30 research outputs found

    A General Quaternion-Valued Gradient Operator and Its Applications to Computational Fluid Dynamics and Adaptive Beamforming

    Get PDF
    Quaternion-valued signal processing has received increasing attention recently. One key operation involved in derivation of all kinds of adaptive algorithms is the gradient operator. Although there have been some derivations of this operator in literature with different level of details, it is still not fully clear how this operator can be derived in the most general case and how it can be applied to various signal processing problems. In this work, we will give a general derivation of the quaternion-valued gradient operator and then apply it to two different areas. One is to combine with the classic computational fluid dynamics (CFD) approach in wind profile prediction and the other one is to apply the result to the adaptive beamforming problem for vector sensor arrays

    Quaternion-Valued Adaptive Signal Processing and Its Applications to Adaptive Beamforming and Wind Profile Prediction

    Get PDF
    Quaternion-valued signal processing has received more and more attentions in the past ten years due to the increasing need to process three or four-dimensional signals, such as colour images, vector-sensor arrays, three-phase power systems, dual-polarisation based wireless communica- tion systems, and wind profile prediction. One key operation involved in the derivation of all kinds of adaptive signal processing algorithms is the gradient operator. Although there are some derivations of this operator in literature with different level of details in the quaternion domain, it is still not fully clear how this operator can be derived in the most general case and how it can be applied to various signal processing problems. In this study, we will give a detailed derivation of the quaternion-valued gradient operator with associated properties and then apply it to different areas. In particular, it will be employed to derive the quaternion-valued LMS (QLMS) algorithm and its sparse versions for adaptive beamforming for vector sensor arrays, and another one is its application to wind profile prediction in combination with the classic computational fluid dynamics (CFD) approach. For the adaptive beamforming problem for vector sensor arrays, we consider the crossed- dipole array and the problem of how to reduce the number of sensors involved in the adap- tive beamforming process, so that reduced system complexity and energy consumption can be achieved, whereas an acceptable performance can still be maintained, which is particularly use- ful for large array systems. The quaternion-valued steering vector model for crossed-dipole arrays will be employed, and a reweighted zero attracting (RZA) QLMS algorithm is then pro- posed by introducing a RZA term to the cost function of the original QLMS algorithm. The RZA term aims to have a closer approximation to the l0 norm so that the number of non-zero valued coefficients can be reduced more effectively in the adaptive beamforming process. For wind profile prediction, it can be considered as a signal processing problem and we can solve it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,it using traditional linear and non-linear prediction techniques, such as the proposed QLMS algorithm and its enhanced frequency-domain multi-channel version. On the other hand,wind flow analysis is also a classical problem in the CFD field, which employs various simulation methods and models to calculate the speed of wind flow at different time. It is accurate but time-consuming with high computational cost. To tackle the problem, a combined approach based on synergies between the statistical signal processing approach and the CFD approach is proposed. There are different ways of combining the signal processing approach and the CFD approach to obtain a more effective and efficient method for wind profile prediction. In the combined method, the signal processing part employs the QLMS algorithm, while for the CFD part, large eddy simulation (LES) based on the Smagorinsky subgrid-scale (SGS) model will be employed so that more efficient wind profile prediction can be achieved

    Properties of a general quaternion-valued gradient operator and its applications to signal processing

    Get PDF
    The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms. The HR gradient operator provides a viable framework and has found a number of applications. However, the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions. To generalize the operator to nonlinear quaternion functions, we define a restricted version of the HR operator, which comes in two versions, the left and the right ones. We then present a detailed analysis of the properties of the operators, including several different product rules and chain rules. Using the new rules, we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions, and prove that the restricted HR gradients are consistent with the gradients in the real domain. As an application, the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided. Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm

    Channel Equalization and Beamforming for Quaternion-Valued Wireless Communication Systems

    Get PDF
    Quaternion-valued wireless communication systems have been studied in the past. Although progress has been made in this promising area, a crucial missing link is lack of effective and efficient quaternion-valued signal processing algorithms for channel equalization and beamforming. With most recent developments in quaternion-valued signal processing, in this work, we fill the gap to solve the problem by studying two quaternion-valued adaptive algorithms: one is the reference signal based quaternion-valued least mean square (QLMS) algorithm and the other one is the quaternion-valued constant modulus algorithm (QCMA). The quaternion-valued Wiener solution for possible block-based calculation is also derived. Simulation results are provided to show the working of the system

