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Abstract—Quaternion-valued signal processing has received wind signals. It might be more accurate compared to other
increasing attention recently. One key operation involvedin  approaches, but not without disadvantages. For example, it
derivation of all kinds of adaptive algorithms is the gradient is time-consuming with high computational complexity, and
operator. Although there have been some derivations of this . o L ey
operator in literature with different level of details, it i s still not also contains uncertainties/errors |n_|n|t|allb0undan;_mht|ons
fully clear how this operator can be derived in the most geneal @S Well as models. Therefore, we intend to combine the two
case and how it can be applied to various signal processing approaches in a way that retains the efficiency of the former
problems. In this work, we will give a general derivation of he and the accuracy of the latter. As a preliminary study, we wil
guaternion-valued gradient operator and then apply it to two apply a quaternion-valued linear predictor to the data getad

different areas. One is to combine with the classic computéinal o -
fluid dynamics (CFD) approach in wind profile prediction and by the CFD method to show the feasibility of the combined

the other one is to apply the result to the adaptive beamformig ~ @pproach.
problem for vector sensor arrays. Another application of quaternion is the adaptive beamform

ing problem in vector sensor arrays. Adaptive beamforming
has been studied extensively in the past for traditionas@en
Recently, quaternion-valued signal processing has been difray systemg [6]/]7]. With the introduction of vector sens
troduced to solve problems related to three or four-din@ai arrays, such as those consisting of crossed-dipoles audetsi
signals, such as vector-sensor array signal processing Hdaptive beamforming has been extended to this area too [8],
[2], [8], and wind profile prediction[[4], [[5]. In many of [2]. A reference signal based adaptive beamformer will ie se
the cases, the traditional complex-valued adaptive fiteri up employing the derived quaternion-valued least meanrsqua
operation needs to be extended to the quaternion domgims) algorithm.
to derive the corresponding adaptive algorithms. One keyThijs paper is organized as follows. The general quaternion-
operation involved in derivation of quaternion-valuedptilee  valued gradient operator is derived and then applied toldpve
algorithms is the gradient operator. Although there havenbethe quaternion-valued LMS (QLMS) as well as the augmented
some derivations of this operator in literature with diffiet QLMS (AQLMS) algorithms in Sectiofilll. Application of the
level of details, it is still not fU”y clear how this Opermtoan a|gorithms to the data generated by CFDis provided in Sectio
be derived in the most general case and how it can be app[[fland their application in adaptive beamforming is sedii

to various signal processing problems. in Section[IV¥. Simulation results are presented in Sedfion V
In this work, we will give a general derivation of theand conclusions are drawn in Sect[on VI.

guaternion-valued gradient operator and then implemast th

into two different applications. One case is to combine g  |I. DERIVATION OF A QUATERNION-VALUED GRADIENT

classic computational fluid dynamics (CFD) approach in wind OPERATOR ANDADAPTIVE FILTERING

profile prediction. Wind profile prediction is a classicajrsal

prediction problem, and we can try to solve it using traditib

linear and nonlinear (neural networks) prediction techaig We first introduce_ the definition of differentiati(_)n with

On the other hand, wind/atmospheric flow analysis is also'@Pect to a quaternion Assume thatf(¢) is a function of

traditional problem in CFD, which employs conservationdaw the quaternion variable, expressed as

various physical models and numerical methods to predict FQ) = futifs+fotkfa, (1)
Submitted to the 2014 International Conference on Digiigh&8 Process- . .

ing (DSP2014, held in August 2014, Hong Kong) on 29 April 20Cdrd where f(q) is in general quaternion-valued(q), as well as

accepted on 21 May 2014. its components,(q), f»(q), f-(q), and f4(¢q), can be viewed

