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Abstract

Fluidic devices operating at the micro- and milli-meter scales employ several fundamental tasks involving

pumping, mixing, separation, sorting, storing and transport of different fluids (or) species. An attractive

fluid mechanism that can be leveraged to fulfill these wide range of tasks is viscous streaming, a non-linear

effect characteristic of the scales above. In this thesis, we first show that numerical simulations based on the

Remeshed Vortex Method (RVM) can accurately and efficiently capture viscous streaming dynamics. We

test this algorithm on a wide variety of settings while simultaneously exhibiting the resultant streaming flow–

structures, demonstrating both streaming’s capability of effecting flow control and our solver’s robustness in

capturing these structures. We then consider the problem of an idealized two-dimensional inertial particle

transport and prove that transport can be augmented by sensibly utilizing the streaming mechanism. We

then successfully perform a forward–design study to devise shapes capable of enhanced transport using this

mechanism, capitalizing on the insights gained from our demonstrations above. We envison such transport

applications in the emergent technology of miniature robots, capable of traversing our blood stream to deliver

payloads of therapeutical drugs.
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Chapter 1

Introduction

1.1 Micro-scale flows

Biologically relevant flows occur at a wide range of scales—from blood flowing in our body (µ to milli

meter scales) [1] to warm ocean currents replenishing plankton population, thus driving food chains (macro

scales) [2]. In recent years, the former has received considerable attention, attributed to our near-singular

focus on understanding and subsequently mastering the human body. Indeed we employ micro-devices

(tissues) to synthesize, analyze, pump and mix essential fluids and chemicals, which are housed within and

transported via micro-channels (blood vessels and capillaries). It is then not surprising that researchers

working in biology, bio–medicine and allied fields are looking for new pathways to engineer contraptions

capable of mimicking and even enhancing the function of naturally occurring fluidic-devices, with equal

emphasis placed on comprehending the underlying flow-physics.

The field of microfluidics (including micro- and milli- meter scales) has lent itself to the comprehension

of such flows, as they provide an experimental platform to validate and extend theoretical analysis [3–

7]. This has enabled better functional element designs for targeted biomedical applications, which in turn

facilitates physical understanding. These applications range from chemical analysis and synthesis [8, 9];

assays for chemical, physical and biological testing [10] to understanding low Re bio-hydrodynamics [11–13]

among many others. A crucial component in enabling such applications is our ability to perform certain

fundamental, mechanical operations in an uncertain fluid environment. These include, but are not restricted

to, transport, pumping, isolating, mixing and separating different fluids (e.g., water and air) or different

species (e.g., reactive chemicals) [3, 4].

As it turns out, performing these operations is a difficult labor– and knowledge–intensive task. An

inspection of literature [14, 15] reveals several works devoted to effecting and studying these operations,

including pumping [16–19], mixing [20–22] and inertial particle manipulation [23–25] to name a few. The

physics of scales, physics–dependent design and associated control contributes to this difficulty. Indeed

at micrometer scales (e.g., in blood capillaries, with typical l ∼ 10−5m, ν ∼ 10−6m2/s, U ∼ 10−3m/s
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[1]), the Reynolds number Re ∼ 0, indicating viscosity-dominated creeping (Stokes)-flow regime. While

characteristic linearity simplifies design, it also inhibits routes to chaos in this regime, which is quintessential

to problems of transport and mixing [26, 27]. At millimeter scales (e.g., in blood vessels, with typical

l ∼ 10−4 − 10−2m, ν ∼ 10−6m2/s, U ∼ 10−2 − 10−1m/s [1]), finite Re (O (1) − O (100)) with ‘weak’ non-

linearity enables many applications, but the nexus between physics, design and control is now unknown, with

the latter being especially difficult. In addition, the connected questions of device thoroughput, scalability

and construction adds to this uncertainty. While there has been proofs of concept concerning multiple

technologies for the aforementioned operations, it remains unclear whether one ‘universal’ technique exists,

let alone emerge. Exacerbating this problem is the widespread monolithic integrated systems approach of

experimental micro-fluidic device prototyping which involves few or no modular components [28–30], leading

to higher turnaround times for unit (module) and integrated (lab-on-a-chip) testing of these technologies.

The need then emerges for a consistent, accessible and scalable technology for such operations, which

remains effective across orders of Re magnitude. A concomitant need is a computational framework for

testing this technology, which can be embedded in an Analyze, Design, Optimize, Verify cycle quite akin to

an experimental setup (an in-silico lab of sorts).

1.2 Challenges

1. To demonstrate such a fluid mechanism that is effective (performs the desired operations), scalable

(both in operation and across physical scales), accessible (straightforward to setup and use), integrable

in a given environment (potentially with other fluid effects) yet controllable and robust.

2. To establish a computational framework that can efficiently and accurately predict the dynamics of

such fluid systems, including flow–structure and scalar transport effects, while possessing modularity

to change and potentially evolve designs.

3. To adopt/co-develop another framework for interpreting and analyzing such flows, which can be inte-

grated in the aforementioned design process.

1.3 This thesis

1. Establishes viscous streaming [20, 31–62] as a viable technique to achieve transport, mixing, etc. in a

complicated, uncertain fluid–structure environment, with almost all the desirable properties highlighted

earlier. As a proof of concept, we demonstrate that by utilizing streaming, we can carry and drop
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passive inertial objects in the flow (effective) quite precisely and robustly across Re ∈ O (1)−O (100)

(scalable), despite the presence of other flow effects (integrable). This is enabled by ...

2. ... first substantiating Fluid–Structure Interaction (FSI) simulations based on Remeshed Vortex

Method (RVM) as an effective and useful tool to simulate streaming dynamics. To this extent, we

exhibit its utility by replicating and validating against standard viscous streaming single cylinder se-

tups across different dynamical regimes (corresponding to low (Stokes–like) [48], intermediate [41, 46,

63] and high [39, 42] Re), against cases with multiple cylinders (scaling up) [49], against different

shapes [53–55] and actuations [35, 37, 47, 64] (designs) and lastly across varied kinematic regimes

(categorized as Keulegan-Carpenter (KC) flows [31, 65–71], closely related to streaming flows). We

comprehend these flows by ...

3. ... a combination of physics- and data-based tools. These include relating the observations back to

asymptotic theory, correlating and contrasting simulations of different dynamical setups, analyzing flow

properties (velocity, streamfunction and particle trace fields), topology and finally mode decompositions

of flow data.
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Chapter 2

Viscous Streaming


Disclaimer : Parts of the text and figures in this chapter are taken, with permission, from private

communications written by Prof. Mattia Gazzola, who retains credits and sole ownership.

In this chapter, we motivate the choice of viscous streaming for microfluidic flow control and detail the

conclusions of prior works done in the field, while highlighting open questions. We also briefly review the

literature for the closely–related KC flows, as it enables intriguing, yet potentially controllable dynamics for

the parameter ranges that we are typically interested in.

2.1 Definition

A TL;DR definition of viscous streaming is “a fluid mechanism that takes place when an immersed body os-

cillates within specific size–frequency ratios, which is responsible for the emergence of characteristic rectified

flows via non-linear fluid responses”. More technically, it is a consequence of the non-linearity of Navier–

Stokes (NS) equations and arises when a fluid of viscosity ν is driven periodically with frequency ω by a

vibrating boundary of characteristic length R. The millimeter scale system of figure 2.1(h) demonstrates

such a setup. It represents the flow pattern created by a cylinder of R = 500 µm oscillating at a frequency

f ∼ 80 Hz (ω ∼ 500 rad s−1) and scaled amplitude ϵ = A/R ∼ 10−2, with characteristic velocity Uo = ϵωR .

The induced velocity gradients largely occur within the Stokes layer of thickness δ ∼
√
ν/ω ∼ 45 µm, so

that δ is ∼ 10% of R. Fluid momentum fluctuations within δ induce stresses that drive the flow well beyond

this region. In this example, they give rise to two steady flow regions with characteristic eddies: inner ‘cells’

(called the DC boundary layer) next to the cylinder and larger outer lobes (called the ‘driven’ fluid). These

eddies lie outside the Stokes layer and exhibit slow timescales (relative to oscillations) and closed streamlines.

Thus, they partition the flow into sealed domains suitable for particle manipulations, mixing, etc.

Seeking descriptive dynamical parameters for this setup, one can deduce Ro = UoR/ν = ϵωR2/ν, termed

the oscillatory Reynolds number and Rs = U2
o /ων = ϵ2ωR2/ν, the streaming Reynolds number. While the
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former represents oscillatory–flow dynamics, the latter signifies streaming–flow dynamics, i.e. Rs is a proxy

for the measure of inertial and viscous forces in the streaming field. Only if both these parameters are held

constant, the flow behavior is preserved. These parameters are coupled via the relation Rs = ϵRo and retains

meaning only for small ϵ. This is attributed to the discriminatory nature of the ϵ parameter—low amplitude

(ϵ ⪅ 0.2) flows are categorized as streaming flows (for which Ro−Rs meaningfully acts as a scaling parameter

pair) while KC flows have high (ϵ ⪆ 0.2) amplitudes (for which a different KC − β [72] scaling parameter

pair is used, elaborated at the end of this section). The smallness of ϵ also gives streaming its characteristic

features—it is a second-order effect (with typical velocities ∼ ϵ2ωR being an order of magnitude smaller

than the corresponding oscillatory flow), with no flow separation and thus amenable to analytical treatment

and better flow controllability (at least from a dynamics perspective).

no layers

(theory)
no layers

(Stokes)

one layer

(theory)

two layers

(theory)

wakes

(no theory)

acoustic actuation

magnetic actuation

bio-hybrid bots

optical actuation

magnetic

bubble +

acoustic

bio-hybrid cylinder starfish

larva

(a)

(b)

(c)

acoustic (d) (f) (h)(e)

(g)

(i) (j)jets

(theory)

Oseen

flows

(no theory)

transition

(no theory)

0.5 mm 0.5 mm1 mm

5 mm

starfish larva/Spirostomum

Figure 2.1: (a,b) Magnetically [73, 74], (c) bubble [75], (d) acoustically [76] powered bots; (e,f,g) Swimming
biobots [77–79]: flagella, ray, jellyfish; (h) Oscillating cylinder steady streaming [46]; (i) Starfish larva
flow [80, 81]; (j) Swimming robots represented on the cylinder-streaming phase space, as adapted from [38,
50]. The regimes (bolded) are named after its most distinguishing flow–feature.

2.2 Motivation

The choice of utilizing viscous streaming for flow manipulation stems for a variety of considerations. In

some sense, streaming is a result of a fundamental kinematic component involving a body immersed in a

fluid—oscillations. This reflects in all its desirable (and even undesirable) features. Firstly, it has been

proven effective in the past for problems of micropumping [19, 82], micromixing [83, 84], particle sorting

and cytometry [25, 61], particle transport [47, 57, 59, 85–88] among others. Furthermore, as seen earlier,

if Ro and Rs are held constant, the flow behavior is preserved. This implies that a streaming system

can be miniaturized by increasing ω. Since engineering devices can access high frequencies (106 Hz), the

system of figure 2.1(h) can be scaled down to microns, offering compelling micro-flow control options. It can

then be effectively used in systems ranging from microns to millimeters, across a wide frequency range of

5



∼ 10 Hz− 106 Hz, transcending various dynamical regimes [32–37, 39–43, 45–48, 50, 51, 89–92].

Apart from this dynamic scalability, the scalability in terms of multitudes of streaming devices have been

demonstrated in the past, theoretically (albeit in a limited sense) [32, 41, 93–96], computationally [51, 97, 98]

and experimentally [20, 49, 58, 62, 84, 99]. The scalability in such experiments rely on the accessible nature

of streaming—the presence of some oscillatory kinematics (be it a minimal setup involving an oscillatory flow

past a static object [46–49] or bodies oscillating in a quiscient flow [35, 37, 40, 51]) guarantees streaming. We

note that oscillations need not be restricted to translations alone—torsions and even squirming (a locomotory

pathway of small organisms involving prescribed slip on the organism surface) can generate streaming (we

expand on this in a later section). A plausible biological example are ciliated squirming organisms, such as

Spirostomum [56] or starfish larvae [80] (figure 2.1(i)), which have been shown to be able to switch between

different functions [80] (propulsion/feeding) by modulating surrounding fluid. Their length/time scales are

compatible with streaming and it is not farfetched to think that they might harness these flows to locomote

or entrain nutrients. One can then think of a biologically-inspired engineered-swimmer (figure 2.1(a-g)),

similar in scales to these micro-organisms, that can potentially utilize similar streaming flows for enhancing

applications such as drug-delivery, in-situ analysis and surgery or enabling new ones. Indeed, in the past few

years there has been an accelerated pace of development of artificial and bio–hybrid [77–79, 100] mini-robots

that operate in a streaming regime (seen in the phase diagram figure 2.1(h)), bringing within reach such

high-impact applications in medicine and manufacturing.

Viscous streaming is then a sensible choice for flow and particle control. Thus, it is not surprising that

considerable work has been done till date in understanding streaming flows, both from a physical and applied

perspective.

2.3 Literature for two–dimensional viscous streaming flows

We start by reviewing prior works on viscous streaming from a linearly oscillating circular cylinder; from

a circular cylinder undergoing other actuations (translational/torsional oscillations, squirming or a combi-

nation thereof); from a cylinder of different shape (triangle, square, etc.); and systems comprising multiple

cylinders. Before this discussion, a clarification on the different definitions (viscous, acoustic and microbub-

ble streaming) seen in literature proves useful for avoiding confusion. Viscous streaming (the focus of this

work) is set up by vorticity generated from a solid body in an oscillatory flow field. Acoustic streaming is

setup by acoustic waves (isentropic pressure waves) either undergoing finite damping due to fluid viscosity

(quartz wind) or interacting with a solid body, quite akin to viscous streaming. Microbubble streaming is
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generated by oscillating a bubble (with forces/stress balanced on its contact surface with the fluid, rather

than the velocity) inside a fluid, usually by acoustic means. It is imperative to state that all of them manifest

as a similar non-linear effect in the fluid, over long length and time scales.

