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Abstract
For the primitive equations of large-scale atmosphere and ocean dynamics, we study
the problem of determining by means of a variational data assimilation algorithm
initial conditions that generate strong solutions which minimize the distance to a
given set of time-distributed observations. We suggest a modification of the adjoint
algorithm whose novel elements is to use norms in the variational cost functional that
reflects the H1-regularity of strong solutions of the primitive equations. For such a
cost functional, we prove the existence of minima and a first-order adjoint condition
for strong solutions that provides the basis for computing these minima. We prove the
local convergence of a gradient-based descent algorithm to optimal initial conditions
using the second-order adjoint primitive equations. The algorithmic modifications due
to the H1-norms are straightforwardly to implement into a variational algorithm that
employs the standard L2-metrics.

Keywords Data assimilation · Adjoint method · Primitive equations · Boussinesq
equations · Atmosphere-ocean dynamics

Mathematics Subject Classification 35Q35 · 35Q86 · 49J20 · 49N15 · 76D55 · 93C20

1 Introduction, Statement of Problem and Overview of Results

Data assimilation is a computational technique that aims at blending a dynamical
model of a physical process with observational data of this process while at the same
time preserving the integrity of the model and making optimal use of the observa-
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tional information. It constitutes a fundamental technique for modeling real-world
phenomena. Numerical weather prediction and ocean state estimation are examples
of scientific disciplines that rely on data assimilation (Kalnay 2003; Wunsch 1997;
Forget et al. 2015). Data assimilation determines a best estimate of the unknown cur-
rent state of the atmosphere or the ocean by steering the model trajectory toward time
distributed observations of the past. The estimate of the current state is used as initial
condition for a prediction. The rationale behind is, the better the estimate of the present
state, the better the prediction of the future evolution.

The data assimilation algorithm that we consider here is known as “4D-var” or
“adjoint method” of optimal control and belongs to the class of variational algo-
rithms. Variational data assimilation algorithms strive for minimizing the distance
between observations and model solution by solving an optimization problem for an
appropriately chosen cost functional. The initial condition acts as a control variable
of the optimization problem that fits the model trajectory over a finite time horizon to
the observations. In contrast, feedback control algorithms such as “continuous data
assimilation ” or “nudging” drive the model over an infinite time horizon toward
observations by means of a feedback term (Kalnay 2003). Recently, these algorithms
have been improved and rigorous results have been proven for a range of fluid dynami-
cal equations, including theNavier–Stokes or the planetary geostrophic equations (see,
e.g., Azouani andTiti 2014; Foias et al. 2016;Desamsetti et al. 2019; Farhat et al. 2016;
Korn 2009) and the primitive equation (Pei 2019). A complementary class of assimi-
lation algorithms is given by stochastic data assimilation such as the Kalman filter and
its variants (Evensen 2003; Reich and Cotter 2015; Houtekamer and Zhang 2016),
for mathematical aspects we refer to Schillings and Stuart (2017, 2018). Variational
as well as stochastic algorithms are of great relevance in atmosphere-ocean science.
Research in this area focuses on improvement and extension of computational algo-
rithms in order to improve numerical weather predictions or ocean state estimation.
The complexity of data assimilation algorithms and their applications have reached
an impressive level (see, e.g., Bonavita et al. 2018; Isaksen et al. 2010; Gauthier et al.
2007). It is therefore important to understand fundamental properties of these algo-
rithms. Results that are similar in spirit to our work can be found in Agoshkov and
Ipatova (2007), where a variational algorithm was analyzed that uses observations
of sea surface temperature and of sea surface elevation to determining the control
variables of heat flux and water flux that occur in the surface boundary conditions of
the oceanic primitive equations. The authors used a cost functional based on the L2-
norm and showed the existence of minimizers. In Shutyaev (1997), the more general
setting of a data assimilation problem for quasi-linear evolution equations in Hilbert
spaces was studied. To illustrate the general theory the existence of minimizers and the
convergence of an iterative adjoint algorithm was established for a two-dimensional
barotropic fluid. For fluid dynamical equations such as the 2DNavier–Stokes or the 3D
Navier–Stokes-α equations similar results on optimal control using initial conditions,
boundary conditions or external forcing as control variable can be found in Fursikov
(1999), Abergel and Temam (1990) and Korn (2009). In Korn (2019), an idealized
coupled atmosphere-ocean model was introduced and based on the regularity of the
coupled equations the existence of optimal initial conditions and the convergence of
a steepest descent method was proven.
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In the 4D-var algorithm, the crucial modeling decision is how the distance to the
observational data and to the background state ismeasured, i.e., how the cost functional
is specified. The classical choice is the L2-norm. In this paper, we suggest to use for
the primitive equations theH1-norm. This norm in the cost functional reflects theH1-
regularity of strong solutions of the primitive equations. The optimization determines
initial conditions for strong solutions of the primitive equations. With such a choice,
we take advantage of a priori knowledge about the dynamics of the primitive equations.

The use of alternative metrics beyond L2([0, T ],L2(�)) is not new in optimal
control of fluids [for a review see Medjo et al. (2008)]. In Bewley et al. (2001), for
example, enstrophy-basedmetrics andSobolev-type cost functionalswere discussed in
the context of turbulence control via boundary forcing for a channel flow. The purpose
here is to obtain additional regularizing effect due to derivatives in the cost functional.
In contrast, in our work here, the goal is not to introduce a regularization of the
data assimilation problem but to demonstrate that optimal initial conditions for strong
solutions of the primitive equations assimilation problem necessitates the use of H1-
norms. We refer to this property as strong solvability of the data assimilation problem.
The new and fundamental but decisive element in the suggested formulation of the data
assimilation algorithm is to use in the cost functional metrics that are tailored to the
regularity of the primitive equations. This paper describes for the primitive equations
the consequences of such a choice.

1.1 The Primitive Equations

The primitive equations are a central set of model equations for atmosphere and ocean
dynamics. These equations approximate the large-scale dynamics of ocean and atmo-
sphere and describe ocean or atmosphere as thin layer of a rotating, incompressible
fluid, together with the Boussinesq approximation and the hydrostatic approximation.
The primitive equations are derived as an approximation of the rotating Navier–Stokes
equations Li and Titi (1992). The state vector of the primitive equations consists of a
horizontal velocity field v = (u, v) and a tracer such as temperature θ . More specif-
ically, denote by � := M × (−h, 0) a cylindrical domain, where h > 0 denotes
the depth of the ocean and M ⊆ R

2 is bounded, with a smooth boundary ∂ M . The
primitive equations are given by

∂tv + (v · ∇)v + w∂zv + ∇ p + f �k × v − 1

Re1
� v − 1

Re2
∂2zzv = Fv, (1a)

∂z p + gρ = 0, (1b)

∇ · v + ∂zw = 0, (1c)

∂tθ + (v · ∇)θ + w∂zθ − 1

Rt1
�θ − 1

Rt2
∂2zzθ = Fθ , (1d)

ρ = ρ(θ) := ρ0 − α(θ − θ0), (1e)

wherew denotes the vertical velocity, f the Coriolis parameter, ρ denotes an equation
of statewith amean densityρ0 > 0, amean temperature θ0 > 0 and a coefficientα > 0
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of thermal expansion, Fv, Fθ are forcing terms. The numbers Re1, Re2 > 0 denote
the horizontal and vertical Reynolds number that represent the viscosity coefficients.
The numbers Rt1, Rt2 > 0 are the horizontal and vertical mixing coefficients for
temperature. The operators ∇,∇· and � denote the horizontal gradient, divergence
and Laplacian, respectively. The partial derivative with respect to the vertical direction
is denoted by ∂z .

The boundary ∂� consists of a lateral boundary �s , a bottom boundary �b and a
surface boundary�u , i.e., ∂� = �s ∪�b ∪�u . The corresponding boundary conditions
are

on �b := {(x, y, z) ∈ �̄ : z = −h} : v = 0, w = 0, (2)

[∇3θ ] · n3 = 0, (3)

on �s := {(x, y, z) ∈ �̄ : (x, y) ∈ ∂ M} : v = 0, w = 0, (4)

[∇3θ ] · �n = 0, (5)

on �u := {(x, y, z) ∈ �̄ : z = 0} : ∂zv = hτ,w = 0, (6)

[∇3θ ] · n3 = −kθ (θ − θ∗), (7)

where τ is a given 2D wind stress field, �n the normal vector at �s , n3 the vertical
Cartesian unit vector, and θ∗ is a given temperature field at the sea surface. The
velocity v and the potential temperature θ can be modified at �s by adding a τ -
and θ∗-dependent contribution such that we can assume without loss of generality
homogeneous boundary conditions at the ocean surface (see Lions et al. 1992, Section
2.4., Cao and Titi 2007 p. 248, Cao and Titi 2003, p. 202)

∂zv = 0 and ∂zθ = 0, on �u . (8)

The mathematical analysis of primitive equations dates back to Lions et al. (1992),
where the existence of global in time weak solutions was proven for square inte-
grable initial conditions. Weak solutions satisfy the regularity properties (v, θ) ∈
L∞([0, T ],L2(�))∩ L2([0, T ],H1(�))1. The uniqueness of weak solutions remains
still an open question (for weak solutions see also remark 1 in Section 2). The
local existence of strong solutions was shown by Guillén-González et al. (2001).
In a seminal paper, Cao and Titi (2007) have proven the global existence and the
uniqueness of strong solutions for arbitrary initial data in the Sobolev space H1.
Strong solutions possess more regularity than weak solutions, namely (v, θ) ∈
L∞([0, T ],H1(�)) ∩ L2([0, T ],H2(�)). The notion of “strong solution” is intro-
duced in below Definition 2.1. The well-posedness result Cao and Titi (2007) uses
Neumann boundary conditions for velocity on top and bottom of the domain, and
a slip boundary condition at lateral sides. A different proof was given by Kobelkov
(2007). This breakthrough has been followed by well-posedness results in H1 for

1 We use the notation H1(�),H1(�) and H1(�) to distinguish between the Sobolev space with square-
integrable derivatives for temperature, for velocity and for the product space of velocity and temperature.
The same notation is used for the Sobolev space with square-integrable second derivatives H2,H2,H2 and
for spaces of square integrable functions, L2,L2,L2. The definitions are given in Sect. 2.
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Neumann boundary conditions at the surface and Dirichlet boundary conditions at the
bottom and at the lateral boundary by Kukavica and Ziane (2007). The existence of
an attractor of the primitive equations was shown in Chueshov (2014) and Ju (2007).
The well-posedness of the primitive equations for L p-spaces is proven in Hieber and
Kashiwabara (2016). In this work, we use Dirichlet boundary conditions at lateral
sides and bottom of the domain and Neumann boundary conditions at the surface,
because these are the most common boundary conditions in ocean general circulation
models but our results translate to the other boundary conditions mentioned above.

The H1-regularity forms the mathematical basis for the specification of the data
assimilation problem. We state now the central theorem for later reference. The space
V occurring in the Theorem consists of pairs (v, θ) of velocity and temperature in
H1(�) that satisfy the boundary conditions (2)–(7) and is defined in Sect. 2 [see (16)].

Theorem 1.1 (Global Well-Posedness (Cao and Titi 2007; Kukavica and Ziane
2007)) Let a time interval [0, T ], with T > 0, be given. Let the forcing satisfy
Fv, Fθ ∈ L2([0, T ],L2(�)). If the initial conditions for velocity and tempera-
ture satisfy (v0, θ0) ∈ V , then there exists a unique strong solution (v, θ) ∈
C([0, T ],H1(�)) ∩ L2[0, T ],H2(�)) of the system (1) on the interval [0, T ] that
depends continuously on the initial data.

The regularity of solutions of the primitive equations, described in Theorem 1.1,
still leaves room for a broad spectrum of spatiotemporal scales that comprises local
and sudden events with large gradients such as fronts. For an analysis of the admissible
scales in terms of Nusselt, Rayleigh and Reynolds numbers, we refer to Gibbon and
Holm (2011, 2013).

1.2 The Data Assimilation Problem

We now proceed by describing the data assimilation problem for the primitive equa-
tions. Let X = L∞([0, T ],H1(�)) be the “state space” of strong solutions of the
primitive equations with initial conditionsX0 = H1(�). Let time distributed observa-
tions ψobs are given. In general, the observations reside in an “observational space” Y
and an observation operator H maps ψobs ∈ Y in the model spaceX . In this work, we
assume that the observations are already mapped to the model space, i.e., ψobs ∈ X .

The data assimilation problem consists in determining, for given observations
ψobs ∈ X an initial condition ψ̄0 ∈ X0 such that

J (ψ̄0, ψobs) = min
ψ0∈X0

J (ψ0, ψobs)

and

the trajectory ψ(ψ̄0) ∈ X satisfies the primitive equations (1)

with initial condition ψ̄0.

(9)
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The cost functional J in (9) is defined as a sum of a background and an observational
term

J (ψ0, ψobs) := Jb(ψ0) + Jobs(ψ0, ψobs). (10)

The observational part Jobs of the cost functional measure the distance between the
model state and the observations and is defined by

Jobs(ψ0, ψobs) :=
∫

T

〈R(M[ψ0] − ψobs),M[ψ0] − ψobs
〉
X dt . (11)

Here, M denotes the model operator that advances an initial condition ψ0 to the
model stateψ(t) at time t , i.e.,ψ(t) = M[ψ0](t). The observational error covariance
operatorR provides a statistical weighting of the model-observation misfit, according
to the quality of the observations. The scalar product in (11) acts on the spatial variable.
The background term Jb of the cost functional in (10) is defined by

Jb(ψ0) :=Jb(ψ0, ψback) := 〈B(ψ0 − ψback), ψ0 − ψback
〉
X0

, (12)

where ψback ∈ X0 is a given background state such as the outcome of a previous
forecast and B denotes the model error covariance operator. The background term
Jb incorporates prior information about the system but it can also be interpreted as
a Tikhonov regularization of J . The model error covariance operator B provides a
weighting according to the estimated model error.

As a consequence of the nonlinearity of the primitive equations, encoded in the
model operator M in (11), we can for the data assimilation problem (9) not expect a
global minimum but at most multitude of local minima. In principle, the uniqueness of
the optimization can be enforced by weighting the background and observational parts
of the cost functional appropriately but this may come at the expense of discarding the
observational information [see Theorem 7 in Korn (2009) for a result in this respect].

1.3 Overview of Results

The relevance of the primitive equations for atmosphere/ocean science and climate
research together with the fact that these equations constitute one of the rare examples
of a 3Dfluid dynamical equationwith a globalwell-posedness result poses the question
how this knowledge can be incorporated into a 4D-var data assimilation algorithm.
We advocate a formulation of the variational cost functional (10) that reflects the
regularity of the underlying dynamical equations. This philosophy has already been
demonstrated in the context of an idealized coupled atmosphere-ocean model (Korn
2019).

The classical formulation of 4D-Var based on theL2-norm in space and with initial
conditions in L2(�) is associated with the notion of weak solutions. These solutions
describe the dynamics in the L2-space. For weak solutions the uniqueness as well as
the continuous dependency on the initial conditions is unknown but for the adjoint
approach of variational data assimilation not only continuity but differentiability with
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respect to the initial condition is required. The situation changes completely if we
employ the notion of strong solutions of the primitive equations, for which uniqueness
and continuous dependency of the solution on the initial condition are established.

