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Abstract We consider Cournot oligopoly models in which some variables represent indivisible
quantities. These models can be addressed by computing equilibria of Nash equilibrium problems
in which the players solve mixed-integer nonlinear problems. In the literature there are no methods
to compute equilibria of this type of Nash games. We propose a Jacobi-type method for computing
solutions of Nash equilibrium problems with mixed-integer variables. This algorithm is a general-
ization of a recently proposed method for the solution of discrete so-called “2-groups partitionable”
Nash equilibrium problems. We prove that our algorithm converges in a finite number of itera-
tions to approximate equilibria under reasonable conditions. Moreover, we give conditions for the
existence of approximate equilibria. Finally, we give numerical results to show the effectiveness of
the proposed method.

Keywords Nash equilibrium problem · mixed-integer nonlinear problem · Cournot oligopoly ·
numerical solution

1 Introduction

Cournot oligopolies can be modeled as Nash equilibrium problems, see e.g. [2,23]. The Nash
equilibrium problem is a key model in game theory and several algorithms have been proposed
for its solution, see e.g. the monograph [14] and the references therein. Also for its generalized
version (the generalized Nash equilibrium problem) can be found in the literature many solution
methods, see e.g. [1,6–8,10–13,15,17,19]. But all these methods assume that the feasible region
of all the players is continuous. Besides some specific procedures for some particular applications
(see e.g. [9,21]), recently some numerical methods for the solution of Nash equilibrium problems
with discrete strategy spaces have been proposed [20].

We consider the most challenging case of Nash equilibrium problems in which each player solves
a mixed-integer nonlinear problem (see e.g. [3–5,16,18,22] as excellent references on this type of
optimization problems) since some of its variables represent indivisible quantities. In particular, we
generalize the Jacobi-type algorithm proposed in [20] for discrete so-called “2-groups partitionable”
Nash equilibrium problems.

In section 2 we describe the Cournot oligopoly model with mixed-integer quantities. In section
3 we define the Jacobi-type method for computing solutions of the Nash model with mixed-integer
variables and we prove that it converges in a finite number of iterations to an approximate equilib-
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rium under reasonable conditions. In section 4 we give numerical results to show the effectiveness
of the proposed method.

Notation: M ∈ Rm×n is a matrix with m rows and n columns; Mj∗ denotes the j-th row of M
and M∗i denotes the i-th column of M ; given a set of row indices Jr and a set of column indices
Jc, MJrJc is the submatrix with rows in Jr and columns in Jc; given v ∈ Rn, Dv denotes the
square matrix whose diagonal entries are those of v.

2 A Cournot oligopoly model

Consider a market in which N firms produce multiple goods in order to increase their profits
as much as possible. Assuming that the firms act rationally, there is no explicit collusion among
them, and all of them have complete information, then the Nash equilibrium paradigm fits well
within this framework, see e.g. [23].

Each firm ν ∈ {1, . . . , N} produces nν goods and must decide the amount of all its goods it will
produce. Namely, by considering the realistic case of an initial stage (which is not an equilibrium)
in which each firm ν produces quantities q̂ν ∈ Rnν+ of its goods, the decision variables of each firm
ν are xν ∈ Rnν which represent deviations from q̂ν , so that the amounts of produced goods are
actually qν , xν+q̂ν . We further define the vector x−ν , (xµ)Nν 6=µ=1 and write Rn 3 x , (xν ,x−ν),

where n , n1 + · · ·+ nN .
The consumers’ inverse demand function for each firm ν ∈ {1, . . . , N} is linear:

pν(xν ,x−ν) , aν −
N∑
µ=1

Cνµ(xµ + q̂µ),

where aν ∈ Rnν , Cνµ ∈ Rnν×nµ for all µ, and pν(xν ,x−ν) indicates the market prices corresponding
to deviations x. Notice that, if Cνµij ≥ 0 then the jth product of firm µ is a substitute for the
ith product of firm ν since the price of the second product decreases as the quantity of the first
product increases. On the other hand, if Cνµij ≤ 0 then the jth product of firm µ is a complement
for the ith product of firm ν.

