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Abstract
In the present work, firstly, we use a minimax equality to prove the existence of a 
solution to a certain system of varitional equations providing a numerical approxi-
mation of such a solution. Then, we propose a numerical method to solve a collage-
type inverse problem associated with the corresponding system, and illustrate the 
behaviour of the method with a numerical example.
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Mathematics Subject Classification  65N21 · 49A29 · 49K35

1  Introduction

In this paper, we propose a numerical method to solve an inverse problem associated 
with a certain system of variational equations, which is based upon a generalization 
of the classical collage theorem. To this end, we first characterize, in terms of the 
existence of a scalar, the solvability of the following system

⎧⎪⎨⎪⎩

x∗
1
(y1 − x0) ≤ a1(y1, y1 − x0)

x∗
2
(y2 − x0) ≤ a2(y2, y2 − x0)

⋮ ⋮ ⋮

x∗
N
(yN − x0) ≤ aN(yN , yN − x0)
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with x∗
i
 being continuous and linear functionals in a real reflexive Banach space and 

ai continuous bilinear forms in the same space.
Since Stampacchia’s results in the 1960s, the study of variational inequalities and 

systems of variational equations has sparked great interest, in part due to the fact 
that a wide range of optimization problems can be reformulated as variational prob-
lems. The concept of variational systems encompasses different types of problems, 
for example, in Pang (1985), the Nash equilibrium problem, the spatial equilibrium 
problem and the general equilibrium programming problem are modeled as a system 
of variational inequalities. In Garralda-Guillem and Ruiz Galán (2019), the varia-
tional system includes certain mixed variational formulations associated with some 
elliptic problems. Also, we can find them associated with abstract economy, (Ansari 
and Yao 1999).

Another specific type of problem associated with variational systems, and one 
that is related to our work, is the so-called common solutions to variational inequali-
ties problem, which consists of finding common solutions to a system of variational 
inequalities. There are different approaches to this kind of inequality system: in 
Zhao et al. (2010) the definition domains of the functions of the system are closed 
convex sets of a Hausdorff topological vector space. In Kassay and Kolumbn (2000), 
the system problem is dealt with for only two inequalities, a treatment that is gener-
alized in Censor et al. (2012).

In the study of a solution to variational equations or systems of variational equa-
tions, a wide range of techniques is used, including those of the minimax type, 
(Bigi et  al. 2019; Fan 1972; Park 1985), or those that use fixed point results and 
their associated iterative methods, such as those we detail next. In Ansari and Yao 
(1999), the authors prove the existence of a solution to certain variational systems 
by using a multivalued fixed point theorem. Also, one can find proof of the existence 
of a solution to a variational system with the Brouwer fixed point theorem in Zhao 
et al. (2010) as well as the construction of an iterative algorithm to approximate the 
unique solution to the system and a discussion of the convergence analysis of the 
algorithm.

Here, we use a minimax technique to prove the existence of a solution to the sys-
tem of variational inequalities, Theorem  2.3, that, unlike the different results that 
appear in the articles mentioned above, characterizes the existence of solutions in 
closed subsets (not necessarily convex).

Once the conditions that ensure the existence of a solution to the system of vari-
ational equations have been established, we will deal with the inverse problem, i.e., 
assuming that the model which depends on different parameters has been estab-
lished; once empirical solutions have been obtained, we will try to approximate the 
parameters for which the empirical solutions obtained are an approximation of the 
solution of the theoretical model.

From the different approaches to solving inverse problems proposed in the lit-
erature, we rely on the approach of the so-called Collage theorem, which starts by 
considering the forward problem as a solution to a fixed point problem and deduces 
its analysis from Banach’s fixed point theorem.

The first time the collage method is used to solve an inverse problem can be 
found in Kunze and Vrscay (1999), where the authors minimize the distance 
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between the target solution obtained from the direct method and the image of 
the solution resulting from applying the corresponding operator. In Kunze et al. 
(2006) we can observe the importance of applying the generalizations of the Col-
lage theorem, since it allows us to reduce PDEs complicated inverse problems to 
accessible optimization problems.

We follow the line of different proposed generalizations of the Collage theo-
rem, which are supported by different versions of the Lax-Milgram theorem, 
established, for example, to solve inverse problems associated with different fam-
ilies of integral or ordinary differential equations, (Capasso et  al. 2014; Kunze 
and Vrscay 1999; Kunze et al. 2004; Kunze and Gomes 2003), or of partial differ-
ential equations (Berenguer et al. 2016; Garralda-Guillem and Ruiz Galán 2019, 
2014; Kunze et al. 2009, 2010, 2015; Levere et al. 2013).