In view of the data assimilation problem strong solutions require optimal initial
conditionswith respect to the observations in the spaceH1(�). These initial conditions
generates dynamics in L∞([0, T ],H1) ∩ L2([0, T ],H2(�)) and consequently we
measure the distance to observations in this space, i.e., we use in the background
term Jb of the cost functional (10) the H1-norm and in the observational term Jobs
the L2([0, T ],H1(�))-norm. This imposes stronger constraints through the higher
derivatives than the L2-norm. The L2([0, T ],H2(�))-norm can not be used in the
observational term of the cost functional, because the degree of the spatial derivative
in this term is linked via the Gateaux-derivative of the cost functional to a differential
operator that is part of the forcing of the adjoint equations. The second-order derivative
in the spatial H2-norm would result in an adjoint forcing that is no longer square-
integrable. For details, we refer to Theorem 4.4 and remark 2 in Sect. 4.2.

In Lemma 3.2, we prove that strong solutions are differentiable with respect to
the initial conditions. For strong solutions of the primitive equations, we prove in
Theorem 4.1 that local minimizers of the cost functional exists. Theorem 4.4 gives a
first-order necessary adjoint condition for these minimizers that provides the basis for
their computation by means of an adjoint based optimizations. For strong solutions,
we prove the convergence of a steepest-descent algorithm in Theorem 5.3, provided
one uses a suitable starting point for the iterative process. Pure Newton methods that
allow global convergence have never been used for realistic applications in numerical
weather prediction or ocean state estimation due to their prohibitive computational
costs. Variants such as quasi-Newton methods are not considered in this paper.

Our formulation of the variational data assimilation for the primitive equations
does only modify the optimization framework. Affected are the forcing of the adjoint
equation and the gradient that results from an integration of the adjoint equation, while
the dynamics of the primitive equations remain untouched. The overall algorithmic
structure of an existing 4D-Var code is also left intact. The choice of the H1-norm in
the background term results for a computational gradient-based algorithm in a filter
of the gradient through an inverse Helmholz operator. The L2([0, T ],H1(�))-norm
in the observational term implies a modification of the forcing of the adjoint equation
with a Helmholtz operator applied to the model-data-misfit. Both of these changes are
easy to integrate into an existing 4D-Var algorithm (see Fig.1).

The impact of regularity-tailored cost functionals on the quality as well as on the
performance of the 4D-Var algorithm has to be assessed in numerical simulations.
In particular the potential of the method for controlling turbulent flows has to be
investigated. This comprises the comparison of the quality of the H1- with the L2-
4D-Var data assimilation and the potential to resolve issues of (L2-) 4D-Var such as
strong adjoint sensitivities or large number of local minima (see, e.g., Hoteit et al.
2005, (Köhl and Willebrand 2002; Lorenc 2003). The experimental investigation of
these topics is beyond the scope of this paper.
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2 Functional Analytic Setup

Let us recall the following basic notation

• �v := (v, w) velocity field with horizontal velocity v := (u, v) and vertical velocity w

• θ temperature

• ∇ := (∂x , ∂y), ∇3 := (∂x , ∂y, ∂z)

• ∇ · v := ∂x u + ∂yv, ∇3 · v = ∂x u + ∂yv + ∂zw

(13)

We define the following fundamental function spaces for velocity and temperature

Ṽv : =
{
v ∈ (C∞(�̄))2 : v satisfies boundary condition (2), (4), (6)

and ∇ · v + ∂zw = 0} ,

Ṽθ : = {
θ ∈ C∞(�̄) : θ satisfies boundary condition (3), (5), (7)

}
.

(14)

Denote by Vv, Vθ the closure of Ṽv in the Sobolev space H1(�) and of Ṽθ in H1(�).
The norm of Vv and Vθ is

||v||2H1 :=
∫

�

|v(x, y, z)|2dxdydz +
∫

�

|∇3v(x, y, z)|2dxdydz,

and ||θ ||2H1 :=
∫

�

|θ(x, y, z)|2dxdydz +
∫

�

|∇3θ(x, y, z)|2dxdydz.
(15)

The product space by

V := Vv × Vθ . (16)

is equipped with the sum of the norms || · ||H1 := || · ||H1 + || · ||H1 . We denote
the L2-norm in the velocity and temperature space by || · ||L2 and || · ||L2 , and in the
velocity-temperature product space by || · ||L2 := || · ||L2 + || · ||L2 . The H2-norm in
the velocity-temperature product space is denoted by || · ||H2 := || · ||H2 + || · ||H2 .

In (1), the vertical velocity w is determined by the constraint (1c) and can by virtue
of the boundary conditions be expressed as

w(x, y, z, t) = −
∫ 0

−z
∇ · v(x, y, ξ, t) dξ = −∇ ·

∫ 0

−z
v(x, y, ξ, t) dξ. (17)

The pressure term can with the hydrostatic balance be reformulated as

p(x, y, z, t) =
∫ z

−h
θ(x, y, ξ, t) dξ + ps(x, y, t), (18)

where ps is the surface pressure and has to be determined.
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Definition 2.1 (Strong Solution) (i) Let initial conditions (v0, θ0) ∈ V be given, and
let [0, T ], T > 0, be a time interval. The vector (v, θ) is called a strong solution of
(1) on [0, T ] with boundary conditions (2)–(8) if

v ∈ C([0, T ], Vv) ∩ L2([0, T ],H2(�)),

θ ∈ C([0, T ], Vθ ) ∩ L2([0, T ], H2(�)),

∂tv ∈ L2([0, T ],L2(�)),

∂tθ ∈ L2([0, T ], L2(�)),

and if it satisfies in the sense of distributions for all� ∈ (C∞(�̄))2 andφ ∈ C∞(�̄)

∫
�

∂tv · � dx +
∫

�

[(v · ∇)v] · � dx +
∫

�

f �k × v� dxdydz

−
∫

�

[(
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ

)
∂zv
]

· � dxdydz

−
∫

�

[
∇
∫ z

−h
gρ(x, y, ξ, t) dξ

]
· � dxdydz +

∫
�u

(∇ ps) · � dxdydz

+
∫

�

1

Re1
∇v · ∇� + 1

Re2
∂zv · ∂z� dxdydz = Fv, (19a)

∫
�

∂tθφ dxdydz +
∫

�

(v · ∇)θφ dxdydz

−
∫

�

[
∇ ·

∫ 0

−h
v(x, y, ξ, t) dξ

]
∂zθ φ dxdydz

+ 1

Rt1

∫
�

∇3θ · ∇3φ dxdydz + 1

Rt2

∫
�

∂zθ∂zφ dxdydz = Fθ ,

with ρ := ρ(θ) := ρ0 − α(θ − θ0), (19b)

where w denotes the vertical velocity, f the Coriolis parameter and ρ0, θ0 > 0 are a
mean density and a mean temperature, respectively, and α > 0 the thermal expansion
coefficient, Fv, Fθ denote the external forcing. The numbers Re1, Re2 > 0 denote
the horizontal and vertical Reynolds number that represent the viscosity coefficients.
The numbers Rt1, Rt2 > 0 are the horizontal and vertical mixing coefficients for
temperature.
(i i) We define the state vector ψ of the primitive equation as pair of velocity and
temperature variables

ψ := (v, θ), (20)

where (v, θ) denote a strong solution of the primitive equation. Furthermore, we define
the nonlinear terms as follows:

B(ψ,ψ) :=(Bv(v, v),Bθ (θ, θ)) (21)
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with Bv(v, v) := (v · ∇)v −
(

∇ ·
∫ z

−h
v(x, y, ξ, t) dξ

)
∂zv, (22)

Bθ (θ, θ) := (v · ∇)θ −
(

∇ ·
∫ z

−h
v(x, y, ξ, t) dξ

)
∂zθ. (23)

The dissipation operators are denoted by

Dψ :=(Dvv, Dθ θ), (24)

with Dvv := − 1

Re1
� v − 1

Re2
∂2zzv, (25)

Dθ := − 1

Rt1
� θ − 1

Rt2
∂2zzθ. (26)

The linear terms are given by

Lψ := (Lvv, 0) (27)

with Lvv := f �k × v +
∫ z

−h
θ(x, y, ξ, t) dξ) + ∇ ps . (28)

With this notation, we write the primitive equations (1) in the form

∂tψ + B(ψ,ψ) + Lψ + Dψ = 0, (29)

and interpret this equation in the distributional sense.

Remark 1 (Weak Solutions) Weak solutions of the primitive equations are defined
with less regularity requirements. They satisfy (19) in the sense of distributions but
with (v, θ) ∈ L∞([0, T ],L2(�))∩ L2([0, T ],H1(�)). The global existence of weak
solutions with initial data in (v0,0) ∈ L2(�) has been shown in Lions et al. (1992).
The uniqueness is still open. Uniqueness of weak solutions with initial conditions in
the space of continuous functions was proven in Kukavica et al. (2014).

We recall a set of inequalities that are used in the sequel. The Ladyshenzkaya
inequalities in R2 are valid for φ ∈ H1(M) and for a non-dimensional constant C0

||φ||L4(M) ≤ C0||φ||1/2
L2(M)

||φ||1/2
H1(M)

. (30)

In R3, it holds for u ∈ H1(�)

||u||L3(�) ≤ C0||u||1/2
L2(�)

||u||1/2
H1(�)

,

||u||L6(�) ≤ C0||u||H1(�).
(31)
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Lemma 2.2 (Cao and Titi 2003) Let u = (u1, u2) ∈ H2(�) and f , g ∈ H1(�). Then

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
u(x, y, ξ, t) dξ

)
f g dxdydz

∣∣∣∣
≤ C || f ||L2 ||u||1/2

H1 ||u||1/2
H2 ||g||1/2

L2 ||g||1/2
H1 .

Lemma 2.3 (Gronwall Inequality) Let f be an absolutely continuous function that
satisfies If d f

dt ≤ g f + h for some real integrable functions g(t) and h(t). Then,

f (t) ≤ f (0) exp

(∫ t

0
g(s) ds

)
+
∫ t

0
h(s) exp

(∫ t

s
g(y) dy

)
ds.

3 Linearized and Adjoint Primitive Equations, and Differentiability

In this section, we prove regularity results for the linearized and adjoint primitive
equations and establish the differentiability of the model solution with respect to the
initial condition.

3.1 Linearized Equations and Differentiability

We linearize the primitive model equations around a strong solutionψ = (v, θ) of (1).
The resulting equations are also referred to as “tangent linear model.” The linearized
equations in terms of velocity and temperature variables (V,) are given by

∂V
∂t

+ f �k × V + (V · ∇)v − ∇ ·
∫ z

−h
v(x, y, ξ, t) dξ ∂zV

+ (v · ∇)V − ∇ ·
∫ z

−h
V(x, y, ξ, t) dξ ∂zv − ∇

(∫ z

−h
�(x, y, ξ, t) dξ + PS

)

− 1

Re1
�V − 1

Re2
∂2zzV = FV, (32a)

∇ · V + ∂z W = 0, (32b)

∂

∂t
+ ∇ · (Vθ) + ∂z(Vθ) + ∇ · (v) + ∂z(v) − 1

Rt1
� − 1

Rt2
∂2zz = F,

(32c)

with surface pressure PS and with the equation of state given by

� := ρ0 − α( − θ0). (32d)

The boundary conditions for (32) are analogous to the boundary condition (2)–(8) for
the primitive equations (1) and read as follows:

on �b := {(x, y, z) ∈ �̄ : z = −h} : V = 0, W = 0, (33)

[∇3] · n3 = 0, (34)
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on �s := {(x, y, z) ∈ �̄ : (x, y) ∈ ∂ M} : V = 0, W = 0, (35)

[∇3] · �n = 0, (36)

on �u := {(x, y, z) ∈ �̄ : z = 0} : ∂zV = 0, W = 0, (37)

[∇3] · n3 = 0. (38)

We write the linearized primitive equations for � = (V ,) in the following form

∂t� + B′[ψ](�) + L� + D� = F, (39)

where D and L are defined in (24), (27), andwhereB′[ψ](�) := (B′
v[v](V ),B′

θ [θ ](),
with

B′
v[v](V) := (v · ∇V) + (V · ∇v) −

(
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ

)
∂zV

−
(

∇ ·
∫ z

−h
V(x, y, ξ, t) dξ

)
∂zv,

B′
θ [v]() := (v · ∇) + (V · ∇θ) −

(
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ

)
∂z

−
(

∇ ·
∫ z

−h
V(x, y, ξ, t) dξ

)
∂zθ.

(40)

Theorem 3.1 (Regularity of linearized equations) Let ψ := (v, θ) be a strong solution
of (1)on the time interval [0, T ], T > 0. Suppose F := (FV, F) ∈ L2([0, T ],L2(�))

is given. If the initial conditions for the linearized primitive equations satisfy �0 :=
(V0,0) ∈ V , then there exists a solution � := (V,) of the linearized primitive
equations (32) with the following properties,

V ∈ C([0, T ], Vv) ∩ L2([0, T ],H2(�)),

 ∈ C([0, T ], Vθ ) ∩ L2([0, T ], H2(�)),

∂tV ∈ L2([0, T ],L2(�)),

∂t ∈ L2([0, T ], L2(�)).

(41)

The solution � satisfies for t ∈ [0, T ]

||�(t)||2H1 = ||V(t)||2H1 + ||(t)||2H1

≤ [||V0||2H1 + ||0||2H1] exp

{∫ t

0
K1(s) + K2(s) ds

}
(42)

+ c
∫ t

0
(||FV(s)||2L2 + ||F(s)||2L2) exp

{∫ s

0
K1(y) + K2(y) dy

}
ds,

123



Journal of Nonlinear Science (2021) 31 :56 Page 13 of 53 56

and

∫ t

0
||V(s)||2H2 + ||(s)||2H2ds

≤ [||V0||2H1 + ||0||2H1] +
∫ t

0
(K1(s) + K2(s))(||V(s)||2H1 + ||(s)||2H1) ds}

+
∫ t

0
(||FV(s)||2L2 + ||F(s)||2L2) ds, (43)

where

K1(s) := ||∇v||L2 ||∇v||H1 + ||v||4H1 + ||∇ ∂zv||2L2 ||∂zv||2L2 + 1

+ ||∇ v||2L2 ||� v||2L2 + ||∇v||2H1 + ||∂z∇v||4L2 ,

K2(s) := ||θ ||4H1 + ||∇ ∂zθ ||2L2 ||∂zθ ||2L2 .

(44)

Proof The proof is given in Appendix 1. �

The regularity result of the linearized primitive equations in Theorem 3.1 is instru-
mental for the differentiability result of the next Lemma.

Lemma 3.2 Let ψ0 = (v0, θ0) ∈ V and a time interval [0, T ], T > 0 be given. The
mapping ψ0 �→ ψ(t;ψ0) from V into L2([0, T ],H1(�)) that assigns to an initial
condition ψ0 the solution ψ(t;ψ0) := M[ψ0](t) of the primitive equations (1) at
time t ∈ (0, T ] has a Gateaux derivative Dψ

Dψ0
a in every direction a = (av, aθ ) ∈ V .

Furthermore, Dψ
Dψ0

a solves the linearized equations (32)with initial condition ψ(t0) =
a and forcing F = (FV, F) = 0.