2.3.1 Viscous streaming from a single, isolated, oscillating circular cylinder

Viscous streaming was reportedly discovered by Faraday [101] almost 200 years ago, in 1831. The first

reasonable explanation for this phenomenon was given 50 years later in 1883 by Rayleigh [102], who demon-

strated streaming of dust particles due to Kundt-tube oscillations. It was re-investigated almost 50 years

later using experiments and theory by Schlichting [103] (who used an asymptotic theory in the Stokes limit)

and Andrade [104], among some others. They noticed a discrepancy in the direction of streaming close to

the cylinder which was later attributed to the differences in the dynamical range corresponding to their

respective experiments (at this point of time, the Ro − Rs set was not discovered). This prompted the

first serious (and almost complete) theoretical investigation by Holtsmark et al. [32] (and later improved

by Raney et al. [33], Skavlem and Tjötta [34], and Bertelsen et al. [41], who included additional terms in the

asymptotic expansion as well as the Stokes drift correction for obtaining steady Lagrangian streamlines—

see section 3.1.3). They treated the entire flow (unsteady & steady, across all layers, seen in figure 2.2,

which will be made clear in the next paragraph) progressively at all orders via an asymptotic expansion in

ϵ, using the method of successive approximations (also known as Picard iterations), with their results valid

for Stokes–like flows (formally only for Ro ≪ 1, but also works for Rs ⪅ 1 as proved later [37, 41]). The

interpretation of streaming as being driven by Reynolds–stress like terms within the Stokes layer (also called

AC boundary layer) can be first attributed to this seminal work.

This interpretation was made more rigorous when the Rs parameter (streaming Reynolds number) was

introduced by Stuart [36] who also suggested the existence of a double boundary layer structure for Rs ≫ 1.

That is, while the oscillatory–flow adjusts itself to match the solid body velocity in the AC boundary layer,

so does the steady streaming flow over what is called the DC boundary layer, which is the second layer in

Stuart’s theory. He also suggested the importance of shape curvature in streaming, across specific dynamical

regimes; and of a local Reynolds number in the dynamics and analysis of such flows using laminar theory. He

hinted that an increase in Rs will eventually lead to the collision of double boundary layers, necessitated by

the physicality of flow fields. His double boundary layer proposal was corroborated independently by Riley

[35], who used a method of matched asymptotic analysis, where the inner (AC boundary layer, figure 2.2)

and outer (the complementary region, figure 2.2) solutions are treated separately (with respective scaling

and asymptotic expansion parameters) and are only coupled via the boundary conditions. We add that an
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Figure 2.2: An illustration describing viscous streaming initiation. Within the Stokes layer, the leading
order oscillatory flow generates vorticity. The body oscillations generating this vorticity set in motion a
non-linear fluid response (the motion in the first half pushes the fluid in one direction, while in the second
half the same fluid is sucked in to occupy space, leading to asymmetries), which generates (via vorticity) a
recirculation residing over long time scales in this Stokes layer, called inner streaming. This recirculation
constrains (via a slip velocity v(slip) kinematically, and a Reynolds–stress like term dynamically) the fluid
outside the Stokes layer to undergo a circulatory motion, which is called outer streaming. Based on the
dynamic Ro −Rs regime, we perceive the inner and outer streaming in different ways, shown in figure 2.3.
Figure adapted from Sadhal [105].

important scaling/asymptotic expansion parameter that Riley (and many others) employs is the Womerseley

number α = R
√
ω/ν which indicates the extent of the AC layer compared to the dimensions of the body.

In [37] he extended this analysis to all dynamical regimes, to what we now call no-layer (Ro ≪ 1), one-layer

(Rs ≪ 1) and two-layer (Rs > O (1)) limits, as explained in figure 2.3. He concluded that Rs ≪ 1 is

a necessary and sufficient condition for the outer flow to exhibit Stokes–like behavior. This grouped the

no-layer and one-layer approximations together, extending the region of applicability of the Holtsmark et al.

[32] theory. Another conclusion of [37] is that for Rs ∼ O (1), the non-linear dynamics necessitate that the

complete Navier–Stokes equations be solved. Almost immediately after, Wang [38] used a similar matched

asymptotic analysis and reworked the Holtsmark theory. He confirmed Riley’s regime of validity of the

Holtsmark solution and Riley’s conclusion that the complete Navier–Stokes equation needs to be solved in

the Rs ∼ O (1) regime. He also draws attention to the potential importance of curvature terms in certain

dynamical regimes, although it was (and still remains) irresolvable by lower-order boundary layer theory.

Davidson and Riley [39] then came up with a semi–numerical theory addressing the Rs ≫ O (1) regime

8



and confirmed Stuart’s prior analysis on boundary layer collision. The collision results in a jet erupting

along the oscillation axis, which they showed numerically and experimentally to match a planar Bickley

[106] jet solution. Bertelsen et al. [41] corrected Holtsmark’s theory and showed that the region of validity of

the corrected Holtsmark theory can be extended to Rs ⪅ 1. They also exhibited the non-linear dependence

of the DC boundary layer thickness δdc on the AC boundary layer thickness δac, which we later use as a

means of validation of our numerical solver. They extended their investigations to the jetting regime in [42],

wherein they noticed wide discrepancies between their experiments and the theory of [39]. Riley [40] then

proposed an matched asymptotic solution based on second-order boundary layer theory to include finite

Reynolds number effects in an attempt to substantiate theory with Bertelsen’s experimental observations.

But discrepancies were still observed, quoted as being finite boundary effects. Haddon and Riley [107]

discretized and numerically solved the analytical equation of [40] in a venture to corroborate this fact.

While the difference between experiments and analytics/numerics was reduced, they did not completely

agree with one another, probably due to experimental measurement errors and finite boundary effects. For

the next 10 years the origin and nature of this jet was the subject of much scrutiny [43, 108], along with

cylinders undergoing other actuations, which we discuss next.

(a) No layers streaming

Oscillating boundary

AC (inner) layer ∞

(b) One layer streaming

AC layer ~ O(10R)

DC (outer) layer

(c) Two layer streaming

~ O(δac /ε)

AC layer

(d) Jet formation

AC layers collide 

and erupt as a jet

Ro << 1
Rs << 1, α << 1

Rs << 1
Ro < O(1), α ~ O(10)

Rs ~ O(1)
Ro ~ O(10), α >> 1

Rs >> 1
Ro >> 1, α >>> 1

Figure 2.3: Illustration of the manifestation of streaming in different dynamical parameter regimes (the
necessary parameter constraint is indicated by black text, using which we derive the parameters in grey
text). For (a) Ro ≪ 1, the leading order oscillatory flow is Stokesian and the effect of the body (via the
AC/inner layer) is felt at long (infinite) distances. This is called no-layer streaming as no distinct regions
are perceivable. (b) represents the case of Rs ≪ 1, with a Stokesian streaming, but with the oscillatory
flow having finite inertia effects. In this case, the AC boundary layer thickness is comparable to the body
dimensions and hence is finite/perceivable. The outer layer, being Stokesian, is infinite for practical purposes.
This is the one-layer regime. Upon increasing Rs further to ∼ O (1) as shown in (c), both the oscillatory and
streaming flows have finite inertial and viscosity effects. Then we see a boundary layer adjustment for both
these flows close to the wall, with the latter’s boundary layer called the DC layer (analogous to a steady,
direct current), typically ϵ−1 times larger than its AC counterpart. The DC layer further drives the fluid in
the bulk, owing to finite velocity at its edges. This regime is aptly named two-layer streaming regime. A
further increase in Rs decreases the thickness of both AC and DC layers until eventually at Rs ≫ 1, they
collide and form a jet along the oscillation axis.

9



2.3.2 Viscous streaming from a single, isolated circular cylinder with other

actuations

Interest in different actuation modes was instigated by Davidson and Riley [39], who investigated the

case of a single circular cylinder with Rs ≫ 1 undergoing non-harmonic actuations of the form xCOM =∑n
i=1 ϵiR sin (ωit+ ϕi), where n is the total number of sinusoidal modes. In their calculations, the streaming

fields in the combined actuation case was seen to closely resemble the linear superposition of the streaming

fields arising from an oscillating cylinder with ith mode actuation, despite the non-linearity of the engen-

dering mechanism. Miyagi and Nakahasi [109]’s theoretical analysis for a cylinder oscillating with a profile

composed of two sinusoidal actuation modes (n = 2) revealed the existence of asymmetry in the streaming

pattern because of the existence of a uniform flow component in the second order, in the oscillation direc-

tion. Tatsuno [110] conducted experiments with a cylinder oscillating with a sawtooth profile (n→∞) and

reported a similar observation—while the total streaming field is a linear combination of the streaming from

individual modes, a strong drift exists in the direction of oscillation, leading to asymmetry. Kubo and Kitano

[111]’s analytical work considered cylinders oscillating in x and y directions with different frequencies, their

COM coordinates tracing a Lissajous pattern. They observe that while qualitatively the structure of the

streaming flow is retained according to the dynamical regime (no, one and two boundary layers), a similar

uniform flow is induced at long distances from the cylinder.

In fact, Kubo and Kitano [111]’s cylinder trajectories resemble those undergoing small amplitude rotary

oscillations around an axis that has non-zero offset from the center. Other works also investigated this type

of motion, one among which is Kusukawa et al. [112]’s. They studied the same problem using a different

theoretical approach and corroborated Kubo and Kitano [111]’s findings. We note that both these works fell

within the one and two layer streaming limits. Around the same time, Taneda [52] analyzed the problem

experimentally and found more striking patterns across the one layer, two layer and jetting regimes. The

work of Riley and Watson [91] uncovered the fundamental mechanism involved in originating the patterns of

the aforesaid regimes and provided quantitative arguments for the streaming visualization of Taneda [52]’s.

A particularly interesting case occurs at the jetting limit—by controlling the axis-COM distance, we can

focus the resulting jet to emanate from one side of the cylinder surface.

Another actuation mechanism involves torsional and radial oscillations of the cylinder. From asymptotic

boundary layer theory, we know that streaming is only generated when there is a spatial gradient of amplitude

(different parts of the body move with different speeds normal to its surface, such as an oscillatory flow over

a circular cylinder) or phase (different parts move synchronously but with different phases, like oscillatory

flow over a wavy wall) [31]. Both torsional and radial oscillations of a circular cylinder have neither and
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hence does not generate a streaming field. In the former case, the unsteady shear waves in the AC layer

decay exponentially into the bulk. In the latter, no shear (vorticity) is generated.

However, we observe interesting phenomenon when these actuations are coupled and thus allowed to

interact with linear translational oscillations. Coupling torsional with translational oscillations, Riley [90]’s

analytical work in the double boundary layer/jetting regime indicates that the boundary layer structures can

be completely altered (and their characteristic velocity enhanced) by changing the amplitudes and relative

phase of the modes, as long as their frequencies are commensurate. These changes are drastic in the limit

of jetting, wherein we can, in a controlled fashion, alter the direction of the boundary layer-induced jet. If

instead the frequencies are unequal, there is no interaction between the torsional and translational modes.

A direct application of these streaming jets are in propulsion, investigated in part by several authors [92,

113–116]. Extension of Riley’s work to other regimes were also performed [117]. Work on steady streaming

from a combination of radial and translational oscillations has been sparse. The most notable among them

is the work of Longuet-Higgins [118] and Longuet-Higgins [119] where a breathing bubble (undergoing radial

monopolar oscillation) also experiences translational motion. Compared to the streaming field from linear

oscillations [44], the resulting field has a changed structure (from quadrupolar to dipolar) and enhanced

magnitude (slow rate of decay). Additionally, streaming generated from a breathing sphere/cylinder in the

presence of a background slow (creeping) flow has also been resolved analytically [25, 61, 62, 120].

Another mode of actuation is the surface squirming motion [121, 122], used to mimic the surface velocities

of ciliated micro-organisms. No two dimensional (cylinder) results are presented in literature yet, but striking

squirming-generated streaming patterns have been shown analytically for three-dimensional spheres in the

Stokes limit [123], which are hypothesized to be useful in individual and collective locomotion at low Reynolds

numbers [56]. Squirming usually induces shape changes, which we discuss next.

2.3.3 Viscous streaming from other shapes

Literature on streaming from generic oscillating shapes have been few and far between. Moreover, we

disregard cases such as a flow over a wavy wall where streaming arises due to phase–difference of velocities

over the arc length of the solid. Thus much is still unknown in this particular aspect of streaming, in spite

of many analytical works highlighting the importance of curvature and shape.

Davidson and Riley [39] were the first to seriously consider non-circular bodies when they analytically dis-

sected the mechanism and discussed the characteristics of the jet emanating from an oscillating ellipse. Exper-

imental works performed around the same time concentrated on shapes ranging from the usual (squares [54],

triangles [55] and flat plate [124] with edges) to more esoteric ones (Joukowski airfoil [125]). The streaming
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flow was seen to be very different in its form as compared to its circular counterpart, and so these works

mapped the parametric space (comprising an appropriately selected Ro−Rs) to the streaming patterns seen.

However no explanation was given as to what causes such differences. Riley [126] attempted a solution for

the small amplitude circular motion of an elliptical and circular cylinder, with the focus on these differences

between the physical mechanism (and thus the solution approach) in both the cases. Duck [127]’s computa-

tional work focused on oscillatory flow within a square cavity and noted the presence of four contra-rotating

eddies with unequal circulations inside the cavity. The work of Pattani and Olson [128] numerically repli-

cated the square, cylinder and airfoil experiments mentioned above [53, 54] and focused on the stability

of the leading order oscillatory solution. The semi-infinite flat plate [129, 130] and streaming from sharp

tips [99, 131] too have come under scrutiny, but without too much insight. The only other notable theo-

retical efforts were by Riley and Wybrow [132] for the torsional oscillations of an ellipse and Wybrow et al.

[93] for an oscillating cylinder near a flat plate. The former carries over all the interesting observations seen

for a coupled translation-torsional oscillating cylinder and hence displays a variety of streaming patterns.

Recently, the problem of streaming from non-circular shapes and cavities has been revisited by Lieu et al.

[48] in the one boundary layer limit in the context of predicting positions of inertial particle trapping.

2.3.4 Viscous streaming from multitudes

The first works to study viscous streaming from multiple oscillating bodies were all computational in na-

ture. Yan et al. [133] investigated streaming from a cascade of circular cylinders placed in an unbounded fluid

media and performed concomitant experiments. They noted that computationally predicted top-down/fore-

aft symmetric streaming patterns were not observed experimentally beyond a certain Rs, which they esti-

mated using bifurcation diagrams based on symmetric integral quantities. The next year, they performed

computations and experiments on oscillating cascades of both circular and square cylinders [98] and analyzed

the stability of the streaming solution with Rs. Both the works above demonstrate dramatic changes when

multiple bodies are introduced. Theoretical works on two cylinder streaming also exist, with Coenen and

Riley [94] predicting the direction and momentum flux of the jets when the distance between the cylinders

change. Coenen extended this theory to include cylinders of different radii [95] and later on, accommodated

other dynamical regimes (Rs ⪅ 1) [96] (numerically), with a broad focus on streaming-field topology. Ex-

periments conducted by House et al. [49] were aimed at a lattice of cylinders in the one boundary layer

regime and predicted inertial particle trapping dynamics using a streaming flow model derived from associ-

ated computations. Chong et al. [51] also describes particle dynamics, but with a focus on inertial particle

transport between streaming cylinders.
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2.3.5 Three dimensional effects

For the sake of completeness, we briefly review theoretical, experimental and numerical works on three

dimensional streaming effects. Analytical work has revolved around the dynamics and structure of the

streaming field in the case of spheres [134–139] and spheroids [140]. With a focus on applications, exper-

iments have also uncovered a wealth of information on streaming from a sphere [104, 141–144], multiple

spheres [57, 145], spheroids [146, 147] and other complicated shapes [146]. Numerical works have also been

performed [148–152], but mainly for complementing the discoveries made in experiments. Three-dimensional

effects arising from the finiteness of physical cylinders have also been studied [46].