The paper is organized as follows. The first section begins with a presenta-
tion of our minimax tool and the variational system. Theorem 2.3 is the central 
point of this section, providing us with a characterization of the solvability of the 
variational system. Moreover, from this theorem we derive a result which implies 
Stampacchia’s theorem. Then, the following section begins with a collage-type 
result that will be used in the numerical treatment of the inverse problem of a 
concrete example. To this end, we first propose a numerical approximation of the 
solution of the forward problem, and after that we describe the numerical method 
of the inverse problem. We show in different tables and graphics the results of 
both numerical methods. Finally, we end our paper with some conclusions.

2 � The forward variational problem

In this section we deal with a result, Theorem  2.3, which generalizes the clas-
sic Stampacchia theorem. Indeed, it allows us to characterize the existence of a 
solution to a system of variational equations as well as that of a certain scalar. 
We should also mention that minimax inequalities are a widely used technique 
in variational analysis: (Aubin 1998) is a good example. In Simons (1998), we 
see the equivalence between minimax results and the Hahn-Banach Theorem, and 
how these results are used as functional analytic tools.

The fundamental tool to establish this direct result is given by the following 
minimax inequality (Kassay and Kolumbán 1996), which includes a not very 
restrictive convexity condition, which allows us to characterize the validity of the 
minimax identity (Ruiz Galán 2014, 2016). This concept of weak convexity is 
called infsup-convexity, and it appears with a nomenclature for first the time as 
affine weak convexlikeness in Stefanescu (2004). The infsup-convexity arises, in 
a natural way, when we deal with equilibrium and minimax problems.

Definition 2.1  If X and Y are nonempty sets, a function g ∶ X × Y ⟶ ℝ is called 
infsup-convex on Y provided that
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whenever m ≥ 1 , y1,… , ym ∈ Y  and t ∈ Δm , where Δm is the probability simplex, 

Δm ∶= {(t1,… , tm) ∈ ℝ
m ∶ t1,… , tm ≥ 0 and

m∑
j=1

tj = 1}.

Clearly, the infsup-convexity extends the concept of convex function, but also 
another types of weak convexity, such as convexlikeness (Fan (1953)=. Let us recall 
that a function f ∶ X × Y ⟶ ℝ in convexlike (or Fan-convex) on Y, when for any 
y1, y2 ∈ Y  , there exist y ∈ Y  and 0 < t < 1 such that

The concept of infsup-convexity is used in the following minimax result, (Kassay 
and Kolumbán 1996).

Theorem  2.2  Assume that X is a nonempty, convex and compact subset of a real 
topological vector space, Y is a nonempty set and g ∶ X × Y ⟶ ℝ is continuous 
and concave on X. Then,

if, and only if, g is infsup-convex on Y.

This minimax inequality is of the Hahn-Banach type, in the sense that it is equiv-
alent to this central result of the functional analysis. In fact, the Hahn-Banach theo-
rem and some of its generalizations have also been used to prove some variational 
results (Saint Raymond 2018; Simons 2007), even for some systems of variational 
equations (Garralda-Guillem and Ruiz Galán 2019, 2014) that include, as a particu-
lar case, those corresponding to the mixed variational formulation of the classical 
Babuška-Brezzi theory (Boffi et al. 2013; Gatica 2014).

Now, we introduce in a precise way the forward problem involving a system of 
variational equations Tables  1, 2. Let E be a real and reflexive Banach space, let 
Y1,… , YN be closed and nonempty subsets of E, 

Y ∶=
∏N

i=1
Yi

 , let 

x∗
1
∶ E ⟶ ℝ,… , x∗

N
∶ E ⟶ ℝ be continuous and linear functionals and let 

a1 ∶ E × E ⟶ ℝ,… , aN ∶ E × E ⟶ ℝ be continuous bilinear forms. We con-
sider the following variational problem: find an x

0
∈ Y ∶=

⋂N

i=1
Yi such that

In order to study this system, we note by x∗ the linear and continuous functional 
defined in Y as

inf
y∈Y

max
x∈X

g(x, y) ≤ max
x∈X

m∑
j=1

tjg(x, yj),

x ∈ X ⇒ f (x, y) ≤ tf (x, y1) + (1 − t)f (x, y2).

