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ABSTRACT

The original Moore’s law has slowed down. It has become unfeasible to double the number

of transistor per unit area on integrated circuits every 18 to 24 months. However, the continu-

ous need for computation power is driving the semiconductor industry towards innovative solu-

tions to reduce integrated circuit sizes. Multibeam mask writers and accurate scanning electron

microscopy (SEM) metrology are two such innovative solutions. Multibeam mask writers en-

able next-generation integrated circuit fabrication technologies like extreme ultraviolet lithogra-

phy (EUV). However, the digital communication capacity constraints limit the widespread adop-

tion of multibeam mask writers. In the first part of this dissertation thesis, we present a study of

multibeam systems and offer improvements to increase their communication capacity. We pro-

pose improvements to the communication datapath architecture, compression algorithms, and the

decompression architecture to improve the communication capacity. In the second part of this the-

sis, we attempt to improve scanning electron microscopy (SEM) metrology using deep learning

techniques. Poisson noise, edge effects, and instrument errors frequently corrupt SEM images.

Significant improvements in SEM metrology will enable next-generation lithography. To attain

metrology improvements, we first create simulated datasets of SEM images and then train multiple

deep convolution neural networks on these datasets. Our deep convolution neural networks ex-

hibit superior performance in comparison with previous techniques. Particularly, we demonstrate

improvements to nanostructure roughness measurements like line edge roughness (LER), which

determine the quality of fabrication processes. Overall, this thesis work attempts to improve the

semiconductor manufacturing process using architectural and algorithmic improvements.
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1. INTRODUCTION

Moore’s law [10] is the trend of doubling the number of transistors per unit area on integrated

circuits (IC). For the last five decades, this trend has given us an exponential increase in computa-

tion power. Integrated circuits today have tens of billions of transistors compared to a few hundred

transistors at the time of Moore’s writing in 1965 [10]. This enormous computing power at low

cost has transformed almost every field and has changed the life of humankind. Recently, Moore’s

law has slowed down as major semiconductor companies struggle to fabricate smaller integrated

circuits at the same pace. For instance, Intel Corporation started mass production of its 14 nm

node integrated circuits at the end of the year 2014, and its 10 nm node integrated circuits will

be in mass production in the second half of the year 2019. This recent node shrink took Intel

Corporation almost five years compared to the original 18-24 months rate of Moore’s law. This

slowdown of Moore’s law will have profound effects on all industries as future projections based

on the continuous increase of computing power may not materialize. This slowdown is already

showing an impact on the semiconductor industry in the increasing popularity of multiple chip

designs (or chiplet designs) [11].

We can attribute this slowdown of Moore’s law to fabrication technology challenges and cost

increases. To understand the fabrication challenges, we take an analogy for integrated circuit de-

sign as a modern city design. A city contains layers of structures with different patterns such as

underground railway networks, water pipeline networks, electricity line networks, road networks,

etc. Similarly, a single integrated circuit design contains multiple layers, and layers have differ-

ent geometric patterns. For instance, a metal layer might contain the metal wiring patterns which

connect transistors on the integrated circuit. Thus in this analogy, the fabrication of ICs onto a

silicon wafer compares to making copies of an entire city, layer by layer, on an empty piece of

land. In reality, scales are even more extensive than a city. For example, we can compare a typical

modern integrated circuit with approximately 510 mm2 (= 510 trillion nm2) area and 7.5 billion

transistors to the earth’s surface area of 510 trillion m2 with living space for approximately 7.5
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billion humans. Thus, in some ways, integrated circuit fabrication rivals that to the reconstruction

of the entire earth’s surface without a single broken highway. Today, the state-of-the-art integrated

circuit fabrication process has at least three essential steps, 1) the pattern creation step; i.e., mask

set fabrication using electron beam lithography, 2) the pattern replication step with optical lithog-

raphy; i.e., the fabrication of multiple integrated circuits on silicon wafers by passing light through

the masks, and 3) metrology; i.e., the measurement of the quality of the lithographic process us-

ing techniques such as scanning electron microscopy (SEM). The semiconductor industry needs

innovative solutions for all three steps to enable future nodes and reduce fabrication costs.

The pattern replication step with optical lithography [12, 13] is the heart of integrated circuit

fabrication, and significant advances in this technology have enabled Moore’s law. Optical lithog-

raphy transfers geometric patterns to the silicon wafer by passing light through a photomask. The

current optical technology is also known as immersion deep ultraviolet lithography (DUV) [13],

and it uses light at 193 nm wavelength. This technology has reached its limits. The industry hopes

that the new optical technology extreme ultraviolet lithography (EUV) [12] will reduce the cost of

the pattern replication step. EUV uses light at 13.5 nm wavelength, and it can theoretically make

smaller circuits due to the shorter wavelength. Both 193 nm optical lithography and EUV lithog-

raphy have the pressing issue of low yields, high photomask set cost, random roughness effects,

and stochastic defects. Increasingly, these problems are becoming harder to solve at the smaller

technology nodes.

The high cost of the pattern creation step or mask set fabrication is a contributing factor to

the slowdown of Moore’s law. The high cost is partly due to the increase in the number of mask

layers and the decreasing throughput of mask writers. At the leading nodes, electron beam lithog-

raphy fabricates the majority of photomasks. Electron beam (e-beam) lithography uses electrons

instead of light to form the geometric patterns onto the silicon wafers. Electron beam lithography

is a standard tool for creating photomasks because it is a pattern creation technology. In contrast,

optical lithography is a pattern transfer or a pattern replication technology, and thus, it cannot gen-

erate patterns. Due to its pattern generation nature, electron beam lithography faces enormous data
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processing, data communication, and throughput challenges. The mask fabrication industry has

been using the single beam variable-shaped beam (VSB) systems for years, but these systems are

not equipped to handle future throughput and resolution requirements. To increase the throughput

of electron beam lithography engineers have developed tools which use multiple electron beams

(250000 to millions of beams in the future). The semiconductor industry is currently using these

multibeam tools [9, 14, 15] for mask fabrication. To handle the future needs of this industry, the

datapath architectures of these multibeam systems need to handle petabytes of data and commu-

nicate the data at terabits per second. The current datapath architecture of multibeam systems

is ill-equipped to handle these requirements. In this thesis work, we propose parallel data com-

pression and a parallel data decompression architecture to improve the communication datapath

architecture of multibeam systems. Our approach increases the throughput of multibeam systems

to alleviate the technology and cost concerns associated with the pattern creation step.

The third fabrication process step, metrology, needs significant improvements too as roughness,

and other stochastic effects in the semiconductor lithographic process are impacting the limits

of lithographic scaling [16, 17, 18]. It is necessary to accurately estimate printed nanostructure

geometries for further improvements in the lithographic processes. Line edge roughness (LER)

and line width roughness (LWR) are two of the standard parameters in the study of random effects,

and they are often estimated by means of critical dimension scanning electron microscopy (CD-

SEM) images. Low-dose SEM images are interesting because they reduce resist shrinkage and

acquisition time, but they are corrupted by Poisson noise, edge effects, Gaussian blur, and other

instrument errors. The estimation of edge geometry and roughness requires techniques to account

for these artifacts [19, 20]. We believe that in the presence of enough realistic simulated data,

supervised machine learning offers the prospect of high-accuracy estimates of the input from the

outcome of complex physical processes without the constraints of modeling assumptions. In this

thesis, we propose the use of deep supervised learning for the denoising of SEM images and

rough edge detection. We concentrate here on Poisson noise and rough line images, but if there is

sufficient realistic simulated data, the approach can be extended to the study of other detection and
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estimation problems such as the estimation of rough contours and the detection of microbridges

and missing contact holes. We argue that this approach to SEM denoising preserves the fine details

of edges and results in better estimates of LER and other roughness characteristics. The training

of deep convolutional neural networks requires large datasets. There are currently no publicly

available datasets of rough line SEM images, and we offer such a database to facilitate the future

development of algorithms.

Our goal with this thesis work is to improve two of the three integrated circuit fabrication steps

using information science algorithms and architectures. We use data compression and architecture

based solutions to improve the multibeam mask writing systems, and we use the deep learning

method to improve SEM metrology. Metrology is an essential part of the overall integrated circuit

fabrication process. Accurate metrology improves both multibeam electron beam lithography and

optical lithography by providing the critical process information and feedback. Thus, metrology

also offers benefits to the pattern creation step and the pattern replication step. Overall, this thesis

work attempts to improve the entire integrated circuit fabrication process flow. This thesis contains

four chapters. In the remaining part of Chapter 1, we will explain the basics of various semicon-

ductor fabrication processes. We will review the problem statements for multibeam systems and

SEM metrology. In Chapter 2, we will discuss the details of the aperture array-based multibeam

system, proposed data compression scheme, and parallel decompression architecture. We will also

discuss the experimental results. In Chapter 3, we go into details of the simulated SEM dataset and

discuss the proposed deep learning solutions for SEM metrology. We also present experimental

results and various visualization techniques to understand the inner workings of our deep neural

networks. Finally, we conclude the thesis report in Chapter 4.

1.1 Optical Lithography

The optical lithography process is used to achieve the task of making exact copies of large

geometric patterns for integrated circuits. A photomask set contains the geometric patterns of the

entire integrated circuit. Each layer of the integrated circuit has at least one photomask associated

with it. The optical lithography process transfers these geometric patterns onto silicon wafers one
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Figure 1.1: Conventional optical lithography.

layer at a time. Figure 1.1 shows the basic steps of optical lithography that are used to transfer

geometric patterns of a layer onto the wafer. In the first step, silicon wafers are coated with pho-

tosensitive material or photoresist. Photoresist materials are the type of material whose chemical

composition changes by exposure to light. In the second step, light passes through the photomask

onto the photoresist for the exposure. The third step involves the usage of a photoresist developer

to dissolve the exposed photoresist material. This way, the remaining photoresist material captures

the geometric patterns of the photomask. After this, the wafer area not covered by photoresist is

etched using the reactive ion etching process. Finally, the removal of the photoresist material gives

an etched wafer with the geometric patterns of the photomask.

1.1.1 193nm Lithography and Multiple Patterning

Immersion DUV is the current optical lithography technology, and it uses the light at 193nm

wavelength (λ). It consistently fabricates patterns below the wavelength of the source light. The

resolution limit or minimum half-pitch (hp) of optical lithography depends on the wavelength and

numerical aperture (NA) of the projection lens, as shown by the following equation:
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hp (min) ∝ λ

NA
. (1.1)

The resolution of 193nm lithography has improved over the years through multiple innovations.

Two significant improvements were the use of high numerical aperture (NA) projection lenses and

the immersion of the optical system inside high refractive index liquids. Nevertheless, the industry

reached the limit of a 38 nm minimum half-pitch around the year 2008. The industry needed to use

multiple patterning technology to fabricate structures at even lower half-pitch. Multiple patterning

technology fabricates geometric structures of a layer in multiple stages using multiple photomasks.

Figure 1.2 shows the desired geometric structures on a layer. Two separate photomasks contain

these structures as shown in red and green colors. We can observe that the individual half-pitch

remains greater than the minimum possible, but the combined pitch is lower. It is extremely dif-

ficult to do multiple patterning beyond quadruple patterning due to overlay and the nanostructure

roughness problem, which significantly decrease the yield of the process.

1.1.2 Extreme Ultraviolet Lithography (EUV)

Extreme ultraviolet lithography (EUV) is a next-generation lithography technology. It has

been in the development for over two decades. EUV lithography is different from traditional

optical lithography in multiple ways. The first difference comes from the use of light at 13.5nm

wavelength. Due to this shorter wavelength, it is expected to make smaller nanostructures and

continue Moore’s law. Secondly, it uses reflection optics instead of the refraction optics used

in the traditional approach. EUV needs this reflection optics approach because most materials

absorb the extreme ultraviolet wavelength light. EUV lithography faces multiple challenges of

source power, pellicle (a mask protection film), nanostructure roughness, and stochastic defects.

Stochastic defects are random defects that can occur at the time of exposure due to the dual nature

of light. The roughness of nanostructures and stochastic defects can reduce the yield of the process

and increase the cost of fabrication.
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Figure 1.2: Multiple patterning.
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1.2 Electron Beam Lithography

The electron beam lithography process is similar to the optical lithography process with some

significant differences. First, electron beam lithography uses electrons instead of photons. This

means silicon wafers are coated with the electron dose sensitive material instead of a photosensi-

tive material. The more significant difference is that electron beam lithography does not need a

photomask. Instead, a single or multiple beams of electrons scan the geometry of the wafer to pro-

vide the desired electron dose to form geometric patterns. This makes electron beam lithography a

pattern creation technology. In contrast, optical lithography is a pattern transfer or a pattern repli-

cation technology. Optical lithography can only transfer or replicate the patterns already present

on a photomask. In simple terms, optical lithography is somewhat similar to the old method of

creating multiple images from a photo camera negative while electron beam lithography is similar

to writing out each pixel on a digital screen to form a digital image. This is the reason electron

beam lithography is a standard tool for creating photomasks. Electron beam lithography can also

be used to fabricate circuits directly. Direct write systems are popular in R&D due to lax time

constraints and high resolution. Electron beam mask writing tools come mainly in two forms, i.e.,

variable shaped beam systems and multibeam systems.

1.2.1 Variable Shaped Beam System

Variable shaped beam (VSB) mask writers use variable-sized rectangular and triangular elec-

tron beams to write patterns onto a substrate. The photomask file usually stores the geometric

pattern data into polygon format, and these polygons are fractured into rectangular and triangular

shots as shown in Figure 1.3. The VSB writer scans the beam only at the places where pattern

features are to be written. This type of scanning is also known as vector scanning. The mask

fabrication industry has extensively used these single beam variable-shaped beam (VSB) systems

for years, but they are not equipped to handle future throughput and resolution requirements. This

is because the VSB system’s writing time depends on the complexity of mask shapes [21, 22] and

on the number of shots, which are increasing at the newer nodes.

8



Figure 1.3: Rectangular and triangular VSB shots.

1.2.2 Multibeam Systems and the Datapath Problem

Multibeam systems use multiple electron beams to increase the throughput of electron beam

lithography. There have been various attempts to make multibeam systems. The reflective electron

beam lithography (REBL) [23, 24] system and the MAPPER [25] system were proposed for the

direct fabrication of integrated circuits. Recently, the aperture array-based multibeam mask writers

introduced by IMS Nanofabrication [9] and NuFlare Technology [14, 15] have been proposed to

improve mask write times. These multibeam systems use a large number of smaller beams to write

patterns for the mask layers. Multibeam systems use grayscale pixel-based writing where each

beam provides a dose according to digital data. This dose is transferred to a single pixel or number

of pixels [2, 26]. The multibeam systems face a throughput bottleneck described by Tennant’s law

[27] which can be described as follows: define areal throughput as the area of a wafer that can be

printed per unit time using direct-write-like lithography technologies. Then

Areal throughput ∝ resolution5. (1.2)

Besides the pixel throughput problem, multibeam systems also have to process large amounts

of data and communicate grayscale data at high data rates. A recent paper [15] by NuFlare dis-

cusses the difficulties associated with data processing and communication. These data processing

and communication requirements will continue increasing in the future in proportion to the square
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of the resolution. The current datapath architecture of multibeam systems is ill-equipped to handle

these requirements. IMS and NuFlare have had some success in addressing throughput require-

ments by parallel processing [14, 15] using graphical processing units (GPUs) and by increasing

the communication capacity [9, 15] of the datapath. However, as we explain in Chapter 2, these ap-

proaches have limitations. Our objective here is to improve the communication and computational

efficiency of the “aperture array-based” multibeam mask writers. Improving data communication

increases the throughput of the multibeam systems, which reduces the cost of integrated circuit

fabrication and facilitates the future adoption of direct-write multibeam lithography systems.

1.3 Scanning Electron Microscopy and the Metrology Problem

The scanning electron microscope is a widely used electron microscope for critical dimension

metrology. In this microscope, a focused beam of electrons scans the surface of the sample in a

raster scan pattern to create an image of the sample at sub-micron resolutions. These electrons

interact with the sample and produce signals which contain information about the sample surface

geometry. The quality of images depends on the energy of the electron beam or the dose provided.

Low-dose SEM images are potentially attractive because of relatively short acquisition times and

resist shrinkage. However, to determine the edge geometry from such images requires techniques

to account for Poisson noise, Gaussian blur, edge effects, and other instrument errors [19, 20]. One

could use algorithms based on filtering [28] or physical model-based regression [29, 30]. How-

ever, the filtering based methods often require careful selection of the filter parameters to prevent

changes in the edge geometry while the modeling assumptions constrain model-based regression.

The estimation of edge geometries and roughness of nanostructures is critical to determine the yield

of the IC fabrication process. Therefore, the algorithmic problems associated with the extraction

of edge geometries in a high-volume manufacturing setting continue to be investigated.
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2. MULTIBEAM SYSTEM, DATAPATH IMPROVEMENT AND DATA COMPRESSION

SCHEME ∗

The aperture array-based multibeam systems designed by NuFlare Technology [14, 31, 15] and

IMS Nanofabrication [9, 32, 33, 34] use a 512 × 512 array of square beams arranged as a matrix

of 512 rows and 512 columns. The square beams are created by passing a broad beam through

an aperture plate system which consists of an aperture plate and a deflection plate. Figure 2.1

illustrates a smaller 4×4 array with an aperture plate to convert a broad electron beam into multiple

small beams and a deflection plate which controls the direction of the beams. These smaller beams

are projected on the silicon wafer to form the desired mask pattern.

