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Zum Buch

In wake of an ever increasing complexity the desire to move towards intelligently 
controlling operations is amplified in manufacturing. Complex job shops mark 
the most complex production environments that require a high degree of agility 
to control. Among these complex manufacturing environments semiconductor 
manufacturing stands out as it combines all complexities to form a truly complex 
job shop. Hence, operational excellence is the key to success and relies on intelligent 
production control. A major concern in controlling such complex job shops, in this 
case semiconductor wafer fabrication, is the presence of time-constraints that limit 
the transition time of products between two, mostly successive, processes. Adhering 
to these product specific time-constraints is of utmost importance as violations 
result in scrapping the violating product. The state-of-the-art production control 
of these dispatching decisions that aim at adhering to time-constraints is based 
on error-prone manual control that is stressful for human operators. Thus, within 
this thesis a novel, real-time data based approach for intelligently controlling 
production control for time-constrained complex job shops is presented. Using 
an up-to-the-minute replica of the real system both uni-, multi-variate time series 
models and a digital twin are used to obtain violation predictions. As a second 
step, based on the time-constraint violation expectancy the production control is 
derived and implemented with a real-world semiconductor manufacturing plant 
real-time data. The resulting approach is, therefore, validated against the state-of-
the-art showing significant improvements as many time-constraint violations could 
be prevented.
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Zusammenfassung

Im Zuge der zunehmenden Komplexität der Produktion wird der Wunsch nach einer intel-

ligenten Steuerung der Abläufe in der Fertigung immer größer. Sogenannte Complex Job

Shops bezeichnen dabei die komplexesten Produktionsumgebungen, die deshalb ein hohes

Maß an Agilität in der Steuerung erfordern. Unter diesen Umgebungen sticht die besonders

Halbleiterfertigung hervor, da sie alle Komplexitäten eines Complex Job-Shop vereint. De-

shalb ist die operative Exzellenz der Schlüssel zum Erfolg in der Halbleiterindustrie. Diese

Exzellenz hängt ganz entscheidend von einer intelligenten Produktionssteuerung ab. Ein

Hauptproblem bei der Steuerung solcher Complex Job-Shops, in diesem Fall der Halbleit-

erfertigung, ist das Vorhandensein von Zeitbeschränkungen (sog. time-constraints), die die

Transitionszeit von Produkten zwischen zwei, meist aufeinanderfolgenden, Prozessen be-

grenzen. Die Einhaltung dieser produktspezifischen Zeitvorgaben ist von größter Bedeutung,

da Verstöße zum Verlust des betreffenden Produkts führen. Der Stand der Technik bei

der Produktionssteuerung dieser Dispositionsentscheidungen, die auf die Einhaltung der

Zeitvorgaben abzielen, basiert auf einer fehleranfälligen und für die Mitarbeiter belasten-

den manuellen Steuerung. In dieser Arbeit wird daher ein neuartiger, echtzeitdatenbasierter

Ansatz zur intelligenten Steuerung der Produktionssteuerung für time-constrained Complex

Job Shops vorgestellt. Unter Verwendung einer jederzeit aktuellen Replikation des realen

Systems werden sowohl je ein uni-, multivariates Zeitreihenmodell als auch ein digitaler

Zwilling genutzt, um Vorhersagen über die Verletzung dieser time-constraints zu erhalten. In

einem zweiten Schritt wird auf der Grundlage der Erwartung von Zeitüberschreitungen die

Produktionssteuerung abgeleitet und mit Echtzeitdaten anhand eines realen Halbleiterwerks

implementiert. Der daraus resultierende Ansatz wird gemeinsam mit dem Stand der Technik

validiert und zeigt signifikante Verbesserungen, da viele Verletzungen von time-constraints

verhindert werden können. Zukünftig soll die intelligente Produktionssteuerung daher in

weiteren Complex Job Shop-Umgebungen evaluiert und ausgerollt werden.





Abstract

In wake of an ever increasing complexity the desire to move towards intelligently controlling op-

erations is amplified in manufacturing. Complex job shops mark the most complex production

environments that require a high degree of agility to control. Among these complex manufac-

turing environments semiconductor manufacturing stands out as it combines all complexities

to form a truly complex job shop. Hence, operational excellence is the key to success and

relies on intelligent production control. A major concern in controlling such complex job shops,

in this case semiconductor wafer fabrication, is the presence of time-constraints that limit the

transition time of products between two, mostly successive, processes. Adhering to these

product specific time-constraints is of utmost importance as violations result in scrapping the

violating product. The state-of-the-art production control of these dispatching decisions that

aim at adhering to time-constraints is based on error-prone manual control that is stressful

for human operators. Thus, within this thesis a novel, real-time data based approach for

intelligently controlling production control for time-constrained complex job shops is presented.

Using an up-to-the-minute replica of the real system both uni-, multi-variate time series models

and a digital twin are used to obtain violation predictions. As a second step, based on the

time-constraint violation expectancy the production control is derived and implemented with

a real-world semiconductor manufacturing plant real-time data. The resulting approach is,

therefore, validated against the state-of-the-art showing significant improvements as many

time-constraint violations could be prevented. In future, thus, intelligent production control

should be evaluated and rolled out in more complex job shop settings.
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Introduction 1

1 Introduction

Technological leaps forward heavily increase technological complexity in manufacturing. In

wake of rising, progressively fluctuating market demand and increasing changes in customers’

requirements manufacturing’s competitiveness is tested along these trends. Individualization

fosters shrinking batch sizes (Gu & Koren 2018). High quality standards and increasing

technological capabilities enforce more sophisticated machinery (Schmitt et al. 2012). As a

result, operations become increasingly convoluted (Mönch & Fowler & Mason 2013) where

technological progress tightens the space for operating manufacturing competitively.

Digitalization offers technological progress poised to enable the handling of greater orga-

nizational complexity in manufacturing. A transition towards smart devices and intelligent

interconnections is fueling an ever-increasing demand for semiconductors to gather, process

and store data (Mönch & Fowler & Dauzère-Pérès, et al. 2009). Their application in manufac-

turing gave birth to the fourth industrial revolution to enable tapping into great potential for

operations improvement and intelligent automation (Lasi et al. 2014). Industry 4.0 draws from

compendious data collections from production systems in real-time as well as their semantic

enrichment (Abramovici et al. 2016). The availability of exhaustive general and real-time state

information about products, machines and internal logistics empowers system optimization

and transparency. Available real-time factory data is the sine qua non for operations manage-

ment to tackle tightening, stringent requirements put on manufacturing (Mönch & Fowler &

Dauzère-Pérès, et al. 2011). Hence, progressive algorithms play a decisive role in permitting

intelligent production control.

Artificial intelligence is over and over seen as a complement to human intelligence in decision

making enabling smart manufacturing (Arinez et al. 2020). Machine Learning (ML), as a

data-driven artificial intelligence, is the main driver of its recent prominence with examples

ranging from superior chess or Go playing (Silver et al. 2018) and self-driving cars (Rao &

Frtunikj 2018) to multivariate generative content creation (Wolf et al. 2020). The recent gains

in prominence of Machine Learning, demanded by a highly competitive environment, is fueled

by increasingly potent hardware, ever more powerful, freely available software, expanding data

availability and improving algorithms (Wuest et al. 2016). Applications extend more and more

beyond well described systems and datasets; however, the uncertainty within systems and

models is less frequently regarded. Such system inherent uncertainty and complexity prevails

in real-world production control. Thus, there is a large potential for improving operations

management and enabling effective production control in complex production systems.



2 Introduction

1.1 Motivation

Industrial manufacturing developed towards highly coordinated manufacturing systems. Spe-

cialization of equipment and personnel to performing individual tasks at a high quality and

high speed enabled economies of scale (Helpman 1981). Convoluted material flow, more

complex processes and interactions aggravated the need for an effective and efficient organi-

zation (Ueda et al. 2002). Production Control ensures cost-effective and stable operations

(Czumanski & Lödding 2016).

Modern, complex job shops incorporate different lot sizes, inconsistent process times, frequent

failure events, flexible and recurrent material flow as well as time constraints (Waschneck

et al. 2016). These complexities aggravate the traditional production control tasks order

release, sequencing and capacity planning among others. Increasingly frequent decisions

and adaptations to the real-time circumstances in the production system become the norm

(Altenmüller et al. 2020). Irrespective of the concrete production control objective preference

in a modern production system waste must be eliminated. Therefore, the production control

system must ensure no value creation opportunity is squandered and no value scrapped.

Traditionally, production planning and control divides the associated tasks along timely dimen-

sions, long-term planning and short-term control (Mönch & Fowler & Mason 2013). Stochastic

uncertainty decreases with decreasing size of regarded time intervals. Systematic uncertainty,

in contrast, increases as operations convolutions are amplified. The latter; thus, contributes

the major source of concern for production control. Increasing data availability and the need

to cope with ever growing uncertainty provide a suitable environment for adaptive production

control (Monostori et al. 2004).

More complex systems yield more sophisticated algorithms which can improve production

control for less complex systems alike. Complex job shops constitute the most complex

production systems (Waschneck et al. 2016). This complexity requires more adaptive, learning-

based systems for production control as traditional deterministic planning is insufficient. Static,

rule-based industry standards oversimplify complex problems (Nickel et al. 2014). Alternatively,

humans are often performing complex decision making tasks. However, human intelligence

is error prone, inconsistent in round the clock production, incapable of large scale data

processing and expensive (Wegener et al. 2021). Automated adaptive, intelligent production

control can alleviate these shortcomings.

Learning-based approaches can be both adaptive and intelligent by altering the behavior

based on environmental conditions (Russell & Norvig 2021). Machine Learning (ML) is the

most prominent example herein, capable of large-scale data processing. However, ML lacks

explainability and the capability to effectively deal with varying epistemic uncertainty (Kuhnle
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et al. 2022). For adaptive, intelligent production control of real-world complex job shops

novel forms become necessary. Only few applications can be found in literature as real-time

data-driven production control approaches in complex job shops are not yet common and

have not accomplished the full potential for industrial application.

1.2 Problem statement

Augmenting production control towards intelligent production is applicable to a wide range of

industries in the manufacturing sector. The present thesis is in particular motivated by the

semiconductor industry as a manifestation of complex job shops. For application, however, this

industry is superseded by any manufacturing industry that exhibits similar characteristics.

The electronic industry has become one of the largest industries world-wide as semiconduc-

tors are essential components in all industries nowadays (Valet et al. 2022). Its importance

and growth is fueled by the global megatrends of Artificial Intelligence (AI), Industrial Internet

of Things (IoT), smart products and the software-defined characteristics of modern systems.

Embedding circuits into new product generations is critical for dealing with climate change

and resource scarcity (Uçar et al. 2020). Hence, semiconductors act as enablers for achiev-

ing energy efficiency, individual mobility, security, the establishment of Industrial Internet of

Things (IIoT) and the application of AI. This has led to fast innovation cycles in semiconductor

manufacturing and thus its technology-intensive and capital-intensive nature (Mönch & Fowler

& Dauzère-Pérès, et al. 2011).

Semiconductor manufacturing equipment accounts for a major cost driver (Hong et al. 2023)

so that opportunistically utilizing capacities and avoiding the production of faulty products

is paramount (Valet et al. 2022). Therefore, semiconductor fabrication plants, in short fabs,

operate 24 hours a day on any day. To minimize coordination effort and setup times wafers

containing Integrated Circuit (IC) chips are packetized into lots of 25 or 50 (Ziarnetzky et

al. 2017). The technological intensity is manifested in the presence of forming and cutting

processes, electro-physical and chemical processes, abrasive processes, surface engineering

and metrology augmented by complex machinery and production system organization as

well as highly specialized semiconductor design (Mönch & Fowler & Mason 2013). Beyond

individual technological complexity the major challenge for semiconductor manufacturing

lies in the coordination of this complex job shop (Mönch & Fowler & Dauzère-Pérès, et al.

2011). Each wafer, a thin slice of semiconductor material, requires up to 800 processing steps

each between a few minutes and several hours (Ziarnetzky et al. 2017). Recurrent visits to

many machines are necessary to transform semiconductor material into an IC. To achieve

economies of scale ICs are pooled onto a single wafer. Fabs operate on the verge of the

physically, technologically possible resulting in only a share of the produced ICs being fully
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usable (Mönch & Fowler & Dauzère-Pérès, et al. 2009). Keeping this share, called yield, high is

decisive. In addition to processing or design errors a major yield loss consists of contaminated

wafers through native oxidation, crystal formation, ion migration or dust deposition (Lima

et al. 2021). These impurities pollute the surface and inhibit the designed electrical flow.

Thus, semiconductor manufacturing equipment in fabs is operated in clean rooms to reduce

contamination (Klemmt & Mönch 2012). Nevertheless, between many process steps wafers

can only remain unprocessed for several hours otherwise yield is reduced as the wafers can

often not be recovered and have to be scrapped (Altenmüller et al. 2020). Hence, adhering to

these time-constraints is of utmost importance (Arima et al. 2015).

Controlling the production under time constraints, re-entrant and non-linear material flow given

varying process times is challenging (Wang & Srivathsan, et al. 2018). System behavior is time

transient as the overall time wafers spend within a fab can be up to several weeks and months

(Mönch & Fowler & Mason 2013). In this volatile environment production control is amplified

by human operators that deal with time-contraints (Lima et al. 2019). This requires additional

manual effort, is error-prone, inconsistent and neglects optimization opportunities. Additionally,

the process is time-consuming and stressful for operators (Lima et al. 2017a). Establishing an

intelligent production control in this complex job, that deals with time-constraints, can alleviate

the current shortcomings. Making use of the real-time fab data can enable overcoming

traditional, rule-based approaches that are too rigid (Altenmüller et al. 2020). Additionally,

reducing these wasteful activities not only contributes to monetary business objectives,

operator well-being, but also to sustainability and the achievement of net zero climate goals

as wafer fabrication is energy intensive (May & Behnen, et al. 2021).

1.3 Research hypothesis

The above outlined challenges and problem statement can be addressed by an overarching

research goal as follows:

Intelligent production control for time-constrained complex job shops, based on

real-time data.