inf
y∈Y

max
x∈X

g(x, y) = max
x∈X

inf
y∈Y

g(x, y)

(1)y ∈ Y ⇒

⎧⎪⎨⎪⎩

x∗
1
(y1 − x0) ≤ a1(y1, y1 − x0)

x∗
2
(y2 − x0) ≤ a2(y2, y2 − x0)

⋮ ⋮ ⋮

x∗
N
(yN − x0) ≤ aN(yN , yN − x0)

.
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and let a ∶ EN × EN
→ ℝ be the continuous and bilinear form

First, let us verify that the problem (1) is equivalent to finding an x0 ∈ Y  fulfilling 
the following condition: for each y ∈ Y  , where x0 denotes the vector (x0,… , x0),

The fact that (1) implies (2) follows from the sum of the inequalities and from the 
definition of x∗ and a. For the opposite implication, it suffices to take (y1, x0,… , x0) 
as an element of Y in (2) to obtain the first inequality of (1). We derive the other 
inequalities with the same reasoning.

Then we present the characterization mentioned at the beginning of this sec-
tion, that extends the case of an equation previously established in [29]:

Theorem 2.3  Assuming that E is a real and reflexive Banach space, Y1,… , YN are 
nonempty and closed subsets of E, x∗

1
∶ E ⟶ ℝ,… , x∗

N
∶ E ⟶ ℝ are continuous 

and linear functionals and define

Let a1 ∶ E × E ⟶ ℝ,… , aN ∶ E × E ⟶ ℝ be continuous bilinear forms and le

Then, we have that there exists x
0
∈ Y =

⋂N

i=1
Yi

 fulfilling the following system

if, and only if, for some � ≥ 0 , Y ∩ �BE ≠ � , and the next inequality holds:

where x = (x,… , x).

Proof  We have that (1) ⇒ (3) just by taking � ∶= ‖x0‖.
For (3) ⇒ (1), let X ∶= Y ∩ �BE and Y =

N∏
i=1

Yi ; choosing m = 1 , from (3) we 

obtain

x∗(y) ∶= x∗
1
(y1) +⋯ + x∗

N
(yN), (y ∈ Y),

a(x, y) ∶= a1(x1, y1) +⋯ + aN(xN , yN), ((x, y) ∈ EN × EN).

(2)x∗(y − x0) ≤ a(y, y − x0).

x∗(y) ∶= x∗
1
(y1) +⋯ + x∗

N
(yN),

(
y ∈ EN

)
.

a(x, y) ∶= a1(x1, y1) +⋯ + aN(xN , yN), ((x, y) ∈ EN × EN).

y ∈ Y ⇒

⎧⎪⎨⎪⎩

x∗
1
(y1 − x0) ≤ a1(y1, y1 − x0)

x∗
2
(y2 − x0) ≤ a2(y2, y2 − x0)

⋮ ⋮ ⋮

x∗
N
(yN − x0) ≤ aN(yN , yN − x0)

,

(3)

m ≥ 1, t ∈ Δm

y1,… , ym ∈ Y

}
⇒

m∑
j=1

tj(x
∗(yj) − a(yj, yj)) ≤ max

x∈Y∩�BE

(
N∑
i=1

x∗
i
(x) − a

(
m∑
j=1

tjyj, x

))
,
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Let

If � = −∞ there is nothing to prove. Otherwise, let f ∶ X × Y → ℝ be the function 
defined as

From (3) it follows

and as we have

by Theorem 2.2 the maximun is reached, and as a consequence, there exists x0 ∈ X 
satisfying

which is equivalent to the inequality system (1). 	�  ◻

Before stating our next result, we recall a technical lemma. Although it 
is proven (Capatina 2014,  Lemma 4.1) for Hilbert spaces, it clearly works for 
Banach spaces.

Lemma 2.4  Let E be a Banach space and let Y be a nonempty closed convex subset 
of E. Assume that a ∶ E × E ⟶ ℝ is a bilinear continuous form and x∗ ∶ E ⟶ ℝ 
is a continuous and linear functional. Then, the next problem: find y ∈ Y  such that

is equivalent to the problem of finding y ∈ Y  satisfying

If we add certain more restrictive hypotheses to Theorem 2.3, we can equiva-
lently express the condition (3) in a simpler way, extending the system version of 
the Stampacchia theorem.