I. INTRODUCTION

A. Differentiation with respect to a quaternion-valued tegc
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as functions ofy,, g, ¢. and gq, which can be expressed inwe observe that the coefficient faly should be the same,

terms ofq and its involutions[[9]: hence:
; . . . of L 0fa 0fa 0fa 0fa
i =q. — qej — qak - = _ — —
j L e ! ] dq 4(6% 00~ 04, 8qd
¢ = —Jqi=qa— @i+ qcj — qak i Ofy 3fb 3fb 3fb
¢ = —kqk = qa — i — qcj + qak. 2 +Z(aqa o Toq aqd
As a consequence, we have +i(g§c B Zgi;; _jgi;c B kg;‘:)
1 . . 1 a (&
qa:Z(q+ql+qJ+qk),qb 4—(q+q—q —q") +§(gfd_ %_ gfd k%)
qa Qv qc qd
1 . . 1
e=—q—d+¢—d") qa=—(a—d - + 4" _ Yof of of. OF
4] Ak 190 90 9a’  dg") (7)
(3) 5
and Therefore,% is given by
q
q+iqi+jgj +kek = —2¢° of(a) _ l(f?f(q) 0/, 9fla). 9fa), K (8
q—iqi—jqj —kqk = 4qa. (4) dq 4" 0qq Oy 9qc 044

J
Given the above relations between the involutions and tExp”rzrsl)sllolr:lztEfzg é?ql n 8gf e/ nae?r ad??{j ()3/f (;qu Sczn q?;itdeer}rr:::)end
;e;a]::ta(\)r;]d c;][naglnaryj p:lzt(js of, ggeie?c?rr; b i reﬁ:trdg (Ijloas Aherefored f(q)/Ogpi # i0f(q)/Ogw, i.e., the two factors do
unction ot g, ¢ ¢ ¢ . in wh OWS: hot commute. The same argument applies to the last two terms
we consider generally a function ef and the involutions, in equation [(B)
ie., f(¢,4',’,¢"). Using the Taylor expansion of, the f(q) can also be viewed as a function gf and its
differential f is given by involutions. Following the same arguments, we can also find

df — 8f .+ 6fzd n %d j 4 %qu (5) the derivative off(q) with respect tag*, which is given by
of(a) _ l(f?f(q) L), 01, 919, B (9
Notedf/dq anddq are both quaternion, therefore they do not  dg* 4" 9qa Iqp 9q. 944

commute. On the other handf = df, + idf, + jdfc + kdfa.  whereq* = ¢, — qvi — qoj — qak.
Sincedf, is the differential of a real function of real numbers wjth these results, we can then calculate the derivatives

das Qs g @Ndqq, We have of some simple quaternion functions. For example, we easily
obtain
dfa(QaaQbanaqd) @ _ aq _ _1 (10)
af“d +8f"d b+af“dqc 8f“dd 9a " or 2
9a g 9qc 94a On the other hand, the product rule is not true in general due
afa[ (dg + dq' + d¢’ + dg")] to the non-commutativity of quaternion products. However,
0qq "4 it holds for the differentiation of quaternion-valued ftioos
+3fa[ (dq +dg — dg’ — dg")] to real variables. Supposéq) an_dg(q) are two quat_ernion-
dqp 4 valued functions of the quaternion variahje and ¢, is the
Ofa real variable. Then we can have the following result
et L ta o+ g — ) e e 0
. 2)9(q : .
Ofa ——— = —(fatife+ifetkfa)g
+af [4k (dg — dq' — dg’ + dg")] 94a 5%( ’ 2
Ofa 0 Ofec
1 0fa  Ofa  Ofu  Ofa = oy, O, fg+k e
=- —i=— — k=—=)dq 3% 94 9qa 04
4°0qa  Oqp " 0qc  Oqa (f a fa o) il f ofy 9
. = ll _ +
l(af“—iaf“+ afCHLkaf“)dZ da 8qa *d 94.”
4 9qq  Oqp 3qc 0qq Of. O0fa
L 0o 0fa  0fa 0ay,; (fc—+8 )+k(f—+£g)
1'0q, " "0g, 7 0q. 9qa v ot it 3ot K ED dg
1(9,1 ,6a ,6a 6a = a+ib+jc+ d—
+—(f—|—zf—|—jf f)q (6) 9qa
190, o0 00w fe 0y  0f 0
Similar expressions foidfs, jdf., kdfs can be derived in the (3qa t 8_ +J 8qa 8qa)g
same way. The sum of the four expressions give an expressions B 9g9(q)  9f(q)
for df. Comparing the resulted expression with equatidn (5), = fl) 94a + 94a 9(q) (11)