Modeling, implementing and evaluating such an intelligent production control to avoid time-

constraint violations is focused. A semiconductor fab is chosen as a real-world use case that

exemplarily demonstrates the approach and its feasibility. Therefore, as a prerequisite, this

research aims at the implicit proposition that any given production system is describable by a

semantically structured data set in form of a knowledge graph that contains all information

relevant to delineate a static and dynamic representation. Given this static knowledge graph a

digital replica of the regarded system can be created. With this digital replica’s behavior akin
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to the real system’s scarce data can be augmented and behavioral predictions performed.

Based on this semantically structured data and system replication human effort for modeling

and evaluation shall be minimized without compromise in performance or scope.

The research agenda deduction is based on the analyzed literature so that the following five

research questions will be answered within this thesis.

1. How to use static and dynamic knowledge graph based production system replicas to

support production planning and control with time-constraints?

2. How to use real-world real time data to avoid time-constraint violations with a data-based

approach for production control for complex job shops?

3. How to enrich and extend machine learning algorithms to accurately capture the aleatoric

and epistemic uncertainty in large-scale complex job shops when predicting time-

constraint adherence?

4. How to use long-term and real-time knowledge acquired within a factory to holistically

reduce time-constraint violations with intelligent production control?

5. How does the learning-based intelligent production control for complex job shop perform

in ensuring time-constraint adherence in a real-world setting?

1.4 Structure of this work

This work is structured as follows. Within the first part of the thesis the problem and its setting

are described. Therefore, production planning and control and its application in complex

job shops and the semiconductor industry is introduced in Chapter 2. Different, quantitative

approaches are compared and the prerequisites for simulation-based and intelligent, learning-

based approaches are laid out. A comprehensive literature review is presented in Chapter 3

and the research deficit is deduced. Chapter 4 proposes the developed methodology for

intelligent production control for time-constrained complex job shops in three steps. First,

the problem scope is specified and analyzed. Second, the modeling approach is expound.

These constitute the bedrock of the proposed approach that is described. In Chapter 5 the

approach is evaluated in a real-world system to assess its performance and applicability. The

computational results compare the approach to the state-of-the-art and deduce requirements

for real-world application. An outlook follows the discussion of the approach in Chapter 6.

Ultimately, Chapter 7 presents a summary of the entire work.
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2 Fundamentals

In the following chapter fundamentals that this thesis is built upon are introduced. The

structure and interrelations are visualized in Figure 2.1. First, in Section 2.1 semiconductor

manufacturing, the manifestation of a complex job shop, is introduced. Both a sound technical

understanding and its influences on operating such a semiconductor manufacturing factory

are discussed. Time-constraints as the major hurdle in effectively controlling this complex

job shops are defined. As the main focus of this thesis rests on introducing novel, intelligent

production control for complex job shops, the production planning and control framework

is explained in Section 2.2. The complexities arising from complex job shops, traditional

ways of implementing production control as well as requirements for embedding a novel

production control are discussed. Nowadays, production control is often based on data and

quantitative decision making. Section 2.3 introduces quantitative optimization as a tool suitable

for decision making through effectively handling large amounts of data. Traditional approaches

from mathematical optimization, heuristics towards artificial intelligence based knowledge

management and machine learning are introduced. The advantages and limitations are

discussed to conclude this section. Building on the real production a digital twin as its

virtual counterpart is introduced in Section 2.4. As dealing with time series data is frequently

necessary in modern manufacturing systems and particular complex job shops time series

modeling as a Machine Learning approach is presented in Section 2.3 as well. Classical

models and machine learning models are introduced and the applicability and technical

realization of prediction intervals presented. As during the course of this thesis prediction

intervals have to be extended to one-sided prediction intervals their formal derivation is proved.

All in all, the foundations for understanding the state-of-the-art and own approach are found

in this chapter.

Figure 2.1: Structure of the Fundamentals chapter with relations between sections.
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2.1 Semiconductor Manufacturing

In 1958 Jack Kilby invented the integrated circuit (IC) (Kilby 2000). These digital microchips

are widely used in many products: logic chips for computing based on logic gates, memory

chips to store data based on NAND gates and field-programmable gate arrays (FPGAs) that

can be programmed after manufacturing (Pe 2018). Analog microchips are similarly common:

radio frequency circuits and mixed-signal ICs such as analog(A)/digital(D) or D/A converters

(Pe 2018).

Manufacturing of these ICs is known as semiconductor manufacturing as nowadays ICs are

made of semiconductor material. Its conductivity can be altered by crystal structure impurities

(Mönch & Fowler & Mason 2013). This modification of the electrical properties enables a

plethora of applications as conductivity can depend on temperature, light or electrical fields

(Pe 2018). Jack Kilby’s first IC was made of the semiconductor germanium (Kilby 2000). Today,

silicium is widely used to manufacture ICs (Mönch & Fowler & Dauzère-Pérès, et al. 2011). In

general, any semiconductor is in principle a feasible material, so that use-case specialized

the material has to be selected to favor strong currents or low energy consumption

IC design and fabrication can be decomposed into several steps as illustrated by Figure 2.2.

First, chips and their function are designed and simulatively tested based on a chip develop-

ment plan (Pe 2018). Secondly, the physical design process is used to produce photomasks

which are the IC blueprints (Xiao 2012). In the third step in the front-end semiconductor man-

ufacturing wafers are fabricated and tested (Mönch & Fowler & Dauzère-Pérès, et al. 2011).

Lastly, the wafers are cut and packed for final testing during the back-end semiconductor

manufacturing (Pe 2018). The latter of this thesis will focus on front-end manufacturing, a

complex job shop that decisively influences product quality and manufacturer competitiveness.

As a semiconductor front end fab is the most complex job shop currently known dealing with

this system will allow transferability.

Figure 2.2: Semiconductor manufacturing overview. Adapted from Mönch & Fowler &

Dauzère-Pérès, et al. (2011) and Pe (2018).

In the following, Section 2.1.1 introduces semiconductor technology followed by a description

of the front-end in Section 2.1.2. Time-constraints as the major problem in complex job

shop and semiconductor production control is introduced in Section 2.1.3. Section 2.1.4

summarizes semiconductor manufacturing requirements.
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2.1.1 Semiconductor fabrication technology

Transistors form the basis of modern microchips which can contain several billion transistors

(Pe 2018). A transistor can mimic binary behavior by controlling electrical flow interpreted as

on/off or 1/0. Using the conditional conductivity of semiconductors, such as Silicon (Si), the

passing or not passing of electrical currents is realized. As shown in Figure 2.3 a transistor is

realized by controlling the electrical flow between source and drain through a gate (Pe 2018).

Source and drain are a part of the silicon wafer that is doped through ion implantation in

the silicon crystal lattice. Doping the silicon with impurities of five valence electron elements

(such as phosphorus, arsenic or antimony) creates so called n-semiconductors as shown in

Figure 2.3. Four of these electrons each connect to a silicon atom in the crystal structure

around leaving one free electron. This free electron easily jumps into the conduction band

and enables electric conductivity. Vice versa, three-valent elements (such as boron, aluminum

or indium) create a free hole in the valence band as shown in Figure 2.3. Controlling this

deliberate contamination precisely can realize tiny conductive paths in the silicon (Mönch

& Fowler & Mason 2013). In a transistor the gate is insulated from source and drain as the

gate voltage controls the electric flow between source and drain. If the gate voltage is positive

electrons in the body are attracted to the surface, creating a conductive n-channel connecting

source and drain. This acts as a 1 or on in a binary entity (Pe 2018) and is, thus, the building

block of binary operations featured by microchips. Transistors are hence among the most

common man-made, manufactured structures.

Figure 2.3: Transistor and comparison of n- and p-semiconductors based on Pe (2018).

Key to the success of ICs is their planar layer by layer manufacturability (Mönch & Fowler &

Mason 2013). As visible in Figure 2.3 a source and drain are built on top of a silicon body

nowadays made from ultra pure silicon wafers. Source and drain are manufactured through

carefully n-doping the semiconductor in a first layer. Secondly, a dielectric layer that isolates

can be made of thin oxide. Then, the gate can be added in another layer. Nowadays ICs

consist of multiple layers and oftentimes three dimensional transistors. (Pe 2018)
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This layerwise IC manufacturing operates on a pure crystalline silicone wafer (Chen & Tosello,

et al. 2022). Continuing the example from Figure 2.3 and as a basis for n-channel field-effect

transistors the silicon is p-doped. Figure 2.4 illustrates the process outlined in the following.

The pure silicon wafer is then prepared by oxidation and diffusion to create a silicon dioxide

(SiO2) top layer. In the next step photoresist is deposited. Lithography, often described

as the holy grail of semiconductor manufacturing, exposes the photoresist to ultraviolet

(UV) or deep ultraviolet (DUV) light filtered by a mask (Graff et al. 2023). The remaining

photoresist protects underlying layers from subsequent etching. After photoresist removal

the ion implantation dopes the silicon to create n-semiconductor (or p-semiconductor). Lastly,

various removal process planarize the wafer and prepare the next layer. In the following

the individual process steps are briefly introduced as each wafer passes through up to

1000 of these processing steps and hundreds of associated machines (Mönch & Fowler &

Dauzère-Pérès, et al. 2011).

Figure 2.4: IC manufacturing steps. Adapted from Pe (2018) and Mönch & Fowler & Dauzère-

Pérès, et al. (2011).

2.1.1.1 Silicon wafer manufacturing

A semiconductor wafer, or wafer, is a ultra-thin disc of semiconductor material measuring

up to 300μm (Pe 2018). Currently, silicon is predominantly used and wafer diameters have
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historically increased from recently 200mm to nowadays 300mm (Mönch & Fowler & Dauzère-

Pérès, et al. 2011). Greater wafer diameters increase the usable share of the wafer surface

as the circumventing edge passes through relatively less ICs. This increases productivity. At

the same time transistor sizes have been shrinked, according to Moore’s law, to amplify the

ICs computing power and decrease electricity usage (Mönch & Fowler & Mason 2013). This

miniaturization of transistors to only a few nanometers (Pe 2018) necessitates higher silicon

purity of wafers (Chen & Tosello, et al. 2022). Float-zone methods provide the highest quality

of silicone crystal. By avoiding the contamination from a quartz crucible melt in Czorchalski

methods impurities are minimized (Chen & Tosello, et al. 2022). This mono-crystalline silicon

is then cut with high precision into single wafers (Pe 2018). Due to this complex expensive

processes even blank silicon wafers contain a high inherent value. Therefore, contaminating

or scrapping wafers in semiconductor manufacturing has to be avoided (Mönch & Fowler &

Mason 2013).

2.1.1.2 Oxidation and Diffusion

After cleaning and wafer preparation oxidation is used to develop a SiO2, silicon dioxide, layer

on the wafer (Mönch & Fowler & Dauzère-Pérès, et al. 2011). Thermal oxidation, diffusing an

oxidizing agent at high temperature into the wafer, is widely used (Pe 2018). High temperatures

facilitate quick oxidation, so that furnaces are used. For operating a wafer fab furnaces typically

have large oxidation chambers that can contain multiple wafers at once (Mönch & Fowler &

Mason 2013). Depending on the oxidizing agent used, wet (H2O) and dry (O2) oxidation are

distinguished, leading to different oxide density, dielectric strength and oxide layer thickness

(Xiao 2012). Thus, from a fab perspective, the need to use the right oxidation equipment

and control material flow and furnace fill levels arises (Mönch & Fowler & Dauzère-Pérès,

et al. 2011). Furthermore, these furnaces with high temperatures require ultra clean wafers

as thermal treatment of contaminants can lead to short circuits. Therefore, wafers are only

handled and treated in a clean room to minimize contamination (Sun et al. 2005).

2.1.1.3 Deposition

Deposition aims at depositioning a thin layer on the wafer (Mönch & Fowler & Mason 2013).

Dielectric or metal layers are deposited with physical vapor deposition (PVD) and chemical

vapor deposition (CVD). In ultra clean, high vacuum environments PVD evaporates source

material from a solid or liquid phase. This gase phase is then transported and deposited

on the wafer as a condensed phase (Pe 2018). Most notable processes include molecular

beam epitaxy, enabling precisely controlled deposition areas, evaporating and sputtering,

depositing striked out ions. CVP on the other hand, uses gases for deposition and operates

with different techniques from atmospheric pressure till low pressure (Xiao 2012). Aside from
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different pressures plasma enhanced CVD can provide high speed deposition whereas atomic

layer deposition enables three dimensional structure deposition (Pe 2018). Wiring can be

achieved by metalization (Mönch & Fowler & Dauzère-Pérès, et al. 2011) which can deposit

aluminum or copper. Again, the correct process equipment and material is paramount not

to scrap the wafers during operation or due to contamination (Mönch & Fowler & Mason 2013).

2.1.1.4 Photolithography

Before the photoresist coating the wafer has to be cleaned (Pe 2018). Photoresist can be

negative, i.e. areas undergoing light exposure become harder to dissolve, or positive, each

using different chemical structure, exposure and having different resolution capabilities. Core

of lithography is exposing the photoresist coated wafer to high energy radiation filtered through

a mask (Mönch & Fowler & Mason 2013). The complexity of lithography arises from per-

fectly aligning the mask with the layers under the photoresist and controlling the optics for

correct focus and exposure (Graff et al. 2023). Decreasing transistor size requires shorter

wavelengths leading to nowadays DUV or extreme ultraviolet (EUV) systems capable of

exposing transistors of only a few nanometers in size. Physical and chemical defects, for

instance from particle interference or refraction, should be avoided. Nowadays, run to run

control compensates based on previous runs and occasional test wafers (Graff et al. 2023).

Hence, processing orders and required test wafers can hardly be predicted. Additionally,

contamination can not only damage individual ICs on the wafer, so that scrap should be

avoided. Lithrography tools are among the by far most expensive equipment and thus often

present a bottleneck in semiconductor manufacturing (Mönch & Fowler & Mason 2013).

2.1.1.5 Etching

Etching aims at removing whole layers or material in photoresist coated layers on the wafer’s

surface (Mönch & Fowler & Dauzère-Pérès, et al. 2011). Again, wet and dry types can be

distinguished (Mönch & Fowler & Mason 2013). While dry etching applies gas wet etching

is chemical bath based. The latter is often implemented in batch etching which soaks and

lifts wafers into etch and cleaning baths. These etch chemicals need to be renewed regularly

and uniformity is hardly achieved (Pe 2018). Alternatively, spray etching implements a lot size

one wafer etching based on gas. For all processes temperatures and chemicals vary heavily.

