to hyperglycaemia or high

blood glucose levels. Diabetes is one of the major chronic diseases in developed

countries where it is increasing and directly or indirectly through the effects of its

many complications, accounts for approximately 10% of healthcare expenditure

(Andreassen, Gomez et al. 2002). The disease is also on the increase in developing

countries.

The clinical management of diabetes is of huge importance in minimising the

incidence and effects of the disease’s long-term complications (Andreassen, Gomez

et al. 2002). The long-term complications of diabetes are mainly based on the

disturbances of carbohydrate, protein and fat metabolism (American Diabetes

Association 2002). Diabetic renal disease is one class of diabetic complications that

result from the disturbance in protein metabolism in diabetes patients. It has been

found out that one in three patients with diabetes will be affected by diabetic renal

disease (Harvey, Rizvi et al. 2001). Microalbuminuria is a renal disease associated

with kidney abnormalities and other organs of the body. The presence of

microalbuminuria or proteinuria (nephropathy) increases the risk of large blood

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 235

vessel disease and premature death. Early intervention can preserve renal function,

preventing progression to end stage renal disease (Mogensen 2003). Late

intervention may slow the rate of renal decline to dialysis. Interventions can also

reduce other vascular morbidity and mortality (Harvey, Rizvi et al. 2001). The

clinical aim of the microalbuminuria protocol (MAP) for diabetes mellitus patients is

to minimise rapid progression into end-stage renal failure in diabetes patients

through early intervention and management (American Diabetes Association 2002;

Mogensen 2003). In this case study TOPS, aims at assisting in achi eving this aim by

serving as a tool for scheduling, monitoring and coordinating clinical intervention

using clinical laboratory tests.

10.3. Description of the Microalbuminuria Protocol

(MAP)

 Every year at annual review of diabetes patients, the patient’s urine is screened for

protein loss. The screening looks for microalbuminuria, proteinuria and raised serum

creatinine. In those with renal changes or renal impairment, urine albumin

excretion (UAE) should also be monitored every 6 months. The following

interventions are necessary for people with renal changes:

Diabetes renal screening: Every patient will be provided with a universal specimen

pot and asked to bring an early morning urine specimen (mid stream) to their annual

review appointment. The urine is dipped for albumin in the dipstick urine test

(DUT). If there is either no albumin or a trace of albumin on dip testing, the sample

is sent to the biochemistry laboratory for an albumin-creatinine ratio (ACR) test to

be performed. Table 10.1 presents the guideline’s clinical interpretations of the

results for the albumin-creatinine ratio (ACR).

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 236

If the DUT results in positive proteinuria being identified, the specimen is sent to

the microbiology laboratory for culture and sensitivity to exclude infection. If there

is no infection, and this is the first time that proteinuria has been identified, a 24-

hour urine collection is sent to the biochemistry laboratory to assess creatinine

clearance and 24-hour protein loss.

Optimum glycaemic control: HbAlc < 7%. Hb stands for haemoglobin, the

compound in the red blood cells that transports oxygen. When glucose in the blood

sticks to haemoglobin A, gylcosylated haemoglobin or HbA1c or haemoglobin A1c is

created. Haemoglobin occurs in several variants; the main variant is known as

haemoglobin A. Thus, A1c is a specific subtype of haemoglobin A. The 1 is a

subscript to the A, and the c is a subscript to the 1. Diabetes patients have a high

amount of HbA1c because they have a higher level of blood glucose than non-

diabetics.

Blood pressure control is undertaken aiming at attaining the targets for diabetes

patients presented in Table 10.2. Angiotensin Converting Enzyme (ACE) inhibitors

for blood pressure control is prescribed to maximum tolerated dose and the Serum-

Creatinine Ratio (SCR) and Potassium are monitored only if the patient is not

pregnant.

Table 10.2 Blood pressure targets for diabetes patients

BLOOD PRESSURE (mmHg) PATIENT CATEGORY
Asystolic Diasystolic

Everyone with diabetes 140 80
Diabetes, aged > 40 with renal changes 130 75
Diabetes, aged <40 with renal changes 120 70

Table 10.1 Interpretation of the albumin-creatinine ratio (ACR)

DIAGNOSIS DESCRIPTION RESULT RANGE
Normal Negative or trace of albumin on dip testing and an albumin ACR <3.0 (20 mg/l)
Significant Negative or trace of albumin on dip testing and an albumin ACR >3.0 (200 mg/l)

Microalbuminuria

Should only be diagnosed if there have been 2 positive results. Dip
positive for protein in the absence of a urinary infection, confirmed
by a 24 hour protein loss of > 200mg/l. If this is the first result,
please repeat screening.

ACR >3.0 (200 mg/l)
(within a 6 month period)

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 237

10.4. Creating a PLAN Specification of the MAP

The method used in this Section models clinical protocols using the UML state chart

as a tool to capture and enhance the domain knowledge in terms of the ECA rule

paradigm. It has been noted, in the literature, that events, event parameters,

conditions, actions and activities are already supported in UML state charts, where it

is possible to support variants of ECA rules (Berndtsson, Mikael and Calestam 2001).

10.4.1. Modelling Knowledge in the MAP
The method of CGP knowledge modelling presented in Chapter 5 will be

demonstrated using the protocol for the treatment and management of

microalbuminuria (MA) in diabetes mellitus. Figure 77 illustrates the state chart for

the microalbuminuria protocol (MAP).

Figure 77 State chart for the microalbuminuria protocol

The process of renal screening illustrated in Figure 77 starts with the annual

screening of blood and leucocytes in urine using the dipstick urine test (DUT) as

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 238

described in Section 10.3. If the DUT is positive, i.e., blood and leucocytes are

present in urine, then screening for other infections is done before a patient can be

referred to a nephrologist. If the DUT is negative, i.e., blood and leucocytes are

absent from urine, then the patient is screened for microalbuminuria, which

involves three measurements of urine albumin using the albumin-creatinine ratio

(ACR) test over a period of six months. If ACR is less than 20 mg/l at any point,

then the patient is cleared of microalbuminuria and becomes subject to the annual

DUT. If ACR is greater than 200 mg/l, then the patient is referred to the

nephrologists. If ACR is in the range 20-200 mg/l in 2 of the 3 measurements taken

over 6 months, then the patient is diagnosed with microalbuminuria. This diagnosis

is confirming with the 24 hour creatinine clearance and protein loss measurements.

If microalbuminuria is confirmed, then treatment and monitoring of

microalbuminuria commences. At any point during the treatment of

microalbuminuria, the patient is referred to the nephrologist if ACR is greater than

200 mg/l. The patient is also placed on annual screening if ACR drops to less than 20

mg/l.

The state chart of Figure 77 is used to generate event-condition-action (ECA) rules

that implement the logic of the protocol. For each state and its associated transitions,

rules are designed to handle the following:

a) Perform what must be done when the patient enters the state;

b) Perform what must be done during the patient’s stay in the state;

c) Perform what must be done when a patient exits from the state;

d) Monitor the conditions that cause the patient to be moved from one state to

another, i.e., conditions for state transitions.

Section 10.4. presents a demonstration of the creation of the MAP specification from

the state chart presented in this Section.

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 239

10.4.2. Creating the MAP Specification
This Section presents the sets of Event-condition-action (ECA) rules that express the

logic of the MAP. The ECA rules are derived with the aid of the state chart of Figure

77.

Specifying Rules for the MAP

Rules for Annual Urine Screening (AUS)

Table 10.3 Rules for the annual_urine_screening (AUS) state

Rule Code
(type)

Rule Description Rule in PLAN

AUS1 (static)
ON end of year
DO perform dip-stick urine
(DSU) test

STATIC_RULE AUS1,
DESCRIPTION: dip-stick urine test at the end of every year
for screening renal complications in diabetes patients,
FROM: user_defined_date,
STARTING: 0 year,
ENDING: 1 year,
ON EVERY: 1 year,
DO: order_test(‘DSU’);

AUS2
(dynamic)

ON result of DSU test
IF DSU test is positive (blood
and leucocytes present in
urine)
DO put patient on screening
for other infections

RULE AUS2,
DESCRIPTION: if dipstick urine test shows presence of
blood and leucocytes check presence or absence of other
infections e.g. urinary tract infections,
ON: result_arrival(‘DSU’),
IF: DSU%result%database%t_results
 = positive%string,
DO: patient_state (‘other_infections_screening’);

A
nn

ua
l_

ur
in

e_
sc

re
en

in
g

(A
U

S
)

AUS3
(dynamic)

ON result of DSU test
IF DSU test negative (no
blood and leucocytes in
urine)
DO micro-albuminuria
Screening

RULE AUS3,
DESCRIPTION: if dipstick urine test is negative then screen
for microalbuminuria,
ON: result_arrival(‘DSU’),
IF: DSU%RESULT% DATABASE%T_RESULT
 = NEGATIVE%STRING,
DO: PATIENT_STATE(‘microalbuminuria_screening’);

Each patient is initially placed on annual screening for microalbuminuria. This

places the patient in the annual-urine-screening(AUS) state of the protocol as

illustrated in the state chart of Figure 77. Table 10.3 presents three ECA rules, in

both structured English and in the specification language PLAN, to implement the

logic of the AUS state. The three ECA rules handle the following:

a) Schedule a dip-stick urine (DSU) test annually;

b) Place the patient on screening for other infections, i.e., change patient state to

other-infections-screening state, when the DSU test turns out to be positive; and

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 240

c) Place the patient on microalbuminuria screening, i.e., change patient state to the

microalbuminuria-screening state, when the DSU test turns out to be negative.

Rules for Screening of Other Infections

A patient enters the other-infections-screening (OIS) state from the annual-urine-

screening state when the dip-stick urine test is found to be positive.

Table 10.4 Rules for other_infections_screening (OIS)

Rule Code
(type)

Rule Specification in General
ECA Rule Format Rule Specification in PLAN

OIS1 (static)
ON entry into this state (OIS)
DO check patient for urinary tract
infection (UTI)

STATIC_RULE OIS1,
 DESCRIPTION: on entry to the OIS schedule the
patient is tested for other urinary tract inections
(UTI),
 FROM: start-of-schedule,
 STARTING: 0 munites,
 ENDING: 1 minute,
 ON EVERY: 1 minute,
 DO: order_test (‘UTI’);

OIS2 (dynamic)

ON obtaining result for UTI
examination
IF UTI is not present
DO 24 hour creatinine clearance
and protein loss tests
(24CRCL_PL)

RULE OIS2,
DESCRIPTION: if UTI is not present then perform
24 hour creatinine and 24 hour protein loss tests,
ON: result_arrival(‘UTI’),
IF: UTI%result% database%t_result
 = negative%string,
DO: order_test(‘24CRCL_PL’);

OIS3 (dynamic)

ON obtaining result for UTI
examination
IF UTI is present
DO put patient back on annual
screening for renal complications
and treat the UTI

RULE OIS3,
[DESCRIPTION: if UTI is present then place back
on annual screening,
ON: result_arrival(“UTI”),
IF: UTI%result% database%t_result
 = positive%string,
DO: patient_state(‘annual_urine_screening’);

OIS4 (dynamic)

ON obtaining results for
24CRCL_PL
IF 24CRCL_PL result is positive
DO nephrology referral

RULE OIS4,
DESCRIPTION: if 24 hour creatine clearance and
24 hour protein loss tests are positive then
proteinuria is confirmed and refer patient to
nephrologist,
ON: result_arriavle(‘24CRCL_PL’),
IF: 24CRCL_PL%RESULT%DATABASE%T_TEST
= POSITIVE%STRING,
DO: patient_state (‘nephrology_referral’);

O
th

er
_i

nf
ec

tio
ns

_s
cr

ee
ni

ng
 (O

IS
)

OIS5 (dynamic)

ON obtaining results for
24CRCL_PL
IF 24CRCL_PL result is negative
DO put patient back on annual
screening for renal complications

RULE 0IS5,
DESCRIPTION: if 24 hour creatine clearance and
24 hour protein loss is negative then return patient
to annual screening,
ON: result_arriavle(‘24CRCL_PL’),
IF: 24CRCL_PL%RESULT%DATABASE%T_TEST
= NEGATIVE%STRING,
DO: patient_state (‘annual_urine_screening’);

Table 10.4 presents the rules that capture the knowledge on screening other

infections within the context of the MAP. These rules, i.e., the other-infections-

screening state rules, handle the following aspect of the MAP:

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 241

• On entry to this state, the patient is checked for urinary tract infection (UTI);

• The patient is placed back on annual urine screening with UTI treatment if UTI

is found to be present;

• 24 hour creatinine clearance and protein loss (24CRCL-PL) are measured in the

event that UTI is confirmed to be absent;

• Patient is referred to nephrologist if the 24CRCL-PL test is positive; and

• The patient is put back on annual urine screening (AUS) if the 24CRCL-PL test is

negative.

Table 10.5 Rules for microalbuminuria_screening (MAS)

Rule Code
(type)

Rule Specification in
General ECA Rule Format

Rule Specification in PLAN

MAS1 (static)
ON entry into this state
DO order the tests ACR and
SCR

STATIC_RULE MAS1,
 DESCRIPTION: at the start of this schedule MAS order the two ACR and SCR tests,
 FROM: start_of_schedule,
 STARTING: 0 minutes,
 ENDING: 1 minute,
 ON EVERY: 1 minute,
 DO: order_test(‘ACR, SCR’);

MAS2 (dynamic)

ON obtaining result for ACR
IF ACR > 20
DO order ACR twice at an
interval of 2-3 months

RULE MAS2,
DESCRIPTION: if the first ACR result is > 20 mg/l order two more tests within the next six
months,
ON: result_arrival(“ACR”),
IF: ACR%RESULT%DATABASE%T_RESULTS
 > 20%DOUBLE,
DO: ADD_RULE
{
STATIC_RULE ma2sr2
DESCRIPTION rule orders ACR test during the next 6 month period
*FROM time_rule_added
*STARTING 0 months
*ENDING 6 months
*ON_EVERY 3 months
*DO order_test ('ACR')
};

MAS3 (dynamic)

ON obtaining result for ACR
IF ACR < 20
DO place patient on annual
screening (AUS)

RULE MAS3,
DESCRIPTION: if ACR < 20 mg/l then place patient on annual screening,
ON: result_arrival(‘ACR’),
IF: ACR%RESULT% DATABASE%T_RESULTS
 > 20%DOUBLE,
DO: PATIENT_STATE(‘annual_urine_screening’);

Alternative 1:
RULE MAS4a,
DESCRIPTION: rule to analyse the 3 ACR
measurements taken over 6 months
FROM time_rule_added
STARTING 0 months
ENDING 6 months
ON_EVERY 6 months
DO: 2_of_3_ACR_check ();

Alternative 2:

RULE MAS4a,
DESCRIPTION: rule to analyse the 3 ACR
measurements taken over 6 months
ON: result_arrival(‘ACR’)
DO: 2_of_3_ACR_check (); MAS4 (dynamic)

ON result for ACR
IF 2 of 3 ACR result is in
range 20-200mg/l in 6
months
DO place patient in state
confirmed_microalbuminuria

RULE MAS4b,
DESCRIPTION: if 2 of 3 ACR in 20-200 mg/l within 6 months then microalbuminuria is
confirmed,
ON: 2_of_3_ACR_check(),
IF: result = positive
DO: PATIENT_STATE(‘confirmed_microalbuminuria’);

m
ic

ro
al

bu
m

in
ur

ia
_s

cr
ee

ni
ng

 (M
A

S
)

MAS5 (dynamic)

ON result for ACR
IF ACR > 200mg/l
DO put patient on
nephrology_referral

RULE MAS5,
DESCRIPTION: if ACR > 200 mg/l then refer patient to nephrologist for possible
proteinuria,
ON: RESULT_ARRIVAL(‘ACR’),
IF: ACR%RESULT%DATABASE%T_TEST
 > 200%DOUBLE,
DO: PATIENT_STATE(‘nephrology_referral’);

Rules for Microalbuminuria screening (MAS)

A patient on annual urine screening (AUS) is put on microalbuminuria screening

(MAS) when the DSU test is negative. Table 10.5 presents rules for handling MAS.

The rules in Table 10.5 capture the following knowledge aspects of the MAP:

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 242

• Albumin creatine ratio (ACR) and serum creatinine ratio (SCR) tests are

performed when the patient enters the AUS state;

• On-going ACR tests are scheduled at 2-3 months intervals if ACR > 20 mg/l.

This gives rise to a rule that waits for the first ACR value and checks the

condition, ACR>20. If the condition is satisfied, the rule adds a new static rule

that suggest or prompts for an ACR measurement after every 2-3 months;

• The patient is placed on AUS if the condition, ACR<20, if satisfied;

• During a 6-month period, 3 ACR measurements must have been taken. If 2 of

the three ACR values fall in the range 20-200 mg/l, then microalbuminuria is

confirmed and the patient is moved to the confirmed microalbuminuria state

(CMAS); and

• The patient is referred to a nephrologist if ACR exceeds 200 mg/l.

Rules for Confirmed Microalbuminuria

When a patient who is on microalbuminuria screening (MAS) experiences 2 ACR

measurements in the range 20-200 mg/l out of 3 taken at an interval of 2-3 months

for 6 months, the patient is scheduled for microalbuminuria treatment. The patient’s

state is changed to the confirmed-microalbuminuria state. Table 10.6 presents rules

that capture the knowledge required to manage patients on microalbuminuria

management.

These rules take care of the following aspects of the protocol, MAP:

• On the patient’s entry into the confirmed-microlbuminuria state, the following

is done:

1. The optimisation of glycaemic control is suggested;

2. BP is measured;

3. ACE inhibitor is administered if patient falls into the type 1 diabetes

category; and

4. Further ACR measurements are scheduled on a monthly basis;

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 243

• The patient is placed back on annual urine screening if it occurs that ACR < 20

mg/l at any time;

• The patient is placed on nephrology referral if it occurs that ACR > 200 mg/l at

any time.

Table 10.6 Rules for confirmed_microalbuminuria (CMA)

Rule Code
(type)

Rule Specification in General
ECA Rule Format

Rule Specification in PLAN

CMA1
(static)

ON entry into this patient state
DO optimise glycaemic control

STATIC_RULE CMA1,
 DESCRIPTION: at the start of this schedule suggest optimisation of glycaemic control,
 FROM: on_start_of_schedule,
 STARTING: 0 minutes,
 ENDING: 1 minute,
 ON EVERY: 1minute,
 DO: suggest (‘glycaemic_control_optimisation’);

CMA2
(static)

ON entry into this patient state
DO check BP

STATIC_RULE CMA2,
 DESCRIPTION: at the start of this schedule suggest BP measurement,
 FROM: start_of_schedule,
 STARTING: 0 minutes,
 ENDING: 1 minute,
 ON EVERY: 1 minute,
 DO: ORDER_TEST (‘BP’);

CMA3
(static)

ON entry into this patient state
IF diabetes_type = 1
DO prescribe ACE Inhibitor

STATIC_RULE CMA3,
 DESCRIPTION: If patient suffers from diabetes type 1 then prescribe ACE inhibitor,
 FROM: start_of_schedule,
 STARTING: 1 minute,
 ENDING: 1 minute,
 ON EVERY: 1 minute,
 DO: suggest_prescription (‘ACE_inhibitor’);

CMA4
(static)

ON every 1 month
DO order test ACR and SCR

STATIC_RULE CMA4,
 DESCRIPTION: ACR and SCR tests are performed every month for all microalbuminuria
patients,
 FROM: start_of_schedule,
 STARTING: 0 months,
 ENDING: indefinite,
 ON EVERY: 1 month,
 DO: order_test (‘ACR, SCR’);

CMA5
(dynamic)

ON obtaining result of ACR
IF ACR < 20mg/l
DO put patient on annual urine
screening (AUS)

RULE CMA5,
DESCRIPTION: if becomes normal (ACR < 20 mg/l) at any time then the patient is placed
on annual screening,
ON: result_arrival(‘ACR’),
IF: ACR%RESULT% DATABASE%T_RESULT
 < 20%DOUBLE,
DO: PATIENT_STATE(‘annual_urine_screening’);

C
on

fir
m

ed
_m

ic
ro

al
bu

m
in

ur
ia

(C
M

A
)

CMA6
(dynamic)

ON obtaining result for ACR
IF ACR > 200mg/l
DO put patient on
nephrology_referral (NPH)

RULE CMA6,
DESCRIPTION: if becomes abnormal (ACR > 200 mg/l) at any time then the patient is
placed on nephrology referral,
ON: result_arrival(‘ACR’),
IF: ACR%RESULT% DATABASE%T_RESULT
 > 200%DOUBLE,
DO: PATIENT_STATE(‘nephrology_referral’);

Rules for Nephrology Referral (NPH)

Table 10.7 presents the two rules that handle the preparation and sending of the

patient’s referral note.

Table 10.7 Rules for nephrology_referral (NPH)

Rule Code
(type)

Rule Specification in General
ECA Rule Format

Rule Specification in PLAN

NPH1 (static) ON entry to state
DO create patient referral note

STATIC_RULE NPH1,
 DESCRIPTION: when a patient is referred to a specialist a patient referral note is created,
 FROM: start-of-schedule,
 STARTING: 0 minute,
 ENDING: 1 minute,
 ON EVERY: 1 minute,
 DO: referral_note (‘nephrologist’);

N
ep

hr
ol

og
y_

re
fe

rr
al

(N

P
H

)

NPH2
(dynamic)

ON creation of patient referral
note
DO e-mail to nephrologists or
print patient referral note

RULE NPH2,
DESCRIPTION: when a referral note is created it must immediately be sent to the specialist
either by post or e -mail,
ON: new_referral_note(),
IF: true
DO: send_referral_note();

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 244

When a patient is scheduled for referral to the nephrologist, a referral note should

be prepared. The referral note also needs to be sent to the nephrologist either by

post (printout) or by e-mail.

Specifying the MAP in PLAN

Table 10.8 presents the outline structure for the specifications of the schedules and

the resulting outline structure for the protocol specification for the

microalbuminuria protocol (MAP).

Table 10.8 Specification of the Microalbuminuria Protocol (MAP)

Annual Urine Screening (AUS)

^SCHEDULE^ AUS,

DESCRIPTION: This is a microalbuminuria
protocol schedule called AUS for Annual
dipstick Urine Screening;
START-STATE;
RULE AUS2,<body of rule AUS2>;
RULE AUS3,<body of rule AUS3>;

^END SCHEDULE ̂

Microalbuminuria Screening (MAS)

^SCHEDULE^ MAS,

DESCRIPTION: This is a microalbuminuria
protocol schedule called MAS for the screening
of microalbuminuria;
RULE MAS2,<body of rule MAS2>;
RULE MAS3,<body of rule MAS3>;
RULE MAS4,<body of rule MAS4>;
RULE MAS5,<body of rule MAS5>;

^END SCHEDULE ̂

Othe Infections Screening (OIS)

^SCHEDULE^ OIS,

DESCRIPTION: This is a microalbuminuria
protocol schedule called OIS for SCREENING
OTHER INFECTIONS in the diagnosis of
microalbuminuria and proteinuria;
RULE OIS2,<body of rule OIS2>;
RULE OIS3,<body of rule OIS3>;
RULE OIS4,<body of rule OIS4>;
RULE OIS5,<body of rule OIS5>;

^END SCHEDULE ̂

S
tr

u
ct

u
re

 o
f t

h
e

M
A

P
 S

ch
ed

u
le

s
in

 P
L

A
N

Nephropathy Referral (NPH)
^SCHEDULE^ NPH,

DESCRIPTION: This is a microalbuminuria
protocol schedule named NPH for nephrology
referral – handles preparation and
transmission of the necessary documentation
for the referral;
RULE NPH2,<body of rule NPH2>;

^END SCHEDULE ̂

Confirmed Microalbuminuria (CMA)

^SCHEDULE^ CMA,

DESCRIPTION: This is a microalbuminuria
protocol schedule named CMA for confirmed
microalbuminuria – handles treatment and
control of microalbuminuria;
RULE CMA5,<body of rule CMA5>;
RULE CMA6,<body of rule CMA5>;

^END SCHEDULE ̂

S
tr

u
ct

u
re

 o
f t

h
e

M
A

P
 S

p
ec

if
ic

at
io

n

in
 P

L
A

N

MAP Specification

@PROTOCOL@ MAP;

DESCRIPTION: This is a protocol for the diagnosis and management of microalbuminuria in diabetes patients;
CREATOR: DR JOHN NOLAN;
CATEGORY: DIABETIC_NEPHROPATHY;
#SCHEDULE_SET#

^SCHEDULE^ AUS, <AUS_rules> ^END SCHEDULE^
^SCHEDULE^ OIS, <OIS_rules> ^END SCHEDULE ̂
^SCHEDULE^ MAS, <MAS_rules> ^END SCHEDULE ̂
^SCHEDULE^ CMA, <CMA_rules> ^END SCHEDULE ̂
^SCHEDULE^ NPH, <NPH_rules> ^END SCHEDULE ̂

#END SCHEDULE_SET#
~RULE_SET~

STATIC_RULE AUS1,<body of rule AUS1>;
RULE OIS1,<body of rule OIS1>;
RULE MAS1,<body of rule MAS1>;
RULE CMA1,<body of rule CMA1>;
RULE CMA2,<body of rule CMA2>;
RULE CMA3,<body of rule CMA3>;
RULE CMA4,<body of rule CMA4>;
RULE NPH1, <body of rule NPH1>;

~END RULE_SET~
@END PROTOCOL@

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 245

The schedule and protocol rule sets are designed by following a few simple

guidelines that will allow the resulting specification to conform to the guidelines

presented in Section 6.6 of Chapter 6. These guidelines are summarised as follows:

• Each schedule corresponds to a state in the state chart of Figure 77. The schedule

associated with the start state in the state chart is labelled START_STATE is the

only schedule that will be active at the beginning of execution;

• For patient plans that are derived from protocols that involve patient state such

as the MAP, schedule activation is effected through invoking the action

PATIENT_STATE(‘patient-state-name’) from a rule;

• Suppose it occurs that a rule, R1, in a schedule, S1, potentially triggers another

rule, R2, in a second schedule, S2. In such a case, either R1 or R2 is moved from

the schedule and placed into the protocol rule set;

• In general, rules that monitor changes in the state of a patient are good

candidates for belonging to the protocol rule set; and

• All rule activation cycles should be identified and approved by a domain expert.

Rules activation cycles that are not permitted from the domain perspective

should be eliminated by revising the rule design.

By applying these guidelines to the rules obtained with the aid of the state chart for

the MAP, the specification for the MAP with the outline structure and content

presented in Table 10.8 is obtained. The complete PLAN specification for the MAP

is presented in the Appendix C.

10.5. The TOPS Database for the MAP Specification

The MAP specification, which is expressed in the protocol specification language

PLAN, was parsed by the TOPS plan parser described in Section 9.4). The MAP

specification was stored in the TOPS database where it can be managed. In the

TOPS database, the MAP specification attributes are stored in a set of relational

tables, which are illustrated in Appendix E. Once stored in the relational database,

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 246

the MAP specification can be queried, manipulated and converted to XML for

sharing. For a full listing of the parser output the reader is referred to Appendices D.

Appendix I.1 illustrates the TOPSQL command for displaying the MAP protocol

specification after retrieving it from the TOPS relational database.

10.6. Executing the MAP in TOPS

10.6.1. Creation of Plans from the MAP
To execute the MAP with respect to a given patient, an instance of the MAP that is

specific to the individual patient is created, the patient plan. To create the patient

plan, TOPS first retrieves the protocol specification and then uses it to create a

patient plan by customising the MAP rules so that they apply specifically to the

individual patient. The customisation process involves:

a) Specifying absolute time points for static rules for the patient. This may

require prompting for further information from the domain expert;

b) Assigning absolute values specific to the patient to domain-dependent terms

within the protocol, e.g., a term like date-of-conception may be replaced by

the value 15 January 2004. This may also require interaction with the domain

expert or the electronic medical record; and

c) Making each rule focus its monitoring and its action on this particular patient.

In other words, the rule is made to react only to events happening to this

individual patient only.

For a full listing of the execution log for a TOPS session for creating a MAP plan, the

reader is referred to Appendix F.

10.6.2. The MAP Plan Installation and Activation
Once the patient plan is created in TOPS, it is installed and activated in order to

start its execution process. The installation of the patient plan in TOPS involves the

following:

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 247

a) Creating the patient plan specification database. This database allows the patient-

specific instance of the MAP to be managed effectively;

b) Generating the SQL code for and creating the Oracle database triggers that

implement each patient plan rule. TOPS performs thi s task automatically

without user intervention;

c) Creating the Java object-based time triggers for the static rules in the patient

plan;

d) Ensuring that any special requirements such as system monitors are up and

running.

Once the installation process is completed, the patient plan is activated and ready to

start execution. For a full listing of a TOPS session for the MAP patient plan

installation, activation and execution the reader is referred to Appendix G.

10.6.3. The MAP Execution Process
TOPS’ execution of a patient plan is essentially event-driven and follows the ECA

rule execution pattern. In addition, a TOPS protocol and hence all plans derived

from it, may or may not, involve patient states. TOPS distinguishes between the two

type of protocols by inspecting the set of rule actions for the patient state action and

the starting schedule. The MAP involves patient states that are implemented

through a rule action that changes the state of a patient. The state of a patient is

protocol-dependent. In a TOPS protocol specification, patient states are represented

by schedules in the protocol specification and the schedule should have the same

name as the state that it represents. To know which rules belong to which state,

TOPS simply queries the protocol specification database for rules that belong to the

state’s corresponding schedule. The schedule associated with the start state is, by

default, active on installation of the patient plan. Each change in patient state

requires that only rules associated with that state be active. Other rules remain

deactivated until the patient state changes to that associated with the rules. In

addition to the deactivation of rules belonging to the previous patient state, the rule

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 248

action that changes the state of a patient also activates rules belonging to the new

state. Patient state changes are effected by invoking the command

PATIENT_STATE(‘new_state’) in the action part of the ECA rule.

The MAP execution is initially triggered by the annual_urine_screening (AUS) rule,

AUS1, which suggests, on an annual basis, that the dip-stick urine (DSU) test be

performed on the patient. The result of the DSU test triggers either of the rules:

AUS2 and AUS3. The patient is subject to rule AUS1 for as long as he keeps being

referred back from to the AUS state either the other_infections_screening (OIS)

state or the microalbuminuria_screening (MAS) state because either the patient has

no other urinary tract infections (UTI) or has no microalbuminuria (MA). If the

patient is found to have UTI while in the OIS state, then the rule OIS4 moves the

patient into the nephrology_referral (NPH))state, which effectively terminates the

execution of the MAP. If the patient is found to have microalbuminuria while in the

MAS state, then the rule MAS4 moves the patient into the

confirmed_microalbuminuria (CMA) state for the treatment and management of

this clinical condition. If this management succeeds, rule CMA5 returns the patient

to the AUS state and if the patient’s condition becomes worse, rule CMA6 moves the

patient to the NPH state, which also effectively terminates TOPS execution of the

MAP. The full listing of TOPS’ session for the execution of the MAP is presented in

Appendix G.

10.7. Managing the MAP in TOPS

The management of the MAP includes functionality offered by each of the three

management planes that have been introduced in Chapter 3 and further explained in

Chapter 5 of this Thesis. The specification and execution of the MAP in TOPS have

already been described in the previous sections. The management of the MAP also

includes the provision of the ability to manipulate the MAP using the high-level

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 249

declarative manipulation language, TOPSQL. The manipulation of the MAP consists

of performing operations on the MAP specification and the patient plans derived

from it as well as issuing queries against both of these aspects of managing the MAP.

The next subsections discuss the manipulation of the MAP in TOPS.

10.7.1. Operations Performed on the MAP Specification and
Patient Plans
TOPS supports mainly three operations that are to be performed on objects within

the system. The three operations are supported according to the manipulation

approach presented in Section 8.3 of Chapter 8 of this Thesis. These operations are:

a) Addition: rules can be added to the MAP protocol specification and also to the

patient-specific plans that represent instances of the MAP protocol. For instance,

it can be noted that rule CMA1 suggest that the serum creatinine ratio (SCR) be

measured and rule CMA3 suggest that the patient’s blood pressure (BP) be

measured but there is no other rule that makes a follow-up on the results of

these two measurements. To provide for this follow-up, new rules will need to

be added to the MAP specification and also to the patient plans. Since the MAP

specification and the MAP patient plans are stored in the database, adding new

rules can be performed effectively within the framework and context of security,

concurrency and integrity constraints provided by the DBMS.

b) Modification: Provision is made in TOPS for rules of the MAP to be modified

and updated. For example, suppose a new test has been developed for aiding the

diagnosis of microalbuminuria. Suppose further that a healthcare organisation

that uses the MAP has decided to use this test in place of the albumin creatinine

ratio measurement. In this case, there is a need for the rules MAS1-6 and

CMA4-6 will need to be edited and updated to accommodate the healthcare

organisation’s new preference.

c) Deletion: Rules in the MAP specification or patient plans can be deleted on the

fly. For example, suppose in one healthcare organisation, healthcare experts are

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 250

convinced that glycaemic control is already optimised for all their diabetic

patient. In such a case, the healthcare experts may decide to delete rule CMA1,

which suggests the optimisation of glycaemic control.

These operations can be performed on the fly with no recourse to parsing the

protocol again or re-installation of the individual patient plans. This is possible due

to the characteristic modularity of the ECA rule paradigm. However, this strength of

the ECA rule paradigm is also its weekness in supporting the management of ECA

rules. For instance, suppose one had added a rule, named CMA3a, to follow up on a

patient’s BP to the patient’s plan derived from the microalbuminuria protocol and

then, at a later time, one deleted the rule CMA3, which suggest the measurement of

BP. In such a case, rule CMA remains waiting in the active state with no potential of

ever being fired or executed. This problem can only be handled if a mechanism

exists to analyse and maintain dependencies among rules in a single patient plan. In

other words, some form of rule dependency constraints for patient plans need to be

introduced and a rule dependency constraint enforcement mechanism for these

constraints needs to be developed. This thesis has not addressed this problem,

leaving it to future work. Currently, TOPS does not have such a constraint

enforcement mechanism so will not be able to handle this scenario properly.

10.7.2. Querying the MAP Specifications and Patient Plans
An important aspect of protocol knowledge and information management is the

ability to query the protocol specifications and their individual patient-specific

instances. The framework presented in Chapters 5 and 8 of this thesis describes the

functionality to query the specifications of the MAP as well as its execution process.

In other words, both the static and the dynamic aspects of the protocol can be

queried in TOPS.

The dynamic aspect of a protocol refers to the execution process whose evolution

can be queried the along the temporal dimension. At any one moment during the

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 251

plan’s execution the patient plan’s rule composition may be different from that at a

later or an earlier instant. In the case for the MAP, as a patient is moved from one

state to another, schedules and rules are deactivated while others are activated.

Further to this, some new rules may be introduced. As result, this gives rise to an

interesting type of query that requests for the executing patient plan at a given point

in time or during a given time period in the past..

