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The study of microswimmers’ behavior, including their self-propulsion,
interactions with the environment, and collective phenomena, has received
significant attention over the past few decades due to its importance for
various biological and medical applications. Microswimmers can easily access
micro-fluidic channels and manipulate microscopic entities, enabling them to
perform sophisticated tasks as untethered mobile microrobots inside the human
body or microsize devices. Thanks to the advancements in micro/nano-
technologies, a variety of synthetic and biohybrid microrobots have been
designed and fabricated. Nevertheless, a key challenge arises: how to guide
the microrobots to navigate through complex fluid environments and perform
specific tasks. The model-free reinforcement learning (RL) technique appears to
be a promising approach to address this problem. In this review article, we will first
illustrate the complexities thatmicroswimmersmay face in realistic biological fluid
environments. Subsequently, we will present recent experimental advancements
in fabricating intelligent microswimmers using physical intelligence and biohybrid
techniques. We then introduce several popular RL algorithms and summarize the
recent progress for RL-powered microswimmers. Finally, the limitations and
perspectives of the current studies in this field will be discussed.
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1 Introduction

Microswimmers operate in the environment of low Reynolds number. Due to the
dominant viscous force, they cannot propel themselves by imparting momentum. Through
millions of years of evolution, biological microswimmers have developed many special
propulsion mechanisms to overcome and even exploit the viscous force. Understanding
these mechanisms is a key to shedding light on many biological and pathological problems.
In the past few decades, there have been numerous studies focusing on the self-propelling
behavior of biological microswimmers [1, 2]. With the help of advanced experimental
techniques, such as light microscopy and atomic force microscopy, many biological and
mechanical principles for natural microswimmers (e.g., the motility mechanisms of sperm
cells [3, 4] and E. coli [5], the biological structures of the bacterial motors [6], and the
eukaryotic flagellum undulation pattern [7–10]) have been elucidated. Theoretical advances
in hydrodynamics at low Reynolds number also help clarify many basic mechanical rules of
propelling microswimmers. For instance, the classical “scallop theorem” [11] summarizes
the mobility condition for a microswimmer at low Reynolds number. The resistive force
theory [12, 13] and the slender body theory [14–16] provide valuable simplification for the
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flagellar propulsion dynamics. The squirmer model, first proposed
by Lighthill [17], can represent a large category of microswimmers
ranging from Paramecium to Janus particles. It has been
incorporated into computational fluid dynamics methods such as
the lattice Boltzmann method (LBM) [18–20], boundary element
method (BEM) [21, 22], immersed boundary method (IBM) [23],
multi-particle collision dynamics (MPC) [24–26], Stokesian
dynamics [27], and fictitious domain method (FD) [28] to
illuminate the dynamics for a variety of microswimmers.

A microswimmer (synthetic or biohybrid) can be injected
into the human body for non-invasive diagnosis and to act as a
treatment agent. It is able to access very small fluidic channels
and directly manipulate micro-/nanoscopic entities, thus having
the potential to significantly improve the therapeutic level of
medicine. Popular culture has envisaged this kind of technology
decades ago (e.g., the 1966 sci-fi movie Fantastic Voyage).
Microswimmers that are implantable and controlled through
external magnetic [29] or ultrasonic field [30, 31] have already
been successfully fabricated in recent years. However, there are
still many tough challenges to be resolved before the Fantastic
Voyage dream can be realized, such as the biocompatibility and
biodegradability problem and the navigation problem in the
complex biological fluid environments of dynamic nature.
Constrained by the small dimension, a microswimmer usually
has very limited on-board actuation, sensing, and computation
ability. Therefore, it is very challenging to control and direct the
microswimmer to swim through a complex fluidic system and
perform specific cargo delivery or diagnosis tasks.

Driven by the need for understanding biological microswimmers
and designing synthetic microrobots to operate in biological
systems, in recent years, researchers have become more and more
interested in the propulsion of microswimmers in complex fluids
and environments as well as the clustering behavior of multiple
microswimmers. The recent surge of advances in machine learning
techniques has also prompted research studies to exploit the
reinforcement learning (RL) algorithms to design intelligent
microswimmers. In this article, we will first briefly review the
current research status of microswimmers in complex
environments and the attempts to produce intelligent
microswimmers through physical intelligence and biohybrid
techniques, and then we will introduce the recent advances in the
incorporation of the RL technique into the microswimmer study.
There is already an extensive review [32] summarizing advances on
the application of general machine learning techniques to active
matter, with the opportunities and challenges systematically
discussed. Many recent advances in producing smart artificial
microswimmers have also been timely reviewed by Tsang et al
[33]. In this review, we will pay more attention to the application
of RL techniques to the microswimmer study. We hope this article
could help new researchers of the field get started.

2 Locomotion in complex
environments

For healthcare and various other applications, synthetic or
biohybrid microswimmers are often utilized in complex fluid
environments which involve non-Newtonian effects, boundary

confinements, and background flows. These factors significantly
affect the hydrodynamics of the microswimmer, and therefore
should be taken into account when training them for intelligent
operations.

Biological materials and tissues can often be viewed as non-
Newtonian fluids. For instance, the mucus in human
gastrointestinal and cervical tracts constitutes viscoelastic fluids
whose rheological properties are non-linear functions of the shear
rate and stress [34]. The E. coli. and the sperm cells swim in these
viscoelastic fluids and demonstrate different behaviors compared
to that in Newtonian fluids. However, the influences of
viscoelasticity on swimming are very complicated. Researchers
have investigated intensively how the locomotion of a sperm-like
microswimmer is affected by viscoelasticity through theoretical
and numerical models. They found that viscoelasticity may either
enhance or impede the locomotion when the different viscoelastic
models (Oldroyd-B model [35–37], upper-convective Maxwell
model [38], and Carreau model [39]) and swimmer models
(Taylor sheet [35], cylindrical filament [38, 39], finite [36]/
infinite length [35], and prescribing actuation force [35]/
undulation wave [37, 38]) are used. Experiments have also
shown that different combinations between viscoelastic fluids
(Boger fluids [40, 41] or shear-thinning fluids [42]) and
swimmer models can lead to contrasting results. More
discussion on this topic can be found in a recent review [43].
Viscoelasticity also affects the synchronization/clustering behavior
of multiple microswimmers. Elfring et al. [44] used the
perturbation method to analyze the effects of viscoelasticity on
two parallel infinitely long waving sheets (Taylor sheets), and they
confirmed that viscoelasticity alone can induce synchronization of
the two sheets in Stokes flow. Their work was later extended by Mo
and Fedosov [45] to large beating amplitude using numerical
simulations. Experiments by Tung et al. [46] demonstrated that
in viscoelastic fluids of high viscosity, the clustering of bovine
sperm cells is significantly enhanced. Through numerical
simulations, Ishimoto and Gaffeney [47] suggested that it is the
presence of cell yaw and swimmer pulling in low viscosity
Newtonian fluids that inhibits clustering. Li and Ardekani [23]
used the IBM to study the collective behavior of both the pusher
and puller of rod shape. They found that for a suspension of
pushers, viscoelasticity enhances the clustering and inhibits the
large-scale flow structures and velocity fluctuations. However,
viscoelasticity only has a small effect on the clustering of pullers
and will also lead to further complicated phenomena when
combined with the elasticity of microswimmers. It is known
that a Taylor sheet swims slower in viscoelastic fluids than in
Newtonian fluids [35], but Riley and Lauga [37] found that the
combined effect of sheet elasticity and fluid elasticity could
enhance the swimming of a Taylor sheet. Thomases et al. [48,
49] found that, as a result of the interplay of flagellum elastic force
and viscoelastic force, a sperm cell model has a non-monotonic
relationship between its swimming speed and the Deborah
number. Furthermore, the coupling between flagellum elasticity
and fluid elasticity will also affect the clustering of microswimmers.
Mo and Fedosov [50] studied the clustering of two flagellated
microswimmers in viscoelastic fluids and found that the elasticity
of the flagellum (stiff versus soft) defines two qualitatively different
regimes of clustering, where soft flagella exhibit a much less robust
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clustering than stiff flagella. In either case, clustering of two
distinct microswimmers is most stable at Deborah numbers of
approximately 1.