When the quaternion variabigis replaced by a quaternion- oW [n]x[n]d"[n]) _ —ld[n]x* ] (22)
2

valued vectow, given by ow*[n]
_ T .
W= fwnwy e ] (12) OWT[nlX{nlx™ [nlw[n]) _ 1\ re et (23)
where w,, = a.,, + bt + cmj + dpmk, m = 1,..., M, the ow*[n] 2

differentiation of f (w) with respect tav can be derived using Then we have the final gradient result
a combination of[(B) as follows

1 x
oL — SLi— SLj— 2Lk Ve Jo[n] = =5 eln)x’[n]. (24)
af 1 Q__i_}i_ﬁ'_a_}k
e az  “0b;" Oz’ Ody (13) With the general update equation for the weight vector
W :
0 of . df i  of = - .
of _of; or; opy W + 1] = Win] — 1V Jo[n], (25)
- . Of we arrive at the following update equation for the QLMS
Similarly, we dEfmeW as algorithm with step size:
) of - Of :, @
%ty win -+ 1] = win] + (enlx [n]). (26)
af 1 aa_az + g—lmi + g—wj + 83—(1214
w1 . (14) C. The AQLMS algorithm

of of ;4 Of ;. Of | Recently, to fully exploit the second-order statistics loé t
dan + Obn + 6CIWJ + odn . .

signals, an augmented formulation of the data vector has
Obviously, when/ = 1, (13) and[(14) are reduced @ (8) antheen proposed, first for complex-valued signals and then
(@), respectively. for quaternion-valued ones. For complex-valued signdis, t
B. The QLMS algorithm aug_mented vgctor is composed of the (_)riginal data and its
conjugate, while for the latter, due to existence of thedhre
perpendicular quaternion involutions, the choice for thg-a
mented vector is not unique. Without loss of generalityeher
T'n)x[n] (15) we adopt the simplest formulation by combining the data
vectorx[n| and its conjugate*[n] to produce an augmented
vectorx,[n] = [x7[n] xH[nHT [12], where{-}¥ is a combi-
where w[n] is the adaptive weight vector with a length ohation of the operations df }” and{-}* for a quaternion. For

The outputy[n] and errore[n] of a standard adaptive filter
can be expressed as

y[n]

eln] = d[n] —w"[n]x[n], (16)

M, d[n] is the reference signak[n] = [z[n — 1],z[n — such a “widely linear” model, the quaternion-valued outjout
2],---,z[n — M]]" is the input sample sequence, afd” the conjugate part of the input is given by
denotes the transpose operation. The cost function with the
quaternion-valued error igy[n] = e[n]e*[n]. Its gradient is g[n] = g" [n]x*[n], (27)
iven b
J Y 57 whereg[n| denotes the weight vector for the conjugate part of
V= Jo[n] = O[ZL] (17) the inputx[n].
ow As to the AQLMS algorithm, the update of the weight vector
Vuwdoln] = 9Joln] (18) of the conjugate pag(r| can be found with the same method
ow as that of the QLMS in[{(26), i.e.
with respect tow*[n] and w[n|, respectively. According to
[10], [11], the conjugate gradient gives the maximum stespn g[n + 1] = g[n] + u(e[n)x[n]). (28)

direction for the optimization surface. Therefore, thejogate With th d weiah b defined
gradientVy Jy[n] will be used to derive the update of the ith the augmented weight vectbg[n] defined as

coefficient weight vector. T 70 T
First we have hafn] = [w'[n] g"[nl]", (29)