Proof Let a := (av, aθ ) ∈ V . Denote by ψ0, ψ0 + τa ∈ H1(�), τ > 0, two initial
conditions and by ψ and ψτa the corresponding strong solutions of the primitive
equations (1). They satisfy the equations

∂ψ

∂t
+ B(ψ,ψ) + Lψ + Dψ = 0,

and

∂ψτa

∂t
+ B(ψτa, ψτa) + Lψτa + Dψτa = 0.

Let � be the solution of the linearized equations (32), which are linearized around ψ ,

∂�

∂t
+ B′[ψ](�) + L� + D� = 0,
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with zero forcing, initial condition �(t0) = a and boundary conditions (33)–(38). In
order to prove the lemma, we have show that

y(τ ) := ψτa − ψ − τ�

satisfies lim
τ→0

||y(τ )||L2([0,T ],H1)

|τ | = 0.
(45)

From the definition of y follows that it solves the equation

dy

dt
+ B(ψτh, ψτa) − B(ψ,ψ) − B′[ψ](τ�) + Ly + Dy = 0, (46)

with initial condition y0 = 0. We introduce k = (ku, kθ ) as follows:

k := B(ψ,ψ) − B(ψτa, ψτa) + B′[ψ](ψτa − ψ).

The components of k = (kv, kθ ) read as follows:

kv :=(v · ∇)v − (vτa · ∇)vτa + (v · ∇)(vτa − v) + ((vτa − v) · ∇)v

= ((vτa − v) · ∇) (vτa − v),

kθ :=(vτa − v) · ∇(θτa − θ).

Then, Eq. (46) for y becomes

dy

dt
+ B′[ψ](y) + Ly + Dy = k. (47)

Note that (47) is a linearized primitive equation with initial condition y0 = 0 and
an external forcing k that depends on the model solution itself. We prove now the
following three inequalities: there exist constants K , C > 0 such that

(i)
∫ T

0
||y(t)||2H1dt ≤ K

∫ T

0
||k||2L2dt,

(i i) ||kv||L2 ≤ C ||v − vτav ||H2 ||v − vτav ||H1

(i i i) ||kθ ||L2 ≤ C ||v − vτaθ ||H2 ||θτaθ − θ ||H1 .

(48)

For (i) follows from (175) in the proof of Theorem 3.1 (see Appendix 1) after inte-
gration with respect to time over a time interval [0, t], with t ∈ [0, T ], with forcing
FV = kv, F = kθ , that

∫ t

0
||y(τ )||2H1 dτ ≤ K (t)

∫ t

0
||kv(τ )||2L2 + ||kθ ||2L2dτ.
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where K (t) is a bounded function on [0, T ]. This proves assertion (i). For assertion
(i i), we derive with the Agmon inequality

||kv||L2 = || ((vτav − v) · ∇) (vτav − v)||L2

≤ C ||v − vτav ||H2 ||v − vτav ||H1 .
(49)

Analogously, we obtain

||kθ ||L2 ≤ C ||v − vτav ||H2 ||θτaθ − θ ||H1 . (50)

This proves (i i) and (i i i). By combining (i)–(i i i), we conclude that

∫ T

0
||y(t)||2H1dt ≤ C

∫ T

0
(||v − vτav ||2H1 + ||θτaθ − θ ||2H1)||vτav − v||2H2dt .

(51)

Denote the difference between the two strong solutions by v̂ := vτav − v and
θ̂ := θτaθ − θ . According to Theorem 1.1 we have (v̂, θ̂ ) ∈ C([0, T ],H1(�)) ∩
L2([0, T ],H2(�)). Furthermore (v̂, θ̂ ) solves the equations

∂ v̂
∂t

+ (v̂ · ∇)vτav + (v · ∇)v̂ + ŵ∂zvτav + w∂z v̂ + ∇ p̂ + f �k × v̂

− 1

Re1
� v̂ − 1

Re2
∂2zz v̂ = 0,

∂z p̂ − g�̂ = 0,

∇ · v + ∂zw = 0,

∂θ̂

∂t
+ v̂ · ∇θτaθ + v · ∇ θ̂ + ŵ∂zθτaθ + w∂z θ̂ − 1

Rt1
�θ̂ − 1

Rt2
∂2zz θ̂ ,

�̂ = −α̂,

with initial condition v̂(t0) = τav , θ̂ (t0) = τaθ . This equation has a similar structure as
the linearized equation (32) with a zero forcing term and homogeneous boundary con-
ditions. Using the regularity properties of the two strong solutions (vτav , θτaθ ), (v, θ),
we can repeat all steps that lead to (175) (cf. Appendix 1), and this inequality implies

||v̂(t)||2H1 + ||θ̂ (t)||2H1 ≤ C(t)
(
||v̂0||2H1 + ||θ̂0||2H1

)

= C(t)τ 2
(
||av||2H1 + ||aθ ||2H1

)
,

(52)

with C(t) bounded on [0, T ]. Inserting this in (51) yields
∫ T

0
||y(t)||2H1dt ≤ C(t)τ 2

(
||av||2H1 + ||aθ ||2H1

) ∫ T

0
||vτav − v||2H2dt . (53)
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This proves (45), because vτav − v ∈ L2([0, T ],H2(�)2). With the definition of the
Gateaux derivative it follows that the solution w of the linearized equations satisfies
w(a) = (D�/Dψ0)a. �

3.2 Adjoint Primitive Equations and Duality Relation

In this section,we studyproperties of the adjoint primitive equations.Adjoint equations
allow to formulate afirst-order necessary conditions forminimaof the data assimilation
cost functional and this condition provides the basis for the actual computation of
minima within an optimization algorithm.

The adjoint equations are derived by choosing taking the L2([0, T ], L2(�))-scalar
product of the linearized primitive equations with a so-called “adjoint state variable”
�̃ := (Ṽ, ̃) := (Ũ , Ṽ , ̃) . Then, all differential operators are moved from the linear
variables to the adjoint variables by means of integration-by-parts. More details are
given in Appendix 1 for more details. For an extensive treatment of adjoint equations,
we refer to Marchuk et al. (1996).

The resulting adjoint primitive equations are given by

− ∂t Ũ + u∂xŨ + Ũ∂x u + v∂yŨ + Ũ∂xv + w∂zŨ + W̃∂zu + f Ũ

+ Ũ∂xθ + θ∂x̃ + Dv(Ũ ) = F̃Ũ ,

− ∂t Ṽ + Ṽ ∂yu + v∂y Ṽ + Ṽ ∂yv + u∂x Ṽ + w∂z Ṽ + W̃∂zv − f Ṽ

+ Ṽ ∂yθ + θ∂ỹ + Dv(Ṽ ) = F̃Ṽ ,

∇ · Ṽ + ∂z W̃ = 0,

− ∂t̃ + v · ∇3̃ +
∫ z

−h
∇ · Ṽ(x, y, z′) dz′ + Dθ (̃) = F̃̃,

(54)

where Dv( f ) := − 1
Re1

� f − 1
Re2

∂2zz f for f ∈ {Ũ , Ṽ }, and Dθ (̃) := − 1
Rt1

� ̃ −
1

Rt2
∂2zz̃. Furthermore does F̃ := (F̃Ũ , F̃Ṽ , F̃̃) denote a forcing term.

For �̃ := (Ũ , Ṽ , ̃), we write the adjoint primitive equations in the form

− ∂t �̃ + B′∗[ψ](�̃) + L�̃ + D�̃ = F̃, (55)

where B′∗[ψ](�̃) =
(
B′∗[u](Ũ ),B′∗[v](Ṽ ),B′∗[θ ](̃)

)
is given by

B′∗[v](Ũ ) := u∂xŨ + Ũ∂x u + v∂yŨ + Ũ∂xv + w∂zŨ + W̃∂zu,

B′∗[v](Ṽ ) := Ṽ ∂yu + v∂y Ṽ + Ṽ ∂yv + u∂x Ṽ + w∂z Ṽ + W̃∂zv,

B′∗[θ ](̃) := v · ∇3̃.

(56)

The operator L�̃ := (LŨ Ũ , LṼ Ṽ , L̃̃) is defined as

LŨ Ũ := f Ũ + Ũ∂xθ + ̃∂xθ,
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LṼ Ṽ := − f Ṽ + Ṽ ∂yθ + ̃∂yθ,

L̃̃ :=
∫ z

−h
∇ · Ũ (x, y, z′) dz′. (57)

The initial condition2 of the adjoint equation is specified at t = T and given by
(Ũ (t = T ), Ṽ (t = T ), ̃(t = T )) = (ŨT , ṼT , ̃T ), the boundary conditions for
(54) coincide with the corresponding boundary conditions (33)–(38) of the linearized
equations and read as follows:

on �b := {(x, y, z) ∈ �̄ : z = −h} : Ṽ = 0, W̃ = 0, (58)

[∇3̃] · n3 = 0, (59)

on �s := {(x, y, z) ∈ �̄ : (x, y) ∈ ∂ M} : Ṽ = 0, (60)

W̃ = 0, [∇3̃] · �n = 0, (61)

on �u := {(x, y, z) ∈ �̄ : z = 0} : ∂zṼ = 0, W̃ = 0, (62)

[∇3̃] · n3 = 0. (63)

The following result about the adjoint primitive equations follows immediately from
the previous result on the linearized equations and the definition of the adjoint equa-
tions.

Theorem 3.3 (Regularity ofAdjoint Equations)Let ψ := (v, θ) be a strong solution of
(1) on the time interval [0, T ], T > 0. Suppose F := (FV, F) ∈ L2([0, T ],L2(�))

is given. If the initial conditions for the adjoint linearized primitive equations, specified
at t = T , satisfy �̃T := (ṼT , ̃T ) ∈ V , then there exists a solution �̃ := (Ṽ, ̃) of
the adjoint linearized primitive equations (54) with the following properties:

Ṽ ∈ C([0, T ], Vv) ∩ L2([0, T ],H2(�)),

̃ ∈ C([0, T ], Vθ ) ∩ L2([0, T ], H2(�)),

∂t Ṽ ∈ L2([0, T ],L2(�)),

∂t̃ ∈ L2([0, T ], L2(�)).

(64)

The solution �̃ satisfies for t ∈ [0, T ]

||�̃(t)||H1 = ||Ṽ(t)||2H1 + ||̃(t)||2H1

≤ [||ṼT ||2H1 + ||̃T ||2H1] exp{
∫ T

t
K1(s) + K2(s) ds}

+ c
∫ T

t
(||F̃Ṽ(s)||2L2 + ||F̃̃(s)||2L2) exp{

∫ s

0
K1(y) + K2(y) dy} ds,

(65)

2 Adjoint equations evolve backward in time, starting at time t = T . In integrals of adjoint quantities over
time we use the convention that the lower integration limit is the smaller number and the upper integration
limit is the larger number, i.e., we integrate always from earlier to later.
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and

∫ T

t
||Ṽ(s)||2H2 + ||̃(s)||2H2ds

≤ [||Ṽ0||2H1 + ||̃0||2H1] +
∫ t

0
(K1(s) + K2(s))(||Ṽ(s)||2H1 + ||̃(s)||2H1) ds}

+
∫ T

t
(||F̃Ṽ(s)||2L2 + ||F̃̃(s)||2L2) ds, (66)

where

K1(s) := ||∇v||L2 ||∇v||H1 + ||v||4H1 + ||∇ ∂zv||2L2 ||∂zv||2L2 + 1

+||∇ v||2L2 ||� v||2L2 + ||∇v||2H1 + ||∂z∇v||4L2 ,

K2(s) := ||θ ||4H1 + ||∇ ∂zθ ||2L2 ||∂zθ ||2L2 . (67)

Proof The proof follows essentially from the corresponding result on the linearized
equations, i.e., Theorem 3.1, and the duality relation between linearized and adjoint
equations. �

The next lemma follows from the definition of linearized and adjoint equations and
integration by parts.

Lemma 3.4 (Adjoint Relation) Let F, F̃ ∈ L2([0, T ],L2(�)) be the forcing of the
linearized equations and the adjoint equations, respectively. By � and �̃, we denote
the variables of the linear and adjoint equations. Then,

〈
F, �̃

〉
L2([0,T ]L2)

= 〈
F̃, �

〉
L2([0,T ]L2)

−
∫

�

� · �̃|T0 dx .

4 Solvability and Computation of the Data Assimilation Problem

4.1 Existence of Local Minima of the Data Assimilation Problem

Based on the regularity results of the previous section, we formulate now the specific
data assimilation cost functional for the primitive equations. The model dynamics that
we are considering consist of trajectories in C([0, T ],H1(�)) and are emerging from
initial conditions in H1(�). Let observations ψobs ∈ C([0, T ],H1(�)) be given that
reside in the same space as the dynamics of the ocean primitive equations. Suppose
furthermore that a background guessψback ∈ H1(�) at initial time is given.We define
the cost functional by

J (ψ0) := Jb(ψ0) + Jobs(ψ0). (68)
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The background term is given by

Jb(ψ0) := 〈B(ψ0 − ψback), ψ0 − ψback
〉
H1

=
∑
|α|≤1

∫
�

DαB(ψ0 − ψback) · Dα(ψ0 − ψback) dxdydt, (69)

where Dα denotes a derivative with multi-index α. The observational term is defined
as

Jobs(ψ0) :=
∫ T

0

〈R(M[ψ0](t) − ψobs(t)),M[ψ0](t) − ψobs(t)
〉
H1 dt

=
∑
|α|≤1

∫ T

0

∫
�

DαR (M[ψ0](t) − ψobs(t)) · Dα (M[ψ0](t) − ψobs(t)) dxdydzdt .
(70)

Themodel error covariance operatorB provides aweighting according to the estimated
background error and is assumed to be linear, bounded and positive definite. We do
not address here the important problem of modeling error statistics but assume these
error covariance operators as given. Furthermore, we assume that the error covariance
operators preserve the functional space of model solutions and observations, i.e., we
make the

General Assumption on B,R : F ∈ X implies BF ∈ X and RF ∈ X . (71)

We note that the notion of strong solution, given in Definition 2.1, contains the
L2([0, T ],H2(�)-norm for the regularity of solutions to the primitive equations,while
the observational part Jobs of our cost functional in (70) imposes only the weaker
L2([0, T ],H1(�)-norm. The reason for this is the adjoint characterization of optimal
initial conditions in Theorem 4.4. Details are explained in Remark 2 after Theorem 4.4
is stated. The proof of Theorem 4.1 does also work if the stronger L2([0, T ],H2(�)-
norm are used in Jobs. In the proof, we use the regularity that is given by the well-
posedness Theorem 1.1 and not the regularity that is implied by the boundedness of
the observational part of the cost functional. We state this as a separate results in
Corollary 4.2.

Theorem 4.1 (Optimal Initial Conditions) Let observations ψobs ∈ C([0, T ],V) and
a background guess ψback ∈ H1(�) be given. Then, there exist minimizers ψ̄0 =
(v0, θ0) ∈ V of the data assimilation problem (9)with cost functional given by (68). We
refer to these minimizers also as optimal initial conditions for the primitive equations
(1).

