13 research outputs found

    Area and Power Efficient Ultra-Wideband Transmitter Based on Active Inductor

    Get PDF
    This paper presents the design of an impulse radio ultra-wideband (IR-UWB) transmitter for low-power, short-range, and high-data rate applications such as high density neural recording interfaces. The IR-UWB transmitter pulses are generated by modulating the output of a local oscillator. The large area requirement of the spiral inductor in a conventional on-chip LC tank is overcome by replacing it with an active inductor topology. The circuit has been fabricated in a UMC CMOS 180 nm technology, with a die area of 0.012 mm2. The temporal width of the output waveform is determined by a pulse generator based on logic gates. The measured pulse is compliant with Federal Communications Commission (FCC) power spectral density limits and within the frequency band of 3-6 GHz. For the minimum pulse duration of 1 ns, the energy consumption of the design is 20 pJ per bit, while transmitting at a 200 Mbps data rate with an amplitude of 130 mV

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progĂšs ont Ă©tĂ© rĂ©alisĂ©s dans le dĂ©veloppement des systĂšmes biomĂ©dicaux implantables grĂące aux derniĂšres avancĂ©es de la microĂ©lectronique et des technologies sans fil. NĂ©anmoins, ces appareils restent difficiles Ă  commercialier. Cette situation est due particuliĂšrement Ă  un manque de stratĂ©gies de design capable supporter les fonctionnalitĂ©s exigĂ©es, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil Ă  haut dĂ©bit fiable et faible puissance capable de connecter les implants et les pĂ©riphĂ©riques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvĂ©s dans les derniĂšres interfaces cerveau-ordinateur (IMC) ne cesse de croĂźtre afin d’augmenter la prĂ©cision de contrĂŽle, et d’amĂ©liorer notre comprĂ©hension des fonctions cĂ©rĂ©brales. Ce nombre est appelĂ© Ă  atteindre un millier de site Ă  court terme, ce qui exige des dĂ©bits de donnĂ©es atteingnant facilement les 500 Mbps. Ceci Ă©tant dit, ces travaux visent Ă  Ă©laborer de nouvelles stratĂ©gies innovantes de conception de dispositifs biomĂ©dicaux implantables afin de repousser les limites mentionnĂ©es ci-dessus. On prĂ©sente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de donnĂ©es sans fil Ă  haut dĂ©bit ainsi que l’analyse et la rĂ©alisation de ces derniĂšres grĂące Ă  des prototypes microĂ©lectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive Ă  rĂ©sonance prĂ©sentant une puissance sans fil distribuĂ©e uniformĂ©ment pour alimenter des systĂšmes miniatures d’étude du cerveaux avec des models animaux en ilbertĂ© ainsi que des dispositifs mĂ©dicaux implantbles sans fil qui se caractĂ©risent par une capacitĂ© de positionnement libre. La structure propose un lien de rĂ©sonance multibobines inductive, dont le rĂ©sonateur principal est constituĂ© d’une multitude de rĂ©sonateurs identiques disposĂ©s dans une matrice de bobines carrĂ©es. Ces derniĂšres sont connectĂ©es en parallĂšle afin de rĂ©aliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposĂ©e utilise deux matrices de rĂ©sonateurs de base, mises face Ă  face et connectĂ©s en parallĂšle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposĂ©es, connectĂ©es en parallĂšle et rĂ©ailsĂ©es sur une carte de circuit imprimĂ© deux couches FR4. La chambre dispose d’un mĂ©canisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procĂ©dant ainsi, nous Ă©vitons la nĂ©cessitĂ© d’une dĂ©tection active de l’emplacement de la charge et le contrĂŽle d’alimentation. Notre approche permet Ă  cette surface d’alimentation unique de fournir une efficacitĂ© de transfert de puissance (PTE) de 69% et une puissance dĂ©livrĂ©e Ă  la charge (PDL) de 120 mW, pour une distance de sĂ©paration de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout Ă  l’intĂ©rieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une Ă©tape critique avant d’utiliser un dispositif implantable chez les humains consiste Ă  vĂ©rifier ses fonctionnalitĂ©s sur des sujets animaux. Par consĂ©quent, la chambre d’énergie sans fil conçue sera utilisĂ©e afin de caractĂ©riser les performances d’ une interface sans fil de transmisison de donnĂ©es dans un environnement rĂ©aliste in vivo avec positionement libre. Un Ă©metteur-rĂ©cepteur full-duplex (FDT) entiĂšrement intĂ©grĂ© qui se caractĂ©rise par sa faible puissance est conçu pour rĂ©aliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des dĂ©bits asymĂ©triques: des taux de tramnsmission plus Ă©levĂ©s sont nĂ©cessaires pour l’enregistrement Ă©lectrophysiologique multicanal (signaux de liaison montante) alors que les taux moins Ă©levĂ©s sont utilisĂ©s pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le rĂ©cepteur (RX) se partagent une seule antenne afin de rĂ©duire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basĂ©e sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et MĂ©dicale) de frĂ©quence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grĂące Ă  1) la mise en forme les impulsions Ă©mises dans le spectre UWB non rĂ©glementĂ©e (3.1-7 GHz), et 2) le filtrage espace-efficace (Ă©vitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur Ă  faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par dĂ©placement de phase (BPSK) Ă  seulement 10.8 pJ / bits. Le FDT proposĂ© permet d’atteindre 500 Mbps de dĂ©bit de donnĂ©es en lien montant et 100 Mbps de dĂ©bit de donnĂ©es de lien descendant. Il est entiĂšrement intĂ©grĂ© dans un procĂ©dĂ© TSMC CMOS 0.18 um standard et possĂšde une taille totale de 0.8 mm2. La consommation totale d’énergie mesurĂ©e est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Digital neural circuits : from ions to networks

