23 research outputs found

    Intelligent production control for time-constrained complex job shops

    Get PDF
    Im Zuge der zunehmenden Komplexität der Produktion wird der Wunsch nach einer intelligenten Steuerung der Abläufe in der Fertigung immer größer. Sogenannte Complex Job Shops bezeichnen dabei die komplexesten Produktionsumgebungen, die deshalb ein hohes Maß an Agilität in der Steuerung erfordern. Unter diesen Umgebungen sticht die besonders Halbleiterfertigung hervor, da sie alle Komplexitäten eines Complex Job-Shop vereint. Deshalb ist die operative Exzellenz der Schlüssel zum Erfolg in der Halbleiterindustrie. Diese Exzellenz hängt ganz entscheidend von einer intelligenten Produktionssteuerung ab. Ein Hauptproblem bei der Steuerung solcher Complex Job-Shops, in diesem Fall der Halbleiterfertigung, ist das Vorhandensein von Zeitbeschränkungen (sog. time-constraints), die die Transitionszeit von Produkten zwischen zwei, meist aufeinanderfolgenden, Prozessen begrenzen. Die Einhaltung dieser produktspezifischen Zeitvorgaben ist von größter Bedeutung, da Verstöße zum Verlust des betreffenden Produkts führen. Der Stand der Technik bei der Produktionssteuerung dieser Dispositionsentscheidungen, die auf die Einhaltung der Zeitvorgaben abzielen, basiert auf einer fehleranfälligen und für die Mitarbeiter belastenden manuellen Steuerung. In dieser Arbeit wird daher ein neuartiger, echtzeitdatenbasierter Ansatz zur intelligenten Steuerung der Produktionssteuerung für time-constrained Complex Job Shops vorgestellt. Unter Verwendung einer jederzeit aktuellen Replikation des realen Systems werden sowohl je ein uni-, multivariates Zeitreihenmodell als auch ein digitaler Zwilling genutzt, um Vorhersagen über die Verletzung dieser time-constraints zu erhalten. In einem zweiten Schritt wird auf der Grundlage der Erwartung von Zeitüberschreitungen die Produktionssteuerung abgeleitet und mit Echtzeitdaten anhand eines realen Halbleiterwerks implementiert. Der daraus resultierende Ansatz wird gemeinsam mit dem Stand der Technik validiert und zeigt signifikante Verbesserungen, da viele Verletzungen von time-constraints verhindert werden können. Zukünftig soll die intelligente Produktionssteuerung daher in weiteren Complex Job Shop-Umgebungen evaluiert und ausgerollt werden

    A Fast TCAD-based Methodology for Variation Analysis of Emerging Nano-Devices

    Get PDF
    Variability analysis of nanoscale transistors and circuits is emerging as a necessity at advanced technology nodes. Technology Computer Aided Design (TCAD) tools are powerful ways to get an accurate insight of Process Variations (PV). However, obtaining both fast and accurate device simulations is impractical with current TCAD solvers. In this paper, we propose an automated output prediction method suited for fast PV analysis. Coupled with TCAD simulations, our methodology can substantially reduce the time complexity and cost of variation analysis for emerging technologies. We overcome the simulation obstacles and preserve accuracy, using a neural network based regression to predict the output of individual process simula- tions. Experiments indicate that, after the training process, the proposed methodology effectively accelerate TCAD-based PV simulations close to compact-model-based simulations. Therefore, the methodology can be an excellent opportunity in enabling extensive statistical simulations such as Monte-Carlo for emerging nano-devices

    All-optical spiking neurons integrated on a photonic chip

    Get PDF

    Algorithms and Architectures for Some Problems in Multibeam Electron Beam Lithography and SEM Metrology