Depending on the material to be etched setup and cleaning times can be high (Xiao 2012).

Photoresist can also be removed by plasma ashing also called plasma etching. Alternative

dry etch process include ion beam etching and reactive ion etching. All in all, etching is crucial
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as underlying layers should not be damaged (Chang & Chang 2012).

2.1.1.6 Ion Implantation

Ion implantation dopes the unprotected, etched areas with positive or negative ions to create

p- or n-semiconductors (Pe 2018). Electrically charged ions are directed from an ion source

to the wafer’s surface (Mönch & Fowler & Mason 2013). Photoresist blocks the ions from

entering the silicon and altering its conductivity where it is not desired. Implant equipment

works with high electricity and ion sources, and thus exhibits frequent required maintenance

(Yang & Ke, et al. 2015). Furnace and etch operations can occur afterwards to remove the

photoresist. Due to the ion beam, wafers have to be processed one by one. In general, four

to eight times, or sometimes even more regularly, wafers visit implant equipment (Mönch &

Fowler & Mason 2013).

2.1.1.7 Planarization

Planarization is performed with the removal of the siliconoxide layer to clean and level the

wafer surface (Mönch & Fowler & Dauzère-Pérès, et al. 2011). Chemical-mechanical polishing

(CMP) smooths the surface with mechanical force and chemically acting slurry. A large pad

is mechanically, abrasively polishing the smaller wafer that is soaked into a chemical (Pe

2018). However, this abrasive process can induce stress cracks, create particles or come

with impurities. Each CMP can only polish a single wafer at a time which requires cleaning

afterwards. Leveling the surface enables photolithography focus (Mönch & Fowler & Mason

2013).

2.1.1.8 Contamination and cleaning

Frequent cleaning of wavers is necessary, especially after wet etching, to clear the wafer from

particles (Xiao 2012). Contamination is a crucial factor that renders chips or wafers unusable

leading to scrap. In general, there are different types of contamination stemming from resist

or solvent residuals, molecular contamination, ambient air, abrasion and humans in form of

microscopic contamination and alkaline or metallic contamination (Pe 2018) as illustrated

in Figure 2.5. Microscopic particles from ambient air, abrasive process, airborne clothing

particles or inadequately filtered liquids attach to wafers and hinder correct exposure, implant

or etching process shown in Figure 2.5. This can lead to ICs being surrendered unusable,

and hence whole wafers that need to be scrapped if too contaminated (Perraudat et al. 2019).

Embedding these particles within layers can likewise create unevenness or after CMP lead



Fundamentals 13

to short circuits. Entitled molecular contamination based on its molecular size, photoresist

and solvent residuals or oil mist accumulate on the wafer surface, diffuse into the wafer or

hinder later adhesion of deposition. Such electric flow alterations similarly render wafers to

scrap (Pe 2018). Alkaline or metallic contamination originates from ionic deposits from salty,

human sweat, insufficiently deionized water or undesired sputtering of the manufacturing

equipment. These contaminations stick to the wafer surface or enter the crystal structure

capturing or releasing additional electrons. By affecting the electric behavior, in a similar vein,

wafers potentially have to be scrapped.

Figure 2.5: Frequent types of contamination in semiconductor manufacturing.

To address these risks, various cleaning techniques are introduced. For instance, ultrasonic

baths stipulate particles and contaminations to be diluted in a cleanser. Additionally, nitrogen

might blow off lightly bonded particles and high pressure cleaning can purge some contami-

nations. Solvents treat organic contaminations, however, solvents themselves contribute to

molecular contamination. Ionic contaminations can be removed with deionized water and

rotating brushes, but these accumulate particles and easily damage the wafer’s surface. (Pe

2018) As these cleansing steps are often insufficient aggressive etching has to be used.

However, this and further treatments often damage the wafer’s surface or lead undesired oxide

layer foundation (Xiao 2012). Therefore, precise cleaning sequences are required and as

smaller structures hinder effective cleaning it cannot rescue all contaminated wafers. Hence,

ensuring only minimal contamination through technical and organizational measures is of

utmost importance (Maleck & Nieke & Bock & Pabst & Schulze, et al. 2019).

From a technical point of view, semiconductor fabs operate in clean room environments

(Mönch & Fowler & Dauzère-Pérès, et al. 2011). There are several classes of cleanrooms,

ranging from ambient air (400 million particles of size 5 microns in 1 m3) to ultra clean
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cleanrooms reaching only 10 particles of 0.1 microns. Within the cleanroom, freshly cleaned

air is released at the ceiling and filtered through holes in the floor (Mönch & Fowler & Mason

2013). Doing so creates a vertical laminar flow that directs particles to the filter (Pe 2018).

Nevertheless, better cleanroom classes are more expensive and hardly realizable in a big

semiconductor manufacturing shopfloor. Therefore, Front Opening Unified Pods (FOUPs)

separate the wafers in micro-environments of highest cleanroom standards (Mönch & Fowler

& Mason 2013) while the transport and shopfloor areas only achieve medium cleanroom

classes, thus, saving costs and environmental damage. FOUPs are often referred to as

lots as each FOUP contains typically a lot of 25 individual wafers (Xiao 2012). Processing

these lots at once, hence, is imposed to ensure proper material flow (Mönch & Fowler &

Dauzère-Pérès, et al. 2011). These lots are tracked flowing through the semiconductor fab to

control contamination levels and process control. Thus, manufacturing processes typically

range from sequentially handling all wafers in a lot to parallelization (Xiao 2012). Note, that

depending on the customer order size, not all lots have to consist of full 25 wafers (Mönch &

Fowler & Mason 2013).

2.1.2 Frond-end wafer fabrication

The main value creation, operating the capital intensive and specialized manufacturing equip-

ment introduced in Section 2.1.1, is performed during IC fabrication on wafers as shown in

Figure 2.6. In a consecutive steps defective wafers are separated during testing complement-

ing the front-end (Xiao 2012). Back-end is often geographically disconnected and performed

in lower wage countries as a large degree of manual labor is involved. Thus, semiconductor

manufacturing takes place in an extensive global production network as defined by Lanza

et al. (2019). During the back-end operation scrap is still abundant. Wafers that are not

scrapped in the front-end still contain an unnegligable amount of non-functional ICs (Pe 2018).

During cutting and packaging functional ICs might be destroyed (Xiao 2012). Thus, only after

final testing the ICs can be delivered to customers. The percentage of microchips that meet

their electrical specifications at the end is called yield (Mönch & Fowler & Mason 2013). As

processing costs can only be recovered through selling function microchips, sustaining a high

yield is decisive in semiconductor manufacturing (Mönch & Fowler & Dauzère-Pérès, et al.

2011).

Besides controlling costs a high yield is necessary to control the total time required for manu-

facturing (Pe 2018). The lower the yield the more wafers need to be manufactured to attain

to the orders. Hence, by increasing the yield less processes need to be performed during

manufacturing as wafer- and batch-wise process steps for unnecessary wafers are saved.

On time delivery is particularly stressing as a wafer requires hundreds of process steps and

several months to be manufactured (Mönch & Fowler & Mason 2013). Wafer fabrication in the
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Figure 2.6: Wafer fabrication in a semiconductor fab. Adapted from Xiao (2012).

front-end makes up more than 75% of the total cycle time in semiconductor manufacturing

(Mönch & Fowler & Dauzère-Pérès, et al. 2011). Given the enormously high costs for semi-

conductor manufacturing equipment in wafer fabs the vast majority of manufacturing costs

is incurred in the front-end (Mönch & Fowler & Dauzère-Pérès, et al. 2011). This triple of

dominant scrap rate, cycle time and cost influence is fundamental for wafer fab importance.

Thus, in the following the main focus of this thesis, as applied to semiconductor manufacturing,

will remain on wafer fabrication in the front-end as a complex job shop.

A wafer fab’s material flow is characterized by iterating through the base processes over

and over again as illustrated in Figure 2.7. Each lot, and hence each wafer, passes 300

to 700 or sometimes more process steps (Mönch & Fowler & Mason 2013). This creates

reentrant material flow as wafers are repeatedly passing through fab for each layer (Mönch &

Fowler & Dauzère-Pérès, et al. 2011). Moreover, auxiliary process and material flow must

be controlled accordingly. This includes mask carrying reticles in lithography or chemicals in

wet etching (Mönch & Fowler & Mason 2013). Additionally, human operators are required to

successfully run a wafer fab in particular for inspection, maintenance and supporting material

flow. Therefore, no full information about the material flow and lot positions are available. Lots

can be stored in various first-in-first-out (FIFO), last-in-first-out (LIFO) or otherwise controlled

buffers and storages (Mönch & Fowler & Dauzère-Pérès, et al. 2011; Pe 2018).

Processing times vary depending on the process step, processing equipment, previous

process steps and wafers, batching and wafer requirements (Xiao 2012), where batching

refers to collective processing of multiple lots at a time. Hence, processing times are stochastic

and vary between minutes and 12 hours or more (Mönch & Fowler & Mason 2013). Combined

with reentrant flow and batch processed wafers that are offloaded to single wafer operating

machines, long queues become common (Mönch & Fowler & Dauzère-Pérès, et al. 2011).

Reducing inventory to shorten queues and cycle times is not economical. Capital intensive
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Figure 2.7: Wafer flowchart for a wafer fab. Adapted from Mönch & Fowler & Dauzère-Pérès,

et al. (2011).

semiconductor manufacturing equipment must be fully utilized. Machine dedications and hot

jobs aggravate the situation (Mönch & Fowler & Mason 2013) as explained in the following.

Machine dedications describe the fact that seemingly identical semiconductor manufactur-

ing equipment is not capable to perform certain processes. Unless lengthy and expensive

preparation and calibration is performed a single machine does not have the dedication to

follow specific process patterns (Mönch & Fowler & Dauzère-Pérès, et al. 2011). If omitted,

the process quality dips and wafers typically have to be scrapped. Hence, the order of lot

processing is highly dependent on these dedications as illustrated in Figure 2.8. As equip-

ment is operated on the verge of the physically possible equipment failures occur often and

suddenly (Xiao 2012). Downtime can account for up to 40 % of the time (Mönch & Fowler &

Mason 2013). Figure 2.8 shows the great influence on cycle times from machine failures and

stringent machine dedications. Probabilistic failure length and occurrence as well as the time

variance of machine dedications aggravate this problem (Pe 2018). Furthermore, sequence

dependent setup times complicate cycle time estimations (Xiao 2012).

Hot jobs, which are close to their due date, are rushed through the wafer fab by jumping lines.

Thus, they aggravate the congestion within the fab (Mönch & Fowler & Mason 2013). Addi-

tionally, so called engineering jobs are required as prototypes or to control processes (Mönch

& Fowler & Dauzère-Pérès, et al. 2011). Thus, preventive maintenance and engineering jobs

further reduce processing capacity. Beyond these complexities time-constraints present the

greatest obstacle for effectively and efficiently running a wafer fab (Klemmt & Mönch 2012). A

time-constraint limits or in other words constrains the time a wafer can spend between any
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Figure 2.8: Machine dedications and machine failures influence cycle times and the process-

ing order.

two processes before contamination prohibit further processing (Klemmt & Horn, et al. 2008).

Thus, the transition time which measures the time a lot is in transition between two processes,

is to be controlled to achieve time-constraint adherence. Rework is in general not permissible

in cases of violated time-constraints leading to scrap (Mönch & Fowler & Mason 2013).

2.1.3 Time-constraints in Semiconductor Manufacturing

Strict process control is paramount in semiconductor manufacturing. In addition, non-process

related influences need to be understood so that strict rules governing high yield can be

imposed (Xiao 2012). Time-constraints severely distinguish semiconductor manufacturing

from traditional manufacturing, as the time between process steps becomes limited to avoid

contamination and deteriorating quality (Mönch & Fowler & Mason 2013). No universal term

is used to describe time-constraints within and beyond wafer fabrication. The definition is

that time-constraints regard two process operations, that are not necessarily consecutive,

which are linked by a time limit that is specific for a wafer and, hence, lot (Klemmt & Mönch

2012). They arise from procedural restrictions when working with chemical and physical

processes and concerns of avoiding contamination (Mönch & Fowler & Dauzère-Pérès, et al.

2011). Therefore, only a subset of operation pairs are time-constrained for each wafer. Time-

constraints differ between different wafers (Klemmt & Mönch 2012). Minimum and maximum

time-constraints are known (Yugma et al. 2012). Adhering to minimum time-constraints is

trivial if buffers are available as the respective wafer or lot can remain in the buffer until

the minimum time has passed. Maximum time-constraint adherence, however, is difficult

to achieve in real-world environments (Maleck & Weigert, et al. 2017). In general, time-

constraints provide the greatest challenge for semiconductor production control as rework is

often not permitted and lots must be scrapped (Lee 2020).
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Figure 2.9: Time-constraint types limiting the transition time between two operations classified

based on Klemmt & Mönch (2012) and Wang & Srivathsan, et al. (2018).

Commonly used terms include time-constraint, time constraint (Altenmüller et al. 2020; May

& Maucher, et al. 2021) or time coupling constraint (Pirovano et al. 2020). These are often

extended to waiting time constraint (Lee & Li 2017), queue time constraints (Ono et al. 2006)

or similar terms in order to highlight the focus of individual studies. In concrete terms several

types of time-constraints can be distinguished as illustrated by Figure 2.9. Consecutive

operations that are linked through a time-constraint are often referred to as simple time-

constraints (May & Maucher, et al. 2021). The term timelink areas for non-consecutive

operations was introduced by Maleck & Weigert, et al. (2017). Three further types of time-

constraints were introduced by Klemmt & Mönch (2012). These can be subsumed under

the term complex time-constraints. Two consecutive simple time-constraints increase the

complexity as the beginning of operation j directly limits operations j + 1 and j + 2 without

leeway for shifting the central operation. Overlapping time-constraints in a similar vein limit the

room for decision-making to ensure time-constraint adherence (Klemmt & Mönch 2012). Any

combination of the above time-constraints is a complex time-constraint (Wang & Srivathsan,

et al. 2018).