2.3.6 Applications

Adding to the those already presented in section 2.2, we present some more applications that viscous stream-

ing has enabled over the past two decades. Pumping in the microscale has been achieved by arranging several

oscillating bubbles in a favorable configuration [19, 82]. Streaming from multiple active objects can achieve

a high degree of micromixing [20, 58], which has subsequently been used in a chemical micro-reactor [83] and

for DNA hybridization [84]. Directed particle transport [85], assembly [57] and controlled particle trajectory

manipulation, both with [86] and without other technologies [59, 87] have been made possible via streaming.

This can be extended to micro-trapping of particles [47] and chemicals [88]. Additionally, it is ideal for use in

biofluidics when compared to other methods of processing cells/micro-organisms. While these methods lead

to detrimental effects on the manipulated biological material, streaming—being a second order effect—has

less of an impact. Thus microorganism and cell trapping for lysis and subsequent gene transfection [23], drug

delivery [153], cell homogenization [85] and enrichment [154] are applications in which the use of stream-

ing flows proves beneficial. Inertial particle sorting (and by extension, cytometry) also take advantage of

these flows [25, 61]. Streaming has also been utilised to drive a rotor for small scale power generation [60].

Other potential applications recognized in literature include microfabrication [155], cell patterning [156],

as microscale switches [157], bed–scouring [93] and for cargo delivery. While microbubbles have been used

for propulsion before [75, 158, 159], streaming was not the primary driving mechanism. However it is now

being increasingly recognised that viscous streaming is an important phenomena in biological propulsion,

especially in collectives [56].
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2.4 Open questions

Armed with an holistic survey of extant literature, we can now identify unanswered questions on viscous

streaming. We enumerate, but do not expand on, them below:

1. The exact occurrence of the first/second order asymptotic boundary layer theory breakdown in pre-

dicting the streaming field is unknown and so direct numerical simulations or experimental techniques

are required for prognosis and subsequent analysis.

2. Streaming generated from complex actuations (coupled modes, squirming) are only now being resolved,

but still in asymptotic limits (small Ro).

3. Streaming generated in the presence of other fluid effects (boundary layers, wakes, jets) have not been

investigated.

4. The effect of body curvature/shape on the streaming field is not well established.

5. Only limited configurations (geometric, kinematic and dynamic) of multiple body streaming have

investigated, with fundamental questions only partially answered.

6. No conclusive applications of streaming have yet been shown in an inertial environment, which is

dynamically more complex and uncertain.

7. No attempts have yet been made to bring these different (multiple actuations, curvatures and bodies)

streaming categories into one broad umbrella.

The last statement also holds when the length and time scales of the problem changes. An example of

these are the high amplitude (ϵ > 0.2) Keulegan–Carpenter (KC) flows. Even in cases when the amplitude

is only moderately high, non-linear unsteady inertial effects are expected to dominate. Thus an entirely

different set of parameters is used for scaling purposes in this regime—KC = πϵ and β = 2ωa2

πν , called the

Keulegan Carpenter number and Stokes number respectively. Such a scaling is quite natural in this regime

as the KC parameter represents the ratio of convective (u · ∇u) versus viscous forces, while the β parameter

represents the ratio of accelerative
(
∂u

∂t

)
versus viscous forces. How these connect to the other natural

scaling set Ro − Rs still remains an unanswered question. Nevertheless, ignoring the scaling details, KC

flows while conventionally studied from the perspective of macro length (∼ O (1)m) scales can potentially

open up interesting flow control options in the scales of our interest—hence our fascination with them.

We proceed to review what has been researched in this particular topic, only touching upon the more

important results. The predominant observations with increase in ϵ (and correspondingly Ro) is a number of
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different vortex shedding mechanisms/regimes [65, 67–69, 160–163]. Many others have attempted to come

up with qualitative yet intuitive explanations for the visualized vortex/streak-line patterns seen in the above

experiments, and their effect of the generating cylinders’ lift and drag coefficients [67, 164–168]. Interest

in the transition between different regimes also lead to the study of instability mechanisms using Floquet

analysis [66, 70, 71, 169]. These instabilities quickly develop and lead to three-dimensional effects [65,

163, 170–173] and eventually turbulence [72, 173–176]. Currently, the focus is on better understanding the

oscillatory flow-generated instabilities [177, 178], KC flows from multitudes [179–182] and shapes [178, 183,

184]. We note that prior works have focused extensively on the high Ro limit and as such little is known

about the complementary range of Reynolds numbers.

Thus, in spite of the wealth and diversity of literature pertaining to streaming and KC flows, we still

understand surprisingly little. Consequently, high impact applications such as those concerning microscale

flows mentioned earlier still remain out of reach. For example, streaming flows are not accounted for in the

design of artificial mini-robots due to the lack of physical understanding of these phenomena in the case of

complex, active shapes and multiple objects. As we have already seen, analytical treatments of streaming

have been insightful but are restricted to cylindrical shapes. Experimental studies are physically constrained,

expensive and have long turnaround times. We then look for insights through simulations.
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Chapter 3

Simulation of streaming dynamics

In the context of simulating streaming, we recognize that its nature lends to several numerical difficulties—it

is a relatively weak second-order effect and operates across significantly different time scales when compared

to the body oscillations. This demands accurate and fast flow–structure interaction algorithms that can

efficiently simulate long time periods, spanning many (≳ 100) oscillation cycles. Such stringent requirements

explain the existence of only a handful of numerical studies on streaming. In this context, our demonstration

that numerical flow–structure simulations based on Remeshed Vortex Methods (RVM) [185] can accurately,

quickly and robustly capture viscous streaming dynamics is significant.

We start this demonstration with simulations of a single oscillating circular cylinder in an unbounded,

quiescent fluid, wherein our calculations show agreement with prior theory and experiments done across

orders of magnitude in Ro, spanning three dynamic regimes (the single and double boundary layer regimes,

as well as the jetting limit). We then extend this validation to a system of multiple cylinders. Thereafter

objects with different actuations and shapes are considered. We also show that the RVM algorithm can

capture the dynamics of KC flows as well, and map out a phase space of possible vortex and streakline

patterns.

3.1 Fluid–structure interaction

3.1.1 Governing equations for two-dimensional FSI

We consider incompressible viscous flows in a domain (Σ) in which m moving rigid bodies are immersed.

We denote by Ωi & ∂Ωi (i = 1, · · ·m) the support and boundaries of these solids. The flow is then described

by the isothermal, incompressible (3.1) Navier–Stokes equation (3.2) for an isotropic Newtonian fluid with

uniform density and viscosity, wherein the field dependence on the Eulerian coordinate x and time t is

implicit.

∇ · u = 0 , x ∈ Σ \ Ωi (3.1)
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∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + g + ν∇2u , x ∈ Σ \ Ωi (3.2)

where u is the flow velocity, P is the mechanical fluid pressure, g represents the action of conservative body

forces (such as gravity), ρ is the fluid density and ν is the kinematic viscosity. These equations are solved

with appropriate initial and boundary conditions, all of which are problem–specific. We first delineate the

solution strategy for the fluid component only and then consider the inclusion of solid objects in the flow.

In two-dimensions, to enforce mass conservation equation (3.1) in a differential volume identically (leading

to numerical accuracy on the order of machine precision), we pick u to lie in the null-space of the divergence

∇· operator. We can then represent u = ∇×(ψêz), where ψ(x, t) is the instantaneous scalar streamfunction.

To understand ψ’s relation with the momentum equation, we convert it from its velocity (u)–pressure (P )

form 3.2, to the equivalent velocity (u)–vorticity (ωêz = ∇× u) form in the êz direction, by taking its curl:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω +

1

ρ2
(∇ρ×∇P ) , x ∈ Σ \ Ωi (3.3)

where the vortex stretching term ω ·∇u is ignored as it identically vanishes in two-dimensions, and ∇×g =

0 owing to body forces being conservative. Substituting for the pressure in the baroclinic terms from

equation (3.2), we then get

∂ω

∂t
+ (u · ∇)ω = ν∇2ω − ∇ρ

ρ
×
(
∂u

∂t
+ (u · ∇)u− g − ν∇2u

)
, x ∈ Σ \ Ωi (3.4)

which we solve for ω. The recovery of velocity is made possible via a Poisson equation between ω and ψ,

stated as
ωêz = ∇× u = ∇×∇× (ψêz) = −∇2 (ψêz) +∇∇ · (ψêz)

⇒ ω = −∇2ψ

(3.5)

coupled with appropriate boundary conditions. We mention in passing that the velocity–vorticity formulation

has several computational advantages over its velocity–pressure counterpart [186].

We now consider the action of solid bodies immersed in the fluid. Let a solid boundary with velocity

us move within the fluid. The boundary affects the fluid purely via the viscous no-slip (Dirichlet) velocity

boundary condition uf = us at the fluid–solid interface where f and s represent the fluid and solid phase
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respectively. The governing partial differential equations now read

∇ · u = 0 , x ∈ Σ \ Ωi

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + g + ν∇2u , x ∈ Σ \ Ωi

uf = ui
s , x ∈ ∂Ωi

(3.6)

The difficulty in solving this complicated nonlinear coupled boundary value problem can be ameliorated

by incorporating the effect of the no-slip boundary condition as a finite forcing term in the momentum

equation. This approach has several variants—Brinkmann penalization, Distributed Lagrange Multiplier,

Direct Discrete forcing among others, out of which we choose the former for its ease of implementation,

physical connection with flows over porous media and robustness in modeling arbitrarily shaped solids. This

flow penalization should theoretically be effected only at the (Lagrangian) solid boundary points. However,

for interfacing with the Eulerian fluid mesh, we model the solid using a fictitious domain approach wherein

the solid is also considered a part of the fluid [187]. We then track the ith solid body by its characteristic

function χi, which is 1 inside the body and 0 outside (with suitable intermediate mollification for enforcing

C2 continuity [186]). The fluid can then be forced to move with the body using a penalization term:

∇ · u = 0 , x ∈ Σ

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + g + ν∇2u+

m∑
i=1

λχi
(
ui
s − u

)︸ ︷︷ ︸
Penalization

, x ∈ Σ
(3.7)

where λ≫ 1 is the penalization factor [185, 186], with the above equations now valid throughout the entire

domain. The introduction of χi also leads to the redefinition of the density field, as follows

ρ =

m∑
i=1

[(
1− χi

)
ρf + χiρis

]
(3.8)

With the above changes, we finally write the equations for solving the one–way fluid–structure dynamics in

the u–ω form (once again, for the êz component)

∂ω

∂t
+ (u · ∇)ω = ν∇2ω − ∇ρ

ρ
×
(
∂u

∂t
+ (u · ∇)u− g − ν∇2u

)
+ λ

m∑
i=1

[
∇× χi

(
ui
s − u

)]
(3.9)

The feedback from the fluid to the ith body is described by Newton’s equation of motions in two-
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dimensions
miẍi = F i

H

Iiθ̈i =M i
H

(3.10)

where xi, θi, mi, Ii, F i
H and M i

H are, respectively, the position of the center of mass, angular orientation,

mass, êz component of the moment of inertia, hydrodynamic force and moment. We solve equations (3.9)

and (3.10) numerically using the algorithm described in the following section.

3.1.2 Remeshed Vortex Methods on uniform resolution grids

We briefly describe the numerical algorithm used to solve the above set of equations here. The interested

reader is referred to Gazzola et al. [185], Gazzola [186], and Rees [188] for detailed numerical analysis and

other implementation details. The key simplification involves employing first order Godunov time–splitting

on equation (3.9), thereby decomposing the problem into simpler problems of field-reconstruction, poisson-

solve, projection, penalization, baroclinic-update, diffusion, advection and body-update respectively, at the

nth time-step (henceforth denoted as a superscript).

Field-reconstruction involves (re)generating the χn and thus ρn (3.8) fields, based on past dynamics. The

χn field is either imposed kinematically (such as a body moving with prescribed motion) or determined from

integrating Netwon’s laws (3.10). Any divergence in the velocity caused by body deformations can also be

calculated in this step, and accounted for in later steps [185, 186].

We then solve the streamfunction Poisson equation ∇2ψn = ωn, either with unbounded or periodic

boundary conditions on a stationary uniform Eulerian grid. The uniform grid permits the use of fast solvers

(FFT) based on convolution with the fundamental solution kernel, using the Discrete Fourier Transform

(DFT). We can also recover the flow velocity using the Helmholtz decomposition un = ∇× (ψnêz).

The translational and rotational velocity fed back from the fluid to the solid is computed directly using

a projection approach [189]. This is done to eliminate computation of (noisy) surface stresses and thus the

resulting integrated forces and moments (3.10). ẋi, θ̇i are then directly computed by projecting them to

the space of stress-free rigid body actuations, while conserving the total (fluid + solid) linear and angular

momentum instantaneously.

We then penalize the flow on the uniform Eulerian grid to (instantaneously) match the no-slip condition

of the solid object, according to the time-split equation below

∂u

∂t
=

m∑
i=1

λχi,n
(
ui
s − u

)
(3.11)
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Discretizing the same with the implicitly stable (for real, positive λ such as this case) first-order Euler

backward scheme with a time–step ∆t leads to the following update for the velocity

un ←−
un + λ∆t

∑m
i=1 χ

i,nui,n
s

1 + λ∆t
∑m

i=1 χ
i,n

(3.12)

Consequently, we update the vorticity to

ωn ←−∇× un (3.13)

We take into account the baroclinic contribution seen in its time-split form below

∂ω

∂t
= −∇ρ

ρ
×

(
∂u

∂t
+ (u · ∇)u− g − ν∇2u

)
(3.14)

All temporal derivatives in the above equation are done using a first-order accurate (explicit) forward Euler

scheme, with the evaluation of the RHS quantities and the subsequent vorticity update done on the Eulerian

grid. The ∇ρ, ∇u and ∇2u terms are evaluated using the second-order accurate centered finite difference

scheme. The update step is then

ωn ←− ωn +∆t

[
−∇ρ

n

ρn
×
(
un − un−1

∆t
+ (un · ∇)un − g − ν∇2un

)]
(3.15)

The diffusion equation for the vorticity given below is then solved using the explicit second-order mid-

point Runge–Kutta scheme, with the Laplacian evaluated on the grid using the second-order accurate cen-

tered finite difference stencil. The split version and the update steps are given below.