Each firm ν ∈ {1, . . . , N} has quadratic production costs:

Costν(xν) , (xν + q̂ν)T cν − (xν + q̂ν)TDkν (xν + q̂ν),

where cν , kν ∈ Rnν+ . This structure for the production costs allows to model, for example, the
presence of economies of scale.

The overall profit of each firm ν ∈ {1, . . . , N} is the following:

Profitν(xν ,x−ν) , pν(xν ,x−ν)T (xν + q̂ν)− Costν(xν).

Observe that Profitν(xν ,x−ν) is a quadratic function.
Assume, without loss of generality, that the first iν goods of each firm ν are indivisible (like

houses, cars and machines) or must be produced in lots, while the remaining nν − iν goods are
perfectly divisible. Namely, we assume that xνj , q̂

ν
j ∈ Z for all j ≤ iν .

The optimization problem faced by each firm ν ∈ {1, . . . , N} is the following:

minimizexν θν(xν ,x−ν) , −Profitν(xν ,x−ν)

lν ≤ xν ≤ uν (1)

xνj ∈ Z, j = 1, . . . , iν ,

where lν , uν ∈ Rnν are suitable bounds, namely, −q̂ν ≤ lν ≤ uν and lνj , u
ν
j ∈ Z for all j ≤ iν .

Each (1) is a mixed-integer nonlinear problem, specifically, it is a mixed-integer quadratic problem
(MIQP), see e.g. [5,16]. The whole game is a standard Nash equilibrium problem (NEP) since the
objective function of each player ν depends on the rivals’ variables x−ν .
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Let us introduce the best response set at x ∈ X for each firm ν:

x̂ν(x−ν) , arg min
xν∈Xν

θν(xν ,x−ν),

where

Xν ,
{
xν ∈ Rnν : lν ≤ xν ≤ uν , xνj ∈ Z, j = 1, . . . , iν

}
and X ,

N∏
ν=1

Xν .

Given ε > 0, we say that x ∈ X is an ε-approximate equilibrium if, for all ν ∈ {1, . . . , N}, it holds
that

θν(xν ,x−ν)− θν(x̂ν ,x−ν) ≤ ε,

where x̂ν ∈ x̂ν(x−ν).

3 A Jacobi-type algorithm

To compute approximate equilibria of NEP (1), we propose the Jacobi-type method defined in
Algorithm 1. This algorithm is an extension of Algorithm 7 in [20] for the mixed-integer case. The
non-standard choice of the subset J k of the firms that “play” at each iteration makes Algorithm
1 really flexible. Namely, as special cases, by selecting only one firm at each iteration we get a
Gauss-Southwell scheme, while if the firms take turns to move their variables we get a Gauss-
Seidel scheme, and, finally, if at each iteration all the firms solve their optimization problems
simultaneously we get a Jacobi scheme.

Algorithm 1: Jacobi-type method

1 choose a starting point x0 ∈ X and set k := 0;

2 while xk is not an ε-approximate equilibrium do
3 choose a subset J k ⊆ {1, . . . , N} of the firms;

4 forall ν ∈ J k do
5 compute a best response x̂k,ν ∈ x̂ν(xk,−ν);

6 if θν(xk,ν ,xk,−ν)− θν(x̂k,ν ,xk,−ν) > ε then
7 set xk+1,ν := x̂k,ν ;
8 else
9 set xk+1,ν := xk,ν ;

10 end

11 end

12 forall ν /∈ J k do
13 set xk+1,ν := xk,ν ;
14 end
15 set k := k + 1;

16 end

Result: an ε-approximate equilibrium xk

It is well known that best response methods, like Algorithm 1, do not lead to solutions of
NEPs in general, even in a totally continuous setting. However, as witnessed by Theorem 1 below,
and similarly to what done in [20], we can define an interesting class of Cournot models with
mixed-integer variables for which Algorithm 1 effectively works.