2.1 Multibeam Blanker System

The blanker is a significant component of both the NuFlare Technology [14, 31, 15, 1] and

the IMS Nanofabrication [9, 32, 33, 34] multibeam mask writing systems. The multibeam blanker

system we consider is motivated by the 2016 NuFlare system [31, 15]. We focus on the NuFlare

system in this thesis report because NuFlare disclosed more information than IMS about their cir-

cuit design and data communication system. We also discuss certain aspects of the IMS system in

our publications [2]. We follow NuFlare’s choice of 10-bit representations of the dose of a pixel

as opposed to IMS’ 4-bit representation with beam overlaps and point out that it is not straight-

forward to compare these representations since IMS uses 5 nm × 5 nm pixels and NuFlare uses

10 nm× 10 nm pixels. Furthermore, since NuFlare Technology has not disclosed all details about

its multibeam mask writing systems we make various assumptions to explain our understanding of

the multibeam blanker system; for example, we created Figures 2.2-2.5. The multibeam system

consists of two plates; namely an aperture plate and a deflection plate [9, 32, 33, 34, 14, 31]. The

aperture plate consists of an array of apertures which converts a broad beam into multiple beams.

∗ Part of the data reported in this chapter is reprinted with permission from N. Chaudhary and
S. A. Savari, “Parallel compression/decompression-based datapath architecture for multibeam mask writ-
ers,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 16, no. 4, 043503, 2017. DOI:
https://doi.org/10.1117/1.JMM.16.4.043503. Copyright [2017] by SPIE.
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Figure 2.1: Aperture array-based multibeam system.

The deflection plate consists of an equal number of apertures at the same coordinates as the

aperture plate. The deflection plate also contains a pair of electrodes at each aperture providing

enough deflection voltage to deflect the beam passing through the aperture [31]. A grayscale dose

control for each beam is provided by controlling the deflection voltage for a discrete amount of

time by means of a control circuit for each beam [31]. The deflection control circuit of each

beam is connected by a bus to the other control circuits to enable the communication of data

within a row [31]. Each row’s data is provided by a “side pad” digital circuit which could be a

field programmable gate array (FPGA) or an application specific integrated circuit (ASIC). The

deflection plate is a stand-alone device or a chip packaged separately from the side pad. Figure 2.2

shows the deflection plate design for an array with sixteen beam apertures with four rows and four

columns.

Figure 2.2 illustrates a control circuit associated with each individual beam. The control cir-

cuitry of each beam consists of two parts, namely a digital beam logic for the communication

of 10-bit dose data with the ability to generate 1024 discrete time intervals and an analog circuit

(mainly a differential amplifier) to drive the electrodes for the amount of time specified by the

digital beam logic [31]. We do not consider the analog design of the amplifier circuit in this thesis

report and focus instead on the digital logic needed for each beam. Figures 2.3 and 2.4 show one
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Figure 2.2: Deflection plate of a 4× 4 beam array with side pad circuitry. Each beam has a control
circuit connected to electrodes. The electrodes deflect the beams. Reprinted with permission from
[1].

implementation of the beam logic. The digital beam logic consists of a shift register with a one-bit

serial input to communicate 10-bit data and a 10-bit countdown and “stop at 0” counter to provide

1024 time intervals. Registers [35] are digital logic circuits which store data in the form of binary

numbers. Shift registers [35] are the registers that load the input bit into the most significant bit

(MSB) or least significant bit (LSB) of the register value and “shift” the stored binary number by

one position. The counter starts from the 10-bit input dose value as the initial value and the value

decreases by 1 at every clock cycle until the counter value reaches zero at which point the counter

stops.

The beam logics require the supply voltage (VDD) and the ground (GND) as inputs. Besides

the supply input (VDD, GND), a beam logic requires a clock signal input, a reset signal input,

an unload signal input to load the counter with the shift register value as the initial value, and an
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Figure 2.3: Digital beam logic associated with the control circuit of each beam. Reprinted with
permission from [1].

enable (trigger) input signal to start the counter. These input signals should be synchronous and

broadcast to all the control circuits of the beams, as simultaneous control of all the beams requires

that all the counters start at the same clock cycle. Here a synchronous signal means the input

signal (reset, unload, enable) values are sampled only at the positive edge of the clock signal. Let

si and so respectively denote the serial input and the serial output to the shift register; they can be

alternately implemented with a 10-bit parallel input and a 10-bit parallel output [31, 36]. An extra

digital input shift signal is also provided to control the shift register, i.e., the data is moved in/out

of the shift register only when the shift signal is high (1). The shift signal is common to all the

control circuits in a row of the array.

As shown in Figure 2.2 the beams are organized in the shape of a grid with rows and columns.

We connect the control circuits of a row of beams in a beam array for the communication of the

10-bit dose data. The serial/parallel output of one control circuit is connected to the serial/parallel
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Figure 2.4: Expanded view of the digital beam logic associated with the control circuit of each
beam. Reprinted with permission from [1].
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input of the next control circuit [31, 36]. This allows the data to be shifted within a chain of

beam logics. Figure 2.5 illustrates the connection of four beam logics in a row. This type of

communication system removes the need for addressing each 10-bit dose value to a control logic.

Let N be the number of beams in a row. When no compression is used N ∗ 10 clock cycles are

required to transfer the 10-bit data to each beam logic in a row. The clock, shift, unload, reset,

enable are all common input signals to each beam logic block in a row. Each beam logic also

has a separate 10-bit output count which is the counter value and serves as the timer for the beam

deflection.

The beam array consists of multiple rows of beams in parallel [31, 36]. The clock, enable,

unload and reset signals are common to all the rows in the beam array. Here, all the beam logic

blocks receive the same set of signals to start all the counters at a given time instance [31]. The

shift signals and the serial inputs for the data are different for each row of beams. Separate serial

inputs and shift signals for each row of beams are required for a data transfer protocol without

addressing.

2.2 Beam Arrays, Scanning Strategy and Compression Constraints

The IMS multibeam system uses a beam size of 20 nm or 10 nm with 4-bit dose control for

each beam. It also has 5 nm × 5 nm pixels on the pixel grid at which beams write. In the IMS

system the beams overlap to provide 241 or 61 gray levels for the 5 nm×5 nm pixels depending on

the beam size. The NuFlare multibeam system has a 10 nm beam size and 10 nm × 10 nm pixels

on the pixel grid. Each beam has 10-bit dose control. In contrast with the IMS system, the beams

do not overlap on the pixel grid to create the higher dose levels. Therefore each 10 nm × 10 nm

pixel has 1024 gray levels assuming single-pass writing. For both systems, the distance between

the individual beams in the X- and Y-directions is 160 nm, i.e., 16 pixels in the NuFlare multibeam

system and 32 pixels in the IMS multibeam system.

To investigate the effect of parallelism we study arrays of varying dimensions. The beam arrays

we consider have dimension 2N×(2N−1) beams; i.e., they form a matrix with 2N rows and 2N−1

columns, where N is an odd integer. The center to center distance between neighboring beams in
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Figure 2.5: Row of beam logics connected in a chain by the si inputs and the so outputs. Reprinted
with permission from [1].
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a row or a column is 20.5(N+1) pixels for the IMS multibeam system and 20.5(N−1) for the NuFlare

multibeam system; observe that this increases as N grows. Furthermore, the case where N = 9

corresponds to an array with 512 × 511 beams and a center to center distance of 32 pixels in the

IMS multibeam system and 16 pixels in the NuFlare multibeam system. This case is closest to the

real multibeam arrays of size 512× 512.

The multibeam array system deflects the entire beam array as a unit. In the IMS case, while the

distance between neighboring beams is 20.5(N+1) pixels the system as a unit must write every pixel.

A raster scan might be a first guess for a scanning strategy, but this approach would either lead to

pixels written by more than four beams in the 10 nm case or sixteen beams in the 20 nm case or to

large shifts of the beam array. Therefore, we instead propose a zigzag scanning strategy described

in Table 2.1 and depicted (for the first three steps) in Figure 2.6 in the case of an 8× 7 beam array

with 10 nm beams. This approach ensures that pixels are written four times for the case of a 10

nm beam and sixteen times for the case of 20 nm beams. Most of the time the beam array will

move a distance of 0.5d pixels in the X-direction and +1 or -1 pixel in the Y-direction. This can

be implemented by simultaneously controlling the stage and beam array so that the stage moves in

the X-direction and the beam array is deflected in the Y-direction. Observe that the distribution of

sequences of 4-bit dose values to each beam will depend on the scanning strategy.

Since the NuFlare system has no beam overlaps, its horizontal and vertical movement step sizes

will differ from the zigzag scanning strategy of the IMS system. In Table 2.2 we propose a zigzag

strategy for our family of multibeam arrays inspired by the NuFlare multibeam system.

We believe the zigzag scanning strategy requires less deflection of the multibeam array and

covers the entire scanning area in fewer steps. A reduction in the deflection of the beam array could

be desirable to reduce the settling time and increase the frequency of the beam array deflection.

Furthermore, the use of a scanning strategy with predefined steps would help in reducing the beam

array deflection data because it could be calculated in real time similar to raster scanning. It differs

from those for the vector scanning strategies used in variable-shaped beam systems, where the

coordinates of positions must be specified.
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Figure 2.6: The scanning strategy for an 8 × 7 beam array on a 5 nm pixel grid. The numbers
represent the positions of the 56 beams. Gray, green and red respectively represent steps 1, 2 and
3 of the beam array movement. Reprinted with permission from [2].
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Table 2.1: Overview of scanning strategy for the IMS-inspired family of beam arrays. Reprinted
with permission from [2].

Array Number of Distance Horizontal Vertical movement
beams in pixels movement of of array from

between the array from one one writing to the
centers of two writing to the next within a “stripe”
neighboring next within a
beams in the “stripe”

same row
or column

2N×(2N − 1), 2N(2N − 1) d =
√

2N+1 d
2

or d
2
− 1 pixels +1 or -1 pixels

N odd depending on depending on position
the iteration of array within zigzag

2 × 1 2 2 0 every 2nd Progresses in the sequence
iteration, n, n+ 1, n+ 2,

+1 pixel for all n+ 1, n, n+ 1, . . .
other iterations for some n

8 × 7 56 4 +1 every 4th Progresses in the sequence
iteration, n, n+ 1, . . . , n+ 4,

+2 pixels for all n+ 3, . . . , n+ 1, n
other iterations n+ 1, n+ 2, . . .

for some n
32 × 31 992 8 +3 every 8th Progresses in the sequence

iteration, n, n+ 1, . . . , n+ 8,
+4 pixels for all n+ 7, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n
128 × 127 16256 16 +7 every 16th Progresses in the sequence

iteration, n, n+ 1, . . . , n+ 16,
+8 pixels for all n+ 15, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n
512 × 511 261632 32 +15 every 32th Progresses in the sequence

iteration, n, n+ 1, . . . , n+ 32,
+16 pixels for all n+ 31, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n
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Table 2.2: Overview of scanning strategy for the NuFlare-inspired family of beam arrays.
Reprinted with permission from [1].

Array Number of Distance Horizontal Vertical movement
beams in pixels movement of of array from

between the array from one one writing to the
centers of two writing to the next within a “stripe”
neighboring next within a
beams in the “stripe”

same row
or column

2N×(2N − 1) 2N(2N − 1) d =
√

2N−1 2d or (2d− 1) +1 or -1 pixels
N odd pixels depending depending on position

on the iteration of array within zigzag

8 × 7 56 2 +3 every 2nd Progresses in the sequence
iteration, n, n+ 1, n+ 2,

+4 pixels for all n+ 1, n, n+ 1, . . .
other iterations for some n

32 × 31 992 4 +7 every 4th Progresses in the sequence
iteration, n, n+ 1, . . . , n+ 4,

+8 pixels for all n+ 3, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n

128 × 127 16256 8 +15 every 8th Progresses in the sequence
iteration, n, n+ 1, . . . , n+ 8,

+16 pixels for all n+ 7, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n

512 × 511 261632 16 +31 every 16th Progresses in the sequence
iteration, n, n+ 1, . . . , n+ 16,

+32 pixels for all n+ 15, . . . , n+ 1, n,
other iterations n+ 1, n+ 2, . . .

for some n
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For any choice of scanning strategy, after writing one set of beam shots the entire beam array

moves to a new position. This imposes a synchronization constraint on the beam array as the data

for all the beams should be available before the beam array moves to a new position. If we have

a 512 × 512 beam array then the entire beam array would require 2621440 bits at one position as

each beam needs 10-bit data and there are 262144 beams. The next set of 2621440 bits of 262144

beams will be needed when the beam array moves to a new position. We can consider the data

of each set of 262144 beams as a frame of a grayscale “video” with dimension 512 × 512. Any

compression scheme and decompression architecture should operate with these parameters. The

decompression scheme should be able to decode the frames in their given sequence. The data

inside the frames may be compressed in a variety of ways as long as the synchronization constraint

is satisfied. The “video” analogy and constraints also allows the separate and parallel compression

of each frame as long as the sequence of compressed frames doesn’t change. Thousands of frames

can be potentially compressed in parallel to reduce compression time. However, there are some

differences between this communication problem and traditional “video” communication; the latter

application can take advantage of inter/intra-frame dependencies. For our problem there are weaker

intra-frame dependencies in the data because of the large distance between the beams in a beam

array; for example in a 512× 511 beam array the distance between successive beams in either the

X- or Y-direction is 16 pixels. The inter-frame dependencies are mainly governed by the choice

of scanning strategy. Our scanning strategy is described in Table 2.2. Observe that the distance a

beam moves from one frame to the next in the X-direction is large, so there does not appear to be

any appreciable inter-frame dependencies for our scanning strategy. However, a scanning strategy

which more closely resembles raster scanning might provide inter-frame dependencies.

Simple design rules [37] require a large fraction of the pixels in a typical mask layer to have

pixel value of zero; i.e., the data is sparse. Figure 2.7 illustrates a pattern without correction in

which 50% of the pixel values are zeros. Complementary lithography and multiple patterning

further contribute to the prevalence of sparse data, and our data compression scheme is designed

to take advantage of the existing sparsity within mask data.
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Figure 2.7: 50% sparsity with simple design rules. λ is equal to the half pitch. Reprinted with
permission from [1].

2.3 The Datapath Problem and Data Compression

The largest beam array we study is a 512 × 511 beam array, and it has 261,632 beams. Since

each beam requires a 10-bit shot dose data a total of 2,616,320 bits are used at each step of the beam

array. If the beam array can be deflected at 1 MHz, i.e., if each step can be completed in 1 µs, then

the beam array processes approximately 2.38 terabits of shot data per second. Data processing and

uncompressed data transmission at this speed would not be an effective communication strategy.

The current datapath architecture of these multibeam systems shown in Figure 2.8(a) is ill

equipped to handle throughput requirements. In the current datapath architecture the GDSII or

OASIS formated data is converted into a tool-specific format and transferred to the mask writing

tool. Data processing is next performed online to do rasterization, proximity effect corrections

and other corrections which result in pixel data and beam deflection data. The data processing

capability and datapath communication capacity affect the efficiency of this kind of datapath. IMS

and NuFlare have had some success in addressing throughput requirements by parallel processing

[14, 15] using graphical processing units (GPUs) and by increasing the communication capacity

[9, 15] of the datapath. However, these approaches have limitations. In computer architecture Am-
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dahl’s law [38] states that the speedup or throughput gain for the execution of a task with increased

resources is always limited by the fraction of the task that cannot benefit from the improvement.

In the case of parallel processing the throughput gain is limited by the part which cannot be par-

allelized. Let Speedup denote the throughput gain, Fractionenhanced be the proportion of the

task benefiting from improvements and Speedupenhanced be the speedup in Fractionenhanced by

parallelism or other improvements. Then

Speedup =
1

(1− Fractionenhanced) +
Fractionenhanced
Speedupenhanced

. (2.1)

Table 2.3: The effect of an increase in datapath resources in recent IMS mask writing tools [9].
Reprinted with permission from [1].

Tools Datapath Mask write time

100 mm × 130 mm

IMS MBMW-101 Beta 12 G 15 hours/mask

IMS MBMW-101 HVM 120 G 10 hours/mask

Observe from Table 2.3 that an increase in datapath speed by a factor of 10 improves the mask

writing time only by a factor of 1.5. Part of the throughput bottleneck can be attributed to the time

needed to write the pixel data. Our objective is to improve the communication and computational

efficiency of the “aperture array-based” multibeam mask writers. In this work we introduce a

datapath architecture (see Figure 2.8(b)) where the parallel decompression portion is inspired by

the very large scale integrated circuit (VLSI) testing literature [39]; this architecture addresses the

synchronization requirement among the decoders and shows how to reduce the number of clock

cycles needed to transfer typical mask data. We also recommend that the data be compressed by
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Figure 2.8: (a) Current datapath architecture. (b) Proposed datapath architecture. Reprinted with
permission from [1].

custom-designed parallel compression algorithms to decrease the processing time, memory and file

sizes. In addition to data decompression our proposed online processing includes the generation

of deflection data from a predefined scanning strategy (see Figure 2.8(b)).

