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ABSTRACT 

Many broad applications in the field of robotics, brain-machine interfaces, 

cognitive computing, image and speech processing and wearables require edge devices 

with very constrained power and hardware requirements that are challenging to realize. 

This is because these applications require sub-conscious awareness and require to be 

always “on”, especially when integrated with a sensor node that detects an event in the 

environment.  Present day edge intelligent devices are typically based on hybrid CMOS-

memristor arrays that have been so far designed for fast switching, typically in the range 

of nanoseconds, low energy consumption (typically in nano-Joules), high density and 

endurance (exceeding 1015 cycles).  On the other hand, sensory-processing systems that 

have the same time constants and dynamics as their input signals, are best placed to learn 

or extract information from them. To meet this requirement, many applications are 

implemented using external “delay” in the memristor, in a process which enables each 

synapse to be modeled as a combination of a temporal delay and a spatial weight parameter. 

This thesis demonstrates a synaptic thin film transistor capable of inherent logic 

functions as well as compute-in-memory on similar time scales as biological events.  Even 

beyond a conventional crossbar array architecture, we have relied on new concepts in 

reservoir computing to demonstrate a delay system reservoir with the highest learning 

efficiency of 95% reported to date, in comparison to equivalent two terminal memristors, 

using a single device for the task of image processing. The crux of our findings relied on 

enhancing our capability to model the unique physics of the device, in the scope of the 

current thesis, that is not amenable to conventional TCAD simulations. The model provides 

new insight into the redox characteristics of the gate current and paves way for assessment 
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of device performance in compute-in-memory applications. The diffusion-based 

mechanism of the device, effectively enables time constants that have potential in 

applications such as gesture recognition and detection of cardiac arrythmia. 

The thesis also reports a new orientation of a solution processed perovskite solar 

cell with an efficiency of 14.9% that is easily integrable into an intelligent sensor node. We 

examine the influence of the growth orientation on film morphology and solar cell 

efficiency. Collectively, our work aids the development of more energy-efficient, powerful 

edge-computing sensor systems for upcoming applications of the IOT. 

  



7 

 

TABLE OF CONTENTS 
DECLARATION .....................................................................................................2 

ACKNOWLEDGMENTS .......................................................................................3 

ABSTRACT .............................................................................................................5 

LIST OF FIGURES ...............................................................................................12 

List of Publications ................................................................................................24 

CHAPTER 1 ..........................................................................................................26 

Introduction ............................................................................................................26 

1.1 Motivation ........................................................................................................26 

1.2 Outline of the Thesis ........................................................................................32 

1.3 References ........................................................................................................34 

CHAPTER 2 ..........................................................................................................38 

Basics of Perovskite solar cells and Amorphous Oxide Thin Film 

Transistors ........................................................................................................38 

2.1 Introduction ......................................................................................................38 

2.2 Perovskite solar cells........................................................................................39 

2.2.1 A brief history of perovskite solar cells ............................................39 

2.2.2 Basic structure and property of perovskite material .........................40 

2.2.3 Deposition method for CH3NH3PbI3 ................................................45 

2.2.4 Perovskite solar cells: device structure and working principle .........47 

2.2.5 Working principle of perovskite solar cells ......................................49 

2.2.6 Stability of perovskite solar cells ......................................................55 

2.3 Amorphous Oxide Semiconductors .................................................................56 



8 

 

2.3.1 Applications of AOS semiconductors. ..............................................56 

2.3.2 Basic structure and property of amorphous oxide 

semiconductors ....................................................................................59 

2.3.3 Deposition method of Amorphous Oxide Semiconductors ..............63 

2.3.4 Thin film Transistor architecture ......................................................65 

2.3.5 Principle of operation and physics of AOS based TFTs ...................66 

2.4 Summary ..........................................................................................................70 

2.5 References ........................................................................................................71 

CHAPTER 3 ..........................................................................................................84 

Artificial Neural Networks and Neuromorphic Computing ..................................84 

3.1 Brain-inspired computing ................................................................................84 

3.2 Artificial Neural Networks ..............................................................................87 

3.2.1 Feed-forward Neural Network ..........................................................88 

3.2.2 Recurrent Neural Networks ..............................................................90 

3.2.3 Backpropagation ...............................................................................91 

3.2.4 Reservoir computing .........................................................................93 

3.2.5 Spiking Neural Networks ..................................................................97 

3.3 Emerging memory devices for neuromorphic application. ..............................98 

3.3.1 Phase-change memories ..................................................................101 

3.3.2 Oxide based random-access memories ...........................................102 

3.3.3 Ferroelectric memories ...................................................................104 

3.3.4 Spin torque magnetic random access memories .............................106 

3.3.5 Electrolytes gate transistors ............................................................107 



9 

 

3.3.6 Perovskite in memory applications .................................................109 

3.3.7 Amorphous Oxide Semiconductors in memristor applications ......110 

3.4 Summary ........................................................................................................112 

3.5 References ......................................................................................................112 

CHAPTER 4 ........................................................................................................125 

Solid Electrolyte-Gated Ta2O5/ZnO Field-Effect transistor: Fabrication, 

modeling, and device mechanism ..................................................................125 

4.1 Introduction ....................................................................................................125 

4.2 Device fabrication ..........................................................................................125 

4.3 Physics of Ta2O5/ZnO SE-FETs ....................................................................127 

4.4 Modeling of the SE-FET ................................................................................134 

4.4.1 Basic of the SE-FET model ............................................................134 

4.4.2 Proposed gate current model ...........................................................137 

4.5 Summary ........................................................................................................145 

4.6 References ......................................................................................................146 

CHAPTER 5 ........................................................................................................148 

Off-state operation of SE-FETS...........................................................................148 

5.1 Introduction ....................................................................................................148 

5.2 Off-state operation for logic in memory ........................................................149 

5.2.1 Basic device characteristics and operation .....................................149 

5.2.2 Logic operations ..............................................................................157 

5.2.3 Benchmark ......................................................................................162 



10 

 

5.3 Using synaptic properties of SE-FETs for supervised learning in a 

crossbar ..........................................................................................................166 

5.3.1 Crossbar implementation of the SE-FET ........................................166 

5.3.2 Synaptic properties of SE-FETs and supervised learning...............168 

5.3.3 Crossbar arrangement of the SE-FET .............................................169 

5.4 Conclusions ....................................................................................................171 

5.5 References ......................................................................................................172 

CHAPTER 6 ........................................................................................................175 

Reservoir computing using SE-FET as Reservoir ...............................................175 

6.1 Introduction ....................................................................................................175 

6.2 Reservoir computing using SE-FET ..............................................................175 

6.3 Results and Discussion ..................................................................................180 

6.4 Conclusions ....................................................................................................188 

6.5 References ......................................................................................................189 

CHAPTER 7 ........................................................................................................191 

Seed-assisted method for <202>-oriented CH3NH3PbI3 perovskite ....................191 

7.1 Introduction ....................................................................................................191 

7.2 Experimental methods ...................................................................................192 

7.3 Results and discussion ...................................................................................195 

7.4 Summary ........................................................................................................209 

7.5 References ......................................................................................................210 

CHAPTER 8 ........................................................................................................216 

Conclusions and future works ..............................................................................216 



11 

 

8.1 Summary ........................................................................................................216 

8.2 Future work ....................................................................................................217 

8.3 References ......................................................................................................218 

 



12 

 

LIST OF FIGURES 

Fig 1.1 Schematic diagram of Von Neumann architectures ..................................... 27 

Fig 1.2 Sensor connected IoT application ................................................................. 29 

Fig 1.3 Schematic diagram of of a integrated smart solar cell.................................. 30 

Fig 2.1 Ideal perovskite crystal structure (cubic). ..................................................... 41 

Fig 2.2 (a) Unit cell of the tetragonal structure of CH3NH3PbI3. Here, A is 

CH3NH3+, B is Pb2+, and X is I-. (b) Side view and (c) top view of the 

tetragonal CH3NH3PbI3 structure. ................................................................. 43 

Fig 2.3 One-step and two-step solution-based methods for CH3NH3PbI3 

deposition. ..................................................................................................... 46 

Fig 2.4 (a) Conventional p-i-n, (b) mesoscopic p-i-n, and (c) inverted n-i-p 

perovskite solar cell structures. ..................................................................... 49 

Fig 2.5 Structure of a p-n diode. ............................................................................... 50 

Fig 2.6 (a) Schematic band diagram of a p-i-n diode and (b) circuit model of a 

solar cell. ....................................................................................................... 52 

Fig 2.7 Schematic J-V and P-V curves of a perovskite solar cell measured under 

simulated solar light at AM1.5. ..................................................................... 53 



13 

 

Fig 2.8 Schematic electronic structures of ionic oxide semiconductors, (a) the 

charge transfer from metal to oxygen atoms, (b) the unoccupied s 

orbitals forms the CBM and the  fully occupied O 2p orbitals forms the 

VBM [99]. ..................................................................................................... 60 

Fig 2.9 Schematic drawing of the CBM atomic orbital and carrier transport 

paths of crystalline and amorphous Si (a) and (b) ionic oxide 

semiconductors [99]. ..................................................................................... 61 

Fig 2.10 Schematic drawing of amorphous semiconductors Density of States ........ 62 

Fig 2.11 Schematic diagram and photo of the Lesker sputter system used in this 

work. ............................................................................................................. 64 

Fig 2.12 Schematic diagram of basic TFT structures. (a) Top-gate coplanar (b) 

Top-gate staggered (c) Bottom-gate bottom coplanar and (d) Bottom-

gate staggered................................................................................................ 66 

Fig 2.13 Schematic diagram (a-c) and corresponding ID –VD curve (d-f) of a 

TFT in (a) cut-off region, (b) linear region and (c) saturation region. .......... 68 

Fig 3.1 Schematic diagram of a chemical synapse transmission [2]. ....................... 85 

Fig 3.2 Schematic diagram of (a) excitatory post synaptic current (EPSC) and 

(b) spike timing-dependent plasticity (STDP). ............................................. 87 

Fig 3.3 Schematic diagram of hardware artificial neural network ............................ 88 



14 

 

Fig 3.4 Schematic diagram of a Feedforward Neural Network ................................ 89 

Fig 3.5 Schematic diagram of recurrent neural networks ......................................... 91 

Fig 3.6 Schematic diagram of the forward propagation (a) of the input and 

backward propagation (b) of the error. ......................................................... 92 

Fig 3.7 (a) Traditional RNN training methods update all connection weights 

(red) during the training process. (b) In Reservoir Computing, only the 

activation function (Reservoir-to-output weights) are updated. ................... 95 

Fig 3.8 (a) Schematic structure diagram and (b) illustration of the SET/RESET 

process of the Phase-change memories. ...................................................... 102 

Fig 3.9 Schematic structure diagram of ReRAM based on (a) active metal 

contact (CBRAM) and (b) transitional metal oxides (RRAM). (c) 

illustration of the SET/RESET process of the Oxide based random-

access memories.......................................................................................... 104 

Fig 3.10 (a) Schematic structure diagram of a FeRAM and (b) the polarization 

charge of the ferroelectric material. ............................................................ 106 

Fig 3.11 (a) Schematic structure diagram of STT-MRAM based on (b) 

illustration of the R-V curve of the STT-MRAM ....................................... 107 

Fig 4.1 Structure of a Ta2O5/ZnO TFT .................................................................. 126 



15 

 

Fig 4.2 AFM images of (a) 275nm Ta2O5 and (b) 40nm ZnO deposited on ITO 

substrates. .................................................................................................... 127 

Fig 4.3 XRD of Ta2O5 and ZnO films and background ITO substrate. .................. 127 

Fig 4.4 (a) IDS-VGS and (b) IGS-VGS characteristics of the Ta2O5/ZnO SE-FET at 

room temperature. IGS-VGS data were measured when both drain sources 

of the device were grounded. ...................................................................... 130 

Fig 4.5 The schematic depicts the motion of ions within the insulator of the 

device during the dual sweep. ..................................................................... 130 

Fig 4.6 Dual-sweep transfer characteristics IDS vs. VGS (a) SE-FET with 275-

nm Ta2O5 as gate oxide, and (b) devices with 60-nm SiN + 30-nm 

Ta2O5. (c) Hysteresis width vs. scan rate at 100 nA. (d) Dual-sweep IDS 

vs. VGS of a 275-nm Ta2O5 device at near steady state. .............................. 132 

Fig 4.7 Time-dependent IDS when switching from a constant VGS of -5 V to a 

constant VGS of +5 V. ................................................................................. 133 

Fig 4.8 (a) Ids decay of devices with a gate insulator thickness of 275 nm at 

20°C, 40°C, and 60 °C. (b) Ids decay of devices with a gate insulator 

thickness of 120 nm, 275 nm, or 350 nm at 60°C. ..................................... 134 

Fig 4.9 Scheme of the Simulink model based on the original SE-FET proposed 

by Dr. Ashwani Kumar in [1]. .................................................................... 135 



16 

 

Fig 4.10 Scheme for linearly approximating the oxide ion concentration (npeak) 

decay [1]. ..................................................................................................... 137 

Fig 4.11 Scheme of the Simulink model of the SE-FET with the gate current 

model........................................................................................................... 138 

Fig 4.12 Equivalent circuit model of the SE-FET. ................................................. 139 

Fig 4.13 Comparison of (a) measured/simulated transfer I-V curves at a scan 

rate of 0.08 V/s and (b) gate current characteristics of the device at 

steady state. (c) Simulated Vox corresponding to the transfer I-V curve. 

(d) Comparison of the measured/simulated time-dependent gate current 

characteristics at a constant voltage of 3 V. ................................................ 141 

Fig 4.14 Comparison of (a) measured/simulated transfer I-V curves at a scan 

rate of 0.08 V/s and (b) gate current characteristics of the device at 

steady state. (c) Simulated Vox and Ψs for the transfer I-V curve. (d) 

Comparison of measured/simulated time- dependent gate current 

characteristics at a constant voltage of 3 V. ................................................ 145 

Fig 5.1 Mechanism of read and write operations in (a) resistive switching and 

(b) SE-FETs, demonstrating the possibility of low power consumption 

during writing in SE-FETs. (c) IDS-VGS and (d) IGS-VGS curves of 

the basic device at room temperature. ......................................................... 151 



17 

 

Fig 5.2 (a) Gate bias pulses at 1 Hz applied to the device with a constant VDS =

0.1 V. (b) Measured drain current characteristics as a function of time, 

exhibiting two resistance states (HRS and LRS) as the gate bias crosses 

zero, indicated by red circles. ..................................................................... 153 

Fig 5.3 (a) Scheme of 1-Hz bias pulses for VGS and VDS, where VDS = 0 and 

VGS ≠ 0 during the write operation and vice versa during the read 

operation, ensuring that the write and read operations are exclusive. (b) 

Drain current measured during the read operation (VDS = +0.1 V), 

indicating the presence of two resistance states (HRS and LRS) 

separated by three orders of magnitude, with a small variance (inset). 

(c) Measured gate current characteristics showing that the power 

consumption remains limited to the nanowatt level during the write 

operation, as the drain current remains zero. .............................................. 155 

Fig 5.4 (a) Drain current measurements of a device with a 350-nm-thick oxide 

layer for the pulse scheme shown in Fig. 4.3(a). (b) Alternate pulse 

scheme at 1.5 Hz, with VGS equal to +5 V and −6 V for switching 

between the LRS and HRS and (c) corresponding drain current 

measurements. ............................................................................................. 155 

Fig 5.5 Gate insulator thickness vs. HRS/LRS ratio for asymmetric pulses (275 

nm: +6 V/-5 V for set/reset; 350 nm: +5 V/-6 V for set/reset) (left axis) 

and retention time at 60°C (right axis). ....................................................... 157 



18 

 

Fig 5.6 (a) Finite-state diagram of the device, where 1 for either VG or VB 

indicates application of a positive bias and S = 0 or 1 indicates the LRS 

or HRS, respectively. (b) Truth table describing the state transition. ......... 159 

Fig 5.7 (a) Steps to perform IMP (if A then B) logic operation and a 

corresponding truth table. (b) Applied gate and drain bias pulses. (c) 

Measured drain current for each step indicated in (a). W × L =

100 × 1.5 μm2, Tox = 275 μm, frequency =  2 Hz. ................................ 160 

Fig 5.8 (a) Steps to perform the NIMP logic operation (S=A⋅B') and a 

corresponding truth table. (b) Applied gate and drain bias pulses. (c) 

Measured drain current for each step indicated in (a). W × L =

100 × 1.5 μm2, Tox = 275 μm, frequency =  2 Hz. ................................ 161 

Fig 5.9 (a) Steps to perform a two-input NAND (S = A′ + B′) logic operation 

and a corresponding truth table. (b) Applied gate and drain bias pulses. 

(c) Drain current measured for each of the steps shown in (a). W × L =

100 × 1.5 μm2, Tox = 275 μm, frequency =  2 Hz. ................................ 161 

Fig 5.10 (a) Steps to perform a two-input NOR (S = A′ ⋅ B′) logic operation and 

a corresponding truth table. (b) Applied gate and drain bias pulses. (c) 

Measured drain current for each step shown in (a). W × L =

100 × 1.5 μm2, Tox = 275 μm, frequency =  2 Hz. ................................ 162 



19 

 

Fig 5.11 (a) Benchmarking the power consumption per unit device area vs. 

switching time based on experimental data reported in [1] and our 

current measurements. (b) Measured HRS/LRS ratio vs. input pulse 

frequency and (c) switching time vs. gate length L. The fit to data 

predicts a switching time of 150 ns for L = 20 nm. .................................... 163 

Fig 5.12 Schematic of a 2 × 2 crossbar consisting of an SE-FET and a depletion-

mode MOSFET with two control lines for selecting individual cells and 

the Ta2O5/ZnO SE-FET. ............................................................................. 166 

Fig 5.13 (a) Bias conditions during the read and write operations. Here, Vth is 

the threshold voltage of the MOSFET, Vm is the refresh voltage (0.5 V), 

f(ISL) is the output of the activation function (sigmoid) (Eq. (5.2)), 

VWrite is the write voltage for potentiation (0 V + 4 V), and the read 

voltage is VRead = 0.2 V. (b) Truth table for OR and AND and the 

corresponding condition of the sense line. .................................................. 168 

Fig 5.14 Conductance measured after sequential gate bias pulses of different 

amplitudes and polarities, as shown in the inset. ........................................ 169 

Fig 5.15 Simulated bias and read currents of devices (a) 1x and (b) 1y in the 

crossbar during training for OR operation and devices (c) 2x and (d) 2y 

for AND operation. (e) Simulated output of the activation function for 

OR and AND logic operations, with respect to inputs X and Y. Errors 



20 

 

at 20 and 22 s due to volatility are refreshed by application of a gate 

voltage of 2–3 V. ......................................................................................... 170 

Fig 6.1 Scheme of the SE-FET-based reservoir framework [1]. ............................ 177 

Fig 6.2 Read current of the SE-FET following a single pulse using +0.1V (a) 

and -1.0V (b) of read voltage. The -1.0V read voltage helps to maintain 

a more linear and enriched decay state, without offsetting the decay or 

writing to the devices. The read current of the SE-FET after reset with 

0V gate votlage using -1V (c) and -1.5V (d) read voltage is also shown. 

Utilizing -1V read voltage keeps the device in the off state after a reset 

without additional input from reading itself, while a -1.5V read voltage 

is sufficient to force the device into a potentiation state by the negative 

read voltage. ................................................................................................ 178 

Fig 6.3 Conductance state saturation and complete memory loss results in 

information between input function and reservoir. Weak or no memory 

loss results a lost in temporal order of the sequential input. ....................... 179 

Fig 6.4 Potentiation conductance of the SE-FET from 0.1 to 1Hz. ........................ 181 

Fig 6.5 Conductance state decay and conductance state change per pulses record 

at 0.4 Hz frequency pulses. ......................................................................... 182 



21 

 

Fig 6.6 Example of the recorded SE-FET output from one of the devices used 

as the reservoirs output database to train and test the network. Devices 

recorded at 0.4Hz with 3V 60% duty cycle pulses. .................................... 184 

Fig 6.7 (a) Example of the heat map from the SE-FET response to digit 5 using 

data based on the measured results showing Fig 6.8. (b) Confusion 

matrix showing the experimentally obtained classification results of the 

SE-FET-based reservoir versus the correct outputs. Ankit Gaurav 

achieved an overall recognition rate of 91.19% using 7-fold cross-

validation [6]. .............................................................................................. 185 

Fig 6.8 Response of device 1 (a), 2 (b) and 3 (c) when subjected to same input 

111 with same 3.5V pulses. The devices conductivity varies due to 

inherent device-to-device variation. ............................................................ 186 

Fig 6.9 Response of device 1 (a), 2 (b) and 3 (c) when subjected to input 111 

with 3.5V, 4.5V and 5.5V pulses. The devices conductivity varies due 

to inherent device-to-device variation and the different input function. .... 187 

Fig 7.1 (a) Process flow diagram of the seed-assisted combined method for 

<202>-oriented perovskites. (b) Fabricated planar device structures. ........ 194 

Fig 7.2 XRD of the (a) PbI2 film, (b) intermediate seed layer, and (c–f) 

perovskite film after complete conversion from the intermediate film via 

the solid-state process at temperatures of 120°C to 135°C. ........................ 197 



22 

 

Fig 7.3 (a) Cross-section and (b) top view of <001>-oriented PbI2. (c) Cross-

section and (d) top view of <202>-oriented CH3NH3PbI3 formed via a 

topotactic reaction process. ......................................................................... 199 

Fig 7.4 (a) Three structures used in this study (viewed from the <100> and 

<001> directions). Structure 1 is an ideal tetragonal structure, Structure 

2 is based on a unit cell that contains all MA+ cations aligned along 

<001> [27], and Structure 3 is obtained by performing a DFT relaxation 

of Structure 2. (b, c) Measured and simulated XRD of the (b) <110>- 

and (c) <202>-oriented perovskite films from Structures 1–3. .................. 202 

Fig 7.5 J–V curves of perovskite solar cells with <110>- and <202>-oriented 

perovskite measured in a dark environment. Corresponding SEM 

images of each sample are shown in the inset, where the <202>- and 

<110>-oriented perovskites show a grain size of approximately 0.4 µm 

and 1.2 µm, respectively. ............................................................................ 204 

Fig 7.6 (a) Normalized Raman spectra of CH3NH3PbI3 perovskite layers 

measured using excitation at 532 nm and 830 nm. The vertical dashed 

lines indicate the peak positions of the Raman band, obtained by fitting 

the spectra with Gaussian curves. (b, c) Raman spectra obtained for 532-

nm excitation, fitted with Gaussian curves. (d, e) Raman spectra 

obtained for 830-nm excitation fitted with Gaussian curves. ..................... 207 



23 

 

Fig 7.7 J–V curves of perovskite solar cells with <110> and <202> oriented 

perovskites under AM1.5G simulated sunlight. ......................................... 209 

 

  



24 

 

 

LIST OF PUBLICATIONS 

Journals: 

(1)  Gaurav, A.; Song, X.; Manhas, S.; Gilra, A.; Vasilaki, E.; Roy, P.; De Souza, M. M. 

Reservoir Computing for Temporal Data Classification Using a Dynamic Solid 

Electrolyte ZnO Thin Film Transistor. Front. Electron. 2022, 3. 

https://doi.org/10.3389/felec.2022.869013. 

(2)  Kumar, A.; Song, X.; De Souza, M. M. Necessary Conditions for Steep Switching 

in a Constant Resistor-Capacitor RCFET. MRS Adv. 2021, 6 (21), 540–545. 

https://doi.org/10.1557/s43580-021-00119-9. 

(3)  Song, X.; Kumar, A.; De Souza, M. M. Off-State Operation of a Three Terminal 

Ionic FET for Logic-in-Memory. IEEE J. Electron Devices Soc. 2019, 7 (July), 

1232–1238. https://doi.org/10.1109/JEDS.2019.2941076. pp 154–156. 

https://doi.org/10.1109/EDTM.2019.8731277. 

(4)  Kumar, A.; Balakrishna Pillai, P.; Song, X.; De Souza, M. M. Negative Capacitance 

beyond Ferroelectric Switches. ACS Appl. Mater. Interfaces 2018, 10 (23), 19812–

19819. https://doi.org/10.1021/acsami.8b05093. 

(5)  Balakrishna Pillai, P.; Kumar, A.; Song, X.; De Souza, M. M. Diffusion-Controlled 

Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide 

Thin-Film Transistors. ACS Appl. Mater. Interfaces 2018, 10 (11), 9782–9791. 

https://doi.org/10.1021/acsami.7b14768. 

Conferences: 

(1)  Song, X.; Gaurav, A.; Pillai, P. B.; Kumar, A.; Manhas, S.; Gilra, A.; Vasilaki, E.; 



25 

 

Souza, M. M. De. Reservoir Computing Based on a Solid Electrolyte ZnO TFT : An 

Attractive Platform for Flexible Edge Computing. Int. Flex. Electron. Technol. 

Conf. 2023. 

(2)  Souza, M. M. De; Song, X.; Gaurav, A.; Manhas, S. K.; Pillai, P. B.; Sikdar, S.; 

Kumar, A.; Gilra, A.; Vasilaki, E. A Delay System Reservoir Based on a Nano-Ionic 

Solid Electrolyte FET *. Nanotechnol. Mater. Devices Conf. 2023. 

(3)  Gaurav, A.; Song, X.; Manhas, S. K.; Roy, P. P.; De Souza, M. M. A Solid 

Electrolyte ZnO Thin Film Transistor for Classification of Spoken Digits Using 

Reservoir Computing. In 2023 7th IEEE Electron Devices Technology & 

Manufacturing Conference (EDTM); IEEE, 2023; pp 1–3. 

https://doi.org/10.1109/EDTM55494.2023.10103131. 

(4)  Song, X.; Kumar, A.; De Souza, M. M. An Ultra-Low Power 3-Terminal Memory 

Device with Write Capability in the off-State. In 2019 Electron Devices Technology 

and Manufacturing Conference (EDTM); IEEE, 2019; pp 154–156. 

https://doi.org/10.1109/EDTM.2019.8731277. 

(5)  Song, X.; Pillai, P. B.; Batten, T.; Souza, M. M. De. Highly Oriented (202) Mixed 

Halide Perovskite for Enhanced Solar Cell Performance. In UK semi 2017 

conference; 2017. 

 

 

  

https://doi.org/10.1109/EDTM.2019.8731277


26 

 

CHAPTER 1 

Introduction 

1.1 Motivation 

The escalating demand in global energy presents a formidable challenge to our 

planet, primarily due to its significant contribution to the alarming increase in greenhouse 

gas emissions. This situation is further complicated by the ambitious objective of achieving 

net-zero emissions by 2050. By 2021, the worldwide demand for electricity surged to 

24,700 TWh, representing a 6% year-on-year increase from 2020, which was the largest 

annual increase seen since 2010 [1]. Approximately 46% of this demand, which accounts 

for a significant proportion of the global increase in CO2 emissions, is attributable to 

increasing demand in electricity and heat production [2]. 

Among various sectors contributing to this relentless demand for electricity, 

technology-oriented sectors, particularly those reliant on heavy data processing, have 

experienced the steepest growth. For instance, cryptocurrency mining alone accounted for 

an energy consumption of 100-140 TWh in 2021, marking an astonishing increase of 2000-

3000% from 2015 [3]. 