Joln] = d[n)d*[n] — d[n)x" [n)w* [n] — w7 [n]xX[n]d* [n] we obtain the following update equation
+wh n)x[n]x™ [n]w*[n] (19) haln + 1] = ha[n] + pu(ean]xa*[n]) (30)

For different parts, we obtain the following results whereea[n] = d[n] — ha” [n]Xa[n]
9(d[n]d*[n]) _
owsn] 0 (20) [1l. A PPLICATION TO CFD DATA
A(d[n]xH [n]w*[n]) — dlnlx* 21 CFD is a branch of fluid mechanics. It uses numerical
Ow*[n] = d[n|x"[n] (21) approaches to solve fluid flow problems.



A. Fluid Dynamics Equations

The Navier-Stokes equations are the basis of fluid problems.
They are essentially the mathematical formulation of the
Newton’s second law applied to fluid motions. The general

expression of the equations is :
ou @
p(a + (u-V)u) = -VP +nAu (31) 3

X

whereu is the fluid velocity at a particular spatial location at

a given time, P is the pressure ang is the fluid density. Fig. 1. A ULA with crossed-dipoles.

The left hand side of the equation is the acceleration of

the fluid, whilst on the right side are (the gradient of) the

forces, including pressure and viscous force. Togethen wiiwo crossed components are parallel to x-axis and y-axis,
the conservation of mass and suitable boundary conditionsspectively. Assume there is a far-field incident signghwi
the Navier-Stokes equations can model a large class of flgilection of arrival (DOA) defined by the angles and ¢
motions accurately [13]. impinging upon the array from the y-z plane, so that 7/2

as well as¢p = —x/2, and0 < 6 < 7/2. As a result, the

B. Turbulence . . . .
5)atla| steering vector for the signal is expressed as

S

The second term on the left hand side of equatlod (31 et sing /A
represents the contribution from the advection of fluidipkes Sc(0,6) = [1,e792mdsindsing/A

to fluid acceleration, and is customarily called the inértia oo eI (M=Ddsindsing/NT - (39)

force. The second term on the right hand side represents the

viscous force. The ratio of these two forces is defined as tH&'€"e is the wavelength of the incident signal. For a crossed
Reynolds number Re). As it turns out, whenRe is large, dipole the spatial-polarization coherent vector can besmyiv
the flows tend to become unstable and generate a spectmfn[]'S]' 11€]

of high frequency components in the velocity signal. Such [—cos, cosfsinyel] for ¢ = /2
a regime of fluid motions is called turbulence. Atmospheric Sy(¢,®,7,n) = Dsinmed™ Tor & — /2
flows, including the wind fields around wind farms, are always [cosy, —cosfsinyel] for ¢ = _W/(33)
turbulence [[T4]. Due to the presence of the h'gh fr_equen_%erw is the auxiliary polarization angle with € [0, 7/2],
components, the CFD calculation of the velocity signal 0 the € [, 7] is the polarization phase difference.
tgrbul_en_t wind fields b_ecomes very time consuming unIeSSThe array strl;cture can be divided into two sub-arrays. One
simplifying models are introduced. is parallel to the x-axis and the other is parallel to the isax

C. Direct numerical simulation (DNS) The complex-valued steering vector of the x-axis sub-aisay

DNS solves the Navier-Stokes equations directly witho@Ven by
any turbulence models. The advantage of this method is that —c0s7S.(0,¢) for ¢ = 7/2
it is simple as well as accurate with complete information. S:(0,¢,v,71) = S (0 ’ f . 9
However, the computational cost can be very highRif is cosySe(0, ¢) or ¢ = —=/
large. Therefore, this method is not yet applicable to caktt and for the y-axis it is expressed as
situations, for example, the atmospheric flows we will deal {