    Get PDF
    The original Moore’s law has slowed down. It has become unfeasible to double the number of transistor per unit area on integrated circuits every 18 to 24 months. However, the continuous need for computation power is driving the semiconductor industry towards innovative solutions to reduce integrated circuit sizes. Multibeam mask writers and accurate scanning electron microscopy (SEM) metrology are two such innovative solutions. Multibeam mask writers enable next-generation integrated circuit fabrication technologies like extreme ultraviolet lithography (EUV). However, the digital communication capacity constraints limit the widespread adoption of multibeam mask writers. In the first part of this dissertation thesis, we present a study of multibeam systems and offer improvements to increase their communication capacity. We propose improvements to the communication datapath architecture, compression algorithms, and the decompression architecture to improve the communication capacity. In the second part of this thesis, we attempt to improve scanning electron microscopy (SEM) metrology using deep learning techniques. Poisson noise, edge effects, and instrument errors frequently corrupt SEM images. Significant improvements in SEM metrology will enable next-generation lithography. To attain metrology improvements, we first create simulated datasets of SEM images and then train multiple deep convolution neural networks on these datasets. Our deep convolution neural networks exhibit superior performance in comparison with previous techniques. Particularly, we demonstrate improvements to nanostructure roughness measurements like line edge roughness (LER), which determine the quality of fabrication processes. Overall, this thesis work attempts to improve the semiconductor manufacturing process using architectural and algorithmic improvements

    多変量時系列データの変分オートエンコーダによるロバストな教示なし異常検知

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第370号 学位授与年月日:令和4年9月26日1: Introduction|2: Background & Theory|3: Methodology|4: Experiments and Discussion|5: Conclusions九州工業大学令和4年

    Computational Intelligence Techniques for OES Data Analysis

    Get PDF
    Semiconductor manufacturers are forced by market demand to continually deliver lower cost and faster devices. This results in complex industrial processes that, with continuous evolution, aim to improve quality and reduce costs. Plasma etching processes have been identified as a critical part of the production of semiconductor devices. It is therefore important to have good control over plasma etching but this is a challenging task due to the complex physics involved. Optical Emission Spectroscopy (OES) measurements can be collected non-intrusively during wafer processing and are being used more and more in semiconductor manufacturing as they provide real time plasma chemical information. However, the use of OES measurements is challenging due to its complexity, high dimension and the presence of many redundant variables. The development of advanced analysis algorithms for virtual metrology, anomaly detection and variables selection is fundamental in order to effectively use OES measurements in a production process. This thesis focuses on computational intelligence techniques for OES data analysis in semiconductor manufacturing presenting both theoretical results and industrial application studies. To begin with, a spectrum alignment algorithm is developed to align OES measurements from different sensors. Then supervised variables selection algorithms are developed. These are defined as improved versions of the LASSO estimator with the view to selecting a more stable set of variables and better prediction performance in virtual metrology applications. After this, the focus of the thesis moves to the unsupervised variables selection problem. The Forward Selection Component Analysis (FSCA) algorithm is improved with the introduction of computationally efficient implementations and different refinement procedures. Nonlinear extensions of FSCA are also proposed. Finally, the fundamental topic of anomaly detection is investigated and an unsupervised variables selection algorithm tailored to anomaly detection is developed. In addition, it is shown how OES data can be effectively used for semi-supervised anomaly detection in a semiconductor manufacturing process. The developed algorithms open up opportunities for the effective use of OES data for advanced process control. All the developed methodologies require minimal user intervention and provide easy to interpret models. This makes them practical for engineers to use during production for process monitoring and for in-line detection and diagnosis of process issues, thereby resulting in an overall improvement in production performance

    COMPUTATIONAL ANALYSIS OF CODE-MULTIPLEXED COULTER SENSOR SIGNALS

    Get PDF
    Nowadays, lab-on-a-chip (LoC) technology has been applied in a variety of applications because of its capability to perform accurate microscale manipulations of cells for point-of-care diagnostics. On the other hand, such a result is not readily available from an LoC device and typically still requires a post-inspection of the chip using traditional laboratory equipment such as a microscope, negating the advantages of the LoC technology. To solve this dilemma, my doctoral research mainly focuses on developing portable and disposable biosensors for interfacing with and digitizing the information from an LoC system. Our sensor platform, integrated with multiple microfluidic impedance sensors, electrically monitors and tracks manipulated cells on an LoC device. The sensor platform compresses information from each sensor into a 1-dimensional electrical waveform, and therefore, further signal processing is required to recover the readout of each sensor and extract information of detected cells. Furthermore, with the capability of the sensor platform, we have introduced integrated microfluidic cytometers to characterize properties of cells such as cell surface expression and mechanical properties.Ph.D

    A Contribution Towards Intelligent Autonomous Sensors Based on Perovskite Solar Cells and Ta2O5/ZnO Thin Film Transistors