In the modern landscape, a burgeoning technology known as the Internet of Things 

(IoT), also referred to as the Industrial Internet, is gaining traction. This technology fosters 

interaction among global networks, paving way for the emergence of intelligent 

environments capable of autonomous self-regulation. These networks link sensors and 

communication devices on a global scale. Currently, IoT implementations necessitate data 

analysis in the cloud, where data is transferred from the point of generation and 

subsequently processed for decision-making. Furthermore, it falls short of achieving the 
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envisioned fully integrated smart functionality of IoT due to its high power consumption, 

estimated to be between 320 and 460 TWh for data centers alone [4]. It is projected that by 

2025, the quantity of IoT devices will proliferate, reaching an astounding figure of 4.7 

billion [5]. A substantial portion of the data, generated by these devices, is characterized 

by its unstructured nature and redundancy. This leads to heightened energy consumption 

and latency, particularly due to the transmission of this data for processing [6]. 

The cloud-centric model of the IoT,  based on conventional Von Neumann 

computing architecture that distinctly separates memory and computational elements, is 

unsustainable (Fig 1.1), due to data transfer bottlenecks and energy inefficiency [7].  

 

Fig 1.1 Schematic diagram of Von Neumann architectures 

Despite the strength of CMOS in handling mathematical and logic operations, these 

devices fail to match the efficiency of human neurons and synapses in processing analog 

information. Furthermore, Von Neumann architectures inherently lack features that could 

support learning and problem-solving. For example, despite not having the raw 

computational power found in modern machines, the human brain excels at solving 

sensory-related problems through the use of memory and learning.  As a result, software 

based  neural networks require tens of MW of power to mimic only a fraction of human 
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brain function [8], such as identifying images, that too, after repeated training with 

substantial data. The human brain accomplishes similar image identification tasks using a 

mere 20 watts of energy, with less training and data [9]. Therefore, developing hardware 

akin to brain-inspired computing systems that can more accurately mimic biological 

neurons and synapses is viewed as a significant step towards achieving energy efficiency 

[10]. 

Alternatives to the Von Neumann model such as Compute-in-Memory (CIM) and 

Neuromorphic Computing are being actively explored, which promise improved 

computational speed and energy efficiency integrating processing and memory functions 

into the same unit, thereby avoiding speed and energy losses due to data transmission 

between separate processing and memory units [11].  

The implementation of CIM architectures necessitates hardware that offers high 

speed, high density, and low energy cost [11][12]. Typically, this involves the integration 

of scalable memory devices with CMOS devices in a crossbar array for massively parallel 

operations [12], which are inherently compatible with multiplication and addition 

operations (Fig 1.2). 

Memristors are typically used as synapses in such artificial neural networks 

(ANNs), where they store conductance values as weights. These weights determine the 

connections between layers and are a key part of the network's learning functions. The sum 

of currents in the crossbar are fed into neurons which undertake the task of thresholding. 

Implementing a neuron in large scale crossbars to achieve the activation function or 

learnable kernels is challenging and expensive, often relying on field-programmable gate 
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arrays (FPGA) [13], as well as Analogue to Digital (ADC) and Digital to Analogue 

Converters (DAC) [14][15] to achieve the desired network function. 

 

Fig 1.2 Sensor connected IoT application  

Deep neural networks (DNNs) based on memristors devices such as CBRAMs [16], 

PCMs [17][18], and OxRAMs[19][20] are increasingly popular due to their compatibility 

with CMOS, scalability, bidirectional switching behavior, and reduced power consumption 

by three orders of magnitude compared to a CPU with off-chip memory. However, the 

change in conductance in a ReRAM, which is caused by the formation and rupture of a 

conducting filament, is inherently analog and stochastic. This leads to variability, 

relaxation, nonlinear conductance behavior, and a reduction in yield. This approach 

necessitates additional efforts at the device, architecture, or algorithmic levels to address 

the loss of accuracy and make it unsuitable for high precision computing. The accuracy of 

memristor-based computing can be improved by off-chip training methods, which are 

energy-intensive and occur in the cloud. However, discrepancies between the platforms 

used in training (usually GPUs) and the crossbar implementation of the ReRAM lead to a 

loss of learning efficiency. In contrast, on-chip training methods can eliminate this issue, 

especially as secure communication with the cloud is a critical constraint in health 

applications. Examples of embedded intelligence in alternate technologies (beyond 
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CMOS) are virtually nonexistent in the commercial world, primarily due to challenges 

associated with integration, especially when substrate platforms are not silicon-based, as is 

common in sensor technologies, which may rely on alternate materials that need to meet 

the constraints of their applications. 

 

Fig 1.3 Schematic diagram of of a integrated smart solar cell 

Edge computing (also known as Processing-in-sensor) allows decisions to be made 

at the source, thereby reducing the need for extensive data storage and transmission to the 

cloud. This approach emphasizes the processing of information over the transmission of 

raw sensor data. This effectively reduces the volume of data required for transmission, 

thereby decreasing energy usage and latency [21]. The ultimate goal is to develop smart 

IoT devices capable of operation purely on harvested energy and preserving their 

computational state even when energy sources are depleted. Furthermore, large-scale 

implementation of such systems requires commitment to low-cost, environmentally 

sustainable materials. Moreover, the implementation of such a solution necessitates a 

meticulous balancing act, harmonizing the demands of space, power supply, computational 

power, and memory within the sensor framework.  
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In particular, a major challenge faced by autonomous wireless systems is power 

supply. When power sources such as batteries or capacitors are combined with renewable 

energy sources, wireless sensor nodes can operate for longer durations, potentially 

eliminating the need for battery replacement [22]. This leads to an extended device lifespan 

and a reduction in weight. There are several examples of energy harvesting integration with 

CMOS transistors [15], such as photovoltaic energy harvesters integrated with power 

management ICs in CMOS, which have been demonstrated for at least two decades [23]. 

These are embedded in watches and other wearable sensors today. For instance, a-Si-H 

solar cells on top of CMOS transistors [15] and a self-powered solar switch fabricated by 

integrating a crystalline-Si interdigitated back contact (IBC) PV cell with a-IGZO TFTs in 

a direct 3D stacked single chip have been demonstrated [24]. 

More recently, a perovskite photovoltaic cell integrated with a 2D MoTe2 transistor 

was demonstrated [25], in which double-sided scotch tape was used for bonding to 

integrate these two technologies at the package level. Since 2009, perovskites have 

emerged as promising photovoltaic materials due to their potential for high efficiency and 

low cost. Over the past decade, the efficiency of perovskite solar cells has increased from 

3.8% [26] to 25.7% [27], making them an emerging candidate for the next generation of 

solar cells. Furthermore, the hysteresis observed in perovskite solar cells has led to the 

development of perovskite-based memristors [28], which has sparked interest in their use 

in neuromorphic systems [29][30]. 

This thesis contributes to this field, specifically focusing on neuromorphic devices 

that can be seamlessly integrated with solar cells for energy harvesting and flexible 

electronics. We aim to explore materials and processes beyond CMOS that are earth-
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abundant, can be processed at low temperatures, and are flexible. These innovative devices 

hold potential for meeting the rising demands of the healthcare sector, particularly in 

applications such as assisted living and robotics. Technologies capable of real-time 

contextualization and filtering of sensitive and safety-critical data at the point of sensing 

can empower artificial intelligence-based systems to proactively provide support, 

guidance, and intervention in such applications. Furthermore, these devices could be 

powered by, or even provide control, to the solar cell, leading to the concept of the ‘smart’ 

energy harvesting.  

1.2 Outline of the Thesis  

This thesis is built upon two distinct types of materials that constitute the 

components for the autonomous intelligent sensor node. Chapters 2 and 3 serve as 

foundational background chapters, containing an exploration of the physics and a literature 

review of devices relevant to this work. Chapters 4 to 7 are the primary contributory 

chapters. The organization of this thesis is as follows: 

Chapter 2 provides an introduction to the fundamentals of perovskite materials and 

their use in solar cells, detailing the fabrication and characterization methods employed. 

The chapter also outlines the basics of amorphous oxide semiconductors and the operating 

principles of thin-film transistors based on these materials. 

Chapter 3 delves into the principles of brain-inspired computing, tracing the 

evolution of artificial neural networks from feed-forward neural networks (FNNs) to 

recurrent neural networks (RNNs). This progression includes an overview of the 

fundamental structures and training processes associated with these networks. The chapter 

reviews the progression from RNNs to reservoir computing, offering a critique of recent 
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advancements in physical reservoir computing. It also discusses the key features of the 

physical synaptic devices and the emerging memory devices used in neuromorphic 

systems. 

Chapter 4 provides a thorough background on a novel non-filamentary thin-film 

transistor, known as the Solid Electrolyte Field Effect Transistor (SE-FET). This chapter 

highlights the device performance in synaptic applications, including its Excitatory Post 

Synaptic Current (EPSC). Moreover, we present a refined model of the SE-FET that 

facilitates the simulation of the gate current, a crucial aspect for circuit simulation which 

in Chapter 5. Furthermore, we delve into the physical interpretation of the gate current and 

discuss the limitations inherent in previous models [31]. 

Chapter 5 revolves around the deployment of Solid Electrolyte field-effect 

transistors (SE-FETs) in logic operations and supervised learning within crossbar 

architectures. We illustrate how the three-terminal nature of these devices facilitates write 

operations at a remarkably low power consumption level. 

Chapter 6 revolves around the basics of physical reservoirs computing and explores 

the potential of SE-FETs as physical reservoirs in recurrent neural networks (RNNs). 

Chapter 7, we demonstrate a new method for controlled perovskite growth, 

followed by an evaluation of the physical characteristics and performance of perovskite 

solar cells produced through our method and conventional techniques. 

Finally, Chapter 8 presents the concluding remarks, summarizing the findings and 

contributions of this thesis. We also discuss potential future directions to further extend the 

scope of this work. 



34 

 

1.3 References 

[1] International Energy Agency, “International Energy Agency (IEA) World Energy 

Outlook 2022,” Https://Www.Iea.Org/Reports/World-Energy-Outlook-

2022/Executive-Summary, p. 524, 2022. 

[2] I. E. Agency, “Global Energy Review : CO2 Emissions in 2021 Global emissions 

rebound sharply to highest ever level INTERNATIONAL ENERGY,” 2021. 

[3] IEA, “Data Centres and Data Transmission Networks,” 2022. . 

[4] E. Covi et al., “Adaptive Extreme Edge Computing for Wearable Devices,” Front. 

Neurosci., vol. 15, no. May, pp. 1–27, May 2021. 

[5] L. S. Vailshery, “IoT connected devices globally in 2019 & 2030.” [Online]. 

Available: https://www.statista.com/markets/418/technology-telecommunications/ 

[6] F. Zhou and Y. Chai, “Near-sensor and in-sensor computing,” Nat. Electron., vol. 

3, no. 11, pp. 664–671, Nov. 2020. 

[7] D. V Christensen et al., “2022 roadmap on neuromorphic computing and 

engineering,” Neuromorphic Comput. Eng., vol. 2, no. 2, p. 022501, Jun. 2022. 

[8] S. Dai et al., “Recent Advances in Transistor‐Based Artificial Synapses,” Adv. 

Funct. Mater., vol. 29, no. 42, p. 1903700, Oct. 2019. 

[9] R. Ananthanarayanan et al., “The cat is out of the bag: cortical simulations with 109 

neurons, 1013 synapses,” High Perform. Comput. Networking, Storage Anal. Proc. 

Conf., no. c, pp. 1–12, 2009. 

[10] Y. Zhang et al., “Brain-inspired computing with memristors: Challenges in devices, 

circuits, and systems,” Appl. Phys. Rev., vol. 7, no. 1, p. 011308, Mar. 2020. 

[11] S. Yu et al., “Compute-in-Memory Chips for Deep Learning: Recent Trends and 



35 

 

Prospects,” IEEE Circuits Syst. Mag., vol. 21, no. 3, pp. 31–56, 2021. 

[12] D. Ielmini and H. S. P. Wong, “In-memory computing with resistive switching 

devices,” Nat. Electron., vol. 1, no. 6, pp. 333–343, 2018. 

[13] R. Fernandez Molanes et al., “Deep learning and reconfigurable platforms in the 

internet of things: Challenges and opportunities in algorithms and hardware,” IEEE 

Ind. Electron. Mag., vol. 12, no. 2, pp. 36–49, 2018. 

[14] S. Mittal, “A Survey of ReRAM-Based Architectures for Processing-In-Memory 

and Neural Networks,” Mach. Learn. Knowl. Extr., vol. 1, no. 1, pp. 75–114, 2018. 

[15] T. Zhang et al., “Memristive Devices and Networks for Brain‐Inspired Computing,” 

Phys. status solidi – Rapid Res. Lett., vol. 13, no. 8, p. 1900029, Aug. 2019. 

[16] J.-H. Cha et al., “Conductive-bridging random-access memories for emerging 

neuromorphic computing,” Nanoscale, vol. 12, no. 27, pp. 14339–14368, 2020. 

[17] V. Joshi et al., “Accurate deep neural network inference using computational phase-

change memory,” Nat. Commun., vol. 11, no. 1, p. 2473, May 2020. 

[18] G. Pedretti et al., “A Spiking Recurrent Neural Network With Phase-Change 

Memory Neurons and Synapses for the Accelerated Solution of Constraint 

Satisfaction Problems,” IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 

6, no. 1, pp. 89–97, Jun. 2020. 

[19] S. Kim et al., “Metal-oxide based, CMOS-compatible ECRAM for Deep Learning 

Accelerator,” in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, 

pp. 35.7.1-35.7.4. 

[20] Y. Zhang et al., “Oxide-based filamentary RRAM for deep learning,” J. Phys. D. 

Appl. Phys., vol. 54, no. 8, p. 083002, Feb. 2021. 



36 

 

[21] F. De Roose et al., “12.3 Memory Solutions for Flexible Thin-Film Logic: up to 

8kb, &gt;105.9kb/s LPROM and SRAM with Integrated Timing Generation 

Meeting the ISO NFC Standard,” in 2019 IEEE International Solid- State Circuits 

Conference - (ISSCC), 2019, vol. 31, pp. 206–208. 

[22] D. Prakash Guragain et al., “Programmable timer triggered energy harvesting 

wireless sensor-node using long range radio access technology,” Int. J. Electr. 

Comput. Eng., vol. 12, no. 4, p. 3869, Aug. 2022. 

[23] J. Lu et al., “Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar 

Cells,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2014–2021, Jul. 2011. 

[24] S. Ali et al., “Solar Powered Smart Irrigation System,” Pakistan J. Eng. Technol., 

vol. 5, no. 1, pp. 49–55, 2022. 

[25] Y.-M. Juan et al., “Integration of a-IGZO Thin-Film Transistor and Crystalline-Si 

Interdigitated Back Contact Photovoltaic Cell With 3D Stacking Structure as Self-

Powered Solar Switch,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1040–1042, 

Oct. 2014. 

[26] A. Kojima et al., “Organometal halide perovskites as visible-light sensitizers for 

photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, 2009. 

[27] M. A. Green et al., “Solar cell efficiency tables (Version 61),” Prog. Photovoltaics 

Res. Appl., vol. 31, no. 1, pp. 3–16, Jan. 2023. 

[28] C. Gu and J.-S. Lee, “Flexible Hybrid Organic–Inorganic Perovskite Memory,” ACS 

Nano, vol. 10, no. 5, pp. 5413–5418, May 2016. 

[29] J. Choi et al., “Organolead Halide Perovskites for Low Operating Voltage 

Multilevel Resistive Switching,” Adv. Mater., vol. 28, no. 31, pp. 6562–6567, Aug. 



37 

 

2016. 

[30] B. Hwang et al., “Effect of halide-mixing on the switching behaviors of organic-

inorganic hybrid perovskite memory,” Sci. Rep., vol. 7, no. 1, p. 43794, Mar. 2017. 

[31] A. Kumar et al., “Negative Capacitance beyond Ferroelectric Switches,” ACS Appl. 

Mater. Interfaces, vol. 10, no. 23, pp. 19812–19819, Jun. 2018. 

 

 

  



38 

 

CHAPTER 2 

Basics of Perovskite solar cells and Amorphous Oxide Thin Film Transistors  

2.1 Introduction 

Perovskite materials and amorphous oxide semiconductors (AOS) have been 

subjects of increasing attention, motivated primarily for their potential low cost and broad 

applications in energy harvesting and flexible electronics. Perovskites, with their distinct 

properties, are viewed as a promising catalyst for significant strides in solar energy 

conversion, while AOS, due to their exceptional electronic characteristics, hold promise in 

diverse areas, including display technology, neuromorphic computing, and renewable 

energy (as carrier transporting layer).  

This chapter, therefore, offers an exhaustive background to these vital materials, 

starting in part 2.2 with a brief history of perovskite solar cells, followed by a 

comprehensive examination of their fundamental material properties, detailing 

methodologies employed in their fabrication and characterization and principle of 

operation of solar cells. Section 2.3 is devoted to Amorphous oxide semiconductors. 

Subsection 2.3.1 highlights applications of AOSs in the areas particularly of displays and 

memory. In particular, recent development of using AOS, especially ZnO, as electron 

transporting layer to address cost and stability in perovskite solar cells is highlighted. This 

is followed by the structure and properties, with a special emphasis on distinguishing the 

material differences between AOS and their amorphous silicon counterparts. Subsection 

2.3.3 highlights methods of deposition and is followed by the principle of operation of thin 

film transistors in AOS.   



39 

 

2.2 Perovskite solar cells 

2.2.1 A brief history of perovskite solar cells 

The history of perovskite-based solar cells is relatively brief, spanning just over a 

decade. The inaugural perovskite-based solar cell was unveiled by A. Kojima and 

colleagues in 2006. They employed CH3NH3PbBr3 as the light-absorption material in a 

dye-sensitized solar cell (DSSC), achieving a power conversion efficiency (PCE) of 2.2% 

[1]. The first report specifically centered on perovskite-based solar cells was released by 

the same team in 2009, where CH3NH3PbBr3 was substituted with the now widely used 

CH3NH3PbI3, leading to an improved PCE of 3.83% [2].  

A landmark development for perovskite solar cells transpired in 2012, with the 

enhancement of an all-solid-state structure premised on TiO2 [3]. This pioneering work 

propelled the perovskite solar cell away from the electrolyte-based DSSC, resulting in the 

achievement of a PCE exceeding 10% for the first time [4]. 

In 2013, a notable enhancement was reported that involved doping the film with 

Cl. It was conjectured that the creation of CH3NH3PbI3-xClx led to improved carrier 

diffusion lengths (exceeding 1 µm for both electrons and holes) [5]. In the same year, N. 

Pellet and associates put forth an improved two-step solution technique that elevated the 

PCE of perovskite solar cells to 15.0% [6]. This group also introduced the usage of 

HN=CHNH3+ (FA+) as a substitute cation for CH3NH3+(MA+). The combined perovskite 

using both FA+ and MA+ exhibited a promising enhancement in the device's short-circuit 

photocurrent and elevated the PCE to 14.9% [7]. A significant efficiency record of 19.3% 

was achieved in 2014 by H. Zhou and colleagues by optimizing the interfaces between the 

perovskite, the electron transport material (ETM), and the hole transport layer (HTL), and 
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aligning the band structure [8][9]. In 2016, a novel vacuum flash-assisted solution 

processing method was developed for large-area perovskite solar cells, significantly 

boosting their certified power conversion efficiency of perovskite solar cells over 1 square 

centimeter from 15.6% to 19.6% [10].  

In 2017, a new technique known as defect passivation was introduced, aimed at 

enhancing the performance and addressing the stability issues of perovskite solar cells. 

This method specifically targets and mitigates the imperfections in the perovskite material, 

leading to improved efficiency and durability of these solar cells [11]. Defect passivation 

targets the amelioration of surface defect sites at the perovskite layer interface by 

incorporating a passivation layer between the perovskite and the ETM or hole transport 

material (HTM), or in some instances, both. Notably, in 2019, Q. Jiang et al. utilized 

phenethyl ammonium iodide as a passivation layer between the perovskite and the HTM, 

which led to the achievement of a certified efficiency of 23.32%. Remarkably, the device 

retained this efficiency for over 500 hours [12]. In 2023, a new record of 25.7% was set for 

thin film perovskite solar cell [13]. Moreover, using a mixed of different perovskite 

materials, the Multijunction perovskite/perovskite and perovskite/Si is on the rise. In 2022, 

Haowen Luo et al. reported a perovskite/perovskite (two hybrid perovskite layer with 

different band gap) based Multijunction solar with recorded efficiency of 28% [13], and 

the device is able to maintain 75% of its efficiency after 500 hours of operation [14].    

2.2.2 Basic structure and property of perovskite material 

Perovskites represent a versatile family of materials unified by their ABX3 

structure, as illustrated in Fig 2.1. In this configuration, 'A' denotes a large positively 

charged compound, 'B' signifies a smaller positively charged ion, and 'X' is a negatively 
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charged ion, typically arranged in a cubic crystal. B ions inhabit the body center of the 

cubic cell, while A ions reside at each vertex, and X ions are located at each face-center of 

the unit cell. This ideal cubic structure can accommodate a broad range of metal oxides, 

such as CaTiO3, LaAlO3, or MgSiO3. Here, A, B, and X ions possess charge states of A2+, 

B4+, and X2- or A3+, B3+, and X-2. Intriguingly, organic compounds can also form structures 

with metal trihalides, where A, B, and X ions are A+, B2+, and X-, respectively [15]. 

 

Fig 2.1 Ideal perovskite crystal structure (cubic). 

Despite the underlying structural consistency of perovskites, distortions frequently 

occur depending on factors such as formation temperature and the ionic radii of A, B, and 

X [16]. Depending on the formation temperature and the ionic radii of the respective ions, 

the same perovskite group's structure can transition from cubic to tetragonal or even 

orthorhombic. Such structural shifts are often quantified using a tolerance factor (t) defined 

as: 

𝑡𝑡 = 𝑟𝑟𝐴𝐴+𝑟𝑟𝑋𝑋
√2(𝑟𝑟𝐵𝐵+𝑟𝑟𝑋𝑋)

                                                                                                   (Eq 2.1) 
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Here 𝑟𝑟𝐴𝐴 , 𝑟𝑟𝐵𝐵, and 𝑟𝑟𝑋𝑋 are the ionic radii of A, B, and X, respectively. The tolerance 

factor 't' provides an indication of hexagonal perovskite instability [17]. A tolerance factor 

exceeding 1 suggests challenges in maintaining the perovskite structure, whereas a 

tolerance factor within the range of 0.9 ≤ t ≤ 1 is indicative of an optimal cubic perovskite 

structure. Should the tolerance factor fall between 0.7 ≤ t ≤ 0.9, it is usually a sign that 'A' 

is undersized for the cubic structure, consequently yielding orthorhombic, rhombohedral, 

or tetragonal structures [17]. A tolerance factor of t < 0.7 implies that 'A' is equivalent to 

or smaller than 'B', a scenario rarely encountered in perovskite structures. 

In the realm of perovskite-based solar cells, the term 'perovskite' generally refers to 

the organic–inorganic metal trihalide, with CH3NH3PbI3 being the most extensively 

utilized perovskite-based material. Here, 'A' is the large organic ion CH3NH3+( commonly 

referred to as MA+), 'B' is typically a Pb2+ ion, and 'X' is I. At room temperature, the ionic 

radii of MA+, Pb2+, and I- are 0.18, 0.132, and 0.206 nm, respectively, yielding a tolerance 

factor of 0.81 [18]. This value suggests a tetragonal structure for MAPbI3, corroborating 

experimental findings [19].  

The tetragonal structure of the MAPbI3 crystal, delineated in Fig 2.2, has lattice 

constants a = b = 8.85 Å, c = 12.69 Å, and angles α = β = γ = 90° [20][21]. The Pb-I 

framework constitutes the fundamental structure of the MAPbI3 unit cell, while CH3NH3+ 

molecules are situated within the Pb-I framework. Due to these molecules, the Pb-I 

framework often exhibits distortion, leading to a less symmetrical structure with each unit 

cell containing four units of CH3NH3PbI3 [21]. 
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Fig 2.2 (a) Unit cell of the tetragonal structure of CH3NH3PbI3. Here, A is CH3NH3+, 

B is Pb2+, and X is I-. (b) Side view and (c) top view of the tetragonal CH3NH3PbI3 

structure. 

CH3NH3PbI3 demonstrates a direct band gap of 1.55~1.6 eV [22][23], in close 

proximity to the ideal optical band gap for a single-junction solar cell of approximately 
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1.3~1.4 eV [24][25]. This halide perovskite's band gap is adjustable through mixed-halide 

superlattices or by altering the halide composition, typically by substituting I with Cl or Br 

(1.95eV for CH3NH3PbBr3 and 2.46 eV for CH3NH3PbCl3) [26]. Moreover, polycrystalline 

CH3NH3PbBr3 exhibits an impressively sharp absorption coefficient, exceeding that of Si 

and aligning closely with the band gaps of GaAs and CdTe [27]. This property permits 

high absorption even for thin perovskite films, conferring an advantage in thin-film devices 

over traditional Si materials. The majority of perovskite solar cells are less than 1 μm thick 

and achieve efficiencies nearing 20%, significantly surpassing the peak reported efficiency 

for thin-film Si solar cells (less than 2 μm thick) at 10.5% [28]. 

Single-crystal CH3NH3PbI3 has demonstrated a carrier mobility of 30 cm2/Vs, with 

the trap state density reaching as low as 3.6×1010 cm3, comparable to that of Si [29]–[32]. 

Despite these exceptional properties, the factors contributing to the superior photovoltaic 

performance and their relation to the perovskite structure are yet to be fully understood 

[33]. Based on the ferroelectric properties of CH3NH3PbI3 perovskite [34] and its slow 

photocurrent response [33], the CH3NH3PbI3 structure is thought to constitute a well-

defined Pb-I framework with a rotational dynamic cation, CH3NH3+. Positioned in the Pb-

I framework, as shown in Fig 2.2, the CH3NH3+ molecule is comprised of a neutral NH3 

group, with the charge mainly distributed to the CH3+ group [35]. This uneven charge 

distribution within the Pb-I framework influences numerous properties relevant to solar 

cell performance, and is considered to be one of the causes for the ferroelectric properties 

and hysteresis observed in these cells [33][36]. The CH3NH3+ orientation is postulated to 

be influenced by illumination [33], applied bias [37], and environmental temperature [38], 
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but the precise rotation mechanism under operational conditions remains a topic of active 

investigation.  

2.2.3 Deposition method for CH3NH3PbI3 

Since the introduction of perovskite solar cells in 2009, a multitude of deposition 

methods have been established for growing CH3NH3PbI3 perovskite. Despite the diverse 

array of methods, all are centered around a simple reaction: 

CH3NH3I + PbI2 = CH3NH3PbI3 

This reaction typically takes place at temperatures exceeding 60°C [39] and can be 

prompted by a reaction between solutions of CH3NH3I and PbI2 [40], annealing a dried film 

of CH3NH3I and PbI2 [41], or through a vapor deposition method [19]. 

The solution-based process is generally the more popular technique for 

CH3NH3PbI3-based perovskite deposition. Here, the manufacturing process involves 

coating solutions of CH3NH3I and PbI2, layer by layer, in the shape of the desired device 

structure. As this technique doesn't necessitate a vacuum or high-temperature conditions, 

fabrication costs are kept to a minimum. 

The one-step and two-step solution-based methods are illustrated in Fig 2.3. In the 

one-step method, a blend of CH3NH3I and PbI2 in dimethylformamide (DMF) or dimethyl 

sulfoxide (DMSO) solution is spin-coated onto the chosen substrate. An annealing process 

usually follows the spin-coating process to dry the remaining solvent and facilitate the 

formation of the perovskite layer. Due to the high reaction rate, the one-step method often 

resulted in a non-uniform film with randomly oriented perovskite in earlier works [42][43]. 

However, the introduction of solvent engineering [44] techniques and other additives, such 
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as Triazolium [45] and ammonium benzenesulfonate [46], has significantly enhanced the 

quality and uniformity of perovskite films. 