∂ω

∂t
= ν∇2ω (3.16)

ωn ←− ωn + ν∆t

(
∇2

[
ωn +

ν∆t

2
∇2ωn

])
(3.17)

We note that the use of an explicit time integrator here necessitates restricted time steps ∆t ≤ O
(
(∆x)2/2ν

)
.

The advection of vorticity is done, following equation (3.18), using Lagrangian vortex particles.

∂ω

∂t
+ (u · ∇)ω = 0 (3.18)

The vorticity lying on the grid after the last sub-step is first distributed among particles using the M ′
4
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interpolation kernel, then advected with the (consistent) velocity field in accord with the midpoint second

order Runge–Kutta scheme. At the end of this substep, the particles are remeshed onto the uniform regular

grid using the same kernel. This particle–based advection also burdens the step-size that can be effectively

taken by any explicit time–stepper, in the interest of preventing Lagrangian (particle) distortion. In this

case, the restriction is based on the maximum strain rate and is given by
∥∥∇un−1

∥∥
∞ ∆tn ≤ LCFL, the

Lagrangian CFL condition. The LCFL condition is less stringent than the CFL condition in cases of our

interest, as we do not deal with high-deformation velocity fields. Once advection is done, any solid body

position/angle update is performed and the simulation marches on to the next time-step.

3.1.3 Tracing streaming dynamics

To investigate/visualize dynamics over long time scales, we average the u , ω and ψ fields over one oscillation

cycle and obtain the time-averaged fields u, ω and ψ. This operation is described mathematically as follows

ζ (x)

∫ Tn+1

Tn

dt =

∫ Tn+1

Tn

ζ (x, t) dt (3.19)

where ζ (x, t) refers to any of the aforesaid fields and T k = kT =
2πk

ω
. Numerically, the integration of

the fields with time (RHS of equation (3.19)) is done by the (midpoint) trapezoidal scheme. This choice is

motivated by the underlying physics—if one plausibly assumes that all oscillatory modes (of frequency ω

and its harmonics) are periodic with period T (their fundamental periods may be different!), then the said

scheme is spectrally accurate in time (and O
(
∆x2

)
in space, following discussions from the prior section).

However over large time scales, a fluid particle does not travel with velocity u or along isocontours of ψ.

Indeed, our computations calculate the average Eulerian fields while the fluid particle follows the Lagrangian

fields, a fact recognized by prior works [33, 34, 42, 50, 118]. The velocity U experienced by a fluid particle

starting at x at t = 0 is

U(x, t) = u

(
x+

∫ t

0

U(x, τ)dτ, t

)
(3.20)

If the displacement of the fluid particle from its initial position x over one cycle is small, we can perform a

Taylor expansion of the velocity field about x to obtain

U(x, t) = u (x, t) +

∫ t

0

U(x, τ)dτ ·∇u (x, t) (3.21)

Performing the time average of the particle trajectory over one cycle allows us to calculate the Stokes–drift
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correction to our Eulerian velocity field

ux0=x
L (x)︸ ︷︷ ︸

Lagrangian field

= u (x)︸ ︷︷ ︸
Eulerian field

+

∫ t

0

U(x, τ)dτ ·∇u (x, t)︸ ︷︷ ︸
Lagrangian correction

(3.22)

which leads to the following correction to our streamfunction field in the (r, θ) coordinate attached to our

cylinder [118]

ψL(x)︸ ︷︷ ︸
Lagrangian field

= ψ (x)︸ ︷︷ ︸
Eulerian field

+
1

r2

∫ t

0

∂ψ

∂r
(x, τ)dτ

∂ψ

∂ cos θ (x, t)︸ ︷︷ ︸
Lagrangian correction

(3.23)

From literature (refer to the previous chapter), we estimate that u ∼ O (1) ,u ∼ O (ϵ) and∫
U(τ)dτ ·∇u (x, t) ∼ O

(
ϵ2
)
, with ϵ≪ 1. We make an ad hoc assumption that this second order correction

term can be neglected in calculating u, ω and ψ (we advise caution in adopting this assumption as in general

the Eulerian and Lagrangian streamlines can be quite different quantitatively, see [41, 50, 118]). We add

that while we lose some physical meaning in adopting such an approximation, the Eulerian fields are still

relevant as they are first-order approximations of the corresponding Lagrangian fields.

By neglecting this Lagrangian (Stokes drift) correction to the Eulerian streamfunction, we also notice

that the averaging process involves no additional calculations (such as additional advection or Poisson-solve

steps), except for the field cumulation. This also improves the time to solution (TTS), while retaining

meaningful dynamics. Hence any visualization/calculation henceforth is done only using these averaged

Eulerian fields.

3.1.4 Simulation parameters

Throughout this work, we choose a domain of physical size [0 m, 1 m]2 with grid size 2048× 2048, λ = 104,

χ mollification length ϵmoll = 2
√
2h (h being the grid spacing) and LCFL 0.01 to simulate the flow with

unbounded boundary conditions, unless specified otherwise. This parameter set is chosen to strike an

acceptable balance between computational speed and accuracy. A typical simulation with these parameters

is run in single precision∗ for 24–48 hours on a single Cray XE6 node with two AMD 6276 Interlagos

processors (sharing 32 hardware cores in between them) in the Blue Waters supercomputing cluster, over

which ∼ O (100) oscillation cycles are completed.

We note that the RVM algorithm with the aforementioned parameter set has been thoroughly validated

for flow–structure interaction problems [185, 190, 191], with proven rigorous convergence properties [186].

We extend this validation and show that the algorithm can accurately capture streaming dynamics.
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
We employ SP (Single Precision) floating point numbers in the calculation of all fields to improve

TTS. While there is no difference in the time taken to perform operations on a SP/DP (Double

Precision) floating point number, the time taken by the Poisson-solve/advection routines are

significantly longer in the case of the latter due to memory bandwidths stifling parallelism. The

concomitant loss in precision was seen to only have a trivial effect, upon running some numerical

streaming experiments.

3.2 Validation of streaming dynamics

We present multiple setups for validation in this section, each testing a different aspect of the physics that

needs to be captured. To prevent monotony in our exposition, we give some physical insight into these

cases in text snippets starting with . These snippets offer additional information, but can be skipped in a

cursory reading.

3.2.1 Lateral oscillations of a circular cylinder

For clarity of exposition, we once again present the physical setup and scaling parameters for the study of

viscous streaming here. We consider a right circular cylinder of radius R, oscillating in-plane sinusoidally

along one axis in a fluid of kinematic viscosity ν. The displacement of the cylinder center is then xCOM(t) =

ϵR sin(ωt), where ϵ is the non-dimensional amplitude and ω is the frequency of oscillation. The oscillations
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Figure 3.1: Validation: Comparison of ψ pattern in (a) single boundary layer (Ro = 0.8, Rs = 0.04) and (b)
double boundary layer (Ro = 6.28, Rs = 0.314) regimes against the experiments of Lieu et al. [48] and Van
Dyke and Van Dyke [63], respectively. (c) Normalized DC boundary layer thickness δdc/R vs. α−1 against
experiments [46] and theory [41] in the DBL regime. (d,e) Comparison of streaming from multiple cylinders
against the experiments of House et al. [49], wherein we employ a periodic boundary condition.
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lead to a shear layer or a Stokes boundary layer near the cylinder surface with characteristic thickness

δac =
√
ν/ω. We define the Womerseley number α = R/δac. With characteristic oscillation velocity

Uo = ϵRω, we define the oscillatory Reynolds number Ro

(
=
UoR

ν
=
ϵR2ω

ν
= ϵα2

)
determining oscillatory

(periodic, fast time scale) dynamics. The streaming Reynolds number Rs

(
=
U2

o
ων

=
(ϵR)2ω

ν
= ϵ2α2 = ϵRo

)
characterizes the long term (steady) fluid response and associated flow structures.

Figure 3.1(a,b) illustrates these structures by plotting ψ and is seen to have distinct regions with clock-

wise (blue) and counter-clockwise (orange) rotating vortical fluid. Figure 3.1(a) depicts a case with Rs ≪ 1

in the single boundary layer regime, where viscous effects dominate and the steady streaming flow is Stokes-

like [37]. Figure 3.1(b) is representative of a case in the double boundary layer regime, with Rs spanning

O(1)–O(10), where both inertial and viscous effects are comparable. This leads to the outer DC bound-

ary layer for the streaming flow, which has a finite thickness depending only on α = rm
√
ω/ν as seen in

figure 3.1(c). The DC boundary layer then ‘drives’ the fluid in the bulk (from its outer surface) to set up

long range streaming forces. We note that for a fixed ϵ = 0.05, as in this work, we can use Ro alone to

characterize streaming flows (as Ro = Rs/ϵ). Finally, we scale up the simulations to predict streaming from

multiple cylinders oscillating with the same frequency and no phase lag, in the (d) regular and (e) staggered

lattices of figure 3.1. Overall, we observe good agreement with analytical and experimental studies involving

individual and multiple cylinders.


We briefly explain the physics seen in figure 3.1. Steady streaming arises due to a drift of

momentum/vorticity from the AC boundary layer into the exterior. This drift is usually

represented as arising from a steady slip velocity at the edge of AC layer, with magnitude

U = − 3

8ω

(
dA2

dx
+ 2A2 dγ

dx

)
, where U is the time independent coefficient of the external po-

tential flow over the object, represented as A(x)eιγ(x), A being amplitude, γ being the phase

and x is the wall-tangential coordinate. In our case of oscillatory flow past a circular cylin-

der, U = A · eι·0 = 2Uo sin(x), leading to a steady slip of U cylinder = − 3U2
o

2ωR
sin(2x). This in

turn leaks momentum/vorticity, which takes place predominantly by diffusion in figure 3.1(a)

and by convection in figure 3.1(b), except close to the walls in the DC boundary layer wherein

diffusion dominates. The latter is seen for small α−1 on the left part of figure 3.1(c), whereas

increasing α−1 makes the DC boundary layer grow until it explodes at α ∼ 0.14—this leads

to figure 3.1(a). This behavior is seemingly retained for multiple bodies with sufficient separa-

tion( figure 3.1(d,e)). We remark that the oscillating cylinder streaming structure is quadrupolar

because of the sin(2x) term in the steady slip velocity U cylinder.
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Figure 3.2: Validation: Viscous streaming fields simulated in the Rs ≫ 1 limit (Ro = 2000, Rs = 100) and
colored by (a) non-dimensional average axial velocity u · êx, (b) non-dimensional average vorticity ω, clearly
exhibits a jet. We measure the former at a cross–section (marked by black, dashed lines) at ∆x = 0.14R
away from the surface. A comparison against the Bickley jet [106] in (c) shows good agreement.

We then increase Ro (and thus Rs) till we reach the jetting limit (Rs ≫ 1). The boundary layers

seen earlier now collide [36] and eject as a jet along the oscillation axis [39, 40, 42]. This is clearly seen

in figure 3.2(a) and (b), wherein the u and ω fields are depicted respectively. Following [39] we compare

the axial velocity profile of the jet to the theoretical planar jet in figure 3.2(c). We note that in this case

the average quantities are not time-invariant, owing to the fluid’s inability to satisfactorily dissipate the

momentum added by body oscillations.


When Ro is increased, we have more vorticity confinement (due to high steady slip) across a

smaller AC layer (due to increased Ro). Once enough vorticity has accumulated, it advects with

its associated momentum and collides symmetrically along the axis. In this setting, the built–up

momentum is leaked into the bulk flow as an unsteady jet.

3.2.2 Other actuations

Within this framework, it is also possible to simulate non-harmonic lateral oscillations (done trivially by

changing the body actuation) or more complicated types of actuation. To test the validity of our simulation

approach for the latter, we first simulate the cases of a torsionally oscillating cylinder and a cylinder with ra-
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dial monopolar volume-changing oscillations. Both these cases do not exhibit streaming (section 2.3), which

should reflect in our simulations as well. Computationally, we assess this question of streaming–existence

by calculating the kinetic energy K =
1

2

∫
|u(x)|2dx of the stationary averaged flow u for dynamically

equivalent simulations (same peak velocities and length scales). Comparing the cases of lateral and tor-

sional/radial oscillations, the latter cases have Ktorsional/radial approximately 0.1− 1% of the former. Hence

we correctly capture the no-streaming behavior within some margin of computational error.

The former case involving torsional oscillations, when combined with isochronous lateral oscillations

leads to interesting physics, especially in the jetting limit. We consider such a laterally oscillating cylinder

with superposed torsional oscillations of the form θ(t) = 2πϵt sin(ωt+ϕt), the subscript t indicating torsion.

Introduction of the torsional peak velocity Ut = 2πϵtaω and the phase difference between the modes γ = ϕt−0

further helps characterize relevant physics. Drawing from a prior work [90], we define λ = Ut/Uo and the

characteristic non-dimensional B parameter that equals 5λ sin γ + 3λ cos γ. Riley [90] predicted that one
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Figure 3.3: Validation: Adding torsional oscillations to a laterally oscillating cylinder (Ro = 2000, Rs = 100)
leads to different directions (from equatorial to polar) of ejection of the jet (colored by ω) based on the
magnitude of B: (a) 0, (b) 1.05, (c) 3.14, (d) 6, thus agreeing with the theoretical predictions of Riley [90].
We keep γ invariant throughout and effect the change in B only via changes in λ. If we instead consider an
active cylinder undergoing monopolar radial oscillations and place passive density-mismatched finite-sized
inertial cylinders closeby, we expect a behavior inversion in the trajectories of these cylinders. (e) shows
this inversion for passive cylinders of different density contrasts ρ∗ ∈ [0.85, 1.15], with denser cylinders being
attracted towards the active oscillating cylinder.

can control the direction of jet ejection by changing this parameter alone (with B = 0 indicating no torsion

and hence a symmetric equatorial jet and the asymptotic case of B = 6 indicating one, strong polar jet).

Upon reproducing this setup in figure 3.3(a–d), we notice that our computations qualitatively reproduce the

predicted behavior for different values of B ∈ [0, 6]. One interesting application of these oriented jets lie in

self-propulsion [92, 113–116].
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
The interaction of the torsional and translational components are captured exclusively by the

wall-boundary conditions. While in the case of lateral oscillations, the slip velocity at the edge

of the AC layer is U = −6k cos(x) sin(x) = −3k sin(2x) as seen earlier (k is an unimportant

proportionality factor), the torsional + lateral case has slip velocity U = k cos(x) (−6 sin(x) +B).

In both the cases, the boundary layer attaches (originates)/separates at the stagnation point,

i.e. when the slip velocity is zero, the type of the stagnation point (attachment/separation

point) depending on its local behavior (the slope of U around the point). Owing to the cos(x)

factor in both the slips, the boundary layer always originates at x = ±π
2

i.e. at the poles.