2.4 Previous Work

For direct-write electron beam lithography systems there have been multiple proposals of data-

paths in which a major component of the data processing and the generation of pixel-based data is

performed offline. Dai and Zakhor [40, 41] initiated the study of the communication and compu-

tation efficiency within datapaths by considering the hardware constraints of some architectures,

and they proposed the Block C4 layout image compression algorithm. Yang and Savari [42, 43]

proposed the Corner2 algorithm and custom run-length encoding schemes to reduce the hardware
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complexity and improve the decoding speeds, and Chaudhary, Luo, Savari and McCay [44] mod-

ified this algorithm for proximity-corrected grayscale data. Carroll et al. [24] implemented a

variation of a Lempel-Ziv [45, 46] data compression algorithm in the Reflective Electron Beam

Lithography (REBL) system [23]. We began to consider the impact of parallelism on aperture

array-based multibeam mask writers in References [2] and [26]. Our inspiration in those papers

was the IMS mask writer. While those papers proposed the use of multiple simple run-length

decoders they did not examine how to coordinate the operation of the decoders to meet existing

device constraints. Furthermore, the data transfer to and the data fan-out at the control circuitry of

the blanking aperture array use metal transmission lines operating at low clock frequencies [15],

and earlier papers did not consider the number of clock cycles in the communication of data.

2.5 A Compression Scheme and Decompression Architecture

To solve the datapath problem, we first discuss a simple run-length code for data compression

and explain the decompression architecture for it. We will later propose a more effective scheme.

As we mentioned earlier in Section 2.2, the majority of 10-bit symbols are zeros. In our problem

we choose to represent a 10-bit zero symbol by a single-bit “1” and to encode the 10-bit nonzero

symbols by the 11-bit string which concatenates the prefix “0” to the original 10-bit string in order

to reduce data volumes and overall clock cycles. For example, two encodings of 10-bit symbols

are illustrated below.

1101011010−−−−−−−−−−− > 01101011010

0000000000−−−−−−−−−−− > 1

Observe that the maximum possible compression ratio of this simple scheme is 10, which

occurs when all symbols are zero. The worst possible compression ratio is 10/11 = 0.91, which

occurs when all symbols are nonzero.

The data for multiple beams is arranged in a column by column fashion. If we take Figure 2.2

as a reference in the numbering convention of a beam array, then the data is arranged in a “frame”
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in the following sequence. Let Ui be the symbol or beam dose associated with beam number i. For

a beam array with sixteen beams organized in four rows and four columns U0 is the first symbol

in a “frame” and U15 is the last symbol. After this data is written and the beam array moves a

new “frame” starts. A similar strategy is applied to any size of beam array. The sequence of

uncompressed symbols is given below.

U0, U4, U8, U12, U1, U5, U9, U13, U2, U6, U10, U14, U3, U7, U11, U15

To compare different communication schemes we compare the number of clock cycles they use

on the hardware. We first look at the number of clock cycles for uncompressed data transmission.

The serial communication of n 10-bit symbols U0, · · · , Un−1 to n beams with a single bit wire will

use n ∗ 10 clock cycles. One could alternatively use n ∗ 10 bit parallel communication wires to

communicate data to all the beams, which should ideally take 1 clock cycle. The parallel commu-

nication will not always be helpful as n ∗ 10 bits must be collected from a capacity constrained

channel and stored before they are transmitted to the n beams. The process of collection and stor-

age of data from a serial source may offset the advantage of parallel communication, and there

will be a significant and undesirable increase in the hardware on the deflection plate. There can be

many degrees of parallelism between these two extremes but for uncompressed data transfer all of

them have implementation trade-offs.

We know from the previous discussion that compressed symbol Ci corresponding to an uncom-

pressed symbol Ui will consist of either a single bit string or an eleven-bit string.

Ci =


1, if Ui = 0000000000

0Ui if Ui 6= 0000000000

(2.2)

The compressed string is communicated to the side pad digital circuit and after that it needs

to be decompressed and transferred to the individual beams. An effective communication strategy

should not only compress the data but should also reduce clock cycles by means of data decom-
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pression.

The compressed string C0, · · · , Cn−1 can be decoded in multiple ways. We first look at the

case when a single decoder is used to decompress the data as shown in Figure 9(a). The function

of the decoder is to collect the Ci symbols and generate the Ui symbols. When the input Ci symbol

is eleven bits long the transmission through a one-bit wire to the decoder will take eleven clock

cycles and the Ui symbol can be generated in the last ten of those eleven clock cycles. When the

input Ci symbol is one bit long the transmission takes only one cycle and generation of the Ui takes

the next ten cycles. Hence a single decoder always takes eleven clock cycles to generate each Ui

from any Ci symbol. This shows that a single decoder decreases throughput by taking eleven clock

cycles instead of the ten needed in the uncompressed case.

In the second case we have two decoders as shown in Figure 2.9(b). We pass every other Ci

to each decoder. Since the Ci symbols are of variable lengths, we need some additional hardware

to detect the symbol length. The detector in Figure 2.9(b) detects the length of Ci by checking

the prefix and directs the entire symbol to the corresponding decoder. Consider the special case of

two symbols C1 = 1 and C2 = 1; they can be decompressed in parallel as shown in Figure 2.9(c).

The parallel decompression would only take thirteen cycle, i.e., two cycles for the communication

of the compressed symbols to the decoders and eleven cycles for parallel decompression. Two

decoders provide the opportunity for the parallel decompression of the Ci = 1 symbols. Any

other combination of symbols will not reduce the number of clock cycles. We also assume that the

number of decoders is known in advance.

We can extend and generalize this approach to multiple decoders. Multiple decoders provide

increased opportunity for parallel decompression of the Ci = 1 symbols. This approach should

increase the parallelism and communication efficiency for the uncompressed sparse data at the cost

of increased hardware complexity. We can use the set of k decoders to decompress and transfer

data to k nodes as shown in Figure 2.9(d). The compressed symbols Ci of length one bit can again

be decompressed in parallel, while the Ci of length eleven bit are decompressed serially. The Ci

of eleven bit length take eleven cycles and the Ci of one bit take one cycle plus 10 cycles every
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Table 2.4: Simple compression scheme and clock cycles for decompression. Reprinted with per-
mission from [1].

Symbol Explanation Prefix Suffix Cycles to Decode Cycles for
uncompressed
data transfer

Z 0000000000 1 - 1 + (10 every column) 10

NZ 10-bit value 0 10-bit value 11 10

Table 2.5: Extended Compression Scheme for M (rows) × N (columns) array. Reprinted with
permission from [1].

Symbol Explanation Prefix Suffix Cycles to Decode Cycles for
uncompressed
data transfer

AZF all zero frame 001 - 3 M ∗N ∗ 10

AZC all zero column 000 - M + 10 + 3 M ∗ 10

Z 0000000000 1 - 1 + (10 every column) 10

NZ 10-bit value 01 10-bit value 12 10

column because of parallel decompression. The simple compression scheme is summarized in

Table 2.4.

Figure 2.10 shows the logical architecture of the parallel decompression combined with the

existing deflection plate architecture. We assume the deflection plate in Figure 2.10 consists of

four columns and k rows. The set of k decoders are connected to the head column of the beam

logic and they transmit the U1, · · · , Uk symbols to the deflection plate. The decompressed symbols

are shifted further to their desired beam logic by the chain of shift registers.

If the sole goal of the data compression scheme was the effective communication of data from

the storage device to the side pad then a more complex compression scheme would better serve
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Figure 2.9: Multiple ways of decoding. (a) single decoder, (b) two decoders, (c) two decoders
working in parallel when both compressed symbols are “1”, (d) k decoders for data decompression.
Reprinted with permission from [1].
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Figure 2.10: Logical decompression architecture with the deflection plate. Reprinted with permis-
sion from [1].

the purpose. Data compression is typically used to reduce the data transmission bottleneck from

capacity constrained channels. The data communication from a large storage device to the side pad

digital circuit of an FPGA or ASIC is also capacity constrained. Our simple compression scheme

will mitigate the data communication problem. We next extend the compression scheme as shown

in Table 5 to improve the compression ratio and decrease clock cycles. We introduce two extra

symbols, namely, an all zero frame (AZF) with prefix 001 and an all zero column (AZC) with

prefix 000. The all zero frame signifies that all the pixel values in the video frame have zero value

which occurs when the M ∗N beam shots all have zero dose value. In this case, the shot data does

not need to be communicated to the deflection plate as the array should simply move to the next

position. In uncompressed data transfer M ∗N ∗ 10 clock cycles are needed but the AZF symbol

instructs the beam array to move to the next position. The AZF symbol can be detected in 3 clock

cycles. The AZC symbol signifies that all the pixels in a column of a frame have zero value. In

this case, all the zero pixels can be generated in parallel according to our previous discussion of

the parallel architecture. It takes 3 clock cycles to decode the AZC symbol and M + 10 clock

cycles for the parallel generation of zero symbols for a column using the parallel architecture. The
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Figure 2.11: Compression of four frames in parallel on four different threads of execution.
Reprinted with permission from [1].

zero symbol (Z) has the same representation and processing as in the simple compression scheme.

The nonzero symbol (NZ) now uses 12 bits with a prefix of 01 and 12 cycles to decode. A similar

parallel architecture with minor changes can be applied to the extended compression scheme.

The compression of data should happen offline as the compression algorithm for the extended

scheme can run on thousands of processors. According to our “video” analogy each frame can be

compressed on a separate thread of execution. Since there is no dependency between the frames in

this compression algorithm, the parallel compression of data should provide nearly linear speedup

(execution time inversely proportional to the number of processors). Figure 2.11 shows the com-

pression of four frames in parallel on four different threads of execution.

2.6 Experiments and Results

We performed our experiments on two sets of data using the extended compression scheme.

One image is an inverse lithography technology (ILT) mask motif pattern of contact holes with a

smallest element of 80 nm. This pattern was enlarged by repeating it to generate a layout image of

dimension 30017 × 33300 pixels with each pixel having dimensions of 10 nm × 10 nm. We also
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produce results for 23 layers of an image compression block (ICB) based on the FREEPDK45 45

nm library with a smallest element of 60 nm. The image size for the image compression block

(ICB) data is 91209×90970 pixels with each pixel having dimensions of 10 nm×10 nm. We used

the electron beam proximity effect correction algorithm of GenISys, Inc., BEAMER_v4.6.2_x64,

to generate proximity corrected images with 256 shot dose levels. Each pixel’s shot dose level was

multiplied by four to create 1024 dose levels. This does not change the nature of the data for our

compression algorithm as the nonzero/zero doses remain nonzero/zero.

The images were divided into stripes and frames according to the scanning strategy of Table 2.2.

Each frame was subsequently compressed according to the extended compression scheme. Two

separate implementations of algorithms were done. In one implementation the frame generation

and the data compression were done serially. In the other implementation the frame generation

and the data compression were done in parallel. The implementations of the frame creation and

compression algorithms are in C++, and the parallelization was done by the OpenMP library.

The computation of the number of cycles to decode is implemented in C++. The experiments

were performed on Intel i7-2600 CPU processors at 3.40GHz with 8 GB of RAM on a Windows7

Enterprise operating system. The processor contains four cores.

Table 2.6 shows the results for the compression ratios and the speedups. The compression

speedup reported is the ratio of the execution times of the serial and parallel compression algo-

rithms without write to memory. The decompression speedup reported is the ratio of the computed

uncompressed transfer cycles to the computed decode cycles. The uncompressed data consists of

the original image data and the extra zero padding for the frames at the edge of the image. The

definition of the compression ratio is as follows

Uncompressed data = Original data + Zero padding data for edge frames, (2.3)
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Table 2.6: Data compression ratios and speedups with parallel decompression architecture and
parallel compression speedup. Reprinted with permission from [1].

Data type and Uncompressed Compressed Compression Decompression Compression

beam array ratio Speedup Speedup

(M ×N ) (MB) (MB) (8 Threads)

23 layers ICB 230471.5 3141.4 73.4 24.9 3.2
(128× 127)

23 layers ICB 267885.6 4372.3 61.3 22.4 2.4
(512× 511)

2 ILT layers 2500.4 262.6 9.5 6.6 3.1
(128× 127)

2 ILT layers 3730.2 309.1 12.1 7.6 2.0
(512× 511)

Compression ratio =
Uncompressed data size

Compressed data size
. (2.4)

Figure 2.12 shows a plot of the compression speedup with respect to the number of threads.

We can see that the compression speedup increases with more threads. It is not a linear speedup in

the number of threads probably due to the frame generation part of the algorithm and the memory

accesses. The speedup of a single thread is not exactly equal to one as the serial and parallel codes

were different. The compression ratio and decompression throughput are higher for the ICB data

as that data is more sparse. In the ILT case the throughput and compression ratios are higher for

the 512 × 511 beam array compared to the 128 × 127 beam array while the reverse occurs for

the ICB data. Observe that the 512 × 511 beam array has a larger frame size and column size

than the 128 × 127 beam array, and the probability of the AZF and AZC symbols are lower for a

larger beam array when the sparsity is lower. The non-uniformity in decompression clock cycles

per frame could be a concern for some datapath systems. We report the clock cycles per frame

results in Figure 2.13 and Figure 2.14. Figure 2.13 shows the histogram of clock cycles that every

frame takes for Layer 1 and Layer 2 of the ILT data with a 128 × 127 beam array. Figure 2.14
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Figure 2.12: Compression speedup with respect to the number of threads in the quadcore machine.
Reprinted with permission from [1].
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Figure 2.13: Histograms of clock cycles in the ILT data with a 128× 127 beam array. (a) Layer 1.
(b) Layer 2. Reprinted with permission from [1].

shows the plot of clock cycles taken by each frame in one stripe of Layer 2 of the ILT data with a

128×127 beam array. Layer 1 has 99.6% sparsity and Layer 2 has 92.2% sparsity. We can see that

even for Layer 2 the maximum number of clock cycles taken by any frame stays well below the

maximum possible cycles in the uncompressed data communication case (128× 127× 10 cycles)

or the compressed data communication case (128× 127× 12 cycles).
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Figure 2.14: Clock cycles taken by the frames in one stripe of Layer 2 of the ILT data with a
128× 127 beam array. Reprinted with permission from [1].
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3. LINE ROUGHNESS ESTIMATION AND POISSON DENOISING IN SEM IMAGES

USING DEEP LEARNING ∗

The semiconductor industry has demanding requirements for the accuracy and repeatability

of nanostructure dimension measurements. The roughness of nanostructures, like lines, is a vital

measurement to determine the quality of the lithography process. Scanning electron microscopy

is the primary process to collect nanostructure geometry measurements. In SEM microscopy,

the interaction of an electron beam with nanostructures forms a SEM image. A high energy or

high dose electron beam produces low noise SEM images, but it increases acquisition time and

damages the nanostructures. Conversely, low dose SEM images reduce nanostructure shrinkage

and acquisition time, but the estimation of edges becomes difficult due to high Poisson noise.

Additionally, the edges of nanostructures are brighter, and the region of increased brightness can

be some nanometers in extent. The edge location in this bright region is unknown. The edges are

brighter because secondary electrons have high escape probability at the edges. Figure 3.1 shows

an example of a noisy SEM image of a line. Novel approaches are needed to estimate line edge

roughness (LER) and line width roughness (LWR) from these types of images.

There have been significant advances in machine learning in the last decade. Deep convolu-

tional neural networks [47, 48] can solve natural image classification problems [49, 48] and achieve

superhuman performance on games [50] because they are effective at learning complex nonlinear

models [48, 51]. For natural images corrupted by Gaussian noise, the state of the art in image

denoising is attained by deep neural networks [7, 52]. Since semiconductor metrology has impor-

tant inverse problems, deep supervised learning has the potential to advance the discipline. In this

chapter, we propose the use of deep supervised learning for the estimation of line edge roughness

(LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images.

∗Part of the data reported in this chapter is reprinted with permission from N. Chaudhary, S. A. Savari, and S.
S. Yeddulapalli, “Line roughness estimation and Poisson denoising in scanning electron microscope images using
deep learning,” Journal of Micro/ Nanolithography, MEMS, and MOEMS, vol. 18, no. 2, 024001, 2019. DOI:
https://doi.org/10.1117/1.JMM.18.2.024001, Copyright [2019] by SPIE.

38



Figure 3.1: A noisy SEM image of dimension 64× 1024. The image has one line with two edges.
The aspect ratio of the image has been scaled for a better view. Reprinted with permission from
[3].

We simulate supervised learning datasets of rough line SEM images constructed by means of the

Thorsos method [53] and the ARTIMAGEN [54, 55] library developed by the National Institute

of Standards and Technology. We also devise multiple separate deep convolutional neural net-

works called SEMNet, EDGENet, LineNet1, and LineNet2, each of which has 17 convolutional

layers, 16 batch normalization layers and 16 dropout layers. SEMNet performs the Poisson de-

noising of SEM images. EDGENet directly estimates edge geometries from noisy SEM images.