The two-step method splits the perovskite formation process into two phases. The 

first step involves depositing a layer of PbI2 via spin coating. This PbI2 film is then 

converted into perovskite through various methods, such as spin coating of an 

MAI/isopropyl alcohol (IPA) solution [42][40], immersion in a solution of MAI/IPA 

[47][48], or annealing with a solid MAI film [49]. On the whole, the two-step method is 

viewed as superior, as it typically yields a better average efficiency and morphology [43]. 

 

 

Fig 2.3 One-step and two-step solution-based methods for CH3NH3PbI3 deposition. 

In 2013, Stranks et al. [5] suggested doping CH3NH3PbI3 with Cl, a step that has 

since been widely implemented for both one-step and two-step methods. In the solution 

method, doping is accomplished by dissolving a small amount of CH3NH3Cl in a CH3NH3I 

solution (or PbCl2 in a PbI2 solution). It was assumed that Cl would diffuse into the 
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CH3NH3PbI3 and form a mixed CH3NH3PbI3-xClx perovskite [5][50]. CH3NH3PbI3-xClx 

is thought to have a superior carrier lifetime compared to the CH3NH3PbI3 perovskite, 

with reports showing a device efficiency improvement from 4.2% to 12.2% [5]. 

Despite the widespread acceptance of the Cl doping method for performance 

enhancement, the role of Cl doping was ambiguous, as Cl loss is commonly observed 

during perovskite growth [51]. Utilizing XRD and X-ray photoelectron spectroscopy 

(XPS) techniques, H. Yu et al. detected no Cl in a sample prepared with 10% Cl doping in 

an MAI+MACl solution [52]. These results confirmed that while Cl doping is an effective 

technique, the formation of CH3NH3PbI3-xClx is clearly not the cause of the improvement. 

Given the observed Cl loss and the final reaction product, it is currently believed that Cl 

enhances perovskite quality by forming an intermediate state during the reaction, rather 

than by forming the CH3NH3PbI3-xClx perovskite. Yu et al. [48] and Williams et al. [53] 

proposed a possible reaction of the Cl doping technique as follows:  

PbCl2 + 3CH3NH3I
∆
→ PbI2 + CH3NH3I + 2CH3NH3Cl 

PbI2 + xCH3NH3I + yCH3NH3Cl
∆
→ (CH3NH3)x+yPbI2+xCly 

(CH3NH3)x+yPbI2+xCly
∆
→ CH3NH3PbI3 + CH3NH3Cl ↑ 

2.2.4 Perovskite solar cells: device structure and working principle 

Early perovskite solar cells followed a structure akin to Dye-Sensitized Solar Cells 

(DSSCs); the cell consisted of a photoelectrode with a perovskite layer deposited on TiO2 

and Pt as a counter electrode. The two electrodes were separated by an organic electrolyte 

solution [2]. However, it was discovered that the liquid electrolyte could dissolve the 
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perovskite layer, resulting in limited performance and stability of perovskite-based DSSCs 

[54]. 

Since 2012, all-solid-state structures have replaced liquid-electrolyte perovskite 

solar cells. There are generally three types of solid-state structures: the conventional p-i-n 

structure, the mesoscopic p-i-n structure, and the inverted n-i-p structure. Both the 

conventional and mesoscopic p-i-n structures (Fig 2.4 (a) and (b)) are usually bottom-up 

structures based on a transparent bottom contact such as fluorine-doped tin oxide (FTO). 

The electron transport layer (ETL) is typically a compact layer composed of a transparent 

n-type semiconductor, such as TiO2 [55] or SiO2 [56]. In the conventional p-i-n structure, 

the perovskite layer is deposited on top of the ETL, while in the mesoscopic structure, the 

perovskite is partly formed within the mesoscopic ETL. Both conventional and mesoscopic 

p-i-n structures usually require a hole transport layer (HTL) to form the heterojunction. 

Spiro-MeOTAD is the most commonly used material for the HTL, and the top contact is 

typically gold (Au) or silver (Ag). 

For an inverted n-i-p perovskite solar cell (Fig 2.4 (c)), the transparent bottom 

contact is usually based on Indium Tin Oxide (ITO). The bottom HTL is usually a 

transparent p-type semiconductor, commonly PEDOT:PSS [42][57] or a p-type oxide such 

as NiOx [58], and the ETL on top of the perovskite is usually an n-type semiconductor such 

as PCBM [57], C60 [59], or ZnO [60].  
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Fig 2.4 (a) Conventional p-i-n, (b) mesoscopic p-i-n, and (c) inverted n-i-p perovskite 

solar cell structures. 

It is worth noting that researchers have demonstrated ETL-free or HTL-free 

perovskite solar cells based on a simple structure with a perovskite layer and an ETL or 

HTL sandwiched between two contacts [61][62]. However, these devices usually suffer 

from relatively poor performance due to a lower fill factor and open circuit voltage. 

2.2.5 Working principle of perovskite solar cells 

Perovskite solar cells, despite their diverse materials and device structures, 

fundamentally operate like conventional p-n or p-i-n photodiodes, with the utilization of 

perovskite materials [63]. 

For a conventional p-n diode, due to the carrier concentration gradient at the 

interface between the p and n side, the electrons tend to diffuse toward the p-type region 

and leave a space of positively charged donor ions in the n-type material near the interface. 

The holes migrate from the p-type region toward the n-type region, leaving a region of 

negatively charged dopants near the interface in the p-type semiconductor. This migration 

of carriers results in a built-in electric field from n to p, which generates a drift current 

opposite to the direction of diffusion. This drift and diffusion eventually reach a dynamic 

equilibrium, creating a region where carriers are depleted. 
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Fig 2.5 Structure of a p-n diode.  

In the case of p-i-n diodes like perovskite solar cells, the p-type material is typically 

PEDOT:PSS or spiro-MeOTAD, the n-type material is usually PCBM or TiO2, and the 

intrinsic semiconductor is the perovskite. Both the p-i and i-n interfaces experience 

diffusion and drift, with the built-in electric field from n to p driven by the potential 

difference at the p-i and i-n interfaces. The intrinsic perovskite semiconductor acts as an 

extended depletion region between p- and n-type semiconductors, with its band tilted due 

to the potential difference between the p-i and i-n interfaces [63]. 

Upon exposure to light, if a photon with energy higher than the band gap of the 

perovskite is absorbed in this region, the electron and hole generated in the perovskite layer 

become separated due to the built-in electric field in this region, as illustrated by the band 

diagrams in Fig 2.6 (a). Because perovskite has a diffusion length of more than 1 µm [5], 

the electrons generated in this region have a high likelihood of passing through the intrinsic 

semiconductor, which is usually a few hundred nanometers thick, and recombining at the 
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n-type semiconductor. Similarly, holes have a higher probability of crossing the intrinsic 

layer to the n-type region. This mechanism produces a photocurrent in the device. 

The corresponding circuit model for the p-i-n structure is presented in Fig 2.6 (b), 

where the current source represents the photocurrent IL and the p-i-n structure is modeled 

as a diode. The circuit model also includes series and shunt resistances, Rs and Rsh, which 

account for the resistance introduced by the body of the p-i-n diode and the resistance of 

the leakage path between the p-type and n-type materials. Following this circuit model, the 

current and voltage are expressed as follows:  

I = IL − I0[exp �q(V−IRs)
nKT

� − 1] − V+IRs
Rsh

                                                        (Eq 2.2)                               

where q is the element charge, V is the voltage applied across the diode terminals, 

I is the net current flowing through the diode, I0 is dark saturation current, n is the ideality 

factor indicating how closely the diode behavior matches the ideal diode behavior, K is 

Boltzmann's constant, and T is the absolute temperature.  
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Fig 2.6 (a) Schematic band diagram of a p-i-n diode and (b) circuit model of a solar 

cell. 

The operation environment of a solar cell varies greatly depending on the location 

and time of the day, but in a laboratory environment, solar cell measurements are usually 

performed under a standardized spectral irradiance defined as AM1.5 with a power 

equivalent to 1000 W/m2. The AM1.5 standard represents the average sunlight at all 

wavelengths reaching the Earth’s surface at an incident angle of 48.2° at mid-latitudes. 

Measurements of perovskite solar cells are performed under this illumination at an applied 

bias that is usually within the limits of the open circuit voltage of the cell, as an applied 

bias higher than the set potential tends to damage the perovskite solar cell [63]. 

The working conditions of any solar cell can be divided into three types as depicted 

in the current density-voltage (J-V) and power-voltage (P-V) curves in Fig 2.7 for ambient 

AM1.5 sunlights: open circuit, short circuit, and an intermediate condition. In the open 

circuit condition, when Voc is measured, all of the generated carriers must recombine, as 

there is no current. The theoretical limit of Voc is the band gap, which is approximately 

1.55 eV at room temperature for perovskite solar cells. However, in actual operation, the 

limit is heavily affected by non-radiative recombination and the band gap of the ETM and 

HTM [64][65]. In contrast, in the short circuit condition, recombination in the cell is 

minimized, and the current density is dominated by the amount of carriers produced and 

the series resistance [65]. 
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Fig 2.7 Schematic J-V and P-V curves of a perovskite solar cell measured under 

simulated solar light at AM1.5. 

Indeed, the generation of a photocurrent in perovskite solar cells primarily occurs 

with the absorption of light at a wavelength below 800 nm. The series resistance within the 

cell is influenced by the materials and thickness of each layer and is dominated mainly by 

the carrier mobility within the intrinsic perovskite layer. This carrier mobility is influenced 

by grain size. There have been reports indicating that the carrier mobility is significantly 

reduced when the grain size is smaller than 100 nm, but when the grain size exceeds 

approximately 300 nm, the carrier mobility no longer increases because it reaches the 

single-crystal limit of 24.8 ± 4.1 cm2V-1s-1 [29][31][66]. 

The conditions of open circuit and short circuit do not produce any output power. 

The maximum power output is often influenced by factors such as environmental 

temperature and internal factors like shunt and series resistances, and usually occurs at a 
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specific point on the J–V curve. At this point, the current density and voltage (marked as 

Vmax and Jmax) are often smaller than Voc and JSC. The fill factor (FF) is used alongside 

Voc and JSC to define the maximum power output of a solar cell. In general, the fill factor 

represents the 'squareness' of the J-V curve and is defined as: 

FF = VmaxJmax
VocJSC

= PMAX
VocJSC

                                                                                (Eq 2.3) 

Indeed, hysteresis is often observed in perovskite solar cells [67][68], as indicated 

in Fig 2.7. This behavior, where the forward scan typically generates a current lower than 

the reverse current, isn't desired for photovoltaic applications due to its unpredictable 

nature and the complications it introduces in understanding device performance. 

Interestingly, while hysteresis is a challenge for photovoltaic technology, it may provide 

an opportunity for other electronic applications, such as memory devices.  

The origins of hysteresis in perovskite solar cells are not entirely understood 

currently [67][68]. Several contributing factors include charge accumulation at the 

interface [69], electron trapping at defects [37], crystal size and defects within the 

perovskite [70], structural instability, and the rotational MA compound leading to different 

electrical characteristics [33]. 

Although this hysteresis generally does not affect the operation of the solar cell 

(since the system stabilizes after a few seconds), it does affect the estimation of shunt and 

series resistances due to the varying forward and reverse scan results. Determining the 

ideality factor also poses a challenge in perovskite solar cells. While the factor remains at 

a constant value between 1 and 2 for a typical solar cell, in perovskite solar cells, it heavily 

depends on the HTM, where an ideality factor greater than 2 is possible.  
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2.2.6 Stability of perovskite solar cells 

The perovskite solar cell often suffers performance losses when exposed to air or 

operating in high humidity, caused by the well-documented instability in perovskite-based 

photovoltaic devices. This instability of the perovskite solar cell is a complex phenomenon 

influenced by multiple factors, including the selection of the Electron Transport Material 

(ETM) and Hole Transport Material (HTM) [71][72], the deposition method [59], and the 

morphology and composition of the perovskite [73][74]. 

The environmental instability of CH3NH3PbI3 perovskite is among the most 

significant factors contributing to its overall instability. Moisture-induced degradation is a 

prevalent issue for this perovskite material [75]. The hydrophilic nature of the 

methylammonium ion and the inherent instability of the perovskite material make the 

perovskite prone to water absorption and degradation into PbI2 [76]. This degradation 

process begins at the grain boundaries and edges of the perovskite film [77]. Though 

moisture-induced degradation initially involves a reversible process via the formation of 

(CH3NH3)4PbI6 ∙ 2H2O, this compound can break down further into PbI2, resulting in 

permanent damage to the perovskite film. 

The perovskite is also susceptible to oxygen-induced degradation upon light 

absorption, another major degradation pathway [78][79]. This process usually happens 

during light absorption, and in the presence of poor ETM coverage or insufficient carrier 

transport, photo-excited electrons may accumulate on the perovskite surface. Assisted by 

acidic protons in CH3NH3-, these accumulated electrons can convert O2 into superoxide O2- 

[80]. This superoxide then catalyzes the degradation of CH3NH3PbI3 following the reaction 

below:  
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4H2O + 4CH3NH3PbI3 ↔ 4[CH3NH3PbI3 ∙ H2O] 

4[CH3NH3PbI3 ∙ H2O] ↔ (CH3NH3)4PbI6 ∙ 2H2O + 3PbI2 + 2H2O 

(CH3NH3)4PbI6 ∙ 2H2O
moisture or light
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 4CH3NH3I + PbI2 + 2H2O 

O2 + 4CH3NH3PbI3
accumulated electrons 
������������������ 4PbI2 + 4CH3NH2 + 2I2 + 2H2O 

Superoxide-induced degradation not only breaks down CH3NH3PbI3 into PbI2 but 

also generates H2O, which can further induce moisture-related degradation. While 

superoxide-induced degradation can rapidly degrade an exposed perovskite film, it often 

isn't the primary cause of a perovskite solar cell's instability. With efficient ETM coverage 

and, in some cases, surface passivation, the likelihood of superoxide formation is 

significantly reduced compared to a perovskite film directly exposed to air. Consequently, 

by selecting an efficient electron transport layer and employing techniques such as defect 

passivation, oxygen-induced degradation can be minimized [80][81]. 

2.3 Amorphous Oxide Semiconductors 

2.3.1 Applications of AOS semiconductors.  

Amorphous Oxide Semiconductors (AOS), with their substantial bandgap of 

approximately 3.3eV, present an exciting prospect for transparent electronics. Their 

compatibility with low-temperature processing augments their applicability in flexible 

electronic applications compatible with plastic substrates [82]. Notably, their potential was 

realized in 2012 when Sharp Corporation pioneered the use of Indium Gallium Zinc Oxide-

Thin Film Transistors (IGZO-TFTs) in manufacturing Liquid Crystal Display (LCD) 

panels. These panels have since been widely adopted in smartphones, tablets, and 32" 

LCDs [82]. Despite these advancements, challenges remain. High reactivity of oxygen in 
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AOS leads to accelerated aging and reduced voltage sensitivity over time. This issue 

becomes particularly pronounced when compared to displays made of amorphous Silicon 

(a-Si:H) and Low-Temperature Polycrystalline Silicon (LTPS). Another challenge 

involves the intricate process of production, which necessitates precise control over 

quarternary material ratios and utilization of rare earth elements, including Indium and 

Gallium [83]. 

Previous applications of polysilicon TFT LCDs were faced with the challenge of 

integrating a capacitor for refreshment due to inadequate capacitance of a TFT in a 

Dynamic Random Access Memory (DRAM) architecture. Mitsubishi's pioneering solution 

in 2001 was to integrate DRAM at the pixel level [84]. In 2008, a capacitorless polysilicon 

TFT DRAM was introduced, featuring an embedded trench for charge storage. Despite 

requiring a dual gate architecture and having an unreported retention time, it offered a 

memory window twice as large as a conventional TFT [85]. 

Recent advancements have seen the introduction of a novel capacitor-less DRAM 

cell architecture by imec in AOS materials fully compatible with displays. Implemented 

on a 45 nm gate length on 300 mm wafers, this architecture combines two IGZO-TFTs and 

offers a remarkable retention time exceeding 400 seconds due to an exceptionally low off-

current of 3×10-19A/µm [86]. 

Another innovation was the demonstration of a multilayer stackable 3D NAND 

Flash memory in polysilicon TFTs by Macronix in 2006 [87]. This showcased the 

feasibility of 3D NAND in TFTs. Although NOR flash memory in polysilicon TFTs has 

been applied in synaptic applications by Kim et al. [88], no instances of such applications 

in AOS semiconductors have been reported to date. 
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The most recent development has been the proposal of IGZO-based DRAM cells 

to mitigate IR voltage drops on both the summation and activation lines of a crossbar array. 

These cells, with their extremely low off-currents and compatibility with low-temperature 

BEOL processing, were proposed as a potential solution for large-scale cross-bar arrays 

aiming for 10000 Tera Operations Per Second per Watt (TOPs/W), offering an advantage 

over STT MRAM and projected PCM [89].  

On the photovoltaics front, amorphous oxides, specifically ZnO, has been drawing 

attention in the development of air-stable perovskite solar cells. They are being explored 

for their potential to enhance stability [90] and cut costs compared to other electron 

transport materials like PCBM and TiO2. Demonstrations since 2015 have reported 

successful integration of ZnO in both standard [91] and inverted perovskite solar cell 

structures [90].   

The process of positioning ZnO varies depending on whether it is placed below or 

on top of the perovskite layer. For instance, the solution-based method can be employed 

both above [92] and below the perovskite layer [93]. On the other hand, Radio frequency 

(RF) sputtering is recommended if the ZnO layer is deposited prior to the perovskite layer, 

with such cells yielding the highest reported efficiency of 20.2% among ZnO-based 

perovskite solar cells [91]. 

Given the ease with which ZnO—a binary compound—can be fabricated across 

large areas and at high rates using techniques like RF sputtering, Pulse Laser Deposition, 

Chemical Vapour Deposition, and solution-based processing, its economic value has 

skyrocketed, exceeding 500M Euros. This value stems from diverse applications such as 

UV filters, surge protection varistors, light scattering layers in silicon solar cells [94], and 
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gas sensors, which function on conductivity alterations induced by gas adsorption and 

desorption. 

Moreover, ZnO's capability for monolithic integration into not just solar cells but 

also silicon-based electronic circuitry, coupled with its amenability to chemical processing, 

has led to its employment in Surface Acoustic Wave (SAW) multiplexing/demultiplexing 

bandpass filters. These filters are mainly used in telecommunications applications, 

particularly in cellular phones and base stations [94]. 

2.3.2 Basic structure and property of amorphous oxide semiconductors 

Amorphous oxide semiconductors (AOS) have emerged as formidable competitors 

in flexible, large-scale applications, given their capability to deliver superior performance 

while requiring relatively low processing temperatures of below 300 ◦C [95]. Notably, 

room temperature processed mobilities of up to 10 cm2/Vs have been realized, representing 

an advancement that is an order of magnitude higher than that of a:Si:H [96]. This 

diminution in mobility within a:Si:H ( less than 1 cm2/Vs) can be attributed to the material's 

bonding [97], which is contingent on the overlapping of disordered sp3 hybridized orbitals 

among shared atoms. Conversely, in 1996, Hosono et al. proposed a mechanism to explain 

the enhanced mobility in AOSs [98]. This discovery paved the way for the invention of 

unique materials and devices based on amorphous oxide semiconductors, thereby 

expanding the horizons for large-scale flexible electronic applications. 
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Fig 2.8 Schematic electronic structures of ionic oxide semiconductors, (a) the charge 

transfer from metal to oxygen atoms, (b) the unoccupied s orbitals forms the CBM 

and the  fully occupied O 2p orbitals forms the VBM [99].  

In amorphous oxide semiconductors, the marked iconicity of metal atoms within 

an AOS triggers a charge transfer from the metal to the electronegative oxygen atoms ( Fig 

2.8 (a)). This electronic structure gains stability by raising cation levels and diminishing 

anion levels. The Conduction Band Maximum (CBM) consists of unoccupied s orbitals, 

whereas the Valence Band Maximum (VBM) is comprised of completely occupied O 2p 

orbitals of cations [82]. This configuration results in a minimal electron effective mass, 

thereby contributing to high electron mobility and reduced power consumption. 

Furthermore, the expansive radii provided by the vacant s orbitals permit robust overlap 

with each other, constructing a potent conduction pathway. This differs starkly from a:Si:H, 

which relies on the overlap of sp3 hybridized, highly directional bonds for current 

conduction. 
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Fig 2.9 Schematic drawing of the CBM atomic orbital and carrier transport paths of 

crystalline and amorphous Si (a) and (b) ionic oxide semiconductors [99]. 

The band structure of amorphous semiconductors also diverges from their 

crystalline counterparts. Current theories regarding the electronic configuration of 

amorphous semiconductors encompass extended state bands, band tails, and defect states 

(Fig 2.10). The manifestation of extended state bands can be credited to the short-range 

order present in a-Si:H as compared to traditional single-crystal silicon. Within this 

context, states within the valence band can be viewed as bonding states, while those in the 

conduction band can be considered antibonding states. Situated below the conduction band 

or above the valence band are localized electronic states known as Band tail states [100]. 

These tail states originate from the lack of long-range order or the existence of charged 

defects that locally disrupt the energy levels at the band edges. The valence band tail can 
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be perceived as strained or weak bonding states, while the conduction band tail represents 

the corresponding antibonding states. In pristine materials like a-Si, defect states are 

postulated to consist of three-fold coordinated silicon dangling bonds, or non-bonding 

states. In ionic oxide semiconductors, it's established that specific structural defects, such 

as vacancies, substitutions, anti-site configurations, and interstitial atoms, can generate 

carrier traps when they introduce additional electron states within the bandgap, thereby 

giving rise to electronic defects [101]. 

 

Fig 2.10 Schematic drawing of amorphous semiconductors Density of States 

Contrary to other kinds of semiconductor materials, where carrier transport is 

frequently impeded by bulk defects, amorphous oxide semiconductors showcase 

degenerate band conduction that is unhindered by band tails. Instead, their conduction 

depends on channel conduction overseen by metal cations, resulting in films with high 

electron mobilities [102]. Carrier transport in amorphous oxide semiconductors is typically 
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regulated by two primary mechanisms: trap-limited conduction (TLC) [100][103] and the 

percolation mechanism [104][105]. 

Trap-limited conduction (TLC) is usually governed by low conductance state under 

low voltage conditions in AOSs. In this case, carrier transport occurs through a succession 

of trapping and de-trapping events under the applied electric field [100]. Carriers encounter 

localized trap states within the material's bandgap. These carriers are temporarily captured 

in the traps before being released under the applied electric field. This cycle of trapping 

and de-trapping events forms the overall conduction process. However, it leads to a reduced 

carrier mobility compared to higher voltage regimes or crystalline semiconductors with 

fewer defects.  

The percolation mechanism, on the other hand, gains prominence under high 

voltage conditions. In this regime, carriers can find a continuous path through the material 

by hopping between adjacent conducting regions, referred to as a percolation path [104]. 

The formation of these paths is influenced by the density and distribution of conducting 

regions and insulating barriers within the material. As the applied voltage or electric field 

increases, the probability of percolation occurring also rises, leading to enhanced 

conductivity and improved carrier mobility in amorphous oxide semiconductors. 

2.3.3 Deposition method of Amorphous Oxide Semiconductors 

Sputtering is a physical vapour deposition method routinely utilized for the 

deposition of metal contacts, magnetic materials, and amorphous oxide semiconductors. 

The basic configuration of a sputtering system is depicted in Fig 2.12. Sputtering is a PVD 

technique where deposition is executed via ionized plasma, which transfers the target 

material onto substrates. The specific type of sputtering can be determined by the voltage 
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supplied to the system, with two primary types being Direct Current (DC) sputtering and 

Radio Frequency (RF) sputtering.  

 

Fig 2.11 Schematic diagram and photo of the Lesker sputter system used in this work.  

Direct Current (DC) sputtering is a fundamental version of sputtering systems, 

commonly used for the sputtering of conductive materials like metal contacts. During the 

deposition process, an inert gas, generally argon (Ar), is introduced into the system. The 

gas flow is managed by a mass flow controller to maintain the necessary deposition 

pressure. A DC voltage is applied between the substrate and the target, with the substrate 

acquiring a positive voltage and the target receiving a negative one. Under this high electric 

field, an Ar atom loses an electron to the anode, initiating the creation of Ar plasma. 

Propelled by the high electric field between the anode and cathode, these ions collide with 

the target material. The high-energy Ar+ ions impact and transfer their kinetic energy to the 

target material, which subsequently reflects and deposits back onto the substrates. 

However, when the target material is an insulator, the insulating target can lead to 

charge accumulation during plasma generation. This accumulation slows down the 

deposition process and can eventually bring it to a halt. To circumvent this issue, Radio 
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Frequency (RF) sputtering is employed for deposition of insulating materials. In this 

scenario, an AC voltage is supplied to the system, and the deposition process transforms 

into a two-stage cycle. In the first stage, a negative voltage is applied to the target, and the 

deposition process proceeds similarly to DC sputtering. In the second stage, a positive 

voltage is applied to the target. This halts the deposition process and removes the charge 

accumulated during the first stage. The system rapidly cycles between these two stages at 

a frequency of 13.56 MHz to facilitate the deposition process.  

2.3.4 Thin film Transistor architecture 

Thin Film Transistors (TFTs) are three-terminal field-effect devices that are 

commonly constructed using amorphous semiconductors. These devices typically consist 

of a gate, source, and drain electrode, with the semiconductor material sandwiched between 

them. Depending on the order and manner in which the gate, oxide semiconductor, and 

drain/source electrodes are constructed, there are four commonly investigated device 

configurations, namely Top-gate coplanar, Top-gate staggered, Bottom-gate bottom 

coplanar and Bottom-gate staggered are visually represented in Fig 2.12. 
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Fig 2.12 Schematic diagram of basic TFT structures. (a) Top-gate coplanar (b) Top-

gate staggered (c) Bottom-gate bottom coplanar and (d) Bottom-gate staggered.  

2.3.5 Principle of operation and physics of AOS based TFTs 

Most of the thin-film transistors (TFTs) are "normally off" devices, a state achieved 

via their usage of amorphous semiconductors renowned for their high resistivity in the non-

conducting state. The operational procedures and device characterization typically mandate 

the grounding of the drain terminal. Current flow modulation from the source to the drain 

is governed by the applied gate voltage, an interaction that occurs via the Metal-Insulator-

Semiconductor (MIS) interface. Noteworthy is the TFT's operational preference for the 

accumulation region within the MIS structure. 

The distinctive current-voltage (IDS – VDS) characteristics of TFTs are divisible into 

three significant operational regions (Fig 2.13). Of primary importance is the threshold 

voltage, VTH, which signifies the minimal gate voltage required to form a conducting 

channel bridging the drain and source terminals. Under conditions where VG < VTH, the 

device resides in the cut-off region, thereby inhibiting the formation of a conductive path 

between the drain and source and effectively reducing the drain-source current to zero. 

A contrasting operational state is observed when VG > VTH and VD << VG - VTH. 

Here, the device transitions into the linear region, characterized by the channel resistance 

adhering to Ohm's law, which consequently establishes a linear relationship between the 

drain-source current and drain voltage. The drain current within this linear region can be 

encapsulated in Equation (2.4): 

𝐼𝐼𝐷𝐷 = �µ𝐶𝐶0
𝑊𝑊
𝐿𝐿
� [(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)𝑉𝑉𝐷𝐷]                                                                     (Eq 2.4) 
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In this equation, W represents the channel width, L is the channel length, C0 denotes 

the gate oxide capacitance, µ symbolizes the carrier mobility, VG is the gate voltage, VD is 

the drain-source voltage, and VTH is the threshold voltage. 