However the point of separation—where we see the ejection of the jet—is different. In the

former, this point is at x = 0, π leading to an axis-oriented jet. In the latter, this point

occurs at x = sin−1(B/6), π − sin−1(B/6), leading to an oriented jet. If B ≥ 6 however, the

layer originating at x = −π
2

encircles the cylinder and collides at x =
π

2
, owing to its higher

momentum flux. As we have seen in the validation above, this leads to a single jet at the top.

The latter case involving radial monopolar oscillations of the cylinder is quite similar to standard mi-

crobubble streaming experiments [25, 61, 62] and has been used for effecting density–based particle sort-

ing/differential transport [120]. In the interest of particle transport over long time scales and to authenticate

our modeling of the baroclinic force term in the differential momentum equation (3.9) arising from fluid–solid

density contrast, we consider such a cylinder with a fixed center undergoing monopolar radial oscillations

of the form R(t) = R (1 + ϵr sin(ωrt)), with the subscript r denoting radial oscillations. The characteristic

velocity and length scales for this problem are ϵrRωr and R respectively, following which the usual dynamic

parameters are defined. We then consider small passive inertial cylinders of radius R/5, which are free to

respond to the flow generated by the motion of the oscillating cylinder. A popular result pertaining to this

setting corresponds to these passive bodies being attracted to/repelled from the oscillating cylinder based

on its density contrast with the surrounding fluid [192]. In five separate experiments, we place particles of

contrasts ρ∗ = ρs/ρf = 0.85, 0.95, 1.00, 1.05, 1.15 at an initial radial position of r(0)/R = 1.767, seen in the

inset of figure 3.3(e). We track the radial positions of these particles as the cylinder oscillates and notice, in

accordance with theory, a qualitative inversion in the particle behavior (attraction/repulsion) (figure 3.3(e)).

This further vindicates our modeling approach in the context of multiple bodies with mismatched densities.
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
The trajectory of an inertial particle in a viscous flow is still a topic of interest. In the two–

dimensional case presented above, the widely used Maxey–Riley equations for calculating inertial

particle trajectory can not be employed, as the fundamental assumption concerning the negligi-

bility of flow-disturbances induced by the particles in the flow is violated. While a quantitative

comparison with theory is impossible in this case, we observe the predicted inversion behavior

seen in other three dimensional experiments.

A related deforming (and volume-changing) actuation is the two-dimensional squirming motion proposed

by Blake [121]. Such squirming motions are characteristic propulsion generating mechanisms of microscale

organisms, and may generate complicated streaming fields, as hypothesized in section 2.2. Squirming involves

prescribing spatially varying radial and torsional oscillations on the surface of the form

R̃(θ, t) = R

[
1 +

n∑
i=1

{ϵri sin(ωit)} cos(iθ)
]

θ̃(θ, t) = θ + 2π

[
n∑

i=1

{ϵθi sin(Ωit)} sin(iθ)
] (3.24)

where R̃(θ, t) and θ̃(θ, t) are the radial and angular positions of the Lagrangian point (R, θ) in the initial

configuration; ϵri, ωi refer to the amplitude and frequency parameters of the mode i radial deformation;

ϵθi , ωi refer to the amplitude and frequency parameters of the mode i angular deformation and n is the total

number of shape modes. We constrain ϵri ≪ 1 and ϵθi < 0.125 to prevent non-physical solutions for the solid

surface. Thus every point on the surface, due to this imposed motion, has a spatially varying normal and

tangential velocity. As our fluid quantities are calculated on the Eulerian mesh, corresponding to some value

of the
(
R̃(θ, t), θ̃(θ, t)

)
tuple, we first solve for θ given the Eulerian θ̃ using Brent’s non-linear root finding

algorithm.
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Figure 3.4: Deformations (exaggerated, ϵr2 = 0.2) associated with the second mode squirming motion.
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We first test the capability of our solver to handle such complicated actuations. We consider the simplest

possible non-trivial (i.e. spatially varying) actuation, with ϵr2 = 0.02, ϵθ2 = 0.02, ω = ω2 = Ω2 = 4π and all

other coefficients set to 0. The resulting cylinder deformation is shown in figure 3.4.

Following [64], we characterize the Reynolds number Re = 4ωR2/ν using the non-dimensional time

T = 2πt/ω, distance r/R and velocity ωR. This low-amplitude case has an analytical and numerical

solution [64], which we validate against. Figure 3.5 exhibits the u, ω field validation at four different times

from T = 27.00− 27.75. The validation indicates that RVM can accurately capture squirming-dynamics.
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Figure 3.5: Squirming validation: By incorporating the kinematic deformations of a second mode squirmer,
we enable comparison against analytical solutions for non-trivial deformations (including imposed slip on
the surface). For the case of Re = 100 and at time (a) T = 27.00, we first show the vorticity fields computed
using a viscous vortex particle method [64] (solid and dashed lines indicate positive and negative values
respectively) against which we compare our vorticity fields (colored, with 32 equi-spaced contour lines). We
then plot the analytical and our numerical circumferential velocity profile with r/R at θ = 45°. This process
is repeated at other times: (b) T = 27.25, (c) T = 27.50, (d) T = 27.75. Our calculations are in agreement
with analytical and other numerical results.

With the fluid dynamics instigated by arbitrary squirming motion validated, we now visualize the engen-

dered streaming fields for specific modes. We show this in figure 3.6, where streaming in the DBL regime

and jetting limit are displayed alongside one another for the same actuation (with α−1 alone indicating the

streaming regime). Because of inherent symmetries in the modes, the streaming field is no longer quadrupo-

lar in the DBL regime (as in the case of lateral oscillations), but has several segmented eddies with varying

strengths across the polar direction, which collide with one another as the α−1 decreases to form multiple

jets. Indeed, such behavior is not too different from flow fields generated by the ciliated, squirming starfish

larvae, first observed by Gilpin et al. [80], which are utilized by the organism to regulate/switch between

locomotion and feeding phases.
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Figure 3.6: Streaming fields generated by squirming motions in the DBL regime (left, with α−1 = 0.0398) and
jetting limit (right, with α−1 = 0.00398), visualized respectively by non-dimensional ψ amd ω respectively.
(a) exhibits the case of a mode 1 squirmer with ϵr1 = 0.0, ϵθ1 = 1

120 , (b) exhibits the case of a mode 2 squirmer
with ϵr2 = 0.0, ϵθ2 = 1

120 , (c) exhibits the case of a mode 3 squirmer with ϵr3 = 0.0, ϵθ3 = 1
120 . Comparing these

three dynamically equivalent but kinematically different cases, we observe more segmentation in the polar
direction but faster radial field decay as the mode number increases, a response which might be useful in
regulating/effecting local flow control. (d) exhibits the case with all the above modes combined, with the
same parameters for the individual modes as the cases of (a,b,c). Such a combination leads to a preferential
direction in which the streaming fields are relatively stronger.


The patterns seen in the case of an angular mode squirmer can be understood from the slip-

velocity relation. In this case, we can equivalently think of an oscillatory flow past a squirming

cylinder with the time-independent coefficient U = 2Uo sin(ix), i being the mode of the squirmer.

This leads to a steady slip velocity of the form U = k sin(2ix). This results in additional

stagnation points (numbering 4i for the ith mode squirmer), half of which are attachment points

and the other half being points of boundary layer separation. The effect of the sin(2ix) term is

also seen in the number of segments of the ψ fields in the DBL regime, and subsequently in the

number of jets at higher Ro.

3.2.3 Lateral oscillations of arbitrarily shaped cylinders

The squirming modes shown above consider only angular (slip) deformations, but not radial deforma-

tions. Radial deformations are associated with changes in shape, making their simulation non-trivial.

While we showed that the dynamics originating from shape perturbations to a circular cylinder are cap-

tured correctly (the squirming validation done prior, a mode 2 radial deformation case shown in the

left panel of figure 3.7(a) and the bean shape in the right panel of figure 3.7(a)), arbitrary shapes (in-

cluding shapes with sharp corners, such as a square) can still pose an issue numerically. We then pro-

ceed to compare our streaming fields against previous experiments concerning different shapes, which in-
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clude a square (figure 3.7(b)), triangle (figure 3.7(c)) and a diamond (figure 3.7(d)). We also performed

such comparisons across different dynamic regimes but do not present it here for the sake of brevity.

2.3e-4

-2.3e-4

(a)

(c)

(b)

(d)

Figure 3.7: Validation: Streaming from arbitrary shapes, visualized by the Line Integral Convolution (LIC)
of u field and colored by ψ. The actuations are indicated by solid white lines. Starting from (a, left) a radi-
ally deforming mode 2 squirmer

(
ϵr2 = 0.1, ϵθ2 = 0.0, α−1 = 0.0398

)
and (a, right) a laterally oscillating bean

with ϵ = 0.05, α−1 = 0.0498, we proceed to compare streaming for different shapes against experiments: (b)
a square

(
ϵ = 0.0752, α−1 = 0.084

)
compared against Tatsuno [54], (c) a triangle

(
ϵ = 0.101, α−1 = 0.1792

)
compared against Tatsuno [55] and finally (d) a diamond

(
ϵ = 0.0584, α−1 = 0.09615

)
compared against Tat-

suno [54]. We add that only a qualitative comparison is feasible owing to the lack of quantitative studies in
literature. In spite of this limitation, we observe good agreement with experiments. The shape parameters
used to construct the bean is given in the Appendix.


A plausible way to think about streaming from different shapes is in terms of its curvature

κ—while all parts of the shape move with the same amplitude A, regions of higher curvature

κloc = 1/Rloc see a higher non-dimensional amplitude A/Rloc = κlocA than the rest of the shape.

Such high ϵ usually changes the dynamics, as we will see in the next section. This change in the

dynamics can be confirmed by taking a glance at figure 3.7, wherein corners/tips in the shape

lead to very different streaming profiles compared to the cylinder. These corners/tips are usually

regions of very high curvatures.

Armed with a holistic yet rigorous validation, we are now confident of tackling streaming problems

involving multiple, active/passive, arbitrarily-shaped bodies with complex actuations and density variations.

We now extend this validation to streaming’s unsteady counterpart—the Keulegan–Carpenter (KC) flows—

in the next section.
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3.3 Validation of KC dynamics

We perform two sets of validation studies to predict KC dynamics—one quantitative and another qualitative.

The qualitative validation showcases a number of flow regimes, some of which are of interest to us in the

context of flow and particle control in Ro ∈ O (1)−O (100)—which motivates the need for this section. The

choice of parameters to describe the dynamics in this section are KC = πϵ and β =
2ωa2

πν
, such a choice

motivated by our intention to maintain relevance to KC flow literature. They are related to the Ro − Rs

parameter set by the relation KC = π
Rs
Ro

and β =
2R2

o
πRs

.

The quantitative validation involves comparison of our fields against the experiments and simulations

of Dütsch et al. [166]. To this extent, we simulate an oscillating cylinder in a quiescent fluid with KC = 5 and

β = 20 (for context, this case has ϵ = 5

π
, Ro ∼ 50, Rs ∼ 80). Here, effects associated with flow separation

predominate and the resulting flow is non-stationary. However, close to the cylinder-path the leading order

dynamics are still oscillatory (including higher order oscillatory components). Figure 3.8(a) displays the

vorticity and velocity fields associated with this flow, along with designated stations (marked with dashed

lines), at which we compare the u · êx and u · êy components at some time t = kT =
2πk

ω
(figure 3.8(b,c)).
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Figure 3.8: Validation: Simulation of the unsteady flow associated with KC = 5 and β = 20 results in the
ω · êz pattern shown in (a), alongside vectors of u. Such a pattern evolved over a complicated trajectory
involving vortex generation in half cycles, vortex-mixing, destruction and advection. Drawing samples of the
velocity components at stations x = −1.2R, 1.2R, 2.4R marked in (a) enables (b,c) comparison of our fields
(curr.) against reference simulations (ref.) and experiments (exp.) of Dütsch et al. [166]. Our calculations
agree with these simulations and experiments.

With some degree of confidence in our ability to predict KC dynamics, we change the amplitude (ϵ) and

Ro to map out a phase space. In this phase space, we correlate the dynamics at different parameters by

monitoring the time-dependent vorticity field and the integrated streakline patterns [65]. The latter involves

seeding tracer particles azimuthally around the cylinder (close to its surface) and observe their evolution in

time. We color these tracers based on its initial (seeded) position (from blue at initial azimuthal position

θ = −3π

2
to red at θ = π

2
). The phase space, along with the different flow regimes, is shown in figure 3.9.
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Figure 3.9: Validation: The phase space of vortex dynamics and streakline patterns plotted against the non-dimensional amplitude ϵ on the x–axis
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the boundaries of a regime, which are then demarcated with different colors. The name corresponding to a regime is specified below its representative
image along with the aforementioned symbol. The (ϵ, Ro) parameters used in an image are mentioned on the top-left corner of the image. To enable
qualitative comparison against equivalent experiments whenever possible, we also affix reference experimental images (pathlines from Lieu et al. [48]
for A, pathlines from Van Dyke and Van Dyke [63] for B and integrated streaklines from Tatsuno and Bearman [65] for all the other regimes) along
with our fields. We additionally plot, with dashed-dotted black lines, the regime demarcation lines from Tatsuno and Bearman [65]. Our regime
demarcations and integrated streakline snapshots are consistent with their experimental findings.

33



Regime Features

A Single boundary layer streaming.

B Double boundary layer streaming, streaklines are contained within the DBL.

C Small amplitude jetting limit, no up-down or fore-aft particle mixing.

D Transitional regime between B, C with intermediate features of both.

E
High amplitude flow that quickly diffuses vorticity and particles in the perpendicular direction.

Integrated streaklines analogous to regime A.

F Medium amplitude jetting with significant flow separation and cross-interaction, fore-aft particle mixing.

G Medium amplitude jetting but only due to BL collision—hence no fore-aft particle mixing.

H
Medium amplitude oscillations that leaks (and does not shed) vorticity into the bulk. Particles stick to

the cylinder without any mixing, similar to regime B.

I
Medium amplitude oscillations that jets without shedding—similar to F—but is shaped differently

due to effects of higher viscosity. Particles exhibit significant fore-aft mixing.

J
Symmetric vortices shed and pushed downstream by the momentum flux emanating from the cylinder

and is accompanied by mixing.

K Shed vortices are convected obliquely w.r.t the oscillation axis, carrying the mixed particles with it.

L Shed vortices now roll up symmetrically and form a vortex-street, thoroughly mixing the particles.

M
Similar to regime J, but with the streakline patterns manifesting differently owing to higher coherence

within a shed vortex, possible due to lower Ro.

N Chaotic asymmetric vortex shedding.

O Asymmetric vortex shedding leads to diagonal vortex streets, with well-mixed particles.

