45 research outputs found

    Bi-directional locomotion of a magnetically-actuated jellyfish-inspired soft robot

    Get PDF
    Biomimetic compliant untethered robots find a plethora of applications in biomedical engineering, microfluidics, soft robotics, and deep-sea exploration. Flexible miniature robots in the form of magnetically actuated compliant swimmers are increasingly used for targeted drug delivery, robotic surgery, laparoscopy, and microfluidic device design. These applications require an in-depth understanding of the nonlinear large deformation structural mechanics, non-invasive remote-control and untethered actuation mechanisms, and associated fluid-structure interactions that arise between a soft smart robot and its surrounding fluid. The present work obtains numerical solutions for the temporal evolution of structural and flow variables using a fictitious domain method that employs a robust multi-physics computational model involving both fluid-structure interaction and magneto-elasto-dynamics. The magnetically-actuated soft robotic swimmer (jellyfishbot) is inspired by the most efficient aquatic swimmer, the jellyfish. The swimming kinematics and bi-directional locomotion are obtained for different waveforms and gradients of the external magnetic actuation. The breaking of temporal symmetry and its relative dominance is discussed as well

    A numerical study of fin and jet propulsions involving fluid-structure interactions

    Get PDF
    Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there.Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there

    Challenges and attempts to make intelligent microswimmers

    Get PDF
    The study of microswimmers’ behavior, including their self-propulsion, interactions with the environment, and collective phenomena, has received significant attention over the past few decades due to its importance for various biological and medical applications. Microswimmers can easily access micro-fluidic channels and manipulate microscopic entities, enabling them to perform sophisticated tasks as untethered mobile microrobots inside the human body or microsize devices. Thanks to the advancements in micro/nano-technologies, a variety of synthetic and biohybrid microrobots have been designed and fabricated. Nevertheless, a key challenge arises: how to guide the microrobots to navigate through complex fluid environments and perform specific tasks. The model-free reinforcement learning (RL) technique appears to be a promising approach to address this problem. In this review article, we will first illustrate the complexities that microswimmers may face in realistic biological fluid environments. Subsequently, we will present recent experimental advancements in fabricating intelligent microswimmers using physical intelligence and biohybrid techniques. We then introduce several popular RL algorithms and summarize the recent progress for RL-powered microswimmers. Finally, the limitations and perspectives of the current studies in this field will be discussed

    Numerical Studies on Collective Motion and Polymer Statistics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Viscous streaming-enhanced inertial particle transport

    Get PDF
    Fluidic devices operating at the micro- and milli-meter scales employ several fundamental tasks involving pumping, mixing, separation, sorting, storing and transport of different fluids (or) species. An attractive fluid mechanism that can be leveraged to fulfill these wide range of tasks is viscous streaming, a non-linear effect characteristic of the scales above. In this thesis, we first show that numerical simulations based on the Remeshed Vortex Method (RVM) can accurately and efficiently capture viscous streaming dynamics. We test this algorithm on a wide variety of settings while simultaneously exhibiting the resultant streaming flow--structures, demonstrating both streaming's capability of effecting flow control and our solver's robustness in capturing these structures. We then consider the problem of an idealized two-dimensional inertial particle transport and prove that transport can be augmented by sensibly utilizing the streaming mechanism. We then successfully perform a forward--design study to devise shapes capable of enhanced transport using this mechanism, capitalizing on the insights gained from our demonstrations above. We envison such transport applications in the emergent technology of miniature robots, capable of traversing our blood stream to deliver payloads of therapeutical drugs