Upon reaching a state where VG > VTH and VD = VG - VTH, the device enters the 

saturation region. In this regime, the escalating drain potential causes the potential 

difference between the gate and the drain to decrease, and at times, turn negative. As a 

consequence, the device becomes incapable of maintaining a conducting channel between 

the drain and source, thereby causing the region near the source to be pinched off. Despite 

this occurrence, the drain-source remains highly conductive owing to the significant drain-

source voltage, which allow carriers to tunnelling through the pinched-off region. 

Additional increases in VD expand the pinched-off region towards the source. However, 

this expansion is offset by the enhanced tunnelling effect that accompanies an increased 

drain-source voltage. The device then enters a saturation region where ID remains constant 

despite any subsequent increases in the drain-source voltage. The drain current within this 

saturation region is defined by Equation (2.5): 

𝐼𝐼𝐷𝐷 = �µ𝐶𝐶0
𝑊𝑊
2𝐿𝐿
� (𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)2                                                                          (Eq 2.5) 
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Fig 2.13 Schematic diagram (a-c) and corresponding ID –VD curve (d-f) of a TFT in 

(a) cut-off region, (b) linear region and (c) saturation region.  

In the realm of amorphous oxide-based thin-film transistors (TFTs), a significant 

gate bias dependency of field-effect mobility is often observed, attributed to the interplay 

of percolation and trap-limited conduction mechanisms [106]. This interaction frequently 

results in non-linearity within the device's transfer characteristics. These mechanisms can 

be quantitatively generalized through a modified field-effect mobility equation, denoted as 

Equation (2.6): 

𝜇𝜇𝐸𝐸𝐸𝐸 = 𝜇𝜇0(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)𝛾𝛾                                                                                      (Eq 2.6) 

In this equation, 𝜇𝜇0 and γ are fitting parameters associated with the field-effect 

mobility. Given this modified definition of field-effect mobility, Equations (Eq 2.7) and 

(Eq 2.8) evolve into [106][107]: 

𝐼𝐼𝐷𝐷 = �𝐶𝐶0
𝑊𝑊
𝐿𝐿
� [𝜇𝜇0(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)𝛾𝛾𝑉𝑉𝐷𝐷]                                                                     (Eq 2.7) 

𝐼𝐼𝐷𝐷 = �𝑊𝑊 𝐶𝐶0
𝐿𝐿(1+𝛾𝛾)

� 𝜇𝜇0(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)1+𝛾𝛾𝑉𝑉𝐷𝐷                                                              (Eq 2.8) 
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Performance evaluation of TFTs typically entails the consideration of several key 

parameters that function as benchmarks in the comparative analysis of different devices. 

Such parameters prominently include the on/off ratio and the subthreshold swing (SS). 

The on/off ratio provides a comparative measure of the maximum and minimum 

drain current ID, where the minimum ID usually corresponds to the leakage current in the 

off state, and the maximum ID is influenced by various factors including the materials 

constituting the channel and gate dielectric, the geometry and area of the device, and the 

applied drain and gate bias. In most applications, a larger on/off ratio is sought after. 

The subthreshold swing (SS) is defined as the inverse derivative of the logarithm 

of the drain current with respect to the gate voltage. It quantifies the gate voltage increment 

required to alter ID by an order of magnitude in the subthreshold region, i.e., when the gate 

voltage (VG) is lower than the threshold voltage (Vth). This relationship is articulated as: 

𝑆𝑆𝑆𝑆 = �𝑑𝑑 log (𝐼𝐼𝐷𝐷)
𝑑𝑑 𝑉𝑉𝐺𝐺

�
−1

                                                                                           (Eq 2.9) 

 The Eq 2.9 SS could be rewriten as:  

𝑆𝑆𝑆𝑆 = �𝑑𝑑 log (𝐼𝐼𝐷𝐷)
𝑑𝑑 𝑉𝑉𝐺𝐺

�
−1

=  �𝑑𝑑 Ψ𝑠𝑠
𝑑𝑑 𝑉𝑉𝐺𝐺

𝑑𝑑 log (𝐼𝐼𝐷𝐷)
𝑑𝑑 Ψ𝑠𝑠

�
−1

=  𝑚𝑚 × 𝑛𝑛                                        (Eq 2.10) 

In this context, n symbolizes the transport factor a constant where 𝑛𝑛 = 2.3 𝑘𝑘𝐵𝐵𝑇𝑇 𝑞𝑞⁄ , 

also referred to as the Boltzmann limit, which is approximately 60 mV/dec at room 

temperature. The variable m, referred to as the body factor, can be simplified as: 

𝑚𝑚 = 1 + 𝐶𝐶𝑠𝑠
 C𝑖𝑖

                                                                                                  (Eq 2.11) 

Here, Ci and Cs denote the gate insulator capacitance and a differential capacitance, 

respectively, the latter representing the depletion region capacitor within the channel 

semiconductor. Since in typical dielectric materials and semiconductors, Ci and Cs are 
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invariably positive, the body factor m consistently exceeds 1, leading to a subthreshold 

swing limit of 60mV/dec at room temperature. 

2.4 Summary 

Perovskites, with their unique optoelectronic properties, offer promising prospects 

in energy conversion, particularly in enhancing the efficiency and cost-effectiveness of 

solar cells. In parallel, AOS, with their high carrier mobility and exceptional transparency, 

are forging new paths in the electronics industry, particularly in supporting the creation of 

advanced memory technologies, TFT application in display as well as carrier transporting 

materials in perovskite solar cell. The importance of perovskite materials and amorphous 

oxide semiconductors (AOS) in the landscape of energy and memory applications 

motivates this work. 

In this context, this chapter provide an exploration of the fundamental attributes of 

these materials. This exploration incorporates a comparative review of their respective 

structures and material properties, illuminating the attributes that define their functionality 

and utility in various applications. 

Moreover, the discourse extends to a clear exposition of the fundamental device 

structure and the associated operational physics underlying perovskite-based solar cells. 

This dissection of the working principles of these cells provides insights into their 

efficiency and potential challenge when it comes to stability. 

In a similar vein, the chapter presents a detailed analysis of amorphous oxide-based 

Thin-Film Transistors (TFTs). The operating principles of these transistors, their design, 

and the influence of the unique properties of amorphous oxide semiconductors on their 

performance are brought to the fore. This comprehensive exploration provides a deeper 
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understanding of the role and potential of these materials in the broader context of 

technological advancement in energy and electronics. 
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CHAPTER 3 

Artificial Neural Networks and Neuromorphic Computing 

3.1 Brain-inspired computing 

The human brain is an intricate information-processing system comprising an 

expansive network of neurons, approximately 1011, and a significantly larger number of 

synapses, approximately 1015. These neurons and synapses function via an analog 

mechanism, processing information through current spikes mediated by changes in  ionic 

concentrations and neurotransmitters [1]. 

Biological neurons, as the principal components of the nervous system, are tasked 

with the reception, processing, and transmission of information via electrical and chemical 

signals. A neuron is typically constituted of a cell body to which dendrites and an axon are 

attached. The dendrites, characterized by their tree-like extensions emanating from the cell 

body, facilitate signal reception from other neurons, functioning as the neuron's input 

system. Upon signal reception at a receptor, the neuron integrates these incoming signals, 

transitioning into either excitatory or inhibitory states that respectively increase or decrease 

the probability of the neuron generating a spike signal. When the aggregate sum of 

excitatory signals surpasses a specified threshold, an action potential (or spike) is produced 

and transmitted to the axon—a lengthy projection that enables signal transfer between 

neurons via synapses.  

As depicted in Fig 3.1, synapses represent microscale junctions connecting one 

neuron's axon and the subsequent neuron's dendrites, thereby enabling information 

transference from one neuron to another. This transmission process at a synapse is 

chemically mediated; the presynaptic neuron, triggered by the action potential, releases 
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neurotransmitters that bind to receptors on the postsynaptic neuron, modulating its 

electrical potential. 

 

Fig 3.1 Schematic diagram of a chemical synapse transmission [2].  

Synapses serve as the foundational pillars to human cognition, including learning 

and memory functions, attributed to their synaptic plasticity - the capacity to strengthen or 

weaken connections in response to repetitive neuronal activity [3]. When a presynaptic 

neuron communicates with a postsynaptic receptor, it triggers the release of ions, which in 

turn, generates a brief electrical current pulse, the Excitatory Post-Synaptic Current 

(EPSC), directed towards the cell body (Fig 3.2 (a)). This enhances the likelihood of the 

neuron to fire. Through repeated activity, synapses can either be strengthened or weakened, 

a mechanism known as synaptic plasticity, which is believed to be pivotal for the learning 

and memory processes of the brain [4]. 
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Synaptic plasticity is broadly categorized into two types: short-term plasticity, 

spanning from milliseconds to minutes, and long-term plasticity, enduring from hours to 

even decades [5][6]. In the realm of neuromorphic computing and artificial synapses, the 

term EPSC is employed to denote an analogous concept. Rather than biological 

neurotransmitters and ion channels, these systems utilize electronic signals and 

components to simulate the behavior of biological synapses. Thus, in this context, an EPSC 

symbolizes the response of an artificial synapse to an "excitatory" input signal, and synaptic 

plasticity is reflected by the ability of the device to alter its conductivity in response to 

repeated input.  

Another important synaptic learning rule is spike timing-dependent plasticity 

(STDP), where synaptic plasticity could enter a state of potentiation (strengthening) or 

depression (weakening) depending on the temporal order and the time difference between 

pre-synaptic and post-synaptic spikes (Fig 3.2 (b))  [7]. This forms an essential part of the 

adaptability and learning capacity of biological neural networks. In neuromorphic 

computing, this is often demonstrated via the device’s ability to change its conductance 

state by adjusting the time difference between two input.  
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Fig 3.2 Schematic diagram of (a) excitatory post synaptic current (EPSC) and (b) 

spike timing-dependent plasticity (STDP). 

3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational structures derived from 

interconnected nodes that process information similarly to neurons in a biological nervous 

system, albeit in a simplified manner. 

Learning or training within artificial neural networks entails adjusting the weights 

of connections between the neurons in a given network. The weights, (in physical synaptic 

devices usually represented by the device conductance), serve to strengthen and reduce 

connections between each layer of neurons, and play a crucial role in realizing the 

network's intended function. These weights signify the extent of influence one neuron 

exerts over another, comparable to the synaptic connection strength in a biological neural 

network. During the learning phase, these weights are modified to enable the ANN to 

achieve the desired output or function. 
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Fig 3.3 Schematic diagram of hardware artificial neural network  

Typically, there are two primary learning methodologies within Artificial Neural 

Networks: supervised learning and unsupervised learning. Supervised learning refers to 

scenarios where the network is trained on a labelled dataset. The network leverages this 

training dataset to learn a function that accurately maps inputs to their corresponding 

outputs. Conversely, unsupervised learning refers to scenarios where the learning operates 

without the assistance of labelled data. 

3.2.1 Feed-forward Neural Network 

The Feed-forward Neural Network (FNN) is the most fundamental form of an 

artificial neural network. This network comprises layers of nodes, specifically input, 

output, and an arbitrary number of hidden layers, arranged in sequential order. The term 

"feedforward" signifies that the information flow within these networks is unidirectional—
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inputs are introduced through the input layers, processed sequentially through the hidden 

layers, and the results are produced at the output layers. 

 

Fig 3.4 Schematic diagram of a Feedforward Neural Network 

In an FNN, each neuron is connected to and receives inputs or from all neurons in 

the previous layer. The weights associated with each connection determine the impact of 

these inputs. The output of each neuron is then calculated based on the sum of all inputs 

from the interconnected neurons in the previous layer and their corresponding weights. 

Mathematically, this is represented as 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑎𝑎�∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑏𝑏�, where, 𝑥𝑥𝑗𝑗 and 𝑤𝑤𝑖𝑖 denote the 

inputs and the associated weights, respectively. Here, 𝑓𝑓𝑎𝑎 signifies an activation function, 

typically a non-linear function such as Sigmoid [8] , Hyperbolic Tangent [8] or Rectified 

Linear Unit (ReLU) function [9]. The term b, referred to as the bias, is an adjustable 

parameter employed during network training. 
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3.2.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) represent an advanced class of artificial neural 

networks designed to recognize and process sequential or time related data. Unlike FNN, 

which each process inputs independently, RNNs are capable of handling temporal 

dependencies by retaining information from previous inputs [10][11]. This is made 

possible by the network's unique architecture, which includes loops or cycles, enabling 

information to flow from one step in the sequence to the next.  

Similar to FNN, the RNN also contains three layers: an input layer, a hidden layer, 

and an output layer. But unlike FNN, the hidden layer in the RNN is called "recurrent" 

layer. Different from the hidden layers in FNN, the neurons in the recurrent layer are not 

strictly separate into clearly defined hidden layers. Instead, the recurrent layer poses cyclic 

connection, allowing information to persist and be passed to next neurons. This structure 

of the network creates temporal dimension that allows sequential order or timestep of the 

input to be recorded and processed within the network. 

This characteristic makes RNNs particularly effective for tasks where the temporal 

dynamics of the input data plays a crucial role, such as in language processing [12][13], 

speech recognition [14][15], and time series forecasting [16][17]. However, despite their 

powerful capabilities, training RNNs can be challenging due to issues like vanishing or 

exploding gradients that can lead to unstable learning behavior [18][19].  
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Fig 3.5 Schematic diagram of recurrent neural networks 

3.2.3 Backpropagation 

Backpropagation stands as the most fundamental algorithm employed in the 

training of neural networks, particularly in Feed-forward Neural Networks (FNNs) [20]. 

The training process predominantly involves two stages: a forward pass and a backward 

pass. 

During the forward pass (Fig 3.6 (a)), an input from a labeled dataset is introduced 

into the network, prompting the network to generate a prediction output marked as o. This 

prediction is subsequently compared with the actual output from the labeled dataset y to 

compute the mean square of the error following: 𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟(𝐸𝐸) =  (𝑦𝑦 − 𝐸𝐸) 2. Following this, 

the system enters the backward pass stage. Here, the calculated error is propagated 

backwards through the network (Fig 3.6 (b)), starting from the output layer and moving 

towards the input layer.  
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In this process, the contribution of each weight to the overall error is determined as 

the gradient of error is calculated with respect to weight in a particular layer. Based on this 

information, the network updates the weights and biases in a manner that minimizes the 

error. This is typically achieved using the gradient descent algorithm or its variants, which 

iteratively adjust the parameters in the direction of steepest decrease of the error function 

[21]. In essence, backpropagation employs the principles of differential calculus to 

optimize the performance of the neural network by minimizing the discrepancy between 

the network's predicted outputs and the actual outputs. 

 

Fig 3.6 Schematic diagram of the forward propagation (a) of the input and backward 

propagation (b) of the error.  

In the context of RNNs, a derivative of backpropagation, termed as 

backpropagation-through-time (BPTT), is frequently employed [21]. BPTT broadly 

follows the schematic of standard backpropagation but with a few additional steps. During 
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RNN training, the intermediate states generated by the recurrent network must be recorded. 

BPTT entails unfolding the network to trace back to each timestep and its corresponding 

intermediate states within the RNN, treating each timestep akin to a separate layer within 

the FNN. Thereafter, the training process aligns with standard backpropagation, albeit with 

a considerably larger number of layers stemming from intermediate states at each timestep. 

This training necessitates modifications to all components of the network, including input-

to-RNN, RNN-internal, and RNN-to-output weights, to achieve the network's desired 

functionality [22].  

However, this training process is computationally expensive and requires 

substantial memory for storing the intermediate states at each timestep during the forward 

pass. Given the structure of the network and the potential for numerous network layers to 

be involved in the process, optimizing weight updates can become a challenging task. This 

difficulty often results in vanishing or exploding gradients, contributing to a slow and 

difficult training process [23]. Another significant challenge posed by conventional RNNs 

is their struggle with long-term dependencies. Here, information from earlier steps in the 

sequence is crucial for understanding the context at a later point. Yet, these networks often 

falter in effectively capturing and leveraging this temporal information [24]. Consequently, 

designing and implementing effective RNNs requires careful consideration and advanced 

techniques to handle these challenges. 

3.2.4 Reservoir computing 

To address these issues, a new framework called Reservoir computing (RC) was 

proposed in the early 2000s [25]. The concept of Reservoir computing can be traced back 

to two independently proposed concept called Echo State Networks (ESNs) [26] and 
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Liquid State Machines (LSMs) [27]. The term "Reservoir Computing" came into existence 

later to encapsulate these similar concepts under a common umbrella. The RC framework 

is a type of RNNs which replaces the recurrent neural networks with an internal coupled 

nonlinear transfer function called reservoir (also known as known as the "echo state 

property" or "liquid state property"). And the reservoir is a high-dimensional dynamical 

system which memorizes and processes the temporal dynamics of the input data.  

The RC framework is a special type of RNN with a distinctive training method.  

Unlike the standard RNNs, in an RC framework, the training happens exclusively in the 

readout function [28]. This significantly reduces the complexity of the training process as 

the large numbers of recurrent networks no longer need to be adjusted. When a set of input 

is fed into the reservoir, the reservoir passively excited by the input signal, transforms the 

input into a high-dimensional representation, capturing the temporal dynamics of the input. 

The states of the reservoir nodes, at each time step, are collected as the reservoir's response 

to the input data and fed into the readout function. The training of the networks focuses on 

adjusting the RNN-to-output layer to achieve the desired output.  

Aiming to further develop a more simplified and energy-efficient RC network, a 

new framework called physical reservoir has been proposed based on the concept of the 

reservoir computing [29], where instead of using a software-based reservoir network, other 

nonlinear dynamical systems such as oscillators [30], photonic devices [31][32] or even 

physical phenomenon such as Quantum Dynamics [33] can be used as reservoir. In recent 

years, neuromorphic hardware such as memristors [34] has emerged as a preferred choice 

for implementing physical reservoirs. This development aims to exploit the rich dynamics 
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of physical systems for computational tasks, potentially leading to more energy-efficient 

and powerful computing architectures. 

 

Fig 3.7 (a) Traditional RNN training methods update all connection weights (red) 

during the training process. (b) In Reservoir Computing, only the activation function 

(Reservoir-to-output weights) are updated. 

The concept of employing memristors in Reservoir Computing (RC) frameworks 

was first proposed in 2012 [35]. These early memristor-based RC frameworks focused on 

harnessing the inherent nonlinearity and memory capabilities of the memristors. These 

reservoirs often utilized standard non-volatile memristors and required multiple 

memristors to achieve the desired time-dependency and high variability in states. 

The structure of these memristor-based reservoirs often mirrored that of Recurrent 

Neural Networks (RNNs), with randomly interconnected memristors or memristor crossbar 

arrays forming the hidden layers [34][36]. In some cases, memristor-based circuits, namely 

inhibitory and excitatory memristive synapse circuits, were employed to fulfill the 

reservoir function [37][38]. The accuracy of these types of networks reportedly ranged 

between 61.7% and 85% [36][37], varying based on the tasks undertaken and the specific 

testing conditions. While these results were promising, the complexity of these memristor-
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based RC frameworks prompted further research and development efforts to refine and 

optimize the architecture.  

One strategy to streamline physical reservoirs involves the use of volatile 

memristive devices [39]. Unlike their non-volatile counterparts, volatile memristive 

devices can achieve the required nonlinearity and time-dependency via inherent memory 

decay or fading memory [39]. In 2014, Bürger et al. proposed a volatile memristor-based 

network for image classification. This network structure was akin to reservoir computing, 

though multi-layer perceptron (MLP) and back-propagation were still necessary. The 

network was built upon a 28x28 non-volatile memristor crossbar to process input from 

784-pixel images. A maximum classification rate of 89.2% was achieved using the 

memristor crossbars alongside a 100 × 50 × 10 MLP [39].  

In 2014, Chao et al. reported a hardware reservoir computing network for image 

classification using WOx-based volatile memristors [34]. The network was based on a 

32x32 memristor crossbar array, with each memristor acting as a reservoir operating in 

parallel with the others. The input was converted into sequential pulses and fed into the 

reservoir. The memristor based reservoir take a reading after few inputs, effectively down-

sampling the input and take a nonlinear transfer at same time [34]. By feeding the input 

both horizontally and vertically, the network achieved a maximum classification accuracy 

of 92.1%. In 2019, Midya et al. significantly advanced the field of hardware-based 

Reservoir Computing networks by introducing a volatile memristor-based network in 

which the readout layer function was also implemented using a memristor crossbar array 

[40]. This development marked a departure from traditional RC systems where the readout 

layer was usually implemented in software, thereby demonstrating the potential for fully 
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hardware-based Reservoir Computing systems. The system developed by Midya et al. 

achieved a maximum accuracy of 83%, highlighting the promising performance of 

hardware-implemented Reservoir Computing architectures. 

3.2.5 Spiking Neural Networks 

Spiking Neural Networks (SNNs) are a new generation of neural network models 

that more closely emulate biological neural systems. The structure of SNNs largely 

resembles previous generations of neural networks. However, the primary difference 

between traditional feed-forward neural networks (FNNs) and SNNs lies in the neuron 

model. 

In FNNs, neurons are continuous mathematical activation functions that generate 

outputs from inputs continuously. In contrast, SNNs use neuron models that more closely 

mimic biological neurons, such as the Leaky Integrate-and-Fire (LIF) model [41]. This 

model can capture the fundamental dynamics of the action potential of biological neurons. 

In this case, the neuron integrates the input, adjusting its internal state. The membrane 

voltage of the LIF model is decreased according to the following equation [42]: 

τ𝑚𝑚
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −[𝑣𝑣(𝑡𝑡) − 𝑉𝑉0] + 𝑅𝑅𝑚𝑚𝐼𝐼𝑠𝑠(𝑡𝑡)                                                            (Eq 3.1) 

Here, 𝑣𝑣(𝑡𝑡) is the neuron’s membrane potential. τ𝑚𝑚 is the passive membrane time 

constant, which is related to the  membrane capacitance 𝐶𝐶𝑚𝑚 and the leak resistance 𝑅𝑅𝑚𝑚. 𝑉𝑉0 

is the resting potential. Once the membrane potential 𝑣𝑣(𝑡𝑡) reaches or exceeds a set 

threshold, the neuron fires the spike to communicate with other neurons and the membrane 

potential is reset to 𝑉𝑉0. 
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Another key feature of SNNs is the introduction of delay within the network. In 

biological neurons, the synapses connect to the neuron through long tubular structures 

called axons. Due to the time required to pass signals through the synapse and the axons, 

the delay in biological neurons is usually in the tens to hundreds of milliseconds [43]. This 

introduced delay is crucial for the network to process the temporal information of the input 

and also plays a role in implementing learning rules such as STDP. 

However, implementing this delay in hardware can be extremely challenging. One 

of the key challenges is the timescale of the delay. Modern CMOS and neuromorphic 

devices often operate in the nanosecond range. But the delay in SNNs not only needs to 

achieve a timescale in the tens to hundreds of milliseconds range [44], but it also requires 

controlled variability as not all neurons share the same delay [45]. To achieve the desired 

delay function for SNNs, external circuits are often used to introduce delay. For example, 

more recently, successful demonstrations of ReRAM-based Spiking Neural Networks 

(SNNs) have been made, wherein the ReRAM is coupled with a capacitor to achieve a 

desirable delay in the tens to hundreds of milliseconds range [44]. This adds a layer of 

complexity to the network.  

3.3 Emerging memory devices for neuromorphic application. 

Motivated by the ambitious objective of constructing computational systems that 

parallel the energy efficiency of the human brain, research has been intensively directed 

towards neuromorphic hardware in the recent years. This branch of study focuses on 

developing devices that can accurately mimic the behavior and functionality of neurons 

and synapses, reflecting the intricacies of biological information processing systems. This 

fundamental difference in operation principles results in the need for a disproportionately 
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large number of CMOS devices and computational power to simulate even the most basic 

level of neuronal and synaptic interactions [46]. Another major challenge is the high power 

consumption of modern CMOS technology. While the human brain operates on roughly 

20W of power, supercomputers require tens of MW of power to mimic only a fraction of 

human brain function [47][48]. To overcome these limitations, there has been a growing 

interest in the development of hardware that can assist in the implementation of brain-

inspired computing, specifically focusing on artificial synaptic devices [3].  

Given that synapses are the neuronal connections responsible for memory and 

learning, the design of physical synaptic devices is often based on memory devices that can 

emulate biological characteristics such as synaptic plasticity [2][49]. In electronic synaptic 

devices, characteristics such as the devices' on/off ratio, the number of memory states, 

analog behavior, and the ability to perform an excitatory post-synaptic current (EPSC) 

upon receiving excitation pulses are typically examined. 

Non-volatile memory devices are usually preferred for better implementation of 

long-term plasticity due to their ability to retain information even when power is 

disconnected [50][51]. However, volatile memories, which lose their stored data when 

power is turned off, can be used to process temporal input [34] and implement short-term 

plasticity [40][52]. 

The ability to perform STDP is considered a desirable feature for physical synaptic 

devices [49]. However, its actual role and functional consequences in neuromorphic 

systems are yet to be fully understood [7]. 

Apart from the synaptic characteristics, other factors such as power consumption, 

switching speed, cost, and CMOS compatibility should also be taken into consideration 
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when benchmarking different devices for use in neuromorphic systems. These criteria help 

ensure that the selected devices will not only function effectively as artificial synapses but 

also be feasible for integration into larger systems and practical applications. 

Among the assortment of emerging neuromorphic devices, memristors are viewed 

as one of the most promising prospects for next-generation computing devices. They have 

recently garnered renewed interest due to advancements in the area of artificial synapses. 

When contrasted with other potential candidates for physical synapses, memristors exhibit 

several compelling attributes such as scalability and high-density integration [53], cost-

effective fabrication [54], and compatibility with CMOS technology [55]. Significantly, 

there have been successful instances of Excitatory Postsynaptic Current (EPSC) and Spike-

Timing Dependent Plasticity (STDP) demonstrated in memristor-based networks [49][56]. 

Memristors, the fourth fundamental circuit element, form a distinct category within 

resistive memory devices, adding to the existing triad of resistors, capacitors, and inductors 

[57]. They are characterized by their resistive switching behavior, a unique feature that 

allows the device to 'remember' its historical input data based on the application of voltage 

or current. This trait enables the memristor to exhibit two or more distinguishable 

resistance states, often referred to as the High Resistance State (HRS) and Low Resistance 

State (LRS). When the applied voltage or current surpasses a particular threshold, the 

memristor can transition between its HRS and LRS. Consequently, the current output at a 

fixed 'Read' voltage provides an indication of past inputs. However, if the device operates 

within the voltage threshold, the resistance state of the memristor can be read as an output 

current under a fixed voltage. The types of memristors can vary, primarily dependent on 

the working mechanism of resistive switching and the material composition of the device. 
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3.3.1 Phase-change memories 

Phase-Change Memories (PCMs) constitute a subset of memristors that operate 

based on the different conductivity between amorphous and crystalline states of certain 

materials, commonly GeTe based materials [58][59] . PCMs are predominantly controlled 

by current pulses. These devices typically feature two electrodes, separated by a layer of 

phase-change material, with a heater connected to the bottom electrode.  

To transition these devices to a Low Resistance State (LRS), a moderate electrical 

current pulse is applied to the heater. This anneals the phase-change material to a 

temperature exceeding its crystallization threshold, but remaining below its melting point. 

A longer pulse is generally required to complete the recrystallization process and establish 

the device in LRS. 

Resetting the device to a High Resistance State (HRS) necessitates a brief, high 

electrical current pulse to elevate the local temperature above the melting point of the 

phase-change material. This increased temperature melts and subsequently rapidly 

quenches the phase-change material, transitioning it to an amorphous phase and resetting 

the device. Device sensing is accomplished by applying a small current that does not 

exceed the crystallization temperature, thereby measuring the resistance state of the device. 