Another useful type of query is the request for a replay of the execution of the MAP

patient plan that occurred during a given time interval in the past. The output of

such a query is effectively a simulation of all rule executions that occurred during

the time interval in question. This feature is currently not fully implemented in the

current version although the design of TOPS takes it into consideration.

The reader is referred to the Appendix I for a sample of queries and results of these

queries in the TOPS context of the manipulation of the MAP.

10.8. Case Study Findings and Discussion

The findings of this case study can be summarised as follows:

Method of capturing and specifying guideline/protocol: The use of the highly

intuitive state chart makes it easy to communicate with domain experts during

guideline/protocol information/knowledge elicitation, capture and specification. The

use of the UML state chart also makes the subsequent extraction of the relevant ECA

rules easier since the state chart naturally supports the ECA rule paradigm (Calestam

1999; Berndtsson, Mikael and Calestam 2001) and is easily understood by domain

experts.

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 252

Creating the computerised protocol specification: The TOPS protocol specification

parser, which uses an object-based mapping between the PLAN specification and the

underlying relational database for storing protocol specifications, proved to be

efficient and effective as a simple tool for creating the ECA rule-based protocol

specifications in the database.

The database of protocol specifications: The microalbuminuria protocol

specification was stored in the Oracle relational database. A single protocol

specification in the database consisted of components that were spread over several

relations/tables. This offered a simple way to visualise specification information

using the familiar tabular format.

Easy manipulation of information: The relational database model was found to offer

a uniform and flexible way to access, manipulate and query all information from

specification, to executing process state, to data in the patient record. Flexibility was

guaranteed by the SQL, which allows queries that combine data on attributes from

several entities subject to constraints within the database.

Dynamic generation of SQL code for triggers that implement ECA rules in protocols:

The generation of SQL trigger code that implement the ECA rules of the MAP was

automatically supported by TOPS and required no user intervention. This makes it

easy for application domain experts to use TOPS with no knowledge of the SQL

trigger specification language. However, domain experts still needed to be familiar

with the protocol specification language, PLAN, which should ideally be closer to

their domain language than the SQL.

Protocol action support: The execution of the action specified in any protocol rule is

subject to the availability of the appropriate software module that implements the

action. In other words, rule actions in the microalbuminuria protocol needed to be

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 253

predefined and any new action required by the protocol requires that the module to

implement such an action be developed. However, once the action software

modules were developed, they were generic and re-usable by other protocols.

Challenges from the manipulation of complex information: High-level operations or

queries on protocols and/or their components were implemented using a number of

operations or queries on several relational tables. This may be a significant overhead

in terms of performance. An important limitation to this case study is the lack of

performance benchmark measures on the DBMS query processing and the execution

of protocols by means of database triggers. In order to facilitate the performance of

useful operation and queries on complex objects such as protocols and patient plans,

there was a need for the development of generic and specialised software modules

that provide support for TOPSQL at a level that is higher than the SQL to avoid

repeated typing of several queries to perform one conceptually higher level

operation.

Challenges expected from the integration of TOPS into the clinical environment:

TOPS’s protocol execution relies on monitoring events occurring within the

patient’s medical record. A number of factors prevented the TOPS implementation

of the MAP to be deployed within a real clinical environment. These factors

included the fact that existing systems used in the hospital had proprietary interfaces

and database schemes whose specification could not be not be obtained due to

licencing, security and confidentiality issues. For example, the diabetes patient

record in St James’s Hospital is implemented in a system called Diamond, which is

based on MS Access and MS SQL and whose schema and interfaces were inaccessible

due to the nature of its licence as well as concerns about patient confidentiality and

security of information. Furthermore, a large part of the diabetes patient record was

still paper-based. TOPS itself had the limitation that it lacked an appropriate user

interface suitable for clinicians to specify protocols in PLAN. Although the clinician

Chapter 10 Case Study: Supporting the Management of the Microalbuminuria Protocol for Patients
with Diabetes Mellitus

 254

being consulted found it easy to understand protocols written in PLAN, we do not

expect clinicians to work directly with PLAN when using TOPS. The development

of a user-friendly interface required effort and time, which was not available and so

has been left as part of future work.

10.9. Chapter Summary

This Chapter has demonstrated the applicability and effectiveness of the framework,

approach and method presented in Chapters 5-8 of this Thesis by using the proof-of-

concepts system, TOPS, to support the management of the microalbuminuria

protocol (MAP) for diabetes patients. It was shown that the microalbuminuria

protocol knowledge can be modelled and specified by using the ECA rule paradigm

guided by the state chart. The functionality provided by the three management

planes presented in Chapter 3 and further explained in Chapters 5-8 are then made

available through TOPS for application to the protocol. The specification language,

PLAN, was used to specify the resulting protocol specification. Once a PLAN

specification is obtained, TOPS is used to store the specification in the database for

effective management, thus, making it possible to execute, perform operations and

query both various aspects of the MAP using the manipulation language, TOPSQL.

An important limitation of this case study is that the implementation of the MAP

protocol in TOPS was not evaluated in a real clinical environment. Due to this

limitation, an evaluation of TOPS in real practice and, hence, of the framework and

approach that it embodies, cannot be made at this time.

PART 4

Part 4

 256

CONCLUSION

This part concludes this thesis. It reviews the research challenge or problem that

was addressed by this study. A review of each chapter in this thesis is presented.

The contributions made to knowledge by this study are summarised. The

benefits of the outcomes of this study are outlined. The pointers to future

directions arising from this study are presented. Finally, a statement on the

objective evaluation of the study outcomes is given. The part contains one

chapter: Chapter 11.

Chapter 11 Conclusion

11.1. Introduction

This Chapter is a conclusion to this thesis. The chapter presents a review of the

research challenge in Section 11.2; presents a review of this thesis in Section 11.3;

summarises the main contributions in Section 11.4; outlines the benefits arising from

the out comes of this research in Section 11.5; identifies the limitations as the basis

for pointers to future directions in Section 11.6; and, finally, presents an objective

evaluation of this thesis in Section 11.7.

11.2. The Research Challenge

The research challenge was to investigate into the management of information and

knowledge for supporting the complex domain of computerised clinical guidelines

and protocols (CGPs) and develop a generic and unified management framework

and approach for supporting computerised CGPs by using the event-condition-

action (ECA) rule paradigm as currently supported in modern advanced database

systems. This research problem can be broken down into two specific challenges as

follows:

• The challenge from the clinical guideline and protocol domain: The demand for

the incorporation of clinical guidelines/protocols for patient care into the

clinician’s daily routine as a way to reduce clinical practice variation, improve

quality, contain costs and optimise resource utilisation has led to calls for the

computerisation of clinical guidelines/protocols as one method of contributing to

the promotion of clinicians’ acceptance and compliance.

• The challenge for the computing domain: The management of computerised

CGPs poses a major challenge to the information management domain. Since the

ECA rule paradigm has proved to be promising in specifying medical knowledge

Chapter 11 Conclusion

 258

through the Arden Syntax for Medical Logic Modules (MLMs) (ASTM 1992; HL7

1999), it is worthy investigating further its application in the computerisation of

clinical guidelines or protocols. Using the ECA rule paradigm to manage

computerised CGPs also offers the challenge to demonstrate a practical

requirement for further improvements to the ECA rule paradigm support in

modern database systems. Furthermore, in literature, computer-based CGPs have

been supported mainly with respect to their specificatioin and execution. The

challenge is to develop a CGP management framework that also incoparates the

dimension of the manipulation of knowledge and information. This should

involve performing operations and issuing queries.

11.3. Thesis Review

Supporting the management of CGPs is seen in the literature to be involving mainly

the provision of expressive specification languages and flexible execution

mechanisms for the CGPs. Thus, once a CGP is specified and in execution, it is not

easy to manipulate the information and knowledge that is incorporated in the CGP

systems. This thesis has provided for the manipulation of CGP information and

knowledge within the framework for the management of CGPs. The SpEM

framework has been developed to provide CGP management in terms of the three

planes for the specification, execution and manipulation of CGPs. This framework

has been supported in the MonCooS approach and method, which provides CGP

management functionality for allowing protocols to be specified in the specification

language, PLAN, and stored in a database; executed by using ECA rule-based

mechanism whose implementation is based on database triggers; and manipulated

using the manipulation language, TOPSQL. The prototype system, TOPS, was

developed to implement the MonCooS approach for the management of CGPs for

clinical test-ordering by clinicians. In TOPS, use of the ECA rule support and data

management functionality in a modern DBMS has been made in order to support the

Chapter 11 Conclusion

 259

management of CGPs. TOPS uses the database trigger mechanism of the Oracle9i

DBMS as the CGP execution engine with both the CGP specification database, the

patient record and CGP execution state data held within the Oracle9i DBMS. The

case study on the management of the microalbuminuria protocol uses TOPS to show

that a real protocol can be specified, executed and manipulated according to the

SpEM framework and the MonCooS approach.

11.4. Summary of Contributions

The contributions of this Thesis can be summarised as follows:

• A characterisation of the problem of managing CGP information as consisting of

the three generic planes of specification, enforcement/execution and

manipulation, with each plane having its own levels of abstraction and

interacting, in a dynamic fashion, with the other two planes.

• A unified framework, SpEM, together with a comprehensive approach,

MonCooS, for supporting the management of clinical guidelines and protocols

(CGPs). The SpEM framework incorporates the manipulation of CGP knowledge

and information as an additional dimension to the dimensions of specification

and execution, which are commonly supported in the literature.

• An approach that uses the ECA rule paradigm for both modelling and

implementation of CGPs within the context of a unified framework; and a

demonstration that the ECA rule paradigm is a viable technology for real

applications (such as the management of CGPs) and needs further

comprehensive support in modern database management systems;

• An advanced mechanism and general platform for manipulation of complex

information and its implementation in a tool, called TOPS, for CGP

management as a demonstration that the framework and approach developed in

this study can be applied in practice; and

Chapter 11 Conclusion

 260

• A case study that applies the prototype system, TOPS, to the case for managing a

microalbuminuria protocol for diabetic patients. The microalbuminuria protocol

was drawn with the help from domain experts from a local Dublin hospital.

11.5. The Benefits of the Research Outcomes

The SpEM framework, and the MonCooS approach together with the prototype

system, TOPS, can be beneficially applied in other applications. Applications that

could benefit are those that require assistance with the monitoring of situations,

timely interventions and response and coordination tasks in which dynamic

manipulation of domain information is important. Another general characteristic of

applications that could benefit are those that make use of domain information and

knowledge that is specified and used to establish and enact interventions (actions,

tasks and activities) that need to be performed within the context of a specific

application domain problem. For instance, the support for business/clinical

workflow, which could be specified, executed and manipulated according to the

SpEM framework and the MonCooS approach. In insurance and credit policy

management, generic policies could be specified using PLAN-based language and the

appropriate customisations could be applied to them to create specific insurance or

credit policies that suits the circumstances of each individual customer or group of

customers. These policies could then be enforced and managed from year to year

until their maturity period expires or until they are terminated accordingly.

11.6. Limitations and Future Directions

The successful support for the management of CGPs depends on the easy, accurate

capture and specification of CGP information. Chapter 6 described a methodology

for capturing domain knowledge. Further investigations are needed to enhance and

validate the methodology with the aim of making it easy to use by clinician. It is also

necessary to investigate into a practical and formal method to augment domain

Chapter 11 Conclusion

 261

expertise in analysing and verifying the correctness of protocol specifications and

patient plans by using techniques for active rule analysis (Bailey, JA 1997; Baralis, E.,

Ceri et al. 1998; Bailey, J, Poulovassilis et al. 2000).

The specification language, PLAN, needs further enhancements in a number of

aspects. First, CGPs are also considered to be clinical algorithms that can be

expressed by means of flowcharts, which incorporates constructs for sequences,

repetition and parallelisation of patient care actions, tasks and activities. PLAN

needs enhancements to provide for the three constructs: sequencing, repetition or

iteration and concurrency. An investigation needs to be carried out to determine

how these constructs can be supported in cooperation with the ECA rule paradigm.

Second, further enhancements are required in PLAN to exploit the research results

from the Active Databases by incorporating a more expressive event language and

algebra for specifying composite and temporal events and conditions. Third, there is

a need to move towards introducing sharability and portability through the

standardisation of PLAN by making it an XML-based rule language. Use could be

made of concepts from XRML (Lee and Sohn 2003) and RuleML (Boley, Tabet et al.

2001) as well as XML-based storage formats and XML query languages for the

manipulation of knowledge and information for CGPs. Alternatively, the only

existing HL7 standard (HL7 1999) for specifying medical knowledge modules, the

Arden Syntax (Hripscak, Luderman et al. 1994), could be investigated in order to

find a way for using it as a sub-language for specifying ECA rules in PLAN. Fifth, it

is necessary to develop a method and tools for the creation of protocol specifications

in an intuitive way, e.g., enabling domain experts (clinicians) to use a GUI method

of creating and viewing PLAN specifications.

This thesis has proposed the use of an ECA rule mechanism of a modern DBMS as

the core engine for protocol execution. The extremely limited support for ECA rules

within modern database systems makes the task of supporting the SpEM framework

Chapter 11 Conclusion

 262

and the MonCooS approach difficult. First, the real world events in PLAN

specifications need to be mapped to event model of the DBMS trigger mechanism.

Currently, TOPS implements a basic mechanism to map events in PLAN

specifications to database trigger events, there is a need to develop a formal model

and a software mechanism for this mapping. Second, temporal or time events are not

supported in the database trigger mechanism. Currently, TOPS implements a basic

time trigger mechanism which does not support temporal events. Third, temporal

conditions are limited to the temporal features allowed in SQL conditions. Further,

trigger conditions suffer from SQL statement restrictions, for instance, in the

Oracle9i DBMS, trigger conditions may not contain the SELECT statement and

cannot make calls to stored procedures and functions. Future work would

investigate the development and implementation of a comprehensive event and

condition specification models that can be implemented to work with a modern

DBMS such as the Oracle database system.

This thesis has not addressed the issue of how to define and maintain inter-

dependencies between rules in a protocols specified in PLAN. Hence, the

manipulation operations of addition, modification and deletion of rules in a protocol

or an executing patient plan in TOPS is currently not subject to any form of

constraints as pointed out in Section 10.7.1. Further work is required to investigate

the specification and enforcement of what may be called rule dependency

constraints for PLAN-based protocols and the patient plans derived from them.

While the use of a modern DBMS as the protocol execution provides the

opportunity to make use of security functionality existing within the DBMS, this

thesis has not addressed the issues of security and confidentiality, which are of

fundamental significance within a patient care setup. Future work would investigate

the incorporation of a security and confidentiality model that is suitable for the

Chapter 11 Conclusion

 263

clinical environment and also incorporates the underlying DBMS security

mechanisms.

In practice, patients may suffer from co-morbidities, i.e., more than one medical

problem at one time. For instance diabetes patients may also have vascular, eye and

renal complications. This demands that a provision be made for patients to be placed

into more than one category and to have more than one patient plan at a time. The

handling of co-morbidities has not been dealt with in this thesis and, consequently,

the prototype system TOPS does not make a provision for managing co-morbidities.

Future work would investigate how to handle co-morbidities in a safe way.

The prototype system, TOPS, and the protocol, MAP, developed in the case study

have not yet been put to actual use in a real clinical setting although the protocol

was developed with the help of a practicing medical expert. This represents a

limitation in the form of the lack the clinical validation of the work presented in

this thesis.

This thesis has presented a new framework, approach and method for supporting the

management of CGP information and knowledge. The thesis has also argued that

using the ECA rule paradigm and active database systems to support this framework,

approach and method would result in effective support for the management of CGP

information and knowledge while focusing mainly on monitoring and coordination,

and deliberately leaving the reasoning task to the domain expert. This is essentially a

qualitative argument. The only proof of whether or not the resulting software

environment is of better quality than other existing software for CGP management

support may be obtained by applying the developments of this thesis to real-world

circumstances for CGP management.

264

REFERENCES

Aho, A V and Ullman, J D (1973). Theory of Parsing, Translation and Compiling, Prentice Hall

Professional Technical Reference.

American Diabetes Association (2002). Position Statement: Diabetic Nephropathy . Diabetes Care

25 (Supplement 1): s85-s89.

Andreassen, S, Gomez, E J and Carson, E R (2002). Introduction: Computers in Diabetes 2000.

Computer Methods and Programs in Biomedicine 69 : 93-95.

Appelrath, H J, Behrends, H, Jasper, H and Kamp, V (1994). Active database technology supports

cancer clustering. Applications of Databases: 1st International Conference (ADB-94),

Vadstena, Sweden, Springer. 819: 351-364.

Appelrath, H-J, Behrends, H, Jasper, H and Zukunft, O (1995). Case studies on active database

applications: Lessons learned. Technical Report . Oldenburg, University of Oldenburg.

ASTM (1992). Standard Specification for Defining and Sharing Modulor Health Knowledge Bases

(Arden Syntax for Medical Logic Modules) . Annual book of ASTM Standards. Philadelphia,

American Society of Testing and Materials. 14.01: 539-587.

Audet, A, Greenfield, S and Field, M (1990). Medical practice guidelines: current activities and future

directions . Ann Intern Med 118 (9): 709 -714.

Bailey, J, Poulovassilis, A and Newson, P (2000). A dynamic approach to termination analysis for

active database rules. 1st International Conference on Computational Logic (DOOD'2000

Stream), London. 1106 -1120 .

Bailey, J A (1997). On the Foundation of Termination Analysis of Active Database Rules. Computer

Science. Melbourne, University of Melbourne: 126.

Baralis, E, Ceri, S and Paraboschi, S (1996). Modularization techniques for active rules design. ACM

Transactions on Database Systems (TODS), ACM Press , New York, NY, USA 21 (1): 1 - 29.

Baralis, E, Ceri, S and Paraboschi, S (1998). Compile-time and runtime analysis of active behaviors.

IEEE Transactions on Knowledge and Data Engineering, 10 (1041-4347): 353-370.

References

 265

Bates, W, Kuperman, G J, Teich, J M, Tanasijevic, M J, Ma'Luf, N, Rittenberg, E, Jha, A, Fiskio, J and

Winkelman, J (1999). A Randomised Control Trial Of Computer-Based Intervention to

Reduce Utilisation Of Redundant Liboratory Tests. JAMIA 106 (2): 144-50.

Benjamins, R, Fensel, D and Gomez, P A (1998). Knowledge Management through Ontologies. The

Second International Conference on Practical Aspects of Knowledge Management

(PAKM'98), Basel, Switzerland. 5.1-5.12.

Berndtsson, M (1994). Reactive object-oriented databases and CIM . 5th Intl Conf on Database and

Expert System Applications (DEXA'94), Athens. 769-778.

Berndtsson, M and Calestam, B (2001). A Uniform Approach for Supporting Active Database Features

in UML and OMT. Skovde, Computer Science Department, University of Skovde.

Berndtsson, M, Chakravarthy, S and Lings, B (1996). Coordination Among Agents Using Reactive

Rules. Skovde, University of Skovde: 23.

Berry, D, Wu, B, Pardon, S, Duignan, F, Grimson, W, Gaffney, P, Clarke, F and Feely , J (1999). A

Test Request Protocol System. IFCC WorldLab Conference, Bologna, Italy.

Bindels, R, de Clercq, P A, Winkens, R A G and Hasman, A (2000). A test ordering system with

automated reminders for primary care based on practice guidelines. Int J Med Inform 58-59 :

219-233.

Boley, H, Tabet, S and Wagner, G (2001). Design Rationale of RuleML: A Markup Language for

Semantic Web Rules. SWWS'01, Stanford.

Booch, G (1993). Object-Oriented Analysis and Design with Applications, Addison-Wesley Pub Co.

608.

Boran, G, O'Moore, R, Grimson, W, Peters, M, Hasman, A, Groth, T and van Merode, F (1996). A

new clinical laboratory information system architecture from the OpenLabs Project offering

advanced services for laboratory staff and users. Clinical Chemistry Acta 248 : 19-30.

Borghoff, U M and Pareschi, R (1997). Information Technology for Knowledge Management. Journal

of Universal Computer Science 3 (8): 835-842.

Bowie, J and Barnett, G O (1976). MUMPS - An Economical and Efficient Time-Sharing Language for

Information Management. Computer Methods and Programs in Biomedicine 6 : 11-21.

References

 266

Buckingham Shum, S (1998). Negotiating the Construction of Organisational Memories. Information

Technology for Knowledge Management. Borghoff, UM and Pareschi, R. Berlin, Heidelberg,

New York, Springer-Verlag: 55-78.

Caironi, P V C, Portoni, L, Combi, C, Pinciroli, F and Ceri, S (1997). HyperCare: a Prototype of an

Active Database for Compliance with Essential Hypertension Therapy Guidelines. AMIA

Ann Fall Symposium, Philadelphia, PA, Hanley and Belfus. 288-292.

Calestam, B (1999). OMT-A: An Extension of OMT to Model Active Rules. Computer Science.

Skovde, University of Skovde: 133.

Ceri, S, Cochrane, R J and Widom, J (2000). Practical Applications of Triggers and Constraints:

Successes and Lingering Issues. 26th International Conference on Very Large Databases

(VLDB), Cairo, Egypt. 254-262.

Ceri, S, Grefen, P and S'anchez, G (1997). WIDE - A Distributed Architecture for Workflow

Management. International Workshop on Research Issues in Data Engineering (RIDE),

Birmingham, UK, IEEE Computer Society Press. 76--79.

Ceri , S and Ramakrishnan, R (1996). Rules in database systems. ACM Computing Surveys (CSUR)

28 (1): 109-111.

Chaudhry, N, Moyne, J and Rundensteiner, E A (1998). Active Controller: utilizing active databases

for implementing multistep control of semiconductor manufacturing. IEEE Transactions on

Components, Packaging, and Manufacturing Technology, Part C, 21 : 217-224.

Chen, P (1976). The Entity-Relationship Model: Toward a Unified View of Data . ACM Transactions

on Database Systems 1 (1): 9 - 36.

Clayton, P D, Pryor, T A, Wgertz, O B and Hripcsak, G (1989). Issues and Structures for Sharing

Medical Knowledge Among Decision-making Systems: The 1989 Arden Homestead Retreat.

Annu Symp Comput Appl Med Care. 116-121.

Collet, C, Habraken, P, Coupaye, T and Adiba, M (1994). Active rules for the Software engineering

platform GOODSTEP. 2nd International Workshop on Database and Software Engineering,

16th International Conference on Software Engineering, Sorrento, Italy.

Cyran, M (2002). Oracle9i Database Concepts, Release 2 (9.2). Redwood Shores, CA 94065, USA,

Oracle Corporation.

References

 267

Dayal, U, Blaustein, B, Buchmann, A, Chakravarthy, U, Hsu, M, Ledin, R, McCarthy, D, Rosenthal, A

and Sarin, S (1988). The HIPAC Project: Combining Active Databases and Timing

Constraints. SIGMOD Record 17 (1): 51-69.

Dazzi, L, Fassino, C, Saracco, R, Quaglini, S and Stefanelli, M (1997). A Patient Workflow

Management System Built on Guidelines. AMIA Annual Fall Symposium.

de Clercq, P A, Blom, J A, Hasman, A and Korsten, H H M (1999). GuiDE: an architecture for the

acquisition and execution of clinical guideline-application tasks. Belgium-Netherlands Conf

on Artificial Intelligence, Maastricht. 171-172.

de Clercq, P A, Blom, J A, Hasman, A and Korsten, H H M (2000). An ontology-driven approach for

the acquisition and execution of clinical guidelines. Medical Informatics Europe, Hannover,

IOS Press. 714-719.

de Clercq, P A, Hasman, A, Blom, J A and Korsten, H H M (2001). Design and implementation of a

framework to support the development of clinical guidelines. Int J Med Inf. 64 (2-3): 285-318.

Diaz, O, Jaime, A, Paton, N W and al-Qaimari, G (1994). Supporting dynamic displays using active

rules. SIGMOD Record, ACM Special Interest Group on Management of Data 23 : 21-26.

Dittrich, K R, Gatziu, S and Geppert, A (1995). The Active Database Management System Manifesto:

A Rulebase of ADBMS Features. 2nd Workshop on Rules in Databases (RIDS), Athens,

Greece, Springer.

Dube, K (2000a). BNF Syntax of PLAN . Dublin, Computer Science Department, School of Computing,

Dublin Institute of Technology: 3.

Dube, K (2000b). PLAN Language for Specifying Clinical Test-Ordering Protocol Using the ECA

Paradigm. Dublin, Computer Science Department, School of Computing, Dublin Institute of

Technology: 23.

East, T D, Morris, A H, Clemmer, T, Orme, J F, Wallace, C J, Henderson, S, Sittig, D F and Gardner, R

M (1990). Development of computerised critical care protocols - a strategy that really works!

SCAMC: 564-568.

Eder, J, Groiss, H and Nekvasil, H (1994). A Workflow System Based on Active Databases.

Connectivity: 249-265.

References

 268

Eisenberg, J M (1985). Physician utilisation: the state of research about physicians' practice patterns .

23 : 461-483.

Elmasri, R and Navathe, S B (2000). Fundamentals of Database Systems., Addison-Wesley. 289-295.

Elson, R B and Connelly, D P (1995a). Computerised Decision Support Systems in Primary Care. Prim

Care Clin Off Pract 22 : 365-84.

Elson, R B and Connelly, D P (1995b). Computerised Patient Records in Primary Care: Their Role in

Mediating Guideline-Driven Physician Behaviour Change. Arch Fam Med 4 : 698-705.

Fie ld, M J and Lohr, K N (1992). Guidelines for Clinical Practice: From Development to Use .

Washington, DC, National Academy Press.

Fox, J and Das, S (2000). Safe and sound. Safe and sound, AAAI Press.

Fox, J, Johns, N and Rahmanzadeh, A (1998). Disseminating medical knowledge: the PROforma

approach. Artificial Intelligence in Medicine 14 (No1): 157-82.

Fox, J, Johns, N, Rahmanzadeh, A and Thomson, R (1996). PROforma: a method and language for

specifying clinical guidelines and protocols. Medical Informatics Europe, Amsterdam.

Gatziu, E, Geppert, A and Dittrich, K R (1991). Integrating active concepts into an object-oriented

database system . 3rd International Workshop on Database Programming Languages,

Naphlion, Greece.

Geppert, A and Dittrich, K R (1993). SAMOS: An active, object-oriented database system. 1st Intl.

Workshop on Rules in Database Systems, Edinburg,UK.

Geppert, A, Kradolfer, M and Tombros, D (1995). Realization of Cooperative Agents using an Active

Object-Oriented Database System . Rules in Database Systems (RIDS '95), Second

International Workshop, Glyfada, Athens, Greece, Springer. 327-341.

Gietz, W and Dupree, C (2002). Oracle9i Application Developer's Guide - Object-Relational Features,

Release 2 (9.2). Redwood Shores, CA 94065, USA, Oracle Corporation.

Gordon, C, Herbert, I and Johnson, P (1996). Knowledge Representation and Clinical Practice

Guidelines: the DILEMMA and PRESTIGE projects. Medical Informatics Europe,

Copenhagen, IOS Press. 511-515.

References

 269

Gordon, C, Herbert, I, Johnson, P, Nicklin, P, Pitty, D and Reeves, P (1997). Telematics for Clinical

Guidelines: A Conceptual Modelling Approach. Medical Informatics Europe '97.

Gordon, C, Jackson-Smale, A and Thomson, R (1994). DILEMMA: Logic engineering in primary care,

shared care and oncology (AIM Project A2005). Computer Methods and Programs in

Biomedicine 45 : 37-39.

Gordon, C and Veloso, M (1996). The PRESTIGE Project: Implementing Guidelines in Healthcare.

Medical Informatics Europe 96.

Graeser, K (1994). Active databases: Tools of the software AG on the way towards active databases.

Datenbak Rundbrief (in German) 14 : 15-16.

Greenes, R A, Peleg, M, Boxwala, A A, Tu, S W, Patel, V L and Shortliffe, E H (2001). Sharable

Computer-Based Clinical Practice Guidelines: Rationale, Obstacles, Approaches, and

Prospects. Medinfo 2001, London, UK. 201-5.

Grimshaw, J M and Russell, I T (1993). Effect of clinical guidelines on medical practice: a systematic

review of rigorous evaluations. Lancet 342 : 1317-22.

Grimson, J, Stephens, G, Jung, B, Grimson, W, Berry, D and Pardon, S (2001). Sharing Health-Care

Records over the Internet . IEEE Internet Computing: 49-58.

Grimson, W, Berry, D, Grimson, J, Stephens, G, Felton, E, Given, P and O'Moore, R (1998). Federated

healthcare record server - the Synapses paradigm . International Journal of Medical

Informatics 52 : 3-27.

Grossman, R M (1983). A review of cost containment strategies for laboratory testing. Med Care 21 :

783-802.

Grosso, W E, Eriksson, H, Fergerson, R W, Gennari, J H, Tu, S W and Musen, M A (1999).

Knowledge Modeling at the Millennium (The Design and Evolution of Protege-2000),

Stanford Medical Informatics, Stanford University : 36.

Gryz, J (1998a). An algorithm for query folding with functional dependencies. 7th International

Symposium on Intelligent Information Systems. 7-16.

Gryz, J (1998b). Query folding with inclusion dependencies. 14th IEEE Int. Conf. on Data

Engineering (ICDE'98), Orlando, Florida. 126-133.

References

 270

Guarnero, A, Marzuoli, M, Molino, G, Terenziani, P, M., T and Vanni, K (1998). Contextual and

temporal clinical guidelines. AMIA Symp. 683-7.

Gutleber, J, Schimak, G and Humer, H (1997). Using Active Behaviour in Environmental Monitoring

Systems. Environmental Software Systems (IFIP TC5 WG5.11 International Symposium on

Environmental Software Systems), Chapman & Hall.

Hanson, E N, Chen, I C, Dastur, R, Engel, K, Ramaswamy, V, Tan, W and Xu, C (1998). A Flexible

and Recoverable Client/Server Database Event Notification System. VLDB Journal 7 : 12-24.

Harvey, J N, Rizvi, K, Craney, L, Messenger, J, Shah, R and Meadows, P A (2001). Population-based

survey and analysis of trends in the prevalence of diabetic nephropathy in Type 1 diabetes.

Diabet Med 18 (12): 998-1002.

HL7 (1999). Arden Syntax for Medical Logic Modules. Standards of the Health Level 7. USA.

Hripcsak, G, Clayton, P, Jenders, R, Cimino, J and Johnson, S (1996). Design of a clinical event

monitor. Comput Biomed Res 29 : 194-221.

Hripscak, G, Luderman, P, Pryor, T A, Wigertz, O B and Clayton, P D (1994). Rationale for the

Arden Syntax. Computers and Biomedical Research 27 : 291-324.

Institute of Medicine (IOM) (1992). Guidelines for clinical practice: from development to use.

Washington, D.C., National Academy Press.

Jasper, H (1994). Active databases for active repositories. 10th International Conference on Data

Engineering, Houston, Texas, U.S.A. 375-384.

Jenders, R A, Hripcsak, G, Sideli, R V, DuMouchel, W, Zhang, H, Cimino, J J, Johnson, S B, Sherman,

E H and Clayton, P D (1995). Medical decision support: experience with implementing the

Arden Syntax. Annu. Symb. Comput. Appl. Med. Care: 169-173.

Jenders, R A, Huang, H, Hripcsak, G and Clayton, P D (1998). Evolution of a knowledge base for a

clinical decision support system encoded in the Arden Syntax. AMIA Symp. 558-62.

Johnson, P D, Tu, S W, Booth, N, Sugden, B and Purves, I N (1999). A guideline model for chronic

disease management. Stanford, Stanford Medical Informatics.

References

 271

Johnson, P D, Tu, S W, Booth, N, Sugden, B and Purves, I N (2000). Using scenarios in chronic

disease management guidelines for primary care. AMIA Annual Symposium, Philadelphia.,

Hanley and Belfus.

Jones, R, Dube, K and Wu, B (2003). TOPME: An XML-Based Client-Server Front-End for the

Distributed Management of Clinical Protocol for TOPS. Dublin, Dublin Institute of

Technology: 5.

Kanouse, D E and Jacoby, I (1988). When does Information Change Practitioners' Behaviour? Int J

Technol Health Care 4 : 27-33.

Kawano, H, Nishio, J H and Hasegawa, T (1994). How does knowledge discovery cooperate with

active database techniques in controlling dynamic environments? 5th Intl. Conf. on Database

and Expert System Applications (DEXA'94), Athen. 370-379.

Kotz-Dittrich, A and Simon, E (1999). Active database systems: Expectations, Commercial

Experience, and Beyond. Active Rules in Database Systems. Paton, NW. New York,

Springer-Verlag: 367-404.

Kuperman, G J, Teich, J M, Tanasijevic, M J, Ma'Luf, N, Rittenberg, E, Jha, A, Fiskio, J, Winkelman, J

and Bates, W (1999). Improving response to critical laboratory results with automation:

results of a randomised control trial. JAMIA 6 No.6 : 512-22.

Lanarkshire Diabetes Group (1999). Local Protocol for the Implementation of the St. Vincent

Declaration (SIGN Guidelines 4,9,10,12,19,25),

http://www.nhslanarkshire.co.uk/hq/disease/pdf_files/st_vincent.pdf . Motherwell, UK, NHS

Lanarkshire: 11.

Lee, J K and Sohn, M M (2003). The eXtensible Rule Markup Language . Communications of the ACM

46 (5): 59-64.

Li, L and Chakravarthy, S (1999). An agent-based approach to extending the native active capability

of relational database systems. 15th International Conference on Data Engineering. 384-391.

Lobach, D F, Gadd, C S and Hales, J W (1997). Structuring clinical practice guidelines in a relational

database model for decision support on the Internet. AMIA Annual Fall Symposium. 158-

162.

References

 272

Lobach, D F and Hammond, W E (1994). Development and evaluation of a computer-assisted

management protocol (CAMP): improved compliance with care guidelines for diabetes

mellitus. Annual Symposium on Computer Applications in Medical Care. 787-791.

Lopes, C V and Hursch, W L (1995). Separation of Concerns. Boston, M, Northeaster University, A:

20.

Matimer, D, McCauley, B, Nightingale, P, Ryan, M, Peters, M and Neuberger, J (1992). Computerised

protocols for laboratory investigation and their effect on use of medical time and resouces.

Journal of Clinical Pathology 45 : 572-574.

McDonalds, C J, Wilson, G A and McCabe, G (1980). Physician Response to Computer Reminders.

JAMIA 244 (14): 1579-1581.

MediLink (2003). The MediLink Programme, http://www.cs.tcd.ie/medilink/, Healthcare Informatics

Centre, Computer Science Department, Trinity College, Dublin. 2003.

Melton, J (2003). Information Technology - Database Languages - SQL: Part 2, Foundation

(SQL/Foundation), ISO/IEC & ANSI : 1332: 125-128.

Miksch, S (1999). Plan Management in the Medical Domain . AI Communications 12 (4): 209-235.

Mogensen, C E (2003). Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes.

J Intern Med 254 (1): 45-66.

Motta, E (1999). Reusable Components for Knowledge Modelling: Principles and Case Studies in

Parametric Design. Amsterdam, IOS Press.