    Get PDF
    PhD ThesisThe biological neural computational mechanism is always fascinating to human beings since it shows several state-of-the-art characteristics: strong fault tolerance, high power efficiency and self-learning capability. These behaviours lead the developing trend of designing the next-generation digital computation platform. Thus investigating and understanding how the neurons talk with each other is the key to replicating these calculation features. In this work I emphasize using tailor-designed digital circuits for exactly implementing bio-realistic neural network behaviours, which can be considered a novel approach to cognitive neural computation. The first advance is that biological real-time computing performances allow the presented circuits to be readily adapted for real-time closed-loop in vitro or in vivo experiments, and the second one is a transistor-based circuit that can be directly translated into an impalpable chip for high-level neurologic disorder rehabilitations. In terms of the methodology, first I focus on designing a heterogeneous or multiple-layer-based architecture for reproducing the finest neuron activities both in voltage-and calcium-dependent ion channels. In particular, a digital optoelectronic neuron is developed as a case study. Second, I focus on designing a network-on-chip architecture for implementing a very large-scale neural network (e.g. more than 100,000) with human cognitive functions (e.g. timing control mechanism). Finally, I present a reliable hybrid bio-silicon closed-loop system for central pattern generator prosthetics, which can be considered as a framework for digital neural circuit-based neuro-prosthesis implications. At the end, I present the general digital neural circuit design principles and the long-term social impacts of the presented work

    Régulateurs "Waterfall" : une nouvelle topologie énergétique pour l'électronique

    Get PDF
    Ce travail dĂ©crit une nouvelle topologie d'alimentation qui apporte des bĂ©nĂ©fices aux dispositifs portables et aux composants Ă©lectroniques Ă  faible consommation. À l'autre extrĂ©mitĂ© du spectre, il serait Ă©galement applicable aux systĂšmes Ă  tension de bus plus Ă©levĂ©e, tels que les panneaux solaires et les vĂ©hicules Ă©lectriques, qui doivent dĂ©composer des tensions plus Ă©levĂ©es en domaines utilisables. La nouvelle topologie, que nous avons nommĂ©e Waterfall regulator, est dĂ©crite dans le prĂ©sent travail et nommĂ©e ainsi pour ses caractĂ©ristiques saillantes rappelant une chute en cascade. Ce dispositif ouvre de nouvelles perspectives pour les systĂšmes Ă  trĂšs basse consommation, basse tension et courant faible. Le mode de fonctionnement consiste Ă  diviser une source d'alimentation brute en plusieurs domaines de tension, qui peuvent ensuite ĂȘtre utilisĂ©s pour alimenter les Ă©lĂ©ments individuels d'un systĂšme ou plusieurs unitĂ©s indĂ©pendantes. Nous dĂ©crivons ici le premier rapport sur la rĂ©ussite de la version de recyclage de l'Ă©nergie de ce nouveau systĂšme. Le dispositif se caractĂ©rise par une sĂ©rie de rĂ©gulateurs de tension Ă  faible chute et de circuits de dĂ©versement de courant (pass MOSFET). Le rĂ©gulateur partage le courant qui traverse sa charge respective et complĂšte le courant du stade suivant par un dĂ©versoir de courant, selon les besoins. Le contrĂŽle s'effectue via une architecture de contrĂŽle en cascade et peut ĂȘtre Ă©tendu Ă  des pĂ©riphĂ©riques d'ordre supĂ©rieur.This work described a new power supply topology that benefits portable device and low power electronics. At the other end of the spectrum, it is also applicable to higher bus voltage systems like solar panels and electric vehicles that must split higher voltages into usable domains. The new topology, which we named waterfall regulator, is describe herein and named as such for its salient features reminiscent of a waterfall. It opens up a new realm of possibilities for supra low power, low voltage and low current systems. The mode of operation consists of splitting a raw supply source into smaller voltage domains which can then be used for powering individual element of a system or powering multiple independent units. We describe here the first report of successful energy recycling version of this novel system. The devices are composed of a series of low dropout voltage regulators and current spillways circuits (pass MOSFET). The regulators share current passing thought their respective load and supplement current through a current spillway as required. Control is achieved through a cascade architecture and can be scaled up to higher order devices