Another term frequently used is time constraint tunnel (Lima et al. 2021). The analogy of a

tunnel very well suits the understanding of a time-constraint as products are in a tunnel as

soon as the processing in the first operation has been started. Within this tunnel influence on

the wafer or lot can only be exerted through controlling the material flow. However, physical

transport can hardly be speed up and queuing positions are not freely interchangeable as

several lots compete for the next processing slot due to time-constraint, due dates or process

parametrization requirements (Mönch & Fowler & Mason 2013). Hence, controlling time-

constraint adherence in wafer fabrication is a gate keeping decision (Maleck & Weigert, et al.
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2017). In front of any equipment these gate keeping decisions release time-constrained or

non time-constrained lots for processing. Due to the complexity of this gate keeping task and

to facilitate the application of learned pattern and knowledge, nowadays, human operators

often take these decisions (May & Maucher, et al. 2021).

To formally describe time-constraints, the following notation shall be used. The existence of a

time-constraint is independent of the equipment e ∈ E that is used. O describes a process

operation on a semiconductor manufacturing equipment. Operations are wafer or lot specific

expressed by Ol being an operation of lot l. A single wafer or lot l is described by the finite

sequence of operations required to transform the pure wafer into ICs: (Ol1, Ol2, Ol3, ..., Oln)
with n ∈ N.

Formally, a time-constraint, thus, has the definition of being two operations Olr, Ols where

r < s holds. Olr, Ols are inter-linked by a lot-specific (upper) time limit tlrs (May & Behnen,

et al. 2021). This time limit restricts the maximum time between the completion of operation

Olr and the start of operation Ols for lot l (Klemmt & Mönch 2012). Additionally, multiple time

constraints can be nested or or one time-constraint can be preceded by another, commonly

known as complex time-constraints (Wang & Srivathsan, et al. 2018). Hence, complex time-

constraints can be described based on their component-wise time-constraint disaggregation.

2.1.4 Summary: Semiconductor manufacturing complexities and requirements

In a nutshell, semiconductor manufacturing comes with process, equipment and externally

infused complexities. Figure 2.10 outlines the greatest challenges and complexity drivers.

While externally influenced complexities have less effects on short term decision making,

their operational influence should not be overlooked. Semiconductor manufacturing has,

thus, developed to a high-mix high-volume (Mönch & Fowler & Mason 2013) manufacturing

environment. External influences, in particular fluctuating, sudden demand coupled with

aggressive due dates, additionally lead to the status quo of operational excellence being the

only path to success in this increasingly competitive environment (Pe 2018). Equipment related

complexities additionally induce stochastic process times or sequence dependent setup

times and quality from frequent breakdowns and machine dedications. This technological

influence lead to yield becoming the single most important performance target in wafer

fabrication (May & Behnen, et al. 2021). From an operational point of view system wide

process related complexities pose the biggest challenge (Mönch & Fowler & Dauzère-Pérès,

et al. 2011). Convoluted, reentrant material flow, a mixture of one-piece flow, batching and

further process types demand dynamic analyses. Stochastic equipment behavior aggravates

this challenge and makes predictions hardly possible (Altenmüller et al. 2020). All these
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complexities culminate in ensuring time-constraint adherence which, hence, remains the

most challenging problem in operating a wafer fab (Maleck & Weigert, et al. 2017). Violating

time-constraints directly decreases yield and delays deliveries due to the encountered scratch.

Hence, controlling time-constraint adherence is of utmost importance.

Figure 2.10: Complexities in wafer fabrication based on Mönch & Fowler & Mason (2013),

Xiao (2012) and Valet et al. (2022).

To that end, the following requirements must be considered. First and foremost, time-constraint

adherence must be ensured. Secondly, operational efficiency, in other words the utilization

of capital intensive equipment, should not be compromised. Thirdly, the complexity in a

semiconductor fab must be regarded dynamically and knowledge should be derived or used.

By addressing these requirements, semiconductor manufacturing can become more efficient,

more cost effective and more sustainable.

2.2 Production planning and control

Production is defined as the creation of products from various resources (Eversheim &

Schuh 2013) that can involve both manufacturing and assembly. With increasingly complex

manufacturing processes, products and an ever increasing demand for customized products

production organization has evolved from an organization based on functionality to segmenta-

tion to strategic supply chains to finally global production networks (Wiendahl & ElMaraghy,

et al. 2007). Cost-effectiveness and rapid reactions remain the key to produce successfully

(Koren et al. 1999). All in all, production planning and control (PPC) nowadays aims to reduce

the production company internal complexity and react rapidly and cost-effectively (Wiendahl &

Breithaupt 1999). In a nutshell, PPC is the lever to reduce or control complexity in complex job

shops and in generally complex manufacturing environments. The regarded semiconductor

manufacturing fab exhibits these complexities as a prime example of a complex job shop.

Therefore, in the following, PPC, its goals and approaches are introduced and discussed on a

general perspective as well as the application to complex job shops.
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2.2.1 Key Performance Indicators

Striving to successfully attain strategic goals is of utmost importance to withstand nowadays

competitive manufacturing environment. Through monitoring and managing Key Performance

Indicators (KPIs), that serve as an effective translation of business models, this success

can be accomplished (Maté et al. 2012). KPIs are widely used in industry at different levels

of decision making (May & Fang, et al. 2022). In PPC KPIs often serve as benchmarks

and targets that have to be balanced and achieved (Wang & Liu 2013). Table 2.1 gives an

overview of the typically most relevant performance measures that are captured in KPIs.

They can be directly related to semiconductor manufacturing as capital intensive equipment

should be utilized to recover high investment costs. Short waiting times are required to

deliver on time and reduce inventory. In turn this is beneficial for time-constraint adherence

(Kitamura et al. 2006). Violating time-constraints in semiconductor manufacturing and in

general manufacturing inferior quality decreases yield and hence the operational performance.

To achieve a good operational performance a high yield should be complemented with a high

throughput leading to more quality assured products being manufactured at the same time.

Table 2.1: Most relevant KPIs as performance measures in production planning and control

Performance
measure

Unit Description

Utilization % Percentage of time in which the object of study is utilized

Waiting time time Time that is not spend in value creation

Yield %
Rate of final products over produced that fulfills all quality

requirements

Throughput products
time Number of products produced in a time period

Inventory products
Number of products within the regarded system

Nonetheless, several of these performance measures and targets conflict with one another.

The main goals in PPC, as identified by Wiendahl (1997), influence each other. As the above

mentioned performance measures can be classified into these five categories they incorporate

relationships such as that decreasing inventory comes at the expense of decreasing utilization.

Similarly, decreasing waiting times requires decreasing inventory whereas throughput needs

a balance of both. Thus, this problem folds into a multi-criteria optimization with different

points in the Pareto Continuum to be achieved with different methods but ultimately a trade-off
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decision has to be taken. Most famously, Little’s Law connects the main KPIs of a discrete

manufacturing production system (Little 2011) as follows:

L = λW, 2.1

where L describes the average number of products in the system (inventory), λ describes the

average flow through the system (throughput) and W denotes the average waiting time per

product (Little 2011). The regarded system can vary from a single machine, multiple machines

or an entire production system up to global production networks. Balancing the trade-off

of these and further KPIs is the core task of PPC on different levels. Hence, recognizing

the influences on other KPIs is of major importance when designing intelligent production

control.

2.2.2 Production Planning and Control tasks

PPC is performed within a production company and plans ahead long-, mid- and short-term

operations. Customers’ and suppliers’ requirements, however, are taken into account as PPC

can ”cut across company boundaries" (Wiendahl & ElMaraghy, et al. 2007) typically within a

global production network. As a comprehensive value creation proposition PPC comprises

activities from dispatching, scheduling, buying and maintaining machinery to organizing raw

materials and human resources (Eversheim & Schuh 2013). Producing in time with the right

quality at the right costs (Wiendahl & Breithaupt 1999) is paramount. Therefore, the production

system, available capacities as well as capabilities, current orders and the expected demand

are monitored through PPC. Through a company internal focused scope the production

is managed as PPC controls the aforementioned factors. Individual sub-entities within a

production company, such as sales, purchasing or storing, are lacking a holistic overview of

the entire company so that coordination is preeminent. PPC thus ensures that orders are

fulfilled and raw materials are sourced in a timely, qualitatively and cost-effectively manner

(Wiendahl & Breithaupt 1999).

Coordination in PPC is executed through the control of material flow from raw materials to

customer delivery, information flow between entities and financial flow (Wiendahl & ElMaraghy,

et al. 2007) as shown in Figure 2.11. Financial planning governs the primary financial flows

while PPC can allocate funds within a company through actions. Linking these entities and

flows is the foremost goal of PPC to ensure a smooth production. Thereby, PPC deals with an

ever-changing environment and a plethora of stochastic influences (Wiendahl & Breithaupt

1999). To contend with this uncertainty predictions and approximations are typically applied
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Figure 2.11: Production Planning and Control scope in a market economy, based on Wiendahl

& ElMaraghy, et al. (2007)

through elaborate PPC software and potent computer systems (Wiendahl & ElMaraghy, et al.

2007).

Production Planning and Control (PPC) contains tasks that can be separated by the timely

scope of their planning or control horizon and costs for reversing made decisions (Schuh &

Wiendahl 1997). This leads to the three levels of long-term strategic decisions - implementing

comprehensive company goals -, medium-term tactical decisions - planning product volumes,

resources and aggregated inventory control - and short-term operational decisions - direct

control of production resources and goods, including physical material flow (Nickel et al.

2014). Figure 2.12 unveils their interactions and the hierarchical structure. Decomposing

the continuous PPC problem into hierarchical, individual problems enables the application

of complex, yet solvable mathematical models, on each level (Nickel et al. 2014). Epistemic

uncertainty increases in longer-term decisions. Aleatoric uncertainty is increasingly present

in short-term decisions as the stochastic nature of events and their interdependence magnify

the complexity (Wiendahl & Breithaupt 1999). Therefore, the complexity of PPC rises with the

complexity of the regarded production system.

While the long-term targets PPC aims at include strategic goals and financial independence

each level disaggregates these targets into Key Performance Indicators (KPIs) (Eversheim &

Schuh 2013). This decouples the time invariance of decisions and avoids a hardly possible

evaluation of long-term effects in short-term PPC tasks (Schuh & Wiendahl 1997). Therefore,

KPIs are akin to the target measures for PPC that are to be achieved with the levers provided
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Figure 2.12: Levels of Production Planning and Control (PPC), based on Schuh & Wiendahl

(1997); Mönch & Fowler & Mason (2013) and Nickel et al. (2014)
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on each level as illustrated in Figure 2.12. Decoupling the decision making on individual

levels is a major step for complexity reduction (Wiendahl & Scholtissek 1994). However,

the influence of these complexities cannot be underestimated and must be regarded on

all PPC decision making levels (Wiendahl & Scholtissek 1994). Figure 2.13 presents the

most relevant traditional complexity drivers for PPC, which climax in operational PPC and

short-term decision making with many degrees of freedom.

Figure 2.13: Traditional complexity drivers for PPC in manufacturing, based on Wiendahl &

Scholtissek (1994)

Strategic PPC governs long-term decisions about product concepts, associated technologies

(Schuh & Wiendahl 1997) and global production decisions on strategy, competitive niches or

network footprint (Lanza et al. 2019). Hence, the decision horizon is in the order of months or

years (Nickel et al. 2014) and uses empirical values obtained during past production, forecasts

and predictions as well as experience. Thus, static optimization problems and intuition are

often involved.

As opposed to tactical PPC which balances staff, machinery, supplier modes with product

selection and required production targets (Nickel et al. 2014). The decisions are based on

strict requirements such as production targets and intangible aspects such as strategy from

the strategic PPC (Wiendahl & ElMaraghy, et al. 2007). One interesting problem here is

aggregate production planning (May & Kiefer & Frey, et al. 2023) which controls workforce,

machinery and inventory levels on a typically week-to-week basis. A clear input comes from

operating figures from the shopfloor. These directly influence the values and expectations

which are used in tactical PPC decision making which typically uses heuristics or linear static

optimization approaches (Nickel et al. 2014).

Operational PPC, in contrast, directly controls the material flow, scheduling of jobs on ma-

chines and maintenance on a shopfloor level (Schuh & Wiendahl 1997). Due to this near

real-time decision making it transforms strategic and tactic decisions within the space of

feasible solutions given staff, machinery and inventory levels to concrete assignments on the

production shopfloor (Nickel et al. 2014). Uncertainty about the times and costs diminish while



26 Fundamentals

the uncertainty in general due to stochastic influence, e.g. breakdowns, increases (Mönch

& Fowler & Mason 2013). A greater complexity in manufacturing directly relates to more

complex PPC decision making (Wiendahl & Scholtissek 1994).

2.2.3 Complex Job Shops and Production Planning and Control

Increasing complexity in manufacturing is a major driver for changes in production paradigms

(Wiendahl & Scholtissek 1994). As explained in Figure 2.15 function oriented job shops

(Gabel & Riedmiller 2012) gave way to streamlined serial production. In order to cope with

technological requirements and frequent changes flexible manufacturing systems (FMS) intro-

duced free material flow in clustered connected equipment environments (Wurster et al. 2022).

Easy reconfiguration based on a modular production system paradigm with standardized

modules extended these to reconfigurable manufacturing systems (RMS) (Koren et al. 1999)

and finally matrix production with a grid like structure (May & Schmidt, et al. 2021). Achieving

this takt time independence, redundancy and loose material flow leads to a more job shop like

structure. By drawing upon the previous concepts and recognizing the vast complexities along

real-time decision making from setup to processing and material flow or time-constraints

the term complex job shops was coined(Waschneck et al. 2016). Thus, the main different

between matrix production and complex job shops lies in the operational complexity enforced

in complex job shops that stem from convoluted material flow through reentrant jobs, different

lot sizes as well highly variable process or setup capabilities and times. The underlying

structure insofar as line-less manufacturing and an object-oriented perspective is regarded

remain similar. Figure 2.14 outlines these complex job shop characteristics. Semiconductor

manufacturing, due to its technological complexities and requirements, is a prime example for

complex job shops (Mönch & Fowler & Mason 2013). However, future trends in globalization

will lead to more complex manufacturing settings (Lanza et al. 2019) and, thus, increase the

trend towards complex job shops in many more industries.