In most of the examples presented previously, the viscoelasticity
is considered through continuum models, which is appropriate
when the microswimmers are much larger than the bio-polymers
or bio-colloids in the liquid. However, in some cases, the
microswimmers may be of comparable size with the mesoscopic
constituents. In these cases, the interactions between the
microswimmers and the mesoscopic constituents (e.g., mucin
[34] and blood cells [51–53]) may lead to further complex
swimming behaviors. A prominent example of the significant
influence of the interactions is the dramatic increase (up to two
orders of magnitude) in rotational diffusivity of Janus particles in the
polymer solution [54]. Qi et al. [24] have explained the origin of the
increase through MPC simulation. They modelled a spherical
squirmer in a solution of self-avoiding polymers whose sizes are
comparable to those of the squirmer. Their simulation showed that
the large enhancement of rotational diffusivity is a consequence of
two effects: a decrease in the amount of absorbed polymers by active
motion and an asymmetric encounter with polymers on the
squirmer surface [24]. Further understanding on the interaction
mechanism between many other kinds of microswimmers (e.g.,
flagellar microswimmers) and mesoscopic fluid structures is still
in need.

Considering the significant effects of viscoelasticity (or of the
macromelecules and colloidal particles) on the locomotion and
clustering of many microswimmers, we anticipate that an
intelligent microswimmer needs to mitigate or even exploit the
effects of viscoelasticity by modifying its propulsion gait so that its
navigation ability can be enhanced. However, to understand how the
biological microswimmers adapt themselves to different complex
fluidic structures and to discover smart gait-switching strategies for
synthetic microswimmers are still open questions.

The presence of confinement is another important factor
impacting the swimming behavior of microswimmers. An early
study using Taylor’s swimming sheet model found that when the
undulation pattern is fixed, the sheet swims faster near a solid wall
[55]. Chrispell et al. [56] investigated the swimming of a Taylor sheet
in viscoelastic fluids near an elastic membrane. They showed that the
sheet can exploit the neighboring structures to enhance its
swimming speed and efficiency. Bacteria propelling by rotation of
helical flagella will experience an additional torque near a wall,
causing their trajectories to become circular [57]. A freely moving
microswimmer can be approximated as a pusher or puller. The
dipolar flow field set up by the pusher tends to cause the swimmer to
reorient parallel to the wall and is attracted toward the wall [58, 59].
For a puller, it tends to reorient perpendicular to the wall and swims
toward/away from the wall [58]. Therefore, microswimmers
swimming in confinement always tend to accumulate near the
wall. Viscoelasticity of the fluid further enhances the wall
attraction of the pusher swimmers [60]. Researchers have utilized
these wall interaction mechanisms to direct and select
microorganisms [61–63]. On the other hand, it is also possible to
modulate the actuation of microswimmers to change their mobility
in confinement. For instance, the beating pattern of a flagellum is
known to significantly influence the wall attraction of a flagellated
microswimmer [64]. For an E. coli swimming near a solid surface

with a run-and-tumble motion pattern, it has been found that
tumbling is the dominant escape mechanism [65]. Therefore, we
anticipate that intelligent microswimmers should be designed to be
able to navigate through complex confinements by modulating their
actuation. However, discovering the right modulation strategies is
still challenging.

External flows not only carry the microswimmers to move
following the streamline, but they may also regulate the
migration of the microswimmers. Miki and Clapham [66]
demonstrated that sperm cells reorient and swim against the flow
of the surrounding fluid in vitro and in vivo. Tung et al. [67] studied
the upstream swimming behavior of bull sperm cells and showed
that the near-wall resistive forces experienced by the microswimmer
in shear flow are responsible for upstream swimming. They also
found that the onset of upstream swimming can be described by a
saddle-node bifurcation, and any microswimmers that possess
front–back asymmetry and swim in circular trajectories near a
surface will swim upstream above a critical shear rate. A novel
micro-fluidic device that exploits the upstream swimming behavior
to select sperm cells has also been designed and experimented [68,
69]. Even though the motion of microswimmers is usually
inertialess, their background flow could still include vortical
structures (e.g., plankton swimming in lakes and oceans) and
cause non-trivial influences on swimming. Ardekani and Gore
[70] studied the aggregation of self-propelled prolate spheroids in
a Taylor–Green vortex. They found that the viscoelasticity-induced
migration causes the microswimmers to aggregate in regions of low
shear and rotate in a limit cycle. The viscoelasticity-induced
migration is balanced by the motility; hence, their combined
effects determine the shape and formation rate of the limit cycle.
More discussions on this topic can be found in a recent review [71].
These discussions suggest that an intelligent microswimmer can
implement smart navigation in different flows by not only
controlling its swimming direction but also by exploiting the
flow-induced regulation to facilitate its navigation. The discovery
of the optimal path and optimal control strategy is a challenging
problem that is being intensively explored by many researchers
using machine learning techniques.

3 Synthetic microswimmers with
physical intelligence

Intelligence can be incorporated into a microswimmer through
physical intelligence or computational intelligence. According to Sitti
[72], physical intelligence can be defined as “physically encoding sensing,
actuation, control, memory, logic, computation, adaptation, learning, and
decision-making into the body of an agent,” while computational
intelligence utilizes a module functioning like a brain to control,
memorize, learn, and make decisions. Many synthetic microswimmers
are controlled by external fields (e.g., magnetic and ultrasonic field) and
are localized with off-board techniques (e.g., fluorescence imaging or
magnetic resonance imaging). Thus, they mainly adopt computational
intelligence to accomplish complex tasks [73–75]. However, physical
intelligence is also ubiquitous in the synthetic microswimmers.

Self-propulsion as a low-level physical intelligence: Autonomous self-
propulsion implemented through physical/chemical interactions with
the environment can be seen as a low-level physical intelligence [72].
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The Janus particles are the most prominent examples. The surface of a
Janus particle usually has two sides with distinct properties. One side of
the particle is able to catalyze the surrounding fluid (e.g., hydrogen
peroxide solution) to react and produce an asymmetric distribution of
reaction products. A self-diffusiophoresis process will then propel the
particles to move [81, 82]. Other Janus particles do not catalyze
reactions but absorb different amounts of heat on the two sides.
When it is immersed in a critical binary liquid mixture, it can create
an asymmetric distribution of demixing products and propel itself
through the process of self-diffusiophoresis (Figure 1A) [76]. Moreover,
it is also possible for the particle to drive itself through the process of
self-thermophoresis if the particle is in pure water [83]. In addition to
diffusiophoresis and thermophoresis, other physical processes can also
be utilized to drive a microswimmer. For instance, an oil droplet
swimmer can propel itself by the Marangoni flow in an aqueous
surfactant solution with a surfactant gradient [84]. Microswimmers

can also be propelled bymicrojets. In the catalyticmicrorobots designed
by Sanchez et al [85], the microswimmer is self-propelled by the release
of oxygen bubbles generated in the cavity of the microtubes. Recently,
significant efforts have been made to enhance the physical
understanding of the linear and non-linear hydrodynamics of the
self-propelled microparticles and droplets [86–89].