0 ≤ inf
y∈Y

(
a(y, y) − x∗(y) +max

x∈X

(
N∑
i=1

x∗
i
(x) − a(y, x)

))

= inf
y∈Y

max
x∈X

(a(y, y − x) − x∗(y − x)).

� ∶= inf
y∈Y

max
x∈X

(a(y, y − x) − x∗(y − x)).

f (x, y) ∶= a(y, y − x) − x∗(y − x) − �, (x ∈ XN , y ∈ Y).

m ≥ 1, t ∈ Δm

y1,… , ym ∈ Y

}
⇒ 0 ≤ max

x∈X

m∑
j=1

tjf (x, yj),

0 = inf
y∈Y

max
x∈X

f (x, y),

inf
y∈Y

max
x∈X

f (x, y) ≤ inf
y∈Y

f (x0, y),

x∗(y − x0) ≤ a(y, y − x0),

x∗(y − x0) ≤ a(x0, y − x0).
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Corollary 2.5  Let E be a real and reflexive Banach space, let Y1,… , YN be nonempty 
closed and convex sets of E, let x∗

1
∶ E ⟶ ℝ,… , x∗

N
∶ E ⟶ ℝ be continuous and 

linear functionals and let a1 ∶ E × E ⟶ ℝ,… , aN ∶ E × E ⟶ ℝ be continuous 
bilinear forms. Let

and

and suppose that

Then, there exists x0 ∈ Y =

N⋂
i=1

Yi such that

if, and only if, there exists � ≥ 0 fulfilling Y ∩ �BE ≠ � and

Proof  First, let us observe that the conditions (4) and (2), thanks to Lemma 2.4 with 
u = (x0,… , x0) and v = (y1,… , yN) , are equivalents. Therefore, we must prove that 
the conditions (5) and (3) are equivalents.

On the one hand, if we take m = 1 in (3) then we have (5). On the other hand, we 
suppose that (5) is valid and let m ≥ 1 , t ∈ Δm and y1,… , ym ∈ Y  . Then

where we have used the convexity of Y and that of the quadratic form associated 
with the bilinear form a and (5). 	�  ◻

We conclude this section by proving that the version of systems of the classi-
cal Stampacchia theorem is a consequence of Corollary 2.5. Indeed, assuming 
that E is a real Hilbert space, Y1,… , YN are nonempty closed and convex subsets 
of E, x∗

1
∶ E ⟶ ℝ,… , x∗

N
∶ E ⟶ ℝ are continuous and linear functionals and 

a1 ∶ E × E ⟶ ℝ,… , aN ∶ E × E ⟶ ℝ are bilinear, continuous and coercive 

x∗(y) ∶= x∗
1
(y1) +⋯ + x∗

N
(yN),

(
y ∈ EN

)
,

a(x, y) ∶= a1(x1, y1) +⋯ + aN(xN , yN), ((x, y) ∈ EN × EN),

x ∈ E ⇒ a(x, x) ≥ 0.

(4)y ∈ Y ∶=

N∏
i=1

Yi ⇒ x∗(y − x0) ≤ a(x0, y − x0)

(5)y ∈ Y ⇒ x∗(y) − a(y, y) ≤ sup
x∈Y∩�BE

(x∗(x) − a(y, x)).

m∑
j=1

tj(x
∗(yj) − a(yj, yj)) =

m∑
j=1

tjx
∗(yj) −

m∑
j=1

tja(yj, yj)

≤ x∗

(
m∑
j=1

tjyj

)
− a

(
m∑
j=1

tjyj,

m∑
j=1

tjyj

)

≤ sup
x∈Y∩�BE

(
x∗(x) − a

(
m∑
j=1

tjyj, x

))
,
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forms. With the notations above, let x∗ be the continuous and linear functional 
defined as

and let a ∶ EN × EN
→ ℝ be the continuous and bilinear form

Let us note that, given a vector x ∈ �BE with � ≥ 0 , ‖x‖ = � , we can select, without 
loss of generality, the norm of EN appropriately so that ‖x‖ = �.

In addition, if �1,… , �N are the coercivity constants of a1,… , aN and x ∈ E , then 
we have (�1 +⋯ + �N)‖x‖2 ≤ a(x, x).