    How fish larvae swim: from motion to mechanics

    Get PDF
    Most of the world's 34,000 known fish species are undulatory swimmers. Their body undulations are produced by fluid-structure interaction between water and the body of the fish, powered by its muscle system. Despite these complex physics, just-hatched fish larvae can already produce effective swimming motion. How they do this is not yet fully understood. With this thesis, we aim to contribute to answering this question by examining the biomechanics of swimming of early-development larval zebrafish. With novel experimental and computational techniques, we reconstructed the dynamics of the larvae from high-speed video. These analyses highlight the challenges that larval fish face during swimming, and how the larvae have evolved to solve these challenges. In chapter 2 we reviewed the mechanics of swimming of larval fish. We examined the functional demands on the locomotory system of fish larvae: immediately after hatching, fish need to escape predators, search and hunt for food, and migrate and disperse. These demands need to be fulfilled by the larvae while undergoing large changes in their bodies, both internal and external. Furthermore, the swimming speed and size of many larvae causes them to be in the intermediate flow regime, where the nature of the flow changes considerably with changes in size or speed. In this chapter, we integrated previous literature to gain insight into how these functional demands on the locomotory system are met with the advantages and limitations of their developing bodies and the changing hydrodynamic regime. In chapter 3, we analysed near-periodic swimming of zebrafish larvae with two-dimensional inverse dynamics from motion that was manually tracked from high-speed video images. We used these data to show how the intermediate flow regime affects the swimming dynamics of fish larvae. We used the Reynolds number, which indicates the relative importance of viscous forces to inertial forces, to characterise the flow regime that the larvae swim in. Furthermore, we applied the Strouhal number, a measure of the ratio of the approximate lateral tail speed to the forward swimming speed, to express changes in swimming kinematics. We found that the Strouhal number depends inversely on the Reynolds number. Fish swimming at low Reynolds numbers tend to use relatively high Strouhal numbers, indicating that their tail-beat amplitude and frequency are high. Even the larvae swimming at the highest Reynolds numbers still use relatively high Strouhal numbers (around 0.72) compared to adult fish (typically 0.2–0.3). Swimming at intermediate Reynolds numbers is associated with high drag, requiring the larvae to use high tail-beat amplitudes and frequencies (and therefore Strouhal number) to produce sufficient thrust. This mode of swimming requires relatively high-amplitude yaw torques, resulting in large angular amplitudes and an expected high energetic cost of transport: the small size of the larvae is a burden to their swimming. Most of the previous research on fish swimming, including our chapter 3, has been done two-dimensionally. However, fish can perform complex, three-dimensional motions to escape predators, search or hunt for food, or manoeuvre through the environment. To expand our analyses to the third dimension, we developed a method to reconstruct the 3D motion of fish from multi-camera high-speed video, described in chapter 4. With an optimisation algorithm we find the 3D position, orientation, and body curvature that best fits the high-speed video frames. We demonstrated that the method allows us to reconstruct the swimming kinematics with high accuracy, while requiring minimal manual work. In addition, we developed a novel method to calculate resultant hydrodynamic forces and torques from the reconstructed motion. The described method is a valuable tool for analysing the biomechanics of swimming, providing data for future analyses of fish swimming. In chapter 5, we apply this automated tracking method to analyse fast starts of zebrafish larvae five days after fertilisation. To be able to escape predators, the main functional demands on a fast start are producing sufficient speed within a narrow time frame and being able to generate a wide range of escape directions. To investigate how these demands are met, we used a five-camera high-speed video of fast-starting zebrafish larvae with unprecedented spatiotemporal resolution. From these videos, we reconstructed the 3D motion of the larvae and the resultant hydrodynamic forces and torques. Due to their undulatory swimming style, the larvae first need to bend into a C-shape before being able to produce a propulsive tail beat. For this reason, the first stage of the start is often considered ‘preparatory’. Based on the reconstructed forces and torques, we show that the first stage of the start, in addition to its preparatory role, also serves to provide most of the reorientation of the start. After this stage, the larvae unfold their bodies, moving their tails at high speeds and thus producing large propulsive forces. The turn angle produced during a start mostly depends on the amount of body curvature in the first stage, while the escape speed mainly depends on the duration of the start. This suggests that larvae are able to independently adjust the direction and speed of their escape. Fish larvae are able to produce these escape responses and the subsequent swimming bout immediately after hatching, despite their bodies and brains still undergoing development. To understand how this is possible, we use an advanced inverse-dynamics approach, with computational fluid dynamics and a large-amplitude beam model, to reconstruct internal mechanics from the motion of the fish in chapter 6. We compute the internal bending moments from more than 100 3D-recordings of swimming over a range of developmental stages. We show that larvae use similar bending moment patterns across development, speeds and accelerations. By varying the amplitude and duration of this pattern, the larvae can adjust their swimming speed and/or acceleration. This similarity suggests that their muscle activation patterns are also similar, which would help to explain how just-hatched larvae with limited neural capacity can produce effective swimming motion across a range of speeds and accelerations. In this thesis, we demonstrated that larval fish swim in a challenging hydrodynamic regime. Despite the relatively high drag, they can produce effective swimming motions to help them survive to adulthood. We developed novel methods to quantify this motion in 3D, and from it reconstructed the external and internal mechanics. With these inverse-dynamics approaches, we show that fish larvae can likely adjust their swimming in a relatively simple way, for both fast starts and continuous swimming. Thus, complex physics do not obstruct developing larvae from swimming effectively.</p

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969
    corecore