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystĂšmes intĂ©grĂ©s implantables pour Ă©tudier l’activitĂ© cĂ©rĂ©brale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le systĂšme nerveux central dans les paradigmes Ă©lectriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour dĂ©couvrir de nouveaux mĂ©dicaments et thĂ©rapies contre des troubles neurologiques comme l’épilepsie, la dĂ©pression et la maladie de Parkinson. Puisque les systĂšmes implantables ne peuvent pas utiliser une batterie ayant une grande capacitĂ© en tant que source d’énergie primaire dans des expĂ©riences Ă  long terme, la consommation d’énergie du dispositif implantable est l’un des principaux dĂ©fis de ces conceptions. La premiĂšre partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de dĂ©calage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas Ă  haute vitesse en utilisant une trĂšs faible puissance et une petite zone de silicium, ce qui le rend idĂ©al pour les applications de faible puissance. Le circuit proposĂ© introduit une nouvelle topologie de dĂ©caleur de niveau de tension utilisant un condensateur de dĂ©calage de niveau pour augmenter la plage de tensions de conversion, tout en rĂ©duisant considĂ©rablement le retard de conversion. Le circuit proposĂ© atteint un dĂ©lai de propagation plus court et une zone de silicium plus petite pour une frĂ©quence de fonctionnement et une consommation d’énergie donnĂ©e par rapport Ă  d’autres solutions de circuit. Les rĂ©sultats de mesure sont prĂ©sentĂ©s pour le circuit proposĂ© fabriquĂ© dans un processus CMOS TSMC de 0,18- mm. Le circuit prĂ©sentĂ© peut convertir une large gamme de tensions d’entrĂ©e de 330 mV Ă  1,8 V et fonctionner sur une plage de frĂ©quence de 100 Hz Ă  100 MHz. Il a un dĂ©lai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrĂ©e de 0,4 V, Ă  une frĂ©quence de 500 kHz, surpassant les conceptions prĂ©cĂ©dentes. La deuxiĂšme partie de cette recherche comprend nos systĂšmes de transfert d’énergie sans fil proposĂ© pour les applications optogĂ©nĂ©tiques. L’optogĂ©nĂ©tique est la combinaison de la mĂ©thode gĂ©nĂ©tique et optique d’excitation, d’enregistrement et de contrĂŽle des neurones biologiques. Ce systĂšme combine plusieurs technologies telles que les MEMS et la microĂ©lectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs Ă©lectriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacitĂ© comme source d’énergie.Notre premiĂšre contribution dans la deuxiĂšme partie fournit un systĂšme de cage domestique intelligent basĂ© sur des barrettes multi-bobines superposĂ©es Ă  travers un rĂ©cepteur multicellulaire implantable mince de taille 1×1 cm2, implantĂ© sous le cuir chevelu d’une souris de laboratoire, et unitĂ© de gestion de l’alimentation intĂ©grĂ©e. Ce systĂšme inductif est conçu pour fournir jusqu’à 35,5 mW de puissance dĂ©livrĂ©e Ă  un Ă©metteur-rĂ©cepteur full duplex de faible puissance entiĂšrement intĂ©grĂ© pour prendre en charge des implants neuronaux Ă  haute densitĂ© et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large Ă  impulsions radio basĂ©e sur des approches de combinaison, et le rĂ©cepteur (RX) utilise une topologie Ă  bande Ă©troite Ă  incrĂ©mentation de 2,4 GHz. L’émetteur-rĂ©cepteur proposĂ© fournit un dĂ©bit de donnĂ©es de liaison montante TX Ă  500 Mbits/s double et un dĂ©bit de donnĂ©es de liaison descendante RX Ă  100 Mbits/s, et est