P Vortex shedding with irregular switch in the direction of vortex and mixed-particle convection.

Q Transition between regimes F and N, that starts as a jet that eventually breaks down into chaos.

R
Similar to regime Q, but with the stability of the jet preserved for longer times, which also reflect in

the particles not experiencing top-bottom mixing.

Table 3.1: Principal features of the regimes shown in figure 3.9
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
The evolution of tracer particles in time is achieved by temporal integration of the ODE

dxp(t)

dt = u (xp(t), t) , xp(0) = xp
0

where xp(t) is the position of the tracer particle at time t and u (xp(t), t) is the corresponding

fluid velocity. This step is blended into our algorithm naturally by performing an additional

particle-advection step.

The phase-space diagram of figure 3.9 shows rich dynamics, even when limited to the range O (1− 100)

of Ro that we are typically interested in. In this setting, the integrated streakline visualization using

particles is doubly illuminating as it (i) clearly highlights the underlying dynamics, drawing attention to any

differences between the regimes and (ii) lays the foundation for directing the trajectory of a small particle

using only oscillatory motions. The latter is especially important as a preliminary, albeit crude, tool in

facilitating potential applications involving inertial particle manipulations such as directed drug delivery. In

this context of particle manipulation, we apply our findings and utilize the tools validated from this chapter

to enable transport across long distances. This is elaborated upon in the next chapter.
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Chapter 4

Inertial particle transport via viscous
streaming1

In this chapter, we investigate the capability of an active body (master) to manipulate a passive object

(slave) purely via contactless flow-mediated mechanisms, motivated by potential applications in microfluidic

devices and medicine (drug delivery purposes). We extend prior works on active–passive cylinder pairs by

superimposing periodic oscillations to the master’s linear motion. Such oscillations produce an additional

viscous streaming field, which is leveraged for enhancing slave transport. We see that superimposing oscil-

lations robustly improves transport across a range of Reynolds numbers. Comparison with results without

oscillations highlights the flow mechanisms at work, which we capitalize on to design (master) geometries

for augmented transport.

4.1 Introduction

Here, we consider two-dimensional flow-mediated transport systems operating in flow regimes characterized

by finite, moderate Reynolds numbers (1 ≤ Re ≤ 100). In particular, we explore strategies based on viscous

streaming effects discussed thus far to enhance the capability of an active leading object to transport, trap

and manipulate passive trailing ones.

We are once again motivated by the accelerated pace of development of artificial and biohybrid [77, 78,

194] mini-bots enabled by recent simulation [100, 195] and fabrication advances [194]. This new breed of mini-

bots predominantly operates in fluids, and brings within reach a range of novel high-impact applications in

medicine and manufacturing (drug delivery and particle transport, chemical mixing and in-situ contactless

manipulation, among many others). Fluid-mediated interactions can then be leveraged to enhance these

capabilities or enable new ones [194].

In general flow-mediated interactions play an important role in a number of physical and biological

phenomena, from fish schooling [196] and suspension of microorganisms [11, 197] to cloud particle sedimen-

tation [198] and cluster formation [57]. Thus, hydrodynamically-coupled systems have been investigated
1This chapter is adapted from the preprint Parthasarathy et al. [193], for which my contributions were implementing the

numerical method, running all simulations, analyzing them and being the primary author of the article.
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Figure 4.1: System setup: (a) baseline [215] vs. (b) current configuration.

for different flow regimes, including Stokes (Re → 0, [199, 200]), Oseen (Re ∼ O(1), [201]) and invis-

cid (Re → ∞, [202–204]). Moreover, interest in fish schooling also prompted a number of such studies

(Re > 100, [205–213]) including attempts to bridge viscous and inviscid descriptions [214].

There has been instead little effort in characterizing flow coupling mechanisms in the range 1 ≤ Re ≤

100, typical of the emergent technologies highlighted above [194]. Yet, in this regime, systems of moving

objects exhibit rich dynamics characterized by sharp transitions [48, 215, 216], leading to drastically different

behaviours (transport vs. non transport, attraction vs. repulsion) depending on the ratio between viscous

and inertial effects. Given the sharpness of these transitions, we hypothesize that controlled perturbations or

second-order effects such as viscous streaming can be leveraged to shift the boundaries between qualitatively

different system responses in a rational, regulated fashion.

In this work we characterize the impact of viscous streaming in the context of passive two- and three-

dimensional particle transport by capitalizing on the setup of a previous work [215] (figure 4.1(a)), and

drawing inspiration from previous studies [50, 204]. We thus consider the simple yet representative setting

of figure 4.1, characterized by a larger cylindrical bot (master) propelling at a constant forward speed and

oscillating transversely, and a smaller, passive, trailing cargo (slave). By means of this idealized experiment,

we investigate the slave’s response, dissect the mechanisms at play and challenge our insights to design

master geometries that improve transport.

4.2 Physical framework and streaming definitions

We adopt the setup of figure 4.1(a) with master and slave cylinders of diameter Dm (and radius rm) and

Ds = 1
4Dm, respectively. The slave is initially at rest, located at a separation distance 0.1Dm behind the

master, which impulsively starts translating horizontally with a constant speed Ul, spanning 1 ≤ Re ≤ 100.

We refer to this system setup as the ‘baseline’ throughout, chosen for its minimal complexity and consistency

with prior works [204, 215], thus aiding analysis and comparison. In figure 4.1(b) we superpose to the linear

motion of the master a transverse low-amplitude sinusoidal oscillation defined by ym(t) = ym(0)+ϵrm sin(ωt)

with characteristic velocity Uo = ϵωrm, where ω is the angular frequency and ϵ = A/rm = 0.1 is the non-
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dimensional amplitude (A denotes amplitude). Oscillations elicit a viscous streaming response which can

exert small but non-negligible forces, when compared against wake forces (back of the envelope calculations

of which are detailed at the end of this section). We claim that this contribution, when properly directed,

can significantly alter transport behaviour in a flow regime characterized by sharp transitions [215], through

constructive effects between wake and streaming components as hinted to in literature [111].


For reproducibility, we summarize the parameters used henceforth and their values below:

Symbol Parameter Value

Lx Length of the domain along x axis 1 m

Ly Length of the domain along y axis 1 m

Grid size Grid size along x and y axis 2048

Dm Diameter of the master 0.111 m

x0
m Initial location of master [0.104, 0.5]m

Ul Constant lateral velocity of the master |Dm|m s−1

Nm Average grid points across master 226

Ds Diameter of the slave 0.028 m

sx(0) Initial separation of slave 0.011 m

x0
s Initial location of slave [0.023, 0.5]m

Ns Average grid points across slave 56

ρ Density of fluid, master and slave 1 kg/m3

Table 4.1: Physical simulation parameters

We choose the diameters and initial locations for the cylinders to maximize the resolution across

both master and slave for a given simulation, for the non-dimensionless end time T = 2Ult/Dm

= 15.

We characterize the linear motion dynamics by Re = UlDm/ν and the oscillatory dynamics by Ro =

Uorm/ν, where ν is the kinematic viscosity. As usual, streaming dynamics is characterized by the streaming

Reynolds number Rs = U2
o /ων. We further define ζ = Ro/Re as the non-dimensional quantity that encodes
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the relative time scales of oscillatory and linear motion. As our ϵ is fixed, we once again use Ro alone to char-

acterize streaming flows (Ro = Rs/ϵ = ϵα2 = ϵωr2m/ν). Having introduced the relevant dynamic parameters,

we proceed to study the case of figure 4.1(b), through numerical simulations via our method section 3.1,

which has been thoroughly validated for fluid–structure interaction [185, 190, 191] and streaming section 3.2

problems.


Estimating the magnitude of streaming-generated forces : We estimate that streaming

generated forces for typical parameters are small, but not negligible—varying between 0.1−10%

of the wake-induced forces. An estimate of relevant forces per unit length induced by fluid flow

past a static cylinder is given by F = 1
2CD(Re)ρu

2, the coefficient CD being a function of only Re

[217]. Thus the force contribution from the wake is roughly Fw = 1
2CD(Re)ρU

2
l while streaming

forces contribute forces on the order of F s = 1
2CD(Rs)ρU

2
s (the implicit assumption of streaming

flow being similar to a free-stream flow is justified as their time–scales are comparable). By

definition, we have Us = 2ϵζUl and thus Rs = ϵζRe. Then the ratio of these forces couched in

terms of ζ and Re for a fixed ϵ = 0.1 is

F s

Fw ∼
0.04ζ2CD(0.2ζRe)

CD(Re)

We now consider only Re = 100 for the purpose of exposition. With ζ = 0.25 and with CD(100) ≈

1.1, CD(5) ≈ 3 [217], the ratio of forces is ∼ 0.2%. Considering a higher streaming intensity

characterized by ζ = 2, we have CD(40) ≈ 1.2 [217], leading to a force ratio of ∼ 17.4%. The

order of the streaming forces are thus suspected to be in the range of 0.1–10%, justifying their

non-negligible contribution to the system dynamics.

4.3 Transport in two dimensions

We now assess the impact of streaming on slave transport and quantify it by defining the non-dimensional

surface-to-surface separation distance sx(T )/Dm (figure 4.1) in the x direction.

4.3.1 Comparison with baseline

We reproduce the results of the baseline cases of [215] in figure 4.2(a) for clarity. As we increase Re, we

observe two distinct, sharp transitions (at Re ≈ 17 and Re ≈ 82), between which the slave gets trapped
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Figure 4.2: Baseline cases: (a) We observe a clear range of Re between which trapping and transport is
achievable through linear motion. (b) Plotting sx(t)/Dm against T = 2Ult/Dm reveals that transport is
achieved between Re ≈ 17 and Re ≈ 82, which then represent transitions between transport and non-
transport regimes. At Re ≈ 82, this transition is sharp (i.e. the system is unstable) and small changes in the
Re lead to very different transport responses. (c) Perturbing the initial slave location and observing sx(t)
reveals high sensitivity (shaded) of the system around Re ≈ 82 (the top and bottom envelopes of the shaded
region represent the characteristics for slaves with a ±2% perturbation to the initial separation distance).
Oscillation enhanced cases: (d,e,f,g) enabling oscillations enhances the ability of the system to transport the
slave, across different Re. (h) We plot sx/sref at T = 10 for a number of (Re− ζ) configurations to illustrate
how transport–enhancement translates across a wider range of Re.

and transported by the master due to linear motion (and associated wake) alone. This is quantified in

figure 4.2(b) across a range of Re, where we plot the normalized master–slave distance sx/Dm against the

non-dimensional time T = 2Ult/Dm. In this plot, a plateauing sx or sx → 0 indicates transport and is

characteristic of 17 ⪅ Re ⪅ 82. For cases with Re ⪅ 17 and Re ⪆ 82, sx increases with time indicating

that the slave is left behind as the master moves forward and hence it is not transported. At Re ≈ 17

and Re ≈ 82, sx plateaus with increasing T , indicating that the slave is trapped at a fixed distance from

the master (and thus travels with the same speed). These two Re then denote the boundaries of transition

between trapping and non-trapping regimes. Moreover, at Re ≈ 82, this transition is sharp, as small changes

in Re (from 80 to 82 to 90) lead to large changes in the transport characteristics. Drawing from prior works

[216], we expect the system to be sensitive to changes in the initial master–slave separation sx(0). We then

use this as a proxy to quantify the system sensitivity by perturbing sx(0)/Dm by ±2% and observing the

resulting transport characteristics. We depict this for a few key Re in figure 4.2(c), wherein the shaded

regions highlight deviations associated with the perturbation. As expected, the system response is seen to

be very sensitive at the transitional Re ≈ 82, relative to larger and smaller Re. We consider this as an

opportunity to enhance transport. Indeed a carefully constructed flow perturbation can pull the system

from the non-transport regime into the sensitive region and make it jump over, enabling transport.
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We choose to control the system by perturbing the flow via viscous streaming, by oscillating the master

at different levels of intensity ζ = Ro/Re, and report our observations in figure 4.2(d-g). For Re = 90 > 82

(above transition, no baseline transport) shown in figure 4.2(d), mild oscillations (ζ = 0.5, blue bands)

assist transport and bring the system into the sensitive region. Increasing ζ further pushes the system well

beyond the transition, enabling (and quickening) slave transport (green and red bands). Figure 4.2(e-g)

shows the oscillation-enabled characteristics for Re = 82, 50 and 17, where we consistently observe a similar

behaviour. We then undertake a parametric investigation to further characterize the effect of superimposing

oscillations, systematically spanning Re between 10–500 and ζ between 0–2. We depict this in figure 4.2(h),

where we plot sx/sref (at T = 10) against Re, for different ζ. Here sref is the separation distance (at the

same time T = 10) of the reference baseline at Re ≈ 82, i.e. at the transition between transport and

non-transport simulations when oscillations are not active (i.e. ζ = 0). This qualitatively means that cases

in figure 4.2(h) with sx/sref < 1 transport the slave. We then observe that while oscillations always assist

transport, higher ζ values are necessary for trapping at higher Re, and beyond Re ≈ 200 oscillations are no

longer able to drive the system into the transport regime, and the slave is then left behind. The system still

retains its inherent sensitivity to Re, apparent from the sharp jump between trapping/non-trapping cases

across 100 ⪅ Re ⪅ 200, for any fixed ζ. We conclude that introducing oscillations, modulated by ζ, enhances

inertial particle transport across a wide range of Re. The causal mechanism, be it viscous streaming or other

wake-oscillation interactions, is ascertained in the next sections.


Before probing further for the causal mechanism, we first diagnose whether the leading order

effect is indeed viscous in nature, and not an inviscid mechanism. To this extent, we investigate

the transport characteristics arising from inviscid effects of the translation–oscillation strategy

using a potential-flow boundary-element solver (detailed in the Appendix). We show these

characteristics in figure 4.3(a), for various ζ. The system is initially insensitive to oscillations

(and thus to perturbations in initial positions), while at high (> 5) ζ we are able to trap and

transport the slave due to potential effects alone. We realize that while the primary transport

enhancement mechanism observed in our studies can not be attributed to inviscid interactions,

these effects are non-negligible at higher ζ values. This is reflected in the viscous transport

characteristics as well—at Re = 500 (with behavior close to inviscid, seen from the baseline

of figure 4.2(b)), we see insensitivity to changes in ζ in figure 4.3(b). Comparing this to the

characteristics of Re = 90, shown in the same figure, clearly indicates the moderating effect of

viscosity (via both wake and oscillation-related mechanisms) in transport of inertial particles.
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Figure 4.3: Streaming enhanced transport: (a) Enhancement in transport from pure potential effects is
minimal and high (ζ → 5) values are required for trapping, while enhancement in the (b) viscous case is
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Figure 4.4: Robustness: (a) Seeding slaves azimuthally around the master (with ζ = 0.5) and plotting their
trajectories (till T = 14) reveals that all slaves get transported for different Re ∈ [17, 82], lending to the
robustness of this transport enhancement strategy. The trajectories can be correlated to (b) the associated
pure streaming fields (colored by streamfunction with the solid lines indicating streamlines). Dashed lines
indicate different stations at which we plot (c) streaming-induced velocities. We do not consider slaves in the
comparison against pure streaming fields, with the implicit assumption that they do not drastically perturb
the flow.

