237 research outputs found

    Approximation of Periodic PDE Solutions with Anisotropic Translation Invariant Spaces

    Full text link
    We approximate the quasi-static equation of linear elasticity in translation invariant spaces on the torus. This unifies different FFT-based discretisation methods into a common framework and extends them to anisotropic lattices. We analyse the connection between the discrete solution spaces and demonstrate the numerical benefits. Finite element methods arise as a special case of periodised Box spline translates

    Geometrically nonlinear Cosserat elasticity in the plane: applications to chirality

    Get PDF
    Modelling two-dimensional chiral materials is a challenging problem in continuum mechanics because three-dimensional theories reduced to isotropic two-dimensional problems become non-chiral. Various approaches have been suggested to overcome this problem. We propose a new approach to this problem by formulating an intrinsically two-dimensional model which does not require references to a higher dimensional one. We are able to model planar chiral materials starting from a geometrically non-linear Cosserat type elasticity theory. Our results are in agreement with previously derived equations of motion but can contain additional terms due to our non-linear approach. Plane wave solutions are briefly discussed within this model.Comment: 22 pages, 1 figure; v2 updated versio

    A review of nonlinear FFT-based computational homogenization methods

    Get PDF
    Since their inception, computational homogenization methods based on the fast Fourier transform (FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both discretization schemes and solution methods, leading to improvements of the original approach and extending the applications. This article provides a condensed overview of results scattered throughout the literature and guides the reader to the current state of the art in nonlinear computational homogenization methods using the fast Fourier transform

    On the critical nature of plastic flow: one and two dimensional models

    Full text link
    Steady state plastic flows have been compared to developed turbulence because the two phenomena share the inherent complexity of particle trajectories, the scale free spatial patterns and the power law statistics of fluctuations. The origin of the apparently chaotic and at the same time highly correlated microscopic response in plasticity remains hidden behind conventional engineering models which are based on smooth fitting functions. To regain access to fluctuations, we study in this paper a minimal mesoscopic model whose goal is to elucidate the origin of scale free behavior in plasticity. We limit our description to fcc type crystals and leave out both temperature and rate effects. We provide simple illustrations of the fact that complexity in rate independent athermal plastic flows is due to marginal stability of the underlying elastic system. Our conclusions are based on a reduction of an over-damped visco-elasticity problem for a system with a rugged elastic energy landscape to an integer valued automaton. We start with an overdamped one dimensional model and show that it reproduces the main macroscopic phenomenology of rate independent plastic behavior but falls short of generating self similar structure of fluctuations. We then provide evidence that a two dimensional model is already adequate for describing power law statistics of avalanches and fractal character of dislocation patterning. In addition to capturing experimentally measured critical exponents, the proposed minimal model shows finite size scaling collapse and generates realistic shape functions in the scaling laws.Comment: 72 pages, 40 Figures, International Journal of Engineering Science for the special issue in honor of Victor Berdichevsky, 201

    Stochastic 3D microstructure modeling of twinned polycrystals for investigating the mechanical behavior of Îł\gamma-TiAl intermetallics

    Full text link
    A stochastic 3D microstructure model for polycrystals is introduced which incorporates two types of twin grains, namely neighboring and inclusion twins. They mimic the presence of crystal twins in Îł\gamma-TiAl polycrystalline microstructures as observed by 3D imaging techniques. The polycrystal grain morphology is modeled by means of Voronoi and -- more generally -- Laguerre tessellations. The crystallographic orientation of each grain is either sampled uniformly on the space of orientations or chosen to be in a twinning relation with another grain. The model is used to quantitatively study relationships between morphology and mechanical properties of polycrystalline materials. For this purpose, full-field Fourier-based computations are performed to investigate the combined effect of grain morphology and twinning on the overall elastic response. For Îł\gamma-TiAl polycrystallines, the presence of twins is associated with a softer response compared to polycrystalline aggregates without twins. However, when comparing the influence on the elastic response, a statistically different polycrystalline morphology has a much smaller effect than the presence of twin grains. Notably, the bulk modulus is almost insensitive to the grain morphology and exhibits much less sensitivity to the presence of twins compared to the shear modulus. The numerical results are consistent with a two-scale homogenization estimate that utilizes laminate materials to model the interactions of twins
    • …
    corecore