PCM devices provide non-volatile memory characterized by exceptional switching 

speed (<10ns) [59], prolonged retention time (over 10 years) [60], and commendable 

endurance (> 107 ) [61][62][63]. In neuromorphic applications, PCM devices can emulate 

synaptic plasticity during the SET process when the phase-change materials transition from 

the amorphous to the crystalline phase [51]. 
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However, during the RESET process, the phase-change material undergoes rapid 

melting and quenching. Achieving refined control over the resistance state changes can 

prove challenging with a single PCM device. Furthermore, this process often leads to high 

peak power and energy consumption due to the elevated temperatures (500 to 700 degrees 

for most phase-change materials) necessary for the melting process [64].  

 

Fig 3.8 (a) Schematic structure diagram and (b) illustration of the SET/RESET 

process of the Phase-change memories.  

3.3.2 Oxide based random-access memories 

Oxide-based Random-Access Memories (OxRAM) constitute a large category of 

memristors. These devices have a simple, capacitor-like structure, featuring two metal 

electrodes separated by a thin layer of insulating material. The resistive switching behavior 

of most OxRAMs is based on a filamentary process, where the formation and rupture of 

conductive filaments drive the resistive switching. 

Three different mechanisms have been proposed for the filamentary resistive 

switching in OxRAMs: the Electrochemical Metallization Mechanism (ECM), the Valence 

Change Mechanism (VCM), and the Thermochemical Mechanism (TCM). ECM often 
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occurs in memristors with an electrochemically active metal electrode, known as 

Conductive Bridge Random-Access Memories (CBRAM). These devices typically use 

electrochemically active metals like Ag [65], Au [66], or Cu [66] as anodes. Under a 

positive bias, metal atoms from the active contact oxidize into mobile metal cations within 

the solid electrolyte thin film. Driven by the applied electric field, these cations drift 

towards the counter electrode, often an inert metal such as W [67] or Pt [66]. The resistance 

state changes through the reduction of these metal cations and the formation of metal 

clusters or a conductive path between the two electrodes. 

The VCM operates on the movement of oxygen anions (often described using the 

movement of oxygen vacancies) in defect-rich transitional metal oxides, such as TaOx 

[68], TiO2 [69], and HfOx [70]. The formation of the conductive filament in VCM devices 

is often related to the movement of oxygen vacancies, a result of redox reactions and the 

transport of oxygen ions. Both ECM and VCM cells can offer bipolar SET/RESET, and in 

devices with both transitional metal oxides and an electrochemically active metal contact, 

both mechanisms can coexist in a single device [71]. 

The TCM occurs almost exclusively during the RESET process, especially during 

unipolar reset. Under TCM, the rupture of the conductive filaments can be attributed to 

thermally induced stoichiometry variations and redox reactions caused by significant joule 

heat as a high current flows through the narrow part of the conductive filament. However, 

because of the difficulty in precisely controlling the RESET process and the Joule heat 

generated, TCM is often not favored in oxide-based memristors. 

Oxide-based Random-Access Memories have emerged as a promising candidate 

for neuromorphic applications, offering high endurance of over 1012 [72] and high 
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switching speeds at sub-ns (0.3nS) [73], reported in multiple instances [74][75]. Successful 

demonstrations of OxRAM emulating biological synaptic behavior, such as excitatory post 

synaptic currents (EPSC) [49] and spike-timing-dependent plasticity (STDP) [76], make 

these devices highly competitive as synapses in neuromorphic hardware. 

Despite their rapid development, challenges persist in developing energy-efficient 

hardware neural networks. The Voltage–Time Dilemma is a key challenge for energy-

efficient OxRAM-based neural networks, i.e. maintaining high switching speed and long 

retention time often requires high operation voltage [77]. This, coupled with thin oxide 

thickness, often leads to high power density during writing operation. Additionally, the 

nonlinearity of weight updates in OxRAM-based neural networks poses another problem 

for synaptic applications. Cycle-to-cycle and device-to-device variations are also major 

concerns for large-scale OxRAM neural networks. 

 

Fig 3.9 Schematic structure diagram of ReRAM based on (a) active metal contact 

(CBRAM) and (b) transitional metal oxides (RRAM). (c) illustration of the 

SET/RESET process of the Oxide based random-access memories. 

3.3.3 Ferroelectric memories 

Ferroelectric RAM (FeRAM), also known as Ferroelectric Capacitor (FeCAP), 

employs a capacitor-like structure, consisting of two metal electrodes separated by a layer 
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of ferroelectric (FE) material. The memory function in these devices is achieved by 

switching electrical dipoles within the FE material under an external bias. However, the 

read operation of earlier FeRAMs relied on the discharge currents induced by the 

polarization switching from the memorized state, resulting in a destructive read operation. 

This complex process, combined with limited CMOS compatibility and scaling issues, 

hindered the development of capacitor-based FeRAM for many years [42]. 

Recently, however, with the discovery of ferroelectricity in hafnium oxide [43] and 

the development of new device structures like Ferroelectric Field Effect Transistors 

(FeFET), FeRAM has seen renewed interest in the fields of compute-in-memory and 

neuromorphic applications. Hafnium oxide, a well-established CMOS-compatible 

material, and the adoption of FeFET have addressed issues related to destructive read 

operations. 

In the context of artificial synapses, successful implementation of EPSC and STDP 

has been demonstrated, utilizing the multi-domain characteristics of ferroelectric material 

[44][45]. However, the implementation of FeFET potentiation and depression often 

necessitates non-identical pulses due to the domain switching mechanism [78]. 

Consequently, the conductance state of a FeFET is not truly analog, but is limited by multi-

domain characteristics. 
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Fig 3.10 (a) Schematic structure diagram of a FeRAM and (b) the polarization charge 

of the ferroelectric material.  

3.3.4 Spin torque magnetic random access memories 

Spin-Transfer Torque Magnetic Random Access Memories (STT-MRAM) is one 

of the more competitive technologies among memristors for the development of 

neuromorphic hardware. An STT-MRAM consists of a Metal-Insulator-Metal (MIM) 

structure with two layers of ferromagnetic electrodes separated by a thin layer of insulating 

material, acting as the tunneling layer. Among these two ferromagnetic layers, there is 

typically a relatively thick layer where its spin polarization is fixed, known as the pinned 

layer. There is another thinner ferromagnetic layer where magnetization direction can be 

altered by an external current, termed the free layer. Depending on the polarization of the 

free layer, the combined magnetic polarization of the two ferromagnetic layers can switch 

between parallel (P) and antiparallel (AP) states. As electrons have a higher probability of 

tunneling through the insulating layer under the parallel state and a lower probability under 

the antiparallel state, changing the magnetic polarization from an antiparallel (AP) to the 

parallel (P) state results in a resistance state change from High Resistance State (HRS) to 
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Low Resistance State (LRS). Commercial development of STT-MRAM technology, one 

of the more mature among memristor devices, began as early as 2002 [79]. 

Contrary to other memristor technologies, the resistance switching of STT-MRAM 

is purely electronic, requiring no atomic level changes. This mechanism results in a fast 

switching speed, reaching the single-digit nanosecond range (< 3 ns) [73][80][81] with 

very low power consumption, as low as 6fJ/switch on state-of-the-art STT-MRAM devices 

[80]. However, compared to other memristors, one of the main drawbacks of STT-MRAM 

is its relatively poor on/off ratio [82]. This low on/off ratio results in a weak reading signal 

and limits the device's potential in certain synaptic applications. 

 

Fig 3.11 (a) Schematic structure diagram of STT-MRAM based on (b) illustration of 

the R-V curve of the STT-MRAM. 

3.3.5 Electrolytes gate transistors 

While different types of memristors can mimic biological synaptic plasticity to 

some degree, the working mechanisms of memristors and biological synapses 

fundamentally differ. Biological synapses transmit information through the release of 

chemicals and the diffusion of ions. Given the ionic nature of synapses, diffusive 
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electrolyte gate transistors might serve as a viable alternative for developing physical 

synaptic devices and are believed to better mimic biological synaptic plasticity [83]. These 

devices usually adopt a transistor structure with an ionic electrolyte in the form of a 

polymer [84], gel [85], or liquid [83] as the gate dielectric. Their working mechanisms 

differs from case to case but commonly based on redox reactions [83] or double-layer 

charge accumulation [84] causing change of channel conductivity. 

Incorporating a third terminal into a conventional memristor provides benefits of 

compliance control, instantaneous feedback, and continuous learning, which are not 

achievable with a two-terminal device. However, the third terminal complicates 

interconnect and poses integration and footprint challenges, particularly in the context of 

the crossbar array. Three-terminal TFT memory devices, commonly formulated from 

ferroelectric materials, are used for storing synaptic weights. Herein, the switching of 

dipoles between two stable states generates a memory transistor [86]. Beyond ferroelectric 

materials, oxides such as Ta2O5, TiO2, or Gd2O3 can be embedded within the gate insulator 

of a TFT memory [87]. A cellular neural network employing IGZO thin-film devices 

capable of simple logic functions has been demonstrated by Mutsumi Kimura et al. [88]. 

The highest speed Static Random Access Memory (SRAM) in IGZO TFTs, operating at 

7V at 140kb/s with only 0.55mW of power consumption, was demonstrated using a diode 

load by F. De Roose et al. [88]. 

Liquid gated 3-terminal memory devices have been demonstrated in Tungsten 

Oxide (WO3) by Jing-Ting Yang [89], or ZnO TFT with W probed liquid gated TFT [90]. 

Comparatively, liquid gating is more prevalent in Organic Thin-Film Transistors (OTFTs) 

for biosensing applications. 



109 

 

In general, TFT memory devices in both AOS and organic materials still have a 

significant path to traverse in comparison to their CMOS-based counterparts. The structure 

of conventional electrochemical transistors makes it challenging for them to exhibit non-

volatility, making them more suitable for applications where volatility can be leveraged in 

novel concepts such as reservoir computing. 

Thanks to their diffusive mechanism, devices of this nature typically demonstrate 

true analog behavior with robust excitatory post-synaptic current (EPSC) performance 

[83]–[85]. Despite these advantages and their true analog nature, these devices face 

challenges related to scalability and stability. The use of electrolytes, especially in gel [85] 

or liquid [83] forms, may present a significant issue, though this could potentially be 

addressed by using solid-state electrolytes such as Ta2O5 [84].  

Although they present advantages of integration and compatibility with solution 

sensing and processing, and are sorely needed in Internet of Things (IoT) platforms, they 

are still in the early stages of development. Their limitations can be categorised into two 

main topics: (i) device performance and (ii) integration of different functionality. Device 

performance issues mainly involve stability and scalability [89], while integration poses 

the challenge of merging sensing, memory, and processing [91].  

3.3.6 Perovskite in memory applications 

Hybrid perovskite-based resistive random access memory (ReRAM) is an 

emerging field, and it is rapidly gaining traction due to the unique properties of perovskite 

materials. These materials demonstrate promising performance in memory devices due to 

their high on/off ratio (up to 106), small operation window (±0.14 V) [92], and potential 

for flexible, low-cost solution-processed applications [93]. 
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The first perovskite-based ReRAM was reported by E. Yoo et al. in 2015, with a 

device structure of Au/CH3NH3PbI3/FTO [94]. Subsequent demonstrations of long-term 

memory in CH3NH3PbI3-based memristors were achieved with similar structures, such as 

Ag/CH3NH3PbI3/FTO [92] and Au/CH3NH3PbI3/ITO [95]. 

The underlying principles of hybrid perovskite-based ReRAM vary between 

different devices. Two primary types of resistive switching have been identified: 

filamentary-type switching and interface-type switching. 

Filamentary-type switching, as observed in some hybrid perovskite-based 

ReRAMs, is thought to function in a way similar to oxide-based ReRAM or conductive-

bridging random access memory (CBRAM). Here, the formation and disruption of 

conductive filaments, which may occur through the migration of metal ions or defects in 

the halide, cause changes in the device's resistance [95][96]. 

On the other hand, non-filamentary or interface-type switching operates by ion 

transfer near the interface between the perovskite layer and a more active electrode such as 

Ag [80]. It is suggested that the distribution and rotation of the MA+ within the perovskite 

structure also contributes to this process. 

These findings show promising potential for the further development of perovskite-

based memory devices. Further research is needed to fully understand the complex 

mechanisms underlying their operation, as well as to optimize and enhance their 

performance [93]. 

3.3.7 Amorphous Oxide Semiconductors in memristor applications 

Amorphous Oxide Semiconductors (AOS) have been increasingly recognized for 

their potential in memory applications, commonly used in RRAM, PCM, and FeRAM 
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discussed earlier. For example, control over oxygen vacancies in IGZO can be achieved 

via manipulation of the In-to-Ga ratio, which has led to the exploration of IGZO for 

applications in ReRAMs [97]. A Gallium proportion of x=2 has been determined as 

suitable for resistive switching (RS) in a TiN/Ti/IGZO/Pt structure, with the additional 

benefit of multilevel capabilities [98][99]. Other techniques can also be employed to 

influence the properties of IGZO films. For instance, Titanium serves as an oxygen 

scavenger that assists in increasing oxygen vacancies. A Pt/a-IGZO/TaOx/Al2O3/W/Ti 

cell showed self-rectification due to resistive switching at the interfacial TaOx layer [100]. 

Oxygen plasma treatment applied to the bottom electrode in an Al/IGZO/Al structure 

improved resistive switching [101]. An IGZO ECM cell with a Ag/IGZO/MnO/Pt structure 

demonstrated a transition from volatile to non-volatile behaviour upon adjusting the current 

compliance, rendering it appealing for both ReRAM and selector applications [102]. In 

addition, the integration of a TFT with a ReRAM (1T-1R) using an IGZO/Al2O3 layer has 

been exhibited [103]. 

Despite these initial evidences of IGZO-based memory devices, issues affecting the 

technology include device variability, cycle-to-cycle variability, a limited memory 

window, and a reduced capability for multilevel logic. More recently, ZnO-based ReRAM 

has been demonstrated by U. B. Isyaku and S. Member [104]. The advantages of ZnO over 

IGZO are motivated by the scarcity of materials; the simpler binary compound ZnO is 

abundant on Earth and has been deposited both in amorphous and nanocrystalline forms 

[105]. While Kamiya et al. have reported a high concentration of residual free electrons 

(>1017 cm-3) in ZnO due to native defects such as zinc interstitials and oxygen vacancies 

[106], we have demonstrated on/off ratios of 109 in amorphous ZnO TFTs [105].  
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3.4 Summary 

In this chapter, we have reviewed the fundamental principles of brain-inspired 

computing, which seeks to emulate artificial neural networks. We have introduced the 

basics of artificial neural networks, ranging from Feed-Forward Neural Networks (FNNs) 

to Recurrent Neural Networks (RNNs), offering a brief history of the evolution of 

Reservoir Computing (RC) networks and outlining their primary concepts. These networks 

leverage synapses and neurons to perform the required functions. We have highlighted the 

key characteristics necessary for the development of physical synaptic devices and 

explored the emerging memory devices commonly employed as physical synapses in 

neuromorphic systems. Owing to their unique switching mechanism and working principle, 

each of these devices have their own strengths and weaknesses and might be preferred 

depending on the requirement of the specific application and network. Our understanding 

of synapses and human learning are still limited and large scale hardware array that could 

mimic the complex neuron models are still under development. This chapter provide a 

concise introduction of the physical synaptic devices as a foundation for the subsequent 

work in neuromorphic applications.  
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CHAPTER 4 

Solid Electrolyte-Gated Ta2O5/ZnO Field-Effect transistor: Fabrication, modeling, 

and device mechanism 

4.1 Introduction 

This chapter elucidates the fabrication procedures and inherent properties of 

Tantalum Pentoxide (Ta2O5) and Zinc Oxide (ZnO) Field‐Effect Transistors. Here we 

introduce a more accurate device model, that is utilized for simulation of the crossbar in 

subsequent chapters.  

Section 4.2 details the fabrication process of the devices, focusing on the intrinsic 

attributes of Ta2O5/ZnO thin films. Sections 4.3 and 4.4 delve into the operational 

principles of the Ta2O5 and ZnO Solid Electrolyte-Gated Field-Effect Transistors (SE-

FET), and depict a Simulink model of the SE-FET. This model is based the drift-diffusion 

model established in previous works [1][2]. The key contribution lies in the integration of 

a gate current model, which had not been addressed in the earlier studies.  

4.2 Device fabrication 

The configuration of a bottom-gated three-terminal Tantalum Pentoxide 

(Ta2O5)/Zinc Oxide (ZnO) TFT is presented in Fig 4.1. The Ta2O5 and ZnO layers are 

deposited onto indium tin oxide (ITO) substrates using a radio frequency (RF) sputtering 

process, utilizing ceramic targets composed of 99.99% Ta2O5 and ZnO. The device is 

fabricated at room temperature, wherein the ITO and Ta2O5 serve as a unified bottom gate. 

ZnO is patterned employing AZ 1514 photoresist and subsequently etched utilizing a 

diluted solution of Hydrochloric (HCl) acid. The Aluminum (Al) contact is deposited via 
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a thermal evaporation technique, followed by a lift-off process. Detailed procedures 

regarding the device fabrication have been previously reported in [2][3]. 

 

Fig 4.1 Structure of a Ta2O5/ZnO TFT 

Fig 4.2 and Fig 4.3 exhibit the Atomic Force Microscopy (AFM) and X-ray 

diffraction (XRD) results for the amorphous Ta2O5/ZnO deposited via RF sputtering. The 

surface roughness, characterized by the average arithmetic value of roughness, for the film 

is recorded as 1.6 nm for Ta2O5 and 1.9 nm for ZnO. The XRD pattern of the Ta2O5 and 

ZnO films deposited on the ITO/glass substrate aligns closely with that of the ITO/glass 

substrate background, with no additional peak attribute to Ta2O5 and ZnO films, suggesting 

the absence of significant crystalline structures during the room-temperature deposition 

process. 
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Fig 4.2 AFM images of (a) 275nm Ta2O5 and (b) 40nm ZnO deposited on ITO 

substrates. 

 

Fig 4.3 XRD of Ta2O5 and ZnO films and background ITO substrate.  

4.3 Physics of Ta2O5/ZnO SE-FETs 

Fig 4.4 illustrates the transfer current-voltage (I-V) curves for the Ta2O5-based 

FETs. During this process, a static voltage of 0.1 V is applied to the drain source of the 

device. The gate voltage is varied from -5 V to +5 V, subsequently sweeping back to -5 V 
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at a constant scan rate of 140 mV/s. The IDS-VGS transfer characteristics, as depicted in Fig 

4.4 (a), exhibit a counterclockwise hysteresis with an on/off ratio exceeding 105. Notably, 

devices with a thicker oxide display a wider hysteresis window and higher on-current. The 

IGS-VGS transfer characteristics (Fig 4.4 (b)) are separately recorded with both drain sources 

of the device grounded to minimise the noise encountered for gate current recording in sub-

nA range. The gate current of the device exhibits a clockwise hysteresis, with a maximum 

gate current reaching only 1nA for devices equipped with a 275nm gate oxide.  

The operational mechanism of this device can be described as follows: the Ta2O5 

serves as a high-k (𝜀𝜀𝑇𝑇𝑎𝑎2𝑂𝑂5 = 20.8 [1]) dielectric material. Owing to the inherent 

characteristics of the material under the deposition conditions, this material often exhibits 

high concentrations of mobile oxygen vacancies [4]–[6] with relatively low activation 

energies (1-2 eV) [7][8]. Consequently, during the forward scan, a positive voltage 

instigates a movement of highly mobile oxygen vacancies (V2+) and oxygen ions (O2-) 

towards the opposite interfaces within the dielectric layer. Under positive bias, the 

positively charged oxygen vacancies (V2+) drift toward the dielectric/semiconductor 

interface, culminating in increased carrier concentration in the channel and, thus, 

augmenting channel conductivity (Fig 4.5 (a)). The ion accumulation during this process 

establishes a local concentration gradient of vacancies (V2+) and oxygen ions (O2-). This 

concentration gradient facilitates the diffusion of ionic species and generates an internal 

electric field in the direction opposite to the applied electric field. 

During the reverse scan, as the applied voltage starts to reduce the buildup of ions, 

it ultimately reaches a steady state where the applied electric field is neutralized by 

diffusion, and the device attains its peak current (Fig 4.5 (b)). Beyond this point, though 
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the gate voltage continues to reduce, the already built-up oxygen vacancies at the 

Ta2O5/ZnO interface are yet to diffuse away and maintain the high carrier concentration in 

the ZnO channel (Fig 4.5 (c)). 

As the gate voltage is swept to negative values, the applied electric field changes 

polarity but the concentration gradient built up during the positive scan is yet to diffuse 

away. Both the applied electric field and diffusion promote the recombination of oxygen 

vacancies (V2+) and oxygen ions (O2-) (Fig 4.5 (d)). Driven by an escalating negative 

electric field, the oxygen vacancies (V2+) and oxygen ions (O2-) drift towards each other 

and are forced to recombine. This phenomenon leads to a distinctive redox peak observed 

in the gate current characteristics during the reverse scan (marked on the gate current peak 

in Fig 4.4 (b)) [2]. The sudden decline in oxygen vacancies at the interface results in a 

dramatic reduction in the electron concentration in the ZnO channel thus the devices enters 

into the off state.  



130 

 

 

Fig 4.4 (a) IDS-VGS and (b) IGS-VGS characteristics of the Ta2O5/ZnO SE-FET at room 

temperature. IGS-VGS data were measured when both drain sources of the device were 

grounded.  

 

Fig 4.5 The schematic depicts the motion of ions within the insulator of the device 

during the dual sweep.  
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It is indeed important to differentiate between hysteresis attributed to ionic 

migration and that which is induced by trapping of charge at Ta2O5/ZnO interface. Fig 4.6 

(a) and (b) illustrate the disparity between the I-V curves of a Ta2O5/ZnO Solid Electrolyte 

Field Effect Transistor (SE-FET) and a standard TFT, where Silicon Nitride (SiN) is 

utilized as a dielectric with a thin Ta2O5 layer. 

As depicted in Fig 4.6 (a), the Ta2O5/ZnO SE-FET device demonstrates a high on-

off ratio of 106 when the scan rate is below 1.2 V/s. Driven by this ion accumulation 

process, the drain-source current of the device primarily manifests an anti-clockwise 

hysteresis that is scan-rate dependent. The main memory function of the device is reflected 

by the hysteresis width [9][10], which is defined as the voltage difference between the 

forward and reverse scan. Fig 4.6 (c) plots this scan-rate-dependent hysteresis width at 100 

nA. Comparatively, without the performance enhancement afforded by the ionic dielectric 

layer, the SiN/ZnO device displays a significantly lower on/off ratio of 105, despite having 

a substantially broader voltage window of 25 V (-10 V to +15 V). Contrasting with the 

ionic Ta2O5/ZnO SE-FET, the SiN-based device presents a clockwise hysteresis, a 

phenomenon frequently observed in TFTs based on ZnO [11] or InGaZnO [12], suggesting 

carrier trapping. This finding is further corroborated by the clockwise hysteresis observed 

in the Ta2O5/ZnO SE-FET at a nearly steady state (3.45×10-5 V/s scan rate, as shown in 

Fig 4.6 (d)). 
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Fig 4.6 Dual-sweep transfer characteristics IDS vs. VGS (a) SE-FET with 275-nm Ta2O5 

as gate oxide, and (b) devices with 60-nm SiN + 30-nm Ta2O5. (c) Hysteresis width vs. 

scan rate at 100 nA. (d) Dual-sweep IDS vs. VGS of a 275-nm Ta2O5 device at near 

steady state. 

Given a constant gate bias, the device characteristics display a significant time-

dependent behavior due to the continual generation of ions under the reversible redox 

reaction. As illustrated in Fig 4.7, when the device is subjected to prolonged +5V pulses, 

there exists an almost linear correlation between the device conductivity and pulse width. 

[2]. This dynamic alteration in conductivity enables the device to integrate and retain the 

input signal from the gate terminal of the device with considerable linearity under a fixed 

bias. 
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Fig 4.7 Time-dependent IDS when switching from a constant VGS of -5 V to a constant 

VGS of +5 V.  

The retention of the SE-FET is influenced by both the environmental temperature 

and the thickness of the Ta2O5 layer. For devices with equivalent gate insulator thickness 

(275 nm as shown in Fig 4.8 (a)), escalating the temperature from 20°C to 60°C triggers 

the decay of IDS from 5×10-5 A to below 1×10-9 A. This leads to a decrease in retention 

time from 230 seconds to 50 seconds. This disparity in device retention time is likely 

attributable to the expedited diffusion of ions at the elevated temperature. 

At a constant temperature (60°C as indicated in Fig 4.8 (b)), the retention time is 

dictated by the thickness of the gate insulator. As illustrated in Fig 4.8 (b), the devices with 

350-nm gate insulators exhibit a decay in IDS from 5×10-5 A to 1×10-5 A in the initial 200 
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seconds, followed by a constant IDS value. In contrast, the devices with a 275-nm gate 

insulator layer show a considerably faster decay from 5×10-5 A to 1×10-9 A within a span 

of 60 seconds. Moreover, the device with a 120-nm gate insulator displays an even more 

accelerated decline from 5×10-5 A to 1×10-9 A within merely 5 seconds. This variation in 

retention time is likely linked to the difference in the concentration of oxygen vacancies in 

oxide layers of differing thicknesses.  

 

Fig 4.8 (a) Ids decay of devices with a gate insulator thickness of 275 nm at 20°C, 

40°C, and 60 °C. (b) Ids decay of devices with a gate insulator thickness of 120 nm, 

275 nm, or 350 nm at 60°C. 

4.4 Modeling of the SE-FET 

4.4.1 Basic of the SE-FET model 

The synaptic SE-FET model described here draws upon the drift-diffusion model 

by Dr. Ashwani Kumar in [1]. The model utilized the voltage on the SE-FET gate as the 

input, simulating the drain-source current of each synaptic SE-FET by self-consistently 

integrating the drift-diffusion equation of the mobile ions in Ta2O5 and a Poisson solver for 

the ZnO channel. As shown in Fig 4.9, a Simulink model based on the drift-diffusion 

approach only models the drain source as physical resistance. Despite considering ionic 
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movement in the form of the drift-diffusion equation, the model lacks a physical 

representation of the gate, leading to an absence of a physical gate terminal as well as the 

leakage current (Fig 4.9). This restricts the use of the model in circuit simulation, as the 

gate of the device cannot physically connect to other devices, nor can it simulate leakage 

during operation.  

 

Fig 4.9 Scheme of the Simulink model based on the original SE-FET proposed by Dr. 

Ashwani Kumar in [1]. 

In the model reported in [1], our focus was directed towards exploring the 

subthreshold slope, which has been recorded at values as low as 26 mV/dec during the 

reverse scan in SE-FET devices. Given the Boltzmann limit at 60 mV/dec and the ionic, 

non-ferroelectric nature of Ta2O5, our objective was to investigate the potential negative 

capacitance induced by ionic accumulation. 