Klinotactic behavior powered by physical intelligence: Physical
intelligence can lead to klinotactic behavior of microswimmers.
Hagen et al. [90] studied the swimming of a fore–rear
asymmetric microswimmer propelled by the catalytic process
under gravity. They found that the shape anisotropy alone is
enough to induce a gravitactic motion. The motion could be
upward or downward, with straight or trochoid-like trajectories.
The motional behavior depends sensitively on several geometric and
propulsion parameters. It has been found by Lozano et al. [77] that
phototaxis can be implemented for light-activated Janus particles

FIGURE 1
(A) A Janus particle propelled by demixing a critical mixture of water and 2,6-lutidine. 1) A scanning electronmicroscopy image of the Janus particle;
(2–6) swimming trajectories of the Janus particle for different illumination intensities. Reproduced with permission [76]. Copyright The Royal Society of
Chemistry 2011. (B) Chemotactic motion of a Janus particle in an illumination field with a linear gradient. Reproduced under a Creative Commons
Attribution License (CC BY 4.0) [77]. Copyright 2016 The Authors. (C) Uniaxial swimmers do not show viscotaxis, while non-uniaxial swimmers
generically show viscotaxis. 1) A uniaxial swimmer in which the propulsion force (the yellow arrow) is pointing to the direction of the symmetry axis. Its
typical trajectory is shown in 2). 3) A non-uniaxial swimmer. 4) A typical swimming trajectory for the non-uniaxial swimmer with a1= a2= a3, l1= l2= l3, and
ϕF =0. The swimmer initially swims toward lower viscosity, but it slowly turns the swimming direction toward higher viscosity. 5) Illustration of the
viscotaxis mechanism. The green arrows represent the drag on the spheres. The viscous drag acting on body parts at high viscosity (sphere 1) is larger than
the drag on spheres at low viscosity (sphere 2). The resultant torque turns the swimmer up the gradient. Reproducedwith permission [78], Copyright 2018
American Physical Society. (D) A soft helicalmicroswimmer undergoing shape adaption driven by velocity gradients in a conduit with a constriction.When
the helical swimmer approaches the constriction, the front end experiences a higher flow rate; hence, the soft helical flagellum is elongated in the axial
direction, and the helix radius is reduced. When the swimmer exits the constriction, the process is reversed, letting the swimmer to regain its original
shape. This autonomous shape change process enables the swimmer to pass the constriction. Reproduced under CC BY-NC 4.0 [79]. Copyright 2019
The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (E) Emergence of chemotactic motion as a
collective behavior in a colony of active nematic droplets. 1) t =250000; 2) t =1000000; 3) t =2000000; the colony is depicted orange. The underlying
color map represents the chemical concentration. Reproduced with permission [80], Copyright 2020 American Physical Society.
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through an inhomogeneous laser field. Under a non-uniform
illumination, a reorientation torque is induced by symmetry-
breaking of the slip velocity around the Janus particle and causes
the particle to align in an anti-parallel manner to the gradient
direction (Figure 1B). Furthermore, due to the saturation of the
reorientation torque at a high light gradient, a periodic asymmetric
light field can lead to a strongly rectified motion for the Janus
particle. Popescu et al. [91] analyzed the forces and torques that an
active spherical Janus nanoparticle experiences in a gradient of its
fuel. They showed that the particle can reorient if there is a contrast
in phoretic mobilities for the two halves of the particle. Depending
on the sign of the average phoretic mobility (μcatal + μinert) and the
sign of the difference in the phoretic mobility (μcatal − μinert), the
Janus particle can show positive or negative chemotactic motion.
Other researchers have studied the klinotactic motion from a more
general perspective of microswimmers. Liebchen et al. [78] studied
the propulsion of microswimmers in slowly varying viscosity fields.
They found that viscotaxis generally emerges as a result of a
systematic asymmetry of viscous forces on a non-uniaxial linear
swimmer (Figure 1C).

Enabling adaptability through physical intelligence: Soft
materials that respond to external stimuli can enable
microswimmers with some adaptability for different
environments and functionalities. For instance, the coupling
between the flagellum elasticity and viscous force enables the
flagellated microswimmers to adapt their undulation pattern
automatically with change in the viscosity of the surrounding
liquid. Moreover, as a result of the buckling instability, a planar
undulation pattern may transit to a 3D undulation pattern when
a critical sperm number (Sp � L/[κ/ξ⊥ω]1/4, where L is the
flagellum length, κ is the bending stiffness, ξ⊥ is the resistive
force coefficient in the direction normal to the flagellum, and ω

is the frequency) is reached, altering the navigation ability of the
microswimmers in microchannels [64]. In recent years, many
smart materials that respond to different external stimuli have
been applied to fabricate self-adaptive and multifunctional
microswimmers. For example, Huang et al. [92] proposed an
origami-inspired rapid prototyping process to build self-folding
and magnetically powered microswimmers that have complex
body plans, reconfigurable shape, and controllable motility.
They can modulate the mobility characteristics through
morphological transformation of the microswimmers.
Furthermore, it was shown that as a result of the coupling
among the magnetic forces, filament flexibility, and viscous
drag, several adaptive locomotion phenomena emerge in the
absence of on-board sensors: gait transition in response to
changes in viscosity, shape adaptation in complex channels
under viscous flow (Figure 1D), and autonomous shape-
shifting driven by osmolarity [79]. Shape-memory polymers
(SMPs) are also promising materials that can be incorporated in
microrobots to enable them with adaptability [93]. These
materials undergo large recoverable deformation when
applied to an external stimulus (e.g., heat, electricity, light,
and magnetism) [94]. Therefore, when fabricated with SMPs,
microrobots can be programmed to adapt to different
environments or functionalities by switching their shapes in
a self-adaptive or on-demand way. More examples that use
various smart materials to fabricate synthetic microswimmers

can be found in [95–99], and they illustrate the immense
potential and effectiveness of enabling adaptability through
physical intelligence.

Collective behavior as a physical intelligence: It has been known
ever since Taylor’s [100] work that two undulating sheets tend to
synchronize to be in-phase through purely hydrodynamic effects
corresponding to the lowest energy dissipative phase. Passive
cooperation among microswimmers is ubiquitous and can help
the microswimmers swim faster and more efficiently and
perform specific functionalities cooperatively. Samatas et al. [101]
investigated the hydrodynamic synchronization of chiral
microswimmers using a rotational squirmer model within the
LBM. It was found that in an appropriate volume fraction and
trajectory radius regime, the microswimmers swim in either circular
or helical trajectories and synchronize their rotation spontaneously.
The synchronization is manifested by velocity alignment with a high
orientational order. In addition to the synchronization, collective
locomotion can also emerge from many physically coupled
stochastic microswimmers [102, 103]. In the work of Hughes and
Yeomans [80], the emergence of chemotactic motion as a
collective behavior in a colony of active nematic droplets
(Figure 1E) was studied. It was found that the activity-driven
alignment of cells on the cluster interface is responsible for the
chemotactic response. These kinds of deterministic behaviors
emerging from the coordination of many stochastic agents may
be exploited to design some collective robotic systems. An active
colloidal system has been reported to exhibit rich collective self-
organization including clustering [104], flocking [105], and
schooling [106]. In a recent work by Xie and coworkers [107],
the authors investigated a microrobot system constituted by
peanut-shaped hematite colloidal particles. The particles can
be energized by an external magnetic field. It was found that
different external signals cause the particles to exhibit rich
dynamic modes including oscillating, rolling, tumbling, and
spinning. These modes further lead to different self-organized
formations: liquid, chains, ribbons, and vortex. The
transformation among these formations can be well-controlled
by the magnetic field signal and is fast and reversible. Therefore,
it is possible to regulate the collective behavior of the microrobot
system with an external signal and guide the microrobot system
to implement complex tasks. However, further understanding on
the mechanism of collective behavior of microswimmers is still in
need. The readers are referred to a relevant review [2] for more
information on this topic.