In complex job shops PPC is likewise more complicated (Waschneck et al. 2016). Hence,

a hierarchical PPC decision making approach is typically implemented (Mönch & Fowler &

Mason 2013). Nevertheless, on the production control level different lot sizes and routes,

stochastic processing times with frequent breakdowns, sequence dependent setup times

and reentrant flow (Waschneck et al. 2016) lead to an excessively large solutions space.

Therefore, intelligent production control for complex job shops is still in its infacy.

2.2.4 Semiconductor Production Planning and Control

Semiconductor manufacturing decouples PPC decision making in four stages to deal with

the complexity (Mönch & Fowler & Dauzère-Pérès, et al. 2011). The decision horizon can

be divided into time buckets on all levels (Mönch & Fowler & Mason 2013) as illustrated in
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Figure 2.14: Characteristics of complex job shops based on Waschneck et al. (2016) and

Mönch & Fowler & Mason (2013)

Figure 2.16. Each time bucket comes with a length and requirement to be achieved by shaping

the decisions within this time bucket. In a similar vein to general PPC decision shorter term

manufacturing KPIs are estimated based on historical data and used for decision making.

Concretely, planning takes place on a quarterly to yearly level and optimizes for revenue

by assuming cycle times and influencing long-term capacity planning and master planning

(Mönch & Fowler & Mason 2013). The former plans product mix and associated capacities

on an enterprise level in a matter of years. The latter plans production quantities on a more

operational monthly to quarterly basis. This leads to production quantities for regarded,

typically weekly, time buckets which can be associated to exact semiconductor fabs (Pe

2018). Within these time buckets orders are released, in other words the starting time of

production is assigned to each order (Mönch & Fowler & Dauzère-Pérès, et al. 2011). The

results are smaller, typically weekly or bi-weekly, time buckets with associated sets of orders

to be released into the semiconductor fab. Order releases, intuitively described by Little’s Law,

directly influence inventory levels, throughput and cycle times (Mönch & Fowler & Mason

2013).

These production planning decisions can be kicked off by numerous triggers (May & Overbeck,

et al. 2021). In semiconductor manufacturing event-driven, time-driven or hybrid production

planning is prevalent (Mönch & Fowler & Mason 2013). Rolling horizons are the norm in time-
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Figure 2.16: Semiconductor PPC hierarchy according to Mönch & Fowler & Mason (2013).

driven production planning. In this case decisions are taken for the planning horizon of several

time buckets and in an iterative way adjusted once the first time-bucket is implemented.

Production Control shapes the short term decision within these weekly or shorter buckets.

First, based on the known due dates and orders that have to be released, scheduling assigns

individual jobs to machines (Mason et al. 2007). In general, scheduling allocates scarcely

available resources over time to the respective jobs (Mason et al. 2007). Due to the complexity

of large semiconductor fabs scheduling is limited to shifts or one day (Mönch & Fowler &

Mason 2013). Hence, many decision of medium value have to be taken. Due to the stochastic

nature of equipment availability, process quality and timing frequent rescheduling is necessary

(Mönch & Fowler & Dauzère-Pérès, et al. 2011). Since semiconductor manufacturing contains

reentrant flow, time or space-wise decoupling of these decisions is hardly possible. Dispatching

uses these desired, scheduled priorities and reacts minute-by-minute to assign available

jobs to available resources (Mönch & Fowler & Mason 2013). This includes the possibility to

integrate up-to-the-minute information about equipment maintenance, available reticles and

further near real-time data. Thus, dispatching has to be performed in a quick and effective

way (Wang & Srivathsan, et al. 2018). Priority rules and manual human prescribed priorities

are the norm (Mönch & Fowler & Mason 2013). Such dispatching rules are thus typically not

intelligent or capable of including sophisticated algorithms or complex problems. The realm of

dispatching decisions extends from job to transport allocation, job to machine allocation from

buffers and changes in buffer orders, for instance under required maintenance and machine

dedications. As to accommodate these quick decisions dispatching processes a large number

of typically, individually as low value regarded, decisions (Mönch & Fowler & Mason 2013).
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When regarding time-constraints and the high value of scrapped wafers dispatching in fact has

a much higher impact and value of decisions (Lima et al. 2021). Due to the current inability of

properly incorporating large-scale near real-time data into dispatching necessary to deal with

time-constraints human operators are tasked with ensuring time-constraint adherence (May

& Maucher, et al. 2021). Hence, future intelligent production control must present solutions to

incorporate such near real-time data and intelligent algorithms to address time-constraints

to be applicable to semiconductor manufacturing. Solving dispatching under the influence

of time-constraints holds great potential. Scheduling restrictions, a typical way of trying to

deal with the incapability of dispatching and operators to ensure time-constraint adherence

(Klemmt & Mönch 2012), can be eased. Order release can allocate orders more tightly to

their due date as time-constraint violations can be better avoided and lengthy restarting of

wafer fabrication avoided (Lima et al. 2019). Likewise, by avoiding time-constraint violations

less capacity reserve needs to be considered on a pure planning level. Therefore, ensuring

time-constraint adherence is paramount for semiconductor manufacturing PPC.

2.2.5 Summary: Solution approach requirements

All in all, production planning and production control within the PPC framework aim at ensuring

effective and efficient production on all levels (Mönch & Fowler & Dauzère-Pérès, et al. 2011).

Complex job shops, as the climax of complex manufacturing systems, greatly increase the

complexity of PPC as explained and visualized in Figure 2.17. While all levels of PPC are

affected by the complexity drivers production control is affected most (Waschneck et al.

2016). Designing and implementing a novel production control approach, capable of handling

complex job shops, hence, is of major importance. Most notably, time-constraint adherence

which is the culmination of complexity drivers should be solved.

To that end, the following requirements must be considered. Firstly, PPC solution approaches

must fit into the PPC framework by being able to operate within the prescribed time frames,

with the defined performance measures and not compromise on higher level targets as shown

in Figure 2.17. Secondly, real-time data should be used to achieve operational targets. Thirdly,

historical data should be used to improve decision making and anticipate future behavior of

the production system. The underlying rationale is that better informed real-time data based

decision, that incorporate behavioral predictions, enable a holistic and effective PPC. Last

but not least, PPC in the context of ever increasingly complex manufacturing settings has to

be enabled to attain to strict targets without last minute manual, often error prone, human

intervention. Time-constraints in semiconductor manufacturing pose such a strict target that

cannot be directly controlled with traditional PPC approaches. Therefore, the solutions for

complex job shop PPC should contain structural changes compared to nowadays scheduling

and priority rules.
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Figure 2.17: Complex job shops strongest PPC complexity drivers.

2.3 Quantitative optimization methods

Optimization takes places under the rationale of object-driven and rational decision making

(Nickel et al. 2014). Optimization is closely related to operations research and aims at selecting

the best criterion fulfilling element from a set of alternatives (Murty 1994). Relevant criteria

include finding maxima, minima or robust values and associated elements (Karsu & Morton

2015). As a quantitative method computational methods are widely applied. In the context of

PPC and operations management optimization is often used to find the best objective fulfilling

solution under given constraints (Nickel et al. 2014). Alternatively, time series models aim

at perfectly modeling a time series through several models (Pham & Kuestenmacher, et al.

2023).

In general, exact methods can be distinguished from approximate methods that find suffi-

ciently good, but not necessarily exactly optimal, solutions (Nickel et al. 2014) as outlined

in Figure 2.18. The latter is often implemented in forms of heuristics or meta-heuristics

(Burke et al. 2013) which denote fixed decision rules. Heuristics are typically handcrafted

to incorporate expert knowledge and patterns observed in systems and hence are suitable

even for large problem sizes (Wang & Usher 2004). However, that low required computational

effort comes at the cost of typically finding lower quality solutions (Nickel et al. 2014). Instead

of handcrafting rules machine learning (ML) as a prominent artificial intelligence methods

aims at learning the functional relationship between an input and output based on data (Irani

et al. 1993). Therefore, once this relationship is learned it can be applied to smaller and larger
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problems with low computational effort and acceptable quality of the solution. Mathematical

optimization on the contrary aims at finding the optimal solution of highest quality with typically

too high computational effort to be applied to large scale problems (Nickel et al. 2014). The

following sections will introduce these methods with a focus on ML as the nowadays most

prominent intelligent method.

Figure 2.18: Illustrative comparison of exact and approximate quantitative optimization meth-

ods (Machine Learning and Heuristics) with respect to suitable size of problems,

quality of solution and required computational effort based on Nickel et al. (2014).

2.3.1 Mathematical optimization

Mathematical optimization aims at finding the optimal solution to an optimization problem.

Therefore, optimization methods are evaluated, analyzed, improved or developed. The aim

lies on improving the evaluation in a given objective function (Nickel et al. 2014). This objective

function is to be optimized, in other words minimized (or maximized), and constitutes the

first element. Regarding only minimization (or maximization) is sufficient as f(x0) ≥ f(x) ⇔
−f(x0) ≤ −f(x) holds as f(x) describes the function f(·) over x. Secondly, constraints

restrict the solution space. Only solution candidates within the valid space of the decision

variable defined in the third step are feasible. (Nickel et al. 2014)

In general, mathematical optimization aims at finding an exact solution with a high quality

(Murty 1994). As illustrated in Figure 2.18 this requires high computational effort and is thus

only suitable for smaller sizes. The exact complexity, however, depends on the problem type

and formulation as introduced in Figure 2.19. The complexity varies between NP − hard for

Integer Programming (Murty 1994) and polynomial time for simple linear optimization. The
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optimization context decisively influences the exact problem formulation as the parameters

that describe the problem can vary between deterministic and stochastic values (Nickel et al.

2014). If the aim is to find robust solutions stochastic optimization is increasingly complex.

Constraint Programming regards a different use case in which variables are related through

constraints. A selection of the above is presented in the following.

Figure 2.19: Morphological box of a selection of optimization problem types based on Nickel

et al. (2014).

Linear Programming regards a linear objective function with convex, linear constraints over a

continuous variable space (Murty 1994). The Simplex Algorithm, a simple, efficient algorithm,

can solve basic linear optimization problems which include supply chain decisions, production

or transport planning (Nickel et al. 2014). In a canonical form a linear problem can be given

as:

max cT x

s.t. A∗x ≤ b∗

x ≥ 0
2.2

where x is the decision variable that can be set to maximize the objective function expressed

in vector c within the constraints given through the inequalities A∗x ≤ b∗ and x ≥ 0.

Integer or mixed-integer programming extends this by restricting the value of decision variables

x or a subset of x to integer values (Murty 1994). This vastly increases the problems complexity

to NP − hard. Real-word problems, however, often fall into this class as resources can often

not be split. Examples include sequencing, resource allocation or selection problems (Nickel

et al. 2014). In contrast to linear problems which contain continuous linear properties that

enable efficient mathematical solution, not present in inequity integer problems (Karsu &

Morton 2015). Most common approaches to solve integer or mixed integer problems includes
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Branch-and-Bound methods which disaggregate the problem into several branches until

optimal integer values are found (Nickel et al. 2014).

Non-linear optimization on the other hand, is complex as the problem is not necessarily

convex (Nickel et al. 2014). These problems feature non-linear objective functions or problem

constraints which induce possible non corner point optimal solutions. Thus, linear continuous

properties do not hold. A feasible approach is the application of a Lagrangian function that

transforms constraints into the novel objective function which can be solved with the help of

gradient based methods (Nickel et al. 2014).

The setting of these problems can be seen in the context where deterministic models are

most widely used. They regard a setting in which parameters, that describe the objective

function and problem constraints, in the above example A∗, b∗ and cT , are deterministic and

known (Murty 1994). Stochastic or robust optimization however assumes distributions and

optimizes over expected values or robustness levels (Nickel et al. 2014). Constrained or

dynamic optimization regard optimization from a constraint perspective or recursive, dynamic

process perspective. Online optimization extends these different notions to problems where

the environment is subject to ongoing information flow (Dunke & Nickel 2016). In nowadays

production environments this understanding of finding optimal or near-optimal solutions with

limited knowledge about the future is paramount (Dunke & Nickel 2016).

2.3.2 Heuristics and metaheuristics

Heuristics are formulated as a set of rules prescribing how to handle different system states

(Kuhnle et al. 2022). In general, heuristics are algorithms that approximate the optimal solution

to optimization problems by taking empirical knowledge into account and not mathematically

solving the problem (Mönch & Fowler & Mason 2013). Hence, an optimal solution is not

guaranteed to be found and the exact solution quality is not known. To provide acceptably

good solutions fine tuning heuristics to the exact problem or developing problem specific

heuristics is necessary (Burke et al. 2013). The main focus, however, is on finding an

acceptably good solution with less required computing power (Waschneck et al. 2016). By

storing various rules and retrieving the rules immediate decisions are facilitated and decisions

are humanly understandable. Hence, using heuristics are seen as a good compromise

between computational speed or effort and quality of the solution for NP − hard problems

(Mönch & Fowler & Mason 2013).

Through this high speed decisions can be obtained which are feasible by addressing con-

straints, such as in integer or mixed-integer optimization, in the set of rules. In general,

heuristics can be sorted into procedures to find good, feasible initial solutions to optimization

problems and into solutions that improve feasible solutions towards the optimal solution
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(Nickel et al. 2014). Heuristics do not search holistically through the solution space, but select

among identified feasible solution alternatives. (Burke et al. 2013). Most prominent is the

integration of greedy approaches that identify several feasible solutions and greedily select

the best alternative until no better alternative solutions are found with the predescribed rules

(Yurtsever et al. 2009). This can lead to seemingly shortsighted decision often described as

myopic. Heuristics are widely used in industry as they are often formulated by experts, easily

interpretable and computationally effective (Waschneck et al. 2016).

Metaheuristics in contrast are algorithms designed to solve problems from a more general

perspective (Nickel et al. 2014). To avoid the shortsightedness of heuristics and local optima

metaheuristics often introduce randomness or the selection of not only the best greedy

solutions. Therefore, general problems, such as scheduling from PPC, can be solved (Nickel et

al. 2014). However, the solution found by metaheuristics is not necessarily optimal. Additionally,

metaheuristics can hardly recall historical behavior if a defined database is used which

decreases the computational speed. Nevertheless, neither heuristics nor metaheuristics can

build knowledge and learn from the past (Russell & Norvig 2021).

For short term decision or in the absence of suitable data for the application of these algo-

rithms, humans are often tasked with quantitative decision making in complex production

environments such as semiconductor manufacturing (Mönch & Fowler & Mason 2013). Alter-

natively, artificial intelligence can implement such learning behavior (Russell & Norvig 2021).