entiĂšrement intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut ĂȘtre dĂ©livrĂ©e Ă  partir d’un signal de porteuse de 13,56-MHz avec une efficacitĂ© globale de transfert de puissance supĂ©rieure Ă  5% sur une distance de sĂ©paration allant de 3 cm Ă  5 cm. Notre deuxiĂšme contribution dans les systĂšmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entiĂšrement sans fil afin de permettre des expĂ©riences optogĂ©nĂ©tiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau rĂ©seau hybride de transmetteurs de puissance (TX) et des rĂ©sonateurs multi-bobines segmentĂ©s pour atteindre une efficacitĂ© de transmission de puissance Ă©levĂ©e (PTE) et dĂ©livrer une puissance Ă©levĂ©e sur des distances aussi Ă©levĂ©es que 20 cm. Le rĂ©cepteur de puissance Ă  bobines multiples (RX) utilise une bobine RX d’un diamĂštre de 1 cm et une bobine de rĂ©sonateur d’un diamĂštre de 1,5 cm. L’efficacitĂ© moyenne du transfert de puissance WPT est de 29, 4%, Ă  une distance nominale de 7 cm, pour une frĂ©quence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut dĂ©livrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm a Ă©tĂ© conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de tempĂ©rature, Ă©metteur-rĂ©cepteur et unitĂ© de gestion de l’alimentation (PMU). Ce circuit est alimentĂ© Ă  l’intĂ©rieur de la cage du WPT Ă  l’aide d’une bobine rĂ©ceptrice d’un diamĂštre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions rĂ©gulĂ©es de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le systĂšme sur une puce. Notre derniĂšre contribution est un systĂšme WPT insensible aux dĂ©salignements angulaires pour alimenter un headstage pour des applications optogĂ©nĂ©tiques qui a Ă©tĂ© prĂ©cĂ©demment proposĂ© par le Laboratoire de MicrosystĂšmes BiomĂ©dicaux (BioML-UL) Ă  ULAVAL. Ce systĂšme est la version Ă©tendue de notre deuxiĂšme contribution aux systĂšmes de collecte d’énergie.Dans la version mise Ă  jour, un rĂ©cepteur de puissance multi-bobines utilise une bobine RX d’un diamĂštre de 1,0 cm et une nouvelle bobine de rĂ©sonateur fendu d’un diamĂštre de 1,5 cm, qui rĂ©siste aux dĂ©fauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la derniĂšre version, 4 rĂ©sonateurs sont utilisĂ©s cĂŽtĂ© TX. De plus, grĂące Ă  la forme et Ă  la position de la bobine de rĂ©pĂ©teur L3 du cĂŽtĂ© du rĂ©cepteur, la liaison rĂ©sonnante hybride prĂ©sentĂ©e peut correctement alimenter la tĂȘte sans interruption causĂ©e par le dĂ©salignement angulaire dans toute la cage de la maison. Chaque 3 tours du rĂ©pĂ©teur RX a Ă©tĂ© enveloppĂ© avec un diamĂštre de 1,5 cm, sous diffĂ©rents angles par rapport Ă  la bobine rĂ©ceptrice. Les rĂ©sultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La mĂ©thode proposĂ©e peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogĂ©nĂ©tiques. De plus, dans cette version, la performance du systĂšme est dĂ©montrĂ©e dans une expĂ©rience in-vivo avec une souris ChR2 en mouvement libre qui est la premiĂšre expĂ©rience optogĂ©nĂ©tique sans fil et sans batterie rapportĂ©e avec enregistrement Ă©lectrophysiologique simultanĂ© et stimulation optogĂ©nĂ©tique. L’activitĂ© Ă©lectrophysiologique a Ă©tĂ© enregistrĂ©e aprĂšs une stimulation optogĂ©nĂ©tique dans le Cortex Cingulaire AntĂ©rieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Analog Compressive Sensing for Multi-Channel Neural Recording: Modeling and Circuit Level Implementation