Let 𝛽 > 0 such that Y ∩ �BE ≠ � and y ∈ Y ∶=

N∏
i=1

Yi . Then there hold

Taking 𝛼 > 𝛽 , it follows that Y ∩ �BE ≠ � and

and we arrive at (5).

3 � The inverse varational problem

To solve the inverse problem associated with the system of variational inequalities 
(1), we will make use of the following collage-type result, which can be proved as a 
consequence of Stampacchia’s theorem for a system of inequalities. In order to avoid 
expository complications, we previously introduce the following notation: for a real 
Banach space, E∗ is its topological dual space. Moreover, if J is a nonempty set and 
for each j ∈ J and i ∈ {1,… ,N} x1

j

∗
,… , xN

j

∗
∈ E∗ and a1

j
,… , aN

j
∶ E × E ⟶ ℝ 

are continuos biliear forms, we denote by (x1
j

∗
,… , xN

j

∗
) and (a1

j
,… , aN

j
) the continu-

ous and linear functional

and the continuous bilinear form

respectively.

x∗(y) ∶= x∗
1
(y1) +⋯ + x∗

N
(yN), (y ∈ EN),

a(x, y) ∶= a1(x1, y1) +⋯ + aN(xN , yN), ((x, y) ∈ EN × EN).

x∗(y) − a(y, y)

‖y‖ −

sup
x∈Y∩�BE

(x∗(x) − a(y, x))

‖y‖ ≤ ‖x∗‖ − (�1 +⋯ + �N)‖y‖ + �
‖x∗ − a(y, ⋅)‖

‖y‖
≤ ‖x∗‖

�
1 +

�

‖y‖
�
+ �‖a‖ − (�1 +⋯ + �N)‖y‖.

y ∈ Y , ‖y‖ > 𝛼 ⇒ x∗(y) − a(y, y) ≤ sup
x∈Y∩𝛼BE

(x∗(x) − a(y, x),

x1
j

∗
(y1) +⋯ + xN

j

∗
(yN), (y ∈ EN),

a1
j
(x1, y1) +⋯ + aN

j
(xN , yN), ((x, y) ∈ EN × EN),
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Theorem 3.1  Let J be a nonempty set, let Y1,… , YN be closed and convex nonempty 
subsebts of the Hilbert space E. For each j ∈ J and i ∈ {1,… ,N} , let 
x1
j

∗
,… , xN

j

∗
∈ E∗ and a1

j
,… , aN

j
∶ E × E ⟶ ℝ be bilinear and continuous func-

tionals satisfying that there exist �1
j
,… , �N

j
 positives such that

If x∗
j
∶= (x1

j

∗
,… , xN

j

∗
) , aj ∶= (a1

j
,… , aN

j
) , Y ∶= Y1 ×⋯ × YN and xj is a solution of 

the system

then,

Proof  Given y ∈ Y  and j ∈ J and taking into account Corollary 2.5, we have

	�  ◻

In Berenguer et al. (2016) Kunze et al. (2009) Kunze et al. (2015) Kunze et al. 
(2012) we can observe the idea that we used for the application of this result in the 
resolution of the inverse problem. This reasoning has been previously used with the 
Banach fixed point theorem in a similar way in Kunze and Gomes (2003).

We finish our work with the following example, which consists of two clearly 
defined parts. The first deals with solving the forward problem using Galerkin’s 
method. To this end, we will work with a certain Schauder basis, a very versatile 
tool, since we can observe its use in differential and integral problems (Berenguer 
et al. 2016, 2004; Gámez et al. 2005, 2009; Garralda-Guillem and Ruiz Galán 2019, 
2014). The second part of this example, and also its main objective, is the numerical 
treatment of the inverse problem, where we obtain the target functions thanks to the 
Galerkin method previously described. Figs. 1, 2, 3 and 4.

Example 3.2  Assuming that E ∶= H1(0, 1) , �1, �2 are positive reals, �1, �2, �1, �2 ∈ ℝ 
and f , g ∈ L∞(0, 1) . We introduce the boundary value problem:

y ∈ E ⇒ �i
j
‖y‖2 ≤ ai

j
(y, y).

y ∈ Y ⇒ x∗
j
(y − xj) ≤ aj(xj, y − xj),

y ∈ Y , j ∈ J ⇒ ‖y − xj‖ ≤ ‖aj(y, ⋅) − x∗
j
‖

(�1
j
+⋯ + �N

j
)
.