(34)

cosfsinyelS.(0, ¢) for ¢ = m/2

—cosfsinyel"S,(0,¢) for ¢ = —m/2

. . (35)

D. Data Generation Using CFD Combining these two steering vectors together, we have a
The velocity signals are generated by DNS, where thgiaternion-valued composite steering vector given asabelo

Navier-Stokes equations are solved using a pseudo-spectra .

method. The CFD code is written in FORTRAN 90. Running S4(0,¢,7,m) = S:(0,¢,7,7m) + 1S, (6, 6,7, m)- (36)

the code, we generate a time series of three dimensionaflhe response of the array is

turbulent wind velocity fields in a 3-D periodic box. We H

consider the flow field as an idealized wind field with the mean r(0,¢,7,m) =W S,(0, ¢,7,1) (37)

Velocity haVing been Subtl‘aCted, and the Signal norma"zedwherew is the quaternion_va'ued We|ght vector.

with [13]. Nevertheless, as a first step, we choose to use DNSSU(Q’ b,7,1m) =
to generate the velocity signals in this study. ‘

IV. APPLICATION TOADAPTIVE BEAMFORMING B. Reference signal based adaptive beamforming

A. Quaternionic array signal model When a reference signaln] is available, adaptive beam-

A uniform linear array (ULA) withM crossed-dipole pairs forming can be implemented by the standard adaptive filter
is shown in Fig.[ll. These pairs are located along the gtructure, as shown in Figl 2, wherg,[n], m =1,2,--- M
axis with an adjacent spacing, and at each location theare the received quaternion-valued vector sensor signals,



e[n]

d[n] +
~Iyin]

Xw[n] [n]

Fig. 2. Structure of a reference signal based adaptive lozaref.
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As we can see from the results, both algorithms can track the
change of the wind speed signal effectively.

o
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o
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Magnitude of wind speed in time domain (m/s)

B. Scenario two

0 50 100 150 ) 200 250 300 350 400
e Now we run simulations for the adaptive beamforming
Fig. 3. Prediction results using the QLMS algorithm. scenario. The vector sensor array with 10 crossed-dipolés a
half-wavelength spacing is considered to obtain the output
using the QLMS algorithm. The stepsize here is set to

8 > : . .
wmln], m = 1,2,--- , M are the corresponding quaternionpe 1 x 107°. A desired signal with 20 dB SNR impinges

. : . from the broadside and two interfering signals with the algn
;/ﬁéug:irocroseiglr?;ntsjy[n] Is the beamformer output andp] is to interference ratio (SIR) of O dB arrive frorB0° and

—20°, respectively. All the signals have the same polarisation
V. SIMULATION RESULTS of (v,n) = (0,0). The learning curve averaged over 100
simulation runs is shown in Fid.] 5, where we can see the

normalised error has reached about -10 dB, indicating an
In this part, both the QLMS and the AQLMS algorithms areffective beamforming operation.

applied to the wind data generated by CFD simulations with
a sampling frequency of 1 Hz. The parameters are as follows.
The step size is = 2.5x 10~* and the adaptive filter length is
_L _=_1_6._The prediction step is 2. The adaptive weight vector | this paper, a general quaternion-valued gradient operat
is initialized as an all-zero vector. Figl 3 and Fiy. 4 show thy,5 heen derived in detail, based on which two adaptive algo-
results for the QLMS and AQLMS algorithms, respectivelyithms were developed including the QLMS and the AQLMS
algorithms. These algorithms were applied to two different
, areas. One is to combine with the classic computational
fluid dynamics (CFD) approach in wind profile prediction
and the other one is to apply the result to the adaptive
beamforming problem for vector sensor arrays. Simulation
results have shown that the derived algorithms can work in
different scenarios effectively, highlighting the impemte and
usefulness of the derived gradient operator. One important
note is that although there have been some derivations of thi
operator in literature with different level of details, ghis the
first time to give the most general form with a solid theoragtic
basis.

A. Scenario one

VI. CONCLUSION
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