    Get PDF
    RÉSUMÉ Dans cette thĂšse, nous prĂ©sentons la conception d’un implant d’enregistrement neuronal multicanaux avec un Ă©chantillonnage compressĂ© mis en oeuvre avec un procĂ©dĂ© de fabrication CMOS Ă  65 nm. La rĂ©duction de la technologie a˙ecte Ă  la baisse les paramĂštres des amplificateurs neuronaux couplĂ©s en AC, comme la frĂ©quence de coupure basse, en raison de l’e˙et de canal court des transistors MOS. Nous analysons la frĂ©quence de coupure basse et nous constatons que l’origine de ce problĂšme, dans les technologies avancĂ©es, est la diminution de l’impĂ©dance d’entrĂ©e de l’amplificateur opĂ©rationnel de transconductance (OTA) en raison de la fuite d’oxyde de grille Ă  l’entrĂ©e des OTA. Nous proposons deux solutions pour rĂ©duire la frĂ©quence de coupure basse sans augmenter la valeur des condensateurs de rĂ©troaction de l’étage d’entrĂ©e. La premiĂšre solution est appelĂ©e rĂ©troaction positive croisĂ©e et la deuxiĂšme solution utilise des PMOS Ă  oxyde Ă©pais dans la paire de l’entrĂ©e di˙érentielle de l’OTA. Il est Ă  noter que pour compresser le signal neuronal, nous utilisons le CS dans le domaine analogique. Pour la rĂ©alisation, un intĂ©grateur Ă  capacitĂ© commutĂ©e est requis. Les paramĂštres non idĂ©aux de l’OTA utilisĂ© dans cet intĂ©grateur, tels que le gain fini, la bande passante, la vitesse de balayage et le changement rapide de la sortie. Toutes ces imperfections induisent des erreurs et rĂ©duisent le rapport signal sur bruit (SNR) total. Nous avons simulĂ© ces imperfections sur Matlab et Simulink pour dĂ©finir les spĂ©cifications de l’OTA requis. Aussi, pour concevoir les circuits analogiques correspondant aux interfaces neuronales requises, tels qu’un amplificateur neuronal, une rĂ©fĂ©rence de tension compacte et Ă  faible consommation d’énergie est requise. Nous avons proposĂ© une rĂ©fĂ©rence de tension de faible consommation d’énergie sans utiliser le transistor bipolaire parasite de la technologie CMOS pour diminuer la surface de silicium requise. Finalement, nous avons complĂ©tĂ© l’encodeur de CS et un convertisseur analogique-numĂ©rique Ă  approximation successive (SAR ADC) requis pour la chaine d’enregistrement des signaux neuronaux dans ce projet.----------ABSTRACT In this thesis we present the design of a multi-channel neural recording implant with analog compressive sensing (CS) in 65 nm process. Scaling down technology demotes the parameters of AC-coupled neural amplifiers, such as increasing the low-cuto˙ frequency due to the short-channel e˙ects of MOS transistors. We analyze the low-cuto˙ frequency and find that the main reason of this problem in advanced technologies is decreasing the input resistance of the operational transconductance amplifier (OTA) due to the gate oxide static current leakage in the input of the OTA. In advanced technologies, the gate oxide is thin and some electrons can penetrate to the channel and cause DC current leakage. We proposed two solutions to reduce the low-cuto˙ frequency without increasing the value of the feedback capacitors of the front-end neural amplifier. The first solution is called cross-coupled positive feedback, and the second solution is utilizing thick-oxide PMOS transistors in the input di˙erential pair of the OTA. Compress the neural signal, we utilized the CS method in analog domain. For its implementation, a switched-capacitor integrator is required. Non-ideal specifications of OTA of CS integrator such as finite gain, bandwidth, slew rate and output swing induce error and reduce the total signal to noise ratio (SNR). We simulated these non-idealities in Matlab and Simulink and extracted the specification of the required OTA. Also, to design analog circuits such as neural amplifier a low power and compact voltage reference is required. We implemented a low-power band-gap reference without utilizing parasitic bipolar transis-tor to decrease the silicon area. At the end, we completed the CS encoder and successive approximation architecture analog-to-digital converter (SAR ADC)

    ULTRA LOW POWER CIRCUITS FOR WEARABLE BIOMEDICAL SENSORS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    1995 Federal Research and Development Program in Materials Science and Technology

    Full text link

    NASA Technology Plan 1998

    Get PDF
    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA
    corecore