(�1
j
+⋯ + �N

j
)‖y − xj‖2 ≤ aj(y − xj, y − xj)

= aj(y, y − xj) − aj(xj, y − xj)≤ aj(y, y − xj) − x∗
j
(y − xj)

= (aj(y, ⋅) − x∗
j
)(y − xj)≤ ‖aj(y, ⋅) − x∗
j
‖‖y − xj‖.
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Fig. 1   a Exact solution u and their aproximations for m = 3, 15 and 63 b Difference between u and 
u
3
, u

15
 , u

63

Fig. 2   a Exact solution u′ and their aproximations for m = 3, 15 and 63 b Difference between u′ and 
u′
3
, u′

15
 , u′

63

Fig. 3   a Exact solution v and their aproximations for m = 3, 15 and 63 b Difference between v and v
3
, v

15
 , 

v
63



1 3

Numerical solution for an inverse variational problem﻿	

Considering the convex set

and using a standard argumentation, we obtain the variational formulation of the 
previous system. Namely, for all (w1,w2) ∈ Y  it is satisfied that

⎧⎪⎨⎪⎩

−u��(x) + �1u(x) = f (x) on (0, 1)

−v��(x) + �2v(x) = g(x) on (0, 1)

u(0) = �1, v(0) = �2, u(1) = �1, v(1) = �2

.

Y ∶=
{
(w1,w2) ∈ E2 ∶ w1(0) = �1,w2(0) = �2,w1(1) = �1,w2(1) = �2

}
,

Fig. 4   a Exact solution v′ and their aproximations for m = 3, 15 and 63 b Difference between v′ and 
v′
3
, v′

15
 , v′

63

Table 1   Errors of the forward method

m ‖(u, v) − (um, vm)‖L
2

‖(u�, v�) − (u�
m
, v�

m
)‖L

2
‖(u, v) − (um, vm)‖H

1

3 (0.00109781, 0.0304768) (0.0160122, 0.421311) (0.0160498, 0.422412)
7 (0.000272967, 0.00794639) (0.00800607, 0.218486) (0.00801072, 0.21863)
15 (0.0000681497, 0.00200574) (0.004003, 0.110178) (0.00400359, 0.110196)
31 (0.0000170317, 0.000502611) (0.0020015, 0.0552043) (0.00200157, 0.0552065)
63 (0.00000425756, 0.000125726) (0.00100075, 0.0276165) (0.00100076, 0.0276168)

Table 2   Numerical results for the inverse problem

(u
3
, v

3
) (u

7
, v

7
) (u

15
, v

15
) (u

31
, v

31
)

(2.67488, 2.95503) (2.70395, 2.00997) (2.71828, 1.5708) (2.71828, 1.5708)
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We define the bilineal, coercive and continuous form a ∶ E2 × E2
→ ℝ

and the functional x∗ ∶ E2
⟶ ℝ

The vectorial version of Stampacchia’s theorem ensures the existence of a solution 
to the variational inequality (6).

To show an example of the forward problem by using our numerical method, we 
define

and

We choose (�1, �2) = (e,
�

2
) . In order to use an appropriate Galerkin 

method, we take z1 = w1 − u and z2 = w2 − v in (6), and we obtain for each 
(z1, z2) ∈ H1

0
(0, 1) × H1

0
(0, 1)

To design the Galerkin method, we consider the Haar system 
{
hk
}
k≥1 in L2(0, 1) . We 

define

and for k ≥ 2

As a Schauder basis of H1(0, 1) we use 
{
gk
}
k≥1 , and for H1

0
(0, 1) we take 

{
gk+2

}
k≥1.

We have made use of Galerkin’s method to solve the m-dimensional variational 
problem in the subspaces generated by 

{
g3,⋯ , gm+2

}
 . In the following table we 

show the behavior of the approximation in terms of the errors made in the corre-
sponding spaces, where (um, vm) is the solution obtained for the m-dimensional 

(6)
rl�

1

0

u�(w
1
− u)�+�

1

0

v�(w
2
− v)� + �

1 �
1

0

u(w
1
− u) + �

2 �
1

0

v(w
2
− v) ≥

�
1

0

f (w
1
− u) + g(w

2
− u).

a((x
1
, y

1
), (x

2
, y

2
)) ∶= ∫

1

0

(x�
1
y�
1
+ x�

2
y�
2
) + �

1 ∫
1

0

x
1
y
1
+ �

2 ∫
1

0

x
2
y
2
, ((x

1
, y

1
), (x

2
, y

2
)) ∈ E2 × E2

,

x∗(x, y) ∶= ∫
1

0

(fx + gy), ((x, y) ∈ E2).

f (x) ∶=
(
e −

1

5

)
e

x2

10 −
x2

25
e

x2

10 , (x ∈ [0, 1]),

g(x) ∶= −2 cos(x + 1)2 +
�

2
sin(x + 1)2 + 4(1 + x)2 sin(x + 1)2, (x ∈ [0, 1]).