The LineNet1 and LineNet2 networks perform simultaneous denoising and edge estimation from

single-line and multiple-line SEM images. Furthermore, we use multiple visualization tools to

improve our understanding of the LineNet1 CNN and motivate the study of variations of LineNet1

with fewer neural network layers.

3.1 Deep Convolutional Neural Networks

Supervised machine learning is a branch of artificial intelligence which is well known for tack-

ling classification problems. More generally, it is an approach to the problem of fitting parametric
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functions to sets of input/output data pairs. Let us assume xi is an input vector/scalar and yi is the

corresponding output vector/scalar. Suppose that the true relationship between the output and the

input can be described by a function f ∗(x), i.e.,

yi = f ∗(xi). (3.1)

Machine learning algorithms try to approximate the function f ∗(x) based on some loss criterion.

For example, consider linear regression [56] with mean squared error (MSE) as the loss; here the

algorithm searches for a linear function that minimizes the mean squared error over the training

data. In particular, given a weight matrixW and a bias vector b the corresponding parametric linear

function is

f(x) = Wx+ b, (3.2)

and the mean squared error (MSE) for N input/output data points is defined by

MSE =
1

N

N∑
i=1

(yi − f(xi))2. (3.3)

The solution to the linear regression problem minimizes the preceding loss over all of the data

points (xi, yi) and the parameters W and b; i.e.,

f ∗(x) ≈ g∗(x) = min
MSE (W, b)

f(x). (3.4)

Many machine learning approaches can be understood as generalizations of the previous prob-

lem. Numerous complex systems have a nonlinear relationship between input/output pairs; hence

we wish to extend the types of estimates in (3.2) to parametric nonlinear functions. The study of

feedforward neural networks has established that in various practical problems it is useful to focus

on the composition of simple nonlinear functions. The rectified linear unit (ReLU) [47] is a widely
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Figure 3.2: A three-layer neural network. Reprinted with permission from [4].

used nonlinearity which is defined by the following half wave rectifier:

y = max(0, x) (Rectified linear unit (ReLU)). (3.5)

Figure 3.2 illustrates a three-layer neural network which builds on the preceding ideas. Define

weight matrices W1, W2, W3 and bias vectors b1, b2, b3. We can define a neural network with

rectified linear unit (ReLU) nonlinearity to have the following form [57]:

fNN(x) = W3 max(0,W2 max(0,W1x+ b1) + b2) + b3. (3.6)

Observe that this function is the composition of three simpler nonlinearities or layers; i.e.,

fNN(x) = f (3)(f (2)(f (1)(x))). (3.7)

A layer is said to be fully connected if all the elements of its weight matrix and bias vector are

allowed to vary.

General feedforward neural networks are parametric nonlinear functions which are the com-

positions of simple nonlinear functions. We focus here on ReLU nonlinearities, but alternate non-

linearities like the tanh function have also been implemented in neural network architectures. As-

suming the three layers in Figure 3.2 are fully connected, the counterpart to equation (3.4) for that
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neural network function is

f ∗(x) ≈ g∗(x) = min
MSE (W1, W2, W3, b1, b2, b3)

fNN(x). (3.8)

Our focus will be on neural networks, but we mention that there are alternate approaches to

machine learning such as linear support vector machines [58] and logistic regression which extend

the basic linear model in different ways.

For deep neural network architectures, i.e., neural networks with several layers, the optimiza-

tion problem in (3.8) and its extensions to networks with more layers are not convex, and the

determination of globally optimum solutions is computationally intractable. Stochastic gradient

descent [59] by means of the backpropagation algorithm [57] is the standard approach to obtaining

good solutions for deep neural networks. Recent theoretical and empirical research suggests that

the solutions obtained for deep neural networks are nearly always of similar quality independent

of initial conditions [48, 60, 61].

The weight matrix dimensions in a neural network may vary by layer. In addition to fully-

connected layers, neural network architectures can implement convolutional [62] layers, batch-

normalization [63] layers and dropout [64] layers; we will describe these variations in the subsec-

tions below. In recent years neural networks have attained human-level performance on important

problems [47, 49, 50] through increases in dataset sizes and extensive research on architectures

[48]. One key development has been the replacement of some fully-connected layers with other

types of layers such as convolutional [62] layers. Another insight is that deeper networks are often

more effective at learning complex physical tasks [47, 49] because they offer the expression of

more nonlinearities and hierarchical structure [48, 51], and there are neural networks with more

than 100 layers [49]. A third major advance has come with the use of ReLU nonlinearities and

residual networks [49]. Deep convolutional neural networks are now used in self-driving cars,

image classification, and natural language processing, and they offer superhuman performance on

board games [50].
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Figure 3.3: Convolutional layer with 64 filters. Reprinted with permission from [4].

3.1.1 Convolutional Layers

Recall that in a fully-connected neural network architecture each layer receives an input vector,

multiplies it with a weight matrix and passes it as input to the next layer. The widths of these layers

and the size of the input vector determine the dimensions of the weight matrices, and for image

vectors the size of the problem is unwieldy [57]. Convolutional layers constrain the number of

weights in an effective way by first arranging the input vector of a layer into a three-dimensional

volume with dimensions width, height, and depth and by next performing convolution operations

in each layer with multiple three-dimensional filters. Figure 3.3 illustrates a convolutional layer

with 64 filters. The weights associated with these filters are the parameters of a layer. For example,

color images use three values or channels per pixel to provide color information. An input color

image of dimension 100 × 100 × 3 could be convolved with 64 filters of dimension 3 × 3 × 3 in

a convolutional layer. That layer would have 64 × 3 × 3 × 3 trainable weights and 64 additional

trainable bias terms, and the output volume of that layer would have dimensions 100× 100× 64.

3.1.2 Dropout and Overfitting

Overfitting is a modeling error where a complicated function closely fits a small dataset. For

example, fitting a cubic function to a linear dataset with a small number of points would result in
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overfitting. Regularization techniques like L1 and L2 regularization [65] reduce the possibility of

overfitting a neural network architecture by constraining the norms of weight matrices. Dropout

layers [64] which randomly drop network units and their connections during the training process

force neural networks to learn “generic” features of training data and have become an important

regularization technique to prevent the overfitting of deep neural networks.

3.1.3 Batch Normalization

In neural networks the stochastic gradient descent procedure performs gradient steps over small

portions of the training data called batches. Normalizing the data to convert it into a zero mean and

unit variance dataset facilitates the training of deep neural networks because it enables the training

process to be more robust to the initialization of weights and the choice of the step size/learning

rate used in stochastic gradient descent; normalization also provides some regularization [63]. A

batch normalization layer [63] of a neural network normalizes the inputs to the next layer.

3.1.4 SEMNet

We devised our deep neural network named SEMNet to estimate denoised rough line images

from noisy images with arbitrary levels of Poisson noise. SEMNet consists of 17 convolutional

layers, 16 batch normalization layers and 16 dropout layers for regularization. SEMNet differs

from earlier neural networks which were devised for the denoising of natural images in important

ways; i.e., it was trained on relatively large SEM images as opposed to relatively small natural

images and it incorporates dropout layers. Each convolutional layer of SEMNet except for the last

layer has 64 filters of dimension (3× 3× input depth) with bias terms and is followed by a batch

normalization layer and a dropout layer with dropout probability of 0.2. The last convolutional

layer has only one filter to output a grayscale image. Figure 3.4 illustrates the output volume or

tensor obtained after each convolutional layer. SEMNet inputs a grayscale image with dimensions

64 × 1024 (width × height) and outputs another grayscale image with dimensions 64 × 1024.

SEMNet has 559,233 total parameters out of which 557,185 are trainable parameters; the remain-

ing parameters are associated with the batch normalization layers. We use the mean squared error
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Figure 3.4: The 17 convolutional layers of SEMNet, which inputs a noisy SEM image of dimension
64× 1024 and outputs a denoised image of dimension 64× 1024. Reprinted with permission from
[4].

(MSE) loss criterion for regression with SEMNet. Let xi be the input noisy image matrix of di-

mension width × height, let f(·) be the neural network function predicting the output denoised

image of the same dimensions, and let yi be the target original image matrix of those dimensions.

The Frobenius norm of an m× n matrix A with entries ai,j is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j|2. (3.9)

The mean squared error (MSE) loss for a collection of N image matrix pairs (xi, yi) is defined by

MSE =
1

N × width× height

N∑
i=1

‖yi − f(xi)‖2F . (3.10)

The proposed SEMNet architecture is one approach to denoising which has not been optimized.

It is possible that the architecture could be made more efficient with techniques like downsampling

or by changing the number of layers and/or the number of filters.

45



3.1.5 EDGENet

Our EDGENet neural network predicts two line edge positions from a 64 × 1024 noisy SEM

image with pixel size 0.5 × 2 nm and containing one rough line as shown in Figure 3.1. The

output of EDGENet is a 2-dimension matrix of size 2 × 1024 which contains the left and right

edge positions of the line. The edge positions are reported with pixel-level precision and not with

subpixel-level precision. EDGENet has seventeen convolutional layer with filter dimension of 3×3

and depth dimension equal to the depth of the input volume or tensor. The first four convolutional

layers each have 64 filters, the next four convolutional layers each have 128 filters, the following

four convolutional layers each have 256 filters and the subsequent four convolutional layers each

have 512 filters. The last convolutional layer only has one filter. Figure 3.5 illustrates the output

volume or tensor obtained after each convolutional layer. We use the mean absolute error (MAE)

loss criterion for regression with EDGENet. Let xi be the input noisy image matrix of dimension

width×height, let f(·) be the neural network function predicting the output array of edge positions,

and let yi be the target original array of edge positions with dimensions 2× height. The L1-norm

of an m× n matrix A with entries ai,j is defined by

‖A‖1 =
m∑
i=1

n∑
j=1

|ai,j|. (3.11)

The mean absolute error (MAE) loss for a set of N training data pairs (xi, yi) is defined by

MAE =
1

N × 2× height

N∑
i=1

‖yi − f(xi)‖1. (3.12)

3.1.6 LineNet1 and LineNet2

We devised LineNet1 and LineNet2 to estimate denoised rough line images and the corre-

sponding edge images from noisy images with arbitrary levels of Poisson noise. The paper [66]

pointed out that neural networks can share information while performing multiple image process-
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Figure 3.5: The 17 convolutional layers of EDGENet, which inputs a noisy SEM image of di-
mension 64× 1024 and outputs a vector of dimension 2× 1024. Reprinted with permission from
[4].
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ing tasks. LineNet1 and LineNet2 can save both time and memory by performing the tasks pre-

viously achieved by the two neural networks SEMNet [67, 4] and EDGENet [68, 4]. LineNet1

and LineNet2 [5] use neural network architectures similar to the SEMNet [67] architecture; i.e.,

they all have 17 convolutional [62], 16 batch-normalization [63] and 16 dropout [64] layers. Each

convolutional layer of LineNet1 and LineNet2 except for the last layer has 64 filters of dimension

(3×3× input depth) with bias terms and is followed by a batch normalization layer and a dropout

layer with dropout probability of 0.2. The last convolutional layers of LineNet1 and LineNet2 each

have two filters to output two grayscale images.

LineNet1 inputs a single-line SEM image of dimension 64× 1024 pixels and outputs an array

of dimension 64 × 1024 × 2. The output array contains a denoised image and a grayscale edge

image. Similarly, LineNet2 inputs a multiple-line SEM image of dimension 256 × 256 pixels

and outputs an array of dimension 256 × 256 × 2. We can estimate a larger denoised image and

the corresponding edge image of larger dimension by first splitting the larger image into smaller

images of dimension 256× 256 pixels. We elected to study images with a pixel size of 0.5× 2 nm,

but the approach applies generally. We use MSE as the loss function for LineNet1 and LineNet2

since we found that the predicted edge image can have multiple missing edge positions if we

instead use mean absolute error (MAE). LineNet1 and LineNet2 each have 559,810 parameters

compared to the 10,972,993 parameters of EDGENet [68].

3.1.7 Related Denoising Work

Deep learning has been employed for image denoising in various ways over the years. Jain et al.

first applied deep CNNs for image denoising [69]. Many successful denoisers have used their basic

approach of minimizing a regression loss between network prediction images and ground truth

images. For natural images corrupted by Gaussian noise, the state-of-the-art in image denoising is

attained by deep neural networks [7, 52]. Zhang et al. used batch-normalization [63] and residual

learning [49] in reference [7] to predict the noise at every pixel and compute a signal image from

it. Additive white Gaussian noise (AWGN) is independent of the underlying signal; thus, it can be

subtracted from a noisy image by assuming the image degradation model. If x is a ground truth
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image, n is AWGN noise and y is a corrupted noisy image, then by the image degradation model

y = x + n. (3.13)

Zhang et al. suggests in reference [7] that with residual learning, DnCNN implicitly removes the

latent clean image in the hidden layers. It alters the inputs of each layer to be Gaussian-like dis-

tributed and less related to image content. There have been other approaches to denoising that

have used an encoder-decoder architecture [70], symmetric skip connections [71], and generative

adversarial networks (GANs) [72]. Mao et al. used an encoder-decoder architecture in reference

[70] with symmetric skip connections for the denoising task. MemNet [71] by Tai et al. used

recurrent persistent memory units in their architecture. Chen et al. has also presented an image

restoration approach [72] based on generative adversarial networks (GANs). Tal et al. used resid-

ual learning by extracting negative noise components [73] from every layer of a 20 layer CNN.

They performed Poisson denoising of natural images and found class-aware denoising [74] to be

useful. We introduced our deep CNN network SEMNet [67, 4] in 2018 for the Poisson denoising

of SEM images with the ultimate goal to improve line edge roughness measurements. We took

several steps specific to the problem of SEM metrology.

Our first deep CNN network SEMNet [67, 4] differs from DnCNN in three important ways.

Firstly, SEMNet uses 16 dropout layers with dropout probability of 0.2 after each pair of convolu-

tional and batch-normalization layers. Secondly, SEMNet directly predicts a clean original image.

It does not use residual learning to predict a noise image. Lastly, SEMNet was trained on large

SEM images of dimension 64 × 1024 as opposed to relatively small patch sizes in DnCNN. We

used dropout to increase regularization and to make the network more robust to slight deviations

in signal and noise characteristics. We considered that it was needed because SEM image acquisi-

tion processes can be affected by other sources of errors like vibrations, temperature changes, and

instrument errors. Additionally, we did not use residual learning to learn a noise image because

Poisson noise is signal-dependent [75]. Poisson noise cannot be subtracted out by assuming the
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noise degradation model. Due to the high dependence of noise on the scene [75], we believe it is

better to learn the noisy image to original image relationship. Furthermore, we trained the network

on full-sized SEM images instead of cutting images into smaller patches. Cutting random rough

line SEM images into many small patches can create artifacts around the edges. Due to the edge

effect in SEM images, pixel intensities around the line edges are also affected by the neighboring

nanostructure geometry. Since we aimed to measure line edge roughness, we believed full-size

image training protects the integrity of edge measurements. Training on full-sized images can also

help Poisson denoising by increasing scene awareness.

Subsequent to our SEMNet work, Weigert et al. introduced the CARE software [76] frame-

work for image restoration in fluorescence microscopy data. They acquired pairs of low- and

high-exposure-images to create their training dataset and employed the U-Net [77] architecture for

their experiments. Lehtinen et al. introduced the NOISE2NOISE (N2N) [78] approach where in-

dependent pairs of noisy images can be used to train the network without any need for clean target

images. Acquiring multiple low-dose and high-dose images for the exact target is not feasible for

SEM metrology. SEM image acquisition at high dosages can increase resist shrinkage, and our

goal is to resolve this problem and acquire images at low dosages. It is challenging to acquire the

same image signal through multiple image acquisitions due to alignment and skew changes at the

nanometer scale. Recently, Krull et al. introduced NOISE2VOID (N2V) [79], a training scheme

which does not require noisy image pairs or clean target pairs. However, as mentioned in their

paper [79], there are some limitations of this approach. Specifically, N2V makes two statistical as-

sumptions: 1) the signal is not pixel-wise independent and 2) the noise is conditionally pixel-wise

independent given the signal. The performance of N2V decreases with violations of these assump-

tions [79]. We do not know if these assumptions hold in SEM images. Ulyanov et al. show that the

structure of deep image prior CNNs resonates [80] with the structure of natural image data. They

input a random noise image to a CNN and train it to reconstruct a single noisy image as the output.

They show that the network resists “bad” solutions and converges towards natural-looking images.

This deep image prior network can do image denoising without requiring additional training data
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[80]. However, we do not know if SEM images of random rough lines resonate with the structure

of CNNs and if the prior will preserve the roughness of lines.

Our second deep CNN network EDGENet is not a denoising network. It predicts two line

edge positions from a 64 × 1024 noisy SEM image containing one rough line. Its output is a 2-

dimension matrix of size 2×1024, which contains the left and right edge positions of the line. Our

third set of deep CNN networks are LineNet1 and LineNet2. We devised LineNet1 and LineNet2

to estimate denoised rough line images and the corresponding edge images from noisy images with

arbitrary levels of Poisson noise. Schwartz et al. pointed out in [66] that neural networks can share

information while performing multiple image processing tasks. The edge estimation problem from

SEM images is unique to SEM metrology due to edge effects. We do not know of other deep CNN

approaches designed for the edge estimation problem from SEM images.