4 Biohybrid intelligent microswimmers

Biological organisms can be employed in the fabrication of
biohybrid microswimmers to overcome the biocompatibility
difficulties. This technique leverages the inherent intelligence of
primitive life forms to achieve specific intelligent functions, often
with the assistance of a control method. There are plenty of
successful attempts to fabricate biohybrid intelligent microswimmers.
Here, we mention several representative works that use different
biological materials. Alapan et al. [75] constructed biohybrid
microrobots with E. coli as the driver and red blood cells (RBCs) as
the cargo carrier. The RBCs were loaded with not only drug molecules
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but also superparamagnetic nanoparticles, hence allowing the
microrobot to be guided by an external magnetic field. Park et al.
[108] fabricated microswimmers by attaching E. coli to the surface of
drug-loaded polyelectrolyte multilayer (PEM) microparticles with
embedded magnetic nanoparticles. As a result of bacteria
chemotaxis, the microswimmer exhibits biased and directional
motion in a chemo-attractant gradient field and can also be
controlled through an external magnetic field to perform targeted
drug delivery. Yan et al. [73] fabricated helical microrobots by dip-
coating Fe3O4 nanoparticles onto the surfaces of microalgae
(mainly Streptomyces platensis). The microrobot can be actuated and
steered by an external rotating magnetic field. Requiring no surface
modification, it can be tracked in vivo through either fluorescence
imaging or magnetic resonance imaging. Moreover, the microrobot is
biodegradable and exhibits selective cytotoxicity to cancer cell lines. This
type of microrobot has the potential to be applied in vivo to imaging-
guided therapy. Recently, the chemotactic motion of neutrophils has
been utilized to design a biohybrid neutrophil-based microrobot
(neutrobot) [109]. To fabricate a neutrobot, drug-loaded nanogels
are first camouflaged with the E. coli membrane and then
phagocytized by a neutrophil. Thereafter, the intravascular
movement of the neutrobots can be controlled through an external
magnetic actuation. Once the neutrobots reach the brain, they can cross
the blood–brain barrier through active chemotacticmotion andmigrate
toward the malignant glioma. The magnetotaxis and aerotaxis of
bacteria have also been harnessed to direct the microswimmers to
specific regions. In the work of Felfoul et al. [110], Magnetococcus
marinus strain MC-1 was employed to transport drug-loaded
nanoliposomes into hypoxic regions of the tumor. Guided by the
magnetic field and facilitated by the aerotaxis of the MC-1, a high
penetration rate was achieved into the hypoxic region. Microalgae (e.g.,
Chlamydomonas reinhardtii and Eudorina elegans) have also been
utilized to fabricate biocompatible biohybrid microswimmers
[111–113]. In the work of Weibel et al. [111], a surface chemical
treatment is applied to attach loads to the Chlamydomonas reinhardtii.
In addition, the phototaxis of the microalgae was exploited to steer the
swimmers. When the swimmers reached the target, photochemistry
was used to release loads, hence completing the targeted cargo delivery
process.

5 Reinforcement learning

RL is a machine learning technique with which an intelligent
agent learns to make sequential decisions to maximize a cumulative
reward. The agent learns through continuous interactions with the
environment, which can be described in the framework of a Markov
decision process (MDP). An MDP can be represented by a tuple:
〈S,A, P, r, γ〉, where S is the state set,A is the action set, P(s′|s, a) is
the state transition function representing the probability to transfer
from state s to s′ after action a is taken, r(s, a) is the reward function,
and γ (0 ≤ γ ≤ 1) is the discount factor. At a specific time step t, the
agent perceives the environment and receives a state information st
from it. The agent then makes a decision by considering this state
information and takes an action at. At the next time step, the state
perceived by the agent will change to st+1 partly due to the action,
which results in a reward rt to the agent. With the agent interacting
with the environment continuously, a trajectory in the

state–action–reward space is formed: τ = (s0, a0, r0), (s1, a1, r1),
(s2, a2, r2), (s3, a3, r3),/. A discounted accumulative reward (return)
is defined on the trajectory as G(τ) � r0 + γr1 + γ2r2
+/ � ∑T

t�0γ
trt. The aim of the agent is to maximize the

expectation of G(τ) over various trajectories. In addition, the rule
which the agent follows to choose its action based on its current state
is called a policy π(a|s) = P(at = a|st = s). As a result of the Markov
process, the policy is the function which only depends on the current
state, while the historical state information is not needed.

In addition to the explicit policy π(a|s), there are two other
functions that are very useful for the decision-making of the agent:
the state value function Vπ(s) and the action value function Qπ(s, a).
The state value function estimates the expected future return at
state s:

Vπ s( ) � Es0�s,τ~π ∑T
t�0

γtrt⎡⎣ ⎤⎦, (1)

where E[·] denotes the expectation and τ ~ π denotes that the
trajectory τ is obtained by following the policy π. The action value
function estimates the expected future return from taking action a at
state s:

Qπ s, a( ) � Es0�s,a0�a,τ~π ∑T
t�0

γtrt⎡⎣ ⎤⎦. (2)

The two value functions are calculated on a specific policy π. Different
policies can be evaluated using their corresponding value functions to
decide which one is better. The two value functions can be determined
recursively (Bellman expectation equation):

Vπ s( ) � ∑
a∈A

π a|s( ) r s, a( ) + γ ∑
s′∈S

P s′|s, a( )Vπ s′( )⎛⎝ ⎞⎠, (3)

Qπ s, a( ) � r s, a( ) + γ ∑
s′∈S

P s′|s, a( ) ∑
a′∈A

π a′|s′( )Qπ s′, a′( ). (4)

The Bellman expectation equation calculates the value functions
recursively using the explicit forms of the reward function r and
the state transition function P. However, in many realistic problems,
the reward function and the state transition function are unknown,
and the value functions have to be evaluated through a continuous
interaction with the environment. In this case, the policy evaluation
can be more conveniently achieved through aMonte Carlo method or
a temporal difference (TD) method.We assume that the agent follows
a policy π and produces many trajectories through interaction with
the environment. In the Monte Carlo method, a value function (take
V(s) as example) is updated incrementally by

N s( ) ← N s( ) + 1,

V s( ) ← V s( ) + 1
N s( ) G − V s( )( ), (5)

where N(s) is a counter for the occurrence of the state s and G is the
return. When N approaches infinity, the estimated value function
V(s) will be the true value function. In the TD method, a value
function is updated by

V st( ) ← V st( ) + α rt + γV st+1( ) − V st( )[ ], (6)
where α (0 < α ≤ 1) is the learning rate. The TDmethod uses the sum
of the current reward rt and the discounted value at the next state
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γV(st+1) to estimate the return at the current state. Therefore, unlike
the Monte Carlo method in which the value function can only be
updated with a whole trajectory finished (so that the term G can be
determined), in the TDmethod, we can update the value function at
every step using the current reward rt.