2.3.3 Artificial Intelligence

Artificial Intelligence (AI) contains several techniques that draw upon or extend classical

mathematical optimization (Russell & Norvig 2021). The underlying approach is to simulate

human intelligence based on accurate descriptions. AI aims at artificially creating intelligence

demonstrated through learning, reasoning, generalization, knowledge representation and the

ability to infer as illustrated in Figure 2.20 (Russell & Norvig 2021). The applications range

from language with Natural Language Processing and pictures to high dimensional vectors.

Ever since AI’s inception in the 1950s and 1960s (Russell & Norvig 2021) the application in

production research has been subject to research. Increasing data availability, more potent

algorithms and cheaper hardware fuel nowadays plethora of AI applications in practice.

Reasoning regards mainly two tasks. Firstly, reasoning shall use reason on an available body

of knowledge to provide answers to questions (Vila 1994). Secondly, this body of knowledge

can be extended with new information or checked for inconsistencies (Vila 1994). Doing

so, it represents a step-by-step process seemingly copied from human reasoning (Russell

& Norvig 2021). It was used to design industrial applications ever since the ability to deal
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Figure 2.20: Artificial Intelligence and relevant subsets based on Russell & Norvig (2021).

with incomplete information and uncertainty at the end of the 20th century (Vila 1994). The

main disadvantages lie in the complexity reasoning over a large body of knowledge and the

insufficient knowledge representation. Therefore, modern AI focuses on alternatives.

Knowledge representation aims at representing information intelligently (Russell & Norvig

2021). A Knowledge Base (KB) is used to store this information in form of abstracted knowl-

edge (Studer et al. 1998). In general, the process of designing and managing such KBs

has become known as Knowledge Engineering (Studer et al. 1998). Within Knowledge

Engineering ontologies have emerged as the most interesting approach (Gruber 1995) as

the aim is to create a universally communicable understanding of a domain (Studer et al.

1998). Section 2.3.3.1 introduces ontologies more closely. With the advent of Knowledge

Engineering for a semantic web knowledge graphs have become the dominant KB (Jurisica

et al. 2004). A knowledge graph has a general structure to store the knowledge within a graph

thus allowing flexible relations. A detailed introduction to knowledge graphs is presented in

Section 2.3.3.2.

Learning or Machine Learning followed a fundamentally different approach. In contrast

to symbolic, knowledge and reasoning based AI Machine Learning as a subsymbolic AI

emphasizes statistical relationships (Russell & Norvig 2021). During the AI winter at the end

of the 20th century Machine Learning has drifted apart from symbolic AI. Thus, Machine

Learning is separately introduced in Section 2.3.4

2.3.3.1 Ontologies

Initially, as a term ontology was used in philosophy to describe the semantic representation

of existence (Gruber 1995). While there is no universally accepted definition of an ontology

the proposal from Shamsfard & Barforoush (2004) to describe an ontology as a tuple Ont as

follows is suitable:

Ont = (C, R, A, Top), 2.3
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where C represents the set of all concepts, R is the set of all assertions, and A describes

the set of all axioms with Top being the hierarchy’s highest level of concepts. Concepts refer

to notions and the conceptualization of entities. These are represented as the nodes in the

ontology network (Shamsfard & Barforoush 2004). Assertions relate any multiple concepts

to one another with H ⊂ R describing the set of taxonomic relations. B ⊂ R describes

non-taxonomic relations which are similarly to H represented as edges in the ontology

graph (Shamsfard & Barforoush 2004). To support the understanding and usage of ontology

elements axioms about concepts and relations are introduced (Knublauch et al. 2006). The

top level hierarchy within the ontology is also mirrored in the relation between ontologies.

Studer et al. (1998) distinguish several types of ontologies. Core ontologies are generic and

provide knowledge applicable across domains. As opposed to domain ontologies that contain

specific knowledge valid within a particular domain. Combining core ontologies and domain

ontologies to solve a problem in a particular area leads to application ontologies. Ontologies

can be merged through their concepts and assertions if axioms satisfy certain constraints

(Gruber 1995). Thus, reusability, interoperability, flexibility and consistency as well as the

possibility to enable reasoning are the strengths of ontologies (Knublauch et al. 2006).

Semantic representations aim at linking semantics to make objects or the web in the semantic

web initiative machine readable by building on ontologies (McGuinness & Van Harmelen, et al.

2004). Linked to Extensible Markup Language (XML) the semantic web initiative focused on

the Resource Description Framework (RDF) to describe metadata (Knublauch et al. 2006).

The extension to include schemata led to the Web Ontology Language (OWL) which serves

as a standard ontology exchange format (McGuinness & Van Harmelen, et al. 2004).

2.3.3.2 Knowledge Graphs

While ontologies are well suited to represent knowledge about concepts (Studer et al. 1998)

their explanatory power for individual instances is less obvious. Hence, instantiating ontologies

increases the ability to explain and model real environments known as a knowledge graph

(KG) (May & Kiefer & Kuhnle & Lanza 2022). The advantages include the ability to reason

over ontology based KG, the flexibility to the data development in a KG, novel, emerging ML

techniques for graphs and the availability of graph query languages that substitute structured

query language (SQL) based KBs (Hogan et al. 2021). Therefore, a KG can be defined

as a graph containing data to store and convey real world knowledge (Hogan et al. 2021).

Herein, entities are represented as nodes and relations between these entities as edges. This

paved the way for understanding a KG as a set of triples (entity, relation, entitiy) which

corresponds to natural language sentences as a triple of (subject, predicate, object).
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Figure 2.21: Examplary knowledge graph as a direct edge-labeled graph for lot data in a CMP

process.

There are multiple graph types used to represent ontologies (Hogan et al. 2021). Based on

the RDF schema direct edge-labeled graphs have emerged as the simplest form. Figure 2.21

showcases such a KG, where edges are introduced where the type of the edge is in its label

(Hogan et al. 2021).

Big data based knowledge graphs quickly escape from the realm of visually understandable

graphs. In order to use that data, graph query languages are used (Pérez et al. 2006). The

underlying primitive of those languages are (complex) graph patterns and navigational graph

patterns (Hogan et al. 2021). A general graph pattern describes a graph of interconnected

constants and variables which are compared against the KG. If the pattern is identified the

variables are returned or transformed and returned in complex cases. Navigational patterns

can be used to search for paths between two constants within a KG. Coupled with the OWL

exchange format that can express KGs (Hogan et al. 2021) query languages such as SPARQL

Protocol and RDF Query Language (SPARQL) (Pérez et al. 2006) contribute to the success

of knowledge graphs.

2.3.4 Machine Learning

As an alternative to the structured representation of knowledge machine learning aims

at the intelligence required to improve in tasks by learning. With the advent of big data

machine learning nowadays constitutes a major field of research in both industrial and

non-industrial systems (Russell & Norvig 2021). The underlying concepts however date

back several decades. In 1957 and 1958 the foundations of modern days most successful

machine learning algorithm, neural networks, was laid by Frank Rosenblatt and others who

successfully implemented an artificial neural network for the first time in history (Yadav et al.

2015). These early implementations regarded small individual neural networks capable of

learning to perform on a narrow set of small problems. In contrast to nowadays specialized,

complex and large-scale neural networks, these early implementations of machine learning

algorithms suffered under the absence of the huge progress made in computer technology
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and the subsequent lacking data and computing power. To handle these large amounts of data

deep learning, nowadays dominant approach, applies gigantic implementations of learning

algorithms (Russell & Norvig 2021). As a result, machine learning, in other words, machines

that learn to perform tasks instead of being programmed to solve tasks has become integral

to nowadays manufacturing.

In general, a computer program is considered learning if the associated performance is getting

better with increasing experience in that task (Mitchell 2006). The following three classes

of machine learning can be distinguished, depending on the data at hand and the objective

aimed at:

• Supervised Learning learns a mapping function between the input and output of the

regarded data that is used to predict the output value for unseen inputs.

• Unsupervised Learning detects pattern within a dataset without explicit input and output

denomination as for instance widely seen in the detection of anomalies.

• Reinforcement Learning places an agent within an environment, based on a Makrov

Decision Process, and lets the agent learn a policy to control the environment to reach

certain targets.

Beyond the type of ML the exact methods that are used can be distinguished (Russell & Norvig

2021). Therefore, besides introducing supervised learning in Section 2.3.4.1, unsupervised

learning in Section 2.3.4.2 and reinforcement learning in Section 2.3.4.3 artificial neural

networks and their relevant dependents are explained in Section 2.3.4.4.

2.3.4.1 Supervised Learning

In manufacturing supervised learning is the most commonly applied machine learning tech-

nique (Pham & Afify 2005). Based on a dataset containing input data x1, x2, ...xN and the

corresponding output data y1, y2, ...yN a model of this association is learned. From this a

training dataset {(xk, yk) for k ∈ {1, 2, ...N}} is selected to abstract the model and conse-

quently apply it to unknown data xunknown and predict the associated output yunknown (Irani

et al. 1993). Hence, training is essentially the learning of a mapping function from the input

dataspace X to the output dataspace Y according to the inherent structure: f : X −→ Y . An

objective function is optimized in an iterative way to improve the performance consistently.

If a global optimum is found succesful learning has identified an optimal mapping function

with respect to the given dataset. Most notably, the objective function consists of an error

function e : X × Y × Yf −→ R that describes the cost of falsely associating elements in X

and Y and should be minimized. Decision trees, regressional models or neural networks are
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most prominently used and often extended through ensemble learning, in other words training

multiple models and obtaining predictions through a dedicated voting system. A fundamental

approach in all is the association of an input to the class of outputs.

Therefore, widespread applications include classification, i.e. obtaining the expected class

associated with the data, and prediction, i.e. estimating the numerical value associated to

the input (Russell & Norvig 2021). In manufacturing applications of supervised learning are

widespread and include condition monitoring, image recognition, quality prediction for quality

control loops or production quantity estimations (Wuest et al. 2016). Supervised learning

can also be applied to complement, replace or be an input for heuristics (Irani et al. 1993).

The main assumption is that the learning from datasets is a sufficient representation of the

underlying data and that unknown data is not sampled from outside the same population

(Pham & Afify 2005).

2.3.4.2 Unsupervised Learning

In contrast to supervised learning unsupervised learning lacks the output {y1, y2, ..., yN}
corresponding to the input. Thus, supervised learning assumes a probability distribution that

is ex ante present within the input data {x1, x2, ..., xN} and that should be inferred during the

learning process as pX(x). Owing to increasingly large datasets, often labeled as Big Data,

unsupervised methods become increasingly important. In manufacturing data is often labeled

to facilitate engineering work and, thus, supervised learning is favored (Wuest et al. 2016).

However, in wake of increasing data availability through interconnection such as software

defined manufacturing (Behrendt et al. 2023) the importance of unsupervised techniques is

gaining moment. Most useful techniques detect anomalies, perform clustering or are used in

conjunction and preparation of supervised learning (Russell & Norvig 2021).

2.3.4.3 Reinforcement Learning

Instead of datasets Reinforcement Learning (RL) relies on the feedback within an environment

to facilitate optimization in decision making within that environment (Koller et al. 2007). RL

constitutes a major field in machine learning that is found on the Markov Decision Process

(MDP) that models the interaction of an agent within an environment taking decisions to alter

the environment as desired. Reinforcing points to underlying learning behavior as knowledge

is learned from interacting with the environment and observing the behavior to subsequently

adapt the policy used to interact with the environment. Therefore, the learning process is data

driven as the reinforcing nature of actions drive the policy towards a better decision making

(Russell & Norvig 2021). The underlying concept can be related to that of human learning in

the early stage as babies learn through interaction within the environment (Sutton & Barto

2018).



Fundamentals 41

The learner is denoted as an agent that is placed within an environment which follows its

own time. While both discrete and continuous time can be selected for the sake of simplicity

discrete times as in a regular MDP is assumed for now. Thus, t refers to the current time-step

and t+1 to the subsequent one. Within this environment the agent perceives the current state

st ∈ SRL but does not need to know the previous state st−1 as the markov property holds

(Sutton & Barto 2018). Based on st the agent selects an action at ∈ ARL it deems helpful in

driving the environment towards a desired goal in the next time-step. The next state within this

environment is stochastic, depending on the previous state and selected action P (st+1|st, at).
After having selected the action at and depending on the environment’s new state a reward

rt is given to the agent. This reward is maximized by the agent during learning to learn an

optimal policy πRL : SRL −→ ARL that maps from the current status to the corresponding

optimal decision. Through this learning higher and higher rewards are obtained, driving the

agent towards the desired behavior. RL can also be applied if the underlying process is not

perfectly time discrete or following the markov property (Sutton & Barto 2018). The learning

process takes place over time and repeatedly interacting with the environment or in case of

closed time horizons over repeatedly interacting through one episode and restarting with a

new episode.

2.3.4.4 Neural Networks as universal function approximators

Neural networks form the basis of a plethora of machine learning approaches, in particular

used within manufacturing (Wuest et al. 2016). The main advantage is that uncapacitated

neural networks can be universal function approximators (Sutton & Barto 2018) so that neural

networks and several delineated machine learning algorithms are introduced in the following.

Artificial Neural Network

In a human brain neurons and their interconnectedness are omnipresent which inspired the

simplification in the form of Feedforward Neural Networks (FNNs) (Sutton & Barto 2018). FNNs

are composed from groups of neurons that are interconnected and only move information

forward to the next group. Therefore, no cycles are seen which enables parallelization to

improve learning speed. FFNs and typicals architectures are introduced in the following.

Architecture of FNNs

Figure 2.22 visualizes a FNN that consists of three layers, indicating the three different types.

First, the input layer constitutes the first layer, which receives the input data xj. Last, the

output layer produces the final neural network output ŷi. In between there are hidden layers

which are interconnected and can vary in size and number. The interconnection in a fully
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connected FNN is as follows. Each neuron is connected to all neurons in the subsequent

layer and each layer has at least one neuron. Imagine two neurons i and j are connected,

then in a graph perspective this connection is known as the edge and has the weight factor

ωij denoting the importance of this connection. For calculating the output of a neuron all the

input values that are fed forward are used in conjunction with the weight of their edge. Every

layer uses an activation function which describes the transformation of the inputs of each

neuron. Most commonly rectified linear unit, sigmoid or hyperbolic tangent functions are used

(L’Heureux et al. 2017).