3.2 Simulation and Training Datasets

Large datasets are needed to train deep convolutional neural networks. We developed our

datasets of SEM images by simulation. We generated two separate datasets to train our neural

networks. The first dataset contained single-line SEM images for the training of the SEMNet,

EDGENet, and LineNet1 networks. The second dataset contained multiple-line SEM images for

the training of the LineNet2 network.

3.2.1 Rough Edge Simulation

We first use the Thorsos method [53, 81] with normally distributed random variables to sim-

ulate rough line edges. Thorsos [53] described an approach to generate simulations of a surface

height function which approximately satisfy a specified roughness spectrum and have Gaussian

distributed heights and slopes. Mack [81] pointed out that the technique is widely used and is

known to other communities as the Monte Carlo spectral method, and he analyzed the statistical

bias associated with the method for rough lines of finite length and positive correlation length.

The Palasantzas spectral model [82] is characterized by three parameters: σ represents the line

edge roughness (LER), i.e., the standard deviation of edge positions, α denotes the roughness (or
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Hurst) exponent and ξ is the correlation length. For x > 0, the gamma function Γ(x) is defined by

Γ(x) =
∫∞
0
tx−1e−tdt. Each simulated rough line edge has the following underlying Palasantzas

spectral model [82]:

PSD(f) =

√
πΓ(α + 0.5)

Γ(α)
.

2σ2ξ

(1 + (2πfξ)2)α+0.5
. (3.14)

Each simulated edge has length 2.048 microns and corresponds to 1024 pixels. To consider a

diverse collection of models we generated edges for eight values of LER (σ = 0.4, 0.6, 0.8, 1.0,

1.2, 1.4, 1.6, 1.8 nm), nine values of Hurst/roughness exponent (α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9) and 35 values of correlation length (ξ = 6, 7, ..., 40 nm).

3.2.2 Single-line Dataset

To make 10080 lines, we generated eight edges for each of the 2520 possible combinations of

parameters (σ, α, ξ). We next used the SEM simulator ARTIMAGEN [54, 55] to generate 10080

images of dimension 64× 1024 pixels with pixel width 0.5 nm and pixel height 2 nm. We selected

ARTIMAGEN because it is publicly available and because of its ability to generate a large number

of SEM images from simulated rough lines relatively quickly; we selected our image dimensions

to handle the computational demands associated with the training of a deep neural network. Each

image contains a line of width 10 nm or 15 nm with two of the previously generated rough edges.

The locations of the lines within the images vary. The simulation required a discretization of the

edge positions because the library does not provide fractional edge positions. The discretization

lattice size was equal to the pixel size. This is a limitation of the simulation as a real edge position

can occur anywhere within a pixel. The lines were created using the table of curves feature of the

ARTIMAGEN library. The features of the ARTIMAGEN simulator enabled us to construct images

which incorporate random backgrounds, a fixed edge effect, fine structure and Gaussian blur. We

used the parameter settings suggested by examples within the ARTIMAGEN library. For example,

we added Gaussian blur to all images with a Gaussian point spread function with parameter values

sigma = 0.5, astigmatism ratio = 1, and astigmatism angle = 30◦.
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We use a background density of 8 with a gray level in the range (0.1, 0.2). The edge effect

in SEM images makes edges appear brighter than the rest of the structure. In the ARTIMAGEN

library the edge effect profile is approximated by an exponential [54]. We used the parameter value

determining the steepness of the transition to be 0.4 and the top edge value above base as 0.5 for

the edge effect in all images. Similarly, fine structure was added with following parameter values

(density = 70e-4, min_radius = 6, max_radius = 10, min_coefficient = 0.95, max_coefficient =

1.05).

Our original image set is the collection of these 10080 images. From each original image

using the ARTIMAGEN library we generated ten noisy images corrupted by Poisson noise with

electron density per pixel in the range {2, 3, 4, 5, 10, 20, 30, 50, 100, 200}. Thus, the noisy

image dataset consists of 100800 images. From the noisy and original images we constructed

a supervised learning dataset of pairs of images (xi, yi) for the training of SEMNet, where the

input xi is a noisy image and the output yi is the corresponding original image. For the training

of EDGENet, the input xi is a noisy image and the output yi is an array of dimension 2 × 1024

with edge positions. For the training of LineNet1, the input xi is a noisy image and the output yi

is an array of the original image with the edge image. Figure 3.6 shows one example of single-line

dataset images with a noisy image, an original image and a corresponding edge image.

3.2.3 Multiple-line Dataset

The rough edges in multiple-line dataset images were also constructed using the Thorsos

method with the same 2520 possible combinations of parameters for LER (σ), roughness expo-

nent (α) and correlation length (ξ). This multiple-line dataset contains 50,400 simulated images

with dimension of 256×1024 pixels. Each larger image contains three or four rough lines of width

15 nm or 10 nm separated by a space of twice the linewidth. The locations of the lines within the

images vary. We trained LineNet2 on this multiple-line dataset of simulated images. LineNet2 is

designed to construct denoised and estimated edge images of size 256 × 256 pixels. Hence the

initial images of dimensions 256 × 1024 were each separated into four nonoverlapping images

before being processed by LineNet2. Each set of four denoised and estimated edge images were
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Figure 3.6: Single-line dataset images. (a) An original simulated SEM image of dimension 64 ×
1024. (b) Noisy image after Poisson noise addition. (c) Edge image. The aspect ratio of the images
has been scaled for a better view. Reprinted with permission from [5].

later recombined to form an image of dimension 256 × 1024. This approach can be generalized

to handle arbitrary images. Figure 3.7 shows one example of a multiple-line dataset image with a

noisy image, an original image, and a corresponding edge image.

3.3 Experiments and Results

The simulated dataset of 100800 noisy-original image pairs, edge images and edge arrays was

divided into a training set, a validation set and a test set. The validation set consisted of the

2880 image pairs, edge images and edge arrays with correlation length ξ = 20 nm. The test set

consisted of the 8640 image pairs, edge images and edge arrays with correlation length ξ in the set

{10, 30, 40} nm. The training set consisted of the remaining 89280 noisy-original image pairs

with edge images and edge arrays. All SEM image inputs, edge images and edge arrays were

normalized to have values in the range (0,1).
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Figure 3.7: Multiple-line dataset images. (a) An original simulated SEM image of dimension
256× 1024. (b) Noisy image after Poisson noise addition. (c) Edge image. The aspect ratio of the
images has been scaled for a better view. Reprinted with permission from [5].

SEMNet, EDGENet and LineNet1 were trained with a Tesla K80 GPU and an Intel Xeon

E5-2680 v4 2.40GHz node, and they were created and trained using the python programming

language library Keras [83] with the Tensorflow [84] library backend. In the training of all three

neural networks, we used the Adam [85] optimizer algorithm for stochastic gradient descent and

selected a learning rate of 0.001 and batches with eight input-output pairs; for SEMNet each input-

output pair is a noisy-original image pair while for EDGENet each input-output pair is a noisy

SEM image together with the corresponding edge array. The LineNet1 input-output pair is a noisy

SEM image together with the corresponding original image and edge image. The small batch size

was chosen due to the memory constraints. An epoch of training consisted of stochastic gradient

descent steps on the entire training set of 89280 image pairs and edge arrays.

The simulated multiple-line dataset for LineNet2 was also divided into a training set, a valida-

tion set and a test set. These LineNet2 dataset images had dimension 256 × 1024 pixels. The test

set consisted of the 4320 noisy-original SEM images and edge images with correlation length ξ in

the set {10, 30, 40} nm. The validation set consisted of the 1440 noisy-original SEM images and

edge images with correlation length ξ = 20 nm. The training set consisted of the remaining 44,640

noisy-original SEM images and edge images.
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Figure 3.8: Training and validation loss for SEMNet. Reprinted with permission from [4].

3.3.1 SEMNet Results

We trained SEMNet for four epochs, and the training time was approximately 41 hours. We

chose mean squared error (MSE) as the loss function for SEMNet. Figure 3.8 illustrates the evo-

lution of mean squared error on the batches of the training set with respect to the number of

stochastic gradient descent steps. Figure 3.8 also shows the loss on the validation set after each

epoch of training. It is evident that the validation loss does not significantly differ from the training

loss, and therefore overfitting is unlikely. After we trained SEMNet for four epochs we saved the

final set of weights and biases in each layer and used these parameters to denoise the previously

unseen images in the test set. The average denoising time per image of SEMNet was 1.96 seconds

on a central processing unit. This runtime data does not include the time to load the model as this

operation was performed only once.

Our first set of results compares SEMNet denoising to state-of-the-art image denoising algo-

rithms. In particular, we consider the total variation (TV) algorithm (split Bregman optimization)

[6], the convolutional neural network DnCNN [7] and a denoiser based on a Daubechies wavelet

[8]. The DnCNN denoised images were generated through MATLAB’s Neural Network toolbox
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and the other earlier algorithms we consider were available through the scikit-image python library.

The top left image in Figure 3.9 shows a noisy test image not used in the training of SEMNet with

a noise level of 2 electrons per pixel. The remaining images in Figure 3.9 consist of the corre-

sponding original image and the images obtained by applying the four denoisers. Observe that the

quality of the SEMNet denoiser is good even in the high noise regime.

We use a variety of performance metrics to assess the relative quality of the four denoisers on

the test image dataset. The first is peak signal-to-noise ratio (PSNR), which is a common measure

for the quality of image reconstruction. Let MAXI denote the maximum pixel intensity of an

image and let MSE as usual denote the mean squared error between a reconstructed image and the

corresponding original image. Then PSNR (in dB) is defined by

PSNR = 10 log10(
MAX2

I

MSE
), (3.15)

and a larger value of PSNR indicates better denoising. For the other performance metrics we

consider we need to combine the outputs of the denoising procedures with an edge detection algo-

rithm, and we use the Canny algorithm for this purpose. In addition to examining LER and LWR

we introduce a metric called the mean absolute pixel error (MABSE) which averages the absolute

edge position estimation error measured in pixels over 2044 edge positions per line. We consider

only 2044 positions per line instead of the total 2048 positions because the Canny edge detector

does not detect edge positions at the image boundaries.

Table 3.1 quantifies the relative performances of the denoisers for three test images in terms

of peak signal-to-noise ratio (PSNR) and demonstrates the superiority of SEMNet in different

settings. Table 1 also includes the results from LER estimation for the central 1022 (out of 1024)

pixels. The σC parameters for the Canny edge detection algorithm were chosen from the set {0.5,

1, 1.5, 2, 2.5, 3, 3.5, 4} to optimize the LER estimation errors. SEMNet again attains the best

performance and produces an output which is close to the true edge geometry. However, the

Canny σC parameter must be optimized for every image because each image contains a different
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Figure 3.9: (a) Noisy image with a noise level of 2 electrons per pixel. (b) Estimated image
from deep neural network SEMNet. (c) Corresponding original image without Poisson noise. (d)
Total variation (Bregman method) [6] denoising. (e) DnCNN [7] denoising. (f) Wavelet (db2) [8]
denoising. Reprinted with permission from [4].
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Figure 3.10: Results of SEMNet for image with parameters σ = 0.8 nm, ξ = 10 nm, α = 0.3
and for Canny parameter σC = 0.5. The x-axis is on a logarithmic scale and specifies Poisson
noise levels in electron density per pixel units. (a) Plots of estimated LWR from denoised images
(Green), true LWR (Blue) and estimated LWR from original image with no noise (Orange). (b)
Plots of mean absolute pixel error (MABSE) from noisy images (Blue) and from original image
(Orange). (c) Plots of predicted image PSNR (Orange) and noisy image PSNR (Blue). Reprinted
with permission from [4].

noise level and edge characteristics. We developed the second neural EDGENet to eliminate this

weakness and directly detect line edges.

The Canny edge detection scheme uses a filter, and a recent paper [86] advises against fil-

tering. Therefore, to offer a second comparison among the denoisers we propose and consider

an “intensity-based” edge detection scheme without a filter which applies the scientific python

(SciPy) peak detector function find_peaks. A peak of a one-dimensional array of numbers refers

to a local maximum, and in the case of a flat peak find_peaks returns the index of the middle sam-

ple of that peak. The function find_peaks enables the selection of subset of peaks which satisfy

certain constraints. In our following definition of the intensity-based edge detection algorithm, the

parameter width represents the width of the line in pixels; in our case, width = 20 for a 10 nm

line and width = 30 for a 15 nm line. The intensity-based edge detection algorithm takes as input

the intensity profile of a linescan, detects a collection of peaks each with intensity above 20% of

the maximum pixel intensity and with minimum peak distance of width/4, selects the two highest
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Figure 3.11: Results of SEMNet for image with parameters σ = 1.2 nm, ξ = 40 nm, α = 0.7
and for Canny parameter σC = 0.5. The x-axis is on a logarithmic scale and specifies Poisson
noise levels in electron density per pixel units. (a) Plots of estimated LWR from denoised images
(Green), true LWR (Blue) and estimated LWR from original image with no noise (Orange). (b)
Plots of mean absolute pixel error (MABSE) from noisy images (Blue) and from original image
(Orange). (c) Plots of predicted image PSNR (Orange) and noisy image PSNR (Blue). Reprinted
with permission from [4].

Figure 3.12: Results of SEMNet for image with parameters σ = 1.6 nm, ξ = 30 nm, α = 0.5
and for Canny parameter σC = 0.5. The x-axis is on a logarithmic scale and specifies Poisson
noise levels in electron density per pixel units. (a) Plots of estimated LWR from denoised images
(Green), true LWR (Blue) and estimated LWR from original image with no noise (Orange). (b)
Plots of mean absolute position error (MABSE) from noisy images (Blue) and from original image
(Orange). (c) Plots of predicted image PSNR (Orange) and noisy image PSNR (Blue). Reprinted
with permission from [4].
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Table 3.1: Denoising and LER results. The LER data is for the central 1022 out of 1024 pixels for
each image. Reprinted with permission from [4].

Original Image Poisson PSNR Denoiser PSNR Canny Left edge (nm) Right edge (nm)
σ(nm), ξ(nm), noise noisy method denoised σ σ σ σ

α level (dB) (dB) σC (true) (obs.) (true) (obs.)
0.8, 10, 0.3 None - None - 0.5 0.74 0.69 0.74 0.69
0.8, 10, 0.3 10 16.38 SEMNet 28.66 0.5 0.74 0.68 0.74 0.69
0.8, 10, 0.3 10 16.38 TV 22.39 1.5 0.74 0.59 0.74 0.59
0.8, 10, 0.3 10 16.38 DnCNN 25.24 1.5 0.74 0.61 0.74 0.68
0.8, 10, 0.3 10 16.38 Wavelet 20.91 2.5 0.74 0.58 0.74 0.64
1.2, 40, 0.7 None - None - 0.5 1.07 1.06 1.21 1.20
1.2, 40, 0.7 2 9.96 SEMNet 26.39 0.5 1.07 1.03 1.21 1.21
1.2, 40, 0.7 2 9.96 TV 21.05 3 1.07 1.10 1.21 1.77
1.2, 40, 0.7 2 9.96 DnCNN 20.44 3 1.07 1.14 1.21 1.35
1.2, 40, 0.7 2 9.96 Wavelet 15.80 3 1.07 1.10 1.21 1.83
1.6, 30, 0.5 None - None - 0.5 1.57 1.53 1.59 1.56
1.6, 30, 0.5 100 26.13 SEMNet 42.64 0.5 1.57 1.53 1.59 1.55
1.6, 30, 0.5 100 26.13 TV 22.56 1.0 1.57 1.46 1.59 1.50
1.6, 30, 0.5 100 26.13 DnCNN 30.64 0.5 1.57 1.52 1.59 1.58
1.6, 30, 0.5 100 26.13 Wavelet 28.67 1.0 1.57 1.51 1.59 1.55

peaks, and outputs the left peak position as the left edge and the right peak position as the right

edge. The results in Table 3.2 show that SEMNet produces reliable LER results in images with

high noise. Figure 3.13 depicts the linescan from a noisy image and the linescans obtained after

denoising from different algorithms; the y-axis of Figure 3.13 represents a normalized intensity

relative to the maximum pixel intensity.

Finally, Figures 3.10-12 offer additional results for the performance of SEMNet on three test

images corrupted by varying amount of Poisson noise. Observe that in Figures 3.10(a) and 3.12(a)

there is a difference between the true LWR used in the generation of rough lines with the Thorsos

method and the estimated LWR from the original ARTIMAGEN image with no noise; this differ-

ence results from the corruption of edges with more power in the higher frequency range during

the formation of the image and from the application of the Canny filter. Parts (a) and (b) of each

figure show that the outcome of SEMNet offers similar LWR and MABSE performance to the
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Figure 3.13: Linescan intensities; the y-axis represents a normalized intensity relative to the maxi-
mum pixel intensity. (a) Linescan intensity from a noisy image with a noise level of 2 electrons per
pixel. (b) Estimated linescan intensity from SEMNet denoiser. (c) Linescan intensity from orig-
inal image without Poisson noise. (d) Linescan intensity from total variation (Bregman method)
denoising. (e) Linescan intensity from DnCNN denoising. (f) Linescan intensity from Wavelet
(db2) denoising. Reprinted with permission from [4].
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Table 3.2: LER results with the intensity-based algorithm. The LER data is for the central 1022
out of 1024 pixels for each image. Reprinted with permission from [4].