Musen, M A, Gennari, J H, Eriksson, H, Tu, S W and Puerta, A R (1995). PROTEGE II: Computer

Support For Development Of Intelligent Systems From Libraries Of Components.

MEDINFO: The Eighth World Congress on Medical Informatics, Vancouver, B.C., Canada.

766-770.

Musen, M A, Tu, S W, Das, A K and Shahar, Y (1996). EON: A component-based approach to

automation of protocol-directed therapy. JAMIA 3 (6): 367-88.

Musen, M A, Tu, S W and Shahar, Y (1992). A problem-solving model for protocol-based care: from

e-ONCOCIN to EON. MEDINFO, IMIA: 519-525.

Newell, A and Simon, H A (1972). Human problem solving. Englewood Cliffs, NJ, Prentice Hall.

References

 273

Nykanen, P (2000). Decision Support Systems in Healthcare . Computer Science and Information

Sciences, University of Tampere.

Ogunyemi, O, Zeng, Q and Boxwala, A A (2002). Object-oriented guideline expression language

(GELLO) specification, Decision Systems Group, Brigham and Women's hospital, Harvard

Medical School.

Ohno-Machado, L, Gennari, J H, Murphy, S, Jain, N H, Tu, S W, Oliver, D E, Pattison-Gordon, E,

Greenes, R A, Shortliffe, E H and Barnett, G O (1998). The GuideLine Interchange Format:

A Model for Representing Guidelines. JAMIA 5 (4): 357-372.

OMG (2001). OMG Unified Modeling Language Specification, Object Management Group (OMG).

O'Moore, R, Groth, T, Grimson, W and Boran, G (1996). Advanced Informatics and Telematics for

Optimization of Clinical Laboratory Services. Computer Methods and Programs in

Biomedicine 50 (2): 85-206.

OpenClinical (2001). The Medical Knowledge Crisis and its solution Through Knowledge

Management, OpenClinical.org.

OpenClinical (2003). Knowledge management for medical care: GUIDE,

http://www.openclinical.org/gmm_guide.html, OpenClinical,. 2003 .

Overhage, J M, Tierney, W M, Zhou, X H and MacDonald, C J (1997). A randomised trial of

'corollary orders' to prevent errors of omission. JAMIA 4 : 364-375.

Owens, K T (1994). Using Oracle7 Triggers to Implement Business Rules, RevealNet Inc.: 14.

Parnas, D L (1972). On the Criteria to be used in Decomposing Systems into Modules.

Communications of the ACM 15 (12): 1053-1058 .

Paton, N W, Ed. (1999). Active Rules in Database Systems. Monographs in Computer Science. New

York, Springer-Verlag. 439.

Paton, N W and Diaz, O (1999). Active Database Systems. ACM Computing Surveys 31 (1): .63-103.

Pattison-Gordon, E, Cimino, J J, Hripcsak, G, Tu, S W, Gennari, J H, Jain, N L and Greenes, R A

(1996). Requirements of a sharable guideline representation for computer applications .

Stanford, California, USA, Stanford University.

References

 274

Peleg, M, Boxwala, A A, Omolala, O, Zeng, Q, Tu, S W, Lucson, R, Bernstam, E, Ash, N, Mork, P,

Ohno-Machado, L, Shortliffe, E H and Greenes, R A (2000). GLIF3: The evolution of a

guideline representation format. AMIA Annual Symposium , LA, CA, Philadelphia, Hanley

and Belfus.

Peleg, M, Tu, S M, Bury, J, Ciccarese, P, Fox, J, Greenes, R A, Hall, R, Johnson, P D, Jones, N, Kumar,

A, Miksch, S, Quaglini, S, Seyfang, A, Shortliffe, E H and Stefanelli, M (2002). Comparing

Computer-Interpretable Guideline Models: A Case-Study Approach. JAMIA 10 (1): 52-68.

Peters, M and Broughton, P M G (1993). The role of expert systems in improving test request patterns

of clinicians. Ann Clinical Biochem 30 : .52-59.

Peters, M, Broughton, P M G and Nightingale, P G (1991). Use of Information Technology for

Auditing Effective Use of Laboratory Services. Clinical Pathology 44 : 539-542.

Peters, M, Clarke, I R and Parekh, J e a (1991). Automatic application of rule-based decision-support -

a specialist unit investigation manager . Current Perspectives in Healthcare Computing.

Richard, B: 129-136.

Porto, F A M, Carvalho, S R, Vianna e Silva, M J and Melo, R N (1999). Persistent object

synchronization with active relational databases. Technology of Object-Oriented Languages

and Systems (TOOLS 30). 53-62.

Protocol Steering Committee (1998). Protocol for Viral Hepatitis Testing,

(http://www.healthservices.gov.bc.ca/msp/protoguides/gps/vihep.html). British Columbia,

Canada, British Columbia Medical Association. 2004: 6.

Qian, X (1996). Query folding . 12th International Conference on Data Engineering, New Orleans,

LA. 48-55.

Quaglini, S, Stefanelli, M, Caporusso, V and Panzarasa, S (2000a). Managing Non-Compliance in

Guideline-based Careflow Systems (Poster). AMIA Annual Symposium.

Quaglini, S, Stefanelli, M, Cavallini, A, Micieli, G, Fassino, C and Mossa, C (2000b). Guideline-based

careflow systems. Artif Intell Med 20 (1): 5-22.

Quaglini, S, Stefanelli, M, Lanzola, G, Caporusso, V and Panzarasa, S (2001). Flexible guideline-based

patient careflow systems. Artif Intell Med 22 (1): 65-80.

References

 275

Ristow, M (2004). Neurodegenerative disorders associated with diabetes mellitus. Journal of

Molecular Medicine.

Rumbaugh, J, Jacobson, I and Grady, B (1998). The Unified Modeling Language Reference Manual,

Addison-Wesley Pub Co. 256.

Rumbaugh, J R, Blaha, M R, Lorensen, W, Eddy, F and Premerlani, W (1990). Object-Oriented

Modeling and Design, Prentice-Hall. 500.

Russell, J (2002). Oracle9i Application Developer's Guide - Fundamentals, Release 2 (9.2). Redwood

Shores, CA 94065, USA, Oracle Corporation.

Sailors, R M, Bradshaw, R L and East, T D (1998). Moving the Arden Syntax Outside of the (Alert)

Box: A Paradigm for Supporting Multi-Step Clinical protocols. JAMIA, 5 (Symposium

Supplement): 1071.

Schadow, G, Russler, D C, Mead, C N and MacDonald, C J (2000). Integrating medical information

and knowledge in the HL7 RIM . AMIA Ann Fall Symp. 764-768.

Scherpbier, H (1995). CT Study With Contrast in Patients With Renal Failure (a sample Medical

Logic Module (MLM)), MLM Library, Columbia-Presbyterian Medical Center, New York

City. 2004.

Schreiber, G, Akkermans, H, Anjewierden, A, de Hoog, R, Shadbolt, N, Van de Velde, W and

Wielinga, B (1999). Knowledge Engineering and Management: The CommonKADS

Methodology, The MIT Press. 471.

Schwiderski, S (1996). Monitoring the Behavior of Distributed Systems. PhD Thesis, Computer

Science. Cambridge, Selwyn College, Computer Lab, University of Cambridge.

Shahar, Y, Miksch, S and Johnson, P (1998). The Asgaard Project: A task-specific framework for the

application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in

Medicine 14 : 29-51.

Sherman, E H, Hripcsak, G, Starren, J, Jenders, R A and Clayton, P (1995). Using intermediate states

to improve the ability of the Arden Syntax to implement care plans and reuse knowledge .

Symp Comput Appl Med Care. 238-42.

References

 276

Shiffman, R N (1997). Representation of Clinical Practice Guidelines in Conventional and

Augmented Decision Tables. JAMIA 4 (5): 382-393.

Shortliffe, E H, Axline, S G, Buchanan, B G, Merigan, T C and Cohen, S N (1973). An Artificial

Intelligence Program to Advise Physicians Regarding Antimicrobial Therapy. Computers

and Biomedical Research 6 : 544-560.

Shortliffe, E H, Scott, C A and Bischoff, M B (1981). ONCOCIN: An expert system for oncology

protocol management. 7th International Joint Conference on Artificial Intelligence. 876--

881.

Simon, E and Kotz-Dittrich, A (1995). Promises and realities of active database systems. 21st VLDB

Conference, Zurich, Switzerland. 642-653.

Smith, B J and McNeely, M D D (1999). The influence of an expert system for test ordering and

interpretation on laboratory testing . Clinical Chemistry 45 (8): 1168-75.

Starren, J and Xie, G (1994). Comparison of Three Knowledge Representation Formalisms for

Encoding the NCEP Cholesterol Guidelines. Eighteenth Annual Symposium on Computer

Applications in Medical Care, Washington, DC, Hanley & Belfus. 792-796.

Stonebraker, M, Hanson, E N and Potamianos, S (1988). The POSTGRES Rule Manager. IEEE

Transactions on Software Engineering 14 (7): 897 - 907.

Tagg, R and Lelatanavit, W (1998). Using an active DBMS to implement a workflow engine.

International Database Engineering and Applications Symposium (IDEAS). 286-295.

Terenziani, P, Mastromonaco, F, Molino, G and Torchio, M (2000). Executing clinical guidelines:

temporal issues. AMIA Symp. 848-52.

Terenziani, P, Molino, G and Torchio, M (2001). A modular approach for representing and executing

clinical guidelines. Artif Intell Med. 23 (3): 249-76.

Thomson, R (1995). DILEMMA: Decision Support in Primary Care, Oncology and Shared Care, IOS

Press.

Tu, S W, Johnson, P D and Musen, M A (2001). A Typology for Modeling Processes in Clinical

Guidelines and Protocols. AMIA Annual Symposium, San Antonio.

References

 277

Tu, S W and Musen, M A (1999). A Flexible Approach to Guideline Modeling. AMIA Annual

Symposium, Washington, D.C. 420-424.

Tu, S W and Musen, M A (2000). From Guideline Modeling to Guideline Execution: Defining

Guideline-Based Decision-Support Services. AMIA Annual Symposium, Los Angeles, CA,

Hanley & Belfus Inc. 863-867.

Tu , S W and Musen, M A (2001). Modeling Data and Knowledge in the EON Guideline Architecture .

MedInfo, London, UK.

Tu, S W and Musen, M A (2001). Representation Formalisms and Computational Methods for

Modeling Guideline-Based Patient Care . Computer-Based Support for Clinical Guidelines

and Protocols-Proceedings of EWGLP 2000. Heller, B, Loffler, M, Musen, M and Stefanelli,

M. Amsterdam, IOS Press. 83: 115-132.

Ullman, J D and Widom , J (2001). A First Course in Database Systems, Prentice Hall. 528.

van Walraven, C and Naylor, C D (1998). Do we know what inappropriate laboratory utilisation is? A

systematic review of laboratory clinical audits . JAMIA 280 : 550-558.

van Wijk, M A M, Bohnen, A M and van der Lei, J (1999). Analysis of the practice guidelines of the

Dutch College of General Practitioners with respect to the use of blood tests. JAMIA 6 (4):

322-331.

van Wijk, M A M, Mosseveld, M and van der Lei, J (1999). Design of a decision support system for

test ordering in General Practice: choices and decisions to make. Methods of Information in

Medicine 38 : 355-61.

Wang, D, Peleg, M, Tu, S W, Boxwalla, A A, Greenes, R A, Patel, V L and Shortliffe, E H (2002).

Representation Primitives, Process Models and Patient Data in Computer-Interpretable

Clinical Practice Guidelines: A Literature Review of Guideline Representation Models.

International Journal of Medical Informatics 68 (1-3): 59-70.

Widom, J and Ceri, S, Eds. (1996). Active Database Systems: Triggers and Rules for Advanced

Database Processing. San Francisco, USA, Morgan Kaufmann.

Wu, B (1996). Specifying and enforcing integrity constraints in object oriented databases. PhD Thesis,

Computer Science. Manchester, Department of Computation, UMIST.

References

 278

Wu, B (1998). PLAN : the framework and its language for modelling clinical test request protocols.

Dublin, Department of Computer Science, DIT.

Wu, B and Dube, K (1998). The BNF definition of PLAN : the framework and its language for

modelling clinical test request protocols. Dublin, Department of Computer Science, DIT.

Wu, B and Dube, K (2001). PLAN: a Framework and Specification Language with an Event-

Condition-Action (ECA) Mechanism for Clinical Test Request Protocols. 34th Hawaii

International Conference on System Sciences (HICSS-34):: the Mini-Track in Information

Technology in Healthcare, Maui, Hawaii, IEEE Computer Society, Los Alamitos, California.

140.

279

APPENDIX

A. The BNF Syntax of PLAN
<protocol> ::= @PROTOCOL@<protocol_body>@END PROTOCOL@
<protocol_body> ::= <protocol_header>#SCHEDULE_SET#<schedule_list>#END
SCHEDULE_SET#<protocol_rule_set>
<protocol_header> ::=
<protocol_name>;<description>;<creator>;<category>;
<protocol_name> ::= <identifier>
<description> ::= DESRIPTION: <descriptive_text>
<descriptive_text> ::= string
<category> ::= CATEGORY: <category-name>
<creator> ::= CREATOR: <creator-name>
<schedule-list> ::= <schedule> | <schedule>,<schedule-list>
<schedule> ::= ^SCHEDULE^<schedule_body>^END SCHEDULE^
<schedule_body> ::= <schedule_header>;<schedule_rule_list>;
<schedule_header> ::=
<schedule_name>;[<initial_state>;]<entry_criteria>
<initial_state> ::= INITIAL_STATE: {ACTIVE | INACTIVE}
<schedule_name> ::= <identifier>
<entry-criteria> ::= ENTRY_CRITERIA,CONDITION:
<condition_spec>[,<description>];
<condition_spec> ::=
<comparison_attribute>%<attribute_entity>%<value_source>[%<source_name
>]<comparison_operator><right_value><right_value_type>
<schedule_rule_list> ::=
<schedule_rule>|<schedule_rule>;<schedule_rule_list>
<schedule_rule> ::= <static_rule>|<dynamic_rule>
<static-rule> ::= <rule_header>,<time_events>,<action_spec>
<rule_header> ::= {STATIC_RULE | RULE}
<rule_name>,[<description>,][<initial_state>,]
<time_events> ::=
<ref_point>,<start_point_spec>,<end_point_spec>,<interval_spec>
<ref_point> ::= FROM: <identifier> | <domain_term>
<start_point_spec>::= STARTING: <time_length> <time_unit>
<end_point_spec>::= ENDING: <time_length> <time_unit>
<interval_spec> ::= ON EVERY: <time_length> <time_unit>
<time_length> ::= integer
<time_unit> ::=
YEAR|YEARS|MONTH|MONTHS|WEEK|WEEKS|DAY|DAYS|HOUR|HOURS|MINUTE|MINUTES
|SECOND|SECONDS
<action_spec> ::= DO: <action> ([<parameter_list>])
<action> ::= ORDER|ISSUE_ALERT|SEND_MAIL|...
<parameter_list> ::= <parameter> | <parameter>,<parameter_list>
<parameter> ::= <string_parameter> | <number_parameter>
<string_parameter> ::= 'STRING'
<number_parameter> ::= DOUBLE | INTEGER
<dynamic-rule> ::= <rule-
header>,[<description>,]<event_spec>,<condition_spec>,<action_spec>;
<event_spec> ::= On: <event> ([<parameter_list>])
<event> ::= RESULT_ARRIVAL | DISCHARGE | CHECK_IN | ...
<protocol_rule_set> ::= ~RULE_SET~ <protocol_rule_list> ~END RULE_SET~
<protocol_rule_list> ::= <dynamic_rule> |
<dynamic_rule>;<protocol_rule_list>

APPENDIX

 280

B. The Relational Schema for the TOPS Database in
Oracle SQL

B.1. The TOPS protocol specification database schema
CREATE TABLE PR_PROTOCOL
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(128) NULL,
 DATE_CREATED DATE NOT NULL,
 CREATOR_ID NUMBER(38) NOT NULL,
 DATE_AUTHORISED DATE NULL,
 AUTHORISER_ID NUMBER(38) NULL,
 CATEGORY_ID NUMBER(38) NOT NULL UNIQUE,
 SCHEDULES NUMBER(38) NOT NULL,
 PROTOCOL_RULES NUMBER(38) NOT NULL,
 CONSTRAINT PK_PR_PROTOCOL PRIMARY KEY (ID)
) ;

CREATE TABLE PR_STATIC_RULE
 (
 ID NUMBER(38) NOT NULL,
 ZERO_TIME_REF_TERM VARCHAR2(128) NOT NULL,
 START_TIME NUMBER(38) NOT NULL,
 END_TIME NUMBER(38) NOT NULL,
 INTERVAL NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_STATIC_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_PROTOCOL_RULE
 (
 ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_PROTOCOL_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_SCHEDULE
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(228) NULL,
 CREATOR_ID NUMBER(38) NOT NULL,
 DATE_CREATED DATE NOT NULL
, CONSTRAINT PK_PR_SCHEDULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_DYNAMIC_RULE
 (
 ID NUMBER(38) NOT NULL,
 EVENT_ID NUMBER(38) NOT NULL,
 EVENT_PARAMETERS VARCHAR2(128) NULL,
 RULE_TYPE VARCHAR2(128) NOT NULL,
 CONSTRAINT PK_PR_DYNAMIC_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_RULE
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(228) NULL,
 RULE_TYPE VARCHAR2(128) NOT NULL,
 CREATOR_ID NUMBER(38) NOT NULL,
 DATE_CREATED DATE NOT NULL,
 CONSTRAINT PK_PR_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_SCHEDULE_RULE
 (
 ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_SCHEDULE_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PR_CONDITION
 (
 ID NUMBER(38) NOT NULL,
 CODE VARCHAR2(50) NOT NULL UNIQUE,
 ATTRIBUTE VARCHAR2(128) NOT NULL,
 ATTRIBUTE_ENTITY VARCHAR(128) NOT NULL,
 SOURCE_TYPE VARCHAR2(128) NOT NULL,
 SOURCE_NAME VARCHAR2(128) NULL,
 RIGHT_VALUE VARCHAR2(128) NULL,
 DATA_TYPE VARCHAR2(40),
 COMPARATOR VARCHAR2(20) NULL,
 DESCRIPTION VARCHAR2(228) NULL,
 DATE_CREATED DATE NOT NULL
, CONSTRAINT PK_PR_CONDITION PRIMARY KEY (ID)
) ;

CREATE TABLE PR_ACTION
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(228) NULL,
 DATE_CREATED DATE NOT NULL
, CONSTRAINT PK_PR_ACTION PRIMARY KEY (ID)
) ;

CREATE TABLE PR_EVENT
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(228) NULL,
 DATE_CREATED DATE NOT NULL,
 CONSTRAINT PK_PR_EVENT PRIMARY KEY (ID)
) ;

CREATE TABLE PR_PROTOCOL_SCHEDULE
 (
 PROTOCOL_ID NUMBER(38) NOT NULL,
 SCHEDULE_ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_PROTOCOL_SCHEDULE PRIMARY KEY (PROTOCOL_ID,
SCHEDULE_ID)
) ;

CREATE TABLE PR_RULE_CONDITION
 (
 RULE_ID NUMBER(38) NOT NULL,
 CONDITION_ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_RULE_CONDITION PRIMARY KEY (RULE_ID,
CONDITION_ID)
) ;

CREATE TABLE PR_RULE_ACTION
 (
 RULE_ID NUMBER(38) NOT NULL,
 ACTION_ID NUMBER(38) NOT NULL,
 ACTION_PARAMETERS VARCHAR2(1000) NULL,
 CONSTRAINT PK_PR_RULE_ACTION PRIMARY KEY (RULE_ID, ACTION_ID)
) ;

CREATE TABLE PR_SCHEDULE_SRULE
 (
 SCHEDULE_ID NUMBER(38) NOT NULL,
 RULE_ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_SCHEDULE_SRULE PRIMARY KEY (SCHEDULE_ID,
RULE_ID)
) ;

CREATE TABLE PR_PROTOCOL_PRULE
 (
 PROTOCOL_ID NUMBER(38) NOT NULL,
 RULE_ID NUMBER(38) NOT NULL
, CONSTRAINT PK_PR_PROTOCOL_PRULE PRIMARY KEY (PROTOCOL_ID,
RULE_ID)
) ;

CREATE TABLE PR_PROTOCOL_SRULE
 (
 PROTOCOL_ID NUMBER(38) NOT NULL,
 RULE_ID NUMBER(38) NOT NULL,
 CONSTRAINT PK_PR_PROTOCOL_SRULE PRIMARY KEY (PROTOCOL_ID,
RULE_ID)
) ;

CREATE TABLE PR_CRITERIA
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 CRITERIA_TYPE VARCHAR2(50) NOT NULL,
 DESCRIPTION VARCHAR2(400) NULL,
 CONSTRAINT PK_PR_CRITERIA PRIMARY KEY (ID)
) ;

CREATE TABLE PR_CRITERIA_CONDITION
 (
 CRITERIA_ID NUMBER(38) NOT NULL,
 CONDITION_ID NUMBER(38) NOT NULL,
 CONSTRAINT PK_CRITERIA_CONDITION PRIMARY KEY
(CRITERIA_ID,CONDITION_ID)
);

CREATE TABLE PR_SCHEDULE_CRITERIA
 (
 SCHEDULE_ID NUMBER(38) NOT NULL,
 CRITERIA_ID NUMBER(38) NOT NULL,
 CONSTRAINT PK_PR_CASE_SWITCH PRIMARY KEY (SCHEDULE_ID,
CRITERIA_ID)
) ;

CREATE TABLE PR_SCHEDULE_DRULE
(
SCHEDULE_ID NUMBER(38) NOT NULL,
RULE_ID NUMBER(38) NOT NULL,
CONSTRAINT PK_PR_SCHEDULE_DRULE PRIMARY KEY (SCHEDULE_ID,
RULE_ID)
);

CREATE TABLE TOPS.PR_COMPOSITE_CONDITION(
ID NUMBER(38) NOT NULL,
COND1_ID NUMBER(38),
COND2_ID NUMBER(38),
COMP1_ID NUMBER(38),
COMP2_ID NUMBER(38),
COMPARATOR VARCHAR2(10),
CONSTRAINT PK_PR_COMPOSITE_CONDITION PRIMARY KEY(ID)
);

CREATE TABLE TOPS.PR_STATE_ACTION(
STATE_ID NUMBER(38) NOT NULL,
ACTION_ID NUMBER(38) NOT NULL,
ACTION_PARAMETERS VARCHAR2(300),
CONSTRAINT PK_TOPS_STATE_ACTION PRIMARY KEY (STATE_ID,
ACTION_ID)
);

APPENDIX

 281

ALTER TABLE PR_PROTOCOL_SRULE ADD (
 CONSTRAINT FK_PROTOCOL_SRULE_protocol
 FOREIGN KEY (PROTOCOL_ID)
 REFERENCES TOPS.PR_PROTOCOL (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL_SRULE ADD (
 CONSTRAINT FK_PROTOCOL_SRULE_srule
 FOREIGN KEY (RULE_ID)
 REFERENCES TOPS.PR_STATIC_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_STATE_ACTION ADD (
 CONSTRAINT FK_TOPS_STATE_ACTION_STATE
 FOREIGN KEY (STATE_ID)
 REFERENCES TOPS_PATIENT_STATE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_STATE_ACTION ADD (
 CONSTRAINT FK_PR_TOPS_STATE_ACTION_ACTION
 FOREIGN KEY (ACTION_ID)
 REFERENCES PR_ACTION (ID)
 ON DELETE CASCADE
);

ALTER TABLE TOPS.PR_COMPOSITE_CONDITION ADD (
 CONSTRAINT FK_PR_COMPO_COND_COND_1
 FOREIGN KEY (COND1_ID)
 REFERENCES TOPS.PR_CONDITION (ID)
 ON DELETE CASCADE
);
ALTER TABLE TOPS.PR_COMPOSITE_CONDITION ADD (
 CONSTRAINT FK_PR_COMPO_COND_COND_2
 FOREIGN KEY (COND2_ID)
 REFERENCES TOPS.PR_CONDITION (ID)
 ON DELETE CASCADE
);

ALTER TABLE TOPS.PR_COMPOSITE_CONDITION ADD (
 CONSTRAINT FK_PR_COMPO_COND_SELF_1
 FOREIGN KEY (COMP1_ID)
 REFERENCES TOPS.PR_COMPOSITE_CONDITION (ID)
 ON DELETE CASCADE
);
ALTER TABLE TOPS.PR_COMPOSITE_CONDITION ADD (
 CONSTRAINT FK_PR_COMPO_COND_SELF_2
 FOREIGN KEY (COMP2_ID)
 REFERENCES TOPS.PR_COMPOSITE_CONDITION (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL ADD (
 CONSTRAINT FK_PR_PROTOCOL_CATEGORY
 FOREIGN KEY (CATEGORY_ID)
 REFERENCES TOPS_CATEGORIES (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL ADD (
 CONSTRAINT FK_PR_PROTOCOL_CREATOR
 FOREIGN KEY (CREATOR_ID)
 REFERENCES TOPS_CLINICIANS (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL ADD (
 CONSTRAINT FK_PR_PROTOCOL_AUTHORISER
 FOREIGN KEY (AUTHORISER_ID)
 REFERENCES TOPS_CLINICIANS (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_STATIC_RULE ADD (
 CONSTRAINT FK_PR_STATIC_RULE_PR_RULE
 FOREIGN KEY (ID)
 REFERENCES PR_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL_RULE ADD (
 CONSTRAINT FK_PR_PROTOCOL_RULE_DYNAM_RUL
 FOREIGN KEY (ID)
 REFERENCES PR_DYNAMIC_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_DYNAMIC_RULE ADD (
 CONSTRAINT FK_PR_DYNAMIC_RULE_EVENT
 FOREIGN KEY (EVENT_ID)
 REFERENCES PR_EVENT (ID));

ALTER TABLE PR_DYNAMIC_RULE ADD (
 CONSTRAINT FK_PR_DYNAMIC_RULE_PR_RULE
 FOREIGN KEY (ID)
 REFERENCES PR_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_SCHEDULE_RULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_RULE_DYN_R
 FOREIGN KEY (ID)
 REFERENCES PR_DYNAMIC_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL_SCHEDULE ADD (
 CONSTRAINT FK_PR_PROTOCOL_SCHEDULE_PR_PRO
 FOREIGN KEY (PROTOCOL_ID)
 REFERENCES PR_PROTOCOL (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_PROTOCOL_SCHEDULE ADD (

 CONSTRAINT FK_PR_PROTOCOL_SCHEDULE_PR_SCH
 FOREIGN KEY (SCHEDULE_ID)
 REFERENCES PR_SCHEDULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_RULE_CONDITION ADD (
 CONSTRAINT FK_PR_RULE_CONDITION_DYNA_RU
 FOREIGN KEY (RULE_ID)
 REFERENCES PR_DYNAMIC_RULE (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_RULE_CONDITION ADD (
 CONSTRAINT FK_PR_RULE_CONDITION_PR_CONDIT
 FOREIGN KEY (CONDITION_ID)
 REFERENCES PR_CONDITION (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_RULE_ACTION ADD (
 CONSTRAINT FK_PR_RULE_ACTION_RULE
 FOREIGN KEY (RULE_ID)
 REFERENCES PR_RULE (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_RULE_ACTION ADD (
 CONSTRAINT FK_PR_RULE_ACTION_PR_ACTION
 FOREIGN KEY (ACTION_ID)
 REFERENCES PR_ACTION (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_SCHEDULE_SRULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_SRULE_PR_SCHEDU
 FOREIGN KEY (SCHEDULE_ID)
 REFERENCES PR_SCHEDULE (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_SCHEDULE_SRULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_SRULE_PR_STATIC
 FOREIGN KEY (RULE_ID)
 REFERENCES PR_STATIC_RULE (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_PROTOCOL_PRULE ADD (
 CONSTRAINT FK_PR_PROTOCOL_PRULE_PR_PROTOC
 FOREIGN KEY (PROTOCOL_ID)
 REFERENCES PR_PROTOCOL (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_PROTOCOL_PRULE ADD (
 CONSTRAINT FK_PR_PROTOCOL_PRULE_PR_PROTO1
 FOREIGN KEY (RULE_ID)
 REFERENCES PR_PROTOCOL_RULE (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_SCHEDULE_DRULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_DRULE_PR_SCHEDU
 FOREIGN KEY (SCHEDULE_ID)
 REFERENCES PR_SCHEDULE (ID)
 ON DELETE CASCADE
) ;

ALTER TABLE PR_SCHEDULE_DRULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_DRULE_PR_DYNAMI
 FOREIGN KEY (RULE_ID)
 REFERENCES PR_DYNAMIC_RULE (ID)
 ON DELETE CASCADE
) ;
ALTER TABLE PR_SCHEDULE ADD (
 CONSTRAINT FK_PR_SCHEDULE_CREATOR
 FOREIGN KEY (CREATOR_ID)
 REFERENCES TOPS_CLINICIANS (ID)
 ON DELETE CASCADE
);
ALTER TABLE PR_RULE ADD (
 CONSTRAINT FK_PR_RULE_CREATOR
 FOREIGN KEY (CREATOR_ID)
 REFERENCES TOPS_CLINICIANS (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_CRITERIA_CONDITION ADD (
 CONSTRAINT FK_CRITERIA_CONDITION_COND
 FOREIGN KEY (CONDITION_ID)
 REFERENCES PR_CONDITION (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_CRITERIA_CONDITION ADD (
 CONSTRAINT FK_CRITERIA_CONDITION_CRI
 FOREIGN KEY (CRITERIA_ID)
 REFERENCES PR_CRITERIA (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_SCHEDULE_CRITERIA ADD (
 CONSTRAINT FK_PR_SCHEDULE_CRITERIA_1
 FOREIGN KEY (CRITERIA_ID)
 REFERENCES PR_CRITERIA (ID)
 ON DELETE CASCADE
);

ALTER TABLE PR_SCHEDULE_CRITERIA ADD (
 CONSTRAINT FK_PR_SCHEDULE_CRITERIA_2
 FOREIGN KEY (SCHEDULE_ID)
 REFERENCES PR_SCHEDULE (ID)
 ON DELETE CASCADE
);

APPENDIX

 282

B.2. The TOPS patient plan database schema
CREATE TABLE PL_PLAN
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 PATIENT_ID NUMBER(38) NOT NULL,
 PROTOCOL_ID NUMBER(38) NOT NULL,
 DESCRIPTION VARCHAR2(200) NULL,
 DATE_CREATED DATE NOT NULL,
 CURRENT_STATE VARCHAR2(128) NOT NULL,
 STATE_CHANGE_DATE DATE NOT NULL,
 CONSTRAINT PK_PL_PLANS PRIMARY KEY (ID)
) ;

CREATE TABLE PL_SCHEDULE
 (
 ID NUMBER(38) NOT NULL,
 PLAN_ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 DESCRIPTION VARCHAR2(228) NULL,
 END_DATE DATE NOT NULL,
 DATE_CREATED DATE NOT NULL,
 CURRENT_STATE VARCHAR2(128) NOT NULL,
 STATE_CHANGE_DATE DATE NOT NULL,
 CONSTRAINT PK_PL_SCHEDULE PRIMARY KEY (ID)
) ;

CREATE TABLE PL_RULE
 (
 ID NUMBER(38) NOT NULL,
 NAME VARCHAR2(128) NOT NULL UNIQUE,
 RULE_TYPE VARCHAR2(60) NOT NULL,
 DESCRIPTION VARCHAR2(200) NULL,
 DATE_CREATED DATE NOT NULL,
 CURRENT_STATE VARCHAR2(128) NOT NULL,
 STATE_CHANGE_DATE DATE NOT NULL,
 CONSTRAINT PK_PL_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PL_RULE_NAME(
 RULE_ID NUMBER(38) NOT NULL,
 USRNAME VARCHAR2(128) NOT NULL,
 SYSNAME VARCHAR2(128) NOT NULL UNIQUE
);

CREATE TABLE PL_STATIC_RULE
 (
 ID NUMBER(38) NOT NULL,
 SCHEDULE_ID NUMBER(38) NOT NULL,
 START_DATE DATE NOT NULL,
 END_DATE DATE NOT NULL,
 INTERVAL NUMBER(38) NOT NULL,
 CONSTRAINT PK_PL_STATIC_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PL_DYNAMIC_RULE
 (
 ID NUMBER(38) NOT NULL,
 PLAN_ID NUMBER(38) NOT NULL,
 CONSTRAINT PK_PL_DYNAMIC_RULE PRIMARY KEY (ID)
) ;

CREATE TABLE PL_RULE_TRIGGER
(
TRIGGER_NAME VARCHAR2(150) NOT NULL,
RULE_ID NUMER(38) NOT NULL,
CONSTRAINT PK_PL_RULE_TRIGGER PRIMARY KEY(TRIGGER_NAME)
);

CREATE TABLE TOPS.PL_REQUEST
(
ID NUMBER(38) NOT NULL,
AGENT VARCHAR2(128) NOT NULL,
MRN VARCHAR2(128) NOT NULL,
PROTOCOL VARCHAR2(128) NOT NULL,
ACTIVITY_ID VARCHAR2(10) NOT NULL,
DATE_REQUESTED DATE NOT NULL,
CONSTRAINT PK_PL_REQUEST PRIMARY KEY (ID)
);

CREATE TABLE TOPS.PL_PLAN_PROTOCOL_RULE
(
PL_RULE_ID NUMBER(38) NOT NULL,
PR_RULE_ID NUMBER(38) NOT NULL,
CONSTRAINT PK_PL_PLAN_PROTOC OL_RULE PRIMARY KEY (PL_RULE_ID,
PR_RULE_ID)
);

CREATE TABLE PL_PLAN_SNAPSHOT
(
PLAN_ID NUMBER(38) NOT NULL,
PLAN_NAME VARCHAR(300) NOT NULL,
RULE_ID NUMBER(38) NOT NULL,
RULE_NAME VARCHAR2(300) NOT NULL,
RULE_TYPE VARCHAR2(300) NOT NULL,
RULE_STATE VARCHAR2(300) NOT NULL,
SNAP_TIME TIMESTAMP NOT NULL,
CONSTRAINT PK_PL_PLAN_SNAPSHOT PRIMARY KEY (PLAN_ID, RULE_ID,
SNAP_TIME)

);

CREATE TABLE TOPS.TOPS_STATE_ACTION
(
STATE_ID NUMBER(38) NOT NULL,
ACTION_ID NUMBER(38) NOT NULL,
ACTION_PARAMETERS VARCHAR2(300),
CONSTRAINT PK_TOPS_STATE_ACTION PRIMARY KEY (STATE_ID, ACTION_ID)
);

ALTER TABLE TOPS_STATE_ACTION ADD (
 CONSTRAINT FK_TOPS_STATE_ACTION_STATE
 FOREIGN KEY (STATE_ID)
 REFERENCES TOPS_PATIENT_STATE (ID)
 ON DELETE CASCADE
);