When the action value function is updated with the TD
method [115]

Q st, at( ) ← Q st, at( ) + α rt + γQ st+1, at+1( ) − Q st, at( )[ ], (7)
and the greedy (or ϵ-greedy) algorithm is used to select the action
with the highest value at each state, a generalized policy iteration
is properly implemented. This simple algorithm is already an
effective RL algorithm and is known as the SARSA algorithm. The
SARSA algorithm is an on-policy algorithm because all the values
used in the TD method come from the current policy. In contrast,
the famous Q-learning algorithm uses the following TD updating
formula [116]:

Q st, at( ) ← Q st, at( ) + α rt + γmax
a

Q st+1, a( ) − Q st, at( )[ ], (8)

where the term maxaQ(st+1, a) denotes that the maximum of action
value Q is used out of all permitted actions. It is not necessary for the
tuple 〈s, a, r, s′〉 to come from the current policy; hence, the
Q-learning algorithm is an off-policy algorithm. As we will see
later, the Q-learning is one of the most frequently used algorithms in
intelligent microswimmer studies despite its simple form. However,
the Q-learning algorithm requires the state and action space to be
discrete and finite. The Q table will become extremely large in many
realistic problems, leading to inefficient learning.

An important improvement for the Q-learning is the deep
Q-network (DQN) algorithm, which employs a neural network
to approximate the Q-value function. This method can be used
to solve problems with a continuous state space and a discrete action
space [117, 118]. In a typical Q-network, the input nodes take in the
values of the continuous state parameters, the output nodes
represent different actions, and their values are the Q values at
the specific state and action. For a tuple 〈si, ai, ri, si′〉, the Q-network
should predict a target Q-value:

Qtarget � ri + γmax
a′

Q si′, a′;ωi( ), (9)

where ωi is the weight of the Q-network. The Q-value predicted by
the Q-network isQpredicted(si, ai; ωi). Therefore, the loss function can
be defined as

L ωi( ) � Eπ Qtarget si, ai;ωi( ) − Qpredicted si, ai;ωi( )[ ]2. (10)

Thereafter, the Q-network can be updated using the classical
gradient descent method. In a DQN algorithm, the experience
replay technique [118] is usually adopted to enhance the learning
efficiency and remove correlations in the observation sequence.
There are also many other techniques (e.g., target Q-network,
double DQN, and dueling DQN) that can improve the
performance of the DQN algorithm [114].

Another frequently used RL method in intelligent
microswimmers is the actor–critic algorithm. The actor–critic
algorithm employs two neural networks: policy network and
value network. The policy network acts as an actor: it takes in
the continuous values of the state parameters and outputs the

probability of the actions or the Gaussian distribution parameters
of the action parameters. Hence, the actor–critic is a stochastic
algorithm and can be applied to problems with continuous state and
action space. The value network acts as a critic: it takes in the values
of the state parameters and outputs the estimation of the state value
function (Eq. 1). In the actor–critic algorithm, the TD error of the
value function: δt = rt + γV(st+1; ω) − V(st; ω) is used to guide the
update of the policy. The weight of the policy network is updated
following the policy gradient algorithm:

θ � θ + αθ ∑
t

δt∇θ logπθ at|st( ), (11)

where δt has replaced the parameter that represents the return at t in
the original policy gradient algorithm. The weight of the value
network is updated through the following equation:

ω � ω + αω ∑
t

δt∇ωV st;ω( ). (12)

The actor–critic algorithm is quite simple and easy to understand,
but it could be unstable for some problems. Many advanced RL
algorithms have been proposed as improvement of the actor–critic
algorithm, e.g., advantage actor–critic (A2C), trust region policy
optimization (TRPO), proximal policy optimization (PPO), and soft
actor–critic (SAC) [114, 119].

6 Intelligent microswimmers powered
by RL

6.1 Self-learned propulsion

The RL technique is especially suitable for the purpose of
discovering efficient propulsion strategies for various
microswimmer models. Tsang et al. [120] used Q-learning to
train the Najafi–Golestanian (N-G) swimmer (and its extension
with more beads) to the self-learn propulsion strategy based on its
interactions with the surrounding fluid. It is unsurprising that the
RL approach can rediscover the known propulsion strategy in the
simplest case, but it also discovered new efficient propulsion
strategies when the structure of the swimmer becomes complex
(Figure 2A). Zou et al. [121] used a DRL approach (PPO) to train a
three-bead microswimmer to self-learn locomotory gaits for
translation, rotation, and combined motions. They showed that
the DRL enables the microswimmer to adopt efficient and robust
locomotory strategies. These strategies guide the microswimmer to
adaptively switch among various gaits and navigate toward target
locations (Figure 2B) and even escape from a rotlet flow trap
(Figure 2C). Qin et al. [122] also used Q-learning to study the
swimming of the multi-link microswimmer (Purcell’s swimmer and
its extension with more links). They showed that powered by RL, the
swimmer can self-learn to swim. In addition, when the structure of
the swimmer becomes complex, the RL algorithm can identify new
classes of swimming gaits (Figure 2D). Note that all these research
works studied only very simple microswimmer models. Even though
the RL approach has been proven efficient, it has not been applied to
derive a propulsion strategy for more complicated microswimmer
models like flagellum-driven swimmers and cilium-driven
swimmers. The major difficulty in extending this technique to
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more realistic and complicated models is that, for complicated
models, the computation cost for both RL and computational
fluid dynamics increases dramatically. For instance, if a
flagellum-driven swimmer was used, the state space and action
space for the swimmer would become extremely large, and the
dynamics of the swimmer would need to be resolved by a direct
numerical simulation (DNS) method due to the complex
fluid–structure interaction. All these will lead to a dramatic
increase in computation costs. Despite this challenge, applying
the RL approach to a more realistic microswimmer model would
still be beneficial. It will undoubtedly help us understand the
propulsion strategy of many biological microswimmers and even
discover novel propulsion strategies in complex dynamic
environments.

6.2 Self-learned klinotactic motion

Klinotaxis is the directional movement of active agents toward a
stimulus. With the RL technique, a microswimmer can self-learn to
utilize the spatial or temporal stimulus information to determine the
direction of the stimulus and steer toward it, hence leading to
klinotactic motion. Colabrese et al. [123] used Q-learning to
train active gyrotactic microswimmers to accomplish counter-
gravity navigation through a 2D Taylor–Green vortex flow. A
gyrotactic swimmer was considered using the trajectory equation:

_x � u + vsp + ����
2D0

√
η, (13)

where u is the velocity of the external flow field, vs is the swimming
speed, p is the swimming direction, η is Gaussian white noise, and
D0 is the translational diffusivity. The swimming direction p obeys

_p � 1
2B

ka − ka · p( )p[ ] + 1
2
ω × p + ����

2DR

√
ξ, (14)

where ka is the preferred direction, B is the timescale of alignment, ω
is the vorticity of the external flow field, DR is the rotational
diffusivity, and ξ is Gaussian white noise. The state space
constitutes the combinations of the coarse-grained vorticity
Sω ∈ {ω−,ω0,ω+} and swimming direction Sk ∈ {←, ↑,→, ↓}:
Sω × Sk. The action space is the preferred direction ka ∈ {←, ↑,
→,↓}. The reward function is defined as the net increase in altitude.
Using Q-learning to train the swimmer in a 2-D Taylor–Green
vortex flow field, several distinct patterns emerge, as shown in
Figure 3A. These patterns can be demarcated by the non-
dimensional swimming speed Φ = vs/u0 and the stability number
Bω0. Different patterns demonstrate distinct trajectory
characteristics. The gyrotactic swimmer model has also been
extended to 3D by Gustavsson et al. [124] using similar state
space, action space, and reward function. They studied the self-
learned gyrotactic motion of the particle swimmer through a 3D
chaotic flow field (a stationary superposition of two
Arnold–Beltrami–Childress flows). It was found that when