The initial model assumed an equivalent response from oxygen ions and vacancies 

to both positive and negative voltage, and permitted free movement of ions from the 

ITO/Ta2O5 to Ta2O5/ZnO interface. From this premise, the drift velocity of the set oxygen 

ions and vacancies (𝑣𝑣𝑑𝑑) was defined as:  

𝑣𝑣𝑑𝑑 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 × 𝜀𝜀𝑖𝑖𝑜𝑜                                                                                              (Eq 4.1) 

where 𝜀𝜀𝑖𝑖𝑜𝑜 is the electric field and the mobility of oxygen ions μion is defined as: 



136 

 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑑𝑑𝑎𝑎𝑣𝑣𝑎𝑎2 𝑓𝑓𝑓𝑓𝑥𝑥𝑓𝑓(− 𝐸𝐸𝑎𝑎
𝐾𝐾𝑇𝑇

)/𝐾𝐾𝑇𝑇                                                                     (Eq 4.2) 

Here, 𝑄𝑄𝑑𝑑𝑎𝑎𝑣𝑣 is the charge on the oxygen ions at 2e, 𝑎𝑎 is the effective hopping 

distance, 𝐸𝐸𝑎𝑎 is the height of the potential barrier, and 𝑓𝑓 is the attempt frequency. From this 

expression, the dynamics of the sheet charge density (𝑄𝑄𝑖𝑖𝑜𝑜) at the Ta2O5/ZnO interface is 

governed by a balance between the drift and diffusion of the oxygen ions:  

𝑑𝑑𝑄𝑄𝑜𝑜𝑜𝑜
𝑑𝑑𝑡𝑡

= 𝑄𝑄𝑑𝑑𝑎𝑎𝑣𝑣𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑜𝑜 − 𝑄𝑄𝑑𝑑𝑎𝑎𝑣𝑣𝐷𝐷∆𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖                                                         (Eq 4.3) 

Here, the first term describes the drift of oxygen ions/vacancies under an applied 

electric field. The second term is the diffusion of oxygen ions/vacancies driven by the 

concentration gradient. 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖is the ion concentration, and 𝐷𝐷 is the diffusion constant, written 

as:  

𝐷𝐷 = 𝐾𝐾𝑇𝑇
𝑄𝑄𝑣𝑣𝑎𝑎𝑣𝑣

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                   (Eq 4.4) 

To simplify the diffusion term, a linear approximation to the oxide ion decay was 

assumed (Fig 4.10) where a fixed average diffusion length (𝑥𝑥𝐷𝐷) and the oxide ion 

concentration (𝑛𝑛𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝) decays linearly from the interface.  



137 

 

 

Fig 4.10 Scheme for linearly approximating the oxide ion concentration (npeak) decay 

[1]. 

The drift-diffusion equation was coupled and self-consistently solved with a one-

dimensional Poisson solver for ZnO. From this solution, the surface potential, and the net 

charge density in the channel 𝑄𝑄𝑣𝑣ℎ, the charge density in the conduction band 𝑄𝑄𝑓𝑓𝑟𝑟𝑝𝑝𝑝𝑝 was 

calculated, and the drain-source current is then obtained using the equation below:  

𝐼𝐼𝑑𝑑𝑠𝑠 = 𝜇𝜇𝑍𝑍𝑖𝑖𝑂𝑂
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑄𝑄𝑣𝑣ℎ

𝑊𝑊
𝐿𝐿
𝑄𝑄𝑓𝑓𝑟𝑟𝑝𝑝𝑝𝑝𝑉𝑉𝑑𝑑𝑠𝑠                                                                          (Eq 4.5) 

4.4.2 Proposed gate current model  

For a comprehensive understanding of device performance in neuromorphic 

applications, it is crucial to conduct circuit-level simulations. To encapsulate the device's 

response within a circuit, we translated the model into MATLAB Simulink and enriched it 

by integrating a gate model that allows the simulation of the voltage distribution and 

current flow through the gate terminal. The gate current is modelled using the 𝛹𝛹𝑠𝑠 and 𝑄𝑄𝑖𝑖𝑜𝑜 

values, which were computed in Dr. A. Kumar’s original model reported in [1]. The 
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parameters were extracted by fitting them to experimental data associated with the gate 

current during steady state and dual sweep conditions. 

 

Fig 4.11 Scheme of the Simulink model of the SE-FET with the gate current model 

The gate current model we derived integrates the charge storage properties linked 

to the redox reaction in Ta2O5 as a function of gate bias, as outlined in [2]. This inclusion 

of the redox process within our model is crucial to accurately reproduce the temporal decay 

of the gate current and the emergence of the redox peak during a dual sweep. Utilizing the 

parameters determined through our fitting process, the gate current of the device is 

expressed as: 

𝐼𝐼𝐺𝐺𝐺𝐺 = 𝑛𝑛 × �𝑎𝑎1 × 𝑉𝑉𝑖𝑖𝑜𝑜3 + 𝑎𝑎2 × 𝑉𝑉𝑖𝑖𝑜𝑜  +  𝑐𝑐 × 𝑑𝑑𝛹𝛹𝑠𝑠
𝑑𝑑𝑡𝑡
� + 𝑏𝑏 × 𝑑𝑑𝑄𝑄𝑂𝑂𝑋𝑋

𝑑𝑑𝑡𝑡
                            (Eq 4.6) 

where Vox is the voltage drop across the gate oxide (Ta2O5), Ψs is the surface 

potential, QOX is the sheet charge density in the semiconductor, a1 = 2.056 × 10−12, a2 =
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8.1075 × 10−12, b = 1.897 × 10−3, c = 1.0076 × 10−10, and n = −1.968 + 1.968 ×

exp (VGS/1.307). 

The equivalent circuit of our Simulink model is illustrated in Fig 4.12. This model 

is comprised of a conductor in series with a battery, which symbolizes the rate of change 

of the oxide charge (dQOX/dt). Parallel to this, there is a steady-state gate conductor, which 

corresponds to leakage current across the oxide layer, and an additional oxide capacitor 

due to surface potential alterations (dΨs/dt) associated with ion migration in the insulator. 

During steady state, the VOX term primarily governs the leakage across the oxide. 

Conversely, the term dQOX/dt plays a central role in accounting for gate current during 

charging and discharging periods.  

 

Fig 4.12 Equivalent circuit model of the SE-FET.  

Fig 4.13 provides a comparative view of the measured and simulated I-V curves 

derived from our model. One particular point of interest in our investigation, as elaborated 
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in reference [1], is the understanding of the origin of steep switching observed during the 

reverse scan, denoted as point 2 in Fig 4.13 (a). 

The work in [2] underscores the manifestation of this redox reaction as a peak in 

the gate current. This peak is dependent on the scan rate, as seen at point 2 Fig 4.13 (b). 

The reaction induces a negative capacitance during the reverse scan, allowing the device 

to exhibit steep switching within a certain scan rate range [1]. Understanding this process 

enhances our comprehensive knowledge of the SE-FET devices and their complex 

operational characteristics. 

Another notable point is the increase of the gate current when the gate voltage is 

removed (as seen in Fig 4.13 (d) after 350s) and the negative differential resistance during 

the reverse scan (observed in Fig 4.13 (b) between 5V to 0V). Both are related to the ionic 

charging and discharging, and the opposite polarity between VGS and VOX causes this 

phenomenon.  

In Fig 4.13 (b), during the reverse scan, as the applied electric field decreases, the 

built-up charge at the opposite polarity diffuses away. Similarly, the electrons in the 

channel also diffuse away. We now reveal that the increase of the current can be attributed 

to the dQOX/dt term. The reducing applied electric field and the strong internal field, caused 

by ions remaining at the opposite polarity, could also cause a temporary opposite polarity 

between VGS and VOX. This contributes to an opposite polarity between the applied voltage 

and gate current, resulting in a negative differential resistance in the transfer characteristics. 

Similar to the negative capacitance [1], this negative differential resistance is only 

observable in device transfer characteristics when a temporary opposite polarity is created 

between the applied electric field and internal field.  
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In the steady state depicted in Fig 4.13 (d) (before 350s), under the constant applied 

voltage, the applied electric field, ionic diffusion, and the strong internal field reach a 

dynamic equilibrium. However, when the applied voltage is abruptly removed after the 

350s mark, the ionic diffusion and internal field opposing the applied field assume control. 

The ions of the opposite polarity begin to depart from the interface and engage in 

recombination. As the positively charged vacancies vacate the interface, the electrons in 

the channel, initially attracted to the positive charge, also disperse. This chain of events 

culminates in the generation of a negative current. 

 

Fig 4.13 Comparison of (a) measured/simulated transfer I-V curves at a scan rate of 

0.08 V/s and (b) gate current characteristics of the device at steady state. (c) Simulated 

Vox corresponding to the transfer I-V curve. (d) Comparison of the 
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measured/simulated time-dependent gate current characteristics at a constant voltage 

of 3 V. 

In the model, as outlined in [1], we simplified the redox reaction as a symmetrical 

process in both forward and reverse scans, based on the assumptions of a linear 

approximation to the ionic concentration [1]. This suggests that a similar redox 

phenomenon should occur during both the forward scan and the reverse scan, as marked at 

points 1 and 2 in Fig 4.13 (a), causing redox peaks in the gate current. Theoretically, this 

redox reaction could potentially lead to a negative capacitance in both the forward and 

reverse scans. At the time, our understanding was that negative capacitance did indeed exist 

during the forward scan. However, its effect on the drain-source channel was deemed 

negligible, given that during this period, the device operates within the off region, where 

the drain-source resistance measures in the Gohm range and the current is less than 1 nA. 

The negative capacitance would therefore not have any observable impact during the off 

state of the devices. Consequently, we proposed that the redox reaction occurs in both scan 

directions, but observable steep switching occurs only during the reverse scan. 

However, this assumption for the forward scan poses certain challenges when 

modeling the gate current. As illustrated in Fig 4.13 (b) and (c), our hypothesis predicted a 

redox peak not only in the reverse scan but also in the forward scan for both Vox and IGS. 

Contrarily, the comparison of the measured and simulated IGS in Fig 4.13 (b) revealed a 

discrepancy, as the redox peak is observed only in the reverse scan. This inconsistency is 

likely a result of the influence of the electronic chemical potential difference of the redox 

reaction, which is attributable to the material differences between the ITO/Ta2O5 and 

ZnO/Ta2O5 interfaces [15]. 
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The root cause of this discrepancy during the forward scan is likely traced back to 

the drift-diffusion equation where  𝑥𝑥𝐷𝐷 was assumed as a constant, facilitating a linear 

approximation of the oxide ion concentration. This assumption results in a drift-diffusion 

model that symmetrically presents accumulation and depletion, thereby predicting two 

redox peaks, one each during the forward and reverse scans. This interpretation suggest a 

more dynamic approach by adjusting the oxygen ion mobility (μion) and the average 

diffusion length (𝑥𝑥𝐷𝐷) as follows [13]:  

μion = μion,0

�1+�μ0εoxvsat
�
β
�

1
β
                                                                                         (Eq 4.7) 

xD = xD,0

1−�
Qox,0
Qox

�
2                                                                                               (Eq 4.8) 

By incorporating the dynamic oxygen ion mobility and diffusion length, we 

modelled the gate current by refitting the experimental data with the updated 𝑉𝑉𝑖𝑖𝑜𝑜 and 𝑄𝑄𝑖𝑖𝑜𝑜 

values. Fig 4.14 (a) and (c) demonstrate the impact of this modification, with the redox 

peak during the forward scan of the simulated 𝑉𝑉𝑖𝑖𝑜𝑜 noticeably reduced, while the drain-

source current remains largely unaffected. This is due to the fact that these alterations 

predominantly influence the device when it is operating within the off region (highlighted 

at point 1 in Fig 4.14 (a)). 

Consequently, the following improvements have been integrated in our gate model:  

IGS = [a1 × sinh(a2 × Vox) +b × dQox
dt

× 1
n

+ c × Vox + d × dΨs
dt

] × n          (Eq 4.9) 

Where a1 = 1.258 × 10−11, a2 = 0.7869, b = 8.45 × 10−4, c = 1.1075 ×

10−11, and d = 2.0076 × 10−11. In this enhanced model, the cubic term of Vox is replaced 

with a hyperbolic sine function (sinh) to effectively counteract the excessive gate current 
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observed at elevated voltages, as depicted in Fig 4.13 (b). The sinh function is often 

employed to model the drift-diffusion process of oxygen vacancies in Resistive Random-

Access Memory (ReRAM) [14][15]. A voltage-dependent scaling factor, denoted as 'n', is 

also introduced to further align the model predictions with the experimental data. The 

modified equation reads as follows: 

n = 2.35 × 1
1+e(−abs(1.22×Vox))                                                                        (Eq 4.10) 

As depicted in Fig 4.14 (b) and (c), the modified model successfully corrected the 

excessive gate current during the transfer scan without overcorrecting the steady state 

condition. This enhanced drift-diffusion model yields a closer match with the observed 

gate current, while leaving the simulated drain-source current unaffected. However, the 

model currently operates within a constrained voltage range for a specific gate oxide 

thickness. Furthermore, the redox peak generated by the simulation remains more 

pronounced than the measured data due to the sharp Vox peak produced by the dynamic 

drift-diffusion model. A more holistic approach could take into account the differences 

between the ITO/Ta2O5 and Ta2O5/ZnO interfaces, where the ion drift diffusion might be 

modeled differently at each interface, and the oxygen and vacancy species could be 

modeled separately. 
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Fig 4.14 Comparison of (a) measured/simulated transfer I-V curves at a scan rate of 

0.08 V/s and (b) gate current characteristics of the device at steady state. (c) Simulated 

Vox and Ψs for the transfer I-V curve. (d) Comparison of measured/simulated time- 

dependent gate current characteristics at a constant voltage of 3 V.  

4.5 Summary 

This chapter outlines the fabrication process of the SE-FET devices demonstrated 

in this thesis and elucidated their operational mechanism. The gate current model, which 

enables the device simulation presented in Chapter 4, details the updated physical 

interpretation of the drift-diffusion model originally reported in [1]. The initial model 

anticipated a symmetrical ion migration process where a redox reaction takes place during 

both the forward and reverse scans. However, this prediction does not align with the 

empirically measured gate current, as a redox peak is discernible only during the reverse 
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scan. This issue is mitigated, in part, by formulating the dynamic drift-diffusion model that 

curbs ion migration during the forward scan. This refined methodology demonstrates closer 

accordance with the measured gate current, providing a physical interpretation and 

representation that lays the foundation for the subsequent chapters. 
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CHAPTER 5 

Off-state operation of SE-FETS 

5.1 Introduction 

The exceptional characteristics of ReRAM, such as incredibly low current 

consumption, a switching time of 10–100 ns, and CMOS compatibility, have positioned it 

as the preferred technology for compute-in-memory and neuromorphic applications. 

Nonetheless, ReRAM devices encounter difficulties due to variability when subjected to 

extreme scaling at dimensions below 10 nm, as they rely on filamentary processes. 

Furthermore, ReRAM typically necessitates write voltages (Vwrite) of at least ~1V, 

leading to a current Iwrite ranging from 1 μA to 1 mA, thereby resulting in a typical power 

consumption of 1 μW-1 mW, though exceptions are documented in [1].  

ReRAMs are usually incorporated into crossbar arrays in two main configurations: 

a MOSFET-addressed structure featuring one transistor and one resistor (1T1R), or a 

traditional cross-point structure composed of one selector and one resistor. The latter 

design facilitates extremely compact scaling (4F2), where F represents the footprint, but 

suffers from sneak current leakage paths when trying to address a single array element. 

Conversely, the MOSFET-addressed design faces challenges in scalability due to the 

substantial footprint required to deliver high write currents for ReRAM. These limitations 

have stimulated scientists to explore new physical mechanisms to bridge the gap between 

current computing performance and the ultimate efficiency of the human brain [2]. 

The concept of SE-FETs introduces a different approach. Here, the set or reset 

process is simply a result of ionic movement within the gate of a three-terminal device. 

This procedure is facilitated by separating the programming within the gate from the 
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conduction path in the channel during the read operation. Our channel merely serves as a 

sensor of the state written into the gate insulator, making our three-terminal device 

essentially a transistor with an integrated resistive memory within its gate insulator. In this 

chapter, we not only experimentally demonstrate logic operations at the single-device level 

but also assess the potential for scaling and applications of this concept. 

5.2 Off-state operation for logic in memory 

5.2.1 Basic device characteristics and operation 

Fig 5.1 (a) and (b) offer a fundamental comparison between our Solid Electrolyte 

Field-Effect Transistor (SE-FET) and conventional Resistive Switches (RS). The latter are 

two-terminal devices that consist of metal contacts separated by an approximately 10 nm 

thick dielectric material. The resistance within this dielectric layer is subject to change via 

a filamentary process, which implies higher energy consumption due to the increased 

current flowing through the device. In these two-terminal RSs, both 'Write' and 'Read' 

operations are executed by applying voltage across the device. Although the 'Read' 

operation occurs at a lower voltage (Vread) compared to 'Write', any reduction in the write 

voltage tends to prolong the writing time, thereby leading to increased energy consumption 

[3]. Typically, the write energy is technology-dependent and presents scaling challenges 

due to variability and issues with the reliability associated with the size of the conductive 

filament [4]. 

Fig 5.1 (b) underscores the synaptic characteristics of our three-terminal SE-FET. 

In this configuration, 'Read' and 'Write' operations transpire across two separate terminals 

of the transistor—Drain-Source and Gate-Source, respectively. As outlined in Chapter 4, 

the device operates based on a diffusion mechanism, where redox-generated oxygen 
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vacancy ions accumulate at the Ta2O5/ZnO interface, causing an increase in carrier 

concentration. Naturally, it is expected that the write voltage (Vwrite) would be applied 

across the gate terminal, and the read voltage (Vread) through the Drain-Source. This 

arrangement allows the device to execute 'Write' and 'Read' operations either 

simultaneously or to perform 'Write' operations with minimal energy consumption when 

the device is switched off. As expounded in Chapter 4, the write operation primarily 

depends on ion accumulation and is almost independent of the Drain-Source terminal. 

Consequently, the device can be written even when both Drain-Source terminals are 

grounded. 

Owing to the considerable thickness of the gate oxide (>100 nm), which is 

markedly thicker than the ~10 nm dielectric in ReRAM, even with a substantial gate-source 

voltage (VGS) of 5V (as seen in Fig 5.1 (c) abd (d)), the write current (Iwrite) is constrained 

by the gate leakage current (IGS) remaining in the sub-nanoampere range. Moreover, the 

incorporation of our device in a crossbar array does not necessitate a large drive current, as 

is required in a 1T1R configuration. The primary requirement for our device is a suitable 

gate voltage that is proportional to the thickness of the gate insulator and influences the 

switching speed—therefore, a higher voltage leads to a faster switching speed. 
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Fig 5.1 Mechanism of read and write operations in (a) resistive switching and (b) SE-

FETs, demonstrating the possibility of low power consumption during writing in SE-

FETs. (c) IDS-VGS and (d) IGS-VGS curves of the basic device at room temperature.  
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In the SE-FET, write and read operations can be conducted concurrently, as 

depicted in Fig 5.2. The drain-source current (IDS) derived from the sequence of gate-source 

voltage (VGS) pulses shown in Fig 5.2 (a) at a consistent drain-source voltage (VDS) of 0.1 

V is demonstrated in Fig 5.2 (b). There is a distinct point marked by a red circle between 

each pulse where VGS equals 0 V. The IDS characteristics exhibited in Fig 5.2 (b) 

corroborate that the device retains its current state even when the gate is turned off (VGS 

equals 0 V). The polarity of IDS determines the Low Resistance State (LRS) and High 

Resistance State (HRS), corresponding respectively to an accumulation and depletion of 

oxygen vacancies at the interface. This is elucidated in the inset of Fig 5.2 (b). 

In this context, the device state mirrors the dual-sweep transfer characteristics 

exhibited at VGS equals 0 V under a forward and reverse sweep as shown in Fig 5.2 (a). 

However, contrary to the dual sweep at a low scan rate of 7 mHz, the square wave 

illustrated in Fig 5.2 (a) at 1 Hz is incapable of accumulating or depleting adequate charge 

after each cycle. Consequently, this causes the ratio of LRS to HRS resistance (RLRS/RHRS) 

to decrease by three orders of magnitude, as highlighted in Fig 5.2 (b), compared with the 

six-order-of-magnitude RLRS/RHRS difference achieved in the dual sweep at low frequency, 

as depicted in Fig 5.1 (c). 
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Fig 5.2 (a) Gate bias pulses at 1 Hz applied to the device with a constant 𝑽𝑽𝑫𝑫𝑫𝑫 = 𝟎𝟎.𝟏𝟏 𝑽𝑽. 

(b) Measured drain current characteristics as a function of time, exhibiting two 

resistance states (HRS and LRS) as the gate bias crosses zero, indicated by red circles. 

While the SE-FET is capable of performing write and read operations concurrently, 

this feature could potentially result in significant energy consumption during the writing 

process. This challenge primarily emanates from the need to keep the drain-source terminal 

'on' during the write operation, which leads to a substantial writing current of 

approximately 2 µA. In the context of two-terminal ReRAM, efforts have been focused on 

reducing the write time and voltage to address this issue. Nevertheless, in the SE-FET 

introduced here, which is a three-terminal device, the write and read operations occur at 

two distinct terminals. As a result, the high-energy consumption during the write operation 

can be mitigated by employing off-state operation. 

In this context, the device operates between two terminals, VG and VB (𝑉𝑉𝐵𝐵 = 𝑉𝑉𝐷𝐷 =

𝑉𝑉𝐺𝐺) during the writing process, and with VDS at 0.1 V and VGS at 0 during the reading 
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process. This arrangement is implemented via alternating pulses, as shown in Fig 5.3 (a). 

This unique feature suggests that the lateral scaling of the device may not be impeded by 

the voltage capability of the drain terminal. 

Fig 5.3 (b) demonstrates the resulting measured drain-source current (IDS) for a gate 

oxide thickness (𝑇𝑇𝑂𝑂𝑋𝑋) of 275 nm and a channel length of 1.5 µm during the reading process. 

A discernible Low Resistance State (LRS) and High Resistance State (HRS), distinguished 

by at least three orders of magnitude, are evident. An elevated resistance of approximately 

1 MΩ in the LRS ensures a low drain current, thereby minimizing power consumption 

during the reading phase. The inset highlights the maximum and minimum variations of 

each state, which are less than one order of magnitude. As expected, the standard deviation 

of the HRS (0.3 of an order) exceeds that of the LRS (0.06 of an order), given the higher 

impact of noise on the HRS where the current is low. 

Fig 5.3 (c) displays the gate current characteristics as a function of time. Here, the 

magnitude is confined to 10 nA, indicating that the maximum power consumption during 

the write operation is less than 50 nW for VGS at 5 V. Fig 5.4 (a) portrays the behaviour of 

a device with a thicker oxide layer of 350 nm, subjected to the same input waveform as 

depicted in Fig 5.3 (a). In this case, the LRS and HRS differ by only one order of magnitude 

as the negative bias is incapable of resetting the device effectively (in the HRS, I_DS 

escalates from approximately 1 nA to roughly 1 µA). This challenge can be resolved by 

employing asymmetric gate pulses with magnitudes of +5V and -6V, respectively, 

alongside an enhanced gate bias for the reset process. This setup, as shown in Fig 5.4 (b), 

results in a difference of at least two orders of magnitude between the resistance states, as 

demonstrated in Fig 5.4 (c). 
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Fig 5.3 (a) Scheme of 1-Hz bias pulses for 𝑽𝑽𝑮𝑮𝑫𝑫 and 𝑽𝑽𝑫𝑫𝑫𝑫, where 𝑽𝑽𝑫𝑫𝑫𝑫 = 0 and 𝑽𝑽𝑮𝑮𝑫𝑫 ≠ 𝟎𝟎 

during the write operation and vice versa during the read operation, ensuring that 

the write and read operations are exclusive. (b) Drain current measured during the 

read operation (𝑽𝑽𝑫𝑫𝑫𝑫 = +𝟎𝟎.𝟏𝟏 𝑽𝑽), indicating the presence of two resistance states (HRS 

and LRS) separated by three orders of magnitude, with a small variance (inset). (c) 

Measured gate current characteristics showing that the power consumption remains 

limited to the nanowatt level during the write operation, as the drain current remains 

zero.  

 

Fig 5.4 (a) Drain current measurements of a device with a 350-nm-thick oxide layer 

for the pulse scheme shown in Fig. 4.3(a). (b) Alternate pulse scheme at 1.5 Hz, with 

𝑽𝑽𝑮𝑮𝑫𝑫 equal to +𝟓𝟓 𝑽𝑽 and −𝟔𝟔 𝑽𝑽 for switching between the LRS and HRS and (c) 

corresponding drain current measurements.  
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In the SE-FET, a trade-off exists between the retention time, HRS/LRS ratio, and 

switching speed as a function of the insulator thickness, as illustrated in Fig 5.5. In this 

figure, the devices are set to the LRS with a drain-source current (IDS) of 5 × 10-5 A at a 

temperature of 60°C and a gate-source voltage (VGS) of 5 V. 

In comparison to the device with a 275-nm-thick gate insulator, the device equipped 

with a 350-nm-thick insulator displays stable retention behavior, sustaining the LRS at IDS 

= 1 × 10-5 A for more than 900 seconds. Meanwhile, the device featuring a 275-nm-thick 

gate insulator declines to IDS = 1 × 10-9 A after 60 seconds at a temperature of 60°C, as 

demonstrated in Fig 4.7. 

This observation is consistent with the broader memory window presented in Fig 

5.1 (a) for a thicker insulator. The longer ion travel distance and the smaller electric field 

during the set/reset operations at the same gate voltage account for this difference. For the 

same reasons, this setup results in a higher switching speed and RHRS/RLRS ratio for the 

device with a 275-nm-thick insulator at an identical frequency. However, as the switching 

speed increases, the on/off ratio correspondingly decreases. 

The switching speed is determined by several factors, including ion diffusivity, 

recombination time, and oxide thickness. In this case, due to the overlapping of 

drain/source and gate contacts, both devices are unable to respond to switching times less 

than 150 ms, regardless of the insulator thickness. This limitation results in a lower 

RHRS/RLRS ratio at 13 Hz (corresponding to a switching time of 76 ms) for this particular 

device configuration. 
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Fig 5.5 Gate insulator thickness vs. HRS/LRS ratio for asymmetric pulses (275 nm: 

+6 V/-5 V for set/reset; 350 nm: +5 V/-6 V for set/reset) (left axis) and retention time 

at 60°C (right axis).   

5.2.2 Logic operations 

Similar to a bipolar or complementary resistance switch [5], an example of the SE-

FET operating as a finite-state machine is depicted in Fig 5.6 (a). The application of 𝑉𝑉𝐺𝐺  or 

𝑉𝑉𝐵𝐵 = 1 V or 0, respectively, toggles the device between the LRS and HRS. Here, S 

represents the state of the device, with 0 or 1 indicating whether the device is in the HRS 

or LRS, respectively. 
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Fig 5.6 (b) provides a corresponding truth table for the state diagram. Here, the 

previous state of the device acts as an additional input, informing the following state. From 

this truth table, we derive the equation of state: 

 𝑆𝑆 = 𝑆𝑆 ⋅ 𝑉𝑉𝐺𝐺 + 𝑆𝑆 ⋅ 𝑉𝑉𝐵𝐵′ + 𝑉𝑉𝐺𝐺 ⋅ 𝑉𝑉𝐵𝐵′                                                             (Eq 5.1)    

Here, the operators ⋅, +, and ' correspond to AND, OR, and NOT logic functions, 

respectively. A single device can execute 14 out of a possible 16 logical functions of two 

inputs. The remaining two functions, XOR and XNOR, necessitate an additional device 

[5]. If the operations involving two or more inputs can be decomposed into a sequence of 

steps in accordance with Eq. 5.1, a single device can be utilized to perform these logic 

operations. 

Fig 5.7 (a) illuminates the two steps required to realize the material implication 

(IMP) operation, A'+B, also known as "if A then B". This operation plays a significant role 

in completing a logic set when combined with the reset process [6]. Step 1 sets the state S 

to 1. In Step 2, inputs A and B are applied to 𝑉𝑉𝐵𝐵 and 𝑉𝑉𝐺𝐺  respectively, with all possible 

outcomes summarized in the corresponding truth table. 

Fig 5.7 (b) illustrates the sequence of VGS pulses generated in response to the inputs 

𝑉𝑉𝐵𝐵 and 𝑉𝑉𝐺𝐺 , as specified in each row of the truth table in Fig 5.7 (a). The measured IDS for a 

device with TOX = 275 nm is plotted in Fig 5.7 (c), demonstrating a close alignment with 

the expected state in the last column of the truth table in Fig 5.7 (a) (as highlighted by 

colors). 
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Fig 5.6 (a) Finite-state diagram of the device, where 1 for either 𝑽𝑽𝑮𝑮 or 𝑽𝑽𝑩𝑩 indicates 

application of a positive bias and S = 0 or 1 indicates the LRS or HRS, respectively. 