Definition 1 We say that the NEP defined by (1) is 2-groups partitionable if X is non-empty and
compact, Qν , Cνν −Dkν � 0 for all ν, and a partition of the variables indices into two groups,
G1 and G2, exists such that, for all (ν, i) 6= (µ, j):

Cνµij ≤ 0 if (ν, i) ∈ G1 3 (µ, j) or (ν, i) ∈ G2 3 (µ, j), (2)

Cνµij ≥ 0 if (ν, i) ∈ G1 63 (µ, j) or (ν, i) ∈ G2 63 (µ, j). (3)
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The assumption Qν � 0 in Definition 1 is strong but quite standard in a Nash game setting, since
it entails the convexity of the objective function of any player’s problem (1). Anyhow, it can be
noted that the objective function of any player ν can always be reformulated as a convex function,
regarding the discrete variables, by adding a term α(lν − xν)T (uν − xν), with α sufficiently large,
that vanishes in case of binary constraints xν ∈ {lν , uν}.

Conditions (2) and (3) in Definition 1 simply require that all the goods must be divided into
two groups such that: two goods of the same group are complements, while two goods of different
groups are substitutes. See section 2 for a definition of complements and substitutes.

We give a small example of a 2-groups partitionable Cournot model.

Example 1 There are three firms with the following data: nν = 1, q̂ν = 0, aν = 2, cν = 1, kν = 1
2 ,

iν = 1, lν = 0, and uν = 1, for all ν ∈ {1, 2, 3}; C11 = 1, C12 = 0, C13 = −1, C21 = 1, C22 = 1,
C23 = 0, C31 = 0, C32 = 1, and C33 = 1. This Cournot model is 2-groups partitionable since: X
is non-empty and compact, Qν = Cνν −kν = 1

2 for all ν, and, by partitioning the variables indices
into G1 = {(1, 1), (3, 1)} and G2 = {(2, 1)}, conditions (2) and (3) are satisfied. Notice that the
good produced by firm 1 is a complement for that of firm 3 and vice versa (they are both in G1).
On the other hand, the good of firm 2 is a substitute for that produced by firm 1 and for that
produced by firm 3 and vice versa (the good of firm 2 is not in G1).

The following theorem gives sufficient conditions for the convergence of Algorithm 1.

Theorem 1 Assume that the NEP defined by (1) is 2-groups partitionable with groups G1 and
G2.

For all ν ∈ {1, . . . , N} and all i ∈ {1, . . . , nν}, let x0,ν
i = lνi if (ν, i) ∈ G1, and let x0,ν

i = uνi if
(ν, i) ∈ G2. Let a finite positive integer h exist such that ν ∈ ∪k+h

t=k J t for each player ν and each
iterate k.

Then, for each iterate k and each player ν ∈ J k, a best response x̂k,ν ∈ x̂ν(xk,−ν) can be
computed such that

x̂k,νi ≥ xk,νi , ∀ (ν, i) ∈ G1, x̂k,νi ≤ xk,νi , ∀ (ν, i) ∈ G2. (4)

By computing x̂k,ν for all k and all ν ∈ J k such that (4) holds, Algorithm 1 converges, in a finite
number of iterations, to an ε-approximate equilibrium of the NEP, given any ε > 0.

Proof First of all note that the set x̂ν(x−ν) is non-empty for any ν and any x ∈ X since X is
non-empty and compact.

