184 research outputs found

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Integrated IT and SDN Orchestration of multi-domain multi-layer transport networks

    Get PDF
    Telecom operators networks' management and control remains partitioned by technology, equipment supplier and networking layer. In some segments, the network operations are highly costly due to the need of the individual, and even manual, configuration of the network equipment by highly specialized personnel. In multi-vendor networks, expensive and never ending integration processes between Network Management Systems (NMSs) and the rest of systems (OSSs, BSSs) is a common situation, due to lack of adoption of standard interfaces in the management systems of the different equipment suppliers. Moreover, the increasing impact of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that traditional networking is not ready to overcome. The Fifth Generation of Mobile Technology (5G) is also introducing stringent network requirements such as the need of connecting to the network billions of new devices in IoT paradigm, new ultra-low latency applications (i.e., remote surgery) and vehicular communications. All these new services, together with enhanced broadband network access, are supposed to be delivered over the same network infrastructure. In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network management architecture, capable to offer end-to-end services from the DC networks to customers access networks and the virtualization of network resources, allowing new ways of slicing the network resources for the forthcoming 5G deployments. The first contribution of this PhD Thesis deals with the design and validation of SDN based network orchestration architectures capable to improve the current solutions for the management and control of multi-layer, multi-domain backbone transport networks. These problems have been assessed and progressively solved by different control and management architectures which has been designed and evaluated in real evaluation environments. One of the major findings of this work has been the need of developed a common information model for transport network's management, capable to describe the resources and services of multilayer networks. In this line, the Control Orchestration Protocol (COP) has been proposed as a first contriution towards an standard management interface based on the main principles driven by SDN. Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the management of IT computing resources together with inter- and intra-DC networks. The provisioning and migration of virtual machines together with the dynamic reconfiguration of the network has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization engine is introduced in the architecture to introduce optimization algorithms capable to solve allocation problems such the optimal deployment of Virtual Machine Graphs over different DCs locations minimizing the inter-DC network resources allocation. A baseline blocking probability results over different network loads are also presented. The third major contribution is the result of the previous two. With a converged cloud and network infrastructure controlled and operated jointly, the holistic view of the network allows the on-demand provisioning of network slices consisting of dedicated network and cloud resources over a distributed DC infrastructure interconnected by an optical transport network. The last chapters of this thesis discuss the management and orchestration of 5G slices based over the control and management components designed in the previous chapters. The design of one of the first network slicing architectures and the deployment of a 5G network slice in a real Testbed, is one of the major contributions of this PhD Thesis.La gestión y el control de las redes de los operadores de red (Telcos), todavía hoy, está segmentado por tecnología, por proveedor de equipamiento y por capa de red. En algunos segmentos (por ejemplo en IP) la operación de la red es tremendamente costosa, ya que en muchos casos aún se requiere con guración individual, e incluso manual, de los equipos por parte de personal altamente especializado. En redes con múltiples proveedores, los procesos de integración entre los sistemas de gestión de red (NMS) y el resto de sistemas (p. ej., OSS/BSS) son habitualmente largos y extremadamente costosos debido a la falta de adopción de interfaces estándar por parte de los diferentes proveedores de red. Además, el impacto creciente en las redes de transporte de los nuevos flujos de tráfico introducidos por el despliegue masivo de Data Centers (DC), introduce nuevos desafíos que las arquitecturas de gestión y control de las redes tradicionales no están preparadas para afrontar. La quinta generación de tecnología móvil (5G) introduce nuevos requisitos de red, como la necesidad de conectar a la red billones de dispositivos nuevos (Internet de las cosas - IoT), aplicaciones de ultra baja latencia (p. ej., cirugía a distancia) y las comunicaciones vehiculares. Todos estos servicios, junto con un acceso mejorado a la red de banda ancha, deberán ser proporcionados a través de la misma infraestructura de red. Esta tesis doctoral propone una visión holística de los recursos de red y cloud, basada en los principios introducidos por Software Defined Networking (SDN), como la solución para el diseño de una arquitectura de gestión extremo a extremo (E2E) para escenarios de red multi-capa y multi-dominio, capaz de ofrecer servicios de E2E, desde las redes intra-DC hasta las redes de acceso, y ofrecer ademas virtualización de los recursos de la red, permitiendo nuevas formas de segmentación en las redes de transporte y la infrastructura de cloud, para los próximos despliegues de 5G. La primera contribución de esta tesis consiste en la validación de arquitecturas de orquestración de red, basadas en SDN, para la gestión y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el diseño y la evaluación experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y gestión. Uno de