ALTER TABLE TOPS_STATE_ACTION ADD (
 CONSTRAINT FK_PR_TOPS_STATE_ACTION_ACTION
 FOREIGN KEY (ACTION_ID)
 REFERENCES PR_ACTION (ID)
 ON DELETE CASCADE
);

ALTER TABLE TOPS.PL_PLAN_SNAPSHOT ADD (
 CONSTRAINT FK_PL_PLAN_SNAPSHOT
 FOREIGN KEY (PLAN_ID)
 REFERENCES PL_PLAN (ID)) ;

ALTER TABLE TOPS.PL_PLAN_SNAPSHOT ADD (
 CONSTRAINT FK_PL_RULE_SNAPSHOT
 FOREIGN KEY (RULE_ID)
 REFERENCES PL_RULE (ID)) ;

ALTER TABLE TOPS.PL_RULE_TRIGGER ADD (
 CONSTRAINT FK_PL_RULE_TRIGGER_TR
 FOREIGN KEY (TRIGGER_NAME)
 REFERENCES USER_TRIGGERS (TRIGGER_NAME)) ;

ALTER TABLE TOPS.PL_RULE_TRIGGER ADD (
 CONSTRAINT FK_PL_RULE_TRIGGER_RL
 FOREIGN KEY (RULE_ID)
 REFERENCES PL_RULE (ID)) ;

ALTER TABLE TOPS.PL_PLAN_PROTOCOL_RULE ADD (
 CONSTRAINT FK_PL_PLAN_PROTOCOL_RULE_PL
 FOREIGN KEY (PL_RULE_ID)
 REFERENCES PL_RULE (ID)) ;

ALTER TABLE TOPS.PL_PLAN_PROTOCOL_RULE ADD (
 CONSTRAINT FK_PL_PLAN_PROTOCOL_RULE_PR
 FOREIGN KEY (PR_RULE_ID)
 REFERENCES PR_RULE (ID)) ;

ALTER TABLE PL_STATIC_RULE ADD (
 CONSTRAINT FK_PL_STATIC_RULE_SCHEDULE
 FOREIGN KEY (SCHEDULE_ID)
 REFERENCES PL_SCHEDULE (ID)) ;

ALTER TABLE PL_STATIC_RULE ADD (
 CONSTRAINT FK_PL_STATIC_RULE_RULE
 FOREIGN KEY (ID)
 REFERENCES PL_RULE (ID)) ;

ALTER TABLE PL_SCHEDULE ADD (
 CONSTRAINT FK_PL_SCHEDULE_PLAN
 FOREIGN KEY (PLAN_ID)
 REFERENCES PL_PLAN (ID)
 ON DELETE CASCADE);

ALTER TABLE PL_DYNAMIC_RULE ADD (
 CONSTRAINT FK_PL_DYNAMIC_RULE_PL_PLAN
 FOREIGN KEY (PLAN_ID)
 REFERENCES PL_PLAN (ID)) ;

ALTER TABLE PL_DYNAMIC_RULE ADD (
 CONSTRAINT FK_PL_DYNAMIC_RULE_RULE
 FOREIGN KEY (ID)
 REFERENCES PL_RULE(ID)) ;

ALTER TABLE PL_PLAN ADD (
 CONSTRAINT FK_PL_PLAN_TOPS_PATIENTS
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS_PATIENTS (ID)
 ON DELETE CASCADE) ;

ALTER TABLE PL_PLAN ADD (
 CONSTRAINT FK_PL_PLAN_PROTOCOL
 FOREIGN KEY (PROTOCOL_ID)
 REFERENCES PR_PROTOCOL (ID)
 ON DELETE CASCADE) ;

APPENDIX

 283

B.3. The TOPS patient database
CREATE TABLE TOPS.TOPS_CLINICIANS
(
ID NUMBER(10) NOT NULL,
FIRST_NAME VARCHAR2(20) NOT NULL,
SURNAME VARCHAR2(20) NOT NULL,
ADDRESS VARCHAR2(200) NOT NULL,
TELEPHONE NUMBER(20) NOT NULL,
SPECIALTY VARCHAR2(50) NOT NULL,
PASSWORD VARCHAR2(50) NOT NULL,
CONSTRAINT PK_TOPS_CLINICIANS PRIMARY KEY (ID)
);

CREATE TABLE TOPS_CATEGORIES
(
ID NUMBER(10) NOT NULL,
NAME VARCHAR2(30) NOT NULL,
DESCRIPTION VARCHAR2(255) NOT NULL,
CREATOR VARCHAR2(30) NOT NULL,
DATE_CREATED DATE NOT NULL,
CONSTRAINT PK_CATEGORY PRIMARY KEY (ID)
);

CREATE UNIQUE INDEX I_PK_CATEGORY ON TOPS_CATEGORIES (ID ASC);

CREATE TABLE TOPS.TOPS_PATIENTS
(
ID NUMBER(10) NOT NULL,
MRN VARCHAR2(50) NOT NULL UNIQUE,
FORENAME VARCHAR2(50) NOT NULL,
FIRSTNAME VARCHAR2(50) NOT NULL,
DOB DATE NOT NULL,
SEX VARCHAR2(20) NOT NULL,
CATEGORY_ID NUMBER(10) NOT NULL,
TELEPHONE NUMBER(30) NULL,
ADDRESS VARCHAR2(500) NOT NULL,
ENTRY_DATE DATE NULL,
CONSTRAINT PK_TOPS_PATIENTS PRIMARY KEY (ID)
);

CREATE TABLE TOPS.TOPS_ADMISSION
(
ID NUMBER(38) NOT NULL, PATIENT_ID NUMBER(38) NOT NULL,
ADM_DATE DATE NOT NULL,
NOTES VARCHAR2(200),
CONTRAINT PRIMARY KEY(ID,ADM_DATE, PATIENT_ID)
);

CREATE TABLE TOPS.TOPS_DISCHARGE
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
DCG_DATE DATE NOT NULL,
NOTES VARCHAR2(200),
CONTRAINT PRIMARY KEY(ID,PATIENT_ID,DCG_DATE)
);

CREATE TABLE TOPS.TOPS_DIAGNOSTIC_HISTORY
(
ID NUMBER(38),
PATIENT_ID NUMBER(38) NOT NULL,
PROBLEM VARCHAR2(30) NOT NULL,
PREV_DIAGNOSIS VARCHAR2(50) NOT NULL,
DIAGNOSIS_DATE DATE,
CONSTRAINT PK_PATIENT_HISTORY PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_DIAGNOSIS
(
ID NUMBER(38),
PATIENT_ID NUMBER(38) NOT NULL,
CLINICAL_PROBLEM VARCHAR2(100) NOT NULL,
DIAGNOSIS VARCHAR2(50) NOT NULL,
DIAGNOSIS_DATE DATE NOT NULL,
CONSTRAINT PK_TOPS-DIAGNOSIS PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_DRUG
(
ID NUMBER(38),
NAME VARCHAR2(30) NOT NULL,
CODE VARCHAR2(10),
MIN_DOSE NUMBER(10,3),
MAX_DOSE NUMBER(10,3),
DOSE_UNITS VARCHAR2(10),
DOSE_FREQUENCY NUMBER(4) NOT NULL,
DOSE_FREQ_UNIT VARCHAR(9) NOT NULL,
CONSTRAINT PK_DRUG PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_PRESCRIPTION
(
ID NUMBER(38),
PATIENT_ID NUMBER(38) NOT NULL,
DRUG_ID NUMBER(38) NOT NULL,
DATE_PRESCIRBED DATE NOT NULL,
CONSTRAINT PK_TOPS_PRESCRIPTION PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_ADVICE
(
ID NUMBER(38) NOT NULL,
MSG VARCHAR2(300) NOT NULL,
MSG_CODE VARCHAR2(20) UNIQUE NOT NULL,
CONSTRAINT PK_TOPS_ADVICE PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_PATIENT_ADVICE
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
ADVICE_ID NUMBER(38) NOT NULL,
RULE_ID NUMBER(38) NOT NULL,
DATE_GIVEN DATE NOT NULL,
CONSTRAINT PK_TOPS_PATIENT_ADVICE PRIMARY KEY (ID)
);

CREATE TABLE TOPS.TOPS_REFERRAL
(
ID NUMBER(38),
PATIENT_ID NUMBER(38) NOT NULL,
SPECIALIST VARCHAR2(100) NOT NULL,
MSG VARCHAR2(300) NOT NULL,
DATE_REFERRED DATE NOT NULL,
RULE_NAME VARCHAR2(50) NOT NULL,
CONSTRAINT PK_TOPS_REFERRAL PRIMARY KEY(ID)
);

CREATE TABLE TOPS.TOPS_PATIENT_STATE
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
STATE_NAME VARCHAR2(100) NOT NULL,
CHANGE_DATE DATE NOT NULL,
RULE_NAME VARCHAR2(100) NOT NULL,
CONSTRAINT PK_TOPS_PATIENT_STATE PRIMARY KEY(ID)
);

CREATE TABLE TOPS.T_TEST
(
ID NUMBER(38) NOT NULL,
CODE VARCHAR2(100) UNIQUE NOT NULL,
MIN NUMBER(12,6) NOT NULL,
MAX NUMBER(12,6) NOT NULL,
UNITS VARCHAR2(10),
CONSTRAINT PK_T_TEST PRIMARY KEY (ID)
);

CREATE TABLE TOPS.T_RESULTS
(
ID NUMBER(38) NOT NULL,
TEST_ID NUMBER(38) NOT NULL,
ORDER_ID NUMBER(38) NOT NULL,
RESULT_VALUE NUMBER(12,6) NOT NULL,
RESULT_DATE DATE NOT NULL,
CONSTRAINT PK_T_RESULTS PRIMARY KEY (ID)
);

CREATE TABLE TOPS.T_RESULT_STATS
(
ID NUMBER(38) NOT NULL,
RESULT_ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
CURR_RESULT NUMBER(12,6) NOT NULL,
CURR_RESULT_DATE DATE NOT NULL,
PREV_RESULT NUMBER(12,6) ,
PREV_RESULT_DATE DATE,
RESULT_DELTA NUMBER(12,6),
RESULT_AVERAGE NUMBER(12,6),
CONSTRAINT PK_T_RESULT_STATS PRIMARY KEY (ID)
);

CREATE TABLE TOPS.T_ORDERED_TESTS
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
PROFILE_ID NUMBER(38) NOT NULL,
ORDER_DATE DATE NOT NULL,
CLIENT_ADDRESS VARCHAR2(20),
CONSTRAINT PK_T_ORDERED_TESTS PRIMARY KEY (ID)
);

CREATE TABLE TOPS.T_PROFILE
(
ID NUMBER(38) NOT NULL,
NAME VARCHAR2(200) NOT NULL,
CODE VARCHAR2(100) UNIQUE NOT NULL,
DESCRIPTION VARCHAR2(300) NULL,
CONSTRAINT PK_TEST_T_PROFILE PRIMARY KEY (ID)
);

CREATE TABLE TOPS.T_PROFILE_TEST
(
PROFILE_ID NUMBER(38) NOT NULL,
TEST_ID NUMBER(38) NOT NULL,
CONSTRAINT PK_PROFILE_TEST PRIMARY KEY (PROFILE_ID, TEST_ID)
);

CREATE TABLE TOPS.T_ACR2OF3_STATUS
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
RULE_ID NUMBER(38) NOT NULL,
STATUS VARCHAR2(100) NOT NULL,
DATE_CHECKED DATE NOT NULL,
CONSTRAINT PK_T_ACR2OF3CHECK_STATUS PRIMARY KEY(ID)
);

CREATE TABLE TOPS.T_ACR_RESULT
(
ID NUMBER(38) NOT NULL,
PATIENT_ID NUMBER(38) NOT NULL,
RESULT_ID NUMBER(38) NOT NULL,
RESULT_COUNT NUMBER(38) NOT NULL,
COUNT_DATE DATE NOT NULL,
CONSTRAINT PK_T_ACR_RESULT PRIMARY KEY (ID)
);

ALTER TABLE TOPS.TOPS_PATIENT_ADVICE ADD
(
CONSTRAINT FK_PATIENT_ADVICE_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_PATIENT_ADVICE ADD
(
CONSTRAINT FK_PATIENT_ADVICE_RULE

FOREIGN KEY (RULE_ID)
REFERENCES TOPS.PL_RULE (ID)

);

ALTER TABLE TOPS.TOPS_PATIENT_ADVICE ADD

APPENDIX

 284

(
CONSTRAINT FK_PATIENT_ADVICE_ADVICE
 FOREIGN KEY(ADVICE_ID)
 REFERENCES TOPS.TOPS_ADVICE(ID)
);

ALTER TABLE TOPS.TOPS_DIAGNOSIS ADD(
CONSTRAINT FK_TOPS_DIAGNOSIS_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCE TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS.TOPS_DISCHARGE ADD(
CONSTRAINT FK_TOPS_DISCHARGE_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCE TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_ADMISSION ADD(
CONSTRAINT FK_TOPS_ADMISSION_PATIENT

FOREIGN KEY (PATIENT_ID)
 REFERENCE TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_PATIENT_HISTORY ADD(
CONSTRAINT FK_PATIENT_HISTORY
 FOREIGN KEY (PATIENT_ID)
 REFERENCE TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_REFERRAL ADD(
CONSTRAINT FK_TOPS_REFERRAL_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_PRESCRIPTION ADD(
CONSTRAINT FK_TOPS_PRESCRIPTION_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.TOPS_PATIENTS ADD (
CONSTRAINT FK_PATIENTS_CATEGORIES
 FOREIGN KEY (CATEGORY_ID)
 REFERENCES TOPS_CATEGORIES (ID)
);

ALTER TABLE TOPS.TOPS_PATIENT_STATE ADD(
CONSTRAINT FK_TOPS_PSTATE_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCE TOPS.TOPS_PATIENTS(ID)
);

ALTER TABLE TOPS.T_ACR_RESULT ADD (
 CONSTRAINT FK_T_ACR_RESULT_RESULT
 FOREIGN KEY (RESULT_ID)
 REFERENCES TOPS.T_RESULTS (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_ACR_RESULT ADD (

 CONSTRAINT FK_T_ACR_RESULT_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_ACR2OF3_STATUS ADD (
 CONSTRAINT FK_ACR2OF3_STATUS_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS (ID)
 ON DELETE CASCADE);

ALTER TABLE T_ACR2OF3_STATUS ADD (
 CONSTRAINT FK_ACR2OF3_STATUS_RULE
 FOREIGN KEY (RULE_ID)
 REFERENCES PL_RULE (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_PROFILE_TEST ADD (
 CONSTRAINT FK_PROF_CONTAINS_TEST_PRO
 FOREIGN KEY (PROFILE_ID)
 REFERENCES TOPS.T_PROFILE (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_PROFILE_TEST ADD (
 CONSTRAINT FK_PROF_CONTAINS_TEST_TEST
 FOREIGN KEY (TEST_ID)
 REFERENCES TOPS.T_TEST (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_ORDERED_TESTS ADD (
 CONSTRAINT FK_T_ORDERED_TESTS_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS(ID));

ALTER TABLE TOPS.T_ORDERED_TESTS ADD (
 CONSTRAINT FK_T_ORDERED_TESTS_PROFILE
 FOREIGN KEY (PROFILE_ID)
 REFERENCES T_PROFILE (ID));

ALTER TABLE TOPS.T_RESULTS ADD (
 CONSTRAINT FK_T_RESULTS_TESTS
 FOREIGN KEY (TEST_ID)
 REFERENCES TOPS.T_TEST(ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_RESULTS ADD (
 CONSTRAINT FK_T_RESULTS_ORDER
 FOREIGN KEY (ORDER_ID)
 REFERENCES TOPS.T_ORDERED_TESTS (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_RESULT_STATS ADD (
 CONSTRAINT FK_RESULT_STATS_RESULT
 FOREIGN KEY (RESULT_ID)
 REFERENCES TOPS.T_RESULTS (ID)
 ON DELETE CASCADE);

ALTER TABLE TOPS.T_RESULT_STATS ADD (
 CONSTRAINT FK_RESULT_STATS_PATIENT
 FOREIGN KEY (PATIENT_ID)
 REFERENCES TOPS.TOPS_PATIENTS (ID)
 ON DELETE CASCADE);

APPENDIX

 285

B.4. The TOPS database views
CREATE OR REPLACE VIEW PR_DYNAMIC_RULE_VW
(
ID, NAME, EVENT_ID,
DESCRIPTION,DATE_CREATED,
RULE_TYPE, ECA_RULE_TYPE
)
AS
SELECT PR_RULE.ID, PR_RULE.NAME, PR_DYNAMIC_RULE.EVENT_ID,
PR_RULE.DESCRIPTION, PR_RULE.DATE_CREATED, PR_RULE.RULE_TYPE,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_RULE, PR_DYNAMIC_RULE
WHERE PR_RULE.ID = PR_DYNAMIC_RULE.ID ;

CREATE OR REPLACE VIEW PR_PROTOCOL_RULE_VW
(
ID, EVENT_ID, RULE_TYPE
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_DYNAMIC_RULE, PR_PROTOCOL_RULE
WHERE PR_DYNAMIC_RULE.ID = PR_PROTOCOL_RULE.ID;

CREATE OR REPLACE VIEW PRSCHEDULE_RULE_VW
(
ID, EVENT_ID, RULE_TYPE
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_DYNAMIC_RULE, PR_SCHEDULE_RULE
WHERE PR_DYNAMIC_RULE.ID = PR_SCHEDULE_RULE.ID ;

CREATE OR REPLACE VIEW PR_STATIC_RULE_VW
(
ID, NAME, DESCRIPTION,
RULE_TYPE, DATE_CREATED, ZERO_TIME_REF_TERM,
START_TIME, EXPIRY_TIME, INTERVAL
)
AS
SELECT PR_RULE.ID, PR_RULE.NAME, PR_RULE.DESCRIPTION,
PR_RULE.RULE_TYPE,PR_RULE.DATE_CREATED,
PR_STATIC_RULE.ZERO_TIME_REF_TERM, PR_STATIC_RULE.START_TIME,
PR_STATIC_RULE.END_TIME, PR_STATIC_RULE.INTERVAL
FROM PR_RULE, PR_STATIC_RULE
WHERE PR_RULE.ID = PR_STATIC_RULE.ID ;

CREATE OR REPLACE VIEW TOPS.PR_ECA_VW
(
ID, EVENT_ID,
CONDITION_ID, ACTION_ID
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_RULE_CONDITION.CONDITION_ID, PR_RULE_ACTION.ACTION_ID
FROM TOPS.PR_DYNAMIC_RULE, TOPS.PR_RULE_ACTION,
TOPS.PR_RULE_CONDITION
WHERE TOPS.PR_DYNAMIC_RULE.ID = TOPS.PR_RULE_CONDITION.RULE_ID
AND TOPS.PR_DYNAMIC_RULE.ID = TOPS.PR_RULE_ACTION.RULE_ID;

CREATE OR REPLACE VIEW TOPS.PL_PATIENT_DRULES_VW
(
PATIENT_ID,
DRULE_ID
)
AS
SELECT PLAN.PATIENT_ID PATIENT_ID, RULE.ID DRULE_ID
FROM TOPS.PL_DYNAMIC_RULE RULE, TOPS.PL_PLAN PLAN
WHERE PLAN.ID = RULE.PLAN_ID;

CREATE OR REPLACE VIEW TOPS.PL_PATIENT_SRULES_VW
(
PATIENT_ID,
SRULE_ID,
SCHEDULE_ID
)
AS
SELECT PLAN.PATIENT_ID PATIENT_ID, RULE.ID SRULE_ID, SCHEDULE.ID
SCHEDULE_ID
FROM TOPS.PL_STATIC_RULE RULE, TOPS.PL_PLAN PLAN,
TOPS.PL_SCHEDULE SCHEDULE
WHERE (PLAN.ID = SCHEDULE.PLAN_ID) AND (SCHEDULE.ID =
RULE.SCHEDULE_ID);

CREATE OR REPLACE VIEW TOPS.PL_PLAN_SRULE_VW
(
PLAN_ID,
SRULE_ID
)
AS
SELECT SCHEDULE.PLAN_ID PLAN_ID, SRULE.ID SRULE_ID
FROM TOPS.PL_STATIC_RULE SRULE, TOPS.PL_SCHEDULE SCHEDULE
WHERE SCHEDULE.ID = SRULE.SCHEDULE_ID;

CREATE OR REPLACE VIEW TOPS.PL_PLAN_RULES_VW
(
PLAN_ID,
RULE_ID,
RULE_NAME,
RULE_TYPE
)
AS
SELECT PLAN.ID PLAN_ID, RULE.ID RULE_ID, RULE.NAME RULE_NAME,
RULE.RULE_TYPE
FROM TOPS.PL_RULE RULE, TOPS.PL_PLAN PLAN, PL_PLAN_SRULE_VW
WHERE (PLAN.ID = PL_PLAN_SRULE_VW.PLAN_ID AND
PL_PLAN_SRULE_VW.SRULE_ID = RULE.ID)
UNION
SELECT PLAN.ID PLAN_ID, RULE.ID RULE_ID, RULE.NAME RULE_NAME,
RULE.RULE_TYPE
FROM TOPS.PL_RULE RULE, TOPS.PL_PLAN PLAN, PL_DYNAMIC_RULE
WHERE (PLAN.ID = PL_DYNAMIC_RULE.PLAN_ID AND PL_DYNAMIC_RULE.ID
= RULE.ID);

CREATE OR REPLACE VIEW PL_TABLE_RULE_VW
(
TABLE_NAME,
RULE, RULE_ID
)
AS
SELECT TABLE_NAME, TRIGGER_NAME RULE, PL_RULE.ID RULE_ID
FROM ALL_TRIGGERS, PL_RULE
WHERE (ALL_TRIGGERS.OWNER = 'TOPS') AND
(SUBSTR(ALL_TRIGGERS.TRIGGER_NAME,1,2) = 'P$') AND
(SUBSTR(ALL_TRIGGERS.TRIGGER_NAME,-2,2) != 'ID') AND
(UPPER(ALL_TRIGGERS.TRIGGER_NAME) = UPPER(PL_RULE.NAME));

CREATE OR REPLACE VIEW TOPS.PL_CATEGORY_PLAN_VW
(
CATEGORY_ID,
PLAN_ID
)
AS
SELECT CATEGORY_ID, PL_PLAN.ID PLAN_ID
FROM TOPS.PR_PROTOCOL, TOPS.PL_PLAN
WHERE TOPS.PR_PROTOCOL.ID = TOPS.PL_PLAN.PROTOCOL_ID;
CREATE OR REPLACE VIEW TOPS.PL_ECA_TRIGGER_VW
(
PLAN_ID,
RULE_ID,
EVENT,
CONDITION,
ACTION
)
AS
SELECT PLAN_ID, RULE_ID, ALL_TRIGGERS.TRIGGERING_EVENT EVENT,
ALL_TRIGGERS.WHEN_CLAUSE CONDITION, ALL_TRIGGERS.TRIGGER_BODY
ACTION
FROM TOPS.PL_PLAN_RULES_VW, ALL_TRIGGERS
WHERE (UPPER(TOPS.PL_PLAN_RULES_VW.RULE_NAME) =
ALL_TRIGGERS.TRIGGER_NAME) AND (ALL_TRIGGERS.OWNER = 'TOPS');

CREATE OR REPLACE VIEW PR_DYNAMIC_RULE_VW
(
ID,
NAME,
EVENT_ID,
SPECIFICATION,
DESCRIPTION,
VERSION,
DATE_CREATED,
RULE_TYPE,
ECA_RULE_TYPE
)
AS
 SELECT PR_RULE.ID, PR_RULE.NAME, PR_DYNAMIC_RULE.EVENT_ID,
PR_RULE.SPECIFICATION, PR_RULE.DESCRIPTION,
PR_RULE.DATE_CREATED, PR_RULE.RULE_TYPE,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_RULE, PR_DYNAMIC_RULE
WHERE PR_RULE.ID = PR_DYNAMIC_RULE.ID ;

CREATE VIEW PR_PROTOCOL_RULE_VW
(
ID,
EVENT_ID,
RULE_TYPE
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_DYNAMIC_RULE, PR_PROTOCOL_RULE
WHERE PR_DYNAMIC_RULE.ID = PR_PROTOCOL_RULE.ID;

CREATE OR REPLACE VIEW PRSCHEDULE_RULE_VW
(
ID,
EVENT_ID,
RULE_TYPE
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_DYNAMIC_RULE.RULE_TYPE
FROM PR_DYNAMIC_RULE, PR_SCHEDULE_RULE
WHERE PR_DYNAMIC_RULE.ID = PR_SCHEDULE_RULE.ID ;

CREATE OR REPLACE VIEW PR_STATIC_RULE_VW
(
ID, NAME, SPECIFICATION,
DESCRIPTION, RULE_TYPE, VERSION,
DATE_CREATED, ZERO_TIME_REF_TERM, START_TIME,
EXPIRY_TIME, INTERVAL
)
AS
SELECT PR_RULE.ID, PR_RULE.NAME, PR_RULE.SPECIFICATION,
PR_RULE.DESCRIPTION, PR_RULE.RULE_TYPE,
PR_RULE.DATE_CREATED, PR_STATIC_RULE.ZERO_TIME_REF_TERM,
PR_STATIC_RULE.START_TIME, PR_STATIC_RULE.EXPIRY_TIME,
PR_STATIC_RULE.INTERVAL
FROM PR_RULE, PR_STATIC_RULE
WHERE PR_RULE.ID = PR_STATIC_RULE.ID ;

CREATE OR REPLACE VIEW TOPS.PR_ECA_VW
(
ID, EVENT_ID,
CONDITION_ID, ACTION_ID
)
AS
SELECT PR_DYNAMIC_RULE.ID, PR_DYNAMIC_RULE.EVENT_ID,
PR_RULE_CONDITION.CONDITION_ID, PR_RULE_ACTION.ACTION_ID
FROM TOPS.PR_DYNAMIC_RULE, TOPS.PR_RULE_ACTION,
TOPS.PR_RULE_CONDITION
WHERE (TOPS.PR_DYNAMIC_RULE.ID = TOPS.PR_RULE_CONDITION.RULE_ID)
AND (TOPS.PR_DYNAMIC_RULE.ID = TOPS.PR_RULE_ACTION.RULE_ID;)

CREATE OR REPLACE VIEW TOPS.PATIENT_ORDER_TEST_RESULT_VW
(
PATIENT_ID, ORDER_ID,
PROFILE_ID, TEST_ID,
RESULT_ID, RESULT,

APPENDIX

 286

RESULT_DATE
)
AS
SELECT PATIENT_ID, ORDER_ID, TOPS.T_ORDERED_TESTS.PROFILE_ID,
TOPS.T_PROFILE_TEST.TEST_ID,
TOPS.T_RESULTS.ID RESULT_ID,RESULT_VALUE RESULT, RESULT_DATE
FROM TOPS.T_ORDERED_TESTS, TOPS.T_RESULTS, TOPS.T_PROFILE_TEST
WHERE (TOPS.T_ORDERED_TESTS.ID = TOPS.T_RESULTS.ORDER_ID) AND
(TOPS.T_ORDERED_TESTS.PROFILE_ID =
TOPS.T_PROFILE_TEST.PROFILE_ID) AND (TOPS.T_RESULTS.TEST_ID =
TOPS.T_PROFILE_TEST.TEST_ID);

CREATE OR REPLACE VIEW PL_STATIC_RULE_NAMES
(
STATIC_RULE
)
AS
SELECT NAME STATIC_RULE FROM PL_RULE, PL_STATIC_RULE
WHERE PL_RULE.ID=PL_STATIC_RULE.ID;

CREATE OR REPLACE VIEW PL_RULE_ACTION_VW
(
PL_RULE_ID, PR_ACTION_ID,
PR_ACTION_NAME, PARAMETERS
)
AS
SELECT DISTINCT PL_RULE.ID PL_RULE_ID, PR_RULE_ACTION.ACTION_ID
PR_ACTION_ID, PR_ACTION.NAME PR_ACTION_NAME,
PR_RULE_ACTION.ACTION_PARAMETERS PARAMETERS
FROM PR_RULE_ACTION,PR_ACTION, PL_PLAN_PROTOCOL_RULE, PL_RULE
WHERE (PL_PLAN_PROTOCOL_RULE.PL_RULE_ID = PL_RULE.ID) AND
(PR_ACTION.ID=PR_RULE_ACTION.ACTION_ID) AND
(PL_PLAN_PROTOCOL_RULE.PR_RULE_ID=PR_RULE_ACTION.RULE_ID);

CREATE OR REPLACE VIEW PL_DR_EVENT_VW
(
PL_RULE_ID, PR_EVENT_ID,
PR_EVENT_NAME
)
AS
SELECT DISTINCT PL_DYNAMIC_RULE.ID PL_RULE_ID,
PR_DYNAMIC_RULE.EVENT_ID PR_EVENT_ID, PR_EVENT.NAME
PR_EVENT_NAME
FROM PR_DYNAMIC_RULE,PR_EVENT, PL_PLAN_PROTOCOL_RULE,
PL_DYNAMIC_RULE
WHERE (PL_PLAN_PROTOCOL_RULE.PL_RULE_ID = PL_DYNAMIC_RULE.ID)
AND (PR_EVENT.ID=PR_DYNAMIC_RULE.EVENT_ID);

CREATE OR REPLACE VIEW PL_ECA_VW
(
PLAN_ID, RULE_ID,
EVENT, CONDITION,
ACTION, ACTION_PARAMS
)
AS
SELECT DISTINCT PLAN_ID, PL_DR_EVENT_VW.PL_RULE_ID RULE_ID,
PR_EVENT_NAME EVENT, CONDITION, PR_ACTION_NAME ACTION,
PARAMETERS ACTION_PARAMS
FROM PL_DR_EVENT_VW, PL_ECA_TRIGGER_VW, PL_RULE_ACTION_VW
WHERE (PL_DR_EVENT_VW.PL_RULE_ID=PL_RULE_ACTION_VW.PL_RULE_ID)
AND (PL_DR_EVENT_VW.PL_RULE_ID=PL_ECA_TRIGGER_VW.RULE_ID);

CREATE OR REPLACE VIEW PL_HISTORY_DR_VW
(
LOG_NO, PLAN_ID,
RULE_ID, RULE_NAME,
EVENT, ACTION,
EXEC_DATE
)
AS
SELECT TOPS.PL_ACTIVITY_LOG.ID LOG_NO,
TOPS.PL_ACTIVITY_LOG.PLAN_ID,
TOPS.PL_ACTIVITY_LOG.RULE_ID_EXECUTED RULE_ID,
TOPS.PL_RULE.NAME RULE_NAME, EVENT, ACTION, TIME_EXECUTED
FROM TOPS.PL_ACTIVITY_LOG, TOPS.PL_ECA_VW, TOPS.PL_RULE
WHERE (RULE_ID_EXECUTED=TOPS.PL_ECA_VW.RULE_ID) AND
(RULE_ID_EXECUTED=TOPS.PL_RULE.ID);

CREATE OR REPLACE VIEW PL_HISTORY_SR_VW
(
LOG_NO, PLAN_ID,
RULE_ID, RULE_NAME,
ACTION, EXEC_DATE
)
AS
SELECT LOG_NO, PLAN_ID, RULE_ID, RULE_NAME, PR_ACTION_NAME
ACTION, TIME_EXECUTED EXEC_DATE
FROM
(
SELECT TOPS.PL_ACTIVITY_LOG.ID LOG_NO,
TOPS.PL_ACTIVITY_LOG.PLAN_ID,
TOPS.PL_ACTIVITY_LOG.RULE_ID_EXECUTED RULE_ID,
TOPS.PL_RULE.NAME RULE_NAME, TOPS.PL_ACTIVITY_LOG.TIME_EXECUTED
FROM TOPS.PL_ACTIVITY_LOG, TOPS.PL_PLAN_SRULE_VW, TOPS.PL_RULE
WHERE (RULE_ID_EXECUTED=TOPS.PL_PLAN_SRULE_VW.SRULE_ID) AND
(TOPS.PL_RULE.ID=RULE_ID_EXECUTED
),
TOPS.PL_RULE_ACTION_VW
WHERE PL_RULE_ACTION_VW.PL_RULE_ID = RULE_ID;

CREATE OR REPLACE VIEW PL_HISTORY_VW
(
LOG_NO, PLAN_ID,

RULE_ID, RULE_NAME,
ACTION, EXEC_DATE
)
AS
SELECT *
FROM PL_HISTORY_SR_VW
UNION
(
SELECT LOG_NO, PLAN_ID, RULE_ID, RULE_NAME, ACTION, EXEC_DATE
FROM PL_HISTORY_DR_VW
);

CREATE OR REPLACE VIEW PL_HISTORY_PATIENT_VW
(
LOG_NO, PATIENT_ID,
PLAN_ID, RULE_NAME,
ACTION, EXEC_DATE
)
AS
SELECT TOPS.PL_HISTORY_VW.LOG_NO, TOPS.PL_PLAN.PATIENT_ID,
PLAN_ID, RULE_NAME, ACTION, EXEC_DATE
FROM TOPS.PL_HISTORY_VW, TOPS.PL_PLAN
WHERE TOPS.PL_PLAN.ID=TOPS.PL_HISTORY_VW.PLAN_ID;

CREATE OR REPLACE VIEW PL_HISTORY_MRN_VW
(
LOG_NO, PATIENT_ID,
MRN,PLAN_ID,RULE_NAME,
ACTION, EXEC_DATE
)
AS
SELECT LOG_NO, PATIENT_ID, MRN, PLAN_ID, RULE_NAME, ACTION,
EXEC_DATE
FROM TOPS.PL_HISTORY_PATIENT_VW, TOPS.TOPS_PATIENTS
WHERE TOPS.PL_HISTORY_PATIENT_VW.PATIENT_ID =
TOPS.TOPS_PATIENTS.ID;

CREATE OR REPLACE VIEW PL_HISTORY_PLAN_VW
(
LOG_NO, A_DATE,
PATIENT_ID, MRN,
PLAN_ID, DR,
SR, EXPLANATION
)
AS
SELECT DISTINCT TOPS.PL_ACTIVITY_LOG.ID LOG_NO, TIME_EXECUTED
A_DATE, TOPS.PL_HISTORY_MRN_VW.PATIENT_ID,
TOPS.PL_HISTORY_MRN_VW.MRN,
TOPS.PL_ACTIVITY_LOG.PLAN_ID, DYN_RULES DR, STC_RULES SR,
TOPS.PL_PLAN_RULES_VW.RULE_TYPE || ' RULE ' || RULE_ID_EXECUTED
|| ' EXECUTED.' EXPLANATION
FROM TOPS.PL_ACTIVITY_LOG, TOPS.PL_PLAN_RULES_VW,
TOPS.PL_HISTORY_MRN_VW
WHERE (RULE_ID_EXECUTED=TOPS.PL_PLAN_RULES_VW.RULE_ID) AND
(TOPS.PL_HISTORY_MRN_VW.PLAN_ID=TOPS.PL_ACTIVITY_LOG.PLAN_ID);