FIGURE 2
(A) Cumulative displacement of a four-bead swimmer at different discount factors γ. The right panels show the corresponding learned propulsion
strategies. Reproduced with permission [120], Copyright 2020 American Physical Society. (B) A three-bead swimmer swims in 2D space using an RL-
discovered strategy. The blue segment represents the steering stage, the red segment represents the transition stage, and the green segment represents
the transition stage. Reproduced under a Creative Commons Attribution License (CC BY 4.0) [121]. Copyright 2022 The Authors. (C) The AI-powered
swimmer escapes from a rotlet flow trap. The blue curves are trajectories of the AI-powered swimmer, and red curves are trajectories of a naïve
Najafi–Golestanian swimmer. Solid, dashed, and dotted lines represent different initial orientations. Reproduced under a Creative Commons Attribution
License (CC BY 4.0) [121]. Copyright 2022 The Authors. (D) Swimming gaits discovered by RL for multi-linkmicroswimmers. The red dots mark the hinges
that have been rotated relative to the previous action step. Reproduced with permission of AIP publishing [122]. Copyright 2023 The Authors.
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powered by Q-learning, the swimmer is able to discover efficient
strategies to migrate upward and escape local fluid traps (Figure 3B).

In the works of Colabrese et al. [123] and Gustavsson et al. [124], a
point swimmer model was studied, which completely neglects the
propulsion and steering mechanism of the swimmer. This reduced
model is useful for preliminary research. However, more realistic
models are needed to resolve the interaction between the swimmer
and the fluid. Hartl et al. [125] studied the self-learned chemotaxis of an
N-G swimmer in 1D space. The interaction between the beads and the
fluid was modelled using Oseen approximation, and the propulsion of
the swimmer was explicitly controlled by the stretching/contraction
forces among the beads. They decoupled the task into two parts: first
train the swimmer to learn to swim and then train the swimmer to
determine the gradient direction of the chemo-attractant concentration
field and steer itself toward that direction. The former was implemented
with a swimmer action layer, while the latter was implemented with a
concentration gradient block and two permutation control layers. The
authors applied the neural evolution of augmenting topology (NEAT) to
optimize both theweights and the topology of the neural network. Simple
neural networks with only a few connections were found to be able to
accomplish the chemotaxis task (Figure 4). These neural networkmodels,
which provide insights into how simple biological microswimmers are
able to sense the environment and achieve chemotactic motion, have
high feasibility to be implemented on synthetic microswimmers.

Mo and Bian [126] studied the RL-powered chemotactic motion
in a more realistic situation: a sperm cell model swimming in a
circular trajectory. They found that chemotactic behaviors can be
achieved by the DQN, utilizing only a few environmental cues. In
most cases, the DRL algorithm can discover strategies more efficient
than those devised by the human. Furthermore, the DRL can utilize
an external disturbance to facilitate the chemotactic motion if the
extra flow information is also fed to the artificial neural network.

The RL method treats the interaction between the swimmer and
the fluid as an environment and attempts to achieve the optimal
policy through a Markov decision process. The algorithm is
essentially a ‘trial-and-error’ process, and the learning data are
collected online. However, if the biological dataset is available,
supervised learning is also useful for the purpose of revealing the
klinotactic mechanism of microswimmers and proposing efficient
control policies to implement klinotactic motion. For instance,
Ramakrishnan and Friedrich [127] employed support vector
machines to a biologically motivated training dataset and
discovered optimal decision filters for run-and-tumble
chemotaxis under the influence of sensing and mobility noise.
An empirical power law for the optimal measurement time
Teff ~ D−α

rot (α � 0.2, . . . , 0.3) was found, with Drot being the
rotational diffusion coefficient. The power law formalizes the
trade-off choice between precision and accuracy. It was also
found that a weak motility noise can enhance the chemotactic
performance.

6.3 Point-to-point navigation through
complex environments advised by RL

Synthetic or biohybrid microswimmers are usually designed to
perform tasks like targeted delivery and microsurgery. For these
purposes, the microswimmers should be able to navigate through
some complex dynamic environments and reach a specific
destination point. Many model-free RL approaches (e.g.,
Q-learning, DQN, PPO, and SAC) are highly efficient to discover
the optimal trajectory for such a point-to-point navigation problem.

Schneider et al. [128] studied the optimal steering of an active
particle. It was found that they can use Q-learning to rediscover the

FIGURE 3
(A) Phase diagram of gyrotactic particles in a Taylor–Green vortex flow (top left); the trajectories for each of the six patterns (top right) and some
representative trajectories at different learning episodes (bottom). Red trajectories: naive swimmers with ka fixed at ↑; blue trajectories: RL-powered
swimmers. Reproduced with permission [123]. Copyright 2017 American Physical Society. (B) Representative trajectories of an RL-powered particle
swimmer (blue) and a naïve particle swimmer swimming in a chaotic flow field. Reproducedwith permission [124]. Copyright 2017 EDP Sciences, SIF,
Springer-Verlag.
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minimal travel-time path through aMexican hat potential barrier. In
addition, through Q-learning, the active particle can learn to rectify
the effects of thermal fluctuations.

Alageshan et al. [75] studied the path-planning problem of an
active particle through a complex turbulent flow field. The
microswimmers were also modelled using Eqs 13 and 14 except
that the noise terms are excluded. Similar to the work of Colabrese
et al. [123], the state space constitutes the product of the coarse-
grained vorticity set Sω and swimming direction set Sθ . The action
space constitutes a discrete set of preferred swimming direction. In
contrast to the work of Colabrese et al. [123] where the directions are
relative to a laboratory reference frame, in this work, the directions
in the state and the action spaces are all relative to the target. A
turbulent flow field obtained fromDNS is set as the background flow
field (Figure 5A). The authors proposed a multiswimmer adversarial
Q-learning algorithm. In this algorithm, each simulated swimmer
(master) is accompanied by a slave swimmer. The master swimmer
is steered following the Q-learning scheme, while the slave swimmer
is steered following a naive scheme, with the preferred direction
always pointing to the target. The reward function is then defined as
the target distance improvement of the master swimmer compared
with the naive strategy. The position and velocity of the slave swimmer
are reinitialized to that of the master swimmer whenever the master
swimmer undergoes a state change. The result of this research shows
that, compared to a naive swimmer, the RL-powered swimmer can

learn to exploit the background flow field and finds a better path to
reach the target in a shorter time (Figure 5B).

For the point-to-point navigation problem through time-
dependent complex flow fields, environmental cues such as
velocity and vorticity are usually necessary to be fed to the
swimmer. This enables the swimmer to overcome or even exploit
the external flow for its navigation. Gunnarson et al. [129] compared
the vorticity sensing approach with the velocity sensing approach
and found that the latter is significantly better. With velocity cues,
the RL algorithm can discover strategies that have a near 100%
success rate to guide the swimmer to reach the target through a
cylinder wake region, while the success rate of a vorticity sensing
approach is reduced by twofold (Figure 5C).