As a result, the information that is fed forward and, thus, the information flow in the FNN is

controlled through the adjustment of the weights on these edges. Thus, the learning process

aims at adjusting the weights in such a way that the error function is minimized.

Figure 2.22: Exemplary visualization of the architecture of a fully connected neural network.

Training of FNNs

The iterative training of FNNs takes place in so called epochs. At first the initial weights within

the FNN are randomly initialized and improved during the training in the epochs. Within each

epoch, the algorithm iterates over the input dataset to train the neural network with the goal to

minimize the error, the deviation between the observation yi and the prediction ŷi (Russell &

Norvig 2021). The derivative for the error function, which is often based on the norm L2, given

the network weights is calculated. Subsequently, the weight adjustment aims at decreasing

that error based on a gradient descent approach on the error function surface. This training is

subsequently continued over multiple epochs until either the number of maximum training

epochs is reached or early stopping is triggered by an increasing error on a holdout dataset.

This increase in the validation loss between two training epochs indicates overfitting (Yadav
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et al. 2015), in other words memorizing the training data, or a general unstable learning

behavior. Besides the error function, the maximum number of epochs and early stopping on

validation data, the setting of the learning rate is crucial. It controls the adjustment of the

network weights insofar as stepsize of the network weight change can be controlled. To avoid

being trapped in a local optimum higher learning rates are used, while lower learning rates

stabilize the training process.

If sequential and autocorrelated data is regarded the architecture of the applied neural network

can heavily influence its performance. Thus, sequences and autocorrelation should not be

simply regarded with standard FNNs that consider observations individually without the

preceding time series. To address this challenge, a recurrent element linking the current input

and past output was introduced leading to Recurrent Neural Networks.

Recurrent Neural Network

A Recurrent Neural Network (RNN) implements the link between the predecessors of the

current input through the realization of cells that store a state in the internal memory. This cell

state is changed overtime but in general persistent to capture long term relationships in a

long term memory. The major challenge in using RNN lies in vanishing small gradients or too

large gradients that tend to explode if working on long sequences (Yamak et al. 2019). To

address this challenge two particularly interesting RNNs were developed: Gated Recurrent

Unit (GRU) and Long Short-Term Memory (LSTM) neural networks (Cho & Van Merriënboer,

et al. 2014). In the following RNNs and their general structure as well as GRU and LSTM are

introduced.

Architecture of RNNs

Figure 2.23 visualizes the general architecture of an RNN with xi being the input sequence,

V resembling the loop to the previous output, the used RNN cell and ŷi resembling the

output sequence. Within the RNN cell a hidden state hi conserves longer term dependency

information that only gradually changes over time. The input to the RNN cell is a concatenation

or other combination of the loop V and the input sequence xi. The unfolding of the RNN

takes place when the next output value and all its subsequent outputs are not only depending

on the cell state hi but through V also on hi−1 and analogously its predecessors. The exact

RNN cell has a strong influence on the prediction capabilities of the RNN and in recent times

GRU and LSTM have emerged as the most powerful ones (Yamak et al. 2019). Thus, both

GRU and LSTM cells are explained and visualized in Figure 2.24 and in the following.

In 1997 Hochreiter and Schmidhuber first introduced LSTM cells (Hochreiter & Schmidhuber

1997) which contains three individual neural networks that act as gates and control the
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Figure 2.23: Recurrent neural network architecture and unfolding over time based on (Good-

fellow et al. 2016).

information flow. As visualized in Figure 2.24 the forget gate erases memories from the cell

state ct−1, the input gate adds input from the loop ht−1 and input xt while the output gate

controls the final output ht that also depends on the updated cell state ct. Finally, the cell state

is carried over to the nex period and, hence, serves as the long term memory of the network.

This allows persistency of some information, even from the first input x1 to the last.

In 2014 GRU cells which use a generic RNN input output structure were introduced by Cho &

Van Merriënboer, et al. (2014). As visualized in Figure 2.24 LSTMs served as the inspiration

for the GRU’s internal structure (Yang & Yu, et al. 2020). The decisive difference lies in two

details, first the update gate is used to change the persistent state and produce the output.

Second, GRU cells do not require the cell state to be transferred to the next periods (ct).

Instead, ht−1 the previous hidden state and xt as the new input value are sufficient to create

the so called candidate state which is then used to calculate the next hidden state ht.

Figure 2.24: Comparison of the cell structure of an LSTM and GRU model.
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Training of RNNs

RNN network weight initialization follows the regular FNN training process and applies ran-

domized values. Likewise, the weight adjustment uses gradient descent with backpropagation.

The decisive difference occurs in backpropagating the error to the first step. Due to the

recurrent nature of RNNs the training can only start from the last state and requires unfolding

the RNN to the first input x0, also known as backpropagation through time, as visualized in

Figure 2.23.

Despite their ability to serve as universal function approximators, neural networks and in gen-

eral machine learning models have limitations that need to be regarded for applications. The

following sections hence discusses advantages, opportunities, disadvantages and limitations.

2.3.4.5 Advantages of Machine Learning application

The applicability of machine learning models across domains and application fields is unparal-

leled (Russell & Norvig 2021). With the availability of more data and freely usable open source

software, for instance Tensorflow, PyTorch or scikit-learn the complexities of machine learning

applications have eased to a large degree. Thus, in manufacturing machine learning presents

a huge chance and exciting opportunity (Wuest et al. 2016). Based on Wuest et al. (2016)

and Chen & Sampath, et al. (2023) the potential and crucial aspects of machine learning in

the manufacturing domain are put into perspective in the following.

Complex problem modeling ability

Computational problems in manufacturing are often among the most complex problems in the

class of NP −hard problems so that ML is a suitable solution technique (Chen & Sampath, et

al. 2023) that able to find good solutions in acceptable time for NP − hard problems (Russell

& Norvig 2021). As a result the potential of machine learning applications is tremendous and

covers all five main KPIs, namely yield, throughput, cycle time, utilization and inventory in

direct and indirect ways (Wuest et al. 2016). Since the advent of the third and fourth industrial

revolution gathering large data in manufacturing has become the norm (Chen & Sampath,

et al. 2023). Therefore, nowadays manufacturing can be seen as rich in data yet poor in the

availability of knowledge. ML plays a decisive role in creating this knowledge as it can handle

multi-variate, high dimensional data to produce predictions, identify patterns or optimize

decision making. Still complex problems require complex models that are more capable

in dealing with the highly dimensional data (Wuest et al. 2016). This typically increases

the required number of parameters within a machine learning model, moving towards deep

learning which increases model inherent uncertainty (Goodfellow et al. 2016).
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High adaptability

New data can easily be fed to a machine learning model to enable a quick adaptation which

is an important strength of ML (Russell & Norvig 2021). This is promising for complex manu-

facturing environments, for instance as exhibited in semiconductor manufacturing. Oftentimes

changes in the underlying environment can only be identified implicitly through the extraction

of the input which can be achieved automatically with machine learning models (Goodfellow

et al. 2016). As a result, the required knowledge about the underlying process is less for the

application of machine learning techniques than for many traditional approaches (Chen &

Sampath, et al. 2023). Additionally, multiple machine learning models can be concatenated

or symbiotically used, for instance to first clean and impute data with unsupervised learning

and subsequently apply the desired supervised learning.

All in all, ML is a versatile tool with large potential that is comparably easy to apply in the

manufacturing domain. Moreover, computational complexity is manageable and requirements

on the applied knowledge is minimal.

2.3.4.6 Challenges in applying Machine Learning

Traditional software system challenges are no longer sufficient to describe the challenges

and limitations when applying machine learning (Schelter et al. 2015). Due to the increasing

application in manufacturing several further challenges arise (Chen & Sampath, et al. 2023).

These are introduced in the following section.

Overfitting

The biggest risk of applying machine learning methods lies in the so called overfitting (Domin-

gos 2012). Overfitting refers to cases in which the model learn random features up to memo-

rizing individual data points instead of learning the generalization of the underlying model.

Therefore, an ML model that overfits performs very well on the training data set reducing the

error to a minimum. As opposed to the application to previously unseen data where results

deteriorate (Chen & Sampath, et al. 2023). Domingos (2012) decompose this generalization

error into the variance and bias of the model. Wrong assumptions in the model creates a

higher bias, in other words moves the overall performance in a structured way, whereas the

variance is created by small random vairations in the training data that are incorrectly learned

by the model as belonging to the underlying model. As a result, high variance creates a

larger variability and reduce the consistency in performance. Both bias and variance are

visualized in Figure 2.25. Regularisation is a technique used to prevent overfitting which limits

high number of coefficients and punishes too complex structure extraction by the ML model.
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Alternatively, boosting or bagging which learns an ensemble of ML models are often applied

to reduce overfitting (Chen & Sampath, et al. 2023).

Figure 2.25: Bulls-eye visualization of the trade-off in bias and variance based on (Gudivada

et al. 2017).

Curse of dimensionality

The curse of dimensionality states that the machine learning algorithm and hence the model

complexity correlates with the dataset dimensionality (L’Heureux et al. 2017). Therefore,

applying ML to high dimensional space datasets, in other words using many features as

the input and output for each data point, increases the risks associated with the curse of

dimensionality which is especially visible with modern deep learning (Goodfellow et al. 2016).

The underlying reason is that approximating proper generalization is exponentially more

difficult in the dimensionality (Domingos 2012). As ML is essentially using similarities for

reasoning, i.e. the ability to relate features to one another and the output, higher dimensional

dataset complicate the reasoning. Modern deep learning uses massive computing power to

overcome this disadvantage (Goodfellow et al. 2016) or uses attention based mechanisms to

focus on important relations (Chen & Sampath, et al. 2023).

Data quality

Data quality is a major obstacle for the application of ML in manufacturing environments

(Chen & Sampath, et al. 2023). In general measurement uncertainty, inexact measurements,

possibly wrongly obtained input or output data is impossible to avoid due to random errors

(Cortes et al. 1994). This aggravated in industrial environments where value creation is

focused (Wuest et al. 2016). Thus, obtaining high-quality data for ML application is decisive

and should not be compromised. In the following the most common issues based on Zhou &

Pan, et al. (2017) and Chen & Sampath, et al. (2023) are listed.
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• Data noise refers to missing or incorrect values or outliers within a dataset. Given the

typically large amounts of data regarded manually dealing with such noise is infeasible.

• Data redundancy refers to multiple entries of the same underlying data observation

within a dataset. The impact can be fatal as the learned model can be skewed. Typical

reasons are human errors or inadequate data processing.

• Complex feature representation refers to cases in which the data is not appropriately

preprocessed and important features are not selected or made available. While ML can

learn features by itself no convergence can be guaranteed so that it is meaningful to

use a priori knowledge to craft suitable feature representations.

In a nutshell, the application of machine learning models requires a careful trade-off between

the available data, representation and model used. While machine learning engineering is

still in its infancy (Chen & Sampath, et al. 2023) knowledgeably interpreting ML training and

evaluation is required.

2.3.5 Predictions with Time Series Models

Time series describe a serial data observation over time. In manufacturing environments a

big portion of data that is generated comes in the form of time series (Cholette & Djurdjanovic

2014). Studying these time series with time series models is thus of utmost importance

(Farahani et al. 2023). Mainly, the description or the prediction of the future time series

behavior are regarded. The underlying assumption is that future values in a time series are

correlated to its predecessors through an auto-correlation. This chapter introduces time series

models, their application to obtain predictions and their extension to a stochastic, interval

based understanding in prediction intervals. For instance, once the transition of a product

between two consecutive processes on different machines is regarded over a longer period,

multiple products take the same route. The result is a time series of transition times. To

analyze and understand time-constraint violations from this perspective time series models,

associated prediction intervals and possible predictors are introduced in the following and

throughout this thesis.

Forecasting and Time Series Models

In general time series X can be regarded as data inherently structured over the realization

time of individual values Xt. Using natural numbers as an index, the time series can be

written as X = (X1, X2, ...). Single and multi-variate models can be distinguished, where

uni-variate models base their prediction of the next realization Xt on observations from

the same variable X, i.e. (Xt−1, Xt−2, ...) (Kunst & Wagner 2020). In contrast, multi-variate
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models are capable of using multiple variables, typically represented in a vector, to predict Xt.

For multi-variate time series models RNNs and machine learning models in general represent

good and easily applicable models (Cho & Van Merriënboer, et al. 2014). Thus, the following

section focuses on the general introduction of time series and uni-variate models. The most

commonly used models Autoregressive (AR), Moving Average (MA), Autoregressive Moving

Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) (Kunst & Wagner

2020) are introduced in the following.

Autoregressive model (AR)
The AR model represents a random process where the output variable is linear dependent on

its prior values. Therefore, the prior observed values (Xt−1, Xt−2, ...) serve as the input for

the linear regression that is used to predict the following value Xt. The hyperparameter p is

the order of the autoregressive model and describes the number of prior values used for the

prediction. Each prior value is multiplied with the associated parameter φ1, ..., φt that is found

during the linear regression. Assuming an error term εt that is not correlated over time with a

mean of zero and constant variance the AR(p) model can be given in Equation 2.4.

Xt =
p∑

i=1
[φiXt−i] + εt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt 2.4

Moving Average model (MA)
In contrast to the AR model the moving average model assumes that the output variable

follows a cross-relation to another random variable. It is a stationary random process of

order q that evolves around the series’ mean μ and has a white noise εt, in other words a

random signal of equal intensities for different frequencies, associated with each observation.

By regarding q prior values the model parameters θ1, ..., θq are fit with a linear regression

according to the given MA(q) model as shown in Equation 2.5.

Xt = μ +
q∑

i=1
[θiεt−i] + εt = μ + εt + θ1εt−1 + θ2εt−2 + ... + θpεt−p 2.5

Autoregressive Moving Average (ARMA)

Combining the AR and the AM model yields the weakly stationary ARMA model. Besides

extending the applicability to more complex time series Kunst & Wagner (2020) claim that

ARMA models are capable of representing time series with less parameters than MA or AR

models individually. Thus, instead of building AR and MA models, directly building the ARMA
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model is satisfactory and reducing the computational complexity. Inheriting the hyperparame-

ters p, q and parameters φ1, ..., φt and θ1, ..., θq from the AR and MA model, the ARMA(p, q)

model is described in Equation 2.6

Xt = εt +
p∑

i=1
[φiXt−i] +

q∑
i=1

[θiεt−i] = φ1Xt−1 + ... + φpXt−p + εt + θ1εt−1 + ... + θpεt−p 2.6

To fit the hyperparameters p and q holistically the Box-Jenkins method makes use of a

maximum likelihood estimation (Kunst & Wagner 2020).