los principales hallazgos de este trabajo ha sido la necesidad de un modelo de información común para las interfaces de gestión entre entidades de control SDN. En esta línea, el Protocolo de Control Orchestration (COP) ha sido propuesto como interfaz de gestión de red estándar para redes SDN de transporte multi-capa. Además, en esta tesis presentamos una arquitectura capaz de coordinar la gestión de los recursos IT y red. La provisión y la migración de máquinas virtuales junto con la reconfiguración dinámica de la red, han sido demostradas con éxito en una escala de tiempo factible. Además, la arquitectura incorpora una plataforma para la ejecución de algoritmos de optimización de recursos capaces de resolver diferentes problemas de asignación, como el despliegue óptimo de Grafos de Máquinas Virtuales (VMG) en diferentes DCs que minimizan la asignación de recursos de red. Esta tesis propone una solución para este problema, que ha sido evaluada en terminos de probabilidad de bloqueo para diferentes cargas de red. La tercera contribución es el resultado de las dos anteriores. La arquitectura integrada de red y cloud presentada permite la creación bajo demanda de "network slices", que consisten en sub-conjuntos de recursos de red y cloud dedicados para diferentes clientes sobre una infraestructura común. El diseño de una de las primeras arquitecturas de "network slicing" y el despliegue de un "slice" de red 5G totalmente operativo en un Testbed real, es una de las principales contribuciones de esta tesis.La gestió i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, està segmentat per tecnologia, per proveïdors d’equipament i per capes de xarxa. En alguns segments (Per exemple en IP) l’operació de la xarxa és tremendament costosa, ja que en molts casos encara es requereix de configuració individual, i fins i tot manual, dels equips per part de personal altament especialitzat. En xarxes amb múltiples proveïdors, els processos d’integració entre els Sistemes de gestió de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS i Sistemes de suport de negocis - BSS) són habitualment interminables i extremadament costosos a causa de la falta d’adopció d’interfícies estàndard per part dels diferents proveïdors de xarxa. A més, l’impacte creixent en les xarxes de transport dels nous fluxos de trànsit introduïts pel desplegament massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gestió i control de les xarxes tradicionals que no estan llestes per afrontar. Per acabar de descriure el context, la cinquena generació de tecnologia mòbil (5G) també presenta nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions de dispositius nous, dins el context de l’Internet de les coses (IOT), o les noves aplicacions d’ultra baixa latència (com ara la cirurgia a distància) i les comunicacions vehiculars. Se suposa que tots aquests nous serveis, juntament amb l’accés millorat a la xarxa de banda ampla, es lliuraran a través de la mateixa infraestructura de xarxa. Aquesta tesi doctoral proposa una visió holística dels recursos de xarxa i cloud, basada en els principis introduïts per Software Defined Networking (SDN), com la solució per al disseny de una arquitectura de gestió extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents en múltiples tecnologies de transport. Aquesta arquitectura de gestió i control de xarxes transport i recursos IT, ha de ser capaç d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a les xarxes d’accés dels clients i oferir a més virtualització dels recursos de la xarxa, obrint la porta a noves formes de segmentació a les xarxes de transport i la infrastructura de cloud, pels propers desplegaments de 5G. La primera contribució d’aquesta tesi doctoral consisteix en la validació de diferents arquitectures d’orquestració de xarxa basades en SDN capaces de millorar les solucions existents per a la gestió i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gestió de xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjançant el disseny i l’avaluació experimental, en entorns de proves reals, de diferents arquitectures de control i gestió. Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informació comú per a les interfícies de gestió de xarxes, capaç de descriure els recursos i serveis de la xarxes transport multicapa. En aquesta línia, el Protocol de Control Orchestration (COP, en les seves sigles en anglès) ha estat proposat en aquesta Tesi, com una primera contribució cap a una interfície de gestió de xarxa estàndard basada en els principis bàsics de SDN. A més, en aquesta tesi presentem una arquitectura innovadora capaç de coordinar la gestió de els recursos IT juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migració de màquines virtuals juntament amb la reconfiguració dinàmica de la xarxa, ha estat demostrat amb èxit en una escala de temps factible. A més, l’arquitectura incorpora una plataforma per a l’execució d’algorismes d’optimització de recursos, capaços de resoldre diferents problemes d’assignació, com el desplegament òptim de Grafs de Màquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assignació de recursos de xarxa entre DC. També es presenta una solució bàsica per a aquest problema, així com els resultats de probabilitat de bloqueig per a diferents càrregues de xarxa. La tercera contribució principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa i cloud convergent, controlada i operada de manera conjunta, la visió holística de la xarxa permet l’aprovisionament sota demanda de "network slices" que consisteixen en subconjunts de recursos d’xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuïda i interconnectada per una xarxa de transport òptica. Els últims capítols d’aquesta tesi tracten sobre la gestió i organització de "network slices" per a xarxes 5G en funció dels components de control i administració dissenyats i desenvolupats en els capítols anteriors. El disseny d’una de les primeres arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en un Testbed real, és una de les principals contribucions d’aquesta tesi.Postprint (published version