Original Image Poisson PSNR Denoiser PSNR Left edge (nm) Right edge (nm)
σ(nm), ξ(nm), noise noisy method denoised σ σ σ σ

α level (dB) (dB) (true) (obs.) (true) (obs.)
0.8, 10, 0.3 None - None - 0.74 0.75 0.74 0.76
0.8, 10, 0.3 10 16.38 SEMNet 28.66 0.74 0.74 0.74 0.74
0.8, 10, 0.3 10 16.38 TV 22.39 0.74 0.70 0.74 1.37
0.8, 10, 0.3 10 16.38 DnCNN 25.24 0.74 0.74 0.74 1.21
0.8, 10, 0.3 10 16.38 Wavelet 20.91 0.74 1.10 0.74 1.74
1.2, 40, 0.7 None - None - 1.07 1.06 1.21 1.21
1.2, 40, 0.7 2 9.96 SEMNet 26.39 1.07 1.03 1.21 1.24
1.2, 40, 0.7 2 9.96 TV 21.05 1.07 1.90 1.21 2.97
1.2, 40, 0.7 2 9.96 DnCNN 20.44 1.07 2.40 1.21 3.33
1.2, 40, 0.7 2 9.96 Wavelet 15.80 1.07 3.10 1.21 3.67
1.6, 30, 0.5 None - None - 1.57 1.56 1.59 1.57
1.6, 30, 0.5 100 26.13 SEMNet 42.64 1.57 1.55 1.59 1.56
1.6, 30, 0.5 100 26.13 TV 22.56 1.57 1.72 1.59 2.11
1.6, 30, 0.5 100 26.13 DnCNN 30.64 1.57 1.55 1.59 1.56
1.6, 30, 0.5 100 26.13 Wavelet 28.67 1.57 1.58 1.59 1.66
0.8, 30, 0.6 None - None - 0.76 0.77 0.68 0.70
0.8, 30, 0.6 5 13.22 SEMNet 29.04 0.76 0.76 0.68 0.75
0.8, 30, 0.6 5 13.22 TV 22.48 0.76 0.95 0.68 1.6
0.8, 30, 0.6 5 13.22 DnCNN 24.46 0.76 0.91 0.68 1.61
0.8, 30, 0.6 5 13.22 Wavelet 18.65 0.76 2.03 0.68 2.71
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original image (with no Poisson noise) over a large range of noise levels. Part (c) of each of these

figures shows that the output of SEMNet consistently has a significantly higher PSNR than the

corresponding noisy input image over all noise levels.

3.3.2 EDGENet Results

EDGENet was trained for four epochs and the training time was approximately 45 hours and 30

minutes. We chose mean absolute error (MAE) as the loss function because it is better than MSE

in penalizing all edge position errors as opposed to large edge position errors. Figure 3.14 plots

the mean absolute error training loss as a function of the number of gradient descent steps in the

Adam optimizer algorithm. The loss tends to decrease as the number of training steps increases.

Figure 3.14 also shows the loss on the validation set after each epoch of training. The validation

loss remains slightly lower than the training loss as the number of epochs increase, and therefore

overfitting is unlikely. Further analysis of hyperparameters like the learning rate, the batch size

and the number of epochs can potentially improve the training process. We saved the weights

associated with the EDGENet model in a file of size 125 MB. This model file was later used to

predict the line edge positions from the noisy SEM images in the test set. The average prediction

time per image of EDGENet without including the time to load the model was approximately 2.4

seconds on a central processing unit.

We consider a few performance metrics to assess the quality of EDGENet on the test image

dataset. Table 3.3 specifies three images and four Poisson noise levels and examines how these

parameters affect the estimation of LER, LWR, and MABSE. Observe that even in the high noise

regime the estimates of LER and LWR from the simulated test SEM images are very close to

the true LER and LWR of the corresponding lines from the edges generated through the Thorsos

method. The mean absolute pixel error is close to zero in the low noise regime.

Figures 3.15-3.17 show additional results for three of the test images considered in Table 3.3.

The edge images have been constructed from the edge positions predicted by EDGENet. We esti-

mate the power spectrum from N = 1024 point edge positions using multitaper [87, 88] spectrum

estimation with six Slepian sequences, bandwidth W satisfying NW = 4, and adaptive weights.
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Figure 3.14: Training and validation loss for EDGENet. Reprinted with permission from [4].

The resulting power spectral density (PSD) estimates for the edges generated from the Thorsos

method and the corresponding predicted edges from the simulated test SEM images have been

plotted together with the underlying Palasantzas power spectral density. Observe that for all three

test images the predicted edge’s PSD estimate closely matches the original edge’s PSD estimate.

For the first two test images the deviations from the Palasantzas PSD arise because we consider

a single predicted edge per plot as opposed to the average of the multitaper estimates from multi-

ple edges. The large difference between the Palasantzas PSD and the original and predicted edge

PSD estimates in the low frequency regions of Figures 3.17(e) and 3.17(f) arise because the edge

roughness parameter (0.8 nm) is close to the pixel width (0.5 nm). We separately plot the left edge

and the right edge spectra to assess the difference in the individual spectra of the true edge and the

predicted edge. Observe that an estimate of the underlying Palasantzas PSD typically involves the

average of multiple spectra per roughness condition.

Cizmar et al. [54] suggested that SEM image noise can be well approximated by a combination

of Gaussian noise and Poisson noise. In Tables 3.4 and 3.5 we respectively present the results for

SEMNet and EDGENet when some Gaussian noise is added to the existing Poisson noise test
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Figure 3.15: (a) Original image with σ = 1.6 nm, α = 0.5, ξ = 30 nm. (b) Noisy image with
a noise level of 2 electrons per pixels. (c) Predicted edge image. (d) Noisy image overlayed with
edge image. (e) Left edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green).
(f) Right edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green). Reprinted
with permission from [4].
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Figure 3.16: (a) Original image with σ = 1.2 nm, α = 0.7, ξ = 40 nm. (b) Noisy image with
a noise level of 5 electrons per pixels. (c) Predicted edge image. (d) Noisy image overlayed with
edge image. (e) Left edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green).
(f) Right edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green). Reprinted
with permission from [4].
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Figure 3.17: (a) Original image with σ = 0.8 nm, α = 0.3, ξ = 10 nm. (b) Noisy image with a
noise level of 10 electrons per pixels. (c) Predicted edge image. (d) Noisy image overlayed with
edge image. (e) Left edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green).
(f) Right edge PSD; Palasantzas (Blue), true edge (Orange), predicted edge (Green). Reprinted
with permission from [4].
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Table 3.3: Edge results for 1024 edge positions. Reprinted with permission from [4].

Original Image Poisson Mean Left edge (nm) Right edge (nm) LWR (nm)
σ(nm), ξ(nm), noise absolute σ σ σ σ

α level error (pixels) (true) (obs.) (true) (obs.) (true) (obs.)
0.8, 10, 0.3 2 0.61 0.75 0.71 0.74 0.66 1.06 0.95
0.8, 10, 0.3 5 0.40 0.75 0.73 0.74 0.67 1.06 0.97
0.8, 10, 0.3 10 0.22 0.75 0.75 0.74 0.72 1.06 1.04
0.8, 10, 0.3 100 0.01 0.75 0.75 0.74 0.74 1.06 1.06
1.2, 40, 0.7 2 0.44 1.06 1.06 1.21 1.23 1.41 1.42
1.2, 40, 0.7 5 0.27 1.06 1.06 1.21 1.22 1.41 1.42
1.2, 40, 0.7 10 0.15 1.06 1.08 1.21 1.21 1.41 1.42
1.2, 40, 0.7 100 0.01 1.06 1.06 1.21 1.21 1.41 1.42
1.6, 30, 0.5 2 0.69 1.56 1.53 1.59 1.46 2.34 2.23
1.6, 30, 0.5 5 0.38 1.56 1.57 1.59 1.52 2.34 2.28
1.6, 30, 0.5 10 0.23 1.56 1.57 1.59 1.59 2.34 2.33
1.6, 30, 0.5 100 0.01 1.56 1.56 1.59 1.58 2.34 2.33

images. We consider three Gaussian noise levels with σ = 0.02, 0.05, 0.10 assuming that the

pixels of an image can have peak intensity of 1.

3.3.3 LineNet1 and LineNet2 Results †

The training processes for both LineNet1 and LineNet2 involved solving an optimization prob-

lem to minimize the mean squared error (MSE) between the predicted images and the original im-

ages. The results presented here use test dataset images which were not utilized during the training

process. Figure 3.18 demonstrates the effectiveness of simultaneously denoising and estimating

edge images in single-line images using LineNet1.

Figures 3.19 and 3.20 demonstrate the effectiveness of simultaneously denoising and esti-

mating edge images in multiple-line images using LineNet2. The edge images predicted from

LineNet1 and LineNet2 are grayscale images with pixel intensity between 0 and 1 instead of bi-

†Part of the data reported in this subsection is reprinted with permission from N. Chaudhary and S. A. Savari,
“Simultaneous denoising and edge estimation from SEM images using deep convolutional neural networks,” in Pro-
ceedings of 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pp. 431–436, 2019.
DOI: 10.1109/ASMC.2019.8791764. Copyright [2019] by IEEE.
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Table 3.4: LER results for SEMNet with Poisson-Gaussian noise and the intensity based algorithm.
The LER data is for the central 1022 out of 1024 pixels for each image. Gaussian σ is standard
deviation for image with peak intensity of 1. Reprinted with permission from [4].

Original Image Poisson Gaussian PSNR PSNR Left edge (nm) Right edge (nm)
σ(nm), ξ(nm), noise noise noisy denoised σ σ σ σ

α level σ (dB) (dB) (true) (obs.) (true) (obs.)
0.8, 10, 0.3 10 0.02 16.31 28.63 0.74 0.73 0.74 0.75
0.8, 10, 0.3 10 0.05 15.94 28.38 0.74 0.73 0.74 0.75
0.8, 10, 0.3 10 0.10 14.82 27.6 0.74 0.71 0.74 0.73
1.2, 40, 0.7 2 0.02 9.94 26.35 1.07 1.03 1.21 1.25
1.2, 40, 0.7 2 0.05 9.85 26.28 1.07 1.03 1.21 1.25
1.2, 40, 0.7 2 0.10 9.53 26.14 1.07 1.03 1.21 1.25
1.6, 30, 0.5 100 0.02 25.47 42.55 1.57 1.55 1.59 1.60
1.6, 30, 0.5 100 0.05 23.05 40.42 1.57 1.55 1.59 1.60
1.6, 30, 0.5 100 0.10 19.02 34.26 1.57 1.56 1.59 1.61
0.8, 30, 0.6 5 0.02 13.18 29.08 0.76 0.76 0.68 0.75
0.8, 30, 0.6 5 0.05 13.0 29.03 0.76 0.76 0.68 0.75
0.8, 30, 0.6 5 0.10 12.38 28.73 0.76 0.76 0.68 0.74

Table 3.5: Edge results for 1024 edge positions with Poisson-Gaussian noise. Gaussian σ is stan-
dard deviation for image with peak intensity of 1. Reprinted with permission from [4].

Original Image Poisson Gaussian Mean Left edge (nm) Right edge (nm) LWR (nm)
σ(nm), ξ(nm), noise noise absolute σ σ σ σ

α level σ error (pixels) (true) (obs.) (true) (obs.) (true) (obs.)
0.8, 10, 0.3 10 0.02 0.22 0.75 0.75 0.74 0.72 1.06 1.04
0.8, 10, 0.3 10 0.05 0.23 0.75 0.75 0.74 0.72 1.06 1.03
0.8, 10, 0.3 10 0.10 0.28 0.75 0.73 0.74 0.71 1.06 1.01
1.2, 40, 0.7 2 0.02 0.45 1.06 1.06 1.21 1.23 1.41 1.43
1.2, 40, 0.7 2 0.05 0.46 1.06 1.06 1.21 1.23 1.41 1.44
1.2, 40, 0.7 2 0.10 0.46 1.06 1.07 1.21 1.23 1.41 1.44
1.6, 30, 0.5 100 0.02 0.01 1.56 1.56 1.59 1.58 2.34 2.33
1.6, 30, 0.5 100 0.05 0.01 1.56 1.56 1.59 1.58 2.34 2.33
1.6, 30, 0.5 100 0.10 0.07 1.56 1.56 1.59 1.58 2.34 2.32
0.8, 30, 0.6 5 0.02 0.27 0.77 0.75 0.68 0.66 1.01 0.99
0.8, 30, 0.6 5 0.05 0.27 0.77 0.75 0.68 0.66 1.01 0.98
0.8, 30, 0.6 5 0.10 0.27 0.77 0.74 0.68 0.65 1.01 0.97
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Figure 3.18: Results with LineNet1: (a) Original image with σ = 1.6 nm, α = 0.5, ξ = 30 nm. (b)
Noisy image with a noise level of 2 electrons per pixels. (c) Edge image. (d) Predicted denoised
image. (e) Predicted edge image. Reprinted with permission from [5].

nary images. The grayscale values in a row of an edge image have approximate peaks. Figure 3.21

shows the pixel intensity values in a row of a grayscale edge image with four lines / eight edges.

We apply the scientific python (SciPy) peak detector function find_peaks to estimate the exact edge

positions in the predicted edge images.

Table 3.6 provides the peak signal-to-noise ratio (PSNR) results of LineNet1 and SEMNet [67].

Observe that the PSNR values are close even though LineNet1 is devoting some resources to edge

detection. Table 3.7 provides the line roughness results of LineNet1 and EDGENet [68] on single-

line images. EDGENet offers better accuracy than LineNet1 in the case of both high noise and

high frequency at the price of significantly higher memory; recall that LineNet1 has only 559,810

parameters compared to the 10,972,993 parameters of EDGENet. LineNet1 and EDGENet have

similar performance in other cases. Figure 3.22 compares the predicted edge spectra of LineNet1

and EDGENet for three different types of edges. Observe that the edge spectra do not significantly

differ. Table 3.8 provides PSNR and line roughness results for multiple-line images of dimension
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Table 3.6: Denoising results for single-line images with LineNet1 and SEMNet. Reprinted with
permission from [5].

Original Image Poisson PSNR (dB)
σ(nm), ξ(nm), noise Noisy Predicted Predicted

α level Image LineNet1 SEMNet
0.8, 10, 0.3 2 10.35 23.89 24.27
0.8, 10, 0.3 5 13.64 25.58 26.02
0.8, 10, 0.3 10 16.38 28.26 28.66
0.8, 10, 0.3 100 26.18 41.87 42.89
1.2, 40, 0.7 2 9.96 26.39 26.39
1.2, 40, 0.7 5 13.20 29.07 29.0
1.2, 40, 0.7 10 15.96 31.22 31.26
1.2, 40, 0.7 100 25.71 42.07 42.79
1.6, 30, 0.5 2 10.28 23.77 24.09
1.6, 30, 0.5 5 13.67 26.33 26.65
1.6, 30, 0.5 10 16.33 28.89 29.14
1.6, 30, 0.5 100 26.13 41.47 42.64

256 × 1024 pixels. The line edge roughness data in Table 3.8 come from the average of multiple

line edges in a single image. In summary, our results show that LineNet1’s performance for image

denoising and line edge roughness (LER) estimation are comparable to those of SEMNet [67] and

EDGENet [68] on the same set of images. The average prediction time per image of LineNet1

and LineNet2 was 0.12 seconds on the K-80 GPU. In comparison, the prediction time per image

of EDGENet was 0.15 seconds and that of SEMNet was 0.12 seconds on the K-80 GPU; recall,

however that LineNet1 and LineNet2 are followed by a peak detection algorithm while EDGENet

is a stand-alone line edge detection algorithm. Additionally, LineNet1 takes approximately 41

hours to train while SEMNet and EDGENet each take more than 40 hours to train.
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Figure 3.19: Results with LineNet2: (a) Original image with σ = 1.6 nm, α = 0.5, ξ = 30 nm,
linewidth = 15 nm. (b) Noisy image with a noise level of 2 electrons per pixels. (c) Predicted
denoised image. (d) Edge image. (e) Predicted edge image. Reprinted with permission from [5].
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Figure 3.20: Results with LineNet2: (a) Original image with σ = 1.2 nm, α = 0.8, ξ = 40 nm,
linewidth = 10 nm. (b) Noisy image with a noise level of 2 electrons per pixels. (c) Predicted
denoised image. (d) Edge image. (e) Predicted edge image. Reprinted with permission from [5].
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Figure 3.21: The pixel intensity values in one row of a predicted grayscale edge image. The
original image has four lines / eight edges. Reprinted with permission from [5].