Nasiri and Liebchen [131] argued that on-policy algorithms are
more robust to find the globally optimal solution in the navigation
problem of an active particle than off-policy algorithms. They used
the A2C algorithm and discovered the asymptotically optimal paths
in different complex external potentials (Figures 5E,F). Unlike many
other relevant research studies [129, 128, 121, 120, 75], where the
relative distance and direction to the target are needed for the
calculation of the reward function during learning, in this study,
the reward depends mainly on the count of the actions; hence,
heuristics is not required for the learning. It is the first time that
asymptotic optimality is unified with the feasibility of handling
generic complex environments.

FIGURE 4
(A) Trajectories of the three-bead swimmer driven by several RL-discovered actuation strategies. The curves show the evolutions of the center of
mass xc. The colors of the curves (black, blue, and gray) represent different neural network topologies, which are shown in the insets (only the swimmer
action layer is presented). TheO-SAL-1 layer is an optimal swimmer action layer, theO-SAL-2 layer is another optimal swimmer action layer, and theMC-
SAL layer is the minimal complexity swimmer action layer. In the input nodes, L1 and L2 are the instantaneous arm lengths of the swimmer, and LT is
the total length. V1 and V2 are the arm velocities Vi= dLi/dt, and VT is the sumof V1 and V2. The output nodes F1 and F2 are the stretching/contraction forces
on the arms. (B) Chemotactic motion of the swimmer driven by the MC-SAL action layer in a linear chemical field (the left panel). Solid line: temporal
sensing; dashed line: spatial sensing. (C) Sample trajectories in a time-dependent Gaussian chemical field c(x, t) (see the color bar). (A), (B) and (C) are
reproduced from [125] under the PNAS license.
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It is worth noting that the RL approach has also been applied to
the point-to-point navigation problem of macroscopic vessels. For
instance, Buzzicotti et al. [132] used the actor–critic RL approach to
find the optimal (minimum traveling time with/without energy
consumption constraint) solution for a macroscopic vessel
navigating through turbulent time-dependent flows. By

comparing with the optimal navigation (ON) solution, it was
shown that the RL approach is able to find quasi-optimal control
solutions. While the deterministic ON solution is of little practical
use due to the instability induced by the chaoticity of the
environment, the RL stochastic strategies are able to overcome
the instability problem. Moreover, the RL approach can discover

FIGURE 5
(A) Illustration of a microswimmer to swim through a turbulent flow field [75]. The background color map represents the vorticity. The red circle
marks the target. p̂ is the swimming direction; T̂ is the direction to the target; θ is the difference angle that needed to be coarse-grained to determine the
state of the swimmer. Reproduced with permission [75], Copyright 2020 American Physical Society. (B) Evolution of the average arrival time for RL-
powered swimmers and naïve swimmers. The RL-powered swimmers settle to a lower average arrival time. Reproduced with permission [75],
Copyright 2020 American Physical Society. (C) Navigation trajectories of test swimmers through the wake of a cylinder. The solid dots mark the starting
points of the test swimmers; the unfilled circles mark the targets. Red lines represent failed navigation; green lines represent successful navigation. 1)
Naïve swimmers that swim directly toward the targets; 2) RL-powered swimmers with the swimmers knowing only their relative positions to the target but
not any flow information; 3) RL-powered swimmers with the swimmers knowing both their relative positions to the targets and the local vorticity; 4) RL-
powered swimmers with the swimmers knowing both their relative positions to the targets and the local velocity. Reproduced under a Creative
Commons Attribution License (CC BY 4.0) [129]. Copyright 2021 The Authors. (D) An RL-powered Janus particle swims through a dense-obstacle
environment. The starting point is at the left-bottom corner, while the target is in the right-top direction. Reproduced under a Creative Commons
Attribution License (CC BY 4.0) [130]. Copyright 2019 The Authors. (E) The swimming trajectory (yellow curve) of the RL-powered active particle replicates
the theoretical result (dashed curve) in a shear force/flow field f = (−0.5[1 − y2], 0). The circle marks the starting point, while the triangle marks the target
point. The background color map shows the learned action map (the action space is the 60-dimensional coarse-grained motion direction
{mπ/30|m ∈ Z,0≤m<60}). Reproduced under a Creative Commons Attribution License (CC BY 4.0) [131]. Copyright 2022 The Authors. (F) Swimming
trajectories of two RL-powered active particles in a randomGaussian potential field. Reproduced under a Creative Commons Attribution License (CC BY
4.0) [131]. Copyright 2022 The Authors.
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non-trivial strategies where the vessel exploits the flows and
navigates most of the time passively to minimize energy
consumption. In this case, even though the dimension of the
application is much larger than that of a microswimmer, the
methodologies of simulating the swimmer and using RL as a
decision-making agent are also applicable to a reduced point-like
microswimmer model; hence, the solutions are also useful for the
navigation problem of microswimmers.

Most of these studies consider complex flow fields for the
microswimmer to navigate through, but it is also possible to
investigate an environment with complex obstacles if we assume
some vision ability for the microswimmer. Yang et al. [130] assumed
that a Janus particle that keeps rotating in a Brownian way can perceive
the obstacles around itself and used DRL to train the Janus particle to
actively swim across a complex 2D environment full of obstacles of
irregular shape. They showed that the Janus particle guided by the deep
convolutional Q-network can act smartly to bypass those obstacles and
swim toward its target (Figure 5D). Recently, Yang et al. [133] have
extended their model using a hierarchical control scheme to guide an
active particle to navigate 3D blood vessels filled with biconcave red
blood cells. The new control scheme decomposes the point-to-point
navigation task intomany subtaskswith short-ranged temporary targets.
In addition, in each subtask, the swimmer is controlled by a DRL
decision agent in a similar way as their previous model. Effective and
robust navigation control was achieved within unseen, diverse
complicated environments using the new control scheme.

It is also possible to use an RL approach to implement path-
planning for multiple microswimmers at the same time. Amoudruz

and Koumoutsakos [134] used the actor–critic RL method to realize
independent control of twomagnetic helical microswimmers using a
uniform rotating magnetic field. Compared with a semi-analytical
method, the RL approach works in not only quiescent flow but also
complex flow background. Furthermore, it can reach lower travel
time than the semi-analytical method.

The readers can also refer to a recent review [135] for in-depth
discussions on this topic from a more general aspect of active
particles.

6.4 Self-learned cooperation

In a recent work by Liu [136] et al., they employed the actor–critic
DRL algorithm to train two N-G swimmers to learn to coordinate their
motion and enhance the overall locomotory performance. The
cooperation implemented by RL comprises two distinct states: the
approach stage where the front swimmerwaits, while the back swimmer
propels with N-G strokes (Figure 6A), and the synchronization stage
where the two swimmers both propel with N-G strokes but with a
constant phase shift (Figure 6B). The transition between the two stages
occurs when the distance between the two swimmers decreases to a
specific value at which the hydrodynamic interaction can be effectively
exploited. The specific phase shift discovered by the RL guarantees that
hydrodynamic interaction is most efficiently exploited (Figure 6C).