Proof Let (ψ0,n)n = (v0,n, θ0,n)n ⊆ V ⊆ H1(�) be a minimizing sequence
of initial conditions for the data assimilation problem. We denote by ψn :=
M[ψ0,n] ∈ C([0, T ],V) ∩ L2([0, T ],H2(�)) the corresponding solutions of the
primitive equations (1). The model-observation difference satisfies (M[ψ0]−ψobs) ∈
C([0, T ],H1(�)). Since the model error covariance operator R preserves the space
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(cf. (71)), it follows thatR(M[ψ0]−ψobs) ∈ C([0, T ],H1(�))∩L2([0, T ],H2(�)),
and from (70), we infer that the cost functional is well-defined. (68) follows that the
sequence of initial conditions (ψ0,n)n is bounded in H1(�), i.e., there exists a c > 0
such that uniformly for all n ∈ N

||ψ0,n||H1 ≤ c. (72)

FromTheorem 1.1, we see that the sequence of associated solutions (ψn)n = (vn, θn)n

is bounded in C([0, T ],V) ∩ L2([0, T ],H2(�)), in particular there exists a C > 0
such that for all n ∈ N

sup
t∈[0,T ]

||ψn(t)||H1 ≤ C and
∫ T

0
||ψn(t)||2H2dt ≤ C . (73)

Since H2(�) is compactly embedded in H1(�), we conclude that a subsequence,
still denoted (ψn)n = (v0,n, θ0,n)n , exists and a limit ψ̄ = (v̄, ̄), such that (ψn)n

converges to ψ̄ weakly in L2([0, T ],H2(�)) and strongly in L2([0, T ],H1(�)).
We show now that the limit ψ̄(t) is a strong solution of the primitive equa-

tions, i.e., ψ̄ = M[ψ̄0]. Consider the equation (19) in Definition 2.1 of strong
solutions of (1) for the elements of the sequence ψn = (vn, θn)n with initial con-
ditions (ψ0,n)n = (v0,n, θ0,n)n . We integrate over the time interval [0, T ], use that
(∂tvn, ∂tθn) ∈ L2([0, T ],L2(�)), and obtain for all � ∈ C∞(�)2 and φ ∈ C∞(�)

∫
�

(vn(T ) − vn(0)) · � dx +
∫ T

0

∫
�

[(vn · ∇)vn] · � dxdt

+
∫ T

0

∫
�

f �k × vn · � dxdydzdt

−
∫ T

0

∫
�

(∫ z

−h
vn(x, y, ξ, t) dξ

)
· ∂zvn (∇ · �) dxdydzdt

+
∫ T

0

∫
�u

(∇ ps,n) · � dxdydzdt

−
∫ T

0

∫
�

(
∇
∫ z

−h
ρ(θn)(x, y, ξ, t) dξ

)
· � dxdydzdt

+ 1

Re1

∫ T

0

∫
�

∇vn · ∇� dxdydzdt + 1

Re2

∫ T

0

∫
�

∂vvn · ∂z� dxdydzdt = 0,

∇ · vn + ∂zwn = 0,∫ T

0

∫
�

∂tθnφ dxdydzdt +
∫ T

0

∫
�

(vn · ∇)θnφ dxdydzdt

−
∫ T

0

∫
�

(
∇ ·

∫ 0

−h
vn(x, y, ξ, t) dξ

)
(∂zθn)φ dxdydzdt

+ 1

Rt1

∫ T

0

∫
�

∇3θn · ∇3φ dxdydzdt + 1

Rt2

∫ T

0

∫
�

∂zθn∂zφ dxdydzdt
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+ kθ

∫ T

0

∫
�u

θnφ dxdydt = 0, (74a)

where ρ(θn) = ρ0 − α(θn − θ0) (cf. (1e)). Since (ψn)n converges strongly in
L2([0, T ],H1(�)) to ψ̄ ∈ L2([0, T ],H1(�)) there exists a subset [0, T

′ ] ⊂ [0, T ],
such that [0, T ] \ [0, T

′ ] has Lebesgue measure zero and (vn(t), θn(t))n converges to
(v̄(t), θ̄ (t)) in H1 for all t ∈ [0, T

′ ]. This implies for almost every t0, t1 ∈ [0, T ] as
n → ∞

∫
�

(vn(t1) − vn(t0) − v̄(t1) + v̄(t0)) · � dxdydz → 0. (75)

With the convergence of (ψn)n to ψ̄ in L2([0, T ],H1(�)) the following convergence
properties follows

∫ T

0

∫
�

f �k × (vn − v̄) · � dxdydzdt → 0,

∫ T

0

∫
�

(∇
∫ z

−h

(
ρ(θn)(x, y, ξ, t) − ρ(θ̄)(x, y, ξ, t)

)
dξ) · � dxdydzdt → 0,

1

Re1

∫ T

0

∫
�

∇(vn − v̄) · ∇� dxdydzdt → 0,

1

Re2

∫ T

0

∫
�

∂z(vn − v̄) · ∂z� dxdydzdt → 0.

For the nonlinear term in the velocity equation (74a), we obtain after integration by
parts and with the inequalities of Cauchy–Schwartz, Hölder and Ladyshenzkaya (31),

∣∣∣∣
∫ T

0

∫
�

[(vn · ∇)vn + wn∂zvn − (v̄ · ∇)v̄ − w̄∂z v̄] · � dxdydzdt

∣∣∣∣
=
∣∣∣∣
∫ T

0

∫
�

[((vn − v̄) · ∇) vn + (wn − w̄)∂zvn] · � dxdydzdt

+
∫ T

0

∫
�

[v̄ · ∇)�] · (vn − v̄) + [w̄∂z�] · (vn − v̄) dxdydzdt

∣∣∣∣
≤ c

∫ T

0
||vn − v̄||L6 ||∇vn||L2 ||�||L3dt + c

∫ T

0
||wn − w̄||L2 ||∂zvn||L6 ||�||L3dt

+c
∫ T

0
||v̄||L3 ||∇�||L2 ||vn − v̄||L6dt + c

∫ T

0
||w̄||L3 ||∂z�||L2 ||vn − v̄||L6dt

≤ c
∫ T

0
||vn − v̄||H1 ||∇vn||L2 ||�||H1dt + c

∫ T

0
||vn − v̄||H1 ||∂zvn||H1 ||�||H1dt

+c
∫ T

0
||v̄||H1 ||∇�||L2 ||vn − v̄||H1dt + c

∫ T

0
||v̄||H2 ||∂z�||L2 ||vn − v̄||H1dt

≤ c||vn − v̄||L2([0,T ],H1)||vn||L2([0,T ],H1)||�||H1
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+c||vn − v̄||L2([0,T ],H1)||vn||L2([0,T ],H1)||�||H1

+c||v̄||L2([0,T ],H1) ||∇�||L2 ||vn − v̄||L2([0,T ],H1)

+c||v̄||L2([0,T ],H2) ||∂z�||L2 ||vn − v̄||L2([0,T ],H1). (76)

The first three terms on the right-hand side of (76) vanish due to the convergence
of (vn)n to v̄ in L2([0, T ],H1(�)) and the boundedness of the remaining terms in
the respective integral. For the last term in (76), we note that due to (73), it holds
that ||v̄||L2([0,T ],H2) ≤ lim infn→∞ ||vn||L2([0,T ],H2) < C . Since v̄ ∈ L2([0, T ],H2)

the convergence of (vn)n in L2([0, T ], H1(�) shows that the last term converges
to zero. The convergence of the nonlinear terms in the temperature equations follows
analogously. The pointwise convergence of (vn)n to v̄ inH1 for almost every t ∈ [0, T ]
implies that v̄ satisfies the divergence-free constraint for almost every t ∈ [0, T ]. This
proves that the limit ψ̄ is a solution of the primitive equations.

It remains to show that that ψ̄ ∈ C([0, T ],V). We show first that ∂t ψ̄ ∈
L2([0, T ],L2(�). In order to establish this assertion, we take the L2-scalar prod-
uct of the primitive equations (1a)–(1e) for ψ = ψ̄ with ∂t ψ̄ = ∂t (v̄, θ̄ ). For the
velocity equation, we obtain

∫ T

0

∫
�

|∂t v̄|2 dxdydzdt

≤
∣∣∣∣∣
∫ T

0

∫
�

[(v̄ · ∇)v̄] · ∂t v̄ dxdydzdt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
�

[(∫ z

0
∇ · v̄ dξ

)
∂z v̄

]
· ∂t v̄ dxdydzdt

∣∣∣∣∣

+
∣∣∣∣∣
∫ T

0

∫
�

∇
(∫ z

−h
gρ̄(x, y, ξ, t) dξ + p̄S

)
· ∂t v̄ dxdydzdt

∣∣∣∣∣

+
∣∣∣∣∣
∫ T

0

∫
�

1

Re1
� v̄ · ∂t v̄ + 1

Re2
∂2zz v̄ · ∂t v̄ dxdydzdt

∣∣∣∣∣ , (77)

where ρ̄ is the density computed from θ̄ and where we omitted the external forcing for
simplicity.Weconsider the nonlinear termson the right-hand side.With the inequalities
of Hölder, Ladyzhenskaya and Young follows

∣∣∣∣
∫ T

0

∫
�

[(v̄ · ∇)v̄] · ∂t v̄ dxdydzdt

∣∣∣∣ ≤
∫ T

0
||v̄||L3 ||∇v̄||L6 ||∂t v̄||L2dt

≤ c

2ε1

∫ T

0
||v̄||2H1 ||∇v̄H1 ||2dt + ε1

2

∫ T

0
||∂t v̄||2L2 ,

(78)

where ε1 > 0 is arbitrary. For the vertical advection follows with Lemma 2.2 and the
Young inequality
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∣∣∣∣
∫ T

0

∫
�

[(∫ z

0
∇ · v̄ dξ

)
∂z v̄
]

· ∂t v̄ dxdydzdt

∣∣∣∣
≤
∫ T

0
||v̄||1/2H1 ||v̄||1/2H2 ||∂z v̄||1/2H1 ||∂z v̄||1/2L2 ||∂t v̄||L2dt

≤ c

2ε2

∫ T

0
||v̄||H1 ||v̄||H2 ||∂z v̄||H1 ||∂z v̄||L2 + ε2

2
|
∫ T

0
|∂t v̄||2L2dt,

(79)

with ε2 > 0 . The remaining terms in (77) can be bounded with the inequality of
Cauchy–Schwarz andYoung. In each of these upper bounds, a termoccurs that involves
the L2-norm of the time derivative ∂t v̄ multiplied by an εi as in (78) and (79). If we
choose the εi appropriately, we can compensate the time derivative on the right-hand
side and the time derivative on the left-hand side. In summary, we obtain the inequality

∫ T

0
|||∂t v̄||2L2dt ≤ c

∫ T

0
||θ̄ ||2H1 + || p̄s ||2H1dt + c

∫ T

0
||v̄||2H2dt

+ c
∫ T

0
||v̄||2H1 ||∇v̄H1 ||2dt + c

∫ T

0
||v̄||H1 ||v̄||H2 ||∂z v̄||H1 ||∂z v̄||L2dt .

(80)

Using the regularity ψ̄ = (v̄, θ̄ ) ∈ L2([0, T ],H2(�)), we observe that the right-
hand side of (80) is finite and this shows that ∂t v̄ ∈ L2([0, T ],L2(�)). From the
same arguments follows for the temperature equation that ∂t θ̄ ∈ L2([0, T ], L2(�)).
Since ψ̄ ∈ L2([0, T ],H2(�), ∂t ψ̄ ∈ L2([0, T ],L2(�) and H2 ⊆ H1 ⊆ L2 are
compactly embedded it follows with the Lions–Aubins compactness lemma that ψ̄ ∈
C([0, T ],H1(�)). This implies that (75) as well as the divergence-free constraint are
satisfied for all t ∈ [0, T ]. This proves that the limit ψ̄ is a solution of the primitive
equations in the sense of Definition 2.1.

We show now that the initial condition ψ̄0 minimizes the cost functional J in (68).
Lower semi-continuity of the scalar product implies for the limit ψ̄0

〈B(ψ̄0 − ψback), ψ̄0 − ψback
〉
H1 ≤ lim infn

〈B(ψ0,n − ψback), ψ0,n − ψback
〉
H1 ,

(81)

and for the associated sequence of model solutions

∫ T

0

〈R(M[ψ̄0] − ψobs),M[ψ̄0] − ψobs
〉
H1 dt

≤ lim inf
n

∫ T

0

〈R(M[ψ0,n] − ψobs,M[ψ0,n] − ψobs
〉
H1 dt .

(82)

As a consequence of (81) and (82), we have

J (ψ̄0) ≤ lim inf
n
J (ψ0,n). (83)

The initial condition ψ̄0 of ψ̄ is a minimizer of J , defined in (68). �
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From the proof of Theorem 4.1 follows immediately the next corollary that replaces
theH1-scalar product in the observational part of the cost functional by the H2-scalar
product. This choice reflects the regularity of the solutions of the primitive equations.
With regard to this aspect, see also Remark 2 below.

Corollary 4.2 Let observations ψobs ∈ L2([0, T ],H2(�)) and a background guess
ψback ∈ H1(�) be given. Let the observational term Jobs in (70) of the cost functional
(68) be defined by the H2-scalar product

Jobs(ψ0) :=
∫ T

0

〈R(M[ψ0](t) − ψobs(t)),M[ψ0](t) − ψobs(t)
〉
H2 dt . (84)

Then, there exist minimizers ψ̄0 = (v0, θ0) ∈ H1(�) of the data assimilation prob-
lem (9) with cost functional given by(68) and background term defined in (69) and
observational term in (84).

4.2 Adjoint Characterization of Local Minima

The existence of local minima of the data assimilation problem is guaranteed by
Theorem 4.1. We address now the problem of how these optimal initial conditions
can be computed. For this purpose, we prove an necessary condition in terms of the
adjoint equation. As preparation we need the following Lemma on the regularity of
Helmholtz equations for temperature and velocity.

Lemma 4.3 (i) Let f ∈ L2(�) be given. The equation

(I d − �3)θ = f , (�3 := ∂2xx + ∂2yy + ∂2zz) (85)

with homogeneous Neumann boundary condition ∇3θ · �n = 0 at ∂� has a unique
solution θ ∈ H2(�) that satisfies

||θ ||H2 ≤ c|| f ||L2 . (86)

(i i) Let F ∈ L2(�)2 be given. The equation

(I d − �3)v = F, (�3 := ∂2xx + ∂2yy + ∂2zz), (87)

with mixed homogeneous boundary conditions

v = 0, on �s ∪ �b and ∂zv = 0 on �u, (88)

has a unique solution v ∈ H2� that satisfies

||v||H2 ≤ c||F ||L2 . (89)
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Proof For equation (85) with homogeneous Neumann boundary conditions we refer
to Theorem 9.26 in Brezis (2010) from which the assertion follows. For equation (87)
and boundary condition (88), we note that the associated bilinearform

b(v1, v2) :=
∫

�

v1 · v2dxdydz +
∫

�

∇v1 · ∇v2dxdydz, v1, v2 ∈ Vv

satisfies b(v, v) ≥ ||v||2H1 for v ∈ Vv. The assertion follows from a classical result on
elliptic equations (see Necas 2012, Theorem 3.1. on p. 30). �
Theorem 4.4 (Adjoint Characterization of Optimal Initial Conditions) Let obser-
vations ψobs ∈ C([0, T ],H1(�)) ∩ L2([0, T ],H2(�)) and a background state
ψback ∈ H1(�) be given. Denote by ψ̄0 = (v̄0, ̄0) ∈ H1(�) an optimal initial
condition of the data assimilation problem (9). Then ψ̄0 satisfies

ψ̄0 = ψback − B−1S−1�̃0, (90)

where �̃ is the solution of the adjoint equation (54) with initial condition �̃(T ) = 0,
specified at time t = T and with forcing given by

F̃ := SR(M[ψ̄0] − ψobs). (91)

The operator S := (Sv,Sθ ), with Sv := (I d − �3) defined in (87) and boundary
conditions (88), and Sθ := (I d − �3) defined in (85), with homogeneous Neumann
boundary conditions is applied to each component of adjoint state vector �̃0 = (Ṽ, ̃).