Let us consider the first iteration. Since x1 ∈ X then it holds that x1,ν
i ≥ x0,ν

i if (ν, i) ∈ G1,

and x1,ν
i ≤ x0,ν

i if, otherwise, (ν, i) ∈ G2.
Now let us consider the second iteration. In order to prove that, for all ν, a best response

x̂1,ν ∈ x̂ν(x1,−ν) exists such that for all i ∈ {1, . . . , nν}:

x̂1,ν
i ≥ x1,ν

i , if (ν, i) ∈ G1, and, x̂1,ν
i ≤ x1,ν

i , if (ν, i) ∈ G2, (5)

we have to consider two possibilities. If ν /∈ J 0, or, in general, x1,ν is not updated as in line 7 of
the algorithm, then x1,ν = x0,ν and then (5) is trivially satisfied. Otherwise ν ∈ J 0 and x1,ν is
updated as in line 7 of the algorithm, then we suppose by contradiction that for all yν ∈ x̂ν(x1,−ν)
a non-empty set of indices J ⊆ {1, . . . , nν} exists such that for all i ∈ J it holds that yνi < x1,ν

i if

(ν, i) ∈ G1 and yνi > x1,ν
i if (ν, i) ∈ G2. Now we show that this is impossible. Let J̄ , {1, . . . , nν}\J ,

for all j ∈ J̄ we have yνj ≥ x1,ν
j if (ν, j) ∈ G1 and yνj ≤ x1,ν

j if (ν, j) ∈ G2. We define ȳν , ỹν ∈ Xν

such that ȳνJ = yνJ , ȳν
J̄

= x1,ν
J̄

, ỹνJ = x1,ν
J and ỹν

J̄
= yν

J̄
. Recalling Qν , Cνν −Dkν , the following

chain of inequalities holds:

[(ỹν)TQν ỹν − (yν)TQνyν ]−
[
(x1,ν)TQν(x1,ν)− (ȳν)TQν ȳν

]
=[

2
(
(yνJ)T (yνJ̄)T

) (QνJJ
Qν
J̄J

) (
x1,ν
J − y

ν
J

)
+
(
x1,ν
J − y

ν
J

)T
QνJJ

(
x1,ν
J − y

ν
J

)]
−
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2
(

(yνJ)T (x1,ν

J̄
)T
) (QνJJ

Qν
J̄J

) (
x1,ν
J − y

ν
J

)
+
(
x1,ν
J − y

ν
J

)T
QνJJ

(
x1,ν
J − y

ν
J

)]
=

2
(
yνJ̄ − x

1,ν
J̄

)T
QνJ̄J

(
x1,ν
J − y

ν
J

)
≤ 0, (6)

where the last inequality holds because:

– for all j ∈ J̄ :
(
yνj − x

1,ν
j

)
≥ 0 if (ν, j) ∈ G1 and

(
yνj − x

1,ν
j

)
≤ 0 if (ν, j) ∈ G2,

– for all j ∈ J̄ and all i ∈ J : Qνji ≤ 0 if (ν, j) ∈ G1 3 (ν, i) or (ν, j) ∈ G2 3 (ν, i), by (2), and
Qνji ≥ 0 if (ν, j) ∈ G1 63 (ν, i) or (ν, j) ∈ G2 63 (ν, i), by (3),

– for all i ∈ J :
(
x1,ν
i − yνi

)
> 0 if (ν, i) ∈ G1 and

(
x1,ν
i − yνi

)
< 0 if (ν, i) ∈ G2.

Let bν , 2Qν q̂ν − aν + cν +
∑N
ν 6=µ=1 C

νµq̂µ. By using (6), we can write the following chain of
inequalities

0 ≥ (ỹν)TQν ỹν − (yν)TQνyν − (x1,ν)TQν(x1,ν) + (ȳν)TQν ȳν

(A)

≥ (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµx0,µ

T
J

(x1,ν
J − y

ν
J)

(B)

≥ (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµx1,µ

T
J

(x1,ν
J − y

ν
J)

= (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµx1,µ

T (ỹν − yν),

where (A) holds since x1,ν ∈ x̂ν(x0,−ν) (remember that we are considering the case in which ν ∈ J 0

and x1,ν is updated as in line 7 of the algorithm), and ȳν is feasible for player ν; while (B) is true

since for all i ∈ J : if (ν, i) ∈ G1 we have
[∑N

ν 6=µ=1 C
νµ(x0,µ − x1,µ)