In a low Reynolds number environment, the hydrodynamic
interaction is long-ranged; hence, the movement of a microswimmer
is easy to be detected when it is swimming alone. However,

FIGURE 6
(A) Approaching gait discovered by the RL. The back swimmer propels with the N-G strokes, while the front swimmer waits. (B) Synchronizing gait
discovered by the RL. Both the swimmers propel with the N-G strokes, but the back swimmer falls one action step behind. (C)Migration trajectories of the
cooperating swimmer pairs with different step delays. Reproduced under a Creative Commons Attribution License (CC BY 4.0) [136]. Copyright 2023 The
Authors.
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microswimmers can cooperate in cloaking each other. In a recent work
by Mirzakhanloo and coworkers [137], the authors used a Q-learning
algorithm to power swimming agents and train them to become smart
cloaking agents. They found that when arranged properly, the cloaking
agents cannot only cancel out the cloaked object’s induced flow
disturbance in the far-field but also keep the object’s path
unchanged. Powered by the RL technique, the cloaking agents can
adjust their swimming actions to form optimal cloaking arrangements
and robustly retain them in a dynamic crowded environment.

Compared with the very rare studies on the RL-powered
cooperation of microswimmers, there are relatively more studies on
the RL-powered cooperation of macroscopic swimmers [138, 139]. In a
relatively recent work by Verma [140], they combined DNS of
Navier–Stokes equations with DQN and investigated the cooperation
among fish. It was found that a fish can improve its efficiency by
intercepting the shed vortices of other fish and deforming its body to
synchronize with the momentum of the vortices. The methodology of
the macroscopic studies can also be transferred to the study of
microswimmers, but due to the very different dynamics in the low
Reynolds number environment, the cooperation mechanism is also
expected to be very different from that of the macroscopic swimmers.

6.5 Implementation on the hardware
platform

Most of the aforementioned studies are numerical
simulations since it is usually more economical to discover

efficient controlling schemes using numerical simulation
before migrating the schemes to the practical hardware
system. However, numerical simulations cannot capture all
the complexity of the physical environment. Sometimes it
could be beneficial to directly perform RL on physical
systems. The work of Muiños-Landin et al. [141] was the
first attempt to incorporate RL into active particles on a
realistic hardware platform. They applied laser light to
actuate a gold nanoparticle-coated microparticle through the
self-thermophoretic effect. The direction of the laser light can
be changed to steer the active particle. They employed the
Q-learning algorithm to train the control agent, where the
real-time coarse-grained position of the active particle was
fed to the RL algorithm as the state parameter and
meanwhile the coarse-grained directions of the heating laser
constituted the action space. A steering policy was successfully
learned to guide the swimmer to a target position. It was also
revealed that noise also contributes to the learning process, and
the learned strategy could be different at different levels of
noise. Recently, Behrens and Ruder [142] made another attempt
to implement RL on a realistic hardware platform to control
microswimmers. They fabricated a helical magnetic hydrogel
microswimmer and employed the SAC RL algorithm to
autonomously derive a control policy to guide the
microswimmer to swim through a circular fluidic channel
(Figure 7A). The microswimmer was controlled through a
three-axis array of electromagnets. The inputs for the
decision-making machinery are either a state vector

FIGURE 7
(A) Schematic of the RL control for a synthetic microswimmer. The magnetic helical microswimmer swims in a circular fluidic channel. The system
image or state is captured to input to a neural network, which acts as a decision-making agent. The neural network outputs themagnitudes and phases of
the magnetic coils to control the propulsion and steering of the magnetic microswimmer. The inset shows the optimal control policy, with the arrows
depicting the direction of the rotating magnetic field when the swimmer is at the specific azimuthal angle. (B) RL-discovered policy with the system
image as input for the neural network. (C) RL-discovered policy with the system state as input for the neural network. Reproduced under CC BY-NC 4.0
[142]. Copyright 2022 The Authors.
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characterizing the system or the raw image of the system, while
the action is the magnitudes and phases of the magnetic coils. It
was found that in both cases, the RL-powered microswimmer
learned successful actuation policies and the learned policies
recapitulated the behavior of theoretically optimal physics-
based approaches (Figures 7B,C). Since RL training usually
requires thousands to millions of experiences, it is normally
necessary to automatically reset the environment after every
episode. In some cases, the system can be specially designed so
that no mechanical resetting is needed. For example, in the case
of Behrens and Ruder [142], a circular channel was used; hence,
any point on the circle can be a new starting point, and no
resetting of the position is required. Nevertheless, in some other
cases, the requirement of automatic resetting may become a
difficulty that needs to be resolved to perform RL on the
hardware platform. Another difficulty is the possible system
wear and tear caused by extended use in millions of training
episodes. This wear and tear may lead to a distribution shift in
the collected data and disrupt the learning process [142].

7 Summary and perspective

In this review, we first briefly illustrated the complexity that a
microswimmer may face in a realistic biological fluid environment,
and then we highlighted some recent attempts to enable intelligent
microswimmers to swim through complex environments of dynamic
nature autonomously. A biological fluid environment may contain
non-Newtonian fluids, tortuous and flexible boundaries, and obstacles
of irregular shapes. Microswimmers experience highly complicated
interactions with the environment and with each other; hence, they
are difficult to actively control. Physical intelligence which arises from
the physical/chemical interactions between swimmers and the
environment and from the inter-swimmer cooperation may
provide some actuation/steering ability and adaptivity for the
microswimmers. However, the ability obtained from physical
intelligence is usually quite limited. Biohybrid microswimmers can
utilize the inherited intelligence of the biological materials to
overcome the biocompatibility and biodegradable problems and
also possess some directional mobility. However, biohybrid
microswimmers are usually used for specific purposes, and hence,
they cannot adapt to various environments or perform general tasks.
A model-free RL technique is a promising approach to address the
challenges mentioned previously. We briefly introduced several
popular RL algorithms (SARSA, Q-learning, DQN, and
actor–critic) and further summarized the recent advances on RL-
powered microswimmers. We categorized four application directions
of the RL technique in the realization of intelligentmicroswimmers: 1)
self-learned propulsion; 2) self-learned klinotactic motion; 3) point-
to-point navigation advised by RL; 4) self-learned cooperation.

Many researchers have validated the effectiveness of the RL
technique in guiding microswimmers. The RL technique can not
only rediscover known optimal strategies in simplified cases but
also find efficient strategies when the problems become
intractable by other means. Moreover, the RL technique is
able to propose strategies that mitigate the effect of noise.
Nevertheless, there are still several limitations in most of the
studies on RL-powered microswimmers: 1) simple reduced

models (e.g., point swimmer, Najafi–Golestanian’s swimmer,
and Purcell’s swimmer) are usually preferred, where the
actuation and steering mechanisms are either not considered
(for the point swimmer) or only conceptual (for the
Najafi–Golestanian’s swimmer and Purcell’s swimmer). 2) The
non-Newtonian feature of the biological fluids, the elasticity of
the microswimmers, and the tortuous elastic boundaries are often
not taken into account. These limitations are likely as a result of
the resource-demanding feature of the RL algorithms. Since RL
algorithms require substantial data, the computational cost
would be very high if the fluid–solid interaction was fully
resolved. However, accurately resolving the interactions
between the flexible body and the complex environment is key
to proposing an effective control strategy for realistic
microswimmers. 3) Most of the studies are numerical
simulations as a proof of concept, and migration to a realistic
hardware platform is rare. In numerical simulations, the
researchers are omnipotent observers and can feed any global
or local information to the swimmers without worrying about
how the swimmers can sense this information in reality. The
researchers can also propose any control mechanism without
worrying about how to implement the exact actuation/steering in
reality. Therefore, the policies discovered by RL in numerical
simulations may be infeasible for realistic microswimmers,
impeding the practicality of the RL techniques. Resolving
these problems is definitely necessary in the future.
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