CREATE OR REPLACE VIEW PL_PLAN_RULE_ORDER_VW AS
SELECT PLAN_ID, PL_RULE_ORDER_LOG.RULE_ID, ORDER_ID, EXEC_DATE
FROM PL_PLAN_RULES_VW, PL_RULE_ORDER_LOG
WHERE PL_PLAN_RULES_VW.RULE_ID = PL_RULE_ORDER_LOG.RULE_ID;

CREATE OR REPLACE VIEW PL_PLAN_SNAPSHOT_VW
(
PLAN_ID, PLAN_NAME, RULE_ID,
RULE_NAME, RULE_TYPE, RULE_STATE,
SNAP_TIME
)
AS
SELECT PLAN_ID, PL_PLAN.NAME PLAN_NAME, PL_RULE.ID RULE_ID,
PL_PLAN_RULES_VW.RULE_NAME, PL_PLAN_RULES_VW.RULE_TYPE,
PL_RULE.CURRENT_STATE RULE_STATE, SYSDATE SNAP_TIME
FROM PL_PLAN_RULES_VW, PL_RULE, PL_PLAN
WHERE (PL_PLAN_RULES_VW.RULE_ID=PL_RULE.ID AND)
(PL_PLAN_RULES_VW.PLAN_ID=PL_PLAN.ID);

CREATE OR REPLACE VIEW PL_PATIENT_PLAN_VW
(
PATIENT_ID, PLAN_ID, PLAN_NAME,
RULE_ID, RULE_NAME, RULE_TYPE
)
AS
SELECT UNIQUE PL_PLAN.PATIENT_ID, PL_PLAN.ID
PLAN_ID,PL_PLAN.NAME PLAN_NAME, RULE_ID,RULE_NAME,RULE_TYPE
FROM PL_PLAN, PL_PLAN_RULES_VW, PL_PATIENT_SRULES_VW,
PL_PATIENT_DRULES_VW
WHERE (PL_PLAN_RULES_VW.RULE_ID=PL_PATIENT_SRULES_VW.SRULE_ID
AND PL_PATIENT_SRULES_VW.PATIENT_ID=PL_PLAN.PATIENT_ID
AND PL_PLAN.ID=PL_PLAN_RULES_VW.PLAN_ID) OR
(PL_PLAN_RULES_VW.RULE_ID=PL_PATIENT_DRULES_VW.DRULE_ID
AND PL_PATIENT_DRULES_VW.PATIENT_ID=PL_PLAN.PATIENT_ID AND
PL_PLAN.ID=PL_PLAN_RULES_VW.PLAN_ID) ;

CREATE OR REPLACE VIEW T_ACR_RESULT_VW
(
PATIENT_ID, RESULT_ID, ORDER_ID,
RESULT_VALUE, RESULT_DATE
)
AS
SELECT PATIENT_ID, RESULT_ID, ORDER_ID, RESULT RESULT_VALUE,
RESULT_DATE
FROM PATIENT_ORDER_TEST_RESULT_VW, T_TEST
WHERE (T_TEST.CODE='ACR') AND (TEST_ID=ID);

APPENDIX

 287

C. The MAP Specification in PLAN
@PROTOCOL@ MAP2;
DESCRIPTION: This is a protocol for the diagnosis and management
of microalbuminuria in diabetes patients;
CREATOR: DR JOHN NOLAN;
CATEGORY: DIABETIC_NEPHROPATHY;
#SCHEDULE_SET#
^SCHEDULE^ AUS,
DESCRIPTION: This is a microalbuminuria protocol schedule called
AUS for Annual dipstick Urine Screening;
RULE AUS2,
DESCRIPTION: if dipstick urine test shows presence of blood and
leucocytes check presence or absence of other infections e.g.
urinary tract infections,
ON: result_arrival('DSU'),
IF: DSU%result%database%t_results = positive%string,
DO: patient_state ('other_infections_screening');
RULE AUS3,
DESCRIPTION: if dipstick urine test is negative then screen for
microalbuminuria,
ON: result_arrival('DSU'),
IF: DSU%RESULT%DATABASE%T_RESULT = NEGATIVE%STRING,
DO: PATIENT_STATE('microalbuminuria_screening');
^END SCHEDULE^
^SCHEDULE^ OIS,
DESCRIPTION: This is a microalbuminuria protocol schedule called
OIS for SCREENING OTHER INFECTIONS in the diagnosis of
microalbuminuria and proteinuria;
RULE OIS2,
DESCRIPTION: if UTI is not present then perform 24 hour
creatinine and 24 hour protein loss tests,
ON: result_arrival('UTI'),
IF: UTI%result%database%t_result = negative%string,
DO: order_test('24CRCL_PL');
RULE OIS3,
DESCRIPTION: if UTI is present then place back on annual
screening,
ON: result_arrival('UTI'),
IF: UTI%result%database%t_result = positive%string,
DO: patient_state('annual_urine_screening');
RULE OIS4,
DESCRIPTION: if 24 hour creatine clearance and 24 hour protein
loss tests are positive then proteinuria is confirmed and refer
patient to nephrologist,
ON: result_arrival('24CRCL_PL'),
IF: 24CRCL_PL%RESULT%DATABASE%T_TEST = POSITIVE%STRING,
DO: patient_state ('nephrology_referral');
RULE 0IS5,
DESCRIPTION: if 24 hour creatine clearance and 24 hour protein
loss is negative then return patient to annual screening,
ON: result_arrival('24CRCL_PL'),
IF: 24CRCL_PL%RESULT%DATABASE%T_TEST = NEGATIVE%STRING,
DO: patient_state ('annual_urine_screening');
^END SCHEDULE^
^SCHEDULE^ MAS,
DESCRIPTION: This is a microalbuminuria protocol schedule called
MAS for the screening of microalbuminuria;
RULE MAS2,
DESCRIPTION: if the first ACR result is > 20 mg/l order two more
tests within the next six months,
ON: result_arrival('ACR'),
IF: ACR%RESULT%DATABASE%T_RESULTS > 20%DOUBLE,
DO: ADD_RULE
{
STATIC_RULE MAS2a
DESCRIPTION rule orders ACR test during the next 6 month
period
*FROM time_rule_added
*STARTING now
*ENDING 6 months
*ON_EVERY 3 months
*DO order_test ('ACR')
};
RULE MAS3,
DESCRIPTION: if ACR < 20 mg/l then place patient on annual
screening,
ON: result_arrival('ACR'),
IF: ACR%RESULT%DATABASE%T_RESULTS > 20%DOUBLE,
DO: PATIENT_STATE('annual_urine_screening');
RULE MAS4,
DESCRIPTION: if 2 of 3 ACR in 20-200 mg/l within 6 months then
microalbuminuria is confirmed,
ON: result_arrival('ACR'),
DO: CHECK_2OF3_ACR ();
RULE MAS5,
DESCRIPTION: if ACR > 200 mg/l then refer patient to
nephrologist for possible proteinuria,
ON: RESULT_ARRIVAL('ACR'),
IF: ACR%RESULT%DATABASE%T_TEST > 200%DOUBLE,
DO: PATIENT_STATE('nephrology_referral');
^END SCHEDULE^
^SCHEDULE^ CMA,
DESCRIPTION: This is a microalbuminuria protocol schedule named
CMA for confirmed microalbuminuria – handles treatment and
control of microalbuminuria;
RULE CMA5,
DESCRIPTION: if becomes normal (ACR < 20 mg/l) at any time then
the patient is placed on annual screening,

ON: result_arrival('ACR'),
IF: ACR%RESULT%DATABASE%T_RESULT < 20%DOUBLE,
DO: PATIENT_STATE('annual_urine_screening');
RULE CMA6,
DESCRIPTION: if becomes abnormal (ACR > 200 mg/l) at any time
then the patient is placed on nephrology referral,
ON: result_arrival('ACR'),
IF: ACR%RESULT%DATABASE%T_RESULT > 200%DOUBLE,
DO: PATIENT_STATE('nephrology_referral');
^END SCHEDULE^
^SCHEDULE^ NPH,
DESCRIPTION: This is a microalbuminuria protocol schedule named
NPH for nephrology referral – handles preparation and
transmission of the necessary documentation for the referral;
RULE NPH2,
DESCRIPTION: when a referral note is created it must immediately
be sent to the specialist either by post or e-mail,
ON: new_referral_note(),
DO: send_referral_note();
^END SCHEDULE^
#END SCHEDULE_SET#
~RULE_SET~
STATIC_RULE AUS1,
DESCRIPTION: dip-stick urine test at the end of every year for
screening renal complications in diabetes patients,
FROM: annual_screening_start_date,
STARTING: 0 minutes,
ENDING: 30 minutes,
ON_EVERY: 2 minutes,
DO: order_test('DSU');
RULE OIS1,
DESCRIPTION: on entry to the OIS schedule the patient is tested
for other urinary tract inections (UTI),
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
other_infections_screening%string,
DO: order_test('UTI');
RULE MAS1a,
DESCRIPTION: at the start of this schedule MAS order the two ACR
and SCR tests,
ON: state_change(),
 IF: state_name%patient_state%database%tops_patient_state =
microalbuminuria_screening%string,
DO: order_test('ACR');
RULE MAS1b,
DESCRIPTION: at the start of this schedule MAS order the two ACR
and SCR tests,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
microalbuminuria_screening%string,
DO: order_test('SCR');
RULE CMA1,
DESCRIPTION: at the start of this schedule suggest optimisation
of glycaemic control,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: suggest ('optimisation_of_glycaemic_control');
RULE CMA2,
DESCRIPTION: at the start of this schedule suggest BP
measurement,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: ORDER_TEST ('BP');
RULE CMA3,
DESCRIPTION: If patient suffers from diabetes type 1 then
prescribe ACE inhibitor,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: prescribe_medication('ACE_inhibitor');
RULE CMA4a,
DESCRIPTION: ACR and SCR tests are performed every month for all
microalbuminuria patients,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: order_test ('ACR');
RULE CMA4b,
DESCRIPTION: ACR and SCR tests are performed every month for all
microalbuminuria patients,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: order_test ('SCR');
RULE NPH1,
DESCRIPTION: when a patient is referred to a specialist a
patient referral note is created,
ON: state_change(),
IF: state_name%patient_state%database%tops_patient_state =
confirmed_microalbuminuria%string,
DO: create_referral_note ('nephrologist');
~END RULE_SET~
@END PROTOCOL@

APPENDIX

 288

D. TOPS Session for Parsing the MAP
 [2004-02-28 02:08:38.902] : Session Starting at
2004-02-28 2:08:38.552
[2004-02-28 02:08:40.004] : Getting confirmation
to create the TOPS database objects.
[2004-02-28 02:11:13.725] : TOPS rule execution
listener activated ...
[2004-02-28 02:11:13.885] : Rule listener waiting
...
[2004-02-28 02:12:22.584] : Analysing command:
PARSE ...
[2004-02-28 02:12:22.604] : Executing command:
PARSE(MAP2.TXT)
[2004-02-28 02:12:22.985] : Parsing protocol
specification: D:\TOPS\specs\MAP2.TXT
[2004-02-28 02:12:23.636] : PROTOCOL
SPECIFICATION
 [2004-02-28 02:12:23.906] : Parsing: DESCRIPTION
[2004-02-28 02:12:23.976] : Parsing: This is a
protocol for the diagnosis and management of
microalbuminuria in diabetes patients
[2004-02-28 02:12:24.046] : Parsing: CREATOR
[2004-02-28 02:12:24.116] : Parsing: DR JOHN
NOLAN
[2004-02-28 02:12:24.176] : Parsing: DR
[2004-02-28 02:12:24.256] : Parsing: JOHN
[2004-02-28 02:12:24.527] : Parsing: CATEGORY
[2004-02-28 02:12:24.597] : Parsing:
DIABETIC_NEPHROPATHY
[2004-02-28 02:12:24.967] : Category
DIABETIC_NEPHROPATHY does not exists.
[2004-02-28 02:12:25.048] : Creating category
DIABETIC_NEPHROPATHY.
[2004-02-28 02:12:25.298] : <add new category>
[2004-02-28 02:14:21.185] : Parsing: SCHEDULE_SET
[2004-02-28 02:14:21.365] : Parsing: ^SCHEDULE^
[2004-02-28 02:14:21.465] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:21.685] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:21.896] : Parsing: AUS
[2004-02-28 02:14:21.976] : Parsing: DESCRIPTION:
This is a microalbuminuria protocol schedule
called AUS for Annual dipstick Urine Screening
[2004-02-28 02:14:22.056] : Parsing: DESCRIPTION
[2004-02-28 02:14:22.126] : Parsing: This is a
microalbuminuria protocol schedule called AUS for
Annual dipstick Urine Screening
[2004-02-28 02:14:22.517] : Parsing: RULE AUS2
[2004-02-28 02:14:22.747] : Parsing: RULE
[2004-02-28 02:14:22.827] : Parsing: AUS2
[2004-02-28 02:14:23.157] : Parsing: DESCRIPTION
[2004-02-28 02:14:23.238] : Parsing: if dipstick
urine test shows presence of blood and leucocytes
check presence or absence of other infections
e.g. urinary tract infections
[2004-02-28 02:14:23.518] : Parsing: ON
[2004-02-28 02:14:23.598] : Parsing:
result_arrival('DSU')
[2004-02-28 02:14:23.688] : Parsing:
result_arrival
[2004-02-28 02:14:23.768] : Parsing: 'DSU')
[2004-02-28 02:14:23.848] : Parsing: 'DSU'
[2004-02-28 02:14:23.929] : Parsing: IF
[2004-02-28 02:14:24.019] : Parsing: IF
[2004-02-28 02:14:24.099] : Parsing:
DSU%result%database%t_results = positive%string
[2004-02-28 02:14:24.179] : Parsing:
DSU%result%database%t_results

[2004-02-28 02:14:24.259] : Parsing: =
[2004-02-28 02:14:24.339] : Parsing:
positive%string
[2004-02-28 02:14:24.419] : Parsing: DSU
[2004-02-28 02:14:24.499] : Parsing: result
[2004-02-28 02:14:24.579] : Parsing: database
[2004-02-28 02:14:24.66] : Parsing: t_results
[2004-02-28 02:14:24.74] : Parsing: positive
[2004-02-28 02:14:24.82] : Parsing: string
[2004-02-28 02:14:24.95] : Parsing: DO
[2004-02-28 02:14:25.1] : Parsing: patient_state
('other_infections_screening')
[2004-02-28 02:14:25.19] : Parsing: patient_state
[2004-02-28 02:14:25.26] : Parsing:
'other_infections_screening')
[2004-02-28 02:14:25.341] : Parsing:
'other_infections_screening'
[2004-02-28 02:14:25.431] : Parsing: RULE
[2004-02-28 02:14:25.591] : Parsing: AUS3
[2004-02-28 02:14:25.681] : Parsing: DESCRIPTION
[2004-02-28 02:14:25.771] : Parsing: if dipstick
urine test is negative then screen for
microalbuminuria
[2004-02-28 02:14:25.851] : Parsing: ON
[2004-02-28 02:14:25.941] : Parsing:
result_arrival('DSU')
[2004-02-28 02:14:26.012] : Parsing:
result_arrival
[2004-02-28 02:14:26.092] : Parsing: 'DSU')
[2004-02-28 02:14:26.172] : Parsing: 'DSU'
[2004-02-28 02:14:26.252] : Parsing: IF
[2004-02-28 02:14:26.332] : Parsing: IF
[2004-02-28 02:14:26.412] : Parsing:
DSU%RESULT%DATABASE%T_RESULT = NEGATIVE%STRING
[2004-02-28 02:14:26.492] : Parsing:
DSU%RESULT%DATABASE%T_RESULT
[2004-02-28 02:14:26.572] : Parsing: =
[2004-02-28 02:14:26.652] : Parsing:
NEGATIVE%STRING
[2004-02-28 02:14:26.733] : Parsing: DSU
[2004-02-28 02:14:26.893] : Parsing: RESULT
[2004-02-28 02:14:26.973] : Parsing: DATABASE
[2004-02-28 02:14:27.053] : Parsing: T_RESULT
[2004-02-28 02:14:27.133] : Parsing: NEGATIVE
[2004-02-28 02:14:27.203] : Parsing: STRING
[2004-02-28 02:14:27.283] : Parsing: DO
[2004-02-28 02:14:27.363] : Parsing:
PATIENT_STATE('microalbuminuria_screening')
[2004-02-28 02:14:27.434] : Parsing:
PATIENT_STATE
[2004-02-28 02:14:27.514] : Parsing:
'microalbuminuria_screening')
[2004-02-28 02:14:27.604] : Parsing:
'microalbuminuria_screening'
[2004-02-28 02:14:27.734] : Schedule : AUS
[2004-02-28 02:14:27.834] : No. of Schedule
Static Rules: 0
[2004-02-28 02:14:27.904] : No. of Schedule
Dynamic Rules: 2
[2004-02-28 02:14:27.984] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:28.195] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:28.395] : Parsing: OIS
[2004-02-28 02:14:28.465] : Parsing: DESCRIPTION:
This is a microalbuminuria protocol schedule
called OIS for SCREENING OTHER INFECTIONS in the
diagnosis of microalbuminuria and proteinuria

[2004-02-28 02:14:28.545] : Parsing: DESCRIPTION
[2004-02-28 02:14:28.645] : Parsing: This is a
microalbuminuria protocol schedule called OIS for
SCREENING OTHER INFECTIONS in the diagnosis of
microalbuminuria and proteinuria
[2004-02-28 02:14:28.806] : Parsing: RULE OIS2
[2004-02-28 02:14:28.886] : Parsing: RULE
[2004-02-28 02:14:28.996] : Parsing: OIS2
[2004-02-28 02:14:29.066] : Parsing: DESCRIPTION
[2004-02-28 02:14:29.156] : Parsing: if UTI is
not present then perform 24 hour creatinine and
24 hour protein loss tests
[2004-02-28 02:14:29.236] : Parsing: ON
[2004-02-28 02:14:29.336] : Parsing:
result_arrival('UTI')
[2004-02-28 02:14:29.406] : Parsing:
result_arrival
[2004-02-28 02:14:29.497] : Parsing: 'UTI')
[2004-02-28 02:14:29.577] : Parsing: 'UTI'
[2004-02-28 02:14:29.657] : Parsing: IF
[2004-02-28 02:14:29.747] : Parsing: IF
[2004-02-28 02:14:29.827] : Parsing:
UTI%result%database%t_result = negative%string
[2004-02-28 02:14:29.907] : Parsing:
UTI%result%database%t_result
[2004-02-28 02:14:29.997] : Parsing: =
[2004-02-28 02:14:30.087] : Parsing:
negative%string
[2004-02-28 02:14:30.178] : Parsing: UTI
[2004-02-28 02:14:30.268] : Parsing: result
[2004-02-28 02:14:30.358] : Parsing: database
[2004-02-28 02:14:30.438] : Parsing: t_result
[2004-02-28 02:14:30.558] : Parsing: negative
[2004-02-28 02:14:30.678] : Parsing: string
[2004-02-28 02:14:30.778] : Parsing: DO
[2004-02-28 02:14:30.859] : Parsing:
order_test('24CRCL_PL')
[2004-02-28 02:14:30.939] : Parsing: order_test
[2004-02-28 02:14:31.019] : Parsing: '24CRCL_PL'
)
[2004-02-28 02:14:31.099] : Parsing: '24CRCL_PL'
[2004-02-28 02:14:31.179] : Parsing: RULE
[2004-02-28 02:14:31.329] : Parsing: OIS3
[2004-02-28 02:14:31.409] : Parsing: DESCRIPTION
[2004-02-28 02:14:31.479] : Parsing: if UTI is
present then place back on annual screening
[2004-02-28 02:14:31.56] : Parsing: ON
[2004-02-28 02:14:31.64] : Parsing:
result_arrival('UTI')
[2004-02-28 02:14:31.72] : Parsing:
result_arrival
[2004-02-28 02:14:31.8] : Parsing: 'UTI')
[2004-02-28 02:14:31.87] : Parsing: 'UTI'
[2004-02-28 02:14:31.95] : Parsing: IF
[2004-02-28 02:14:32.02] : Parsing: IF
[2004-02-28 02:14:32.1] : Parsing:
UTI%result%database%t_result = positive%string
[2004-02-28 02:14:32.18] : Parsing:
UTI%result%database%t_result
[2004-02-28 02:14:32.261] : Parsing: =
[2004-02-28 02:14:32.341] : Parsing:
positive%string
[2004-02-28 02:14:32.431] : Parsing: UTI
[2004-02-28 02:14:32.581] : Parsing: result
[2004-02-28 02:14:32.661] : Parsing: database
[2004-02-28 02:14:32.741] : Parsing: t_result
[2004-02-28 02:14:32.861] : Parsing: positive
[2004-02-28 02:14:32.942] : Parsing: string

[2004-02-28 02:14:33.022] : Parsing: DO
[2004-02-28 02:14:33.102] : Parsing:
patient_state('annual_urine_screening')
[2004-02-28 02:14:33.172] : Parsing:
patient_state
[2004-02-28 02:14:33.252] : Parsing:
'annual_urine_screening')
[2004-02-28 02:14:33.322] : Parsing:
'annual_urine_screening'
[2004-02-28 02:14:33.402] : Parsing: RULE
[2004-02-28 02:14:33.562] : Parsing: OIS4
[2004-02-28 02:14:33.633] : Parsing: DESCRIPTION
[2004-02-28 02:14:33.723] : Parsing: if 24 hour
creatine clearance and 24 hour protein loss tests
are positive then proteinuria is confirmed and
refer patient to nephrologist
[2004-02-28 02:14:33.823] : Parsing: ON
[2004-02-28 02:14:33.893] : Parsing:
result_arrival('24CRCL_PL')
[2004-02-28 02:14:33.973] : Parsing:
result_arrival
[2004-02-28 02:14:34.053] : Parsing: '24CRCL_PL')
[2004-02-28 02:14:34.133] : Parsing: '24CRCL_PL'
[2004-02-28 02:14:34.213] : Parsing: IF
[2004-02-28 02:14:34.293] : Parsing: IF
[2004-02-28 02:14:34.374] : Parsing:
24CRCL_PL%RESULT%DATABASE%T_TEST =
POSITIVE%STRING
[2004-02-28 02:14:34.534] : Parsing:
24CRCL_PL%RESULT%DATABASE%T_TEST
[2004-02-28 02:14:34.614] : Parsing: =
[2004-02-28 02:14:34.704] : Parsing:
POSITIVE%STRING
[2004-02-28 02:14:34.794] : Parsing: 24CRCL_PL
[2004-02-28 02:14:34.874] : Parsing: RESULT
[2004-02-28 02:14:34.954] : Parsing: DATABASE
[2004-02-28 02:14:35.035] : Parsing: T_TEST
[2004-02-28 02:14:35.115] : Parsing: POSITIVE
[2004-02-28 02:14:35.195] : Parsing: STRING
[2004-02-28 02:14:35.275] : Parsing: DO
[2004-02-28 02:14:35.355] : Parsing:
patient_state ('nephrology_referral')
[2004-02-28 02:14:35.435] : Parsing:
patient_state
[2004-02-28 02:14:35.505] : Parsing:
'nephrology_referral')
[2004-02-28 02:14:35.585] : Parsing:
'nephrology_referral'
[2004-02-28 02:14:35.665] : Parsing: RULE
[2004-02-28 02:14:35.806] : Parsing: 0IS5
[2004-02-28 02:14:35.886] : Parsing: DESCRIPTION
[2004-02-28 02:14:35.966] : Parsing: if 24 hour
creatine clearance and 24 hour protein loss is
negative then return patient to annual screening
[2004-02-28 02:14:36.036] : Parsing: ON
[2004-02-28 02:14:36.116] : Parsing:
result_arrival('24CRCL_PL')
[2004-02-28 02:14:36.276] : Parsing:
result_arrival
[2004-02-28 02:14:36.346] : Parsing: '24CRCL_PL')
[2004-02-28 02:14:36.417] : Parsing: '24CRCL_PL'
[2004-02-28 02:14:36.497] : Parsing: IF
[2004-02-28 02:14:36.567] : Parsing: IF
[2004-02-28 02:14:36.657] : Parsing:
24CRCL_PL%RESULT%DATABASE%T_TEST =
NEGATIVE%STRING
[2004-02-28 02:14:36.747] : Parsing:
24CRCL_PL%RESULT%DATABASE%T_TEST

APPENDIX

 289

[2004-02-28 02:14:36.827] : Parsing: =
[2004-02-28 02:14:36.897] : Parsing:
NEGATIVE%STRING
[2004-02-28 02:14:36.967] : Parsing: 24CRCL_PL
[2004-02-28 02:14:37.047] : Parsing: RESULT
[2004-02-28 02:14:37.128] : Parsing: DATABASE
[2004-02-28 02:14:37.208] : Parsing: T_TEST
[2004-02-28 02:14:37.278] : Parsing: NEGATIVE
[2004-02-28 02:14:37.358] : Parsing: STRING
[2004-02-28 02:14:37.428] : Parsing: DO
[2004-02-28 02:14:37.508] : Parsing:
patient_state ('annual_urine_screening')
[2004-02-28 02:14:37.578] : Parsing:
patient_state
[2004-02-28 02:14:37.658] : Parsing:
'annual_urine_screening')
[2004-02-28 02:14:37.738] : Parsing:
'annual_urine_screening'
[2004-02-28 02:14:37.829] : Schedule : OIS
[2004-02-28 02:14:37.979] : No. of Schedule
Static Rules: 0
[2004-02-28 02:14:38.139] : No. of Schedule
Dynamic Rules: 4
[2004-02-28 02:14:38.219] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:38.52] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:38.73] : Parsing: MAS
[2004-02-28 02:14:38.81] : Parsing: DESCRIPTION:
This is a microalbuminuria protocol schedule
called MAS for the screening of microalbuminuria
[2004-02-28 02:14:38.88] : Parsing: DESCRIPTION
[2004-02-28 02:14:38.96] : Parsing: This is a
microalbuminuria protocol schedule called MAS for
the screening of microalbuminuria
[2004-02-28 02:14:39.03] : Parsing: RULE MAS2
[2004-02-28 02:14:39.11] : Parsing: RULE
[2004-02-28 02:14:39.211] : Parsing: MAS2
[2004-02-28 02:14:39.291] : Parsing: DESCRIPTION
[2004-02-28 02:14:39.451] : Parsing: if the
first ACR result is > 20 mg/l order two more
tests within the next six months
[2004-02-28 02:14:39.521] : Parsing: ON
[2004-02-28 02:14:39.601] : Parsing:
result_arrival('ACR')
[2004-02-28 02:14:39.681] : Parsing:
result_arrival
[2004-02-28 02:14:39.751] : Parsing: 'ACR')
[2004-02-28 02:14:39.831] : Parsing: 'ACR'
[2004-02-28 02:14:39.902] : Parsing: IF
[2004-02-28 02:14:39.982] : Parsing: IF
[2004-02-28 02:14:40.062] : Parsing:
ACR%RESULT%DATABASE%T_RESULTS > 20%DOUBLE
[2004-02-28 02:14:40.132] : Parsing:
ACR%RESULT%DATABASE%T_RESULTS
[2004-02-28 02:14:40.222] : Parsing: >
[2004-02-28 02:14:40.292] : Parsing: 20%DOUBLE
[2004-02-28 02:14:40.362] : Parsing: ACR
[2004-02-28 02:14:40.442] : Parsing: RESULT
[2004-02-28 02:14:40.522] : Parsing: DATABASE
[2004-02-28 02:14:40.603] : Parsing: T_RESULTS
[2004-02-28 02:14:40.703] : Parsing: 20
[2004-02-28 02:14:40.783] : Parsing: DOUBLE
[2004-02-28 02:14:40.863] : Parsing: DO
[2004-02-28 02:14:40.943] : Parsing: ADD_RULE
[2004-02-28 02:14:41.183] : Parsing: 'ACR')}
[2004-02-28 02:14:41.263] : Parsing: 'ACR'
[2004-02-28 02:14:41.394] : DO: ADD_RULE
[2004-02-28 02:14:41.474] : Parsing: ADD_RULE
[2004-02-28 02:14:41.554] : Parsing: STATIC_RULE
[2004-02-28 02:14:41.644] : Parsing: STATIC_RULE
[2004-02-28 02:14:41.724] : Parsing: STATIC_RULE
MAS2a
[2004-02-28 02:14:41.804] : Parsing: STATIC_RULE
[2004-02-28 02:14:41.884] : Parsing: MAS2a
[2004-02-28 02:14:41.954] : Parsing: DESCRIPTION
[2004-02-28 02:14:42.035] : Parsing: rule orders
ACR test during the next 6 month period

[2004-02-28 02:14:42.135] : Parsing: FROM
time_rule_added
[2004-02-28 02:14:42.215] : Parsing: FROM
time_rule_added
[2004-02-28 02:14:42.295] : Warning: Found
<NOTHING> while expecting a value after "FROM"
[2004-02-28 02:14:42.545] : Parsing: STARTING now
[2004-02-28 02:14:42.625] : Parsing: STARTING now
[2004-02-28 02:14:42.706] : Warning: Found
<NOTHING> while expecting a value after
"STARTING"
[2004-02-28 02:14:42.796] : Parsing: now
[2004-02-28 02:14:42.876] : Error: number
expected instead of now
[2004-02-28 02:14:42.956] : Unexpected end of
statement: parsing stopped
[2004-02-28 02:14:43.036] : 0 = 0 MilliSeconds
[2004-02-28 02:14:43.146] : Parsing: ENDING 6
months
[2004-02-28 02:14:43.226] : Parsing: ENDING 6
months
[2004-02-28 02:14:43.306] : Warning: Found
<NOTHING> while expecting a value after "ENDING"
[2004-02-28 02:14:43.397] : Parsing: 6
[2004-02-28 02:14:43.547] : Parsing: months
[2004-02-28 02:14:43.627] : 6 months =
15552000000 MilliSeconds
[2004-02-28 02:14:43.727] : Parsing: ON_EVERY 3
months
[2004-02-28 02:14:43.807] : Parsing: ON_EVERY 3
months
[2004-02-28 02:14:43.887] : Warning: Found
<NOTHING> while expecting a value after
"ON_EVERY"
[2004-02-28 02:14:43.977] : Parsing: 3
[2004-02-28 02:14:44.047] : Parsing: months
[2004-02-28 02:14:44.158] : 3 months = 7776000000
MilliSeconds
[2004-02-28 02:14:44.228] : Parsing: DO
order_test ('ACR')
[2004-02-28 02:14:44.318] : Parsing: DO
order_test ('ACR')
[2004-02-28 02:14:44.398] : Warning: Found
<NOTHING> while expecting a value after "DO"
[2004-02-28 02:14:44.498] : Parsing: order_test
[2004-02-28 02:14:44.588] : Parsing: 'ACR')
[2004-02-28 02:14:44.668] : Parsing: 'ACR'
[2004-02-28 02:14:44.839] : ADDED RULE SPEC:
'MAS2','ADD_RULE*MAS2/STATIC/MAS2a|null|time_rule
_added|0|15552000000|7776000000|ORDER_TEST;''ACR'
';|rule orders ACR test during the next 6 month
period/*'
[2004-02-28 02:14:44.919] : ACTION: ADD_RULE
[2004-02-28 02:14:45.009] : ACTION PARAMETERS:
'MAS2','ADD_RULE*MAS2/STATIC/MAS2a|null|time_rule
_added|0|15552000000|7776000000|ORDER_TEST;''ACR'
';|rule orders ACR test during the next 6 month
period/*'
[2004-02-28 02:14:45.089] : parsed ACTION:
ADD_RULE('MAS2','ADD_RULE*MAS2/STATIC/MAS2a|null|
time_rule_added|0|15552000000|7776000000|ORDER_TE
ST;''ACR'';|rule orders ACR test during the next
6 month period/*')
[2004-02-28 02:14:45.179] : Parsing: RULE
[2004-02-28 02:14:45.349] : Parsing: MAS3
[2004-02-28 02:14:45.429] : Parsing: DESCRIPTION
[2004-02-28 02:14:45.52] : Parsing: if ACR < 20
mg/l then place patient on annual screening
[2004-02-28 02:14:45.6] : Parsing: ON
[2004-02-28 02:14:45.69] : Parsing:
result_arrival('ACR')
[2004-02-28 02:14:45.76] : Parsing:
result_arrival
[2004-02-28 02:14:45.84] : Parsing: 'ACR')
[2004-02-28 02:14:45.91] : Parsing: 'ACR'
[2004-02-28 02:14:45.99] : Parsing: IF
[2004-02-28 02:14:46.07] : Parsing: IF
[2004-02-28 02:14:46.14] : Parsing:
ACR%RESULT%DATABASE%T_RESULTS > 20%DOUBLE

[2004-02-28 02:14:46.231] : Parsing:
ACR%RESULT%DATABASE%T_RESULTS
[2004-02-28 02:14:46.301] : Parsing: >
[2004-02-28 02:14:46.381] : Parsing: 20%DOUBLE
[2004-02-28 02:14:46.461] : Parsing: ACR
[2004-02-28 02:14:46.611] : Parsing: RESULT
[2004-02-28 02:14:46.691] : Parsing: DATABASE
[2004-02-28 02:14:46.771] : Parsing: T_RESULTS
[2004-02-28 02:14:46.852] : Parsing: 20
[2004-02-28 02:14:46.922] : Parsing: DOUBLE
[2004-02-28 02:14:47.002] : Parsing: DO
[2004-02-28 02:14:47.082] : Parsing:
PATIENT_STATE('annual_urine_screening')
[2004-02-28 02:14:47.152] : Parsing:
PATIENT_STATE
[2004-02-28 02:14:47.242] : Parsing:
'annual_urine_screening')
[2004-02-28 02:14:47.312] : Parsing:
'annual_urine_screening'
[2004-02-28 02:14:47.402] : Parsing: RULE
[2004-02-28 02:14:47.553] : Parsing: MAS4
[2004-02-28 02:14:47.633] : Parsing: DESCRIPTION
[2004-02-28 02:14:47.723] : Parsing: if 2 of 3
ACR in 20-200 mg/l within 6 months then
microalbuminuria is confirmed
[2004-02-28 02:14:47.803] : Parsing: ON
[2004-02-28 02:14:47.883] : Parsing:
result_arrival('ACR')
[2004-02-28 02:14:47.963] : Parsing:
result_arrival
[2004-02-28 02:14:48.043] : Parsing: 'ACR')
[2004-02-28 02:14:48.113] : Parsing: 'ACR'
[2004-02-28 02:14:48.193] : Parsing: DO
[2004-02-28 02:14:48.344] : Parsing: DO
[2004-02-28 02:14:48.434] : Parsing:
2_OF_3_ACR_CHECK ('ACR')
[2004-02-28 02:14:48.504] : Parsing:
2_OF_3_ACR_CHECK
[2004-02-28 02:14:48.604] : Parsing: 'ACR')
[2004-02-28 02:14:48.684] : Parsing: 'ACR'
[2004-02-28 02:14:48.764] : Parsing: RULE
[2004-02-28 02:14:48.914] : Parsing: MAS5
[2004-02-28 02:14:49.005] : Parsing: DESCRIPTION
[2004-02-28 02:14:49.085] : Parsing: if ACR >
200 mg/l then refer patient to nephrologist for
possible proteinuria
[2004-02-28 02:14:49.165] : Parsing: ON
[2004-02-28 02:14:49.245] : Parsing:
RESULT_ARRIVAL('ACR')
[2004-02-28 02:14:49.335] : Parsing:
RESULT_ARRIVAL
[2004-02-28 02:14:49.415] : Parsing: 'ACR')
[2004-02-28 02:14:49.515] : Parsing: 'ACR'
[2004-02-28 02:14:49.595] : Parsing: IF
[2004-02-28 02:14:49.676] : Parsing: IF
[2004-02-28 02:14:49.756] : Parsing:
ACR%RESULT%DATABASE%T_TEST > 200%DOUBLE
[2004-02-28 02:14:49.836] : Parsing:
ACR%RESULT%DATABASE%T_TEST
[2004-02-28 02:14:49.916] : Parsing: >
[2004-02-28 02:14:50.006] : Parsing: 200%DOUBLE
[2004-02-28 02:14:50.076] : Parsing: ACR
[2004-02-28 02:14:50.246] : Parsing: RESULT
[2004-02-28 02:14:50.316] : Parsing: DATABASE
[2004-02-28 02:14:50.397] : Parsing: T_TEST
[2004-02-28 02:14:50.467] : Parsing: 200
[2004-02-28 02:14:50.557] : Parsing: DOUBLE
[2004-02-28 02:14:50.627] : Parsing: DO
[2004-02-28 02:14:50.707] : Parsing:
PATIENT_STATE('nephrology_referral')
[2004-02-28 02:14:50.787] : Parsing:
PATIENT_STATE
[2004-02-28 02:14:50.867] : Parsing:
'nephrology_referral')
[2004-02-28 02:14:50.947] : Parsing:
'nephrology_referral'
[2004-02-28 02:14:51.028] : Schedule : MAS
[2004-02-28 02:14:51.178] : No. of Schedule
Static Rules: 0