Remark 2 (Regularity in observational term) Strong solutions of the primitive equa-
tions posses regularity in L2([0, T ],H2(�)) (see Theorem 1.1) but the observational
termof the cost functional (70) imposes only theweaker L2([0, T ],H1(�))-norm.The
reason for this discrepancy is that the adjoint equation (54) that is used in Theorem 4.4
requires a forcing F̃ in L2([0, T ],L2(�)). The adjoint forcing in (91) applies through
the operator S second-order derivatives to the model-observation difference. Taking
into account the L2([0, T ],H2(�))-regularity of the model solution and the imposed
regularity of the observationsψobs the resulting forcing is indeed in L2([0, T ],L2(�)).
The degree of derivatives that appear in S are linked to the degree of derivatives in the
observational part of the cost functional. This becomes evident when the Gateaux-
derivative of the cost functional is calculated (see the proof of Theorem 4.4, in
particular the integration-by-parts in the second equation of (92)). As this calcula-
tion shows, raising the spatial regularity in Jobs from H1 to H2 implies that in the
operator S the derivatives are raised from two to four, such that the highest-order term
is then given by the biharmonic operator �2. For such a fourth-order operator, we can
no longer guarantee that the adjoint forcing in (91) satisfies F̃ ∈ L2([0, T ],L2(�)).
The final calculation of the optimal initial state ψ̄0 in (90) restores regularity through
the smoothing effect of the inverse S−1 but this requires a square integrable forcing
in the adjoint equation.
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Proof For a minimizer ψ̄0 := (v̄0, θ̄0) ∈ V , which exists according to Theorem 4.1,
the Gateaux derivative vanishes such that J ′(ψ̄0; a) = 0 for all perturbations a =
(av, aθ ) ∈ V . We calculate the Gateaux derivative of J at an arbitrary state ψ in
direction a and with integration by parts follows

J ′(ψ0; a) = 〈B(ψ0 − ψback), a
〉
H1 +

∫ T

0

∫
�

R (M[ψ0] − ψobs) ·
(

DM[ψ0]
Dψ0

a
)

dxdt

+
∫ T

0

∫
�

∇3R (M[ψ0] − ψobs) · ∇3

(
DM[ψ0]

Dψ0
a
)

dxdt

= 〈B(ψ0 − ψback), a
〉
H1 +

∫ T

0

∫
�

R (M[ψ0] − ψobs) · � dxdt

−
∫ T

0

∫
�

�3R (M[ψ0] − ψobs) · � dxdt

= 〈B(ψ0 − ψback), a
〉
H1 +

∫ T

0

∫
�

SR (M[ψ0] − ψobs) · � dxdt, (92)

where we have used that � := DM[ψ0]
Dψ0

a, according to Lemma 3.2, satisfies the
linearized equation with forcing F = 0 and that the boundary integral vanishes as a
consequence of the boundary conditions.

Now, we integrate an adjoint equation whose forcing is given by the model-
observation difference in the second term on the right-hand side of (92),

F̃ := SR (M[ψ0] − ψobs) . (93)

The initial condition of the adjoint equation is �̃(T ) = 0. From (92) follows with the
adjoint relation in Lemma 3.4 that

J ′(ψ0; a) = 〈B(ψ0 − ψback), a
〉
H1 +

∫ T

0

∫
�

F̃ · � dxdt

= 〈B(ψ0 − ψback), a
〉
H1 +

∫ T

0

∫
�

F · �̃ dxdt −
∫

�

�̃�|T0 dx

= 〈B(ψ0 − ψback), a
〉
H1 +

∫
�

�̃(0) · �(0) dx

=
∑
|α|≤1

〈DαB(ψ0 − ψback),Dαa
〉
L2 +

∫
�

�̃(0) · a dx

=
∫

�

(
SB(ψ0 − ψback) + �̃(0)

)
· a dx . (94)

For a minimum we have J ′(ψ̄0; a) = 0 for all a, and with (94) we obtain

SB(ψ̄0 − ψback) + �̃0 = 0. (95)
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According to Lemma 4.3 this equations can be solved for ψ̄0 = (v̄0, θ̄0) by inverting
the operator S = (Sv,Sθ ). Since �̃0 ∈ L2(�), we obtain B−1S−1�̃0 ∈ H2(�). This
implies with ψback ∈ H1(�) that ψ̄0 ∈ H1(�) is given by

ψ̄0 = ψback − B−1S−1�̃0.

�
We consider now the case of observations that are only square integrable. Conse-

quentially, the H1-norm in the observational part of the cost functional (70) has to
be replaced by the L2-norm. This results in a different adjoint forcing term (see also
remark 2 in the next section). The background term Jb in (69) remains unchanged,
because the H1-norm is indispensable in obtaining strong solvability of the data assim-
ilation problem.

Corollary 4.5 (LessRegularObservations)Let observationsψobs ∈ L2([0, T ],L2(�))

be given. Define the observational term of the cost functional by

J ∗
obs(ψ0) :=

∫ T

0

∫
�

|M[ψ0](t) − ψobs(t)|2 dxdydzdt . (96)

Then there exist optimal initial conditions ψ̄0 = (v0, θ0) ∈ H1(�) for the data
assimilation problem (9) using the cost functional (68) with J ∗

obs replacing Jobs. The
minimizer ψ̄0 satisfies

ψ̄0 = ψback − SB−1�̃0, (97)

where �̃0 is the result of integrating the adjoint equation (54) with an initial value
�̃(T ) = 0 and with the forcing F̃ := R(ψ̄ − ψobs).

5 Convergence of Gradient-Based Descent Algorithm

The goal of this section is to prove the local convergence of an iterative gradient-
based method for determining the optimal initial condition of the data assimilation
problem, i.e., the descent method converged provided one uses a starting point that
is sufficiently close to the optimal initial condition. Globally convergent algorithms
such as the Newton method come with a prohibitively high computational costs for
the large-scale problems of numerical weather prediction and ocean state estimation
and are not considered here. To prove convergence, we use a general condition that is
valid in Hilbert spaces and that relies on the Hessian of the cost functional. The Hes-
sian is calculated through the relation between the Hessian and second-order adjoint
equations. This lemma provides the basis of our convergence result.

Lemma 5.1 (Abergel and Temam 1990) Let J be a real-valued function on a Hilbert
space X with norm | · |. We make the following assumptions:
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Fig. 1 Gradient algorithm for calculation of minimizers of cost functional. The difference between the
H1-norms and theL2-norms in the cost functional appear in steps 2 and 3. For theL2 version, the operator
S in the adjont forcing F̃ is the identity and step 3 does not exist

(i) J is of class C2 and has a local minimum at a point x̄ ∈ X,
(ii) there exists a ball B(x̄) ⊆ X around x̄, and two real numbers m, M, such that the

following inequalities hold:

m|x ||y| ≤ J ′′(u; x, y) ≤ M |x ||y|, for all u ∈ B, and x, y ∈ X ,

where J ′′[u; x, y] is the bilinear form associated with the second derivative of
J. Then, the gradient algorithm with initial value x0 ∈ B converges to x̄ . The
gradient algorithm is shown in Figure 1 where the cost functional J corresponds
to J in Fig. 1, the local minimum x̄ to ψ̄ and the initial value x0 to ψ0

0 .

The adjoint gradient-based algorithm for which we want to establish convergence
is illustrated in Fig. 1.

The second derivative of the cost functionalJ is related to the Hessian HJ [ψ] via

J ′′(ψ0;W,Z) = 〈Z, HJ [ψ]W 〉
, forW,Z ∈ H1(�). (100)
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Fig. 2 Algorithm for calculation Hesse matrix via second-order adjoint

The calculation of the Hessian HJ of the cost functional uses the second-order adjoint
equations.The second-order adjoint equations are givenby (for details seeAppendix1)

− ∂t Û + u∂xÛ + Û∂x u + v∂yÛ + w∂zÛ + V̂ ∂yu − f V̂ + ∂x∫ z

−h
ĝ(x, y, ξ, t) dξ + Dv(Û ) = F̄Û + GÛ ,

− ∂t V̂ + Û∂xv + v∂y V̂ + V̂ ∂yv + u∂x V̂ + w∂z V̂ + f Û + ∂y∫ z

−h
ĝ(x, y, ξ, t) dξ + Dv(V ) = F̄V̂ + GV̂ ,

∂xÛ + ∂y V̂ + ∂z W̄ = 0,

− ∂t̂ + u∂x̂ + v∂ŷ + w∂ẑ + Û∂xθ + V̂ ∂yθ + Dθ (̂) = F̄
̂

+ G
̂
,

(101)

where Dv( f ) := − 1
Re1

� f − 1
Re2

∂2zz f and Dθ (θ) := − 1
Rt1

� θ − 1
Rt2

∂2zzθ and with

forcing F̄ := (F̄Û , F̄V̂ , F̄
̂
) and with G := (GÛ ,GV̂ ,G

̂
) given by

GÛ := U∂xŨ + Ũ∂xU + V ∂yŨ + Ũ∂x V + Ũ∂x + ̃∂x,

GV̂ := Ṽ ∂yU + V ∂y Ṽ + Ṽ ∂y + U∂x Ṽ + Ṽ ∂y + ̃∂y,

G
̂

:= ∂x (Ũ) + ∂y(V ̃) + ∂z(W ̃) +
∫ z

−h
∇ · Ũ (x, y, z′) dz′.

(102)

The following Theorem provides information about the regularity of the second-
order adjoint equations that we need to prove our convergence result.
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Theorem 5.2 (Regularity of Second-Order Adjoint Equations) Suppose

1. the initial condition ψ0 ∈ V of the primitive equations (1) is given
2. the initial condition �0 ∈ V of the linearized equations (32) is given
3. the initial condition �̃(T ) ∈ V of the adjoint equations (54), specified at the end

point of the time interval is given
4. the forcing satisfies F̂ = (F̂Û , F̂V̂ , F̂

̂
) ∈ L2([0, T ],L2(�) × L2(�)).

If the initial conditions of the second-order adjoint equations satisfy �̂0 ∈ V , then the
system (101) has a unique solution on [0, T ] with the properties

�̂(t) ∈ C([0, T ],H1(�)) ∩ L2([0, T ],H2(�)),

and the state vector �̂ satisfies for t ∈ [0, T ]

||�̂(t)||2H1 ≤ ||�̂0||2H1 exp

{∫ t

0
K1(y) + K2(y) dy

}

+
∫ t

0

[
||F̂ ||2L2 + ||G||2L2

]
exp

{∫ s

0
K1(y) + K2(y) dy

}
ds,

(104)

with K1, K2 defined in (44) and G defined in (102).

Proof (Sketch of proof) The second-order adjoint equations (101) resemble formally
the first-order adjoint equations (54). If one identifies the first-order adjoint variable
�̃ with the second-order adjoint variable �̄, then the difference between the two
equations are the additional G-terms defined in (102). These terms consist of products
of linear variable � := (V,) and derivatives of the second order adjoint �̄. Using
the regularity of linear equations in Theorem 3.1, we can estimate GÛ ,GV̂ ,G

̂
in the

same manner as the products of the state vector ψ and derivatives of the second-order
adjoint �̄ on the left-hand side of (101). With the Agmon inequality, we obtain the
following estimate

∫ T

0
||GÛ (s)||2L2ds ≤ max

s∈[0,T ] ||∇Ṽ(s)||2L2

∫ T

0
||V(s)||2H2ds

+ max
s∈[0,T ] ||∇V(s)||2L2

∫ T

0
||Ṽ(s)||2H2ds

+ max
s∈[0,T ] ||∇(s)||2L2

∫ T

0
||Ṽ(s)||2H2 + ||̃(s)||2H2ds.

(105)

Analogous estimates for GV̂ ,G
̂
imply that G = (GÛ ,GV̂ ,G

̂
) satisfies

∫ T

0
||G(s)||2L2ds ≤ ||�(s)||2C([0,T ],H1)

||�̃(s)||2L2([0,T ],H2)

+ ||�̃(s)||2C([0,T ],H1)
||�(s)||2L2([0,T ],H2)

.

(106)
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This shows that (GÛ ,GV̂ ,G
̂
) ∈ L2([0, T ],L2). If we now define F̃ := G+ F̄ , we can

cast the second-order adjoint equations in the form of the first-order adjoint equations
and apply the estimates in the proof of Theorem 3.3 to prove that a unique solution
�̄ ∈ C([0, T ],H1(�)) ∩ L2([0, T ],H2(�)) to (101) exists. �

The equations (100) and (103) are used to verify the boundedness of the second
derivative of the cost functional. From Theorem 5.2, we infer that the right-hand side
of (103) is well-defined in H1(�), i.e., forW ∈ H1(�), we have

HJ [ψ]W = SBW − �̄0. (107)

We show now that the algorithm described in Figure 1 converges to an optimal initial
condition of the data assimilation problem.

Theorem 5.3 (Convergence) Suppose that the assumptions of Theorem 4.1 are satis-
fied. Let ψ̄0 ∈ V be an optimal initial condition for the data assimilation problem (9)
with cost functional specified by (68). Let ψ0

0 ∈ V be an initial value for the descent
algorithm 5 that lies within a ball B(ψ̄0) ⊆ H1(�) around ψ̄0. Define the sequence
(ψn

0 )n by (98). Then, (ψn
0 )n converges to ψ̄0 in H1(�).

Proof The proof of the Theorem is based on Lemma 5.1. We have to establish a lower
and upper bound on theHessian of the cost functional. This is accomplished via bounds
on the second-order state variable. In order to ease notation we suppress the index “n”
of the sequence, the state variable ψ in this proof corresponds to ψn . The occurring
equations, their initial conditions and forcing terms are summarized in Fig. 2.

We infer from Theorem 5.2 with �̂0 = 0

||�̂(t)||2H1 ≤
∫ T

t

[
||F̂ ||2L2 + ||G||2L2

]
exp

{∫ s

0
K1(y) + K2(y) dy

}
ds, (108)

with K1, K2 defined in (44) and with forcing given by F̂ := ∑
|α|≤1 �αR�.