(b) Truth table describing the state transition. 

Similarly, if we redefine A and B as 𝑉𝑉𝐵𝐵 and 𝑉𝑉𝐺𝐺 , respectively, we can perform the 

Not IMPlication (NIMP) operation, as demonstrated in Fig 5.8. 

The corresponding realizations of two-input NAND and NOR operations are 

depicted in Fig 5.9 and Fig 5.10, respectively. Each operation must be divided into three 
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cycles, which include the initial set and reset [5]. State initialization takes place in Step 1, 

followed by the replication and storage of A' in Step 2. In Step 3, signals ‘1’ & ‘B’ or ‘0’ 

& ‘B’ are applied to 𝑉𝑉𝐵𝐵 and 𝑉𝑉𝐺𝐺  to perform the NAND or NOR operation, respectively. The 

measured drain currents for TOX = 275 nm in Fig 5.9 (c) and Fig 5.10 (c) align with the 

state values in the truth table for each step in Fig 5.9 (a) and Fig 5.10 (a), respectively.  

 

Fig 5.7 (a) Steps to perform IMP (if A then B) logic operation and a corresponding 

truth table. (b) Applied gate and drain bias pulses. (c) Measured drain current for 

each step indicated in (a). 𝑾𝑾 × 𝑳𝑳 = 𝟏𝟏𝟎𝟎𝟎𝟎 × 𝟏𝟏.𝟓𝟓 𝝁𝝁𝒎𝒎𝟐𝟐,𝑻𝑻𝒐𝒐𝒐𝒐 = 𝟐𝟐𝟕𝟕𝟓𝟓 𝝁𝝁𝒎𝒎,𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =

 𝟐𝟐 𝑯𝑯𝑯𝑯. 
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Fig 5.8 (a) Steps to perform the NIMP logic operation (S=A⋅B') and a corresponding 

truth table. (b) Applied gate and drain bias pulses. (c) Measured drain current for 

each step indicated in (a). 𝑾𝑾 × 𝑳𝑳 = 𝟏𝟏𝟎𝟎𝟎𝟎 × 𝟏𝟏.𝟓𝟓 𝝁𝝁𝒎𝒎𝟐𝟐,𝑻𝑻𝒐𝒐𝒐𝒐 = 𝟐𝟐𝟕𝟕𝟓𝟓 𝝁𝝁𝒎𝒎,𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =

 𝟐𝟐 𝑯𝑯𝑯𝑯. 

 

Fig 5.9 (a) Steps to perform a two-input NAND (𝑫𝑫 = 𝑨𝑨′ + 𝑩𝑩′) logic operation and a 

corresponding truth table. (b) Applied gate and drain bias pulses. (c) Drain current 

measured for each of the steps shown in (a). 𝑾𝑾 × 𝑳𝑳 = 𝟏𝟏𝟎𝟎𝟎𝟎 × 𝟏𝟏.𝟓𝟓 𝝁𝝁𝒎𝒎𝟐𝟐,𝑻𝑻𝒐𝒐𝒐𝒐 =

𝟐𝟐𝟕𝟕𝟓𝟓 𝝁𝝁𝒎𝒎,𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =  𝟐𝟐 𝑯𝑯𝑯𝑯. 
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Fig 5.10 (a) Steps to perform a two-input NOR (𝑫𝑫 = 𝑨𝑨′ ⋅ 𝑩𝑩′) logic operation and a 

corresponding truth table. (b) Applied gate and drain bias pulses. (c) Measured drain 

current for each step shown in (a). 𝑾𝑾 × 𝑳𝑳 = 𝟏𝟏𝟎𝟎𝟎𝟎 × 𝟏𝟏.𝟓𝟓 𝝁𝝁𝒎𝒎𝟐𝟐,𝑻𝑻𝒐𝒐𝒐𝒐 =

𝟐𝟐𝟕𝟕𝟓𝟓 𝝁𝝁𝒎𝒎,𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 =  𝟐𝟐 𝑯𝑯𝑯𝑯. 

5.2.3 Benchmark 

Table I summarizes the characteristics of state-of-the-art devices in comparison 

with our experimental results, which show a switching time of 250 ms at 𝑉𝑉𝐺𝐺𝐺𝐺 = 5 V. 

Magnetic tunnel junctions demonstrate the fastest switching, but OxRAM also switches on 

the nanosecond level, with energy scaling on the order of nanojoules. For reported non-

filamentary ReRAMs, Table I presents evidence of a programming voltage–switching 

speed–current dilemma, especially for non-filamentary ReRAMs operating on the time 

scale of seconds or even hours [7], as current levels are reduced in the quest for truly 

neuromorphic systems [8]. Other non-filamentary devices scaled by a factor of 1000, as 

reported in [9], for example, have power consumption in the microwatt range. In 

comparison, the current device shows a promising low power density, despite having a 1.5-

µm channel length and a common gate that extends over the entire chip, resulting in 100% 

overlap capacitance with the source/drain pads and underlying gate oxide.  
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A plot of our experimentally obtained switching time versus channel length (Fig 

5.11 (a)) shows the lowest power consumption/unit area reported to date. However, despite 

its low power consumption, the device currently has a limited switching frequency, which 

is partially due to the large active area of the device. As shown in Fig 5.11 (b) for a fixed 

pulse amplitude, when the input pulse frequency increases, the on/off ratio between the 

LRS and HRS decreases.  

 

Fig 5.11 (a) Benchmarking the power consumption per unit device area vs. switching 

time based on experimental data reported in [1] and our current measurements. (b) 

Measured HRS/LRS ratio vs. input pulse frequency and (c) switching time vs. gate 

length L. The fit to data predicts a switching time of 150 ns for L = 20 nm.   

In context of the compute in memory application, as a result of the device current 

dimension, the operation speed of the device is limited. However, the switching speed can 

be further optimized by scaling the channel length, as shown in Fig 5.11 (c). This result 

occurs because ion accumulation is expected to initiate from the overlapping regions under 

the drain/source contacts and subsequently spreads to the center of the channel. Although 

the switching time is relatively poor at 100 ms for the current device with a 1.5-µm channel 

length, by applying our measured data as a function of channel length to extrapolate to 

dimensions similar to those of contemporary ReRAMs, the potential of a 150-ns switching 
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time for a 20-nm channel length is well within reach of a vertical crossbar array if 

nanowires are used for this device, as shown in Fig 5.11 (c). However, scaling in the 

vertical direction is more challenging and must be addressed via control of the diffusivity 

and ion concentration in the insulator.  
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5.3 Using synaptic properties of SE-FETs for supervised learning in a crossbar 

5.3.1 Crossbar implementation of the SE-FET 

The supervised learning process of the SE-FET crossbar has been simulated using 

the MATLAB Simulink model outlined in Chapter 4. The schematic representation of a 

2x2 crossbar, which includes four three-terminal Ta2O5/ZnO SE-FETs in combination 

with four MOSFETs, is depicted in Fig 5.12. This simulation allows for initial analysis of 

the device's behaviour, including factors such as the impact of specific configurations and 

biasing conditions on its performance. Moreover, by using this simulation approach, we 

can anticipate the device's responses to certain stimuli and further understand how it might 

be effectively integrated into larger systems or network configurations. 

 

Fig 5.12 Schematic of a 2 × 2 crossbar consisting of an SE-FET and a depletion-mode 

MOSFET with two control lines for selecting individual cells and the Ta2O5/ZnO SE-

FET. 
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Each SE-FET in the crossbar array is controlled by a depletion-mode MOSFET, 

with its drain-source terminal connected to the gate of the SE-FET. The 'write-select' and 

'read-select' lines activate the corresponding functionality in the selected device within the 

crossbar. 

During the read process, the output current from each device is added together at 

the sense line of each column. This summed output is then fed into an activation function, 

which is mathematically represented as 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑎𝑎(∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗 ). In this equation, 𝑓𝑓𝑎𝑎 denotes a 

sigmoid activation function, given by: 

fa(∑ wixjj ) = 2 × 1

1+e(a×(∑ wixjj −c))                                                           (Eq 5.2) 

Here 'a' is -1×10-6 and 'c' is 2×10-6. After applying the activation function, the output 

is compared to the desired output to compute an error term δi. This error is used in the 

adjustment of the conductance of each device based on the delta rule. This is a fundamental 

concept in learning algorithms, where the weights (in this case, conductances) are adjusted 

in the direction that reduces the error. The delta rule is given by: wij ← wij + ηδixj [20]. 

Here η is the learning rate (set to 1 in this case), δi is the error term, and xj is the input. 

During the write process, the conductance update is performed with a gate voltage 

proportional to the error, where the sign of the gate voltage corresponds to the sign of the 

error. 

The bias conditions of the crossbar array for read and write operations are provided 

in Fig 5.13 (a). Also, the truth table for OR and AND operations and the corresponding 

requirements on the sense line are depicted in Fig 5.13 (b). These diagrams and tables 
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would help in visualizing the operations and understanding the requirement of signal 

conditions for different logic operations. 

 

Fig 5.13 (a) Bias conditions during the read and write operations. Here, Vth is the 

threshold voltage of the MOSFET, Vm is the refresh voltage (0.5 V), 𝐟𝐟(∑ 𝐈𝐈𝐒𝐒𝐒𝐒) is the 

output of the activation function (sigmoid) (Eq. (5.2)), VWrite is the write voltage for 

potentiation (0 V + 4 V), and the read voltage is VRead = 0.2 V. (b) Truth table for 

OR and AND and the corresponding condition of the sense line. 

5.3.2 Synaptic properties of SE-FETs and supervised learning 

The variation in channel conductance, subject to the application of gate bias pulses 

of both positive and negative polarities, has been experimentally evaluated and is 

demonstrated in Fig 5.14. This steady modulation in channel conductance exhibits 

characteristics analogous to the behavior of numerous reported memristor devices, 

underlining the fundamental mechanism of data storage in these systems through controlled 

shifts in conductance. 
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Fig 5.14 Conductance measured after sequential gate bias pulses of different 

amplitudes and polarities, as shown in the inset. 

5.3.3 Crossbar arrangement of the SE-FET 

The modelling results obtained from MATLAB Simulink simulation are illustrated 

in Fig 5.15. This figure represents the functionality of the device array under consideration, 

with devices in the first column (devices 1x and 1y in Fig 5.15 (a) and (b)) being trained to 

execute OR operations, while devices in the second column (devices 2x and 2y in Fig 5.15 

(c) and (d)) are instructed to execute AND operations. The relevant inputs (X and Y) along 

with the resulting logical output from the crossbar array are depicted in Fig 5.15 (e). 

In the initial state, all devices are configured in a low-conductance state, resulting 

in a diminished current reading at the sense line. Consequently, this is inadequate to match 

the desired reading current of 2 μA. This discrepancy triggers the generation of an error 

signal 𝛿𝛿1𝑖𝑖 for devices in the first column when inputs 01, 10, and 11 are presented, whereas 
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for the second column, an error signal 𝛿𝛿2𝑖𝑖 is generated only when input 11 is encountered. 

This prompts the application of a positive bias at the bit line to update the conductance of 

the associated device. 

In response to this, an increase in the conductivity of the respective device is 

observed. Eventually, this leads to conductance levels for 𝑤𝑤1𝑜𝑜 and 𝑤𝑤1𝑦𝑦 surpassing 10 μS 

and for 𝑤𝑤2𝑜𝑜 and 𝑤𝑤2𝑦𝑦 stabilizing within the range of 5-10 μS. The net result is the 

achievement of expected logical OR and AND operation behaviors within five correction 

cycles.  

After a duration of 20 continuous reading cycles, as highlighted by the green and 

brown squares in Figure 5.15, it is evident that the devices require a refresh cycle owing to 

ionic diffusion. This is to ensure the maintenance of the desired level of output. In general, 

the application of a single pulse of 0.5 V suffices for this refresh operation, since the weight 

of each device is observed to be relatively stable, remaining close to the conductance level 

necessary for accurate logical operation. 

 

 

Fig 5.15 Simulated bias and read currents of devices (a) 1x and (b) 1y in the crossbar 

during training for OR operation and devices (c) 2x and (d) 2y for AND operation. 
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(e) Simulated output of the activation function for OR and AND logic operations, with 

respect to inputs X and Y. Errors at 20 and 22 s due to volatility are refreshed by 

application of a gate voltage of 2–3 V. 

5.4 Conclusions 

To conclude, we have conducted an in-depth examination of a three-terminal SE-

FET's performance, a device with the ability to integrate memory and logic functions 

within a single transistor. Leveraging the non-filamentary mechanism and the inherent 

memory of this device, we demonstrated two-state logic operations, revealing a significant 

difference—equivalent to at least three orders of magnitude—between the High Resistance 

State (HRS) and the Low Resistance State (LRS). 

Through computational simulations, we further highlighted the device's potential 

by implementing a basic 2 x 2 crossbar array designed for neuromorphic learning of the 

AND and OR logic operations, using the SE-FET as the core element. Despite its relatively 

large physical size and high operating voltage, the device maintains an impressively low 

power consumption, operating within the range of nanowatts per transition. This efficiency 

is primarily due to the innovative concept of off-state logic, indicating potential future 

applications of the SE-FET in power-efficient computation. 

Owing to large physical size, currently the device still operating on 100s of 

milliseconds switching speed. Though the low speed could a pose a limit on application 

such as compute in memory, where the switching speed are important. For other application 

such as spike sorting in neural (or brain–computer) interfaces, where a limited 

communication bandwidth and energy, our potentially flexible platform technology is 

ideally suited for hardware-implementable spike recording and feature extraction, as it does 
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not require historical data storage, at rates of a few 100 kHz [21][22], even volatile memory 

has been shown to serve this purpose [23]. Due to its inherent diffusion-based switching 

mechanism, the SE-FET may be better suited for these types of applications. 
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CHAPTER 6 

Reservoir computing using SE-FET as Reservoir 

6.1 Introduction 

In this chapter, we present a physical RC framework utilizing a three-terminal SE-

FET as a reservoir, a project undertaken in collaboration with IIT Roorkee. My contribution 

consists of the design and execution of the experimental work, while Ankit Gaurav from 

IIT Roorkee carried out the reservoir output generation for the benchmark task using the 

experimental measurement, and the software based reservoir computing network training 

and system evaluation. By combining both experimental data and simulation results, we 

demonstrate a novel approach to improve learning efficiency based on desirable nonlinear 

dynamics and volatile memory of the SEFET. Our approach can augment ongoing efforts 

towards creating more energy-efficient and powerful computing systems. Further details 

about our experimental setup, results, and their implications are discussed in the sections 

that follow.  

6.2 Reservoir computing using SE-FET 

The structure of the solid electrode field effect transistor (SE-FET) based reservoir 

system is illustrated in Fig 6.1 [1]. The initial step involves processing the input 

information and converting it into a binary image. Subsequently, this binary image is 

transformed into a series of sequential voltage inputs [2]. The connection from the input 

layer to the reservoir, denoted as un(t), remains fixed for each training and test set. Unlike 

in software-based recurrent neural networks, the reservoirs in this SE-FET based reservoir 

framework are not interconnected neural networks but rather simple SE-FET devices. Here, 
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the temporal input is processed through the inherent diffusion-based memory of the SE-

FET.  

In order to effectively process the sequential input and function properly as a 

reservoir, the reservoir state must fulfill certain criteria. First, the device must provide 

sufficient conductance state variation and memory depending on the input function un(t), 

(or write voltage) and the sequence length of the sequential input. This is crucial to prevent 

information loss due to conductance state saturation or memory loss and to facilitate higher 

dimensionality where both current and past input can be stored [3]. Second, the input 

function must be captured through the variation of the conductance state and the sequence 

of the input processed through the time-dependent memory loss (or fading memory) [4]. 

Weak or no memory decay could result in the reservoir being unable to distinguish the 

sequence of the input. This short term memory decay is significant for representing 

sequential data with strong time dependencies [5]. 
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Fig 6.1 Scheme of the SE-FET-based reservoir framework [1].  

In this work, we utilize the gate of the SE-FET as the input terminal for the 

reservoir. The transfer function between the input and the reservoir is denoted as un(t). A 

reading voltage is supplied to the drain-source terminal to measure the conductance, 

defined as Idsn. The primary advantage of this three-terminal device is its ability to 

segregate reading and writing operations, thereby providing the potential to continuously 

read the SE-FET's response during sequential input, without the necessity for 

downsampling the input. 

For this application, a modest reading voltage of -1V is supplied to the drain-source 

in order to read the device's conductance state (Fig 6.2). This careful selection of voltage 

is due to the bottom-gate structure of the device. As demonstrated in Fig 6.3, if a high 

positive reading voltage is applied during the off state, it effectively places the gate at a 

relatively low potential, which in turn shortens the retention time of the device's memory. 

On the other hand, applying a high negative voltage increases the gate's relative potential, 

risking unintentional writing onto the device during the reading process. 
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Therefore, a reading voltage of -1V has been carefully chosen as it helps maintain 

a readable memory state in the device without inadvertently triggering a writing action. 

This ensures that the device operates within its optimal conditions and that the reading 

process doesn't interfere with the device's memory state. 

 

Fig 6.2 Read current of the SE-FET following a single pulse using +0.1V (a) and -1.0V 

(b) of read voltage. The -1.0V read voltage helps to maintain a more linear and 

enriched decay state, without offsetting the decay or writing to the devices. The read 

current of the SE-FET after reset with 0V gate votlage using -1V (c) and -1.5V (d) 

read voltage is also shown. Utilizing -1V read voltage keeps the device in the off state 

(b)

(d)
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after a reset without additional input from reading itself, while a -1.5V read voltage 

is sufficient to force the device into a potentiation state by the negative read voltage. 

 

Fig 6.3 Conductance state saturation and complete memory loss results in 

information between input function and reservoir. Weak or no memory loss results a 

lost in temporal order of the sequential input.  

In this experiment, we fed all potential input into multiple distinct SE-FET devices, 

and the output current from each device was recorded experimentally and stored 

independently. This stored data, encapsulating all potential outputs from each reservoir, 

serves as the database for training and testing the readout network, circumventing the need 

for physical measurements during these processes. In this setup, the readout network that 

connects the reservoir states to the output layer is the only layer subjected to training. 

The training and testing of the readout are executed offline by Ankit Gaurav from 

IIT Roorkee, employing a software-based logistic regression model. He opted for a one-

versus-rest scheme, a typical solution for image recognition tasks, which reconfigures the 

multi-class dataset into multiple binary classification problems. The class index that yields 

the highest probability is then selected as the system's final output. 
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The probabilities of the possible outcomes in a single trial are mapped using a 

sigmoid function, a common tool in both CNN and RNN networks: 

fp(𝑥𝑥) = L
1+e−k(x−𝑜𝑜0)                                                                                   (Eq 6.1) 

Here, L is the maximum output of the sigmoid function, k represents the logistic 

population growth of the curve, and x0 is the midpoint of the sigmoid function. 

The implementation by Ankit Gaurav employed a gradient descent liblinear solver 

from Python’s scikit-learn library for the Logistic Regression. To prevent overfitting to 

specific data selections, a 7-fold cross-validation strategy to train and test the network was 

implemented. Specifically, an image set of 70,000 images was used for training and testing. 

Each round, a total of 60,000 image samples from this set were used to train the readout 

function. After training, a separate sample set containing the remaining 10,000 images, 

which were not included in the training, was fed into the network for testing. Post-testing, 

these image sets are reassigned into 60,000 training images and 10,000 testing images. The 

readout function was then retrained and tested 7 times. 

The raw images from the MNIST database was converted and processed into 

uniformly sized 24 × 24 binary images before being fed into the reservoir. Classification 

was performed based on the predicted output of the SE-FET, derived from the measured 

and stored reservoir dataset from multiple distinct devices. 

6.3 Results and Discussion 

In our experiment, we investigated the writing frequency of the SE-FET across a 

frequency range from 0.1Hz to 1Hz with 4V 60% duty cycle pulses. As demonstrated in 

Fig 6.4, for an identical total pulse duration of 30s (60% duty cycle pulses for 50s), it 

became clear that higher frequency pulses were more efficient at potentiating the devices 
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into a higher conductance state. With 0.1 Hz pulses, the device conductance increases from 

2E-8S to 2E-4S after 50s, while with 1HZ pulses, the maximum conductance increases to 

4.6E-4S within the same duration. 

However, for a 4-bit sequence length, the conductance after 4 pulses remained 

below 1E-5A, posing a challenge to accommodate the necessary states for a 4-bit sequence 

(as a 4-bit binary sequence requires 16 readable conductance states). At 0.4Hz, the 

conductance state reaches 3.5E-5S after 4 pulses, providing enough room for a 4-bit 

sequence length. 

 

Fig 6.4 Potentiation conductance of the SE-FET at 0.1 (a), 0.2(b) 0.4(c) and 1Hz (d). 
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The decay of the conductance state and the change in conductance state per pulse 

record are plotted in Fig 6.5. Starting from 3.5E-5S, the device conductance state decays 

to 1E-7 level after 88 pulses (~220s). As the conductance state decays, the change in 

conductance state per pulse also reduces after each pulse, ranging from 5E-6 per pulse to 

below 1E-8 level after 70 pulses. After this point, the conductance state change per pulse 

becomes relatively noisy. 

Considering the minimum conductance state required to process an x bit input with 

a sequential length of n equal to xn, with the potentiation and the decaying state of the SE-

FET, the device, though unoptimized, has sufficient retention time and a sufficient number 

of distinguishable conductance states to reflect the temporal order of a 4 to 5 binary input. 

Given the retention time after potentiation, a reset is required between the sequences to 

avoid repeated potentiation and to maintain a consistent initial state. 

 

Fig 6.5 Conductance state decay and conductance state change per pulses record at 

0.4 Hz frequency pulses.  
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In our experiment, the image was divided into 6 sub-sections, each consisting of 4 

pixels. This 4-pixel sequence necessitated the devices to process a 4-bit binary input with 

16 conductance states. Fig 6.6 illustrates the response of the SE-FET when subjected to all 

16 combinations of temporal inputs, where the writing voltage is set to 3V for a binary 

input of 1 and 0V for 0. Fig 6.7 (data and results generated by Ankit Gaurav) presents an 

example of the output heatmap from the reservoir's response to digit 5 and a confusion 

matrix showcasing the experimentally obtained classification results of the SE-FET-based 

reservoir versus the correct outputs [6]. 

By converting the input into a higher dimensional current output using the SE-FET, 

we achieved an average accuracy of 91.19% across a 7-fold cross-validation of the test set, 

an improvement over the 90.82% accuracy achieved without the SE-FET. This proves that 

the SE-FET-based reservoir is capable of mapping binary input into a higher dimensional 

space in the form of the output current.  
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Fig 6.6 Example of the recorded SE-FET output from one of the devices used as the 

reservoirs output database to train and test the network. Devices recorded at 0.4Hz 

with 3V 60% duty cycle pulses.    
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Fig 6.7 (a) Example of the heat map from the SE-FET response to digit 5 using data 

based on the measured results showing Fig 6.6. (b) Confusion matrix showing the 

experimentally obtained classification results of the SE-FET-based reservoir versus 

the correct outputs. Ankit Gaurav achieved an overall recognition rate of 91.19% 

using 7-fold cross-validation [6].  

Typically, the inevitable device-to-device variation is not a desired characteristic 

for neuromorphic hardware. However, in the context of Reservoir Computing, a degree of 

device-to-device variation could actually be beneficial in certain scenarios. We tested the 

network using 3 different SE-FETs as the reservoirs, running in parallel. The final output 

with the highest probability is then used as the system's final output. The experiment setup 

was slightly adjusted to compensate for the devices' weaker performance. The image was 

fed into the system using a 3-bit binary input, with the writing voltage set to 3.5V for a 

binary input of 1 and 0.8V for 0. The conductance change of all three SE-FETs when these 

devices are subject to the same input is shown in Fig 6.8. 

Due to device-to-device variation, when all three devices receive the same input of 

111, the device conductance varies from 8.9uS to 27uS after the input. This level of 

difference could be problematic for CNN, as the conductance state is used directly for logic 
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operations. However, as a reservoir, such a difference in conductance state creates a more 

dynamic representation of the input. With three reservoirs running in parallel, Ankit 

Gaurav reported an improved mean recognition of 92.97%, an improvement over the 

91.19% achieved using a single device. If the input image is converted into both horizontal 

and vertical sequences, an overall mean recognition rate of 94.97% was achieved. 

However, this does lead to an increased number of inputs that need to be processed. 

 

Fig 6.8 Response of device 1 (a), 2 (b) and 3 (c) when subjected to same input 111 with 

same 3.5V pulses. The devices conductivity varies due to inherent device-to-device 

variation.  

These observations suggest that the variation between different reservoirs can also 

be manipulated and controlled by adjusting the input function. The network was tested in 

a different configuration with increased device-to-device variation by using distinct input 

functions for three different devices. A consistent base voltage of 0.8V was set for a binary 

input of 0, and the input voltages of 3.5V, 4.5V, and 5.5V were set for a binary input of 1 

for devices 1, 2, and 3, respectively. An example of the recorded output from all three 

devices using their intrinsic device-to-device variation is shown in Fig 6.8, and the 

variation under input is plotted in Fig 6.9. 

(b) (c)
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With these distinct input functions, the conductance state variation increased to 

between 8.9uS and 55uS after the same input of 111. These differences in the conductance 

state led to increased reservoir-to-reservoir output variation. When these three reservoirs 

were configured in the same parallel network, an improved mean recognition of 92.44% 

was achieved after training. The network using this configuration demonstrated improved 

recognition accuracy over the system using a single SE-FET but was slightly less accurate 

than the system operating with the SE-FET's inherent device-to-device variation, which 

had an accuracy of 92.97%. 

 

Fig 6.9 Response of device 1 (a), 2 (b) and 3 (c) when subjected to input 111 with 3.5V, 

4.5V and 5.5V pulses. The devices conductivity varies due to inherent device-to-device 

variation and the different input function.   

These results indicate the potential advantages of implementing a three-terminal 

SE-FET in a reservoir computing (RC) framework. Compared to a conventional network 

without the SE-FET, which exhibited an accuracy rate of 90.82%, the SE-FET-based RC 

network demonstrated a higher recognition accuracy of 91.19% when using a single device. 

Notably, this accuracy could be further improved to 94.44% by leveraging the inherent 

device-to-device variation and using three different SE-FETs as reservoirs. 

(b) (c)
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The performance of the SE-FET-based RC network is the highest compared to other 

examples of physical RC networks that have utilized devices with diffusion-based 

mechanisms for the task of image processing. Most of these examples have used two-

terminal memristors with fading memory. However, due to the two-terminal nature of these 

devices and the need for down sampling during processing, the recognition rates reported 

for these networks have been relatively low, at 88.1% [7] and 83% [8].  

Overall, these results underscore the potential of SE-FET-based RC networks to 

outperform more traditional methods, demonstrating their viability and efficacy for image 

recognition tasks. Further optimization of the SE-FET device could potentially lead to even 

better results, making this a promising direction for future research in neuromorphic 

computing. 

6.4 Conclusions 

In collaboration with IIT Roorkee, we have experimentally demonstrated a three-

terminal SE-FET-based reservoir network that exhibits enhanced learning efficiency of 

95%. These devices are capable of converting the spatiotemporal dependencies of inputs 

into higher-dimensional outputs, leveraging the ionic migration intrinsic to their fading 

volatile memory. Our dynamic SE-FET-based reservoir computing (RC) system surpasses 

the performance of traditional networks, achieving an improvement of 3.62% in the same 

handwritten digit recognition task, and it does so without any reliance on down-sampling. 