[2004-02-28 02:14:51.268] : No. of Schedule
Dynamic Rules: 4
[2004-02-28 02:14:51.338] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:51.558] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:51.769] : Parsing: CMA
[2004-02-28 02:14:51.849] : Parsing: DESCRIPTION:
This is a microalbuminuria protocol schedule
named CMA for confirmed microalbuminuria –
handles treatment and control of microalbuminuria
[2004-02-28 02:14:52.009] : Parsing: DESCRIPTION
[2004-02-28 02:14:52.079] : Parsing: This is a
microalbuminuria protocol schedule named CMA for
confirmed microalbuminuria – handles treatment
and control of microalbuminuria
[2004-02-28 02:14:52.159] : Parsing: RULE CMA5
[2004-02-28 02:14:52.229] : Parsing: RULE
[2004-02-28 02:14:52.379] : Parsing: CMA5
[2004-02-28 02:14:52.47] : Parsing: DESCRIPTION
[2004-02-28 02:14:52.54] : Parsing: if becomes
normal (ACR < 20 mg/l) at any time then the
patient is placed on annual screening
[2004-02-28 02:14:52.63] : Parsing: ON
[2004-02-28 02:14:52.72] : Parsing:
result_arrival('ACR')
[2004-02-28 02:14:52.8] : Parsing: result_arrival
[2004-02-28 02:14:52.88] : Parsing: 'ACR')
[2004-02-28 02:14:52.96] : Parsing: 'ACR'
[2004-02-28 02:14:53.07] : Parsing: IF
[2004-02-28 02:14:53.151] : Parsing: IF
[2004-02-28 02:14:53.271] : Parsing:
ACR%RESULT%DATABASE%T_RESULT < 20%DOUBLE
[2004-02-28 02:14:53.351] : Parsing:
ACR%RESULT%DATABASE%T_RESULT
[2004-02-28 02:14:53.421] : Parsing: <
[2004-02-28 02:14:53.501] : Parsing: 20%DOUBLE
[2004-02-28 02:14:53.581] : Parsing: ACR
[2004-02-28 02:14:53.661] : Parsing: RESULT
[2004-02-28 02:14:53.741] : Parsing: DATABASE
[2004-02-28 02:14:53.832] : Parsing: T_RESULT
[2004-02-28 02:14:53.982] : Parsing: 20
[2004-02-28 02:14:54.062] : Parsing: DOUBLE
[2004-02-28 02:14:54.142] : Parsing: DO
[2004-02-28 02:14:54.232] : Parsing:
PATIENT_STATE('annual_urine_screening')
[2004-02-28 02:14:54.302] : Parsing:
PATIENT_STATE
[2004-02-28 02:14:54.382] : Parsing:
'annual_urine_screening')
[2004-02-28 02:14:54.462] : Parsing:
'annual_urine_screening'
[2004-02-28 02:14:54.543] : Parsing: RULE
[2004-02-28 02:14:54.703] : Parsing: CMA6
[2004-02-28 02:14:54.803] : Parsing: DESCRIPTION
[2004-02-28 02:14:54.883] : Parsing: if becomes
abnormal (ACR > 200 mg/l) at any time then the
patient is placed on nephrology referral
[2004-02-28 02:14:54.963] : Parsing: ON
[2004-02-28 02:14:55.033] : Parsing:
result_arrival('ACR')
[2004-02-28 02:14:55.103] : Parsing:
result_arrival
[2004-02-28 02:14:55.183] : Parsing: 'ACR')
[2004-02-28 02:14:55.264] : Parsing: 'ACR'
[2004-02-28 02:14:55.334] : Parsing: IF
[2004-02-28 02:14:55.414] : Parsing: IF
[2004-02-28 02:14:55.494] : Parsing:
ACR%RESULT%DATABASE%T_RESULT > 200%DOUBLE
[2004-02-28 02:14:55.564] : Parsing:
ACR%RESULT%DATABASE%T_RESULT
[2004-02-28 02:14:55.644] : Parsing: >
[2004-02-28 02:14:55.724] : Parsing: 200%DOUBLE
[2004-02-28 02:14:55.794] : Parsing: ACR
[2004-02-28 02:14:55.955] : Parsing: RESULT
[2004-02-28 02:14:56.035] : Parsing: DATABASE
[2004-02-28 02:14:56.105] : Parsing: T_RESULT
[2004-02-28 02:14:56.185] : Parsing: 200
[2004-02-28 02:14:56.255] : Parsing: DOUBLE

APPENDIX

 290

[2004-02-28 02:14:56.335] : Parsing: DO
[2004-02-28 02:14:56.405] : Parsing:
PATIENT_STATE('nephrology_referral')
[2004-02-28 02:14:56.485] : Parsing:
PATIENT_STATE
[2004-02-28 02:14:56.555] : Parsing:
'nephrology_referral')
[2004-02-28 02:14:56.636] : Parsing:
'nephrology_referral'
[2004-02-28 02:14:56.796] : Schedule : CMA
[2004-02-28 02:14:56.866] : No. of Schedule
Static Rules: 0
[2004-02-28 02:14:56.946] : No. of Schedule
Dynamic Rules: 2
[2004-02-28 02:14:57.016] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:57.266] : Checking if SCHEDULE
[ID = 0] exists ...
[2004-02-28 02:14:57.477] : Parsing: NPH
[2004-02-28 02:14:57.547] : Parsing: DESCRIPTION:
This is a microalbuminuria protocol schedule
named NPH for nephrology referral – handles
preparation and transmission of the necessary
documentation for the referral
[2004-02-28 02:14:57.647] : Parsing: DESCRIPTION
[2004-02-28 02:14:57.737] : Parsing: This is a
microalbuminuria protocol schedule named NPH for
nephrology referral – handles preparation and
transmission of the necessary documentation for
the referral
[2004-02-28 02:14:57.897] : Parsing: RULE NPH2
[2004-02-28 02:14:57.998] : Parsing: RULE
[2004-02-28 02:14:58.078] : Parsing: NPH2
[2004-02-28 02:14:58.158] : Parsing: DESCRIPTION
[2004-02-28 02:14:58.238] : Parsing: when a
referral note is created it must immediately be
sent to the specialist either by post or e-mail
[2004-02-28 02:14:58.318] : Parsing: ON
[2004-02-28 02:14:58.398] : Parsing:
new_referral_note()
[2004-02-28 02:14:58.488] : Parsing:
new_referral_note
[2004-02-28 02:14:58.568] : Parsing:)
[2004-02-28 02:14:58.648] : Parsing: DO
[2004-02-28 02:14:58.729] : Parsing: DO
[2004-02-28 02:14:58.829] : Parsing:
send_referral_note()
[2004-02-28 02:14:58.909] : Parsing:
send_referral_note
[2004-02-28 02:14:58.999] : Parsing:)
[2004-02-28 02:14:59.079] : Schedule [NPH] has no
rules. It should not be declared.
[2004-02-28 02:14:59.219] : Schedule : NPH
[2004-02-28 02:14:59.299] : No. of Schedule
Static Rules: 0
[2004-02-28 02:14:59.37] : No. of Schedule
Dynamic Rules: 1
[2004-02-28 02:14:59.45] : Parsing: END
SCHEDULE_SET
[2004-02-28 02:14:59.73] : Parsing: ~RULE_SET~
 [2004-02-28 02:14:59.82] : Parsing: STATIC_RULE
[2004-02-28 02:14:59.89] : Parsing: AUS1
[2004-02-28 02:15:00.071] : Parsing: FROM
[2004-02-28 02:15:00.151] : Parsing: FROM
[2004-02-28 02:15:00.231] : Parsing:
annual_screening_start_date
[2004-02-28 02:15:00.321] : Parsing: STARTING
[2004-02-28 02:15:00.391] : Parsing: 0 year
[2004-02-28 02:15:00.471] : Parsing: 0
[2004-02-28 02:15:00.551] : Parsing: year
[2004-02-28 02:15:00.711] : 0 year = 0
MilliSeconds
[2004-02-28 02:15:00.782] : Parsing: ENDING
[2004-02-28 02:15:00.862] : Parsing: 1 year
[2004-02-28 02:15:00.942] : Parsing: 1
[2004-02-28 02:15:01.022] : Parsing: year
[2004-02-28 02:15:01.092] : 1 year = 31536000000
MilliSeconds
[2004-02-28 02:15:01.172] : Parsing: ON_EVERY

[2004-02-28 02:15:01.252] : Parsing: 1 year
[2004-02-28 02:15:01.322] : Parsing: 1
[2004-02-28 02:15:01.392] : Parsing: year
[2004-02-28 02:15:01.483] : 1 year = 31536000000
MilliSeconds
[2004-02-28 02:15:01.563] : Parsing: DO
[2004-02-28 02:15:01.643] : Parsing: order_test(
'DSU')
[2004-02-28 02:15:01.743] : Parsing: order_test
[2004-02-28 02:15:01.823] : Parsing: 'DSU')
[2004-02-28 02:15:01.903] : Parsing: 'DSU'
[2004-02-28 02:15:01.983] : Parsing: RULE
[2004-02-28 02:15:02.164] : Parsing: OIS1
[2004-02-28 02:15:02.244] : Parsing: DESCRIPTION
[2004-02-28 02:15:02.324] : Parsing: on entry to
the OIS schedule the patient is tested for other
urinary tract inections (UTI)
[2004-02-28 02:15:02.404] : Parsing: ON
[2004-02-28 02:15:02.564] : Parsing:
state_change()
[2004-02-28 02:15:02.644] : Parsing: state_change
[2004-02-28 02:15:02.724] : Parsing:)
[2004-02-28 02:15:02.814] : Parsing: IF
[2004-02-28 02:15:02.895] : Parsing: IF
[2004-02-28 02:15:02.975] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = other_infections_screening%string
[2004-02-28 02:15:03.045] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:03.125] : Parsing: =
[2004-02-28 02:15:03.215] : Parsing:
other_infections_screening%string
[2004-02-28 02:15:03.305] : Parsing: state_name
[2004-02-28 02:15:03.375] : Parsing:
patient_state
[2004-02-28 02:15:03.455] : Parsing: database
[2004-02-28 02:15:03.525] : Parsing:
tops_patient_state
[2004-02-28 02:15:03.596] : Parsing:
other_infections_screening
[2004-02-28 02:15:03.676] : Parsing: string
[2004-02-28 02:15:03.756] : Parsing: DO
[2004-02-28 02:15:03.836] : Parsing: order_test
('UTI')
[2004-02-28 02:15:03.906] : Parsing: order_test
[2004-02-28 02:15:03.986] : Parsing: 'UTI')
[2004-02-28 02:15:04.066] : Parsing: 'UTI'
[2004-02-28 02:15:04.136] : Parsing: RULE
[2004-02-28 02:15:04.367] : Parsing: MAS1a
[2004-02-28 02:15:04.447] : Parsing: DESCRIPTION
[2004-02-28 02:15:04.527] : Parsing: at the
start of this schedule MAS order the two ACR and
SCR tests
[2004-02-28 02:15:04.597] : Parsing: ON
[2004-02-28 02:15:04.677] : Parsing:
state_change()
[2004-02-28 02:15:04.757] : Parsing: state_change
[2004-02-28 02:15:04.847] : Parsing:)
[2004-02-28 02:15:04.928] : Parsing: IF
[2004-02-28 02:15:04.998] : Parsing: IF
[2004-02-28 02:15:05.078] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = microalbuminuria_screening%string
[2004-02-28 02:15:05.148] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:05.228] : Parsing: =
[2004-02-28 02:15:05.298] : Parsing:
microalbuminuria_screening%string
[2004-02-28 02:15:05.378] : Parsing: state_name
[2004-02-28 02:15:05.468] : Parsing:
patient_state
[2004-02-28 02:15:05.538] : Parsing: database
[2004-02-28 02:15:05.618] : Parsing:
tops_patient_state
[2004-02-28 02:15:05.689] : Parsing:
microalbuminuria_screening
[2004-02-28 02:15:05.769] : Parsing: string

[2004-02-28 02:15:05.849] : Parsing: DO
[2004-02-28 02:15:05.919] : Parsing: order_test(
'ACR')
[2004-02-28 02:15:05.999] : Parsing: order_test
[2004-02-28 02:15:06.069] : Parsing: 'ACR')
[2004-02-28 02:15:06.249] : Parsing: 'ACR'
[2004-02-28 02:15:06.33] : Parsing: RULE
[2004-02-28 02:15:06.48] : Parsing: MAS1b
[2004-02-28 02:15:06.56] : Parsing: DESCRIPTION
[2004-02-28 02:15:06.64] : Parsing: at the start
of this schedule MAS order the two ACR and SCR
tests
[2004-02-28 02:15:06.72] : Parsing: ON
[2004-02-28 02:15:06.8] : Parsing:
state_change()
[2004-02-28 02:15:06.88] : Parsing: state_change
[2004-02-28 02:15:06.96] : Parsing:)
[2004-02-28 02:15:07.041] : Parsing: IF
[2004-02-28 02:15:07.121] : Parsing: IF
[2004-02-28 02:15:07.201] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = microalbuminuria_screening%string
[2004-02-28 02:15:07.281] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:07.361] : Parsing: =
[2004-02-28 02:15:07.441] : Parsing:
microalbuminuria_screening%string
[2004-02-28 02:15:07.521] : Parsing: state_name
[2004-02-28 02:15:07.601] : Parsing:
patient_state
[2004-02-28 02:15:07.691] : Parsing: database
[2004-02-28 02:15:07.772] : Parsing:
tops_patient_state
[2004-02-28 02:15:07.852] : Parsing:
microalbuminuria_screening
[2004-02-28 02:15:07.922] : Parsing: string
[2004-02-28 02:15:08.072] : Parsing: DO
[2004-02-28 02:15:08.152] : Parsing: order_test(
'SCR')
[2004-02-28 02:15:08.232] : Parsing: order_test
[2004-02-28 02:15:08.312] : Parsing: 'SCR')
[2004-02-28 02:15:08.392] : Parsing: 'SCR'
[2004-02-28 02:15:08.463] : Parsing: RULE
[2004-02-28 02:15:08.623] : Parsing: CMA1
[2004-02-28 02:15:08.703] : Parsing: DESCRIPTION
[2004-02-28 02:15:08.793] : Parsing: at the
start of this schedule suggest optimisation of
glycaemic control
[2004-02-28 02:15:08.863] : Parsing: ON
[2004-02-28 02:15:08.943] : Parsing:
state_change()
[2004-02-28 02:15:09.023] : Parsing: state_change
[2004-02-28 02:15:09.093] : Parsing:)
[2004-02-28 02:15:09.174] : Parsing: IF
[2004-02-28 02:15:09.244] : Parsing: IF
[2004-02-28 02:15:09.324] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:09.394] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:09.474] : Parsing: =
[2004-02-28 02:15:09.544] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:09.624] : Parsing: state_name
[2004-02-28 02:15:09.704] : Parsing:
patient_state
[2004-02-28 02:15:09.865] : Parsing: database
[2004-02-28 02:15:09.935] : Parsing:
tops_patient_state
[2004-02-28 02:15:10.015] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:10.085] : Parsing: string
[2004-02-28 02:15:10.165] : Parsing: DO
[2004-02-28 02:15:10.235] : Parsing: suggest
('optimisation_of_glycaemic_control')
[2004-02-28 02:15:10.315] : Parsing: suggest

[2004-02-28 02:15:10.385] : Parsing:
'optimisation_of_glycaemic_control')
[2004-02-28 02:15:10.465] : Parsing:
'optimisation_of_glycaemic_control'
[2004-02-28 02:15:10.546] : Parsing: RULE
[2004-02-28 02:15:10.726] : Parsing: CMA2
[2004-02-28 02:15:10.816] : Parsing: DESCRIPTION
[2004-02-28 02:15:10.886] : Parsing: at the
start of this schedule suggest BP measurement
[2004-02-28 02:15:10.976] : Parsing: ON
[2004-02-28 02:15:11.046] : Parsing:
state_change()
[2004-02-28 02:15:11.126] : Parsing: state_change
[2004-02-28 02:15:11.197] : Parsing:)
[2004-02-28 02:15:11.277] : Parsing: IF
[2004-02-28 02:15:11.357] : Parsing: IF
[2004-02-28 02:15:11.437] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:11.517] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:11.597] : Parsing: =
[2004-02-28 02:15:11.687] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:11.847] : Parsing: state_name
[2004-02-28 02:15:11.928] : Parsing:
patient_state
[2004-02-28 02:15:12.008] : Parsing: database
[2004-02-28 02:15:12.078] : Parsing:
tops_patient_state
[2004-02-28 02:15:12.168] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:12.248] : Parsing: string
[2004-02-28 02:15:12.328] : Parsing: DO
[2004-02-28 02:15:12.398] : Parsing: ORDER_TEST
('BP')
[2004-02-28 02:15:12.478] : Parsing: ORDER_TEST
[2004-02-28 02:15:12.558] : Parsing: 'BP')
[2004-02-28 02:15:12.629] : Parsing: 'BP'
[2004-02-28 02:15:12.719] : Parsing: RULE
[2004-02-28 02:15:12.869] : Parsing: CMA3
[2004-02-28 02:15:12.949] : Parsing: DESCRIPTION
[2004-02-28 02:15:13.029] : Parsing: If patient
suffers from diabetes type 1 then prescribe ACE
inhibitor
[2004-02-28 02:15:13.109] : Parsing: ON
[2004-02-28 02:15:13.179] : Parsing:
state_change()
[2004-02-28 02:15:13.259] : Parsing: state_change
[2004-02-28 02:15:13.34] : Parsing:)
[2004-02-28 02:15:13.42] : Parsing: IF
[2004-02-28 02:15:13.57] : Parsing: IF
[2004-02-28 02:15:13.65] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:13.78] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:13.85] : Parsing: =
[2004-02-28 02:15:13.93] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:14.001] : Parsing: state_name
[2004-02-28 02:15:14.081] : Parsing:
patient_state
[2004-02-28 02:15:14.151] : Parsing: database
[2004-02-28 02:15:14.231] : Parsing:
tops_patient_state
[2004-02-28 02:15:14.301] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:14.391] : Parsing: string
[2004-02-28 02:15:14.461] : Parsing: DO
[2004-02-28 02:15:14.531] : Parsing:
prescribe_medication('ACE_inhibitor')
[2004-02-28 02:15:14.601] : Parsing:
prescribe_medication
[2004-02-28 02:15:14.682] : Parsing:
'ACE_inhibitor')

APPENDIX

 291

[2004-02-28 02:15:14.772] : Parsing:
'ACE_inhibitor'
[2004-02-28 02:15:14.852] : Parsing: RULE
[2004-02-28 02:15:15.002] : Parsing: CMA4a
[2004-02-28 02:15:15.082] : Parsing: DESCRIPTION
[2004-02-28 02:15:15.182] : Parsing: ACR and SCR
tests are performed every month for all
microalbuminuria patients
[2004-02-28 02:15:15.272] : Parsing: ON
[2004-02-28 02:15:15.433] : Parsing:
state_change()
[2004-02-28 02:15:15.523] : Parsing: state_change
[2004-02-28 02:15:15.593] : Parsing:)
[2004-02-28 02:15:15.683] : Parsing: IF
[2004-02-28 02:15:15.773] : Parsing: IF
[2004-02-28 02:15:15.853] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:15.933] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:16.003] : Parsing: =
[2004-02-28 02:15:16.094] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:16.174] : Parsing: state_name
[2004-02-28 02:15:16.254] : Parsing:
patient_state
[2004-02-28 02:15:16.334] : Parsing: database
[2004-02-28 02:15:16.404] : Parsing:
tops_patient_state
[2004-02-28 02:15:16.484] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:16.564] : Parsing: string
[2004-02-28 02:15:16.654] : Parsing: DO
[2004-02-28 02:15:16.724] : Parsing: order_test
('ACR')
[2004-02-28 02:15:16.815] : Parsing: order_test
[2004-02-28 02:15:16.885] : Parsing: 'ACR')
[2004-02-28 02:15:16.965] : Parsing: 'ACR'
[2004-02-28 02:15:17.035] : Parsing: RULE
[2004-02-28 02:15:17.245] : Parsing: CMA4b
[2004-02-28 02:15:17.325] : Parsing: DESCRIPTION
[2004-02-28 02:15:17.405] : Parsing: ACR and SCR
tests are performed every month for all
microalbuminuria patients
[2004-02-28 02:15:17.476] : Parsing: ON
[2004-02-28 02:15:17.546] : Parsing:
state_change()
[2004-02-28 02:15:17.626] : Parsing: state_change
[2004-02-28 02:15:17.706] : Parsing:)
[2004-02-28 02:15:17.776] : Parsing: IF
[2004-02-28 02:15:17.866] : Parsing: IF
[2004-02-28 02:15:17.946] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:18.016] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:18.086] : Parsing: =
[2004-02-28 02:15:18.167] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:18.237] : Parsing: state_name
[2004-02-28 02:15:18.317] : Parsing:
patient_state
[2004-02-28 02:15:18.397] : Parsing: database
[2004-02-28 02:15:18.467] : Parsing:
tops_patient_state
[2004-02-28 02:15:18.547] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:18.627] : Parsing: string
[2004-02-28 02:15:18.707] : Parsing: DO
[2004-02-28 02:15:18.787] : Parsing: order_test
('SCR')
[2004-02-28 02:15:18.878] : Parsing: order_test
[2004-02-28 02:15:19.028] : Parsing: 'SCR')
[2004-02-28 02:15:19.098] : Parsing: 'SCR'
[2004-02-28 02:15:19.178] : Parsing: RULE
[2004-02-28 02:15:19.328] : Parsing: NPH1
[2004-02-28 02:15:19.398] : Parsing: DESCRIPTION

[2004-02-28 02:15:19.498] : Parsing: when a
patient is referred to a specialist a patient
referral note is created
[2004-02-28 02:15:19.579] : Parsing: ON
[2004-02-28 02:15:19.659] : Parsing:
state_change()
[2004-02-28 02:15:19.739] : Parsing: state_change
[2004-02-28 02:15:19.819] : Parsing:)
[2004-02-28 02:15:19.909] : Parsing: IF
[2004-02-28 02:15:19.979] : Parsing: IF
[2004-02-28 02:15:20.059] : Parsing:
state_name%patient_state%database%tops_patient_st
ate = confirmed_microalbuminuria%string
[2004-02-28 02:15:20.139] : Parsing:
state_name%patient_state%database%tops_patient_st
ate
[2004-02-28 02:15:20.219] : Parsing: =
[2004-02-28 02:15:20.3] : Parsing:
confirmed_microalbuminuria%string
[2004-02-28 02:15:20.38] : Parsing: state_name
[2004-02-28 02:15:20.45] : Parsing: patient_state
[2004-02-28 02:15:20.53] : Parsing: database
[2004-02-28 02:15:20.61] : Parsing:
tops_patient_state
[2004-02-28 02:15:20.69] : Parsing:
confirmed_microalbuminuria
[2004-02-28 02:15:20.85] : Parsing: string
[2004-02-28 02:15:20.931] : Parsing: DO
[2004-02-28 02:15:21.021] : Parsing:
create_referral_note ('nephrologist')
[2004-02-28 02:15:21.091] : Parsing:
create_referral_note
[2004-02-28 02:15:21.171] : Parsing:
'nephrologist')
[2004-02-28 02:15:21.251] : Parsing:
'nephrologist'
[2004-02-28 02:15:21.441] : Both schedule and
protocol rule sets are present in the protocol.
[2004-02-28 02:15:21.521] : Protocol
Specification after parsing

PROTOCOL_NAME: MAP2;
DESCRIPTION: This is a protocol for the diagnosis
and management of microalbuminuria in diabetes
patients;
DATE_CREATED: 2004-02-28 02:15:21.441;
CREATOR_ID: 3;
CATEGORY_ID: 1;

BEGIN SCHEDULE_SET

BEGIN SCHEDULE;
SCHEDULE_NAME: AUS;
DESCRIPTION: This is a microalbuminuria protocol
schedule called AUS for Annual dipstick Urine
Screening;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: AUS2;
DESCRIPTION: no description;
ON: result_arrival('DSU');
IF: DSU = positive;
DO: PATIENT_STATE('other_infections_screening');
RULE_NAME: AUS3;
DESCRIPTION: no description;
ON: result_arrival('DSU');
IF: DSU = NEGATIVE;
DO: PATIENT_STATE('microalbuminuria_screening');
END SCHEDULE_RULE_SET;

END SCHEDULE;

BEGIN SCHEDULE;
SCHEDULE_NAME: OIS;
DESCRIPTION: This is a microalbuminuria protocol
schedule called OIS for SCREENING OTHER
INFECTIONS in the diagnosis of microalbuminuria
and proteinuria;
BEGIN SCHEDULE_RULE_SET;

RULE_NAME: OIS2;
DESCRIPTION: no description;
ON: result_arrival('UTI');
IF: UTI = negative;
DO: ORDER_TEST('24CRCL_PL');
RULE_NAME: OIS3;
DESCRIPTION: no description;
ON: result_arrival('UTI');
IF: UTI = positive;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: OIS4;
DESCRIPTION: no description;
ON: result_arrival('24CRCL_PL');
IF: 24CRCL_PL = POSITIVE;
DO: PATIENT_STATE('nephrology_referral');
RULE_NAME: 0IS5;
DESCRIPTION: no description;
ON: result_arrival('24CRCL_PL');
IF: 24CRCL_PL = NEGATIVE;
DO: PATIENT_STATE('annual_urine_screening');
END SCHEDULE_RULE_SET;

END SCHEDULE;

BEGIN SCHEDULE;
SCHEDULE_NAME: MAS;
DESCRIPTION: This is a microalbuminuria protocol
schedule called MAS for the screening of
microalbuminuria;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: MAS2;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR > 20.0;
DO:
ADD_RULE('MAS2','ADD_RULE*MAS2/STATIC/MAS2a|null|
time_rule_added|0|15552000000|7776000000|ORDER_TE
ST;''ACR'';|rule orders ACR test during the next
6 month period/*');
RULE_NAME: MAS3;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR > 20.0;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: MAS4;
DESCRIPTION: no description;
ON: result_arrival('ACR');
DO: 2_OF_3_ACR_CHECK('ACR');
RULE_NAME: MAS5;
DESCRIPTION: no description;
ON: RESULT_ARRIVAL('ACR');
IF: ACR > 200.0;
DO: PATIENT_STATE('nephrology_referral');
END SCHEDULE_RULE_SET;

END SCHEDULE;

BEGIN SCHEDULE;
SCHEDULE_NAME: CMA;
DESCRIPTION: This is a microalbuminuria protocol
schedule named CMA for confirmed microalbuminuria
– handles treatment and control of
microalbuminuria;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: CMA5;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR < 20.0;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: CMA6;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR > 200.0;
DO: PATIENT_STATE('nephrology_referral');
END SCHEDULE_RULE_SET;

END SCHEDULE;

BEGIN SCHEDULE;

SCHEDULE_NAME: NPH;
DESCRIPTION: This is a microalbuminuria protocol
schedule named NPH for nephrology referral –
handles preparation and transmission of the
necessary documentation for the referral;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: NPH2;
DESCRIPTION: no description;
ON: new_referral_note();
DO: SEND_REFERRAL_NOTE();
END SCHEDULE_RULE_SET;

END SCHEDULE;
END SCHEDULE_SET
BEGIN PROTOCOL_RULE_SET;
RULE_NAME: OIS1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = other_infections_screening;
DO: ORDER_TEST('UTI');
RULE_NAME: MAS1a;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = microalbuminuria_screening;
DO: ORDER_TEST('ACR');
RULE_NAME: MAS1b;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = microalbuminuria_screening;
DO: ORDER_TEST('SCR');
RULE_NAME: CMA1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: SUGGEST('optimisation_of_glycaemic_control');
RULE_NAME: CMA2;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: ORDER_TEST('BP');
RULE_NAME: CMA3;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: PRESCRIBE_MEDICATION('ACE_inhibitor');
RULE_NAME: CMA4a;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: ORDER_TEST('ACR');
RULE_NAME: CMA4b;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: ORDER_TEST('SCR');
RULE_NAME: NPH1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = confirmed_microalbuminuria;
DO: CREATE_REFERRAL_NOTE('nephrologist');
END PROTOCOL_RULE_SET;
END PROTOCOL.
--
[2004-02-28 02:15:22.042] : Parsing protocol
specification completed.
[2004-02-28 02:15:22.112] : No. of Schedules: 5
[2004-02-28 02:15:22.192] : No. of Protocol
dynamic rules: 9
[2004-02-28 02:15:22.272] : No. of Protocol
static rules: 9
[2004-02-28 02:15:23.694] : Protocol [MAP2]
inserted into database.[ID: 1]
[2004-02-28 02:15:23.775] : Adding protocol
schedules to database ...
[2004-02-28 02:15:23.865] : SCHEDULE: [name: AUS]
[spec: null][description: This is a
microalbuminuria protocol schedule called AUS for
Annual dipstick Urine Screening] [creatorID: 3]
[dateCreated: 2004-02-28 02:14:27.734]

APPENDIX

 292

[2004-02-28 02:15:23.945] : Adding schedule AUS
to database.
[2004-02-28 02:15:24.606] : Schedule [AUS] added
to database.
[2004-02-28 02:15:29.433] : ACTION
[PATIENT_STATE] added to database.
[2004-02-28 02:15:32.397] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:15:33.859] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:15:35.281] : SCHEDULE: [name: OIS]
[spec: null][description: This is a
microalbuminuria protocol schedule called OIS for
SCREENING OTHER INFECTIONS in the diagnosis of
microalbuminuria and proteinuria] [creatorID: 3]
[dateCreated: 2004-02-28 02:14:37.829]
[2004-02-28 02:15:35.351] : Adding schedule OIS
to database.
[2004-02-28 02:15:35.922] : Schedule [OIS] added
to database.
[2004-02-28 02:15:37.805] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:15:39.828] : ACTION [ORDER_TEST]
added to database.
[2004-02-28 02:15:42.091] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:15:43.493] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:15:46.167] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:15:47.569] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:15:50.133] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:15:51.434] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:15:52.917] : SCHEDULE: [name: MAS]
[spec: null][description: This is a
microalbuminuria protocol schedule called MAS for
the screening of microalbuminuria] [creatorID: 3]
[dateCreated: 2004-02-28 02:14:51.028]
[2004-02-28 02:15:52.987] : Adding schedule MAS
to database.
[2004-02-28 02:15:53.457] : Schedule [MAS] added
to database.
[2004-02-28 02:15:55.24] : EVENT [result_arrival]
already exists in database.
[2004-02-28 02:15:57.233] : ACTION [ADD_RULE]
added to database.
[2004-02-28 02:15:59.566] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:16:00.878] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:16:03.422] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:16:04.653] : ACTION
[2_OF_3_ACR_CHECK] added to database.
[2004-02-28 02:16:08.208] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:16:09.821] : SCHEDULE: [name: CMA]
[spec: null][description: This is a
microalbuminuria protocol schedule named CMA for
confirmed microalbuminuria – handles treatment
and control of microalbuminuria] [creatorID: 3]
[dateCreated: 2004-02-28 02:14:56.786]
[2004-02-28 02:16:09.891] : Adding schedule CMA
to database.
[2004-02-28 02:16:10.352] : Schedule [CMA] added
to database.
[2004-02-28 02:16:12.204] : EVENT
[result_arrival] already exists in database.
[2004-02-28 02:16:13.586] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:16:16.18] : EVENT [result_arrival]
already exists in database.
[2004-02-28 02:16:17.472] : ACTION
[PATIENT_STATE] already exists in database.
[2004-02-28 02:16:19.064] : SCHEDULE: [name: NPH]

[spec: null][description: This is a
microalbuminuria protocol schedule named NPH for
nephrology referral – handles preparation and
transmission of the necessary documentation for
the referral] [creatorID: 3] [dateCreated: 2004-
02-28 02:14:59.219]
[2004-02-28 02:16:19.134] : Adding schedule NPH
to database.
[2004-02-28 02:16:19.515] : Schedule [NPH] added
to database.
[2004-02-28 02:16:22.659] : ACTION
[SEND_REFERRAL_NOTE] added to database.
[2004-02-28 02:16:23.49] : Adding protocol rules
to database ...
[2004-02-28 02:16:26.234] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:28.908] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:30.37] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:33.024] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:34.737] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:37.25] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:39.043] : ACTION [SUGGEST]
added to database.
[2004-02-28 02:16:41.266] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:42.748] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:45.272] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:47.124] : ACTION
[PRESCRIBE_MEDICATION] added to database.
[2004-02-28 02:16:49.428] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:50.72] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:53.424] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:54.785] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:16:57.299] : EVENT [state_change]
already exists in database.
[2004-02-28 02:16:59.332] : ACTION
[CREATE_REFERRAL_NOTE] added to database.
[2004-02-28 02:17:00.594] : Adding protocol
static rules to database ...
[2004-02-28 02:17:01.505] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:17:03.228] : ACTION [ORDER_TEST]
already exists in database.
[2004-02-28 02:17:03.688] : Protocol [MAP2] saved
to file:
D:\TOPS\specs\MAP2_1077934623648.protocol]

APPENDIX

 293

E. The MAP Specification as Stored in the TOPS
Database

This appendix presents figures that illustrate how the specification for the
MicroAlbuminuria Protocol (MAP) is stored in the TOPS database, a relational
database implemented in the Oracle9i database system. The figures present queries
and the results of these queries on relational tables that hold the attributes of the
protocol specification.

