1,394 research outputs found

    Variational Quantum Fidelity Estimation

    Get PDF
    Computing quantum state fidelity will be important to verify and characterize states prepared on a quantum computer. In this work, we propose novel lower and upper bounds for the fidelity F(ρ,σ) based on the “truncated fidelity'” F(ρ_m,σ) which is evaluated for a state ρ_m obtained by projecting ρ onto its mm-largest eigenvalues. Our bounds can be refined, i.e., they tighten monotonically with mm. To compute our bounds, we introduce a hybrid quantum-classical algorithm, called Variational Quantum Fidelity Estimation, that involves three steps: (1) variationally diagonalize ρ, (2) compute matrix elements of σ in the eigenbasis of ρ, and (3) combine these matrix elements to compute our bounds. Our algorithm is aimed at the case where σ is arbitrary and ρ is low rank, which we call low-rank fidelity estimation, and we prove that no classical algorithm can efficiently solve this problem under reasonable assumptions. Finally, we demonstrate that our bounds can detect quantum phase transitions and are often tighter than previously known computable bounds for realistic situations

    Inverse problems for linear hyperbolic equations using mixed formulations

    Get PDF
    We introduce in this document a direct method allowing to solve numerically inverse type problems for linear hyperbolic equations. We first consider the reconstruction of the full solution of the wave equation posed in Ω×(0,T)\Omega\times (0,T) - Ω\Omega a bounded subset of RN\mathbb{R}^N - from a partial distributed observation. We employ a least-squares technique and minimize the L2L^2-norm of the distance from the observation to any solution. Taking the hyperbolic equation as the main constraint of the problem, the optimality conditions are reduced to a mixed formulation involving both the state to reconstruct and a Lagrange multiplier. Under usual geometric optic conditions, we show the well-posedness of this mixed formulation (in particular the inf-sup condition) and then introduce a numerical approximation based on space-time finite elements discretization. We prove the strong convergence of the approximation and then discussed several examples for N=1N=1 and N=2N=2. The problem of the reconstruction of both the state and the source term is also addressed

    Computing equilibria of Cournot oligopoly models with mixed-integer quantities

    Get PDF
    We consider Cournot oligopoly models in which some variables represent indivisible quantities. These models can be addressed by computing equilibria of Nash equilibrium problems in which the players solve mixed-integer nonlinear problems. In the literature there are no methods to compute equilibria of this type of Nash games. We propose a Jacobi-type method for computing solutions of Nash equilibrium problems with mixed-integer variables. This algorithm is a generalization of a recently proposed method for the solution of discrete so-called “2-groups partitionable” Nash equilibrium problems. We prove that our algorithm converges in a finite number of iterations to approximate equilibria under reasonable conditions. Moreover, we give conditions for the existence of approximate equilibria. Finally, we give numerical results to show the effectiveness of the proposed method

    An iterative method for generalized set-valued nonlinear mixed quasi-variational inequalities

    Get PDF
    AbstractThis paper presents an iterative method for solving the generalized nonlinear set-valued mixed quasi-variational inequality, a problem class that was introduced by Huang et al. (Comp. Math. Appl. 40 (2–3) (2000) 205–215). The method incorporates step size controls that enable application to problems where certain set-valued mappings do not always map to nonempty closed bounded sets

    Gap functions and error bounds for variational-hemivariational inequalities

    Get PDF
    In this paper we investigate the gap functions and regularized gap functions for a class of variational–hemivariational inequalities of elliptic type. First, based on regularized gap functions introduced by Yamashita and Fukushima, we establish some regularized gap functions for the variational–hemivariational inequalities. Then, the global error bounds for such inequalities in terms of regularized gap functions are derived by using the properties of the Clarke generalized gradient. Finally, an application to a stationary nonsmooth semipermeability problem is given to illustrate our main results

    Numerical solution for an inverse variational problem

    Get PDF
    Research partially supported by Junta de Andalucía Grant FQM359. Funding for open access charge: Universidad de Granada /CBUA.Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.CRUE-CSIC agreementSpringer Natur

    Strong solvability of a variational data assimilation problem for the primitive equations of large-scale atmosphere and ocean dynamics

    Get PDF
    For the primitive equations of large-scale atmosphere and ocean dynamics, we study the problem of determining by means of a variational data assimilation algorithm initial conditions that generate strong solutions which minimize the distance to a given set of time-distributed observations. We suggest a modification of the adjoint algorithm whose novel elements is to use norms in the variational cost functional that reflects the H1-regularity of strong solutions of the primitive equations. For such a cost functional, we prove the existence of minima and a first-order adjoint condition for strong solutions that provides the basis for computing these minima. We prove the local convergence of a gradient-based descent algorithm to optimal initial conditions using the second-order adjoint primitive equations. The algorithmic modifications due to the H1-norms are straightforwardly to implement into a variational algorithm that employs the standard L2-metrics. © 2021, The Author(s)
    corecore