    Study of wind profile prediction with a combination of signal processing and computational fluid dynamics

    Get PDF
    Wind profile prediction at different scales plays a crucial role for efficient operation of wind turbines and wind power prediction. This problem can be approached in two different ways: one is based on statistical signal processing techniques and both linear and nonlinear models can be employed either separately or combined together for profile prediction; on the other hand, wind/atmospheric flow analysis is a classical problem in computational fluid dynamics (CFD) in applied mathematics, which employs various numerical methods and algorithms, although it is an extremely time-consuming process with high computational complexity. In this work, a new method is proposed based on synergy's between the signal processing approach and the CFD approach, by alternating the operations of a quaternion-valued least mean square (QLMS) algorithm and the large eddy simulation (LES) in CFD. As demonstrated by simulation results, the proposed method has a much lower computational complexity while maintaining a comparable prediction result

    Adaptive Beamforming for Vector-Sensor Arrays Based on Reweighted Zero-Attracting Quaternion-Valued LMS Algorithm

    Get PDF
    In this work, reference signal based adaptive beamforming for vector sensor arrays consisting of crossed dipoles is studied. In particular, we focus on how to reduce the number of sensors involved in the adaptation so that reduced system complexity and energy consumption can be achieved while an acceptable performance can still be maintained, which is especially useful for large array systems. As a solution, a reweighted zero attracting quaternion-valued least mean square algorithm is proposed. Simulation results show that the algorithm can work effectively for beamforming while enforcing a sparse solution for the weight vector where the corresponding sensors with zerovalued coefficients can be removed from the system

    On data-selective learning

    Get PDF
    Adaptive filters are applied in several electronic and communication devices like smartphones, advanced headphones, DSP chips, smart antenna, and teleconference systems. Also, they have application in many areas such as system identification, channel equalization, noise reduction, echo cancellation, interference cancellation, signal prediction, and stock market. Therefore, reducing the energy consumption of the adaptive filtering algorithms has great importance, particularly in green technologies and in devices using battery. In this thesis, data-selective adaptive filters, in particular the set-membership (SM) adaptive filters, are the tools to reach the goal. There are well known SM adaptive filters in literature. This work introduces new algorithms based on the classical ones in order to improve their performances and reduce the number of required arithmetic operations at the same time. Therefore, firstly, we analyze the robustness of the classical SM adaptive filtering algorithms. Secondly, we extend the SM technique to trinion and quaternion systems. Thirdly, by combining SM filtering and partialupdating, we introduce a new improved set-membership affine projection algorithm with constrained step size to improve its stability behavior. Fourthly, we propose some new least-mean-square (LMS) based and recursive least-squares based adaptive filtering algorithms with low computational complexity for sparse systems. Finally, we derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comunicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes e sistemas de teleconferência. Eles também têm aplicação em várias áreas como identificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo de energia de algoritmos adaptativos tem importância significativa, especialmente em tecnologias verdes e aparelhos que usam bateria. Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adaptativos da família set-membership (SM), são apresentados para cumprir essa missão. No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos, a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos filtros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e quaternions. Terceiro, foram utilizadas também duas famílias de algoritmos, SM filtering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo possível e obter um desempenho competitivo em termos de estabilidade. Quarto, a tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS) e mínimos quadrados recursivos com complexidade computacional baixa para espaços esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a esparsidade escondida nos parâmetros

    A Zero-attracting Quaternion-valued Least Mean Square Algorithm for Sparse System Identification

    Get PDF
    Recently, quaternion-valued signal processing has received more and more attention. In this paper, the quaternion-valued sparse system identification problem is studied for the first time and a zero-attracting quaternion-valued least mean square (LMS) algorithm is derived by considering the l1 norm of the quaternion-valued adaptive weight vector. By incorporating the sparsity information of the system into the update process, a faster convergence speed is achieved, as verified by simulation results
    corecore