]
i
≥ 0 and (x1,ν

i − yνi ) > 0,

and if (ν, i) ∈ G2 we have
[∑N

ν 6=µ=1 C
νµ(x0,µ − x1,µ)

]
i
≤ 0 and (x1,ν

i − yνi ) < 0. Then we can

conclude that θν(ỹν ,x1,−ν) ≤ θν(yν ,x1,−ν) and, since ỹνi ≥ x1,ν
i for all (ν, i) ∈ G1 and ỹνi ≤ x1,ν

i

for all (ν, i) ∈ G2, this is a contradiction. Therefore, for all ν ∈ J 1, we can set x̂1,ν ∈ x̂ν(x1,−ν)
satisfying (5) for all i ∈ {1, . . . , nν}, and then we obtain

x2,ν
i ≥ x1,ν

i , ∀ (ν, i) ∈ G1, x2,ν
i ≤ x1,ν

i , ∀ (ν, i) ∈ G2.

At a generic iterate k ≥ 2, assuming that for all t < k

xk,νi ≥ xt,νi , ∀ (ν, i) ∈ G1, xk,νi ≤ xt,νi , ∀ (ν, i) ∈ G2,

we can do similar considerations in order to prove that we can get for all (ν, i):

xk+1,ν
i ≥ xk,νi , if (ν, i) ∈ G1, and, xk+1,ν

i ≤ xk,νi , if (ν, i) ∈ G2. (7)

Namely, we have the following two possibilities for any ν ∈ J k: if ν /∈ ∪k−1
t=0J t, or, in general,

xk,ν = x0,ν , then (7) is trivially satisfied, otherwise, as above we can contradict the fact that
any point yν in x̂ν(xk,−ν) has a non-empty set of indices J such that for all i ∈ J it holds that

yνi < xk,νi if (ν, i) ∈ G1 and yνi > xk,νi if (ν, i) ∈ G2. We define ȳν and ỹν as above. Let p < k be
the last iterate at which xν is updated as in line 7 of the algorithm. By the same considerations
made above, we can write the chain of inequalities

0 ≥ (ỹν)TQν ỹν − (yν)TQνyν − (xk,ν)TQν(xk,ν) + (ȳν)TQν ȳν

≥ (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµxp,µ

T
J

(xk,νJ − yνJ)
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≥ (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµxk,µ

T
J

(xk,νJ − yνJ)

= (ỹν)TQν ỹν − (yν)TQνyν +

bν +

N∑
ν 6=µ=1

Cνµxk,µ

T (ỹν − yν),

which proves the contradiction in the same way as above.
Therefore, we can say that the entire sequence {xk} is such that xk ∈ X and (7) is true for

all (ν, i). Now, let us suppose, by contradiction, that sequence {xk} is infinite. In this case, by
recalling that ν ∈ ∪k+h

t=k J t for each player ν and each iterate k, for any k we obtain that an
iteration t, with k ≤ t ≤ k + h, and a firm µ exist such that

θµ(xt,µ,xt,−µ)− θµ(xt+1,µ,xt,−µ) > ε. (8)

Let us denote
τ , max

ν∈{1,...,N}
max
x∈X

∥∥∇xνθν(xt)
∥∥

2
.

By the assumptions, τ is finite. Then (8) implies that

ε < θµ(xt,µ,xt,−µ)− θµ(xt+1,µ,xt,−µ)

(A)

≤ ∇xµθµ(xt,µ,xt,−µ)T (xt,µ − xt+1,µ)

≤
∥∥∇xµθµ(xt,µ,xt,−µ)

∥∥
2

∥∥xt,µ − xt+1,µ
∥∥

2

≤ τ
∥∥xt,µ − xt+1,µ

∥∥
2
,

where (A) holds by the convexity of θµ. Then we obtain

ε2

τ2
<
∥∥xt,µ − xt+1,µ

∥∥2

2
≤ n

∥∥xt,µ − xt+1,µ
∥∥2

∞ .