    A proposal for secured, efficient and scalable layer 2 network virtualisation mechanism

    Get PDF
    El contenidos de los capítulos 3 y 4 está sujeto a confidencialidad. 291 p.La Internet del Futuro ha emergido como un esfuerzo investigador para superar estas limitaciones identificadas en la actual Internet. Para ello es necesario investigar en arquitecturas y soluciones novedosas (evolutivas o rompedoras), y las plataformas de experimentación surgen para proporcionar un entorno realista para validar estas nuevas propuestas a gran escala.Debido a la necesidad de compartir la misma infraestructura y recursos para testear simultáneamente diversas propuestas de red, la virtualización de red es la clave del éxito. Se propone una nueva taxonomía para poder analizar y comparar las diferentes propuestas. Se identifican tres tipos: el Nodo Virtual (vNode), la Virtualización posibilitada por SDN (SDNeV) y el overlay.Además, se presentan las plataformas experimentales más relevantes, con un foco especial en la forma en la que cada una de ellas permite la investigación en propuestas de red, las cuales no cumplen todos estos requisitos impuestos: aislamiento, seguridad, flexibilidad, escalabilidad, estabilidad, transparencia, soporte para la investigación en propuestas de red. Por lo tanto, una nueva plataforma de experimentación ortogonal a la experimentación es necesaria.Las principales contribuciones de esta tesis, sustentadas sobre tecnología SDN y NFV, son también los elementos clave para construir la plataforma de experimentación: la Virtualización de Red basada en Prefijos de Nivel 2 (Layer 2 Prefix-based Network Virtualisation, L2PNV), un Protocolo para la Configuración de Direcciones MAC (MAC Address Configuration Protocol, MACP), y un sistema de Control de Acceso a Red basado en Flujos (Flow-based Network Access Control, FlowNAC).Como resultado, se ha desplegado en la Universidad del Pais Vasco (UPV/EHU) una nueva plataforma experimental, la Plataforma Activada por OpenFlow de EHU (EHU OpenFlow Enabled Facility, EHU-OEF), para experimentar y validar estas propuestas realizadas

    Colosseum as a Digital Twin: Bridging Real-World Experimentation and Wireless Network Emulation

    Full text link
    Wireless network emulators are being increasingly used for developing and evaluating new solutions for Next Generation (NextG) wireless networks. However, the reliability of the solutions tested on emulation platforms heavily depends on the precision of the emulation process, model design, and parameter settings. To address, obviate or minimize the impact of errors of emulation models, in this work we apply the concept of Digital Twin (DT) to large-scale wireless systems. Specifically, we demonstrate the use of Colosseum, the world's largest wireless network emulator with hardware-in-the-loop, as a DT for NextG experimental wireless research at scale. As proof of concept, we leverage the Channel emulation scenario generator and Sounder Toolchain (CaST) to create the DT of a publicly-available over-the-air indoor testbed for sub-6 GHz research, namely, Arena. Then, we validate the Colosseum DT through experimental campaigns on emulated wireless environments, including scenarios concerning cellular networks and jamming of Wi-Fi nodes, on both the real and digital systems. Our experiments show that the DT is able to provide a faithful representation of the real-world setup, obtaining an average accuracy of up to 92.5% in throughput and 80% in Signal to Interference plus Noise Ratio (SINR).Comment: 15 pages, 21 figures, 1 tabl