Table 3.7: Roughness results for single-line images with LineNet1 and EDGENet. Reprinted with
permission from [5].

Original Image Poisson Left edge (nm) Right edge (nm) LWR (nm)
σ(nm), ξ(nm), noise σ σ (observed) σ σ (observed) σ σ (observed)

α level LineNet1 | EDGENet LineNet1 | EDGENet LineNet1 | EDGENet
0.8, 10, 0.3 2 0.75 0.64 | 0.71 0.74 0.66 | 0.66 1.06 0.89 | 0.95
0.8, 10, 0.3 5 0.75 0.71 | 0.73 0.74 0.65 | 0.67 1.06 0.96 | 0.97
0.8, 10, 0.3 10 0.75 0.73 | 0.75 0.74 0.72 | 0.72 1.06 1.04 | 1.04
0.8, 10, 0.3 100 0.75 0.75 | 0.75 0.74 0.74 | 0.74 1.06 1.06 | 1.06
1.2, 40, 0.7 2 1.06 1.03 | 1.06 1.21 1.26 | 1.23 1.41 1.42 | 1.42
1.2, 40, 0.7 5 1.06 1.06 | 1.06 1.21 1.20 | 1.22 1.41 1.40 | 1.42
1.2, 40, 0.7 10 1.06 1.06 | 1.08 1.21 1.20 | 1.21 1.41 1.41 | 1.42
1.2, 40, 0.7 100 1.06 1.06 | 1.06 1.21 1.21 | 1.21 1.41 1.41 | 1.42
1.6, 30, 0.5 2 1.56 1.50 | 1.53 1.59 1.49 | 1.46 2.34 2.27 | 2.23
1.6, 30, 0.5 5 1.56 1.55 | 1.57 1.59 1.54 | 1.52 2.34 2.30 | 2.28
1.6, 30, 0.5 10 1.56 1.54 | 1.57 1.59 1.61 | 1.59 2.34 2.34 | 2.33
1.6, 30, 0.5 100 1.56 1.56 | 1.56 1.59 1.60 | 1.58 2.34 2.34 | 2.33
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Figure 3.22: (a), (b) LineNet1 and EDGENet predicted edge spectra for σ = 0.8 nm, α = 0.3,
ξ = 10 nm, Poisson noise = 10 electrons per pixel. (c), (d) LineNet1 and EDGENet predicted
edge spectra for σ = 1.2 nm, α = 0.7, ξ = 40 nm, Poisson noise = 5 electrons per pixel. (e), (f)
LineNet1 and EDGENet predicted edge spectra for σ = 1.6 nm, α = 0.6, ξ = 30 nm, Poisson
noise = 2 electrons per pixel. Reprinted with permission from [5].

3.3.4 Hyperparameter Search and Optimization

In this section, we conduct a hyperparameter search for deep CNNs to assess if the networks

are fully optimized. Some memory and computational constraints at the university supercomputing

facility restricted our hyperparameter search. For instance, the Tesla K80 GPU has approximately
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Table 3.8: Results for multiple-line images with LineNet2. Reprinted with permission from [5].

Original Image Poisson PSNR (dB) Mean LER (nm)
σ(nm), ξ(nm), noise Noisy Predicted σ σ
α, linewidth(nm) level Image Image (true) (obs.)
0.8, 10, 0.3, 10 2 10.18 24.23 0.76 0.75
0.8, 10, 0.3, 10 5 13.48 26.52 0.76 0.75
0.8, 10, 0.3, 10 10 16.22 28.90 0.76 0.76
0.8, 10, 0.3, 10 100 26.03 42.33 0.76 0.76
1.2, 40, 0.8, 10 2 10.24 25.82 1.16 1.18
1.2, 40, 0.8, 10 5 13.54 28.71 1.16 1.17
1.2, 40, 0.8, 10 10 16.33 31.22 1.16 1.17
1.2, 40, 0.8, 10 100 26.11 42.50 1.16 1.16
1.6, 30, 0.5, 15 2 10.21 25.30 1.52 1.48
1.6, 30, 0.5, 15 5 13.58 27.74 1.52 1.52
1.6, 30, 0.5, 15 10 16.35 30.22 1.52 1.52
1.6, 30, 0.5, 15 100 26.17 42.60 1.52 1.52

12 Gigabytes of available GPU memory. Due to this, we needed to limit ourselves to a maximum

batch size of eight with full-sized images. Additionally, one epoch of training on our dataset took

nearly 10-11 hours for SEMNet, EDGENet, LineNet1, and DnCNN. All training experiments used

the Adam [85] optimizer algorithm.

For our SEMNet network, we explore learning rates from the set {1e-3, 1e-5, 1e-7}, and batch

sizes from the set {4, 8}. The batch size of two and one can be very small when images can

have ten different Poisson noise levels. Figure 3.23 shows the mean squared error (MSE) training

loss and the validation loss with different hyperparameters. We observe from the plots that the

validation loss obtained with different hyperparameters stabilizes around approximately the same

value. It gives us confidence in the optimality of the solution. The plots have a common y-axis,

and the loss is on a logarithmic scale. The x-axes represent the number of gradient descent steps.

In our experiments, a learning rate of 1e-3 and a batch size of eight achieve the lowest validation

loss for SEMNet.

With our EDGENet network, we explore learning rates from the set {1e-3, 1e-5, 1e-7} and

use a batch size of eight. Figure 3.24 shows the mean absolute error (MAE) training loss and
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Figure 3.23: SEMNet hyperparameter search. Mean squared error (MSE) training and validation
loss. The plots have a common y-axis, and loss is on a logarithmic scale. The x-axes represent
the number of gradient descent steps. (a) Learning rate = 1e-3, batch size = 8, (b) Learning rate =
1e-5, batch size = 8, (c) Learning rate = 1e-7, batch size = 8, (d) Learning rate = 1e-5, batch size =
4.

the validation loss with different hyperparameters. Whenever necessary, we increase the number

of epochs to reach the lowest validation loss. In our experiments, a learning rate of 1e-3 and a

batch size of eight achieve the lowest validation loss for EDGENet. Models trained with other

hyperparameters have higher validation losses. The plots have a common y-axis, and loss is on a

logarithmic scale. The x-axes represent the number of gradient descent steps.

We select learning rates from the set {1e-3, 1e-5, 1e-7} and batch sizes from the set {4, 8} for

the training of the LineNet1 network. Figure 3.25 shows the mean squared error (MSE) training

loss and the validation loss with different hyperparameters. We again observe that the validation

loss obtained with different hyperparameters stabilizes around approximately the same value, giv-

ing us confidence in the optimality of the solution. In our experiments, a learning rate of 1e-3 and

a batch size of eight achieve the lowest validation loss for LineNet1.

In the previous experiments of Subsection 3.3.1, we compared our SEMNet denoiser with

a pre-trained DnCNN model. The pre-trained DnCNN model was optimized to tackle several

general image denoising tasks on natural images [7], such as blind Gaussian denoising, single

image super-resolution, and JPEG deblocking. To have a fair comparison with SEMNet, we retrain

and optimize the DnCNN network with our training dataset. In reference [7], Zhang et al. trained
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Figure 3.24: EDGENet hyperparameter search. Mean absolute error (MAE) training and validation
loss. The plots have a common y-axis, and loss is on a logarithmic scale. The x-axes represent
the number of gradient descent steps. (a) Learning rate = 1e-3, batch size = 8, (b) Learning rate =
1e-5, batch size = 8, (c) Learning rate = 1e-7, batch size = 8.

Figure 3.25: LineNet1 hyperparameter search. Mean squared error (MSE) training and validation
loss. The plots have a common y-axis, and loss is on a logarithmic scale. The x-axes represent
the number of gradient descent steps. (a) Learning rate = 1e-3, batch size = 8, (b) Learning rate =
1e-5, batch size = 8, (c) Learning rate = 1e-7, batch size = 8, (d) Learning rate = 1e-5, batch size =
4.
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Figure 3.26: DnCNN with patch size of 64×64. Mean squared error (MSE) training and validation
loss. The plots have a common y-axis, and loss is on a logarithmic scale. The x-axes represent the
number of gradient descent steps. (a) Learning rate = 1e-3, batch size = 128, (b) Learning rate =
1e-5, batch size = 128, (c) Learning rate = 1e-5, batch size = 64.

the DnCNN network with small image patches. Thus, in our new experiments, we train one version

of DnCNN with a patch size of 64× 64. We call this model DnCNN_patch64. Figure 3.26 shows

the mean squared error (MSE) training loss and the validation loss with different hyperparameters.

We select learning rates from the set {1e-3, 1e-5} and batch sizes from the set {64, 128} for the

hyperparameter search. In our experiments, a learning rate of 1e-3 and a batch size of 128 achieve

the lowest validation for DnCNN_patch64. The validation loss doesn’t seem to improve with other

hyperparameters.

To have an even more fair comparison, we also train a version of DnCNN on full-sized SEM

images of dimension 64 × 1024. We call this model DnCNN_fullimage. Figure 3.27 shows the

mean squared error (MSE) training loss and validation loss with different hyperparameters. We

explore learning rates from the set {1e-3, 1e-5} and batch sizes from the set {4, 8} for the hyper-

parameter search. In our experiments, a learning rate of 1e-3 and a batch size of eight achieve the

lowest validation loss for DnCNN_fullimage. The validation loss doesn’t seem to improve with

other hyperparameters.

To compare the optimized DnCNNs with SEMNet, we repeat the denoising experiments of

Table 3.2 and Table 3.4. Table 3.9 shows these denoiser comparisons. We observe that for images
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Figure 3.27: DnCNN with full sized image. Mean squared error (MSE) training and validation
loss. The plots have a common y-axis, and loss is on a logarithmic scale. The x-axes represent
the number of gradient descent steps. (a) Learning rate = 1e-3, batch size = 8, (b) Learning rate =
1e-5, batch size = 8, (c) Learning rate = 1e-5, batch size = 4.

with high dose or low amounts of Poisson noise, DnCNN_patch64 and DnCNN_fullimage provide

slightly higher PSNR compared to SEMNet. However, for images with low dose or high amounts

of Poisson noise, SEMNet gives slightly higher PSNR values. Figure 3.28 shows that the SEMNet

generated image visually has somewhat better edge effect reconstruction, although the difference

between images is minimal. The significant difference between SEMNet and DnCNN performance

is observed when we change the noise characteristics by adding a small amount of Gaussian noise

to the Poisson noise. The training data did not contain images with Poisson-Gaussian noise. SEM-

Net provides better PSNR results with Poisson-Gaussian noise. Figure 3.29 shows that DnCNN

denoisers are unable to remove the Gaussian noise entirely. Figure 3.30 shows pixel intensity

values in one row of denoised images in the presence of Poisson-Gaussian noise. Again, we ob-

serve that DnCNN denoisers seem unable to remove the Gaussian noise entirely. We also note that

DnCNN_patch64 performs slightly worse compared to DnCNN_fullimage when noise character-

istics change. SEMNet appears to be more robust to changes in noise characteristics. This effect

could be due to the generalization provided by the dropout layers. Another reason could be that

learning the noisy image to original signal mapping is more beneficial, compared to learning the

noisy image to noise mapping with residual learning.
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Figure 3.28: Comparison of SEMNet with DnCNN denoisers in the presence of only Poisson noise.
(a) Original image without any noise, (b) Noisy image with a Poisson noise level of 2 electrons per
pixel, (c) SEMNet denoising, (d) DnCNN denoising with a patch size of 64× 64, (e) DnCNN with
full image size.

Figure 3.29: Comparison of SEMNet with DnCNN denoisers in the presence of Poisson-Gaussian
noise. (a) Original image without any noise, (b) Noisy image with Poisson-Gaussian noise (Pois-
son = 2 electrons per pixel, Gaussian noise σ = 0.1 assuming peak intensity of 1), (c) SEMNet
denoising, (d) DnCNN denoising with patch size of 64× 64, (e) DnCNN with full image size.
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Figure 3.30: The pixel intensity values in one row of denoised images in the presence of Poisson-
Gaussian noise. Noisy image with Poisson-Gaussian noise (Poisson = 2 electrons per pixel, Gaus-
sian noise σ = 0.1 assuming peak intensity of 1. The DnCNN denoisers do not seem to be able to
remove Gaussian noise completely.

Table 3.9: Denoising results for SEMNet, DnCNN_patch64, DnCNN_fullimage. Some images
contain only Poisson noise, and some include Poisson-Gaussian noise. Gaussian σ is standard
deviation for an image with peak intensity of 1.

Original Image Poisson Gaussian Noisy SEMNet DnCNN DnCNN
σ(nm), ξ(nm), noise noise Image denoiser patch64 fullimage

α level σ PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)
0.8, 10, 0.3 10 None 16.38 28.66 29.00 28.71
0.8, 10, 0.3 10 0.02 16.31 28.63 28.90 28.56
0.8, 10, 0.3 10 0.05 15.94 28.38 28.20 27.89
0.8, 10, 0.3 10 0.10 14.82 27.6 25.35 25.88
1.2, 40, 0.7 2 None 9.96 26.39 26.06 26.18
1.2, 40, 0.7 2 0.02 9.94 26.35 25.66 25.79
1.2, 40, 0.7 2 0.05 9.85 26.28 24.09 24.55
1.2, 40, 0.7 2 0.10 9.53 26.14 19.23 22.23
1.6, 30, 0.5 100 None 26.13 42.64 43.58 41.14
1.6, 30, 0.5 100 0.02 25.47 42.55 43.20 41.18
1.6, 30, 0.5 100 0.05 23.05 40.42 40.73 39.44
1.6, 30, 0.5 100 0.10 19.02 34.26 32.06 31.75
0.8, 30, 0.6 5 None 13.22 29.04 28.86 28.95
0.8, 30, 0.6 5 0.02 13.18 29.08 28.53 28.68
0.8, 30, 0.6 5 0.05 13.0 29.03 27.54 27.78
0.8, 30, 0.6 5 0.10 12.38 28.73 24.04 25.48

83



3.4 Visualization Techniques and Improvements to LineNet1 ‡

In this section, we consider multiple visualization tools to improve our understanding of

LineNet1; one of these techniques is new to the visualization of denoising CNNs [3]. We use the

resulting insights from these visualizations to motivate a study of two variations of LineNet1 with

fewer neural network layers.

While CNNs have impressive performance for many tasks, there is a widespread desire to bet-

ter understand them [89]. It is challenging to mathematically understand CNNs, so the machine

learning community has introduced certain visualization techniques to help investigate their op-

eration. A recent paper [90] claims that CNNs respond more to image textures than to object

shapes in certain image recognition problems; this feature could enhance the usefulness of CNNs

for roughness metrology applications. We consider three techniques in this section and believe that

the application of one of them is new to the visualization of denoising CNNs although it has been

applied previously in machine learning for style transfer [91] and for the representation of kernel

functions [92]. The first technique examines the output images generated at each convolutional

layer. The second technique considers the images which maximize the mean activation of filters

in the convolutional layers. In the third technique, which appears to be new to the visualization of

denoising CNNs, we propose a nonlinear dimensionality reduction technique which takes as input

a SEM image and outputs a vector which represents a coarse summary of how a CNN perceives the

texture of the image based on the features it has learned during the training process. Our visual-

ization experiments suggest that there is some redundancy in the LineNet1 architecture. A smaller

architecture with comparable performance would be advantageous as it would have shorter train-

ing and run times. Therefore, we consider a variant of LineNet1 with six convolutional layers and

another with eleven convolutional layers. The experimental results indicate that the larger variant

can still jointly denoise and estimate edge images in the presence of high Poisson noise while the

smaller variant cannot. We also investigate the robustness of LineNet1 and its variants to the noise

‡Part of the data reported in this section is reprinted with permission from N. Chaudhary and S. A. Savari, “Towards
a visualization of deep neural networks for rough line images,” in Proceedings of SPIE, vol. 11177, 111770S, 2019.
DOI: https://doi.org/10.1117/12.2535667. Copyright [2019] by SPIE.
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model by considering test images with additional Gaussian noise.

3.4.1 Layer Outputs and Filters

The first convolutional layer of LineNet1 has 64 filters of dimension 3 × 3. We can visualize

these filters by creating a grayscale representation of them. Figure 3.31 shows the 64 filters from

the first convolutional layer of LineNet1. We can observe from Figure 3.31 that some filters re-

semble low pass filters while others resemble edge detectors. The output of each convolutional

layer is a tensor of dimension width × height × 64 for LineNet1. This output can be visualized

as 64 images of dimension width × height. We visualize the output of LineNet1 at Layers 1, 4,

8, 12 and 16 with images of dimension 64 × 1024. Figure 3.32 illustrates a noisy input image to

LineNet1 with a Poisson noise level of 5 electrons per pixel. Figure 3.33(a) shows eight images

output from the first convolutional layer corresponding to filter numbers 48 to 55. Figures 3.33(b)

and 3.33(c) respectively show samples of images output from the fourth and eighth convolutional

layers. These images do not reveal the purpose of those layers. However, Figure 3.33(d) shows

sample images from the twelfth layer, and here we can observe that the network is trying to sep-

arate edge information from the rest of the image. Figure 3.33(e) shows sample images from the

sixteenth layer, and both the denoised image and the edge image have been constructed. We also

observe possible redundancy as multiple output images across different layers seem similar.