Given the sensitivity of the system, seen in figure 4.2(c), to initial horizontal slave separation, it is

important to further characterize the spatial robustness of the proposed transport strategy. Increasing ζ

aids transport, but so far we tested only slaves initially located directly behind the master (figure 4.2(h)). We

then initialize slaves (diameter Ds =
1
4Dm) at the same surface-to-surface distance (0.1Dm), but at different
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azimuthal positions θ around the master, in separate simulations. We choose a representative ζ = 0.5 and

vary only the Re. Figure 4.4(a) illustrates the slave trajectories at T = 14 for representative Re, colored by

their initial azimuthal position. We observe that almost all slaves get transported, irrespective of their initial

azimuthal positions (and initial radial position perturbations, shown at the end of the section). However we

notice differences between the slave trajectories at different Re.

These differences can be comprehended by analyzing the corresponding pure streaming (figure 4.4(b,c))

flow fields. Figure 4.4(b) shows the time-averaged streamlines, where we also depict the stations at which

the corresponding streaming velocities (figure 4.4(c)) are portrayed. At Re = 17, a thicker DC layer (with

reverse flow, blue line in figure 4.4(c)) cushions the master and prevents the slaves from attaining close

proximity. All the other cases have a DC layer of almost constant thickness, thus lending to qualitative

differences, highlighted by slaves closely surrounding the master’s posterior. Comparing Re = 50 and

Re = 82, we notice that in the latter slaves with initial positions |π − θ| ≳ 15π/20 (figure 4.4(a), colorbar)

are transported further, due to more favourable upstream velocity profiles. Additionally, slaves almost

directly behind the master (with initial positions |π − θ| ≲ π/5) trail for Re = 90 as compared to Re = 82

and Re = 50. This is explained by the fact that Re = 90 is characterized by a baseline that cannot trap.

Mild oscillations (ζ = 0.5) are then just barely capable of pulling the slaves close enough to be trapped and

transported. We conclude that oscillation-based transport strategy is robust overall. Moreover the resulting

slave trajectories are found to be consistent with streaming-induced velocities, suggesting that this is the

responsible transport enhancement mechanism at play.

(a) s(0) = 0.098D
m
 (-2% radial perturbation)

(b) s(0) = 0.1D
m
 (no radial perturbation)

(c) s(0) = 0.102D
m
 (+2% radial perturbation)

Figure 4.5: Robustness of the streaming strategy to changes in the initial radial positions of seeded slaves,
shown for cases with (a)−2%, (b) no and (c) 2% perturbation at Re = 90, ζ = 0.5.
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
To demonstrate robustness to perturbations in the radial direction we consider the same setup,

restricting the investigation to Re = 90, ζ = 0.5 while adding a ±2% (radial) perturbation in

the initial surface–surface distance between the master and the slave. The results are shown in

figure 4.5, which demonstrates robustness to radial perturbations. The only significant difference

is seen in the trajectories of cases with |π−θ| ≲ π/5, due to the transitional nature of the baseline.

4.3.3 Flow analysis at the transport/non-transport boundary
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Figure 4.6: Analysis: Fixing Re = 82 and increasing ζ leads to (a) better transport due to flow acceleration
in the wake. The trajectories are drawn till T = 14 with the dashed black lines representing the baseline case.
(b) Time-averaged velocity profiles (over 20 oscillation cycles) at the marked stations of (a). The observed
accelerations are due to streamline-contraction in the wake, visualized in (c) for representative cases without
(ζ = 0, white streamlines) and with (ζ = 2, orange streamlines) streaming. Corresponding streaming-only
fields—(d) streamlines and (e) velocities at the same stations as (a,b)—explain the behaviour of (a,b,c).

Here, we further focus on the fluid mechanisms at play, by drawing parallels between the system at the

transitional Re = 82 with different ζ and corresponding pure streaming cases. Figure 4.6(a) pictures the slave

trajectories for increasing ζ, highlighting improvement in transport. This is due to a corresponding increase

in the wake velocities as seen in figure 4.6(b), where we plot the time-averaged velocities, at the different

stations marked in figure 4.6(a). The averaged streamlines (streamfunction iso-contours) of figure 4.6(c) for

cases with (ζ = 2) and without (ζ = 0) oscillations explain this increase in wake velocity. Oscillations tilt the

streamlines backwards, simultaneously compressing them directly behind the master, thus locally increasing

upstream flow velocities. The degree of this contraction increases with ζ. This behaviour is consistent with

the corresponding streaming-only patterns of figure 4.6(d) where larger oscillation intensities increasingly

push the outer eddies towards the mid-plane, causing streamline contraction and increasing flow velocities,
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as further quantified in figure 4.6(e). We thus identify streamline contraction as the primary cause for

transport enhancement, with the viscous streaming mechanism driving this contraction.
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Figure 4.7: Design: (a) Inspired by streaming from triangles [55], we design the ‘bullet’ shape of (b) to induce
a more favourable streaming field (more streamline contraction at Ro = 45) which is reflected in better (c)
transport characteristics (at Re = 90) relative to a simple circular cylinder. This is in spite of our initial
configuration (inset) that penalizes the bullet by placing the slave further away.

If streaming is indeed the responsible agent for transport enhancement, we should be able to design new

geometries that produce more favourable streaming fields that actually translate in improved slave transport

once tested in our setup of figure 4.1(b). We start by considering streaming only, and draw inspiration

from the visual investigation of Tatsuno [55] on streaming triangles. These are shown to produce a large

DC recirculation region (figure 4.7(a)), which can be leveraged to trap and carry along passive cargoes.

We then ‘borrow’ two key components of this geometry—rear high-curvature tips and fore-aft symmetry

breaking—to design a master with a ‘bullet’ cross-section (figure 4.7(c), inset—refer to the Appendix for

shape parametrization). This geometry is chosen to facilitate its comparison with the circular cylinder.

Additionally, consistent with Tatsuno [55] and differently from our calculations prior to this section, we

change the direction of oscillation, from transverse (vertical) to longitudinal (horizontal), to produce the

large posterior DC streaming layer observed in figure 4.7(a). In figure 4.7(b), we show that our new design

constricts the streamlines further than a transversely-oscillating circle. This is reflected in its transport

characteristics (figure 4.7(c)): while the circular cylinder performs better than the bullet when streaming is

not active (no oscillations, pure master linear motion), the bullet outperforms its circular counterpart when
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streaming is enabled, even for mild oscillation intensities (ζ = 0.5).
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Figure 4.8: Topology: We study the flow topological response to incremental shape changes (from the (a)
circle to the (d) bullet) via Line Integral Convolution (LIC) of the streaming velocity field at Ro = 45. This
reveals a route for the rational design of streaming-based transport devices. The key idea involves introducing
rear high-curvature points and fore-aft symmetry breaking to enlarge/strengthen DC layer streaming, the
extent of which is indicated by the saddle points and marked by solid black lines. (b,c) are intermediate
shapes that illustrate the process.

The reason for the increased streamline contraction above lies in the flow topology change associated

with the introduction of multiple curvatures and asymmetry in the master geometry (figure 4.7(b)). To

understand how this topological transition occurs, we progressively morph (figure 4.8) the circular cylinder

into the bullet, and track the behaviour of critical points in the flow (these are saddle and half-saddle points

[218], which are sparse yet complete representations of the global field [219]). In the context of streaming,

saddle points indicate the physical extent of the DC layer, marked by solid black lines in figure 4.8. Morphing

may create, destroy, merge or displace saddle and half-saddle points, which we leverage to manipulate the

DC layer. Introducing high rear curvature points to the circle in figure 4.8(b) creates two new half-saddles,

which allows the rear saddle point to move away from the surface, thus ‘unfolding’ the DC layer. The

extent of this offset and the corresponding strength of the DC streaming region is related to the magnitude

of the tip curvature. This is seen in figure 4.8(c) where tip curvature increase enlarges the DC layer.

Streamlining the master geometry further strengthens the DC layer and gives rise to our final bullet design

shown in figure 4.7(d). Thus by manipulating the shape (and the oscillation direction) of the master—which

dictates the streaming flow topological response—we can rationally design configurations that improve slave

transport.

In this chapter, we have shown that oscillations can be utilized to robustly improve transport in an idealized

two-dimensional master–slave setting across 1 ≤ Re ≤ 100. The analysis of flow features identifies viscous
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streaming as the catalyst for this improvement. Leveraging this information, we designed geometries ex-

hibiting more favourable streaming patterns, which resulted in improved slave transport. To that extent, we

demonstrated a rational design approach by modifying the classic circular cylinder via the introduction of

multiple curvatures and fore-aft symmetry breaking. We have thus highlighted viscous streaming as a robust

mechanism for achieving flow and passive particle control in a regime associated with emerging miniaturized

robotic applications, such as, for example, drug delivery.
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Chapter 5

Conclusions

The primary focus of this work was to establish viscous streaming as a viable mechanism to effect transport,

mixing and even locomotion in a complicated and uncertain fluid environment across a range of scales.

Previous works in this field have been predominantly experimental (or) theoretical and have focused on

streaming in simplified settings—mostly from an individual circular cylinder. While experiments involving

complex streaming settings have been plentiful and successful, they are usually either (i) limited in their

analysis of the fundamental streaming mechanism or (ii) have limited applicability in terms of their utility (or)

scale of operation (or) underlying assumptions (or) turnaround times. Numerics, being the other alternative,

has so far fallen short in this goal because of the complexity associated with capturing the second-order,

long time-scale streaming effect. In this context, we

• Established numerical FSI simulations based on RVM as a reliable tool to capture streaming dynamics.

This included streaming from arbitrary shapes in different dynamic regimes, from multitudes and even

from actuations that are hard to achieve experimentally (or) analyze theoretically. An extension to

KC flows was also presented in the premise of attaining distinct yet regulated fluidic responses in a

logical manner.

• Developed an array of tools to analyze the flows simulated by our algorithm above. This included

relating our results back to asymptotic theory, correlating and contrasting simulations of different

dynamical setups, analyzing flow properties (velocity, streamfunction and particle trace fields), flow

topology and preliminary mode decompositions (DMD/POD) of flow data.

• Demonstrated the utility of streaming in the transport of passive inertial objects in the flow robustly

across Re ∈ O (1) − O (100), despite the presence of other wake effects and in spite of its second-

order nature. This was achieved by correlating transport and pure streaming flow fields, across many

settings.

• Rationally designed geometries capable of improving inertial particle transport by modifying body

curvature and breaking symmetry, armed with insights gained from the prior steps.
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5.1 Perspectives

Potential avenues for future work are listed below, concerning numerics, physics and applications of stream-

ing.

• Curvature: While we have shown the extent to which curvature modifies streaming, the fundamental

causal mechanism remains elusive and needs to be the focus of a detailed study.

• 3-D effects: How do three-dimensional effects affect streaming? While streaming from simple shapes

such as a sphere have been the subject of intense scrutiny, more complex shapes (such as a torus—a

different entity from both a geometric and topological perspective) have not been paid attention to.

• Multitudes: How can we constructively leverage streaming generated by the oscillations of multiple

bodies? Can we design streaming–mazes and guide particles along it?

• Actuation: Biological organisms, such as the starfish larvae, seem to utilize streaming generated from a

complicated, multi-modal actuation of their cilia. Can this process be understood, much less channeled

towards engineering applications?

• Scaling: Is there a possibility of scaling streaming and KC flows logically by the same non-dimensional

parameter set? Indeed from the phase space of figure 3.8, several regimes demonstrate common features

indicating a shared time and length scale parameter. While we explored this aspect in a different

study [220], more work needs to be done.

• Analysis: Are there better numerical/data-driven tools for analysis of such streaming (and even

KC) flows to help us better understand these systems? We attempted to decompose the data us-

ing POD/DMD (not shown in the thesis), but this works only for pure streaming flows. Streaming

flows with other effects (say shear layers) have entangled time- and length-scales, making the results

produced by such data driven tools non-intuitive. Furthermore higher amplitude oscillations (encoun-

tered frequently in KC flows) in an Eulerian–immersed boundary framework, such as our method,

frequently corrupts the flow-data next to the solid boundaries. This leads to unphysical flow artifacts.

• Inverse-design: Can we coherently engineer streaming configurations (with multitudes of arbitrarily

shaped oscillating objects) to optimally achieve a series of tasks at the micro-scale, say mixing (or)

separating (or) transport of scalar species? This involves embedding our FSI framework into an inverse-

design cycle, an approach which has enjoyed success in the past across many configurations [190, 191,

212, 221, 222].
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• Better solvers: To entertain the possibility of integrating our FSI framework into an inverse-design

cycle, we need faster yet accurate simulations, to simulate ∼ O (1000) cycles efficiently. This calls

for improved FSI algorithms based on vortex methods (shown to succesfully capture streaming), such

as [223], which may necessitate higher-order (accurate) solvers.

• Stokes solvers: The utility of streaming is expected to be immense in the characteristically linear

Stokes regime. This calls for efficient, optimal (in terms of algorithmic complexity), robust, scalable

and higher-order accurate solvers for the Stokes PDE.
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Appendix A

Appendix

A.1 Two dimensional inviscid flow mediated

interactions–Algorithm

We discuss the numerical strategy used for the potential flow simulations used in transport and validate

it against two benchmark problems. We once again consider two-dimensional incompressible flow in an

unbounded domain (Σ), in which n moving rigid bodies are immersed. We denote with Ωi & ∂Ωi, i =

1, · · ·n the support and boundaries of the solids, which are assumed to be of the same density of the fluid

(ρi = ρ = 1 kg/m3). We further define ∂Ω :=
n∪

i=1

∂Ωi. The definitions and symbols used to present the RVM

algorithm in the main text are also adopted here. The algorithm presented below is the same as [224], with

minor modifications to simulate our master–slave cylinder pairs.

A.1.1 Governing equations

The governing equations for the fluid in the inviscid limit are the Euler equations coupled with the incom-

pressibility constraint:
∂u

∂t
+ (u · ∇)u = −1

ρ
∇P x ∈ Σ \ Ω (A.1)

∇ · u = 0 x ∈ Σ \ Ω (A.2)

The rigid solid body dynamics can be obtained by solving the Newton’s equations of motion concurrently:

miẍi = FH
i (A.3)

d(Iiθ̇i)

dt
= MH

i (A.4)
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The causal force and moments in equations (A.3) and (A.4) on the body result from the boundary

conditions that couple the fluid–solid dynamics:

u · n(x) = ui · n(x) x ∈ ∂Ωi (A.5)

where n is the unit normal pointing towards the fluid and ui is the velocity of the rigid body i, respectively.