We estimate now the right-hand side of (108) and begin with the forcing. With
assumption (71) on the covariance operators, we obtain the estimate

∫ T

t
||F̂(s)||2L2ds ≤

∫ T

t

∑
|α|≤1

||�αR�(s)||2L2ds ≤ c
∫ T

t
||R�(t)||2H2ds

≤ c||R||
∫ T

t
||�(t)||2H2ds, (109)

where ||R|| denotes the operator norm of the linear operator R and � ∈
L∞([0, T ],H1(�)) ∩ L2([0, T ],H2(�)) is the solution of the linear primitive equa-
tions with initial condition �0 = W and vanishing forcing. According to (42), this
solution satisfies for t ∈ [0, T ] the inequalities

||�(t)||2H1 ≤ ||W||2H1 exp{
∫ t

0
K1(s) + K2(s) ds} = L0(t)||W||2H1,
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with L0(t) := exp{
∫ t

0
K1(s) + K2(s) ds}, (110)

and

∫ T

t
||�(s)||2H2ds

≤ ||W||2H1 + ||W||2H1

∫ T

t
(K1(s) + K2(s)) exp{

∫ s

0
K1(y) + K2(y) dy} ds

≤ ||W||2H1

(
1 +

∫ T

t
(K1(s) + K2(s)) exp{

∫ s

0
K1(y) + K2(y) dy} ds

)

= L1(t)||W||2H1,

with L1(t) :=
(
1 +

∫ T

t
(K1(s) + K2(s)) exp{

∫ s

0
K1(y) + K2(y) dy} ds

)
. (111)

The estimates (110) and (111) imply for (109)

∫ T

t
||F̂(s)||2L2ds ≤ M1(t)||W||2H1,

with M1(t) := c(L0(t) + L1(t))||R||.
(112)

We continue now with the estimation of the G-terms in (108). It follows analogous to
(106)

∫ T

t
||G(s)||2L2ds ≤ ||�||2C([t,T ],H1)

||�̃||2L2([t,T ],H2)

+ ||�̃||2C([t,T ],H1)
||�||2L2([t,T ],H2)

.

(113)

The adjoint state �̃ in (113) which result from integration of the adjoint equations with
zero terminal condition and forcing F̃ := ∑

|α|≤1 �αR(ψ −ψobs) satisfies according

to Theorem 3.3 for t ∈ [0, T ] the H1-estimate

||�̃(t)||2H1 ≤ c
∫ T

t
||F̃(s)||2L2 exp{

∫ s

0
K1(y) + K2(y) dy} ds

≤ c||L0||L∞
∫ T

t
||F̃(s)||2L2 ds.

(114)
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For the H2-bound on the adjoint state in (113) yields Theorem 3.3, combined with
(114)

∫ T

t
||�̃(s)||2H2ds ≤

∫ T

t
(K1(s) + K2(s))||�̃(s)||2H1 ds +

∫ T

t
||F̃(s)||2L2 ds

≤ ||L0||L∞
∫ T

t
(K1(s) + K2(s))

∫ s

0
||F̃(y)||2L2 dy ds +

∫ T

t
||F̃(s)||2L2 , ds

≤ ||L0||L∞
∫ T

t
(K1(s) + K2(s)) ds

∫ t

0
||F̃(y)||2L2 dy

+
∫ T

t
||F̃(s)||2L2 , ds

≤ L2(t)
∫ T

t
||F̃(y)||2L2 dy,

with L2(t) := ||L0||L∞
∫ T

t
(K1(s) + K2(s)) ds + 1.

(115)

For the adjoint forcing in (114) and (115) follows with the triangle inequality

∫ T

t
||F̃(s)||2L2ds ≤

∑
|α|≤1

∫ t

0
||�αR (ψ(s) − ψobs(s)) ||2L2ds

≤ ||R||
∫ t

0
||ψ(s) − ψobs(s)||2H2ds

≤ ||R||
∫ T

t
||ψ(s) − ψ̄(s)||2H2 + ||ψ̄(s) − ψobs(s)||2H2ds =: L4(t),

(116)

where L4(t) > 0 is bounded on T , since ψ∗, ψn, ψobs ∈ L2([0, T ],H2(�)). The
function L4 is bounded uniformly in n, because (ψn)n ⊆ B(ψ∗

0 ).
From (114)-(116) follows for (113)

∫ T

t
||G(s)||2L2ds

≤ ||�||2C([t,T ]H1)
||�̃||2L2([t,T ],H2)

+ ||�̃||2C([t,T ]H1)
||�||2L2([t,T ],H2)

≤ (L0(t)L2(t) + c||L0||L∞ L1(t)) ||W||2H1

∫ T

t
||F̃(s)||2L2 ds

≤ (L0(t)L2(t) + c||L0||L∞ L1(t)) L4(t)||W||H1 = M2(t)||W||2H1,

with M2(t) := (L0(t)L2(t) + c||L0||L∞ L1(t)) L4(t)

(117)
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With (109) and (117), we derive for the upper bound on the second-order state in (108)
for t ∈ [0, T ]

||�̂(t)||2H1 ≤
∫ T

t

[
||F̂ ||2L2 + ||G||2L2

]
exp{

∫ s

0
K1(y) + K2(y) dy} ds

≤ L0(t)(M1(t) + M2(t))||W||H1 = M0(t))||W||H1,

with M0(t) := L0(t)(M1(t) + M2(t)).

(118)

We are now in the position to derive upper and lower bounds on the Hessian. From
(118) follows

|〈Z, HJ [ψ]W 〉
H1 | = |〈Z,SBW − �̂0

〉
H1 |

≤ ||Z||H1 ||SBW − �̂0||H1

≤ ||Z||H1(||SBW||H1 + ||�̂0||H1)

≤ ||Z||H1(||SB||H1 +√
M0||)W||H1 .

(119)

Equations (119) and (100) establish the bounds on the second derivative of the cost
functional and the application of Lemma 5.1 proves the assertion of the Theorem. �
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Appendix A: Derivation of First Order Linear, Adjoint and Second
Order Adjoint Primitive Equations

Letψ := (u, v, θ) be the state vector of the primitive equations.Wewrite the primitive
equations (1) in the form

d

dt
ψ = F(ψ), (120)

with

F(ψ) =
⎛
⎝ u∂x u + v∂yu + w∂zu − f v + ∂x

∫ z
−h gρ(x, y, ξ, t) dξ + D(u)

v∂xv + v∂yv + w∂zv + f u + ∂y
∫ z
−h gρ(x, y, ξ, t) dξ + D(v)

u∂xθ + v∂yθ + w∂zθ + Dθ (θ),

⎞
⎠ .

(121)
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where Dv( f ) := − 1
Re1

� f − 1
Re2

∂2zz f and Dθ (θ) := − 1
Rt1

� θ − 1
Rt2

∂2zzθ .
Consider now a linearized perturbation � := (U , V ,) of the state vector ψ =

(u, v, θ) that results from a perturbation of the initial condition ψ0 := (u0, v0, θ0) of
the state vector. Note that we only perturb variables that require an initial condition,
i.e., for the primitive equations and in contrast to the Navier–Stokes equations we
do not perturb the vertical velocity. The perturbation of u for example is defined as
Gateaux derivative of u at u0 in direction h

U := d

dt
u(u0 + th)|t=0, (122)

and analogously for v and θ . The equation governing the dynamics of the linearized
perturbation� can be found by taking theGateaux derivative of the primitive equations
(1). The product of the Jacobi-matrix F

′
, consisting of the partial Gateaux derivatives

of F with respect to the components (u, v, θ) of the state vector ψ , applied to the
linearized state vector � = (U , V ,) is given by

F
′ [ψ](�) =
⎛
⎜⎜⎜⎜⎜⎜⎝

u∂x U + U∂x u + v∂yU + V ∂y u + w∂zU + W∂zu − f V + ∂x
∫ z
−h g(x, y, ξ, t) dξ +Dv(U )

U∂x v + v∂y V + V ∂yv + u∂x V + w∂z V + W∂zv + f U + ∂y
∫ z
−h g(x, y, ξ, t) dξ +Dv(V )

∂x (u) + ∂y (v) + ∂z (w) + ∂x (Uθ) + ∂y (V θ) + ∂z (Wθ) + Dθ ()

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(123)

The linearized primitive equations can be written in the form

d

dt
� = F

′ [ψ](�). (124)

subject to the divergence-free constraint ∇3 · V = 0.
The adjoint primitive equationwith respect to the L2-scalar product reads as follows

− d

dt
�̃ = F

′∗[ψ](�̃). (125)

The expression of the adjoint operator F
′∗[ψ] is derived by taking L2-scalar product

of the linear operator F
′ [ψ] with the adjoint state vector �̃ = (Ṽ, ̃), Ṽ := (Ũ , Ṽ )

performing integration-by-parts and rearranging the resulting terms such that the linear
state vector � takes the role of a test function and the other component of the scalar
product consists of adjoint variables �̃ and state variableψ . We illustrate this with the
pressure gradient in the velocity equation. Integrating by parts, using the homogeneous
Dirichlet boundary conditions and the incompressibility of the adjoint velocity field
yields

∫
�

∇
(∫ z

−h
(x, y, ξ) dξ

)
· Ṽ(x, y, z) dxdydz
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= −
∫

�

(∫ z

−h
(x, y, ξ) dξ

)
∇ · Ṽ(x, y, z) dxdydz

+
∫

∂�

(∫ z

−h
(x, y, ξ) dξ

)
�nH · Ṽ(x, y) ds

=
∫

�

(∫ z

−h
(x, y, ξ) dξ

)
∂z W̃ (x, y, z) dxdydz

= −
∫

�

(x, y, z)W̃ (x, y, z) dxdydz +
[∫ z

−h
(x, y, ξ) dξ W̃ (x, y, z)

]z=0

z=−h

=
∫

�

(x, y, z)

(∫ z

−h
∇ · Ṽ(x, y, ξ)dξ

)
dxdydz, (126)

where �nH denotes the horizontal outer normal vector. The multiplication by the linear
temperature variable  as a test function implies that the vertical integral over the
horizontal divergence is an element of the weak formulation of the adjoint temperature
equation. This results in the following expression for F

′∗[ψ]

F
′∗[ψ](�̃)

=

⎛
⎜⎜⎜⎜⎝

u∂x Ũ + Ũ∂x u + v∂yŨ + Ũ∂xv + w∂zŨ + W̃∂zu + f Ũ + Ũ∂xθ + θ∂x ̃ + Dv(Ũ )

Ṽ ∂yu + v∂y Ṽ + Ṽ ∂yv + u∂x Ṽ + w∂z Ṽ + W̃∂zv − f Ṽ + Ṽ ∂yθ + θ∂ỹ + Dv(Ṽ )

u∂x (̃) + v∂y(̃) + w∂z(̃) + ∫ z
−h ∇ · Ũ (x, y, z′) dz′ + Dθ (̃)

⎞
⎟⎟⎟⎟⎠ ,

(127)

subject to the constraint ∂xŨ + ∂y Ṽ + ∂z W̃ = 0.
In order to derive the second-order adjoint primitive equations we linearize the

combined set of primitive and adjoint equations. The resulting second-order adjoint
primitive equations are given by

F
′′∗[ψ, �](�̂)

=

⎛
⎜⎜⎜⎜⎝

u∂x Û + Û∂x u + v∂yÛ + V̂ ∂yu + w∂zÛ + Ŵ∂zu − f V̂ + ∂x
∫ z
−h ĝ(x, y, ξ, t) dξ +Dv(Û )

Û∂x v + v∂y V̂ + V̂ ∂yv + u∂x V̂ + w∂z V̂ + Ŵ∂zv + f Û + ∂y
∫ z
−h ĝ(x, y, ξ, t) dξ +Dv(V )

u∂x ̂ + v∂ŷ + w∂ẑ + Dθ (̂)

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

U∂x Ũ + Ũ∂x U + V ∂yŨ + Ũ∂x V +Ũ∂x  + ̃∂x 

Ṽ ∂yU + V ∂y Ṽ + Ṽ ∂y + U∂x Ṽ +Ṽ ∂y + ̃∂y

∂x (Ũ) + ∂y(V ̃) + ∂z(W ̃) + ∫ z
−h ∇ · Ũ (x, y, z′) dz′

⎞
⎟⎟⎟⎟⎠ .

(128)
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Appendix B: Proof of Theorem 3.1

Proof The following proof is formal, it can be easilymade rigorous by using aGalerkin
expansion of the linearized variables (V,). The a priori estimates of the following
proof, applied to this Galerkin expansion, allows then to pass to the limit with the
Lions–Aubin compactness lemma.

Techniques that were originally developed in Cao and Titi (2007) are instrumental
for the proof.

Step 1: L∞([0, T], L2(Ä))-bound on velocity.

Taking the L2-inner product of the linearized velocity equation (32a) with the velocity
V yields

1

2

d ||V||2L2

dt
+ 1

Re1
||∇V||2L2 + 1

Re2
||∂zV||2L2

= −
∫

�

[
(v · ∇)V + (V · ∇)v −

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂zV

]
· V dxdydz

−
(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv · V dxdydz −

∫
�

(∇ Ps + f �k × V) · V dxdydz

−
∫

�

∇
(∫ z

−h
�(x, y, ξ, t)dξ

)
· V dxdydz +

∫
�

V · FVdxdydz.

(129)

The term with the Coriolis force vanishes. For the surface pressure we obtain after
integration by parts

−
∫

�

∇ Ps · V dxdydz =
∫

�

Ps∇ · V dxdydz =
∫

�u

Ps(∇ ·
∫ 0

−h
V dz) dxdy = 0.

For the linearized temperature equation we obtain after taking the L2-inner product
of (32c) with the temperature 

1

2

d||||2
L2

dt
+ 1

Rt1

∫
�

|∇|2 dxdydz + 1

Rt2

∫
�

|∂z|2 dxdydz + kθ ||θ(z = 0)||2L2

= −
∫

�

[
(v · ∇) + (V · ∇)θ −

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂z

]
 dxdydz

−
∫

�

(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zθ  dxdydz +

∫
�

 · Fdxdydz.

(130)
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Using that the following advective terms vanish due to the incompressibility (1c) of
the velocity v

∫
�

[
(v · ∇)V −

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂zV

]
· V dxdydz = 0,

∫
�

[
(v · ∇) −

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂z

]
 dxdydz = 0,

yields for the velocity equation

1

2

d

dt
||V||2L2 + 1

Re1
||∇V||2L2 + 1

Re2
||∂zV||2L2

= −
∫

�

[
(V · ∇)v −

(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv
]

· V dxdydz

+
∫

�

[
∇
(∫ z

−h
�(x, y, ξ, t)dξ

)]
· V dxdydz +

∫
�

V · FV dxdydz.

(131)

For the temperature equation, we obtain

1

2

d

dt
||||2

L2 + 1

Rt1

∫
�

|∇|2 dxdydz + 1

Rt2

∫
�

|∂z|2 dxdydz + kθ ||θ(z = 0)||2
L2

= −
∫
�

[
(V · ∇)θ −

(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zθ

]
 dxdydz +

∫
�

Fdxdydz.