    Get PDF
    Many broad applications in the field of robotics, brain-machine interfaces, cognitive computing, image and speech processing and wearables require edge devices with very constrained power and hardware requirements that are challenging to realize. This is because these applications require sub-conscious awareness and require to be always “on”, especially when integrated with a sensor node that detects an event in the environment. Present day edge intelligent devices are typically based on hybrid CMOS-memristor arrays that have been so far designed for fast switching, typically in the range of nanoseconds, low energy consumption (typically in nano-Joules), high density and endurance (exceeding 1015 cycles). On the other hand, sensory-processing systems that have the same time constants and dynamics as their input signals, are best placed to learn or extract information from them. To meet this requirement, many applications are implemented using external “delay” in the memristor, in a process which enables each synapse to be modeled as a combination of a temporal delay and a spatial weight parameter. This thesis demonstrates a synaptic thin film transistor capable of inherent logic functions as well as compute-in-memory on similar time scales as biological events. Even beyond a conventional crossbar array architecture, we have relied on new concepts in reservoir computing to demonstrate a delay system reservoir with the highest learning efficiency of 95% reported to date, in comparison to equivalent two terminal memristors, using a single device for the task of image processing. The crux of our findings relied on enhancing our capability to model the unique physics of the device, in the scope of the current thesis, that is not amenable to conventional TCAD simulations. The model provides new insight into the redox characteristics of the gate current and paves way for assessment of device performance in compute-in-memory applications. The diffusion-based mechanism of the device, effectively enables time constants that have potential in applications such as gesture recognition and detection of cardiac arrythmia. The thesis also reports a new orientation of a solution processed perovskite solar cell with an efficiency of 14.9% that is easily integrable into an intelligent sensor node. We examine the influence of the growth orientation on film morphology and solar cell efficiency. Collectively, our work aids the development of more energy-efficient, powerful edge-computing sensor systems for upcoming applications of the IOT

    A hybrid electronic nose system for monitoring the quality of potable water

    Get PDF
    This PhD thesis reports on the potential application of an electronic nose to analysing the quality of potable water. The enrichment of water by toxic cyanobacteria is fast becoming a severe problem in the quality of water and a common source of environmental odour pollution. Thus, of particular interest is the classification and early warning of toxic cyanobacteria in water. This research reports upon the first attempt to identify electronically cyanobacteria in water. The measurement system comprises a Cellfacts instrument and a Warwick e-nose specially constructed for the testing of the cyanobacteria in water. The Warwick e- nose employed an array of six commercial odour sensors and was set-up to monitor not only the different strains, but also the growth phases, of cyanobacteria. A series of experiments was carried out to analyse the nature of two closely related strains of cyanobacteria, Microcystis aeruginosa PCC 7806 which produces a toxin and PCC 7941 that does not. Several pre-processing techniques were explored in order to remove the noise factor associated with running the electronic nose in ambient air, and the normalised fractional difference method was found to give the best PCA plot. Three supervised neural networks, MLP, LVQ and Fuzzy ARTMAP, were used and compared for the classification of both two strains and four different growth phases of cyanobacteria (lag, growth, stationary and late stationary). The optimal MLP network was found to classify correctly 97.1 % of unknown non-toxic and 100 % of unknown toxic cyanobacteria. The optimal LVQ and Fuzzy ARTMAP algorithms were able to classify 100% of both strains of cyanobacteria. The accuracy of MLP, LVQ and Fuzzy ARTMAP algorithms with 4 different growth phases of toxic cyanobacteria was 92.3 %, 95.1 % and 92.3 %, respectively. A hybrid e-nose system based on 6 MOS, 6 CP, 2 temperature sensors, 1 humidity sensor and 2 flow sensors was finally developed. Using the hybrid system, data were gathered on six different cyanobacteria cultures for the classification of growth phase. The hybrid resistive nose showed high resolving power to discriminate six growth stages as well as three growth phases. Even though time did not permit many series of the continuous monitoring, because of the relatively long life span (30-40 days) of cyanobacteria, improved results indicate the use of a hybrid nose. The HP 4440 chemical sensor was also used for the discrimination of six different cyanobacteria samples and the comparison with the electronic nose. The hybrid resistive nose based on 6 MOS and 6 CP showed a better resolving power to discriminate six growth stages as well as three growth phases than the HP 4440 chemical sensor. Although the mass analyser detects individual volatile chemicals accurately, it proves no indication of whether the volatile is an odour. The results demonstrate that it is possible to apply the e-nose system for monitoring the quality of potable water. It would be expected that the hybrid e-nose could be applicable to a large number of applications in health and safety with a greater flexibility
    corecore