Figure 78 Attributes of protocol specificateons in the TOPS database

Figure 79 Schedule sspecifications in the MAP as stored in TOPS

APPENDIX

 294

Figure 80 Protocol rule specifications for the MAP in the TOPS database

APPENDIX

 295

Figure 81 The specification of MAP rules of the dynamic rule type in the TOPS database

Figure 82 The specification of MAP rules of the static rule type in the TOPS database

APPENDIX

 296

Figure 83 The attributes of event specifications for MAP rules in the TOPS database

Figure 84 Condition specifications for the MAP as stored in the TOPS database

APPENDIX

 297

Figure 85 Core attributes of action specifications for the MAP in the TOPS database

Figure 86 Entry criteria specification attributes for MAP in the TOPS database

APPENDIX

 298

Figure 87 Rule-Action associations for the MAP in the TOPS database. NB: The parameters to a

protocol action is an attribute of the rule-action relationship, hence why the relational table in this
figure has the ACTION_PARAMETERS attribute.

APPENDIX

 299

Figure 88 The Protocol-Rule relationship for the MAP

Figure 89 Schedule-Dynamic Rule relationship for the MAP

APPENDIX

 300

Figure 90 Schedule-Static Rule relationships for MAP in the TOPS database

Figure 91 Protocol-Static Rule relationships for the MAP in the TOPS database

APPENDIX

 301

Figure 92 Rule-Condition relationships for the MAP in the TOPS database

Figure 93 Criteria-Condition relationship for the MAP in the TOPS database

APPENDIX

 302

Figure 94 Schedule-Criteria relationships for the MAP in the TOPS database

Figure 95 Protocol-Schedule relationships for the MAP in the TOPS database

APPENDIX

 303

F. TOPS Session for Creating a MAP Patient Plan
[2004-02-09 14:25:56.926] : TOPS System Execution Log: Session
Starting at 2004-02-09 14:25:56.585

[2004-02-09 14:25:58.128] : Getting confirmation to create the
TOPS database objects.
[2004-02-09 14:26:02.454] : TOPS rule execution listener
activated ...
[2004-02-09 14:26:04.236] : Rule listener waiting ...
[2004-02-09 14:26:34.68] : Analysing command: CREATE ...
[2004-02-09 14:26:34.7] : Executing command: CREATE(PLAN)
[2004-02-09 14:27:08.469] : Retrieving the protocol
specification ...
[2004-02-09 14:27:08.849] : Retrieving the schedule set ...
[2004-02-09 14:27:09.36] : Retrieving the schedule ...
[2004-02-09 14:27:09.891] : Checking if schedule [ID = 1] exists
...
[2004-02-09 14:27:10.271] : Schedule [ID = 1] exists.
[2004-02-09 14:27:10.301] : Retrieving the static rule set ...
[2004-02-09 14:27:10.582] : Retrieving the static rule ...
[2004-02-09 14:27:11.243] : Retrieving the rule action ...
[2004-02-09 14:27:11.743] : Retrieving the rule set ...
[2004-02-09 14:27:11.964] : Retrieving the rule ...
[2004-02-09 14:27:12.595] : Retrieving the rule event ...
[2004-02-09 14:27:13.216] : Retrieving the rule condition ...
[2004-02-09 14:27:13.606] : CONDITION:
[ID=1][attribute=DSU][left_value=positive][type=STRING]
[2004-02-09 14:27:13.806] : Retrieving the rule action ...
[2004-02-09 14:27:14.017] : Retrieving the rule ...
[2004-02-09 14:27:14.377] : Retrieving the rule event ...
[2004-02-09 14:27:14.818] : Retrieving the rule action ...
[2004-02-09 14:27:15.038] : Retrieving the schedule ...
[2004-02-09 14:27:15.349] : Checking if schedule [ID = 2] exists
...
[2004-02-09 14:27:15.469] : Schedule [ID = 2] exists.
[2004-02-09 14:27:15.509] : Retrieving the static rule set ...
[2004-02-09 14:27:15.819] : Retrieving the static rule ...
[2004-02-09 14:27:16.01] : Retrieving the rule action ...
[2004-02-09 14:27:16.33] : Retrieving the rule set ...
[2004-02-09 14:27:16.52] : Retrieving the rule ...
[2004-02-09 14:27:16.781] : Retrieving the rule event ...
[2004-02-09 14:27:17.211] : Retrieving the rule condition ...
[2004-02-09 14:27:17.392] : CONDITION:
[ID=3][attribute=UTI][left_value=negative][type=STRING]
[2004-02-09 14:27:17.552] : Retrieving the rule action ...
[2004-02-09 14:27:17.742] : Retrieving the rule ...
[2004-02-09 14:27:18.253] : Retrieving the rule event ...
[2004-02-09 14:27:18.553] : Retrieving the rule condition ...
[2004-02-09 14:27:18.713] : CONDITION:
[ID=4][attribute=UTI][left_value=positive][type=STRING]
[2004-02-09 14:27:18.964] : Retrieving the rule action ...
[2004-02-09 14:27:19.745] : Retrieving the rule ...
[2004-02-09 14:27:20.306] : Retrieving the rule event ...
[2004-02-09 14:27:20.796] : Retrieving the rule condition ...
[2004-02-09 14:27:21.187] : CONDITION:
[ID=5][attribute=24CRCL_PL][left_value=POSITIVE][type=STRING]
[2004-02-09 14:27:21.377] : Retrieving the rule action ...
[2004-02-09 14:27:21.548] : Retrieving the rule ...
[2004-02-09 14:27:22.148] : Retrieving the rule event ...
[2004-02-09 14:27:22.489] : Retrieving the rule condition ...
[2004-02-09 14:27:22.639] : CONDITION:
[ID=6][attribute=24CRCL_PL][left_value=NEGATIVE][type=STRING]
[2004-02-09 14:27:22.93] : Retrieving the rule action ...
[2004-02-09 14:27:23.14] : Retrieving the schedule ...
[2004-02-09 14:27:23.671] : Checking if schedule [ID = 3] exists
...
[2004-02-09 14:27:23.811] : Schedule [ID = 3] exists.
[2004-02-09 14:27:23.861] : Retrieving the static rule set ...
[2004-02-09 14:27:24.021] : Retrieving the static rule ...
[2004-02-09 14:27:24.241] : Retrieving the rule action ...
[2004-02-09 14:27:24.542] : Retrieving the rule set ...
[2004-02-09 14:27:24.972] : Retrieving the rule ...
[2004-02-09 14:27:25.323] : Retrieving the rule event ...
[2004-02-09 14:27:25.724] : Retrieving the rule condition ...
[2004-02-09 14:27:25.984] : CONDITION:
[ID=7][attribute=ACR][left_value=20][type=DOUBLE]
[2004-02-09 14:27:26.184] : Retrieving the rule action ...
[2004-02-09 14:27:26.435] : Retrieving the rule ...
[2004-02-09 14:27:26.765] : Retrieving the rule event ...
[2004-02-09 14:27:27.266] : Retrieving the rule action ...
[2004-02-09 14:27:27.486] : Retrieving the rule ...
[2004-02-09 14:27:27.756] : Retrieving the rule event ...
[2004-02-09 14:27:28.508] : Retrieving the rule action ...
[2004-02-09 14:27:28.758] : Retrieving the rule ...
[2004-02-09 14:27:29.028] : Retrieving the rule event ...
[2004-02-09 14:27:29.429] : Retrieving the rule condition ...
[2004-02-09 14:27:29.809] : CONDITION:
[ID=10][attribute=ACR][left_value=200][type=DOUBLE]
[2004-02-09 14:27:29.99] : Retrieving the rule action ...
[2004-02-09 14:27:30.17] : Retrieving the schedule ...
[2004-02-09 14:27:30.41] : Checking if schedule [ID = 4] exists
...
[2004-02-09 14:27:30.861] : Schedule [ID = 4] exists.
[2004-02-09 14:27:30.921] : Retrieving the static rule set ...
[2004-02-09 14:27:31.101] : Retrieving the static rule ...
[2004-02-09 14:27:31.342] : Retrieving the rule action ...
[2004-02-09 14:27:31.552] : Retrieving the static rule ...

[2004-02-09 14:27:31.832] : Retrieving the rule action ...
[2004-02-09 14:27:32.183] : Retrieving the static rule ...
[2004-02-09 14:27:32.393] : Retrieving the rule action ...
[2004-02-09 14:27:32.623] : Retrieving the static rule ...
[2004-02-09 14:27:33.084] : Retrieving the rule action ...
[2004-02-09 14:27:33.365] : Retrieving the rule set ...
[2004-02-09 14:27:33.495] : Retrieving the rule ...
[2004-02-09 14:27:33.755] : Retrieving the rule event ...
[2004-02-09 14:27:34.186] : Retrieving the rule action ...
[2004-02-09 14:27:34.376] : Retrieving the rule ...
[2004-02-09 14:27:34.807] : Retrieving the rule event ...
[2004-02-09 14:27:35.257] : Retrieving the rule action ...
[2004-02-09 14:27:35.428] : Retrieving the schedule ...
[2004-02-09 14:27:35.968] : Checking if schedule [ID = 5] exists
...
[2004-02-09 14:27:36.088] : Schedule [ID = 5] exists.
[2004-02-09 14:27:36.189] : Retrieving the static rule set ...
[2004-02-09 14:27:36.339] : Retrieving the static rule ...
[2004-02-09 14:27:36.529] : Retrieving the rule action ...
[2004-02-09 14:27:36.769] : Retrieving the rule set ...
[2004-02-09 14:27:37.06] : Retrieving the rule ...
[2004-02-09 14:27:37.36] : Retrieving the rule event ...
[2004-02-09 14:27:37.781] : Retrieving the rule action ...
[2004-02-09 14:27:38.091] : Retrieving the rule set ...
[2004-02-09 14:27:38.352] : Number of Schedules: 5
[2004-02-09 14:27:38.382] : Number of Protocol Rules: 0
[2004-02-09 14:27:38.943] : Creating plan for Patient Name:
fn95857 sn25209 Patient ID: 21
[2004-02-09 14:27:53.243] : [start_time: 2004-02-09
14:27:38.973, end_time: 2005-02-08 14:27:38.973, interal:
31536000]
[2004-02-09 14:28:03.248] : [Rule: AUS1; State changed to:
READY]
[2004-02-09 14:28:08.775] : [start_time: 2004-02-09
14:28:03.508, end_time: 2004-02-09 14:29:03.508, interal: 60]
[2004-02-09 14:28:16.406] : [Rule: OIS1; State changed to:
READY]
[2004-02-09 14:28:20.392] : [start_time: 2004-02-09
14:28:16.547, end_time: 2004-02-09 14:29:16.547, interal: 60]
[2004-02-09 14:28:23.867] : [Rule: MAS1; State changed to:
READY]
[2004-02-09 14:28:31.849] : [start_time: 2004-02-09
14:28:24.027, end_time: 2004-02-09 14:29:24.027, interal: 0]
[2004-02-09 14:28:33.912] : [Rule: CMA1; State changed to:
READY]
[2004-02-09 14:28:37.417] : [start_time: 2004-02-09
14:28:34.042, end_time: 2004-02-09 14:29:34.042, interal: 60]
[2004-02-09 14:28:39.44] : [Rule: CMA2; State changed to: READY]
[2004-02-09 14:28:42.674] : [start_time: 2004-02-09 14:29:39.63,
end_time: 2004-02-09 14:29:39.63, interal: 60]
[2004-02-09 14:28:44.637] : [Rule: CMA3; State changed to:
READY]
[2004-02-09 14:28:47.691] : [start_time: 2004-02-09
14:28:44.767, end_time: 2004-02-09 14:28:44.767, interal:
2592000]
[2004-02-09 14:28:51.367] : [Rule: CMA4; State changed to:
READY]
[2004-02-09 14:28:56.304] : [start_time: 2004-02-09
14:28:51.507, end_time: 2004-02-09 14:29:51.507, interal: 60]
[2004-02-09 14:28:59.118] : [Rule: NPH1; State changed to:
READY]
[2004-02-09 14:29:54.918] : Adding the plan's schedule to
database.
[2004-02-09 14:29:56.721] : [Rule: P$21$1AUSAUS1; State
changed to: READY]
[2004-02-09 14:29:59.815] : [Rule: P$21$1AUSAUS1; State
changed to: ACTIVE]
[2004-02-09 14:29:59.835] : Adding the plan's schedule to
database.
[2004-02-09 14:30:01.888] : [Rule: P$21$1OISOIS1; State
changed to: READY]
[2004-02-09 14:30:02.649] : [Rule: P$21$1AUSAUS1; State
changed to: INACTIVE]
[2004-02-09 14:30:03.5] : [Rule: P$21$1AUSAUS1; State changed
to: FINISHED]
[2004-02-09 14:30:06.345] : [Rule: P$21$1OISOIS1; State
changed to: ACTIVE]
[2004-02-09 14:30:06.365] : Adding the plan's schedule to
database.
[2004-02-09 14:30:07.596] : [Rule: P$21$1MASMAS1; State
changed to: READY]
[2004-02-09 14:30:10.721] : [Rule: P$21$1MASMAS1; State
changed to: ACTIVE]
[2004-02-09 14:30:10.771] : Adding the plan's schedule to
database.
[2004-02-09 14:30:11.802] : [Rule: P$21$1CMACMA1; State
changed to: READY]
[2004-02-09 14:30:15.127] : [Rule: P$21$1CMACMA2; State
changed to: READY]
[2004-02-09 14:30:18.202] : [Rule: P$21$1CMACMA3; State
changed to: READY]
[2004-02-09 14:30:22.538] : [Rule: P$21$1CMACMA4; State
changed to: READY]
[2004-02-09 14:30:45.26] : Rule listener active ...
[2004-02-09 14:30:45.361] : Rule listener waiting ...
[2004-02-09 14:30:45.391] : Rule listener receiving data ...

APPENDIX

 304

G. TOPS Session for Executing the MAP
Patient Plan

[2004-07-19 12:23:53.565] : TOPS System Execution Log: Session
Starting at 2004-07-19 12:23:52.243
[2004-07-19 12:23:53.675] : ------------------------------------

[2004-07-19 12:24:19.683] : Getting confirmation to create the
TOPS database objects.
[2004-07-19 12:24:22.927] : Listener active ...
[2004-07-19 12:24:24.7] : Waiting ...
[2004-07-19 12:27:26.922] : Analysing command: create ...
[2004-07-19 12:27:26.932] : Executing command: create(plan)
[2004-07-19 12:28:49.731] : Retrieving the protocol spec ...
[2004-07-19 12:29:21.777] : Creating plan for patient [Alex
Ferguson, ID: 81]
[2004-07-19 12:29:25.082] : [start_time: 2004-07-19
12:29:21.887, end_time: 2004-07-19 12:30:21.887, interal: 60]
[2004-07-19 12:29:33.234] : [Rule: AUS1; State changed to:
READY]
[2004-07-19 12:30:42.163] : Adding the plan's schedule to
database.
[2004-07-19 12:30:43.435] : Adding the plan's schedule to
database.
[2004-07-19 12:30:44.316] : Adding the plan's schedule to
database.
[2004-07-19 12:30:45.067] : Adding the plan's schedule to
database.
[2004-07-19 12:30:45.958] : Adding the plan's schedule to
database.
[2004-07-19 12:30:46.94] : [Rule: PL$81$1$main$AUS1; State
changed to: READY]
[2004-07-19 12:30:49.644] : [Rule: PL$81$1$main$AUS1; State
changed to: ACTIVE]
[2004-07-19 12:31:12.877] : Activated ...
[2004-07-19 12:31:12.937] : Waiting ...
[2004-07-19 12:31:12.977] : Receiving data ...
[2004-07-19 12:31:13.157] : Received |--
>[PL$81$1$main$AUS1%TEST_ORDER*81|DSU,|*%]
[2004-07-19 12:31:13.338] : [PL$81$1$main$AUS1] executing
...TEST_ORDER (81|DSU,|)
[2004-07-19 12:31:14.569] : [Rule: PL$81$1$main$AUS1; State
changed to: FINISHED]
[2004-07-19 12:31:25.705] : Activated ...
[2004-07-19 12:31:25.705] : Waiting ...
[2004-07-19 12:31:25.755] : Receiving data ...
[2004-07-19 12:31:25.816] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|81|8|2004-07-19
12:31:23.0|*%]
[2004-07-19 12:31:25.996] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|81|8|2004-07-19 12:31:23.0|)
[2004-07-19 12:31:26.136] : [LabSimulator Started ...]
[2004-07-19 12:31:27.428] : Activated ...
[2004-07-19 12:31:27.498] : Waiting ...
[2004-07-19 12:31:27.598] : Receiving data ...
[2004-07-19 12:31:27.638] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|81|8|2004-07-19
12:31:23.0|*%]
[2004-07-19 12:31:28.68] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|81|8|2004-07-19 12:31:23.0|)
[2004-07-19 12:31:28.75] : [LabSimulator Started ...]
[2004-07-19 12:31:32.025] : [Connection closed]
[2004-07-19 12:31:32.055] : [Connection closed]
[2004-07-19 12:31:33.266] : Activated ...
[2004-07-19 12:31:33.276] : Waiting ...
[2004-07-19 12:31:33.346] : Receiving data ...
[2004-07-19 12:31:33.396] : Received |--
>[PL$81$1$OIS1%TEST_ORDER*81|UTI,|*%]
[2004-07-19 12:31:33.487] : Activated ...
[2004-07-19 12:31:33.487] : Waiting ...
[2004-07-19 12:31:33.617] : Activated ...
[2004-07-19 12:31:33.647] : Waiting ...
[2004-07-19 12:31:33.707] : Receiving data ...
[2004-07-19 12:31:33.747] : Received |--
>[PL$61$1$OIS1%TEST_ORDER*61|UTI,|*%]
[2004-07-19 12:31:33.827] : Activated ...
[2004-07-19 12:31:33.827] : Waiting ...
[2004-07-19 12:31:33.907] : Receiving data ...
[2004-07-19 12:31:33.927] : Received |--
>[PL$81$1$AUS2%PATIENT_STATE*81,other_infections_screening,*%]
[2004-07-19 12:31:33.967] : Receiving data ...
[2004-07-19 12:31:34.007] : Received |--
>[PL$81$1$OIS1%TEST_ORDER*81|UTI,|*%]
[2004-07-19 12:31:34.128] : Activated ...
[2004-07-19 12:31:34.148] : Waiting ...
[2004-07-19 12:31:34.268] : Activated ...
[2004-07-19 12:31:34.308] : Waiting ...
[2004-07-19 12:31:34.428] : Receiving data ...
[2004-07-19 12:31:34.468] : Received |--
>[PL$61$1$OIS1%TEST_ORDER*61|UTI,|*%]
[2004-07-19 12:31:34.518] : Receiving data ...
[2004-07-19 12:31:34.598] : Activated ...
[2004-07-19 12:31:34.678] : Received |--
>[PL$81$1$AUS2%PATIENT_STATE*81,other_infections_screening,*%]
[2004-07-19 12:31:34.768] : Waiting ...
[2004-07-19 12:31:34.869] : Activated ...
[2004-07-19 12:31:34.989] : Receiving data ...
[2004-07-19 12:31:35.029] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*81|10|81|1.0|2004-07-19
12:31:26.0|*%]
[2004-07-19 12:31:35.129] : Waiting ...
[2004-07-19 12:31:35.189] : Receiving data ...
[2004-07-19 12:31:35.239] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*82|10|81|1.0|2004-07-19
12:31:28.0|*%]
[2004-07-19 12:31:35.379] : [PL$81$1$OIS1] executing
...TEST_ORDER (81|UTI,|)
[2004-07-19 12:31:35.55] : [PL$61$1$OIS1] executing
...TEST_ORDER (61|UTI,|)

[2004-07-19 12:31:35.72] : [PL$81$1$AUS2] executing
...PATIENT_STATE (81,other_infections_screening,)
[2004-07-19 12:31:35.89] : [PL$81$1$OIS1] executing
...TEST_ORDER (81|UTI,|)
[2004-07-19 12:31:36.16] : [PL$61$1$OIS1] executing
...TEST_ORDER (61|UTI,|)
[2004-07-19 12:31:36.331] : [PL$81$1$AUS2] executing
...PATIENT_STATE (81,other_infections_screening,)
[2004-07-19 12:31:36.501] : [NEW_RESULT_ARRIVAL] is executing
RESULT (81|10|81|1.0|2004-07-19 12:31:26.0|)
[2004-07-19 12:31:36.801] : [NEW_RESULT_ARRIVAL] is executing
RESULT (82|10|81|1.0|2004-07-19 12:31:28.0|)
[2004-07-19 12:31:41.618] : [Connection closed]
[2004-07-19 12:31:41.819] : [Connection closed]
[2004-07-19 12:31:43.03] : [Connection closed]
[2004-07-19 12:32:26.523] : Activated ...
[2004-07-19 12:32:26.523] : Waiting ...
[2004-07-19 12:32:26.633] : Receiving data ...
[2004-07-19 12:32:26.683] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|82|9|2004-07-19
12:32:22.0|*%]
[2004-07-19 12:32:26.833] : Activated ...
[2004-07-19 12:32:26.833] : Waiting ...
[2004-07-19 12:32:26.984] : Receiving data ...
[2004-07-19 12:32:27.024] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|82|9|2004-07-19
12:32:22.0|*%]
[2004-07-19 12:32:27.654] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|82|9|2004-07-19 12:32:22.0|)
[2004-07-19 12:32:27.705] : [LabSimulator Started ...]
[2004-07-19 12:32:28.095] : [Connection closed]
[2004-07-19 12:32:28.215] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|82|9|2004-07-19 12:32:22.0|)
[2004-07-19 12:32:28.265] : [LabSimulator Started ...]
[2004-07-19 12:32:28.476] : [Connection closed]
[2004-07-19 12:32:29.097] : Activated ...
[2004-07-19 12:32:29.107] : Waiting ...
[2004-07-19 12:32:29.197] : Receiving data ...
[2004-07-19 12:32:29.287] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|83|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:29.407] : Activated ...
[2004-07-19 12:32:29.447] : Waiting ...
[2004-07-19 12:32:29.507] : Receiving data ...
[2004-07-19 12:32:29.547] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|83|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:30.158] : Activated ...
[2004-07-19 12:32:30.168] : Waiting ...
[2004-07-19 12:32:30.248] : Receiving data ...
[2004-07-19 12:32:30.368] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|84|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:30.428] : Activated ...
[2004-07-19 12:32:30.439] : Waiting ...
[2004-07-19 12:32:30.549] : Receiving data ...
[2004-07-19 12:32:30.589] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|84|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:31.059] : Activated ...
[2004-07-19 12:32:31.099] : Waiting ...
[2004-07-19 12:32:31.16] : Receiving data ...
[2004-07-19 12:32:31.21] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|85|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:31.29] : Activated ...
[2004-07-19 12:32:31.32] : Receiving data ...
[2004-07-19 12:32:31.32] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|85|9|2004-07-19
12:32:23.0|*%]
[2004-07-19 12:32:31.43] : Waiting ...
[2004-07-19 12:32:32.121] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|83|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:32.171] : [LabSimulator Started ...]
[2004-07-19 12:32:32.341] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|83|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:32.401] : [LabSimulator Started ...]
[2004-07-19 12:32:32.461] : [Connection closed]
[2004-07-19 12:32:32.642] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|84|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:32.682] : [Connection closed]
[2004-07-19 12:32:32.782] : [LabSimulator Started ...]
[2004-07-19 12:32:32.952] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|84|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:33.002] : [LabSimulator Started ...]
[2004-07-19 12:32:33.062] : [Connection closed]
[2004-07-19 12:32:33.303] : [Connection closed]
[2004-07-19 12:32:33.573] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|85|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:33.633] : [LabSimulator Started ...]
[2004-07-19 12:32:33.863] : [Connection closed]
[2004-07-19 12:32:33.984] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|85|9|2004-07-19 12:32:23.0|)
[2004-07-19 12:32:34.044] : [LabSimulator Started ...]
[2004-07-19 12:32:34.264] : [Connection closed]
[2004-07-19 12:32:39.181] : [Connection closed]
[2004-07-19 12:32:39.922] : Activated ...
[2004-07-19 12:32:39.922] : Waiting ...
[2004-07-19 12:32:40.012] : Receiving data ...
[2004-07-19 12:32:40.052] : Received |--
>[PL$81$1$OIS3%PATIENT_STATE*81,annual_urine_screening,*%]
[2004-07-19 12:32:40.132] : Activated ...
[2004-07-19 12:32:40.132] : Waiting ...
[2004-07-19 12:32:40.223] : Receiving data ...
[2004-07-19 12:32:40.263] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*83|11|82|1.0|2004-07-19
12:32:27.0|*%]

APPENDIX

 305

[2004-07-19 12:32:40.573] : [Connection closed]
[2004-07-19 12:32:41.324] : Activated ...
[2004-07-19 12:32:41.364] : Waiting ...
[2004-07-19 12:32:41.765] : Activated ...
[2004-07-19 12:32:41.775] : Waiting ...
[2004-07-19 12:32:41.775] : Receiving data ...
[2004-07-19 12:32:41.775] : Received |--
>[PL$81$1$OIS2%TEST_ORDER*81|24CRCL_PL,|*%]
[2004-07-19 12:32:41.955] : Receiving data ...
[2004-07-19 12:32:42.005] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*84|11|82|0.0|2004-07-19
12:32:28.0|*%]
[2004-07-19 12:32:43.277] : [PL$81$1$OIS3] executing
...PATIENT_STATE (81,annual_urine_screening,)
[2004-07-19 12:32:43.437] : [NEW_RESULT_ARRIVAL] is executing
RESULT (83|11|82|1.0|2004-07-19 12:32:27.0|)
[2004-07-19 12:32:43.898] : [NEW_RESULT_ARRIVAL] is executing
RESULT (84|11|82|0.0|2004-07-19 12:32:28.0|)
[2004-07-19 12:32:44.779] : Activated ...
[2004-07-19 12:32:44.849] : Waiting ...
[2004-07-19 12:32:44.939] : Receiving data ...
[2004-07-19 12:32:44.979] : Received |--
>[PL$61$1$OIS2%TEST_ORDER*61|24CRCL_PL,|*%]
[2004-07-19 12:32:45.039] : Activated ...
[2004-07-19 12:32:45.039] : Waiting ...
[2004-07-19 12:32:45.18] : Receiving data ...
[2004-07-19 12:32:45.18] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*85|11|83|0.0|2004-07-19
12:32:32.0|*%]
[2004-07-19 12:32:45.58] : Activated ...
[2004-07-19 12:32:45.58] : Waiting ...
[2004-07-19 12:32:45.65] : Receiving data ...
[2004-07-19 12:32:45.71] : Received |--
>[PL$61$1$OIS3%PATIENT_STATE*61,annual_urine_screening,*%]
[2004-07-19 12:32:45.791] : Activated ...
[2004-07-19 12:32:45.841] : Waiting ...
[2004-07-19 12:32:45.881] : Receiving data ...
[2004-07-19 12:32:45.891] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*86|11|83|1.0|2004-07-19
12:32:32.0|*%]
[2004-07-19 12:32:46.792] : Activated ...
[2004-07-19 12:32:46.792] : Waiting ...
[2004-07-19 12:32:46.882] : Receiving data ...
[2004-07-19 12:32:46.932] : Received |--
>[PL$61$1$OIS3%PATIENT_STATE*61,annual_urine_screening,*%]
[2004-07-19 12:32:47.022] : Activated ...
[2004-07-19 12:32:47.032] : Waiting ...
[2004-07-19 12:32:47.143] : Receiving data ...
[2004-07-19 12:32:47.183] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*87|11|84|1.0|2004-07-19
12:32:32.0|*%]
[2004-07-19 12:32:47.473] : [PL$81$1$OIS2] executing
...TEST_ORDER (81|24CRCL_PL,|)
[2004-07-19 12:32:47.673] : Activated ...
[2004-07-19 12:32:47.713] : Waiting ...
[2004-07-19 12:32:47.763] : Receiving data ...
[2004-07-19 12:32:47.803] : Received |--
>[PL$81$1$OIS3%PATIENT_STATE*81,annual_urine_screening,*%]
[2004-07-19 12:32:47.894] : Activated ...
[2004-07-19 12:32:47.894] : Waiting ...
[2004-07-19 12:32:48.014] : Receiving data ...
[2004-07-19 12:32:48.064] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*88|11|85|1.0|2004-07-19
12:32:33.0|*%]
[2004-07-19 12:32:49.155] : Activated ...
[2004-07-19 12:32:49.155] : Waiting ...
[2004-07-19 12:32:49.246] : Receiving data ...
[2004-07-19 12:32:49.286] : Received |--
>[PL$61$1$OIS3%PATIENT_STATE*61,annual_urine_screening,*%]
[2004-07-19 12:32:49.416] : Activated ...
[2004-07-19 12:32:49.416] : Waiting ...
[2004-07-19 12:32:49.516] : Receiving data ...
[2004-07-19 12:32:49.546] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*89|11|84|1.0|2004-07-19
12:32:32.0|*%]
[2004-07-19 12:32:49.816] : Activated ...
[2004-07-19 12:32:49.856] : Waiting ...
[2004-07-19 12:32:50.017] : Receiving data ...
[2004-07-19 12:32:50.077] : Received |--
>[PL$81$1$OIS2%TEST_ORDER*81|24CRCL_PL,|*%]
[2004-07-19 12:32:50.187] : Activated ...
[2004-07-19 12:32:50.187] : Waiting ...
[2004-07-19 12:32:50.267] : Receiving data ...
[2004-07-19 12:32:50.317] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*90|11|85|0.0|2004-07-19
12:32:34.0|*%]
[2004-07-19 12:32:51.168] : [PL$61$1$OIS2] executing
...TEST_ORDER (61|24CRCL_PL,|)
[2004-07-19 12:32:51.349] : [PL$61$1$OIS3] executing
...PATIENT_STATE (61,annual_urine_screening,)
[2004-07-19 12:32:51.639] : [NEW_RESULT_ARRIVAL] is executing
RESULT (85|11|83|0.0|2004-07-19 12:32:32.0|)
[2004-07-19 12:32:51.809] : [PL$61$1$OIS3] executing
...PATIENT_STATE (61,annual_urine_screening,)
[2004-07-19 12:32:51.979] : [NEW_RESULT_ARRIVAL] is executing
RESULT (87|11|84|1.0|2004-07-19 12:32:32.0|)
[2004-07-19 12:32:52.16] : [NEW_RESULT_ARRIVAL] is executing
RESULT (86|11|83|1.0|2004-07-19 12:32:32.0|)
[2004-07-19 12:32:52.34] : [PL$81$1$OIS3] executing
...PATIENT_STATE (81,annual_urine_screening,)
[2004-07-19 12:32:52.67] : [NEW_RESULT_ARRIVAL] is executing
RESULT (88|11|85|1.0|2004-07-19 12:32:33.0|)
[2004-07-19 12:32:52.981] : [PL$61$1$OIS3] executing
...PATIENT_STATE (61,annual_urine_screening,)
[2004-07-19 12:32:53.161] : [NEW_RESULT_ARRIVAL] is executing
RESULT (89|11|84|1.0|2004-07-19 12:32:32.0|)
[2004-07-19 12:32:53.351] : [PL$81$1$OIS2] executing
...TEST_ORDER (81|24CRCL_PL,|)
[2004-07-19 12:32:53.682] : [NEW_RESULT_ARRIVAL] is executing
RESULT (90|11|85|0.0|2004-07-19 12:32:34.0|)
[2004-07-19 12:33:00.892] : [Connection closed]
[2004-07-19 12:33:01.093] : [Connection closed]
[2004-07-19 12:33:04.107] : [Connection closed]
[2004-07-19 12:33:04.497] : [Connection closed]
[2004-07-19 12:33:04.698] : [Connection closed]
[2004-07-19 12:33:05.128] : [Connection closed]
[2004-07-19 12:33:05.509] : [Connection closed]
[2004-07-19 12:33:05.709] : [Connection closed]