This encodes the no-through flow boundary condition.

To solve the above problem numerically we encompass the solids and fluid system into an larger one

and solve for the total dynamics. This bypasses the need to calculate pressure and surface forces on the

body as they are internal forces in the bigger system. As shown by Lamb [225], one can adopt a Lagrangian

perspective and solve for the total dynamics using the principle of minimal work, resulting in Euler–Lagrange

equations. The dynamics (an initial value problem) then evolve in time according to the coupling between

the solids and fluid (a boundary value problem). For the purpose of exposition we focus first on this coupling

and then on evolving the system in time.

The idea is to simplify the non-linear problem, given in equation (A.1), in the absence of initial (t = 0)

vorticity using Helmholtz’s theorem—which guarantees that vorticity remains absent in the flow at all times

t > 0. We can then represent the conservative velocity vector as the gradient of a scalar potential function

ϕ(x), i.e. ∇ϕ(x) = u(x). As the velocity vector is always solenoidal (from equation (A.2))—the problem of

solving equations (A.1) and (A.2) is equivalently cast to solving the following Laplace equation.

∇2ϕ(x) = 0 x ∈ Σ \ Ω (A.6)

with the boundary conditions

∇ϕ(x) · n(x) = (ui + θ̇i × (x− xi) · n(x), x ∈ ∂Ωi (A.7)

∇ϕ(x) = 0, x→∞ (A.8)

where θ̇i,xi represent the angular velocity and the center of the rigid body i. We thus solve an exterior

Neumann Boundary Value Problem (NBVP), with equation (A.8) necessitating the flow decay at large

distances. Following [225], we decompose the potential field ϕ(x) into elementary Kirchhoff potentials
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Xi(x), φi(x) such that

ϕ(x) =

n∑
i=1

(θ̇i · Xi(x) + ui · φi(x)) (A.9)

While this linear decomposition increases the algorithmic complexity of the problem, it enables us to separate

the individual contribution from every rigid body velocity component in the flow. This is useful in calculating

the added mass contributions resulting from the adjacent fluid being accelerated by the motion of the

immersed solid bodies. The inertia (or) the mass matrix for the system M thus consists of the solid body

inertia and added mass (fluid) contributions. M is a block matrix with the blocks Mij given by

Mij =



∫
Σ\Ω∇Xi · ∇Xj

∫
Σ\Ω∇Xi · ∇φ1

j

∫
Σ\Ω∇Xi · ∇φ2

j∫
Σ\Ω∇φ

1
i · ∇Xj

∫
Σ\Ω∇φ

1
i · ∇φ1

j

∫
Σ\Ω∇φ

1
i · ∇φ2

j∫
Σ\Ω∇φ

2
i · ∇Xj

∫
Σ\Ω∇φ

2
i · ∇φ1

j

∫
Σ\Ω∇φ

2
i · ∇φ2

j


+


Ijδij 0 0

0 mjδij 0

0 0 mjδij


(A.10)

where i, j ∈ {1, · · · , n} represent the ith and jth body contributions, φ has [φ1, φ2] as its components, δij

represents the Kronecker-delta function and the x dependence on the integrands is implicit. This block

captures the total finite inertia resulting from the presence and motion of both the moving bodies i, j and

the fluid surrounding them, thus rendering it important for the collective dynamics of the system.

This dynamics evolve according to the Euler–Lagrange formula, where we consider the total system

energy functional as the Lagrangian function to minimize. The kinematic energy of the ith solid body is

Ki =
1
2mi|ui|2 + 1

2Iiθ̇
2
i . The total kinematic energy of the fluid is Kf = 1

2ρ
∫
Σ\Ωi

|∇ϕ|2(x)dx. In this work

we do not consider conservative barotropic forces and so the potential energy contribution is identically

zero. The total system energy functional is thus L(q, q̇) = Kf +K1 +K2 = 1
2 q̇

T M(q)q̇—a function of the

state q and its derivative q̇. Here q represents the degrees of freedom for the system i.e. the angular and

Cartesian positions of all the bodies (i.e. q = [q1, · · · , qn] with qi = [θi x1i x2i ], i ∈ {1, · · · , n}). Using

this Lagrangian function L we derive the Euler Lagrange equation for the state q

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (A.11)

which equivalently results in

Mq̈ + ⟨�(q), q̇, q̇⟩ = 0 (A.12)

where �(q) is a rank-3 tensor identified as the Christoffel symbol [224] and ⟨�(q), q̇, q̇⟩ is shorthand for

�(q)kij q̇j q̇k. If Mij denotes the (i, j) entry of M (i, j ∈ {1, · · · , 3n}) and qi denotes the entries of q (i ∈
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{1, · · · , 3n}), then we define the Christoffel symbol Γk
ij by

Γk
ij =

1

2

(
∂Mki

∂qj
+
∂Mkj

∂qi
− ∂Mij

∂qk

)
(A.13)

These ‘shape derivative’ ∂M
∂q terms are calculated efficiently according to the formulation in Munnier and

Pinçon [224]. With all the above manipulations that follow from [202, 224, 225], we have reduced the

governing nonlinear PDEs (A.1,A.2) to a system of nonlinear ODEs (A.12) which can be integrated efficiently

in time.

A.1.2 Representation

To solve the NBVP equations (A.6), (A.7) and (A.8) at every timestep, we use Boundary Element Methods

(BEMs) based on integral formulations of the Laplace equation. BEMs for the Laplace equation only need

to be discretized on the surface—making them fast and efficient—thus eluding the problem of remeshing at

every time step. The conversion of equations (A.6) to (A.8), to a formulation convenient for BEM is carried

out by using Green’s theorem, that reduces all volume integrals in equation (A.10) to surface integrals:

∫
Σ\Ω
∇Ti · ∇Tjdx = 1

2

∫
∂Ωj

Ti∂nTjdσj + 1
2

∫
∂Ωi

Tj∂nTidσi (A.14)

where T is a proxy for any of X , φ1, φ2. Having transformed the volume Laplace problem to the equivalent

boundary integral form, we realize that we only need the elementary Kirchhoff potentials on the boundaries

∂Ωi (that is the Dirichlet data), given its normal derivatives (the Neumann data, from equation (A.7)).

We then represent, discretize and solve for T on the boundaries only. The representation of elementary

potentials of body i is done using finite terms (with cardinality m) of a Fourier series on ∂Ωi—the choice of

the basis reflects the compact support and periodicity (with period 2π) of ∂Ωi.

We obtain the Dirichlet data (and its tangential derivatives) on the boundary using the Neumann-

to-Dirichlet operator [226] for the 2D Laplace kernel G(x,y) = 1
2π

∫
∂Ωi

log |x − y|dσy . This reads for

i ∈ {1, · · ·n} and x ∈ ∂Ω

Ti(x)−
1

π

∫
∂Ω

(y − x)

|y − x|2
· n(y)Ti(y)dσy = − 1

π

∫
∂Ωi

log |y − x|Ni(y)dσy (A.15)

where we have prescribed Ni(y)—the Neumann data from equation (A.7). The tangential derivatives of

Ti are necessary to calculate the shape derivatives. This is trivially done as once Ti ∈ C∞ is known, we

can take its derivative in the tangential direction efficiently by using the spectral equivalent of the standard
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differentiation operator.

A.1.3 Discretization

To solve the integral equation (A.15), we use Nyström discretization coupled with the (spectrally accurate)

trapezoidal quadrature rule. To numerically evaluate the integrals, we split the integrand into singular

and non-singular contributions and use the scheme suggested in Atkinson [226] to evaluate the former—

the latter is trivial to integrate numerically. The interested reader is referred to Atkinson [226] for the

theoretical and Munnier and Pinçon [224] for the implementation details. We discretize the boundary ∂ωi

by υi = 2mi + 1 points, where mi is the finite number of Fourier modes represented on the boundary.

We represent equation (A.15) in the discrete form by the equation At = r, where t, r are the discrete

equivalents of T and the right hand side being solved for. We factorize A by standard LU-decomposition

for the reasons listed in Munnier and Pinçon [224]. Having evaluated the elementary potential on ∂Ωi, we

proceed to evaluate the mass matrix (A.10) and the Christoffel symbols Γ (A.13) at these boundaries. The

acceleration in equation (A.12) is then evaluated and the whole system can be marched forward in time.

We now deal with the time-marching scheme used in solving equation (A.12), which we rewrite as

d

dt

 q̇

q

 =

 −M−1⟨�(q), q̇, q̇⟩

q̇

 (A.16)

As the boundaries of the solids ∂Ω are assumed to be infinitely differentiable C∞, parametrized with respect

to a boundary tangent variable t ∈ [0, 2π], we can infer that the RHS is then also C∞. The above problem

is then well posed and infinitely differentiable in time—making it a candidate for higher-order time stepping

schemes. We use the LSODA function from ODEPACK that uses upto 13th order accurate non-stiff (Adams) or

stiff (BDF) method adaptively based on the data. We fix the absolute and relative tolerances of our ODE

solver to 1.49× 10−8, unless stated otherwise.

A.1.4 Validation

Here we consider two validation cases for our algorithm. The first benchmark case is the slave (radius b)

motion due to pure sinusoidal oscillations of the master (radius a) in one direction, wherein we have a closed

form governing ODE at large master–slave distances [202] for an inertialess master–slave pair. The slave

transport is then purely due to the added-mass terms arising from the presence of the intermediate fluid.

The nonlinear analytical ODE governing the slave position xs for the case with a = b = 1√
2

m, ρ = 1
π kg/m3
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Figure A.1: Validation for the potential flow solver: (a) against a purely oscillating master–slave configura-
tion and (b) against a near-collision event of two free cylinders

and for pure sinusoidal oscillations of the master xm = sin(t) is

ẍs = −
sin t

(xs − sin t)2 +
2 cos2 t

(xs − sin t)3 (A.17)

We now consider the same setup in our numerical solver using υi = 121 points or mi = 60 modes spatially

on each cylinder (of density ρ = 1× 10−8 ∼ 0 each) and step forward in time with a constant ∆t = 0.002s.

The result from the solution of the closed form nonlinear ODE equation (A.17) and our numerical solution,

for an impulsively started master, is shown in figure A.1(a). Our result matches the analytical result closely.

The second benchmark case is derived from Tchieu et al. [204] and considers the near collision event of

two free/passive cylinders in the flow. In this case, two neutrally buoyant (ρi = ρ = 1 kg m−3) cylinders,

of diameter 1 m each are initially placed in the cartesian plane at x1 = [−6.0 1.8]T and x2 = [0.0 0.0]T

respectively. The former is given an initial velocity of ẋ1(0) = [1.0 0.0]T . It is noted that in the absence of

the fluid both the cylinders will collide. The presence of the fluid acts as a cushion, and helps prevent collision

between the cylinders. The cylinders then nearly kiss one another—and any singular effects associated with

the near-contact event need to be well resolved, making this a rigorous benchmark. We simulate this setup

with our algorithm for υi = 121 points each on the cylinders and with a constant ∆t = 0.002s. The

computed trajectory for both the cylinders is plotted in figure A.1(b) against the one in Tchieu et al. [204].

The final velocity reported in Tchieu et al. [204] for both the cylinders are ẋ1(∞) = [0.954 − 0.205]T and

ẋ2(∞) = [0.030 0.216]T upto three significant digits. With our solver we get ẋ1(∞) = [0.954 − 0.205]T

and ẋ2(∞) = [0.029 0.216]T as the final velocities. Our results are thus in close agreement.
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A.2 Two dimensional inviscid flow mediated

interactions–Numerics

Using the above algorithm, we seek to replicate the two dimensional neutrally-buoyant master–slave con-

figurations described in the main text in a potential flow context. For such simulations, we use a master

cylinder of diameter Dm = 1m and a slave of diameter Ds = 0.25m. The master is initially kept at

qm = [0.0 0.0 0.0]T and the slave is instantiated at qs = [0.0 − 0.725 0.0]T . The master is translated

in the x direction and oscillated in the y direction. To avoid introducing impulse in the system (and thus

eliminating bias) we ramp-up the motion of the master, as given by

xm = Ul

(
t+

1

r
ln

(
1 + er(c−t)

1 + erc

))
(A.18)

ym =
ϵωDm sin (ωt)

2
(
1 + er(c−t)

) (A.19)

where r = 28ϵω
3ζ and c = 15ζ

14ωϵ are ramping parameters. We set, for all cases, ϵ = 0.05, ω = 5 and choose

Ul =
Uo
2ζ = ϵωDm

4ζ . We then only vary the velocity ratio ζ in our formulation in the simulations shown further

below.

Unless stated otherise, we run all simulations with a constant time step ∆t = (200π)−1T , where T = 2π
ω

is the time period of oscillation. We use υi = 121 or mi = 60 fourier modes to capture the master–slave

interactions.

A.3 Spline parametrization

We construct the bean and bullet profile (presented in section 3.2 and section 4.3.4 respectively) of semi-

major dimension R by using a spline-based shape parametrization, similar to Rossinelli et al. [227]. The

piecewise-cubic spline (figure A.2) is fit in the polar coordinates (with restricted domain on θ ∈ [0, π]), after

choosing n control points and specifying their radial ki and angular αi positions. We enforce periodicity

and top–bottom symmetry by specifying zero-slope (clamped) boundary conditions for the half-spline and

mirroring it about its central axis. Our freedom in the choice of n and consequently the set of {ki, αi} (with

cardinality/degrees of freedom = 2n) renders it possible to get desirable shapes with high curvatures.

We tabulate the parameters used for constructing the bean, bullet and other profiles used in table A.1.

We note that across all splines, k1 and kn (the scaling lengths of the diametrically opposite points) are
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Figure A.2: Construction of the smooth,periodic piece-wise cubic spline with given inputs {ki, αi}

Spline ref. n {ki} {αi} (in o)
Bean 4 {1.00, 1.50, 1.20, 0.8} {45.0, 45.0, 90.0}
Bullet 7 {1.00, 1.40, 1.42, 1.39, 0.72, 0.95, 1.00} {43.0, 1.0, 1.0, 35.0, 90.0, 10.0}

figure 4.8(b) 6 {1.00, 1.28, 1.31, 1.29, 1.00, 1.00} {41.5, 1.75, 1.75, 60.0, 75.0}
figure 4.8(c) 6 {1.00, 1.40, 1.42, 1.40, 0.99, 1.00} {43.0, 1.0, 1.0, 45.0, 90.0}

Table A.1: Parameters for the splines used in the thesis

identically set to 1.0 to ensure invariance in the major dimensions of the shape. We then use this invariant

dimension to define our Re and other quantities derived from it.
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