The inherent diffusion-based mechanism of these devices allows the reservoir network to 

handle linearly non-separable problems, mapping input signals into a higher-dimensional 

space through a nonlinear relationship. Unlike the applications presented in Chapter 5, the 

SE-FET-based reservoir network does not necessitate a long-term or non-volatile memory. 
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Thus, devices with thinner oxide layers are no longer a constraint. The rapid writing and 

swift fading memory could potentially enhance the device's capability when processing 

inputs within an RC system. This work lays a solid foundation for the future development 

and optimization of SE-FET-based reservoir networks, promising to significantly advance 

the field of hardware-based reservoir computing. 
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CHAPTER 7 

Seed-assisted method for <202>-oriented CH3NH3PbI3 perovskite 

7.1 Introduction 

Despite the popularity of perovskite solar cells and the extensive toolbox of 

solution-based fabrication methods, the orientation of perovskite films has received little 

attention. This lack of attention is largely due to the fact that, irrespective of the formation 

method, most reported studies have focused on films with grains that are either randomly 

oriented or predominantly <110>-oriented. Brenner et al. demonstrated that a preferred 

orientation exists when PbI2 is converted into perovskite through a topotactic reaction 

process. However, in most cases, the reaction between PbI2 and CH3NH3 follows a 

dissolution–reconstruction process, and the preferred orientation is destroyed or the 

deposition orientation tends to be either random or predominantly <110>. Brenner et al. 

also demonstrated that even films initiated by a topotactic reaction with a strong 

relationship to the PbI2 seed revert to dissolution–reconstruction behavior at longer time 

intervals, resulting in randomly oriented films [1]. This behavior may also extend to other 

reactions, such as the transition of the intermediate chloride-rich phase, CH3NH3PbI3-xClx, 

to CH3NH3PbI3 under chlorine doping [2]. This finding has resulted in the proposition that 

chlorine doping results in improved uniformity [3], [4] and an increased carrier diffusion 

length from ~100 nm to >1 µm [5], which improves the performance [6].   

Very few orientations besides (110) have been reported in the literature. Foley et 

al. demonstrated that their (100) tetragonal films were a result of interactions at the 

perovskite/solution interface of the cubic (110) phase, which was greatly stabilized by the 

solvent via a one-step solution process [7]. Their champion cells for (100) tetragonal 
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orientation showed a higher efficiency of 12.6%, despite having a carrier lifetime that is 

smaller than that of randomly oriented films by a factor of >20. Bae et al. reported 

efficiencies of 13.6% for (112)- and (200)-oriented I3 films, with 11.26% for I2 chloride 

films oriented parallel to (002) and (110) [8]. Tsai et al. obtained mesoscopic carbon 

electrode-based cells with (004)-oriented large grains by using N-Methyl-2-pyrrolidone as 

a crystal solvent with a champion device efficiency of 15%, which is approximately three-

fold higher than that of <110>-oriented films with alternate precursors such as GBL, DMF, 

or DMSO [9]. This concept was recently adopted in the deposition of FAxMA1-xPbI3−yCly, 

resulting in a purely <1�11>-oriented film with a trap density lower (by a factor of 20) than 

that of the equivalent prepared using the solvent engineered technique [10]. A highly 

oriented film has been proposed to benefit from an enhancement of up to 300% in terms of 

carrier mobility, resulting in a higher fill factor and an efficiency of up to 19%.    

In this section, we propose a novel fabrication method that produces, for the first 

time, highly oriented <202> perovskite layers by combining a two-step solution method 

with a solid-state reaction. The latter is a two-step method based on the reaction between 

separately prepared PbI2 and CH3NH3I solid films that are subsequently brought into 

physical contact. As a relatively rare procedure for perovskite solar cells, this approach has 

previously resulted in efficiencies of ~10% [11]. We also investigate the impact of 

orientation on device performance.     

7.2 Experimental methods  

Our novel combined method is seed-assisted, as highlighted in Fig 7.1 (a). In the 

first stage, Step 1 consists of the formation of a PbI2 layer via spin-coating of 460 mg/mL 

PbI2/DMF solution at 2500 rpm for 30 s on an ITO substrate. In Step 2, a solution of 10 
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mg/mL MAI1-xClx (9.5 mg MAI and 0.5 mg MACl per milliliter of 2-propanol) is spin-

coated on the PbI2 film at 1200 rpm for 40 s, followed by cleaning with IPA. In Step 3, the 

film is annealed at 90°C for 5 min to produce an intermediate perovskite phase that contains 

the desired seed layer. Stage 2 begins at Step 4 of the process, where 100 mg of MAI1-xClx 

film is spin-coated on a separate substrate at 1500 rpm for 40 s. The spin-coated MAI1-xClx 

film from Step 4 is placed face-to-face on top of the intermediate film from Step 3, and the 

two contacting films are annealed as a function of temperature for 45 min.  

The films were compared with films produced by a conventional solid-state process 

whereby identical concentrations of PbI2 and MAI were spin-coated at 2500 rpm for 30 s 

onto two separate substrates and brought into contact at 125°C for 45 min. Thicknesses in 

the range of ~200–500 nm are readily obtained via this method, with optimal current 

densities achieved for thicknesses of 300–350 nm. 
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Fig 7.1 (a) Process flow diagram of the seed-assisted combined method for <202>-

oriented perovskites. (b) Fabricated planar device structures. 

Fig 7.1 (b) presents a schematic diagram of the cells reported in this work. Pre-

patterned ITO substrates are cleaned via 1% Hellmanex in deionized (DI) water and IPA, 

dried under an N2 flow, and placed on a hot plate at 120°C for 15 min. A 40-nm PEDOT: 

PSS layer is deposited via spin-coating and dried in air. The substrates are then transferred 

to a glove box, and the perovskite layers are deposited using either our novel combined 

seed-assisted method or the conventional solid-state method. A PCBM layer is deposited 

via spin-coating in chlorobenzene solution as the electron transport layer. Finally, the 

PCBM-deposited perovskite films are transferred to a high vacuum chamber for the 

deposition of Al electrodes and encapsulated with a glass cover using an ultraviolet epoxy 

sealant. 
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XRD measurements were performed in reflection geometry using a Bruker D2 

Phaser operating at 30 kV and 10 mA. The simulated structure and XRD results were 

generated using CrystalMaker, and the effective electron and hole masses were extracted 

from band structures obtained from first-principle calculations within the generalized-

gradient approximation (GGA-PBE) [12] of density-functional theory (DFT). The 

calculation employs a scalar-relativistic approximation with the pseudopotential projector-

augmented wave method [13] as implemented in VASP [14]–[17]. Spin-orbit coupling is 

included to increase the accuracy of the band structure. A uniform mesh of 6x6x4 in the 

full Brillouin zone is used for the plane-wave basis set, with an energy cutoff of 500 eV.  

Scanning electron microscopy (SEM) was performed on a FEGSEM RAITH SEM 

under operating conditions of 5 kV. The device measurements were performed using an 

Agilent B1500A semiconductor parameter analyzer and a LOT-oriel solar simulator under 

simulated global standard spectrum (AM1.5G) sunlight at 100 mW/cm2 (Rera) and dark 

conditions. Raman spectroscopy was performed using a Renishaw inVia Raman 

microscope with 532-nm and 830-nm laser excitation. Measurements were conducted with 

backscatter geometry using a 50× objective lens (numerical aperture of 0.75) to focus and 

collect the laser and Raman-scattered light. Dielectric edge filters were used to block the 

Rayleigh-scattered light, and the Raman cutoff was set to 70 cm-1 at 532 nm and 100 cm-1 

for the 830-nm configuration. For all measurements, the laser power was maintained at low 

levels to reduce/prevent laser-induced degradation of the samples. 

7.3 Results and discussion 

Fig 7.2 shows the normalized intensity of XRD peaks for the initial layer of spin-

coated PbI2 from Step 1 and the intermediate seed layer obtained from Step 3. The peaks 
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at 2θ = 12.7° correspond to the (001) plane of PbI2 in both samples, confirming its only 

dominant orientation based on its known crystal behavior [6]. After spin-coating and 

annealing, the sample is still dominated by <001>-oriented PbI2; however, a small fraction 

of MAPbI3 with <202> orientation is also present on the surface, in agreement with the 

formation of an incomplete perovskite film [6], [18], [19]. Fig 7.2 (c)–(f) present XRD 

patterns of samples annealed at 120°C, 125°C, 130°C, and 135°C. The indexed XRD 

patterns confirm the presence of a pure β-phase tetragonal I4/mcm cell of CH3NH3PbI3 

[20], [21]. The XRD peaks in samples (c)–(f) located at 2θ = 14.21°, 24.57°, 28.55°, and 

31.90° correspond to (110), (202), (220), and (310) planes of the CH3NH3PbI3 perovskite. 

Despite the presence of 5% chlorine in the MAI solution, the formation of CH3NH3PbCl3 

is not detected at any stage of the reaction, indicating a loss of chlorine, as has been widely 

reported elsewhere [2], [22], [23]. Furthermore, Fig 7.2 reveals a narrow window at 125°C 

for the preferential formation of a <202>-oriented perovskite, with the same minimum peak 

intensity observed for other orientations. At temperatures higher or lower by 5°C,  the (110) 

peak becomes stronger, and mixed orientations are observed, as commonly reported for the 

two-step solution method [18], [19], [24]. This result indicates a local minimum for the 

formation energy of this phase in contrast to the dissolution–reconstruction process.   

 



197 

 

 

Fig 7.2 XRD of the (a) PbI2 film, (b) intermediate seed layer, and (c–f) perovskite film 

after complete conversion from the intermediate film via the solid-state process at 

temperatures of 120°C to 135°C.   

Despite both seeds appearing at a very early stage in the reaction, the formation 

processes of <110>- and <202>-oriented perovskite are rather different [6]. Brenner et al. 

demonstrated the reaction process of conversion from an <001> PbI2 film to CH3NH3PbI3 
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perovskite [1]. Depending on the structural relationship between the <001> PbI2 film and 

the resultant CH3NH3PbI3 perovskite, there are two different reaction processes for this 

conversion. If the reaction starts with dissolution of the Pb-I framework, i.e., a dissolution–

reconstruction reaction process, the reaction tends to result in a randomly oriented 

CH3NH3PbI3 film. In such a case, the Pb2+ ion and two I- ions form the (110) plane, which 

is parallel to the substrate. Between each (110) plane, the MA+ ion along with the third I- 

ion forms another plane, which is also parallel to the substrate. Experimentally, this process 

tends to be dominated by the <110> orientation, where CH3NH3PbI3 bears no relationship 

with the initial PbI2 film.  

In contrast, if the Pb-I framework retains its two-dimensional (2D) hexagonal 

packing, with the MA+ ions and I- ions diffused into the framework, the reaction is defined 

as topotactic, as illustrated in Fig 7.3. In the <001>-oriented PbI2, each Pb ion is connected 

to six I- ions, with each I- shared by three Pb2+ ions (Fig 7.3 (a) and (b)). During the reaction 

with MAI, the distance between the Pb ions increases from 4.59 to 8.89 Å to form the (202) 

plane of CH3NH3PbI3, while still retaining the original 2D hexagonal packing, as shown in 

Fig 7.3 (c). The MA+ ions and one additional I- ion from the MAI salt can diffuse into this 

Pb-I framework, resulting in a <202>-oriented CH3NH3PbI3, where each I- ion is now 

shared by two Pb2+ ions. The MA+ compound is aligned in a plane at an angle of ∼55° 

from the (202) plane (Fig 7.3 (c) and (d)). These diagrams demonstrate how the crystal 

retains a crystallographically equivalent orientational relationship with the original PbI2 

crystal, which is considered advantageous in terms of uniformity and trap state density [10] 

[25].  
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Fig 7.3 (a) Cross-section and (b) top view of <001>-oriented PbI2. (c) Cross-section 

and (d) top view of <202>-oriented CH3NH3PbI3 formed via a topotactic reaction 

process. 

Although there is a strong preference for the formation of <202>-oriented 

perovskite during the early stages of the two-step reaction process [6], [18], this orientation 

has never been previously demonstrated as the dominant orientation after the PbI2 is fully 

converted into CH3NH3PbI3 [6], [18], [19]. Although Brenner et al. observed  <202>-

oriented perovskite after 16 h of reaction, due to a thicker PbI2 crystal film, it was not fully 

converted into CH3NH3PbI3, and a significant amount of <110>-oriented CH3NH3PbI3 was 
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also observed in their films [26]. This difference is most likely due to the very narrow 

temperature window of stability for the <202> phase, as reported in this work. 

Fig 7.4 (b) and (c) compare the XRD spectra of a set of perovskite films prepared 

via our novel seed-assisted combined method at 125°C and the conventional solid-state 

method. Even though the growth temperature is 10°C lower than in the solid-state process 

reported in [11], our solid-state samples show a single dominant <110> orientation that is 

more akin to vapor-phase processes [11], [24]. Moreover, at precisely the same temperature 

of 125°C, the seed-assisted sample shows a single dominant <202> orientation. It has been 

argued that the destruction of the initial Pb2+ structure by high thermal energy is the main 

reason for the deconstruction−reconstruction reaction process [6]. As the thermal energy 

is identical in both cases, this cannot be the reason for the difference in the reaction process 

observed here. It is likely that a small amount of perovskite mixed in PbI2 results in a 

change in the activation energy of the two different reactions, which changes the 

preferential orientation at the two temperatures.  

To understand the differences between <110>- and <202>-oriented samples, three 

simulated structures are studied in this paper. As shown in Fig 7.4 (a), Structure 1 

represents an ideal tetragonal structure based on cell parameters extracted from 

experimental results. Structure 2 is one of the structures reported in [27], where all MA+ 

cations are aligned along the <001> direction parallel to the z-axis. The cell parameters are 

refitted with experimental values of 𝑎𝑎 = b = 8.84Å and c = 12.68Å to match our 

observed XRD pattern. As the MA+ cations aligned along the z-axis are highly symmetrical 

in the xy plane, the unit cell shows no octahedral tilting in this plane. Meanwhile, attracted 

by the positively charged MA+ cations, the negatively charged I- anions within the (001) 
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plane are shifted along the <001> direction, twisting the Pb-I framework along the z-axis. 

Structure 3 is obtained after the DFT relaxation of Structure 2. After the relaxation, the 

MA+ cations rotate ~15° within the yz plane, causing a further change in the Pb-I 

framework. As a result, the Pb-I bonding rotates ~3° from the z-axis, primarily due to 

movement of the I- anions, whereas the Pb2+ ions show little change in position. In this 

case, the projection of the unit cell on the xz plane is identical to that in Structure 2. 

However, there is a considerable change in the xy and yz planes caused by the rotation of 

the MA+ cations.  

Fig 7.4 (b) and (c) also show the simulated XRD of all three structures when <110> 

or <202> is the preferred orientation, respectively. The difference between all three 

structures for the <110> orientation is slight. However, due to interference between the 

(202) and (404) peaks, the relative intensity between (202) and (404) is sensitive to the 

structural disorder of the Pb-I framework. In the ideal tetragonal structure (Structure 1), the 

predominant peak in the <202>-oriented sample becomes <404>, which differs from the 

experimental results. For Structure 2, as the shifts in the Pb-I framework affect both (202) 

and (404), the results show a close agreement with the experimental results despite the 

structural instability of this model [27]. Interestingly, for the <202>-oriented sample, this 

shift causes the MA+ cation to be aligned at an angle of ∼55° from the (202) plane, 

consistent with the preferred growth direction reported by Brenner et al. [26] in 2016.  
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Fig 7.4 (a) Three structures used in this study (viewed from the <100> and <001> 

directions). Structure 1 is an ideal tetragonal structure, Structure 2 is based on a unit 

cell that contains all MA+ cations aligned along <001> [27], and Structure 3 is 

obtained by performing a DFT relaxation of Structure 2. (b, c) Measured and 

simulated XRD of the (b) <110>- and (c) <202>-oriented perovskite films from 

Structures 1–3. 

Besides changing the preferred growth orientation, it appears that the intermediate 

state during the growth process has a considerable impact on the film morphology. As 

shown in the inset in Fig 7.5, the <202>-oriented sample has a smaller grain size than that 

of the <110>-oriented sample, with sizes of 0.4 µm and ~1.2 µm, respectively. Because the 

growth process is the same in both cases except for the seed layer, it seems reasonable to 
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conclude that the difference in morphology arises from the difference in orientation. It can 

be argued that the growth of the <202> perovskite is not perpendicular to the substrate, 

which has an impact on film morphology [6].  

The difference in the orientation and grain size seems to result in very different 

behaviors for photovoltaic solar cells under dark and light environments. Fig 7.5 shows 

J−V curves for perovskite solar cells with <110>- and <202>-oriented films under a dark 

environment. As both devices possess the same architecture fabricated under identical 

conditions, it appears that the small grain size of the <202>-oriented perovskite results in 

more grain boundaries, leading to a larger dark current.  
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Fig 7.5 J–V curves of perovskite solar cells with <110>- and <202>-oriented 

perovskite measured in a dark environment. Corresponding SEM images of each 

sample are shown in the inset, where the <202>- and <110>-oriented perovskites show 

a grain size of approximately 0.4 µm and 1.2 µm, respectively. 

Fig 7.6 illustrates Raman spectra collected from samples with the two orientations. 

Accurate peak positions were obtained by fitting experimental data with a series of 

Gaussian curves, as shown in Fig 7.6 (b)–(d). Under 830-nm excitation, strong peaks 

related to the glass substrate are observed above 350 cm-1. These peaks occur because the 

830-nm source is below the band gap of the CH3NH3PbI3 layer (1.5 eV) and can probe the 

entire device structure, unlike the 532-nm excitation, which is absorbed by the 
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CH3NH3PbI3 layer. In subsequent analyses, these glass bands were removed by subtracting 

a glass reference spectrum collected under the same conditions.  

When measured at a given wavelength, the <110> and <202> samples exhibit 

identical Raman bands with a deviation in position. The bands vary for the different 

excitation wavelengths. For 830 nm, Raman peaks are observed at 122 cm-1, 160 cm-1, and 

252 cm-1. It has been previously proposed that the 122-cm-1 Raman mode arises from an 

overlap of the stretching motions of the Pb−I cage and the secondary peak of the MA 

liberation motion [28], [29]. For 830-nm excitation, the 160-cm-1 Raman mode is most 

likely due to the main peak of the MA liberation [29], [30]. Due to its strong overlap with 

other peaks, the position of this mode may previously have been considered less accurate. 

The Raman mode at ~250 cm-1 has been assigned to the torsional mode of the MA cation 

[31]. For measurements with an excitation wavelength of 532 nm, in addition to the 122-

cm-1, 160-cm-1, and 252-cm-1 peaks observed for 830-nm and 532-nm excitation, there are 

four additional peaks at 72 cm-1, 79 cm-1, 91 cm-1, and 109 cm-1. The 532-nm Raman 

spectra can be attributed to two causes. The 122-cm-1, 160-cm-1, and 252-cm-1 Raman 

modes constitute a band, which is in good agreement with the spectra for 830-nm 

excitation. The two main peaks at 122 cm-1 and 252 cm-1 agree well. The main difference 

is the relatively stronger peak at 160 cm-1 for 532-nm excitation, which contains a strong 

shoulder area between 150 cm-1 and 200 cm-1; this peak does not arise for 830-nm 

excitation. Additional peaks at 72 cm-1, 79 cm-1, 91 cm-1, and 109 cm-1, which are 

commonly attributed to degradation products such as MAI, PbOx, and PbI2 [32]–[34], are 

absent for 830-nm excitation. The 72-cm-1 and 91-cm-1 Raman modes  agree well with the 

PbI2 Raman modes reported at 73 cm-1 and 94 cm-1 [32], [35]. The 79-cm-1 Raman mode 
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seems closer to the 81-cm-1 Raman mode for PbOx than the mode for PbI2 [36]. The 109-

cm-1 mode is often attributed to the MA+ compound of CH3NH3PbI3, whose position can 

be shifted by the incorporation of H2O molecules [37]. However, this peak was not detected 

for 830-nm excitation. Considering that the degradation of CH3NH3PbI3 often follows as 

𝐶𝐶𝐶𝐶3𝑁𝑁𝐶𝐶3𝑃𝑃𝑏𝑏𝐼𝐼3 → 𝑃𝑃𝑏𝑏𝐼𝐼2 + 𝐶𝐶𝐶𝐶3𝑁𝑁𝐶𝐶3𝐼𝐼 [38], the presence of PbI2 is often accompanied by the 

formation of MAI. Therefore, we attribute this peak to MAI, which also has a Raman mode 

at 110 cm-1 in ambient conditions [39]. The absence of a degradation band for 830 nm 

suggests that the creation of PbI2 is due to exposure of the sample to a 532-nm laser, 

implying that the origin is photodegradation or localized thermal degradation from the 

absorption of laser power. This result highlights the benefits of applying excitation below 

the band gap when analyzing perovskite samples. In summary, there are no differences in 

the Raman spectra observed between <110>- and <202>-oriented samples. This result is 

likely due to the dynamics of the MA+ cations in the perovskite, where the orientation has 

little to no impact on the Raman mode due to the rotational motion of MA+ ions [31].  
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Fig 7.6 (a) Normalized Raman spectra of CH3NH3PbI3 perovskite layers measured 

using excitation at 532 nm and 830 nm. The vertical dashed lines indicate the peak 

positions of the Raman band, obtained by fitting the spectra with Gaussian curves. 

(b, c) Raman spectra obtained for 532-nm excitation, fitted with Gaussian curves. (d, 

e) Raman spectra obtained for 830-nm excitation fitted with Gaussian curves.  
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Fig 7.7 presents J−V curves for the best PSCs with <110> and <202> orientations 

under AM1.5G sunlight (100 mWcm−2). Benefiting from the improved grain size in 

comparison to earlier work, which obtained a grain size <1 𝜇𝜇m by using the solid-state 

reaction (Voc = 0.87 V, Jsc = 17.9 mA·cm−1, FF = 0.643, PCE = 10%) [11], our cell with 

<110>-oriented perovskite demonstrates an improved Jsc of 23.7 mA·cm−1, a Voc of 0.95 

V, an FF of 0.541, and a PCE of 12.2%, corresponding to an improvement of 32% for Jsc, 

9% for Voc, and 22% for PCE. Our sample prepared using <202> orientation resulted in 

Voc = 0.93 V, Jsc = 22.5 mA, FF = 70.9%, and PCE=14.9%. Both types of samples produce 

a comparable Voc, while the <202> orientation repeatedly results in a better PCE attributed 

to a higher FF and current density, despite having a higher dark current. This result seems 

contradictory, but it does agree with the relatively small effective electron and hole mass 

along the <202> direction. With interface engineering [40], post-solvent vapor treatment 

[41], [42], or H2O doping [42], typical inverted (p–i–n) PSCs of <110>-oriented perovskite 

have demonstrated PCE values of more than 20% (Voc = 1.03 V, Jsc = 23.51 mA, FF = 0.83, 

PCE = 20.1%) [42]. By comparison, it seems reasonable to conclude that, despite the 

smaller grain size, the <202> orientation demonstrates significant potential for producing 

similar levels of photovoltaic performance. 
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Fig 7.7 J–V curves of perovskite solar cells with <110> and <202> oriented perovskites 

under AM1.5G simulated sunlight. 

7.4 Summary 

We have successfully demonstrated a novel seed-oriented combined method, which 

results in the formation of highly oriented <202> perovskite layers in a narrow temperature 

range around 125°C. Despite the fact that the grain size of <202> perovskite is significantly 

smaller than that of the more conventional <110> orientation, leading to a higher dark 

current, the photovoltaic performance, and particularly the fill factor, seem to be only 

minimally impacted. Both the <110> and <202> oriented samples are capable of producing 

a current density exceeding 20 mA/cm2, with the <202> orientation consistently yielding 

a high fill factor. 
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Quarti et al.'s examination of a range of structures [27] suggest that the most 

probable structure is one in which the MA+ cations are aligned along the z-direction, which 

is the closest fit to the observed lattice constants and XRD results. This alignment would 

lead to structural distortion, with the MA+ cations aligning parallel to the preferred growth 

direction of the ensuing topotactic reaction. The primary mechanism behind the observed 

enhancement in performance appears to be a high mobility due to the lower effective mass 

[26][27].  
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CHAPTER 8 

 Conclusions and future works 

8.1 Summary 

The focus of this thesis revolves around the development and understanding of 

materials and devices that can be integrated with solar cells for intelligent autonomous 

sensors. This includes the study of operational dynamics of solid-electrolyte Ta2O5/ZnO 

transistors, and their potential use in neuromorphic applications. Concurrently, we 

investigate a unique deposition technique that influences the growth orientation of 

CH3NH3PbI3 perovskite that has not been reported before to our knowledge. The effects of 

this process on film morphology and solar cell efficiency are scrutinized.  

Chapter 4 provides a detailed explanation of the fabrication process and operational 

mechanisms of our Solid-Electrolyte Field-Effect Transistors (SE-FETs). Expanding on 

the initial model presented in [1], we introduce a gate current model that further enables 

the device simulations discussed in Chapter 5. This chapter also brings to light the 

constraints discovered in the interpretation of the device's off-region from the previous 

model, particularly where a symmetrical drift-diffusion process under both positive and 

negative biases was assumed. Although this assumption worked well for the drain-source 

terminal, it did not align with the measured gate current of the device. By adopting a better 

implantation of a dynamic diffusion model, a better alignment between experimental 

results and simulation of the gate current is made possible. 

In Chapter 5, we highlight the off-state operation of SE-FETs, maintaining the 

power consumption for writing operations within the nanowatt range. We further delve into 

the impact of oxide thickness on memory performance and exhibit logic operations using 
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a single SE-FET device. To bolster our exploration of potential applications, we use 

simulations to demonstrate the training and execution of an SE-FET-based crossbar array 

designed for supervised learning tasks. 

Chapter 6 presents experimental demonstration of a three-terminal SE-FET-based 

reservoir network exhibiting enhanced dimensionality. The inherent diffusion-based 

mechanism within this network enables slow fading memory without the need for 

supporting array for added delay. Furthermore, the unique three-terminal structure enables 

simultaneous reading and writing operations, effectively eliminating the necessity for input 

down-sampling. This structure ensures uninterrupted data processing of continuous input, 

such as voice and continuous wave. Combination of inherent device properties and suitable 

network architecture resulted in the highest learning efficiency of 94.44% in a SE-FET 

based reservoir reported to date.  

In Chapter 7, we present a unique seed-oriented combined method, inducing highly 

oriented <202> perovskite layers within a restricted temperature window. We also delve 

into the differential formation process and explore the impacts of this new orientation on 

film morphology and photovoltaic efficiency. 

8.2 Future work 

Due to the unforeseen event from an accident due to a fire the clean room in 2019 

and delay in installing the equipment, planned work could not be achieved, particularly in 

integration of the intelligent autonomous sensors. 

As discussed in Chapter 1, one direction involves the integration of perovskite solar 

cells with Ta2O5/ZnO-based transistors. Given that both devices are based on ITO 

substrates, the fabrication process necessitates the deposition and creation of Ta2O5/ZnO-
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based transistors first, followed by the fabrication of perovskite solar cells using a solution-

based technique.  

In Chapter 7, while we've studied the impact of perovskite orientation on cell 

performance, the effect on hysteresis and memory remains unexplored. A study on devices 

featuring a straightforward memristor structure could potentially shed light on orientation-

related hysteresis and memory differences. This approach could also isolate the influential 

factor of the charge transfer layer [3][4] and lead to a more nuanced understanding of this 

novel orientation. Such a study had been planned to complete the study on this new 

perovskite orientation and could potentially benefit the field of perovskite based memristor.  
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