[2004-07-19 12:33:05.98] : [Connection closed]
[2004-07-19 12:33:07.221] : [Connection closed]
[2004-07-19 12:33:08.243] : [Connection closed]
[2004-07-19 12:33:08.363] : [Connection closed]
[2004-07-19 12:34:04.704] : Activated ...
[2004-07-19 12:34:04.724] : Waiting ...
[2004-07-19 12:34:04.824] : Receiving data ...
[2004-07-19 12:34:04.894] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|86|10|2004-07-19
12:33:59.0|*%]
[2004-07-19 12:34:04.974] : Activated ...
[2004-07-19 12:34:04.984] : Waiting ...
[2004-07-19 12:34:05.065] : Receiving data ...
[2004-07-19 12:34:05.175] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|86|10|2004-07-19
12:33:59.0|*%]
[2004-07-19 12:34:05.876] : Activated ...
[2004-07-19 12:34:05.886] : Waiting ...
[2004-07-19 12:34:06.016] : Receiving data ...
[2004-07-19 12:34:06.076] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|87|10|2004-07-19
12:33:59.0|*%]
[2004-07-19 12:34:06.166] : Activated ...
[2004-07-19 12:34:06.186] : Waiting ...
[2004-07-19 12:34:06.316] : Receiving data ...
[2004-07-19 12:34:06.356] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*61|87|10|2004-07-19
12:33:59.0|*%]
[2004-07-19 12:34:07.188] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|86|10|2004-07-19 12:33:59.0|)
[2004-07-19 12:34:07.248] : [LabSimulator Started ...]
[2004-07-19 12:34:07.538] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|86|10|2004-07-19 12:33:59.0|)
[2004-07-19 12:34:07.558] : [Connection closed]
[2004-07-19 12:34:07.658] : [LabSimulator Started ...]
[2004-07-19 12:34:07.919] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|87|10|2004-07-19 12:33:59.0|)
[2004-07-19 12:34:07.959] : [Connection closed]
[2004-07-19 12:34:08.069] : [LabSimulator Started ...]
[2004-07-19 12:34:08.229] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (61|87|10|2004-07-19 12:33:59.0|)
[2004-07-19 12:34:08.289] : [LabSimulator Started ...]
[2004-07-19 12:34:08.429] : [Connection closed]
[2004-07-19 12:34:08.6] : [Connection closed]
[2004-07-19 12:34:09.551] : Activated ...
[2004-07-19 12:34:09.561] : Waiting ...
[2004-07-19 12:34:09.651] : Receiving data ...
[2004-07-19 12:34:09.701] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|88|10|2004-07-19
12:34:00.0|*%]
[2004-07-19 12:34:09.811] : Activated ...
[2004-07-19 12:34:09.821] : Waiting ...
[2004-07-19 12:34:09.972] : Receiving data ...
[2004-07-19 12:34:10.022] : Received |--
>[ORDER_EVENT_TRIGGER%TEST_ORDER_EVENT*81|88|10|2004-07-19
12:34:00.0|*%]
[2004-07-19 12:34:11.684] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|88|10|2004-07-19 12:34:00.0|)
[2004-07-19 12:34:11.744] : [LabSimulator Started ...]
[2004-07-19 12:34:11.985] : [Connection closed]
[2004-07-19 12:34:12.155] : [ORDER_EVENT_TRIGGER] is executing
TEST_ORDER_EVENT (81|88|10|2004-07-19 12:34:00.0|)
[2004-07-19 12:34:12.225] : [LabSimulator Started ...]
[2004-07-19 12:34:12.375] : [Connection closed]
[2004-07-19 12:34:13.497] : [Connection closed]
[2004-07-19 12:34:14.328] : [Connection closed]
[2004-07-19 12:34:15.179] : [Connection closed]
[2004-07-19 12:34:16.351] : [Connection closed]
[2004-07-19 12:34:16.741] : [Connection closed]
[2004-07-19 12:34:18.334] : Activated ...
[2004-07-19 12:34:18.344] : Waiting ...
[2004-07-19 12:34:18.474] : Receiving data ...
[2004-07-19 12:34:18.524] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*91|8|86|23.12858|2004-07-19
12:34:07.0|*%]
[2004-07-19 12:34:18.714] : Activated ...
[2004-07-19 12:34:18.724] : Waiting ...
[2004-07-19 12:34:18.794] : Receiving data ...
[2004-07-19 12:34:18.864] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*92|8|86|-0.8134979999999999|2004-07-
19 12:34:07.0|*%]
[2004-07-19 12:34:19.515] : Activated ...
[2004-07-19 12:34:19.535] : Waiting ...
[2004-07-19 12:34:19.615] : Receiving data ...
[2004-07-19 12:34:19.686] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*93|8|87|18.850575|2004-07-19
12:34:08.0|*%]
[2004-07-19 12:34:20.427] : Activated ...
[2004-07-19 12:34:20.447] : Waiting ...
[2004-07-19 12:34:20.557] : Receiving data ...
[2004-07-19 12:34:20.617] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*94|8|87|12.073729|2004-07-19
12:34:08.0|*%]
[2004-07-19 12:34:21.408] : [NEW_RESULT_ARRIVAL] is executing
RESULT (91|8|86|23.12858|2004-07-19 12:34:07.0|)
[2004-07-19 12:34:21.568] : [NEW_RESULT_ARRIVAL] is executing
RESULT (92|8|86|-0.8134979999999999|2004-07-19 12:34:07.0|)
[2004-07-19 12:34:21.749] : [NEW_RESULT_ARRIVAL] is executing
RESULT (93|8|87|18.850575|2004-07-19 12:34:08.0|)
[2004-07-19 12:34:21.909] : [NEW_RESULT_ARRIVAL] is executing
RESULT (94|8|87|12.073729|2004-07-19 12:34:08.0|)
[2004-07-19 12:34:22.72] : Activated ...
[2004-07-19 12:34:22.74] : Waiting ...
[2004-07-19 12:34:22.79] : Receiving data ...
[2004-07-19 12:34:22.92] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*95|8|88|10.242782|2004-07-19
12:34:11.0|*%]
[2004-07-19 12:34:23.681] : Activated ...
[2004-07-19 12:34:23.701] : Waiting ...
[2004-07-19 12:34:23.751] : Receiving data ...
[2004-07-19 12:34:23.872] : Received |--
>[NEW_RESULT_ARRIVAL%RESULT*96|8|88|0.7299559999999999|2004-07-
19 12:34:12.0|*%]
[2004-07-19 12:34:24.803] : [NEW_RESULT_ARRIVAL] is executing
RESULT (95|8|88|10.242782|2004-07-19 12:34:11.0|)

APPENDIX

 306

H. The BNF Syntax of TOPSQL

H.1. The BNF Syntax of Manipulation Operations in TOPSQL
<TOPSQL> ::= <CREATEcmd> | <ADDcmd> | <DELETEcmd> | <EDITcmd> |
<ACTIVATEcmd> | <DEACTIVATEcmd> | <STOPcmd> | <DISPLAYcmd> | <LISTcmd>
| <TOPSQL_query>
<CREATEcmd> ::= CREATE [OR REPLACE] <tops-object-type> [FOR
<patientDef>] AS “(“<PLANdef>“)”
<INSERTcmd> ::= INSERT <tops-object-type> <tops-object-name> <tops-
object-type> “(“ <PLANdef>“)” | <tops-object-name>
<PLANdef> ::= <eventDef> | <actionDef> | <conditionDef> | <ruleDef> |
<scheduleDef> | <protocolDef> | <categoryDef> | <patientDef>
<eventDef> ::= <PLAN event>
<actionDef> ::= <PLAN action>
<conditionDef> ::= <PLAN condition>
<ruleDef> ::= <PLAN rule>
<scheduleDef> ::= <PLAN schedule>
<protocolDef> ::= <PLAN protocol>
<categoryDef> ::= <TOPS category>
<patientDef> ::= <patient-id> | <patient-specification>
<patient-id> ::= <name> | <mrn>
<patient-specification> ::= <TOPS specification patient>
<DELETEcmd> ::= DELETE <tops-object-type> <tops-object-name>
<EDITcmd> ::= EDIT <tops-object-type> <tops-object-name>
<ACTIVATEcmd> ::= ACTIVATE <tops-object-type> <tops-object-name>
<DEACTIVATEcmd> ::= DEACTIVATE <tops-object-type> <tops-object-name>
<STOPcmd> ::= STOP <tops-object-type> <tops-object-name>
<DISPLAYcmd> ::= DISPLAY <tops-object-type> <tops-object-name>
<LISTcmd> ::= LIST <tops-object-type>
(see Appendix H.2 for the expansion of <TOPSQL_query>)

H.2. The BNF Syntax of Queries in TOPSQL

<TOPSQL-query> ::= SELECT <select-item> [SPEC] {FOR | FROM | IN} <reference-
item> WHERE [TARGET: <condition-spec>; SOURCE:] <condition-spec>
<select-item> ::= {<target-obj-type> | <domain-dependent-obj-type>}
<reference-item> :: = {<source-ref-obj-type> | <domain-dependent-ref-obj-
type>}
<target-obj-type> ::= EVENT | CONDITION | ACTION | RULE | SCHEDULE | PLAN |
PROTOCOL| CATEGORY
<domain-depenedent-ref-obj-type> ::= TEST| RESULT | TEST-ORDER | PATIENT | …
<source-ref-obj-type> ::= RULE | SCHEDULE | PLAN | PROTOCOL| | CATEGORY
<condition-spec> ::=<condition>|<time-interval>
<condition> ::= <SQL-condition>
<time-interval>::=<timestamp>,<timestamp>
<timestamp>::=<year>-<month>-dayOfMonth><blankspace><hour>:<minute>:<second>

APPENDIX

 307

I. TOPSQL Queries on the MAP in TOPS

I.1. Existing categories

Query List all categories in TOPS

TOPSQL Statement LIST CATEGORY

TOPS:\>list category
Executing command: list(category)
command code: 4

LIST of CATEGORIES

MA#1
cat1#21
cat2#22

end LIST.

TOPS:\>

The listing above shows that there are currently three categories defined in TOPS: the MA
(microalbuminuria) category whose ID is 1, which is appended to the category name after
the hash (#) character, the cat1 and cat2 categories, which are sample categories created for
testing. The MA category was created in the case study for the microalbuminuria protocol.

APPENDIX

 308

I.2. Displaying the MAP Specification in TOPSQL
Description Displays the complete protocol for the category, MA (the microalbuminuria

category)
TOPSSQL statement DISPLAY protocol MA

TOPS starting ...
Initialising ...
Creating log files ...
Setting TOPS system attributes ...
host name or IP address --->ibmt20
client name or IP address --->ibmt20
database --->tops
database url: jdbc:oracle:thin:@ibmt20:1521:TOPS
Initialisation complete.

TOPS Command Line Facility, version 1.0.
Copyright(C) 2000-2003, K. Dube
Computer Science Department, School of Computing, DIT, Ireland.
Started at: Fri Jul 16 12:09:06 BST 2004
TOPS:\>display protocol MA
Executing command: display(protocol,MA)
command code: 9
Retrieving the protocol spec ...
Protocol spec retrieval complete.
schedules: 4
protocol dynamic rules: 9
protocol static rules: 1

PROTOCOL_NAME: MAP;
DESCRIPTION: This is a protocol for the diagnosis and management
of microalbumin
uria in diabetes patients;
DATE_CREATED: 2004-07-15 21:20:22.0;
CREATOR_ID: 1;
CATEGORY_ID: 1;
BEGIN SCHEDULE_SET
BEGIN SCHEDULE;
SCHEDULE_NAME: AUS;
DESCRIPTION: This is a microalbuminuria protocol schedule called
AUS for Annual
dipstick Urine Screening;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: AUS2;
DESCRIPTION: no description;
ON: result_arrival('DSU');
IF: DSU = 1.0;
DO: PATIENT_STATE('other_infections_screening');
RULE_NAME: AUS3;
DESCRIPTION: no description;
ON: result_arrival('DSU');
IF: DSU = 0.0;
DO: PATIENT_STATE('microalbuminuria_screening');
END SCHEDULE_RULE_SET;
END SCHEDULE;
BEGIN SCHEDULE;
SCHEDULE_NAME: OIS;
DESCRIPTION: This is a microalbuminuria protocol schedule called
OIS for SCREENI
NG OTHER INFECTIONS in the diagnosis of microalbuminuria and
proteinuria;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: OIS2;
DESCRIPTION: no description;
ON: result_arrival('UTI');
IF: UTI = 0.0;
DO: ORDER_TEST('24CRCL_PL');
RULE_NAME: OIS3;
DESCRIPTION: no description;
ON: result_arrival('UTI');
IF: UTI = 1.0;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: OIS4;
DESCRIPTION: no description;
ON: result_arrival('24CRCL_PL');
IF: 24CRCL_PL = 1.0;
DO: PATIENT_STATE('nephrology_referral');
RULE_NAME: 0IS5;
DESCRIPTION: no description;
ON: result_arrival('24CRCL_PL');
IF: 24CRCL_PL = 0.0;
DO: PATIENT_STATE('annual_urine_screening');
END SCHEDULE_RULE_SET;
END SCHEDULE;
BEGIN SCHEDULE;
SCHEDULE_NAME: MAS;
DESCRIPTION: This is a microalbuminuria protocol schedule called
MAS for the scr
eening of microalbuminuria;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: MAS2;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR > 20.0;
DO:
ADD_RULE('MAS2','ADD_RULE*MAS2/STATIC/MAS2a|null|time_rule_added
|0|155520000
00|7776000000|ORDER_TEST;''ACR'';|rule orders ACR test during
the next 6 month p
eriod/*');
RULE_NAME: MAS3;
DESCRIPTION: no description;

ON: result_arrival('ACR');
IF: ACR > 20.0;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: MAS4;
DESCRIPTION: no description;
ON: result_arrival('ACR');
DO: CHECK_2OF3_ACR(null);
RULE_NAME: MAS5;
DESCRIPTION: no description;
ON: RESULT_ARRIVAL('ACR');
IF: ACR > 200.0;
DO: PATIENT_STATE('nephrology_referral');
END SCHEDULE_RULE_SET;
END SCHEDULE;
BEGIN SCHEDULE;
SCHEDULE_NAME: CMA;
DESCRIPTION: This is a microalbuminuria protocol schedule named
CMA for confirme
d microalbuminuria û handles treatment and control of
microalbuminuria;
BEGIN SCHEDULE_RULE_SET;
RULE_NAME: CMA5;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR < 20.0;
DO: PATIENT_STATE('annual_urine_screening');
RULE_NAME: CMA6;
DESCRIPTION: no description;
ON: result_arrival('ACR');
IF: ACR > 200.0;
DO: PATIENT_STATE('nephrology_referral');
END SCHEDULE_RULE_SET;
END SCHEDULE;
END SCHEDULE_SET
BEGIN PROTOCOL_RULE_SETBEGIN STATIC_RULE_SET;
RULE_NAME: AUS1;
DESCRIPTION: no description;
ZERO_TIME_POINT: annual_screening_start_date;
START_DATE: 0;
END_TIME: 60000;
INTERVAL: 60000;
DO: ORDER_TEST('DSU');
END STATIC_RULE_SET;
BEGIN DYNAMIC_RULE_SET;
RULE_NAME: OIS1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'other_infections_screening';
DO: ORDER_TEST('UTI');
RULE_NAME: MAS1a;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'microalbuminuria_screening';
DO: ORDER_TEST('ACR');
RULE_NAME: MAS1b;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'microalbuminuria_screening';
DO: ORDER_TEST('SCR');
RULE_NAME: CMA1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: SUGGEST('optimisation_of_glycaemic_control');
RULE_NAME: CMA2;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: ORDER_TEST('BP');
RULE_NAME: CMA3;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: PRESCRIBE_MEDICATION('ACE_inhibitor');
RULE_NAME: CMA4a;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: ORDER_TEST('ACR');
RULE_NAME: CMA4b;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: ORDER_TEST('SCR');
RULE_NAME: NPH1;
DESCRIPTION: no description;
ON: state_change();
IF: STATE_NAME = 'confirmed_microalbuminuria';
DO: SEND_REFERRAL_NOTE('Nephrologist>Please examine this
diabetic patient for pr
oteinuria.');
END DYNAMIC_RULE_SET;
END PROTOCOL_RULE_SET
END PROTOCOL.

TOPS:\>

APPENDIX

 309

I.3. Existing patients in TOPS

Query List all patients in TOPS

TOPSQL Statement LIST PATIENT(S)

TOPS:\>list patients
Executing command: list(patients)
command code: 4

PATIENTS in TOPS

<<surname, firstname, patient_id, category_id>>
Dube, Kuda, 1, 1
Dube, Ano, 2, 1
Nhakwi, Sando, 21, 1
Moyo, Jabu, 41, 1
Banks, Frank, 42, 1
Doe, Mary, 61, 1
Ferguson, Alfred, 81, 1

END PATIENT LIST

TOPS:\>

The above query lists all patients who are currently in TOPS disregarding the status
of their plans. The query results also include the patient’s TOPS ID and the ID of the
category to which the patient currently belongs.

APPENDIX

 310

I.4. Existing plans in TOPS

Query List existing plans in TOPS

TOPSQL Statement LIST PLAN(S)

TOPS:\>list plans
Executing command: list(plans)
command code: 4

LIST of existing PLANS

PL$1$1$, id: 1, status: STOPPED
PL$2$1$, id: 2, status: STOPPED
PL$21$1$, id: 21, status: STOPPED
PL$41$1$, id: 41, status: STOPPED
PL$42$1$, id: 42, status: STOPPED
PL$61$1$, id: 61, status: ACTIVE
PL$81$1$, id: 81, status: ACTIVE

end PLAN list

TOPS:\>

In TOPS, patient plan names are automatically generated and have the general form:
PL$<patient-id>$<category-id>$. For example, in the above listing, PL$21$1$ is the
name of a patient plan belonging to the patient whose TOPS ID is 21 and is in the
category whose ID is 1.

APPENDIX

 311

I.5. The composition of a plan for a given patient

Query For a given patient, show the current plan

TOPSQL Statement SELECT plan FOR patient WHERE patient.id = k

TOPS:\>query
Executing command: query()
command code: 13
QUERY:\> --->select plan for patient where patient_id=41
processing query ...
launching specialised query handler ...
Source cond: PATIENT_ID=41
Target cond:
Executing PLAN query ...
Plan ID: 41

PLAN [PL$41$1$] for PATIENT id [41]

[Rule nn ---> id, name, type]
Rule 1 ---> 81, PL$41$1$AUS2, DYNAMIC
Rule 2 ---> 82, PL$41$1$AUS3, DYNAMIC
Rule 3 ---> 83, PL$41$1$OIS2, DYNAMIC
Rule 4 ---> 84, PL$41$1$OIS3, DYNAMIC
Rule 5 ---> 85, PL$41$1$OIS4, DYNAMIC
Rule 6 ---> 86, PL$41$1$0IS5, DYNAMIC
Rule 7 ---> 87, PL$41$1$MAS2, DYNAMIC
Rule 8 ---> 88, PL$41$1$MAS3, DYNAMIC
Rule 9 ---> 89, PL$41$1$MAS4, DYNAMIC
Rule 10 ---> 90, PL$41$1$MAS5, DYNAMIC
Rule 11 ---> 91, PL$41$1$CMA5, DYNAMIC
Rule 12 ---> 92, PL$41$1$CMA6, DYNAMIC
Rule 13 ---> 93, PL$41$1$OIS1, DYNAMIC
Rule 14 ---> 94, PL$41$1$MAS1a, DYNAMIC
Rule 15 ---> 95, PL$41$1$MAS1b, DYNAMIC
Rule 16 ---> 96, PL$41$1$CMA1, DYNAMIC
Rule 17 ---> 97, PL$41$1$CMA2, DYNAMIC
Rule 18 ---> 98, PL$41$1$CMA3, DYNAMIC
Rule 19 ---> 99, PL$41$1$CMA4a, DYNAMIC
Rule 20 ---> 100, PL$41$1$CMA4b, DYNAMIC
Rule 21 ---> 101, PL$41$1$NPH1, DYNAMIC
Rule 22 ---> 102, PL$41$1$main$AUS1, STATIC

END PLAN [PL$41$1$]

QUERY:\> --->exit
TOPS:\>

 The query in the above listing provides only a minimum amount of information
about rules in a patient plan. The patient plan rules exist in the database as database
triggers. It is possible to modify the implementation of this query to provide the SQL
specifications of each plan rule but the query result is not easy to read using the
current TOPS command line interface. NB: In TOPS, rule names are automatically
generated and have the general form: {<plan-name>|<schedule-name>}<name-or-
rule-in-protocol-spec>. Since the plan name is unique (because its composed from
patient ID and category ID), the rule name is guaranteed to be unique also.

APPENDIX

 312

I.6. The patient plan at a given time or interval

Query For a given patient, what was the plan at a given time point t
or interval [t1, t2]?

SELECT plan FOR patient WHERE TARGET: t ; SOURCE: patient.id = k TOPSQL Statement:
(where t, t1 and t2 are
time-stamps and k is the
patient’s id number) SELECT plan FROM snapshot WHERE TARGET: t1 , t2 ; SOURCE:

patient_id=k

TOPS:\> query
QUERY:\> --->SELECT PLAN FROM SNAPSHOT WHERE TARGET:2004-7-
19 01:55:02,2004-7-19 01:55:58; SOURCE:PATIENT_ID=25
processing query ...
launching specialised query handler ...
Source cond: PATIENT_ID=25
Target cond: 2004-7-19 01:55:02,2004-7-19 01:55:58
Executing PLAN query ...
Getting plan snapshot ...
Plan ID: 23

Plan snapshots exist for times:
No plan snapshot in given interval.
Providing current snapshot, instead:

PLAN [PL$25$1$] SNAPSHOT @[2004-07-19 22:30:26.91]
[rule 1]--->[72, PL$25$1$AUS2, DYNAMIC, READY]
[rule 2]--->[73, PL$25$1$AUS3, DYNAMIC, READY]
[rule 3]--->[74, PL$25$1$OIS2, DYNAMIC, READY]
[rule 4]--->[75, PL$25$1$OIS3, DYNAMIC, READY]
[rule 5]--->[76, PL$25$1$OIS4, DYNAMIC, READY]
[rule 6]--->[77, PL$25$1$0IS5, DYNAMIC, READY]
[rule 7]--->[78, PL$25$1$MAS2, DYNAMIC, READY]
[rule 8]--->[79, PL$25$1$MAS3, DYNAMIC, READY]
[rule 9]--->[80, PL$25$1$MAS4, DYNAMIC, READY]
[rule 10]--->[81, PL$25$1$MAS5, DYNAMIC, READY]
[rule 11]--->[82, PL$25$1$CMA5, DYNAMIC, READY]
[rule 12]--->[83, PL$25$1$CMA6, DYNAMIC, READY]
[rule 13]--->[84, PL$25$1$OIS1, DYNAMIC, READY]
[rule 14]--->[85, PL$25$1$MAS1a, DYNAMIC, READY]
[rule 15]--->[86, PL$25$1$MAS1b, DYNAMIC, READY]
[rule 16]--->[87, PL$25$1$CMA1, DYNAMIC, READY]
[rule 17]--->[88, PL$25$1$CMA2, DYNAMIC, READY]
[rule 18]--->[89, PL$25$1$CMA3, DYNAMIC, READY]
[rule 19]--->[90, PL$25$1$CMA4a, DYNAMIC, READY]
[rule 20]--->[91, PL$25$1$CMA4b, DYNAMIC, READY]
[rule 21]--->[92, PL$25$1$NPH1, DYNAMIC, READY]
[rule 22]--->[93, PL$25$1$main$AUS1, STATIC, EXECUTING]
END SNAPSHOT FOR PLAN PL$25$1$.

QUERY:\> --->exit

TOPS:\>

In the above query, a patient plan at a given time or interval refers the plan’s composition and status
of its rules at that time or interval. In executing the above query, TOPS first determines if at least one
patient plan snapshot exists within the interval specified in the query. If the patient plan snapshot
does not exist, the query returns the plan’s snapshot at the time this query is being processed.

APPENDIX

 313

I.7. Test orders recommended by TOPS for a Given Patient on
MAP

TOPS started.
Initialising ...
Creating log files ...
Provide network_name or ip_address for:
server --->IBMT20
client(this computer) --->IBMT20
TOPS database name --->TOPS
Initialisation complete.

TOPS Command Line Facility, version 1.0.
Copyright(C) 2000-2003, K. Dube
Computer Science Department, School of Computing, DIT, Ireland.
Started at: Wed Jul 21 05:28:13 BST 2004
TOPS:\>QUERY
Executing command: QUERY()
command code: 13
QUERY:\> --->SELECT ORDER FOR PATIENT WHERE TARGET:2004-7-16
17:48:30,2004-7-16 17:51:25; SOURCE:PATIENT_ID=61
processing query ...
launching specialised query handler ...
processing ORDER query [2004-7-16 17:48:30,2004-7-16 17:51:25] for [
PATIENT] ...

Tests ordered for [PATIENT_ID=61] during time interval [2004-7-16
17:48:30,2004-7-16 17:51:25]
Dip_stick_urine Profile, DSU, 2004-07-16 17:49:28.0
Urinary_Tract_Infection Profile, UTI, 2004-07-16 17:50:06.0
Urinary_Tract_Infection Profile, UTI, 2004-07-16 17:50:06.0

End test listing.

QUERY:\> --->EXIT
TOPS:\>

The TOPSQL query illustrated in the above TOPS session provides information on
what tests where ordered with respect to the specified patient during the given time
interval. The query target is the order while the source is the patient. The target
condition is a time interval, which means that the orders of interest must first
belong to the patient with ID 61 and must fall within this time interval, [2004-7-16
17:48:30, 2004-7-16 17:51:25]. The term order in the query can be generalised to
rule-action so that one can obtain information on rule actions that have been
performed during the specified time interval.

Query Description For a given patient, what test orders were made during the interval [t1, t2]?

TOPSQL Statement SELECT order FOR patient WHERE TARGET: t1, t2; SOURCE: patient_id=k

APPENDIX

 314

I.8. The rule responsible for a given test order resulting from
MAP plan

Query Description Which rule originated a suggestion for and order whose ID in
TOPS is xxx?

TOPSQL Statement SELECT rule FOR test_order WHERE test_order.id = xxx

TOPS started.
Initialising ...
Creating log files ...

Provide network_name or ip_address for:
server --->IBMT20
client(this computer) --->IBMT20

TOPS database name --->TOPS
Initialisation complete.

TOPS Command Line Facility, version 1.0.
Copyright(C) 2000-2003, K. Dube
Computer Science Department, School of Computing, DIT, Ireland.
Started at: Wed Jul 21 21:12:56 BST 2004
TOPS:\>QUERY
Executing command: QUERY()
command code: 13

QUERY:\> --->SELECT RULE FOR ORDER WHERE SOURCE:ORDER_ID=50
processing query ...
[2004-07-21 21:21:49.343] Generic query handler started.
[2004-07-21 21:21:49.353] Specialised RULE query handler started ...

Order [ORDER_ID=50] was suggested by the following rule:

rule_name: PL$41$1$MAS1a,
rule_id: 94
order_execution_date: 2004-07-16 04:20:46.0
--

QUERY:\> --->exit
TOPS:\>

This query returns the ID, name and execution date for a rule whose execution
resulted in the suggestion for an (test) order. In this example, the TOPS id for the
order is 50.

APPENDIX

 315

J. The TOPS Mechanism for Translating ECA Rules to
Oracle Database Triggers

Figure 96 illustrates the specification of the ECA rule, MAS5, as it appeared
in the PLAN specification of the protocol, MAP.

RULE MAS5,
DESCRIPTION: if ACR > 200 mg/l then refer patient to
nephrologist for possible proteinuria,
ON: RESULT_ARRIVAL('ACR'),
IF: ACR%RESULT%DATABASE%T_RESULTS > 200%DOUBLE,
DO: PATIENT_STATE('nephrology_referral');

Figure 96 The rule MAS5 from the MAP specification

The specification of the rule MAS5 after parsing the MAP specification. The
attributes of the rule at this stage are held in a Java object. The rule specification is
returned by the toString() method of the PDRule() class.

RULE_NAME: MAS5;
DESCRIPTION:
if ACR > 200 mg/l then refer patient
to nephrologist for possible
proteinuria;
ON: RESULT_ARRIVAL('ACR');
IF: ACR > 200.0;
DO:
PATIENT_STATE('nephrology_referral');

Figure 97 The rule MAS5 after processing by the TOPS protocol specification parser together with

the Java class whose instance is an output of the parser

APPENDIX

 316

Figure 98 illustrates the Oracle database trigger SQL code for the rule, MAS5,
generated by TOPS during the creation of a patient plan. This translation of MAS5
to a database trigger is done by TOPS and may involve prompting for user input.
The trigger has a number of customisations. As illustrated in Figure 98 the rule name
has been translated from just MAS5 to PL$81$1$MAS5 where 81 is the patient’s ID
and 1 is the category ID. This ensures that the rule name is unique within the
database, which is a requirement imposed by the Oracle DBMS and useful for the
management of patient plans in TOPS.

Figure 98 The rule MAS5 translated to the Oracle database trigger, PL$81$1$MAS5

The event result_arrival(‘ACR’) has been translated into two parts: the first part is
the database triggering event INSERT ON T_RESULTS and the second part is the
condition, NEW.TEST_ID=9, where 9 is the TOPS ID for the ACR test. Thus the
rule is now able to monitor the arrival of ACR results. A further customisation has
been done to ensure that the rule performs a change in the state of the specific
patient to whom the result belongs. The rule is now more specific than what it was
in Figure J.2 The MAS5 rule action invokes an Oracle stored procedure,
PATIENT_STATE, An Oracle Java call specification, which is an interface to a Java
stored procedure within the DBMS. Figure 99 illustrates the Oracle SQL code for the
Java call specification for the PatientState() java stored procedure (JSP).

APPENDIX

 317

Figure 99 The MAS5 rule action, PATIENT_STATE, in the

form of the Oracle Java Call Specification

The Java stored procedure has the method, change(), which updates the patient state
in the database and sends a message to an external TOPS module, an instance of the
Listener() class, through another Java stored procedure, the Notifier().

Figure 100 PatientState() Oracle Java stored procedure effecting changes to patient state during

protocol execution in TOPS

Figure 101 illustrattes the TOPS the Notifier-Listener mechanism, which allows
database triggers to communicate with external modules. Such communication is
not achievable by using the JDBC, which is unidirectional in terms of initiating
communication. JDBC allows communication to be initiated only from outside the
DBMS, thus rendering the database passive. The Notifier class sends text messages to
the Listener() through an HTTP connection via a point that is being constantly
monitored by the Listener(). (NB: The is nothing to prevent XML messages to be
exchanged between the Listener and the Notifier and beyond.)

APPENDIX

 318

Figure 101 The TOPS mechanism for database trigger communication with TOPS modules outside
the Oracle DBMS

The Listener() is implemented as an HTTP server and runs outside the Oracle
DBMS. The Notifier is an HTTP client that connects to the Listener() only when a
rule executes and invokes it to send a message to modules of TOPS running outside
the Oracle DBMS. On accepting a connection, the Listener() invokes a
DBMsgReader(), which accepts the data that is being sent by the Notifier(). After
accepting the message from a database trigger, the DBMsgReader(), passes the
message to a message processor, the DBMsgProcessor(), whose function is to parse
the message and determine the agent to which the message needs to be delivered.
These agents constitute TOPS’s mechanism for extending the database trigger
mechanism.

APPENDIX

 319

K. The TOPS Command Line Interface

Currently, TOPS uses a command line interface, illustrated in Figure 102, that brings
the three planes in the SpEM framework (see Chapters 3 and 5) together with the
aim of making them accessible through the manipulation language, TOPSQL. TOPS
is currently run by executing the Java class, myprojects.tops.TOPS.class
with the root classpath <drive>\TOPS\classes. The Oracle JDBC driver will
need to be added to the class path. During initialisation, TOPS will solicit for
network names for the Oracle database server and the client machines as well as the
user name and password for accessing the database. TOPS needs to have a database
account with a password and rights to create, modify, delete and enable/disable
database triggers and to make external socket connections.

Figure 102 The TOPS command line utility

APPENDIX

 320

L. TOPS System Packages

Figure 103 illustrates the constituent packages for TOPS. It can be seen that TOPS is

a complex system that consists of forty separate Java packages, the

ie.dit.tops.*, myprojects.tops.* and ie.tcd.cs.* packages. The

ie.tcd.cs.kdeg.medilink.* and ie.dit.tops.medilink.* packages

contain modules for integrating TOPS to other healthcare system within the

MediLink Project. The other TOPS packages can be grouped into the three planes of

the SpEM framework presented in the thesis. The specification plane is supported by

the ie.dit.tops.protocol.* packages. The execution plane is supported by

the ie.dit.tops.plan.* packages. The manipulation plane is supported by the

ie.dit.tops.topsql.* packages. Work on the GUI-based user interface for

TOPS was initiated but remains incomplete and can be found in the

ie.dit.tops.ui.* packages. The utility package, ie.dit.tops.util.*,

contain modules for supporting tasks such as printing and sending e-mails to

clinicians.

APPENDIX

 321

Figure 103 TOPS system packages for supporting the SpEM framework

APPENDIX

 322

M. Publications Associated With this Thesis

1. Dube K, Wu B and Grimson J (2003); Computer-Based Support for Information and
Knowledge Management in Healthcare: A Framework, Method and Mechanism for the
Management of Clinical Protocols. 1st DIT Annual Postgraduate Research Conference
(DIT-APRC 2003), September 9-10. Awarded Best Presentation.

2. Jones R, Dube K, and Wu B (2003); TOPME: An XML-Based Client-Server Front-End
for the Distributed Management of Clinical Protocols for TOPS. In: Xiaofei Xu, Yadong
Wand, Jiqing Han and Shouxu Jiang (eds), Exploring the New Generation Computing
Technology: Proc of the International Conference for Young Computer Scientists
(ICYCS 2003), 8-10 August, Harbin , China. World Publishing Corporation, China,
pp.368-371.

3. Nugent D, Dube K and Wu B (2003); DAAS: A Web-Based System for User-Specific
Dietary Analysis and Advice for the Public Healthcare Domain. In: Xiaofei Xu, Yadong
Wand, Jiqing Han and Shouxu Jiang (eds), Exploring the New Generation Computing
Technology: Proc of the International Conference for Young Computer Scientists
(ICYCS 2003), 8-10 August, Harbin China . World Publishing Corporation, China,
pp.461-464.

4. Dube K, Rahman Y, McQuaid S, Wu B, Nolan JJ and Grimson J (2002); Intelligent
Patient Monitoring in the Management of Micro-Albuminuria in Diabetes Mellitus.
Presented at: Conference and Scientific Symposium of the Healthcare Informatics
Society of Ireland (HISI 2002), November 2002.

5. Dube K, Wu B and Grimson J (2002); Using ECA Rules in Database Systems to Support
Clinical Protocols. In: Cicchetti, R. et al (eds), DEXA 2002, Lecture Notes in Computer
Science (LNCS), Springer-Verlag Berlin Heidelberg 2002, Vol. 2453, pp.226-235. (13th
International Conference on Database and Expert Systems, Aix-En-Provence, France,
September 2-6, 2002).

6. Dube K, Wu B and Grimson J (2002); Framework and Architecture for the Management
of ECA Rule-Based Clinical Protocols. In: Kokol P, Stiglic B, Zorman M and Zazula D
(2002); Proceedings: 15th IEEE Symposium on Computer-Based Medical Systems (CBMS
2002), Maribor, Slovenia, 4-7 June 2002, pp.288-294.

7. Wu B and Dube K (2001); Applying Event-Condition-Action Mechanism in Healthcare:
A Computerised Clinical Test-Ordering Protocol System (TOPS). In: Proceedings of the
Third International Symposium on Cooperative Database Systems and Applications
(CODAS’01), Beijing, China, April 23-24, IEEE Computer Society, pp.3-14, 2001.

8. Wu B and Dube K (2001); PLAN: a Framework and Specification Language with an
Event-Condition-Action (ECA) Mechanism for Clinical Test Request Protocols. In
Proceedings of the 34th Hawaii International Conference on System Sciences (HICSS-
34): the Mini-Track in Information Technology in Healthcare, Abstracts and CD-ROM
of Full Papers, IEEE Computer Society, Los Alamitos, California, p.140, 2001.

9. Dube K and Wu B (2001); Supporting Clinical Laboratory Test-Ordering Protocol
Specification, Execution and Management: an Event-Condition-Action Rule and
Database Approach. Healthcare Informatics Journal, Sheffield Press,UK, Volume 7 Issue
No.1:p.20-28, 2001.

APPENDIX

 323

10. Dube K.and Wu B (2000); Specification, Execution and Management of Clinical Test-
Ordering Protocols: a Database Approach. In: Heller B, Loffler M, Musen M and
Stefanelli M, Computer-Based Support for Clinical Guidelines and Protocols :
Proceedings of the 1st European Workshop on Clinical Practice Guidelines and Protocols
(EWGLP2000),13-14th November, Leipzig, Germany, IOS Press, p.31-42, 2001.

11. Dube K and Wu B (2000); Supporting Clinical Laboratory Test-Ordering Protocol
Specification, Execution and Management: an Event-Condition-Action Rule and
Database Approach. Presented at the Conference and Scientific Symposium of the
Healthcare Informatics Informatics Society (HISI 2000), Saggart, Co. Dublin. Awarded
runner-up prize

12. Dube K, Rahman Y, McQuaid S, Wu B, Nolan JJ and Grimson J (2002); Intelligent
Patient Monitoring in the Management of Micro-Albuminuria in Diabetes Mellitus.
 Poster Presented at the Conference of the Irish Endocrine Society (IES 2002), Galway,
November 2002.

	A Generic Approach to Supporting the Management of Computerised Clinical Guidelines and Protocols
	Recommended Citation

	Thesis.doc