(132)

We estimate now the terms on the right-hand side of (131) and (132). The first
terms on the right-hand side of (131) can be estimated with the inequalities of Hölder,
Ladyshenzkaya and Young

∣∣∣∣
∫

�

(V · ∇)v · V dxdydz

∣∣∣∣ ≤ c||∇v||L6 ||V||L3 ||V||L2

≤ c||∇v||H1 ||V||H1 ||V||L2 ≤ c

2ε1
||∇v||2H1 ||V||2L2 + ε1

2
||V||2H1

≤
(

c

2ε1
||∇v||2H1 + ε1

2

)
||V||2L2 + ε1

2
(||∇V||2L2 + ||∂zV||2L2),

(133)

and for the first term on the right-hand side of (132) we have

∣∣∣∣
∫

�

(V · ∇)θ ·  dxdydz

∣∣∣∣ ≤ c||∇θ ||L6 ||||L3 ||V||L2

≤ c

2ε2
||∇θ ||2H1 ||V||2L2 + ε2

2
||||2H1

≤ c

2ε2
||∇θ ||2H1 ||V||2L2 + ε2

2
(||||2L2 + ||∇||2L2 + ||∂z||2L2),

(134)
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where the εi > 0 are arbitrary and will be fixed later.
For the second term at the right-hand side of (131), we use the fact that the domain

is cylindrical,� = M ×{−h, 0}, and apply the triangle inequality and the inequalities
of Cauchy-Schwarz and Hölder (with norms L2, L4, L4) to obtain3

|
∫

�

[(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv
]

· V dxdydz|

≤ c
∫

M

(∫ 0

−h
|∇V(x, y, z, t)| dz

∫ 0

−h
|∂zv(x, y, z, t)| |V(x, y, z, t)| dz

)
dxdy

≤ c
∫

M

((∫ 0

−h
|∇V(x, y, z, t)| dz

)(∫ 0

−h
|∂zv(x, y, z, t)|2 dz

)1/2

×
(∫ 0

−h
|V(x, y, z, t)|2 dz

)1/2
)
dxdy

≤ c

(∫
M

(∫ 0

−h
|∇V(x, y, z, t)| dz

)2

dxdy

)1/2

(∫
M

(∫ 0

−h
|∂zv(x, y, z, t)|2 dz

)2

dxdy

)1/4 (∫
M

(∫ 0

−h
|V(x, y, z, t)|2 dz

)2

dxdy

)1/4

.

(135)

For the first term on the right-hand side of (135), we obtain with Cauchy–Schwarz

(∫
M

(∫ 0

−h
|∇V(x, y, z, t)| dz

)2

dxdy

)1/2

≤ c||∇V||L2 . (136)

For the second term, we obtain with theMinkowski inequality and the Ladyshenzkaya
inequality in 2D

(∫
M

(∫ 0

−h
|∂zv(x, y, z, t)|2 dz

)2

dxdy

)1/2

≤
∫ 0

−h

(∫
M

|∂zv(x, y, z, t)|4 dxdy

)1/2

dz ≤ ||∂zv||L2 ||∇∂zv||L2 .

(137)

For the last term on the right-hand side of (135), it holds that

(∫
M

(∫ 0

−h
|V(x, y, z, t)|2 dz

)2

dxdy

)1/2

≤
∫ 0

−h

(∫
M

|V(x, y, z, t)|4 dxdy

)1/2

dz

≤
∫ 0

−h
||V(·, ·, z, t)||L2 ||∇V(·, ·, z, t)||L2 dz ≤ c||V||L2 ||∇V||L2 .

(138)

3 The inequalities (135)–(139) apply a technique from (Cao and Titi 2007, see p. 264).
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From (136)–(138), we obtain for (135)

∣∣∣∣
∫

�

[(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv

]
· V dxdydz

∣∣∣∣
≤ c

ε3
||∂zv||2L2 ||∇∂zv||2L2 ||V||2L2 + ε3

2
||∇V||2L2 .

(139)

The same argument yields the following estimate for the second term on the right-hand
side of (132)

∣∣∣∣
∫

�

[∫ z

−h
∇ · V(x, y, ξ, t) dξ∂zθ

]
·  dxdydz

∣∣∣∣
≤ c

ε4
||∂zθ ||2L2 ||∇∂zθ ||2L2 ||||2L2 + ε4

2
||∇V||2L2 .

(140)

For the pressure gradient term in the velocity equation (129), the inequality of Cauchy–
Schwarz and the Young inequality yield

∣∣∣∣
∫

�

∇
(∫ z

−h
�(x, y, ξ, t)dξ

)
V dxdydz

∣∣∣∣ ≤ h||�||L2 ||∇V||L2

≤ c

2ε5
||||L2 + ε5

2
||∇V||2L2 ,

(141)

where we have used the equation of state (32d) in the last step.
The forcing terms on the right-hand side of (129) and (130) are estimated as

∫
�

V · FV dxdydz ≤ ||V||L2 ||FV||L2 ≤ 1

2ε6
||||FV||2L2 + ε6

2
||V||2L2 ,

and
∫

�

 F dxdydz ≤ ||||L2 ||F||L2 ≤ 1

2ε7
||F||2L2 + ε7

2
||||2L2 .

(142)

Collecting the estimates (129)-(141) results in the following bounds for the linearized
velocity equation

1

2

d

dt
||V||2L2 + 1

Re1
||∇V||2L2 + 1

Re2
||∂zV||2L2

≤
(

c

2ε1
||∇v||2H1 + c

ε3
||∂zv||2L2 ||∇∂zv||2L2 + ε1

2
+ ε6

2

)
||V||2L2

+
(ε3

2
+ ε5

2

)
||∇V||2L2 + c

2ε5
||||L2 + 1

2ε6
||FV||2L2 ,

(143)
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and for the temperature equation

1

2

d

dt
||||2L2 + 1

Rt1
||∇||2L2 + 1

Rt2
||∂z||2L2 + kθ ||θ(z = 0)||2L2

≤ c

ε2
||∇θ ||2H1 ||V||2L2 +

(
c

ε4
||∂zθ ||2L2 ||∇∂zθ ||2L2 + ε7

2

)
||||2L2

+ ε2

2
(||||2L2 + ||∇||2L2 + ||∂z||2L2) + ε4

2
||∇V||2L2 + 1

2ε7
||F||2L2 .

(144)

We combine now the two estimates (143) and (144). We define 1
Re := min{ 1

Re1
, 1

Re2
}

and 1
Rt := min{ 1

Rt1
, 1

Rt2
} and choose the εi appropriately. This yields

d

dt

[
||V||2L2 + ||||2L2

]
+ 1

Re

[
||∇V||2L2 + ||∂zV||2L2

]

+ 1

Rt

[
||∇||2L2 + ||∂z||2L2

]
+ kθ ||θ(z = 0)||2L2

≤ G
(
||V||2L2 + ||||2L2

)
+ c(||FV||2L2 + ||F||2L2),

where G(s) := c(||∇v(s)||2H1 + ||∂zv||2L2 ||∇∂zv||2L2

+ ||∇θ(s)||2H1 + ||∂zθ ||2L2 ||∇∂zθ ||2L2 + 1).

(145)

The Gronwall inequality implies

[
||V(t)||2L2 + ||(t)||2L2

]
≤
[
||V0||2L2 + ||0||2L2

]
exp

{∫ t

0
G(s) ds

}

+
∫ t

0
[||FV||2L2 + ||F||2L2 ]exp

{∫ t

s
G(y) dy

}
ds.

(146)

Since (v, θ) is a strong solution this shows that V and  are bounded in
L∞([0, T ],L2(�)).

Step 2: L∞([0, T],H1(Ä))-bound on velocity

To prove the H1-estimates for velocity we introduce the hydrostatic Stokes operator
A (see Guillén-González et al. 2001; Kukavica and Ziane 2007). The hydrostatic
Stokes operator is defined by Av := P�v for v ∈ D(A), where P denotes the is the
projection onto the space of square-integrable vector fields that are incompressible and
satisfy the velocity boundary conditions (2)-(7). The domain of definition D(A) of
A is given by D(A) := {v ∈ L2(�) : v and Av satisfy boundary conditions (2)-(7),
∇3 · v = 0, Av ∈ L2(�),∇3 · Av = 0}. The Stokes operator satisfies

〈
Av, v

〉
L2 =∫

�
Re−1

1 ∇v · ∇v + Re−1
2 ∂zv · ∂zv dxdydz.

For this a priori estimate, we treat the horizontal and vertical direction separately.
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Step 2a: L∞([0, T], L2(Ä))-bound on∇V

Taking the L2-inner product of the linearized velocity equation (32a) with AV yields

1

2

d

dt
||A1/2V||2L2 + ||AV||2L2

= −
∫

�

[((V · ∇)v + v · ∇)V

−
(

∇ ·
∫ z

−h
v(x, y, ξ, t) dξ

)
∂zV

]
· AV dxdydz

−
(

∇ ·
∫ z

−h
V(x, y, ξ, t) dξ

)
∂zv · AV dxdydz +

∫
�

AV · FVdxdydz,

(147)

where we have used that the Stokes operator annihilates gradients and that the Coriolis
term also vanishes. The forcing term is estimated by the inequalities of Cauchy–
Schwarz and Young

∫
�

AV · FVdxdydz ≤ ||AV||L2 ||FV||L2 ≤ ε0

2
||AV||2L2 + 1

2ε0
||FV||2L2 . (148)

For the first and second term on the right-hand side of (147) follows with the inequal-
ities of Hölder, Ladyshenzkaya and Young

∣∣∣∣
∫

�

(V · ∇)v · AV dxdydz

∣∣∣∣ ≤ ||V||L6 ||∇v||L3 ||AV||L2 ,

≤ c||V||H1 ||∇v||H1 ||AV||L2 ,

≤ c

2ε1
||∇v||2H1 ||V||2H1 + ε1

2
||AV||2L2 ,

(149)

and

∣∣∣∣
∫

�

(v · ∇)V · AV dxdydz

∣∣∣∣ ≤ ||v||L6 ||∇V||L3 ||AV||L2 ,

≤ c||v||H1 ||∇V||1/2L2 ||�V||1/2L2 ||AV||L2 ,

≤ c

2ε2
||v||2H1 ||∇V||L2 ||AV||L2 + ε2

2
||AV||2L2 ,

≤ c

4ε2ε3
||v||4H1 ||∇V||2L2 +

(ε2

2
+ ε3

2

)
||AV||2L2 .

(150)

123



Journal of Nonlinear Science (2021) 31 :56 Page 43 of 53 56

For the third term on the right-hand side of (147) we obtain with Lemma 2.2 ( f =
�V, g = ∂zV) and the Young inequality

∣∣∣∣
∫

�

(
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ

)
∂zVAV dxdydz

∣∣∣∣
≤ C ||AV||L2 ||v||1/2H1 ||v||1/2H2 ||∂zV||1/2L2 ||∂zV||1/2H1 .

≤ ε4

2
||AV||2L2 + 1

2ε4
||v||H1 ||v||H2 ||∂zV||L2 ||∂zV||H1

≤ ε4

2
||AV||2L2 + ε5

2
||∂zV||2H1 + 1

4ε4ε5
||v||2H1 ||v||2H2 ||∂zV||2L2 .

(151)

Applying Lemma 2.2 to the fourth term on the right-hand side of (147) ( f = �V , g =
∂zv) yields together with the Young inequality

∣∣∣∣
(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv · AV dxdydz

∣∣∣∣
≤ C ||AV||L2 ||V||1/2H1 ||V||1/2H2 ||∂zv||1/2L2 ||∂zv||1/2H1

≤ ε6

2
||AV||2L2 + c

2ε6
||V||H1 ||V ||H2 ||∂zv||L2 ||∂zv||H1

≤ ε6

2
||AV||2L2 + ε7

2
||V||2H2 + c

2ε26ε7
||V||2H1 ||∂zv||2L2 ||∂zv||2H1 .

(152)

Summarizing our estimates yields

1

2

d

dt
||∇V||2L2 + 1

Re
||�V||2L2 +

(
1

Re1
+ 1

Re2

)
||∇∂zV||2L2

≤
(

c

2ε1
||∇v||2H1 + c

4ε6ε7
||∂zv||2L2 ||∂zv||2H1

)
||V||2H1 + c

4ε2ε3
||v||4H1 ||∇V||2L2

+
(ε0

2
+ ε1

2
+ ε2

2
+ ε3

2
+ ε4

2
+ ε6

2

)
||�V||2L2

+ ε5

2

(
||∂zV||2L2 + ||∇∂zV||2L2 + ||∂2zzV||2L2

)

+ c

2ε4ε5
||v||2H1 ||v||2H2 ||∂zV||2L2 + ε7

2
||V||2H2 + 1

2ε0
||FV||2L2 .

(153)

We need a bound on ||∂zV||2L2 in (153). This is done in the next step before, we

complete the L∞([0, T ],H1(�)) bound on the velocity.
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Step 2b: L∞([0, T], L2(Ä))-bound on@zV.

The vertical derivative U := ∂zV of the linearized velocity satisfies the following
equation

∂U
∂t

+ (U · ∇)v + (V · ∇)∂zv + (∂zv · ∇)V + (v · ∇)U

− ∇ · V∂zv −
(

∇ ·
∫ z

−h
V(x, y, ξ, t) dξ

)
∂2zzv

− (∇ · v)U −
(

∇ ·
∫ z

−h
v(x, y, ξ, t) dξ

)
∂zU

− 1

Re1
�U − 1

Re2
∂2zzU + g∇∂z� + f �k × U = ∂z FV.

(154)

Taking the L2-scalar product of (154) with U yields

1

2

d

dt
||U||2L2 + 1

Re1
||∇ U||2L2 + 1

Re2
||∂zU||2L2

= −
∫

�

[(U · ∇)v] · U dxdydz −
∫

�

[
(V · ∇)∂zv

] · U dxdydz

−
∫

�

[
(∂zv · ∇)V

] · U dxdydz −
∫

�

[(v · ∇)U] · U dxdydz

+
∫

�

[(∇ · v)U] · U dxdydz +
∫

�

[
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ∂zU

]
· U dxdydz

+
∫

�

[
∇ ·

∫ z

−h
V(x, y, ξ, t) dξ∂2zzv

]
· U dxdydz −

∫
�

[
g∇∂z�

] · U dxdydz

+
∫

�

[
∂z FV

] · U dxdydz.

(155)

For the first term on the right-hand side of (155) we obtain with the inequalities of
Hölder, Ladyshenzkaya and Young

∣∣∣∣
∫

�

[(U · ∇)v] · U dxdydz

∣∣∣∣ ≤ ||∇v||L2 ||U||L6 ||U||L3

≤ ||∇v||L2 ||U||L6 ||U||1/2L2 ||∇U||1/2L2

≤ C0

2ε8
||∇v||2L6 ||U||L2 ||∇U||L2 + ε8

2
||U||2H1

≤ C0

4ε8ε9
||∇v||4L6 ||U||2L2 + ε9

2
||∇U||2L2 + ε8

2
(||U||2L2 + ||∇U||2L2 + ||∂zU||2L2).

(156)
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For the third term on the right-hand side of (155) follows the Hölder and Young
inequalities

∣∣∣∣
∫

�

[
(∂zv · ∇)V

] · U dxdydz

∣∣∣∣ ≤ ||∂zv||L6 ||∇V||L2 ||U||L3

≤ c

2ε10
||∂zv||2H1 ||U||L2 ||∇U||L2 + ε10

2
||∇V||2L2

≤ c

4ε10ε11
||∂zv||4H1 ||U||2L2 + ε11

2
||∇U||L2 + ε10

2
||∇V||2L2 .

(157)

Analogously follows for the fifth term

∣∣∣∣
∫

�

[(∇ · v)U] · U dxdydz

∣∣∣∣ ≤ ||∇v||L6 ||U||L2 ||U||L3

≤ C0||∇v||H1 ||U||3/2L2 ||∇U||1/2L2 ≤ C0

2ε12
||∇v||4H1 ||U||2L2 + ε12

2
||∇U||2L2 .