Therefore an index i ∈ {1, . . . , nµ} exists such that

xt+1,µ
i > xt,µi +

ε

τ
√
n
, if (µ, i) ∈ G1, and, xt+1,µ

i < xt,µi −
ε

τ
√
n
, if (µ, i) ∈ G2,

but this contradicts the boundedness of X, and, therefore, {xk} is finite. Thus, the point returned
by Algorithm 1 is an ε-approximate equilibrium of the NEP. ut

It is worth to spend some words about the proof of Theorem 1. First of all, we note that the proof
of Theorem 1 is very similar to that of Theorem 4.2 in [20]. The main difference is that here we
consider the mixed-integer setting and then, to prove that the sequence produced by the algorithm
is finite, we focus on ε-approximate equilibria with ε > 0.

The first part of the proof is quite identical to that in [20], and it is devoted to proving that,
starting from the point x0 (such that x0,ν

i = lνi if (ν, i) ∈ G1, and x0,ν
i = uνi if (ν, i) ∈ G2), then the

algorithm can always produce a sequence {xk} such that (7) is true for all (ν, i). Therefore, once
any variable xνi leaves its starting bound during the iterations, it goes towards the other bound
never coming back. It is important to notice that this behaviour is independent from the fact that
xνi is a continuous or a discrete variable.

The last part of the proof differs from that in [20] due to the presence of continuous variables.
Here we show that, by exploiting the convexity and the smoothness of any θν , and by recalling (7)
and the compactness of X, the sequence produced by the algorithm must be finite. Finally, any
point returned by the algorithm is, by definition, an ε-approximate equilibrium of the game.

Moreover, we observe that the starting points for which the convergence of the algorithm is
proved in Theorem 1 are two: the one defined in the theorem and the other one that can be
obtained by switching the two groups of indices.
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Example 2 Consider again the model of example 1. The problems solved by the firms are the
following

minimizex1 θ1(x1, x2, x3) =
1

2
(x1)2 − x1x3 − x1, s.t. x1 ∈ {0, 1},

minimizex2 θ2(x1, x2, x3) =
1

2
(x2)2 + x1x2 − x2, s.t. x2 ∈ {0, 1},

minimizex3 θ3(x1, x2, x3) =
1

2
(x3)2 + x2x3 − x3, s.t. x3 ∈ {0, 1}.

Starting from the point indicated in Theorem 1, that is (0, 1, 0), Algorithm 1, with any ε < 1
2 and

any order of play, produces the following sequence

(0, 1, 0)→ (1, 1, 0) → (1, 0, 0) → (1, 0, 1)

θ1 : 0 − 1
2 − 1

2 − 3
2

θ2 : − 1
2

1
2 0 0

θ3 : 0 0 0 − 1
2

that terminates in (1, 0, 1) which is an ε-approximate equilibrium of the game. Notice that (1, 0, 1)
is the other possible starting point for which the convergence is proved in Theorem 1. It is directly
an equilibrium of the game.

Moreover, if we consider any possible other mixed-integer setting, e.g. i1 = 0, i2 = 1, and
i3 = 1, then the sequence produced by the algorithm is the same, and (1, 0, 1) is an equilibrium of
the game.

The following result is about the complexity of Algorithm 1.

Proposition 1 Let us suppose that all the assumptions in Theorem 1 are fulfilled. Then Algorithm
1 converges to an ε-approximate equilibrium of the NEP defined by (1), with ε > 0, in at most

h

[
N∑
ν=1

nν∑
i=1

(uνi − lνi )
τ
√
n

ε

]
iterations.