�
1

0

u�z�
1
+ �

1

0

v�z�
2
+ �1 �

1

0

uz1 + �2 �
1

0

vz2 ≥ �
1

0

fz1 + gz2.

g(x) ∶= 1, (x ∈ [0, 1]),

gk(x) ∶= ∫
x

0

hk−1(t)dt (x ∈ [0, 1]).
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problem. Also, we present some graphics that illustrate the exact solutions, their 
approximations and the differences between these functions.

Now, we finally present the treatment of the inverse problem under the notation of 
the Theorem 3.1. We now turn to the resolution of the inverse problem. The method 
we follow to solve it is as follows: we obtain a solution to the forward problem for 
each j0 ∈ J . We write this solution as xj . In the inverse problem, we try to find, 
whenever possible, a j0 ∈ J such that

Let us take into account that if Y is a closed affine subset of E, and y ∈ Y  is a target 
element, we can solve our problem if, under the condition that inf

j
(𝜌1

j
,… , 𝜌N

j
) > 0 , 

we are able to solve

To show a concrete example, we take the variational inequality discussed above, 
with f (x) ∶=

(
e −

1

5

)
e

x2

10 −
x2

25
e

x2

10 , g(x) ∶= −2 cos(x + 1)2 +
�

2
sin(x + 1)2 + 4(1 + x)2 sin(x + 1)2 , 

(�1, �2) ∈ ([0.5, 3] × [0.5, 3]) and �1 = 1, �2 = sin 1, �1 = e
1

10 , �2 = sin 4 , that satisfy 
the hypotheses of Theorem 3.1 in a trivial way.

Now, taking �1 = e and �2 =
�

2
 we obtain, using the forward method described 

previously, the approximate solutions (um, vm) for different values of m. We con-
sider these approximate solutions as targets for solving the inverse problem. For our 
example, we can write (7) as

We proceed to the discretization of our example, for that, we write the element 
� ∈ H1

0
(0, 1) as a combination of the n first elements of the Schauder basis of 

H1
0
(0, 1) given by 

{
gk+2

}
k≥1 to obtain the minimization problem:

Below, we present a table where we can observe the different approximations of 
(�1, �2) that we have obtained by taking n = 7 in the above expression and consider-
ing different targets (um, vm).

‖y − xj0‖ = inf
j∈J

‖y − xj‖.

(7)inf
j∈J

‖(aj(y, ⋅) − x
∗

j
)�(Y−Y)‖.

inf
(�1,�2)∈([0.5,3]×[0.5,3])

sup

� ∈ H1
0
(0, 1)

‖�‖ = 1

�aj((um,�), (vm,�)) − x
∗
(�,�)�.

inf
(�1,�2)∈([0.5,3]×[0.5,3])

|||||

n∑
k=1

(aj((um, gk+2), (vm, gk+2)) − x
∗
(gk+2, gk+2)

|||||
.
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4 � Conclusions

In this paper we have presented a numerical method to solve the inverse problem 
associated with a system of variational inequalities. To do this, firstly, we used a 
minimax equality, Theorem 2.2, to prove a result that allows us to characterize the 
existence of a solution to the system of inequalities, Theorem 2.3.

To solve the inverse problem derived from the system of variational inequalities 
(2.1), we have used Theorem 3.1, a collage-type result which is a consequence of the 
version of the Stampacchia theorem for a system of variational inequalities.

Finally, we have illustrated these results by means of a numerical example, Exam-
ple 3.2. First, we dealt with the forward problem by using a certain Schauder basis 
in the Galerkin method. In the programming we used the usual Schauder basis for 
the sake of simplicity. We could consider another basis with more regularity in order 
to improve the convergence.

Finally, we have developed the numerical treatment for the inverse problem. We 
show in some graphics and tables the error of the forward method and the approxi-
mations that we have obtained.
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