3.4.2 Filter Activation and Activation Maximization

The activation of a filter in an internal layer for an input image refers to the mean pixel value

of the output image corresponding to that filter. In the visualization of classification CNNs, re-

searchers have been interested in finding input images which approximately maximize the activa-

tion of a filter [93, 94], and we likewise consider this approach for LineNet1. To iteratively gen-

erate such an image for a particular filter, initialize the algorithm with an input image containing

random pixel values and compute its activation and the gradient with respect to the input image pix-

els. Next use gradient ascent without regularization to update the input image. Repeat this process

for 20 steps to produce an (approximately) activation maximization input image. Figure 3.34(a)
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Figure 3.31: A grayscale representation of the 64 3× 3 filters from the first convolutional layer of
LineNet1. Reprinted with permission from [3].

Figure 3.32: An input noisy SEM image with a Poisson noise level of 5 electrons per pixel.
Reprinted with permission from [3].
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(a) A sample of the outputs from the first convolutional layer of LineNet1.

(b) A sample of the outputs from the fourth convolutional layer of LineNet1.

(c) A sample of the outputs from the eighth convolutional layer of LineNet1.

(d) A sample of the outputs from the twelfth convolutional layer of LineNet1.

(e) A sample of the outputs from the sixteenth convolutional layer of LineNet1.

Figure 3.33: (a) The outputs from the first convolutional layer of LineNet1 corresponding to filter
numbers 48-55. (b)-(e) A sample of the outputs from the fourth, eighth, twelfth and sixteenth
convolutional layers, respectively, of LineNet1. Reprinted with permission from [3].
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shows eight activation maximization images from the first convolutional layer corresponding to

filter numbers 48 to 55. Observe that the activation maximization images contain a small range of

textures. Similarly, Figure 3.34(b) shows images from the fourth layer, and they also show a small

range of textures. Figure 3.34(c) shows the images of the eighth layer and Figure 3.34(d) shows

the images of the twelfth layer. These layers display a wider and more complex range of textures.

Figure 3.34(e) shows the images of the sixteenth layer. These images do not contain texture infor-

mation, which is consistent with the earlier observation that by this point in the network LineNet1

has constructed the denoised image and the edge image. Figure 3.34 also suggests the possibility

of redundancy within LineNet1 as there appear to be similar activation maximization images from

filters in different layers.

3.4.3 Gram Matrices and Texture

For our third visualization approach, we propose a nonlinear dimensionality reduction tech-

nique which takes a SEM image as input and outputs a vector which represents a coarse summary

of how a CNN perceives the texture of the image based on the features it has learned during the

training process. This technique is based on Gram matrices, which can be used to describe the

style or texture of an image; this approach is inspired by work on texture synthesis [95] and image

style transfer [91], but appears to be new in the visualization of denoising CNNs. Each layer of

a CNN can be interpreted as a nonlinear filter bank, and given an input image the corresponding

set of output images from a layer can be understood as feature maps. The Gram matrix associated

with an input image and convolutional layer summarizes the correlations among the output images

from that layer. Suppose that internal convolutional layer l of a CNN has Nl filters; for LineNet1

there are 16 internal convolutional layers and Nl = 64 for all l. Consider the vectorized version

of each output image of internal convolutional layer l, which is a vector with Ml elements; for

LineNet1 each output image has dimension 64× 1024, so Ml = 65536 for all l. Store the Nl vec-

tors for internal convolutional layer l in a matrix F l ∈ RMl×Nl . The corresponding Gram matrix

Gl ∈ RNl×Nl for internal convolutional layer l describes the inner products of each pair of vectors

associated with that layer. Our final summary of internal convolutional layer l is the Frobenius
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(a) A sample of the activation maximization input images for the first convolutional layer of LineNet1.

(b) A sample of the activation maximization input images for the fourth convolutional layer of LineNet1.

(c) A sample of the activation maximization input images for the eighth convolutional layer of LineNet1.

(d) A sample of the activation maximization input images for the twelfth convolutional layer of LineNet1.

(e) A sample of the activation maximization input images for the sixteenth convolutional layer of LineNet1.

Figure 3.34: (a) The activation maximization input images for the first convolutional layer of
LineNet1 corresponding to filter numbers 48-55. (b)-(e) A sample of the activation maximization
input images for the fourth, eighth, twelfth and sixteenth convolutional layers, respectively, of
LineNet1. Reprinted with permission from [3].
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Figure 3.35: The scaled Frobenius norms of the Gram matrices corresponding to the 16 internal
convolutional layers of LineNet1. The original rough line image has Palasantzas spectral model
parameters σ = 0.8 nm, α = 0.3 and ξ = 10 nm. The depicted noise levels are in units of electrons
per pixel. Reprinted with permission from [3].

norm of Gl divided by 2NlMl; this indicates how strongly an input image activates that layer. The

dimension of the summary vector for a CNN is the number of internal convolutional layers of the

CNN; for LineNet1 we produce a 16-dimensional vector for each image. Figure 3.35 considers an

original rough line image with Palasantzas spectral model parameters σ = 0.8 nm, α = 0.3 and

ξ = 10 nm and plots the elements of the ten summary vectors associated with ten levels of Poisson

noise. Other rough line images in our test dataset have similar behaviors in their summary vectors.

Figure 3.35 shows that the initial four to five layers are strongly activated by the noise in the input

image. Layers 6 to 10 provide a steady response to noise except when the Poisson noise level is 2

electrons per pixel. From Layer 11 onwards the activations appear to depend less strongly on the

noise level. The initial layers of LineNet1 are devoting resources to the image denoising problem

while the last few layers may be focusing more strongly upon the edge detection problem; note that

the conventional wisdom for classification CNNs is that edge detection occurs in the first layers of

those networks. The steady response to noise in some middle layers of Figure 3.35 also suggests

that LineNet1 may have more layers than needed.
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Recall that our previous visualization experiments also suggest the possibility of redundancy

in LineNet1. To test this hypothesis, we consider a new variant of LineNet1 with six convolutional

layers and another with eleven convolutional layers. As with the original version of LineNet1, each

convolutional layer is followed by a batch normalization layer and a dropout layer with dropout

probability set to 0.2.

3.4.4 Modified LineNet1 Experiments and Results

We train LineNet1_6layer and LineNet1_11layer in the same way we had earlier trained

LineNet1; i.e., we use the same training set, the same number of training epochs, the same batch

size and the same Adam [85] optimizer algorithm. Recall that LineNet1 outputs a grayscale de-

noised image and a grayscale edge image. We use the scientific python (SciPy) peak detector

find_peaks on the grayscale edge image to estimate the exact edge positions. This algorithm fails

to detect the edge positions in the output from some high noise input images, so in those cases

we report the LER/LWR values as N/A. The training time for LineNet1_6layer, LineNet1_11layer

and LineNet1 are approximately 14 hours, 27 hours and 41 hours, respectively, on a Tesla K80

graphical processing unit (GPU). The average prediction times per image of LineNet1_6layer,

LineNet1_11layer and LineNet1 are approximately 0.038 second, 0.075 second and 0.14 second,

respectively, on a Tesla K80 GPU.

Our first set of results show the robustness of the original seventeen-layer LineNet1 in the

presence of a different type of noise. SEM image noise is often modeled by a combination of

Gaussian noise and Poisson noise [54] while we trained our CNNs on images with only Poisson

noise. Table 3.10 presents the results for the seventeen-layer LineNet1 when some Gaussian noise

(σG = 0.02, 0.05, 0.1 assuming a maximum pixel intensity of 1) is added to the earlier Poisson

noise test images and shows continued good performance. Table 3.11 shows the denoising perfor-

mance of LineNet1_6layer, LineNet_11layer and LineNet1 in terms of peak signal-to-noise ratios

(PSNR). Observe that LineNet1_11layer and LineNet1 have comparable PSNR performance, and

both outperform the PSNR performance of LineNet1_6layer at the highest Poisson noise levels.

Table 3.12 shows the LWR results for LineNet1_6layer, LineNet1_11layer and LineNet1. Observe
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Table 3.10: LER results for LineNet1 for test images with Poisson-Gaussian noise in conjunction
with the SciPy peak detector find_peaks. The parameter σG is the standard deviation of Gaussian
noise for an image with a maximum pixel intensity of 1. Reprinted with permission from [3].

Original Image Poisson Gaussian PSNR PSNR Left edge (nm) Right edge (nm)
σ(nm), ξ(nm), noise noise noisy denoised σ σ σ σ

α level σG (dB) (dB) (true) (obs.) (true) (obs.)
0.8, 10, 0.3 10 0.02 16.31 28.23 0.75 0.73 0.74 0.72
0.8, 10, 0.3 10 0.05 15.94 27.95 0.75 0.73 0.74 0.72
0.8, 10, 0.3 10 0.10 14.82 27.09 0.75 0.71 0.74 0.71
1.2, 40, 0.7 2 0.02 9.94 26.34 1.06 1.04 1.21 1.21
1.2, 40, 0.7 2 0.05 9.85 26.27 1.06 1.04 1.21 1.22
1.2, 40, 0.7 2 0.10 9.53 26.15 1.06 1.05 1.21 1.23
0.8, 30, 0.6 5 0.02 13.18 28.9 0.77 0.76 0.68 0.66
0.8, 30, 0.6 5 0.05 13.0 28.87 0.77 0.76 0.68 0.65
0.8, 30, 0.6 5 0.10 12.38 28.54 0.77 0.76 0.68 0.65

that as the number of layers in the network decreases the denoising capability also tends to dimin-

ish, and LineNet1_11layer seems to work well up to a Poisson noise level of 4 electrons per pixel

while LineNet1_6layer appears to work well up to a Poisson noise level of 10 electrons per pixel.

The difference between the estimated edges from different networks becomes more appar-

ent when we view the spectra of edges. Figure 3.36 shows three spectra for LineNet1_6layer,

LineNet1_11layer and LineNet1. The SEM image for that figure has a Poisson noise level of 4

electrons per pixel with a Gaussian noise level of σG = 0.05, and the Palasantzas spectral model

parameters for the rough edges were σ = 1.0 nm, α = 0.5 and ξ = 30 nm. The spectra of

LineNet1_11layer and the original LineNet1 are similar. To compare the predicted spectra with

the true spectra, we measure the Euclidean distance between the two spectra assuming each spec-

tra is a vector of 1024 elements. Figure 3.37 plots the Euclidean distance of the predicted edge

spectra from the true edge spectra for multiple Poisson noise levels and a fixed Gaussian noise

level of σG = 0.05. Observe that the Euclidean distance between the spectrum obtained through

LineNet1_6layer with the true spectrum is much larger than the corresponding Euclidean distances

between the spectra obtained from LineNet1_11layer and LineNet1 with the true spectrum.
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Table 3.11: Denoising (PSNR) results for LineNet1, its six-layer variant and its eleven-layer vari-
ant for test images with Poisson-Gaussian noise. The parameter σG is the standard deviation of
Gaussian noise for an image with a maximum pixel intensity of 1. Reprinted with permission from
[3].

Original Image Poisson Gaussian PSNR PSNR
σ(nm), ξ(nm), α noise noise noisy denoised

level σG (dB) (dB)
6layer 11layer 17layer

0.8, 10, 0.3 10 0.02 16.31 28.65 28.78 28.23
0.8, 10, 0.3 10 0.05 15.94 28.31 28.53 27.95
0.8, 10, 0.3 10 0.10 14.82 27.21 27.71 27.09
1.2, 40, 0.7 2 0.02 9.94 25.32 26.22 26.34
1.2, 40, 0.7 2 0.05 9.85 25 26.13 26.27
1.2, 40, 0.7 2 0.10 9.53 23.53 25.99 26.15
0.8, 30, 0.6 5 0.02 13.18 28.8 29.02 28.9
0.8, 30, 0.6 5 0.05 13.0 28.61 28.96 28.87
0.8, 30, 0.6 5 0.10 12.38 27.11 28.65 28.54

Table 3.12: LWR results for LineNet1, its six-layer variant and its eleven-layer variant in conjunc-
tion with the SciPy peak detector find_peaks for test images with Poisson-Gaussian noise. The
parameter σG is the standard deviation of Gaussian noise for an image with a maximum pixel
intensity of 1. Reprinted with permission from [3].

Original Image Poisson Gaussian LWR (nm)
σ(nm), ξ(nm), α noise noise σ σ σ σ

level σG (true) 6layer 11layer 17layer
0.8, 10, 0.3 2 0.05 1.06 N/A 0.99 0.91
0.8, 10, 0.3 4 0.05 1.06 1.21 1.01 0.98
0.8, 10, 0.3 10 0.05 1.06 1.04 1.05 1.04
0.8, 10, 0.3 100 0.05 1.06 1.06 1.06 1.06
1.2, 40, 0.7 2 0.05 1.41 N/A 1.65 1.41
1.2, 40, 0.7 4 0.05 1.41 2.22 1.45 1.41
1.2, 40, 0.7 10 0.05 1.41 1.42 1.42 1.41
1.2, 40, 0.7 100 0.05 1.41 1.41 1.41 1.41
1.0, 30, 0.5 2 0.05 1.28 N/A 1.26 1.23
1.0, 30, 0.5 4 0.05 1.28 1.38 1.27 1.25
1.0, 30, 0.5 10 0.05 1.28 1.26 1.27 1.25
1.0, 30, 0.5 100 0.05 1.28 1.28 1.28 1.28
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Figure 3.36: Predicted spectra and the Euclidean distances between each estimated spectrum and
the corresponding true spectrum. (a)-(c) For our LineNet1_6layer network, LineNet1_11layer
network and LineNet1 network the Euclidean distances between the predicted and true spectra are
respectively 94.4 nm3, 28.2 nm3 and 19.5 nm3. The SEM image for this figure has a Poisson noise
level of 4 electrons per pixel with a Gaussian noise level of σG = 0.05, and the Palasantzas spectral
model parameters for the rough edges were σ = 1.0 nm, α = 0.5 and ξ = 30 nm. Reprinted with
permission from [3].

Figure 3.37: The Euclidean distances between the predicted edge spectra and the true edge spectra
for LineNet1 and its two variants when the test images have a fixed Gaussian noise level of σG =
0.05. (a)-(c) The Palasantzas spectral model parameters for the rough edges of the test images are
respectively σ = 0.8 nm, α = 0.3, ξ = 10 nm for (a), σ = 1.2 nm, α = 0.7, ξ = 40 nm for (b),
and σ = 1.0 nm, α = 0.5, ξ = 30 nm for (c). Reprinted with permission from [3].
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4. SUMMARY AND CONCLUSIONS

The end of Moore’s law will affect the industries that rely on the continuous growth of compu-

tation power. To prevent the end of Moore’s law, engineers need to generate innovative solutions

which utilize knowledge from multiple engineering fields. In this thesis, we examined two of the

challenges facing integrated circuit fabrication and proposed solutions which employed knowledge

from data compression, computer architecture, and the deep learning fields.

In the first part of this thesis, we discussed the existing multibeam systems and the challenges

associated with them. We have presented a family of multibeam arrays and proposed scanning

strategies for them. We have also discussed mask data characteristics and compression constraints

specific to aperture array-based multibeam systems. To improve the communication and compu-

tational efficiency of multibeam mask writing systems, we proposed a datapath architecture that

was inspired by multibeam direct-write tools and circuit testing. The proposed datapath architec-

ture used parallel data compression and decompression. Our parallel compression algorithm will

help to address two important problems in mask writing, namely, the data volume and the data

preparation time. Our decompression architecture can be attached to the existing deflection plate

architecture. We have also shown that video- and pixel-based representations are useful file formats

for multibeam systems. We have demonstrated that data compression can be an important tool to

address the “big data” problems of the mask industry. In the future, we would like to implement

the parallel architecture in hardware.

In the second part of this thesis, we discussed the SEM metrology problem and its importance

to the integrated circuit fabrication process. We have proposed multiple deep learning-based so-

lutions for SEM metrology. We have simulated multiple SEM image datasets for the training of

deep convolutional neural networks. We have shown that deep supervised learning is effective

in the Poisson denoising of SEM images and in finding the edge positions in the noisy SEM im-

ages. We have also shown that deep learning is effective in the simultaneous denoising and edge

estimation of SEM images. Our results show that time and memory resources can be saved by
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performing these tasks simultaneously using neural networks. Additionally, we have considered

multiple visualization techniques that offered clues about redundancies in our deep convolutional

neural networks. Visualization helps in understanding the workings of large convolutional neural

networks. The vectors of scaled Frobenius norms of the Gram matrices for an original input im-

age with different noise levels motivated a study of two smaller variants of our LineNet1 network.

Our results indicate that it is possible to reduce the number of convolutional layers of LineNet1

from seventeen to eleven with a modest reduction in performance. The semiconductor industry

has the opportunity to leverage advances in deep convolutional neural networks together with vast

amounts of real and simulated data to learn complex physical processes. Deep learning can ad-

vance the field of semiconductor metrology. We hope our work will influence the industry to utilize

deep learning-based solutions. In the future, we would like to work with a large class of realistic

SEM data.
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