    Distributed services across the network from edge to core

    Get PDF
    The current internet architecture is evolving from a simple carrier of bits to a platform able to provide multiple complex services running across the entire Network Service Provider (NSP) infrastructure. This calls for increased flexibility in resource management and allocation to provide dedicated, on-demand network services, leveraging a distributed infrastructure consisting of heterogeneous devices. More specifically, NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as more powerful appliances at the edge of the network and in dedicated data-centers. Currently a great research effort is spent to provide this flexibility through Fog computing, Network Functions Virtualization (NFV), and data plane programmability. Fog computing or Edge computing extends the compute and storage capabilities to the edge of the network, closer to the rapidly growing number of connected devices and applications that consume cloud services and generate massive amounts of data. A complementary technology is NFV, a network architecture concept targeting the execution of software Network Functions (NFs) in isolated Virtual Machines (VMs), potentially sharing a pool of general-purpose hosts, rather than running on dedicated hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e., VMs executing network functions) to be provisioned, allocated a different amount of resources, and possibly moved across data centers in little time, which is key in ensuring that the network can keep up with the flexibility in the provisioning and deployment of virtual hosts in today’s virtualized data centers. Moreover, recent advances in networking hardware have introduced new programmable network devices that can efficiently execute complex operations at line rate. As a result, NFs can be (partially or entirely) folded into the network, speeding up the execution of distributed services. The work described in this Ph.D. thesis aims at showing how various network services can be deployed throughout the NSP infrastructure, accommodating to the different hardware capabilities of various appliances, by applying and extending the above-mentioned solutions. First, we consider a data center environment and the deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology for the modelization of different NFs aimed at estimating their performance on different execution platforms. Moreover, we propose to extend the traditional NFV deployment outside of the data center to leverage the entire NSP infrastructure. This can be achieved by integrating native NFs, commonly available in low-cost CPEs, with an existing NFV framework. This facilitates the provision of services that require NFs close to the end user (e.g., IPsec terminator). On the other hand, resource-hungry virtualized NFs are run in the NSP data center, where they can take advantage of the superior computing and storage capabilities. As an application, we also present a novel technique to deploy a distributed service, specifically a web filter, to leverage both the low latency of a CPE and the computational power of a data center. We then show that also the core network, today dedicated solely to packet routing, can be exploited to provide useful services. In particular, we propose a novel method to provide distributed network services in core network devices by means of task distribution and a seamless coordination among the peers involved. The aim is to transform existing network nodes (e.g., routers, switches, access points) into a highly distributed data acquisition and processing platform, which will significantly reduce the storage requirements at the Network Operations Center and the packet duplication overhead. Finally, we propose to use new programmable network devices in data center networks to provide much needed services to distributed applications. By offloading part of the computation directly to the networking hardware, we show that it is possible to reduce both the network traffic and the overall job completion time

    Performance and Security Enhancements in Practical Millimeter-Wave Communication Systems

    Get PDF
    Millimeter-wave (mm-wave) communication systems achieve extremely high data rates and provide interference-free transmissions. to overcome high attenuations, they employ directional antennas that focus their energy in the intended direction. Transmissions can be steered such that signals only propagate within a specific area-of-interest. Although these advantages are well-known, they are not yet available in practical networks. IEEE 802.11ad, the recent standard for communications in the unlicensed 60 GHz band, exploits a subset of the directional propagation effects only. Despite the large available spectrum, it does not outperform other developments in the prevalent sub-6 GHz bands. This underutilization of directional communications causes unnecessary performance limitations and leaves a false sense of security. For example, standard compliant beam training is very time consuming. It uses suboptimal beam patterns, and is unprotected against malicious behaviors. Furthermore, no suitable research platform exists to validate protocols in realistic environments. To address these challenges, we develop a holistic evaluation framework and enhance the performance and security in practical mm-wave communication systems. Besides signal propagation analyses and environment simulations, our framework enables practical testbed experiments with off-the-shelf devices. We provide full access to a tri-band router’s operating system, modify the beam training operation in the Wi-Fi firmware, and create arbitrary beam patterns with the integrated antenna array. This novel approach allows us to implement custom algorithms such as a compressive sector selection that reduces the beam training overhead by a factor of 2.3. By aligning the receive beam, our adaptive beam switching algorithm mitigates interference from lateral directions and achieves throughput gains of up to 60%. With adaptive beam optimization, we estimate the current channel conditions and generate directional beams that implicitly exploit potential reflections in the environment. These beams increase the received signal strength by about 4.4 dB. While intercepting a directional link is assumed to be challenging, our experimental studies show that reflections on small-scale objects are sufficient to enable eavesdropping from afar. Additionally, we practically demonstrate that injecting forged feedback in the beam training enables Man-in-the Middle attacks. With only 7.3% overhead, our authentication scheme protects against this beam stealing and enforces responses to be only accepted from legitimate devices. By making beam training more efficient, effective, and reliable, our contributions finally enable practical applications of highly directional transmissions
    corecore