(158)

We observe that
∫

�

[
(V · ∇)∂zv −

(
∇ ·

∫ z

−h
V(x, y, ξ, t) dξ

)
∂2zzv

]
· U dxdydz = 0,

and∫
�

[
(v · ∇)U −

(
∇ ·

∫ z

−h
v(x, y, ξ, t) dξ

)
∂zU

]
· U dxdydz = 0,

(159)

and on the right-hand side of (155) the second and seventh as well as the fourth and
sixth term cancel. The pressure gradient (the eight term in (155)) is bounded as follows

∫
�

[
g∇∂z�

] · U dxdydz ≤ ||∂z�||L2 ||∇U||L2 ≤ 1

2ε13
||∂z||2L2 + ε13

2
||∇U||2L2 ,

(160)

where we have used (32d). For the forcing term, we obtain

∫
�

∂z FV · U dxdydz ≤ ||FV||L2 ||∂zU||L2 ≤ 1

2ε14
||FV||2L2 + ε14

2
||∂zU||2L2 .

(161)

In summary, we obtain from (155)–(161) the following estimate

1

2

d

dt
||∂zV||2L2 + 1

Re1
||∇∂zV||2L2 + 1

Re2
||∂2zzV||2L2

≤ c

(
1

4ε10ε11
||∂zv||4H1 + (

1

4ε8ε9
+ 1

2ε12
)||∇v||4H1

)
||∂zV||2L2

+
(ε9

2
+ ε11

2
+ ε12

2
+ ε13

2

)
||∇∂zV||2L2
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+ε8

2
C0(||∂zV||2L2 + ||∇∂zV||2L2 + ||∂2zzV||2L2)

+ε10

2
||∇V||2L2 + ε14

2
||∂2zzV||2L2 + 1

2ε13
||∂z||2L2 + 1

2ε14
||FV||2L2 . (162)

Step 2c: Completing the L∞([0, T],H1(Ä))-bound on velocity.

For the L2([0, T ],H1(�))-estimate of velocity follows from (153) and (162)

1

2

d

dt
(||∇V||2L2 + ||∂zV||2L2 ) + 1

Re
||�V||2L2 + 1

Re
||∇∂zV||2L2 + 1

Re
||∂2zzV||2L2

≤ c

(
1

2ε1
||∇v||2H1 + 1

4ε6ε7
||∂zv||2L2 ||∂zv||2H1

)
||V||2H1

+ c

(
1

4ε2ε3
||v||4H1 + ε10

2

)
||∇V||2L2

+ c

(
1

4ε10ε11
||∂zv||4H1 + (

1

4ε4ε5
||v||2H1 ||v||2H2 + 1

4ε8ε9
+ 1

2ε12
)||∇v||4H1

)
||∂zV||2L2

+
( ε0

2
+ ε1

2
+ ε2

2
+ ε3

2
+ ε4

2
+ ε6

2

)
||�V||2L2

+
( ε5

2
+ ε8

2

) (
||∂zV||2L2 + ||∇∂zV||2L2 + ||∂2zzV||2L2

)
+ ε14

2
||∂2zzV||2L2

+ ε7

2

(
||V||2L2 + ||V||2H1 + ||�V||2L2 + ||∂2zzV||2L2 + ||∇∂zV||2L2

)

+
( ε9

2
+ ε11

2
+ ε12

2
+ ε13

2

)
||∇∂zV||2L2

+ 1

2ε13
||∂z||2L2 + (

1

2ε0
+ 1

2ε14
)||FV||2L2 .

(163)

We choose the parameters εi such that the terms with second-order derivatives on
the right-hand side of (163) can be compensated with the corresponding terms on the
left-hand side. This yields

d

dt
(||∇V||2L2 + ||∂zV||2L2 ) + 1

Re
||�V||2L2 + 1

Re
||∇∂zV||2L2 + 1

Re
||∂2zzV||2L2

≤ c
(
||∂zv||2L2 + ||∂zv||2H1 + ||v||4H1 + ||∂zv||4H1 + ||v||2H1 ||v||2H2 + ||∇v||4H1 + 1

)
×

× ||V||2H1 + c||||2H1 + c||FV||2L2 .

(164)

Combining this with the L∞([0, T ], L2)-estimate (143) for velocity, we obtain

d

dt
||V||2H1 + 1

Re
||�V||2L2 + 1

Re
||∇∂zV||2L2 + 1

Re
||∂2zzV||2L2

≤ cK1

(
||V ||2H1 + ||||2H1 + ||FV||2L2

)
,

where

K1(t) :=||∂zv||2L2 + ||∂zv||2H1 + ||v||4H1 + ||∂zv||4H1

+ ||v||2H1 ||v||2H2 + ||∇v||4H1 + 1.

(165)
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Step 3: L∞([0, T],H1(Ä))-bound on temperature.

After taking the inner product of the temperature equation (32c) with −�3 :=
−� − ∂2zz,

1

2

d

dt
[||∇||2L2 + ||∂z||2L2 + kθ ||∇(z = 0)||2L2 ] + 1

Rt1
||�||2L2 + 1

Rt2
||∂2zz||2L2

+
(

1

Rt1
+ 1

Rt2

)
(||∇∂z||2L2 + kθ ||∇(z = 0)||2L2)

= −
∫

�

[(v · ∇) + (V · ∇)θ

−
(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂z

]
(� + ∂2zz) dxdydz

−
∫

�

(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zθ (� + ∂2zz) dxdydz

−
∫

�

(� + ∂2zz)F dxdydz.

(166)

We estimate the first two terms on the right-hand side of (166) with the inequalities of
Hölder, Ladyshenzkaya and Young

|
∫

�

(v · ∇)(� + ∂2zz) dxdydz|

≤
(

c

4ε0ε2
+ c

4ε21ε3

)
||v||4H1 ||∇||2L2 +

(ε2

2
+ ε3

2

)
||∇||2H1

+ ε0

2
||�||2L2 + ε1

2
||∂2zz||2L2 ,

(167)

and

|
∫

�

(V · ∇)θ(� + ∂2zz) dxdydz|
≤ ||∇θ ||L6 ||V||L3 ||�||L2 + ||∇θ ||L6 ||V||L3 ||∂2zz||L2

≤
(

c

4ε5ε7
+ c

2ε6ε8

)
||θ ||4H1 ||V||2L2 +

(ε7

2
+ ε8

2

)
||V||2H1

+ε4

2
||�||2L2 + ε5

2
||∂2zz||2L2 . (168)

For the third term in (166), we find analogously to (151)

∣∣∣∣
∫

�

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂z(� + ∂2zz) dxdydz

∣∣∣∣
≤ ε9

2
||�||2L2 + ε11

2
||∂2zz||2L2 +

(ε12

2
+ ε10

2

)
||∂z||2H1
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+
(

1

2ε9ε10
+ 1

2ε11ε12

)
||v||2H1 ||v||2H2 ||∂z||2L2 . (169)

and for the fourth term

∣∣∣∣
∫

�

(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zθ(� + ∂2zz) dxdydz

∣∣∣∣
≤ ε13

2
||�||2L2 + ε15

2
||∂2zz||2L2 +

(ε16

2
+ ε14

2

)
||�||2L2

+
(

1

2ε13ε14
+ 1

2ε15ε16

)
||V||2H1 ||V||2H2 ||∂zθ ||2L2 .

(170)

For the forcing, we obtain with the inequalities of Cauchy–Schwarz and Young

∣∣∣∣
∫

�

F(� + ∂2zz) dxdydz

∣∣∣∣ ≤ ||F||L2 ||�||L2 + ||F||L2 ||∂2zz||L2

≤ ε17

2
||�||2L2 + ε18

2
|||∂2zz||2L2 +

(
1

2ε17
+ 1

2ε18

)
||F||2L2 .

(171)

Collecting the estimates (167)-(171), we obtain for (166)

1

2

d

dt
[||∇||2L2 + ||∂z||2L2 + kθ ||∇(z = 0)||2L2 ] + 1

Rt
||�||2L2 + 1

Rt
||∂2zz||2L2

+ 1

Rt
||∇∂z||2L2 + kθ ||∇(z = 0)||2L2

≤
(ε0

2
+ ε4

2
+ ε9

2
+ ε13

2
+ ε14

2
+ ε16

2
+ ε17

2

)
||�||2L2

+
(ε1

2
+ ε5

2
+ ε11

2
+ ε15

2
+ ε18

2

)
||∂2zz||2L2

+
(

c

4ε0ε2
+ c

4ε21ε3

)
||v||4H1 ||∇||2L2 +

(ε2

2
+ ε3

2

) (
||�||2L2 + ||∇∂z||2L2

)

+
(

c

4ε5ε7
+ c

2ε6ε8

)
||θ ||4H1 ||V||2L2 +

(ε7

2
+ ε8

2

)
||V||2H1

+
(ε12

2
+ ε10

2

) (
||∇∂z||2L2 + ||∂2zz||2L2

)

+
(

1

2ε9ε10
+ 1

2ε11ε12

)
||v||2H1 ||v||2H2 ||∂z||2L2

+
(

1

2ε13ε14
+ 1

2ε15ε16

)
||V||2H1 ||V||2H2 ||∂zθ ||2L2 + (

1

2ε17
+ 1

2ε18
)||F||2L2

(172)
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Specifying the free parameters εi appropriately yields

d

dt
[||∇||2L2 + ||∂z||2L2 + kθ ||∇(z = 0)||2L2 ] + 1

Rt
||�||2L2 + 1

Rt
||∂2zz||2L2

+ 1

Rt
(||∇∂z||2L2 + kθ ||∇(z = 0)||2L2)

≤ K2||V||2H1 + K1||||2H1 + c||F||2L2 ,

where K2 := ||v||4H1 + ||v||2H1 + ||v||2H2 + ||θ ||4H1 + 1,

(173)

and where K1 was defined in (165). We combine the velocity estimate (165) and the
temperature estimates (144), (173) and obtain

d

dt
[||V||2H1 + ||||2H1] + 1

Re
||�V||2L2 + 1

Re
||∇∂zV||2L2 + 1

Re
||∂2zzV||2L2

+ 1

Rt
||�||2L2 + 1

Rt
||∂2zz||2L2 + 1

Rt
||∇∂z||2L2

≤ (K1 + K2)(||V||2H1 + ||||2H1) + c(||FV||2L2 + ||F||2L2).

(174)

Gronwall’s inequality implies

||V(t)||2H1 + ||(t)||2H1 ≤ [||V0||2H1 + ||0||2H1] exp{
∫ t

0
K1(s) + K2(s) ds}

+ c
∫ t

0
||FV(s)||2L2 + ||F(s)||2L2) exp{

∫ s

0
K1(y) + K2(y) dy} ds

(175)

where K1, K2 are bounded functions of s. This shows that (V,) are bounded in
L∞([0, T ],H1).

After integrating (174) over the time interval (0, t), t ∈ (0, T ] we get

∫ t

0

1

Re
||�V(s)||2L2 + 1

Re
||∇∂zV(s)||2L2 + 1

Re
||∂2zzV(s)||2L2

+ 1

Rt
||�(s)||2L2 + 1

Rt
||∂2zz(s)||2L2 + 1

Rt
||∇∂z(s)||2L2ds

≤ [||V0||2H1 + ||0||2H1] +
∫ t

0
(K1(s) + K2(s))(||V(s)||2H1 + ||(s)||2H1)

+ c(||FV(s)||2L2 + ||F(s)||2L2) ds.

(176)

This proves that (V,) are bounded in L2([0, T ],H2(�)).
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Step 4: Time Derivative.

We take the L2-scalar product of (32) with ∂t�. For the linearized velocity equation,
we obtain

∥∥dV
dt

∥∥2
L2 ≤ 1

Re1

∣∣
∫

�

�V · ∂tV dxdydz
∣∣+ 1

Re2

∣∣
∫

�

∂2zzV · ∂tV dxdydz
∣∣

+ ∣∣
∫

�

[
(v · ∇)V + (V · ∇)v − ( ∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂zV

]
· ∂tV dxdydz

∣∣

+ ∣∣(
∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv · V dxdydz

+ ∣∣ ∫
�

∇(
∫ z

−h
�(x, y, ξ, t)dξ

) · ∂tV dxdydz + ∣∣ ∫
�

∂tV · FV dxdydz
∣∣,

(177)

where the terms involving the Coriolis force and the surface pressure vanish. We note
that the sum of the third and fifth term on the right-hand side of (177) vanishes

∫
�

[
(v · ∇)V −

(∫ z

−h
∇ · v(x, y, ξ, t) dξ

)
∂zV

]
· ∂tV dxdydz = 0. (178)

For the forth term on the right-hand side, we obtain with the inequalities of Hölder,
Ladyshenzkaya and Young,

|
∫

�

(V · ∇)v · ∂tV dxdydz| ≤ c||∇v||L6 ||V||L3 ||∂tV||L2

≤ c||∇v||H1 ||V||H1 ||∂tV||L2 ≤ c

2ε1
||∇v||2H1 ||V||2H1 + ε1

2
||∂tV||2L2 .

(179)

For the sixth term at the right-hand side of (177) we apply Lemma 2.2 and the Young
inequality

|
∫

�

[(∫ z

−h
∇ · V(x, y, ξ, t) dξ

)
∂zv
]

· ∂tV dxdydz|

≤ ||∂tV||L2 ||V||1/2H1 ||V||1/2H2 ||∂zV||1/2L2 ||∂zV||1/2H1

≤ ε2

2
||∂tV||2L2 + 1

2ε2
||V||H1 ||V||H2 ||∂zV||L2 ||∂zV||H1

≤ ε2

2
||∂tV||2L2 + 1

2ε2
||V||2H1 ||V||2H2 .

(180)

The remaining terms can be estimated with the inequality of Cauchy–Schwarz, and
we obtain for (177) with the Young inequality

||∂tV||2L2 ≤ c(||�V||2L2 + ||∂2zzV||2L2 + ||∇v||2H1 ||V||2H1

+ ||V||2H1 ||V||2H2 + ||∇�||2L2 + ||FV||2L2).
(181)
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Integrating over [0, T ] and using the equations of state (32d) yields

∫ t

0
||∂tV(s)||2L2ds ≤ c(

∫ t

0
||�V(s)||2L2 + ||∂2zzV(s)||2L2 + ||∇v(s)||2H1 ||V(s)||2H1

+ ||V(s)||2H1 ||V(s)||2H2 + ||∇θ(s)||2L2 + ||FV(s)||2L2)ds.

(182)

Using the regularity properties v ∈ L∞([0, T ],H1(�)) ∩ L2([0, T ],H2(�)) and
V ∈ L∞([0, T ],H1(�)) ∩ L2([0, T ],H2(�)) we conclude that the right-hand side
of (182) is finite. This proves ∂tV ∈ L2([0, T ],L2(�)). With similar arguments
follows that ∂t ∈ L2([0, T ], L2(�)). From ∂t (V ,) ∈ L2([0, T ],L2(�)) and
(V ,) ∈ L2([0, T ],H2(�)) follows with the Aubins–Lions compactness lemma
that (V ,) ∈ C([0, T ],H1(�)). �
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