Proof As stated in the proof of Theorem 1, sequence {xk}, generated by Algorithm 1, is such that
xk ∈ X and (7) is true for all (ν, i). By recalling that ν ∈ ∪k+h

t=k J t for each player ν and each

iterate k, then, if for an iteration k̄ it holds that xk̄ = xk̄+h+1, then xk̄+h+1 is a solution of the
discrete NEP. Otherwise at least one (ν, i) exists such that

xk̃+1,ν
i > xk̃,νi +

ε

τ
√
n
, if (µ, i) ∈ G1, and, xk̃+1,ν

i < xk̃,νi − ε

τ
√
n
, if (µ, i) ∈ G2,

where k̄ ≤ k̃ ≤ k̄ + h. Therefore Algorithm 1 can do no more than

h

[
N∑
ν=1

nν∑
i=1

(uνi − lνi )
τ
√
n

ε

]

iterations before xk,νi = uνi if (ν, i) ∈ G1 and xk,νi = lνi if (ν, i) ∈ G2, for all ν ∈ {1, . . . , N} and all
i ∈ {1, . . . , nν}. ut

The following corollary gives conditions for the existence of ε-approximate equilibria. It is a direct
consequence of Theorem 1.

Corollary 1 A 2-groups partitionable NEP has at least one ε-approximate equilibrium for any
given ε > 0.
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The following example shows that if the Cournot model is not partitionable into two groups then
there is no hope to obtain the good results of Theorem 1, Proposition 1, and Corollary 1. In
particular, the game in the example is partitionable into three, but not into two, groups and it
does not have any equilibrium.

Example 3 Let us consider again the model of example 1, but with C13 = 1. In this case the good
produced by firm 3 is no longer a complement for that of firm 1, but it is a substitute. Therefore
the variables are partitionable into three groups, but not into two groups. In particular, we can
partition the variables indices in this way: G1 = {(1, 1)}, G2 = {(2, 1)}, and G3 = {(3, 1)}. The
problem solved by firm 1 is the following

minimizex1 θ1(x1, x2, x3) =
1

2
(x1)2 + x1x3 − x1, s.t. x1 ∈ {0, 1},

while the other firms solve the same problems as before (see example 2). Starting from (0, 1, 0),
Algorithm 1, with any ε < 1

2 and any order of play, produces the following infinite sequence

(0, 1, 0) → (1, 1, 0)→ (1, 0, 0) → (1, 0, 1) → (0, 0, 1)→ (0, 1, 1) → (0, 1, 0)→ · · ·

θ1 : 0 − 1
2 − 1

2
1
2 0 0 0

θ2 : − 1
2

1
2 0 0 0 − 1

2 − 1
2

θ3 : 0 0 0 − 1
2 − 1

2
1
2 0

While starting from (0, 0, 0) or (1, 1, 1), which are the only other points that are not in the sequence
above, the algorithm never stops since they are not ε-approximate equilibria for any ε < 1

2 .
Therefore, starting from any feasible point, the algorithm does not converge. However, the game
does not have any ε-approximate equilibrium with ε < 1

2 , and this indicates that no method can
be more effective than Algorithm 1 on this game.

4 Numerical experiments

Models described in this paper are particularly relevant if the number of players is small, and
challenging if the number of decision variables of each of these few players is large. Thus, in
our experiments we assume that there are N = 3 firms each producing nν = 100 products. For
any player ν, the first iν = 50 products are indivisible, while the other 50 are modeled with
continuous variables. We assume that any product, of any firm, belongs to one of two groups
following assumptions (2) and (3). We recall that two products of the same group are complements,
while two products of different groups are substitutes. The first group of products is made up of
the first 50 products of firm 1, the first 25 products of firm 2 and the first 75 products of firm
3. The second group is made up of the other products. Let hν ∈ {−1, 1}100 be a vector, for any
firm ν, whose entries are equal to 1 if the corresponding product belongs to the first group, or are
equal to -1 otherwise. For any couple of firms ν and µ, we computed matrix Cνµ in the following
way: Cνµ = −

[
(wν ◦ hν) (vνµ ◦ hµ)

T
]
◦Mνµ, where wν , vνµ ∈ R100

+ , ◦ denotes the element-wise
product, and Mνµ ∈ Rnν×nµ has the following entries:

Mνµ
ij =


5 if ν 6= µ and hνi h

µ
j < 0

0.05 if ν 6= µ and hνi h
µ
j > 0

0.5 if ν = µ.

Matrix Mνµ is intended to emphasize the effect of substitute goods of different firms and to
decrease the effect of complement ones. Moreover, in order to get any Qν � 0, we set the diagonal
elements of Qν equal to 10 times the sum of the absolute values of the corresponding (off-diagonal)
row elements of the symmetric part of Qν .
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For any firm ν, the parameters were generated in the following way: aν were randomly generated
in [10 000, 20 000]100 by using the uniform distribution, and then rounded off to the nearest integer
values; cν = 0.5 aν ; wν and vνµ, for all µ, were randomly generated in [0.9, 1.1]100 and [0, 1]100

respectively by using the uniform distribution; q̂ν = x̂ν(0) in the case of null initial quantities and
lower bounds, and large upper bounds (= 100); lν = max{−q̂ν ,−10} and uν = 10.

We generated 3 different instances of the game (denoted by A, B, and C), and solved them
by using Algorithm 1 in 4 different variants: pure Jacobi (Ja), Gauss-Seidel in which the order of
play is: firm 1 for first, firm 2 for second and firm 3 for third (GS123), Gauss-Seidel in which the
order of play is: firm 2 for first, firm 3 for second and firm 1 for third (GS231), and Gauss-Seidel
in which the order of play is: firm 3 for first, firm 1 for second and firm 2 for third (GS312).
We considered 3 different starting points: quantity deviations of the first group goods start from
their lower bounds and the others from their upper bounds (sp1); quantity deviations of the first
group goods start from their upper bounds and the others from their lower bounds (sp2); all the
quantity deviations start from zero (sp3). Notice that (sp1) and (sp2) are the two starting points
for which the convergence is proved in Theorem 1, while starting from (sp3) Algorithm 1 could
not converge.

All the experiments were carried out on an Intel Core i7-4702MQ CPU @ 2.20GHz x 8 with
Ubuntu 14.04 LTS 64-bit and by using Matlab 7.14.0.739 (R2012a). We implemented Algorithm
1 by using AMPL and we computed all the best responses by using the convex mixed-integer
quadratic programming solver of CPLEX 12.6.0.1 with default options. We set ε = 1e− 4.

In Table 1 we report the amount of best responses computed (i.e. the amount of optimization
problems solved with CPLEX), and the total CPU time consumed, by Algorithm 1 to return an
ε-approximate equilibrium of the game. We considered all the pairs “(algorithm variant)-(starting
point)” and all the instances. An ε-approximate equilibrium is computed for any run of the algo-

Table 1 Amount of best responses computed (CPU time in seconds consumed) by Algorithm 1 to return an
ε-approximate equilibrium.

Ja GS123 GS231 GS312
sp1 42 (27) 24 (15) 27 (22) 24 (16)

A sp2 42 (45) 24 (43) 24 (26) 24 (23)
sp3 42 (33) 21 (26) 21 (15) 24 (20)
sp1 45 (48) 24 (28) 27 (23) 27 (28)

B sp2 48 (50) 27 (31) 27 (26) 27 (25)
sp3 failure 24 (25) 18 (16) 24 (21)
sp1 45 (51) 24 (27) 27 (36) 27 (31)

C sp2 57 (89) 33 (50) 36 (62) 33 (58)
sp3 54 (90) 33 (58) 21 (30) 24 (42)

rithm except for B-Ja-sp3, which is a case not covered by Theorem 1. In Figure 1-12 we plot the
profits of all the firms for any iteration. Note that, although for B-Ja-sp3 there is no convergence,
it computes points that are close to the equilibrium computed in the other cases, see the figures.
All in all, the different versions of Algorithm 1 computed ε-approximate equilibria of the game in
few iterations and few seconds. The different Gauss-Seidel versions perform similarly and they are
faster than the Jacobi one.
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