Autoregressive Integrated Moving Average (ARIMA)

The generalization of an ARMA model leads to the ARIMA model, a linear, non-stationary and

uni-variate random process model. Besides using the two components AR and MA as in an

ARMA model, the integration operator I is added to transform the time series to be stationary

when differencing. In other words, the differences between two consecutive observations are

regarded. In general, the time series can be differenced multiple (d) times and it may include

seasonal differenceing where m seasons are eliminated. By doing so the now stationary

time series can be solved with an ARMA model. The differenced time series can contain a

constant c and is then written as X ′ and solved according to Equation 2.7.

X ′
t = c + εt +

p∑
i=1

φiX
′
t−i +

q∑
j=1

θjεt−j 2.7

Finding suitable hyperparameters p, d, q is computationally intensive as the additional differ-

encing parameter d greatly increases the search space. Still, the Box-Jenkins approach is a

suitable and widely used method to estimate ARIMA models (Kunst & Wagner 2020).

Summary: Prediction Intervals for intelligent production control

Understanding statistics as an interval estimation opens possibilities that go well beyond

traditional Production Control approaches that work on discrete or estimated but discrete

numbers. When working with forecasts and predictions prediction intervals can estimate

the interval in which the next data point is sampled. In manufacturing settings outliers and

crucial influences are seen from only one end of the prediction interval, so that a one-sided

understanding is necessary. By using a loss function prediction intervals can be optimized

and hence effectively used (May & Maucher, et al. 2021). Most prominently, the probability or
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the next data point being under or over a relevant cutoff can be used for decision making as

visualized in Figure 2.26.

Figure 2.26: Benefit of using prediction intervals over pure point estimation based on May &

Maucher, et al. (2021).

Owing to these advantages of using prediction intervals in highly dynamic manufacturing

environments and the fact that prediction intervals can be calculated for simple, closed

mathematical models such as ARIMA and for ML based neural networks enhances the

attractiveness of using prediction intervals in PPC. Thus, in the following the application of

prediction intervals should be considered.

2.3.6 Summary: Quantitative methods to optimize production control

Quantitative methods are key to provide and optimize production control as they can handle

real-time data and provide decisions beyond human intuition. However, the integration of this

data likewise provides a great challenge as traditional mathematical optimization methods

are less suitable for handling large scale optimization problems with big data in particular if

the problem is of dynamic stochastic nature (Murty 1994) as it is in production control. This

shortcoming is widely known and thus heuristics that can easily digest this big data but forego

any optimality requirements have become the state-of-the-art (Burke et al. 2013). Additionally,

their inability to accrue knowledge and their inflexibility to react to changing environments are

the major disadvantages of heuristics. AI can overcome these disadvantages by building up

knowledge and increasing the decisional capacity with historic observations. Purely symbolic

AI, however, is seen as suffering from a combinatorial explosion for large problem sizes

(Russell & Norvig 2021). Nevertheless, the flexibility of storing data and knowledge can be

used. Subsymbolic AI and in particular ML has become increasingly popular due to the

ability to learn and improve in decision making without suffering from big data. While the

training phase of deep learning approaches is computationally expensive their application

is comparably fast (Wuest et al. 2016). By extending artificial neural networks to include

recurrency and evaluate uncertainties, their applicability has been greatly improved.

When regarding sequential data the presence of auto-correlation, in other words, the corre-

lation of the next observed data point to its predecessors is decisive. In contrast to regular
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machine learning approaches that treat each data point individually and equal to one another,

recognizing such auto-correlation in time series opens space for the application of time series

models. Learning a good fit and representation of these time series is akin to learning in

traditional machine learning. Thus, when regarding transition times of lots in semiconductor

manufacturing factory, testing for auto-correlation of this sequential data is a must. Sufficient

capabilities in modeling these time series can than enable proper production planning and

control. Moreover, regarding time series from a machine learning model perspective enriches

the number of applicable models.

Therefore, when applying quantitative methods to improve production control with time-

constraints the following aspects have to be considered. Firstly, the problem structure has to be

analyzed to map suitable quantitative methods to the problem which starts with identification

of convex and linear problems. Secondly, the problem size has to be considered in other

words the number of variables and constraints that are imposed to the problem has to be

manageable. Thirdly, the timely manner of the problem has to be regarded as dynamic

problems can be solved with different approaches and different trade-offs between optimality

and speed. Last but not least, the relevance of historical information has to be assessed to

identify if AI can provide benefits over purely statical, mathematical optimization approaches.

In a nutshell, a good indication towards the applicability of individual quantitative methods is

required and most suitable ones have to be assessed.

2.4 Production system Digital Twin

A digital twin is in general defined as a virtual, digital replica of the physical original that is

interconnected to the physical original (Overbeck & Rose, et al. 2022). Thus, it is closely

related to simulations which map a system to a simplified target system replica that is used to

analyze the dynamics and create knowledge. As these tools are fundamental to the analysis of

dynamic systems their application is widespread in manufacturing. In the following simulations

and various extensions of digital twins are introduced from a production system perspective.

2.4.1 Production system simulation

A production system simulation is often used to analyze the dynamic behavior of planned or

existing system which is therefore transfered into the digital replica with certain simplifications

and assumptions (Ingenieure 1996). There are in general different approaches used that

may or may not be combined. Most notably Discrete Event Simulations (DES) with step sizes

that are event-based are used (Terkaj & Pedrielli, et al. 2012). Alternatively, system dynamic

simulations implement a top down system change approach or agent-based simulations that
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use agents to execute decision process are used (Uçar et al. 2020). The latter can consist of

a single agent or multi-agent systems. The decentral nature of multi-agent systems makes

them advantageous in the application to complex systems but creates the risk of ending in a

local optimum (May & Kiefer & Kuhnle & Stricker, et al. 2021).

VDI3633 is a mature guideline on the application of production system simulations that,

beyond the modeling type, specifies the following components of a simulation (Ingenieure

1996): External database interfaces to obtain relevant data, a user interface to interact with

the human user, a dedicated data management component to deal with the simulation data

and finally the simulation kernel that implements the actual simulative behavior. Therefore,

the model world is modeled within the simulation kernel and extended with event creation to

faciliate the simulation execution (Ingenieure 1996). In combination with production control

the interface to external databases and potentially decisional entities is paramount (Terkaj &

Urgo 2014).

Due to the capability of DES to model real world production systems accurately, in fact well

enough to in situ simulate the behavior with some real time data (Terkaj & Tolio, et al. 2015),

DES are often applied for PPC tasks such material flow control or layout planning (Terkaj &

Urgo 2015). Therefore, for successful simulations the ability to simply express and model

large systems with few assumptions and event is important. DES can additionally be fine

tuned to regarded system and scenario as the level of detail is hardly constrained as long as

events can be used to model the behavior. Thus, the most common application of DES in

production system simulation are the evaluation of ”what if” scenarios (May & Kiefer & Kuhnle

& Lanza 2022).

2.4.2 Foresighted Digital Twins

A Digital Twin on a production system level is the convergence of the aim to simulate in situ

the production system operations (Terkaj & Tolio, et al. 2015) and the desire to integrate

real-time real-world data from digital shadows with system replicas (Uçar et al. 2020). Thus,

the digital shadow is the first step toward achieving a digital twin through providing a holistic

integration concept for information systems integration in manufacturing (Uçar et al. 2020)

and the interface between data storage, warehousing, data collection and their application in

a coupled simulation (May & Kuhnle, et al. 2020). The exact implementations vary, however,

the overarching principle of creating a two way information flow and control remains (Uçar

et al. 2020). By automating the data collection and correlation (May & Kuhnle, et al. 2020) the

physical system becomes tangible in the cyber sphere as any point in history of the system

becomes apparent. Doing so with low latency creates an up-to-the-minute digital shadow



54 Fundamentals

(May & Overbeck, et al. 2021) that contains the current and previous production system

states.

The next logical step lies in using this up-to-the-minute information to analyze the actual

system and its behavior in the cyber sphere. This can be seen as a digital twin of the

production system where too narrow definition as for instance for product digital twins (Krahe

et al. 2022) are avoided. As a definition for this thesis the summary of a digital twin being

the digital, virtual instantiation of a physical (unique) asset that exhibits similar properties,

behavior and conditions (May & Overbeck, et al. 2021) is used. Therefore, the digital shadow

underlies the Digital Twin together with the Digital Master (Liu et al. 2020) that specifies

the simulation kernel. As a result, in general many technical implementations are possible

as long as several digital twin instantiations can be launched from the digital master and

shadow (May & Kiefer & Kuhnle & Lanza 2022). First, this Digital Twin created as an ex post

realization is a powerful enabler of analyses of past events. Second, using this highly accurate

Digital Twin in anticipation of the near future presents the user with a powerful tool. The latter

can be seen as a successor of static simulations and subsequent in situ simulations which

can easily be coupled with external data analysis and optimization (May & Overbeck, et al.

2021). The ultimate goal is to use this anticipation within a Digital Twin to create periods

of foresight into the short- and medium term behavior of the production system that can

then be exploited by the production control (May & Overbeck, et al. 2021). Thus, foresighted

digital twins must implement more realistic system environments in the simulation core than

conventional simulation software can do.

2.4.3 Knowledge Graph based Digital Twins

Based on the need of digital twins to enable a real-time behavior anticipation (Overbeck &

Rose, et al. 2022) and their requirement to provide interlinkage with the real world production

system (Liu et al. 2020) the need for up-to-the-minute digital twins was born (May & Overbeck,

et al. 2021). In light of enabling foresighted digital twins traditional, static DES are not longer

suitable. To address this issue integrating production system data-sources to an ontology and

knowledge graph that is integrated into the production system simulation to create the digital

twin was proposed (Calvo et al. 2023).

Different Ontology Integration Levels for production system simulations and digital twins were

proposed (May & Kiefer & Kuhnle & Lanza 2022):

Level 1: Information about the structure and capacity, e.g. machines, material flow and

queues, is contained in the ontology.
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Level 2: Process specific information, such as process times, setup or maintenance

times and behavior, is included in the ontology.

Level 3: Products and their respective production plans are included in the ontology

and hence enable the core required features for a simulation.

Level 4: By including historic and current event information in the ontology the digital

shadow is fully implemented and a simulation model filled.

Level 5: All information to implement an up-to-the-minute digital twin, namely all of

the above and the general simulation specification, is contained within the ontology or

knowledge graph.

The first levels of Ontology Integration Level have been used in the past to create virtual

factories for in situ simulations (Terkaj & Tolio, et al. 2015) and foresighted digital twins (May

& Kiefer & Kuhnle & Lanza 2022), to create a manufacturing domain ontology (Mönch &

Stehli 2003; Mazzola et al. 2016) or to represent a semiconductor fab (Schulz et al. 2022).

By reaching Ontology Integration Level 5 a full digital twin based on the real counterpart

with up-to-the-minute behavior is implemented (May & Kiefer & Kuhnle & Lanza 2022). By

reaching Level 5 a foresighted digital twin is achieved as with small variations the knowledge

graph based digital twin can be run multiple times to analyze production planning and control

decisions. An exemplary visualization of the interconnection between the real, physical system

and the knowledge graph (KG) that underlies the simulation is presented in Figure 2.27. The

real system and its entities is directly reflected with a knowledge graph. The structure of the

KG is based on an ontology that can describe the object of study, here a production system,

accurately. However, due to the flexible, ontological approach, the KG and ontology in the core

of the digital twin and simulation can technically be selected freely as long as the simulation

framework is adapted or the basic structure modeled in the ontology is adhered to (May &

Kiefer & Kuhnle & Lanza 2022).
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Figure 2.27: Interconnection of an ontology and knowledge graph based digital twin with its

physical counterpart based on May & Kiefer & Kuhnle & Lanza (2022).

By basing the simulation within the digital twin on a KG with a manufacturing domain specific

ontology several advantages evolve (May & Kiefer & Kuhnle & Lanza 2022). Firstly, the state of

the real system digital twin or simulation can be used interchangeably. This enables inference

towards the real world use-case and allows storage and configuration during optimization.

Secondly, this KG is of highly dynamic structure so that it can be extended or in general

changed during the simulation or digital twin runtime. This is important to incorporate real-

world changes, such as breakdowns or layout changes, without the need to handcraft the

system or state. Thirdly, the simulation core and the behavior can be generalized to the needs

of different settings and production environments, e.g. for batch processing. Most notably,

product inherent constraints such as time constraints can be included within the KG and

with a simple SPARQL query can be verified. This leads directly to the fifth advantage of

enabling a strict decomposition of simulation framework and behavioral production control

that can interact with the simulation framework in a service oriented manner. The latter can

be completely decoupled as the ontology and its current status and data in the KG can be

queried instead of relying on programmatically predetermined values that are available in

traditional DES environments. Last but not least, by saving the simulation state in the KG

and likewise saving future and past events the simulation becomes iterable. In other words,

one can go back and forth stepwise and at the same time make changes to the system

representation. This enables shortcuts in branch and bound or tree based optimization

approaches as dominated solutions and unattractive paths can be cut off. (May & Kiefer &

Kuhnle & Lanza 2022)
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The availability of open source simulation software that is based on such an ontology, knowl-

edge graph approach in form of OntologySim made available by the author of this thesis (May

& Kiefer & Kuhnle & Lanza 2022), enables extendability. Most prominently, the adaptation to

a use-case can be seen as much faster and much more stable than implementations from

scratch. As KPIs are integrated based on a standardized approach behavior can be compared

comprehensively.

2.4.4 Summary: Simulations as Digital Twins for production control

In PPC dynamic systems are regarded which can hardly be understood with purely static,

average based methods. Therefore, DES as a simulation tool has gained momentum and has

been widely applied. By tracking event and introducing changes to the system of study or its

environment through time discrete events the system’s behavior can be examined. Thus, DES

are used regularly for production planning and selecting production control in longer term

perspectives (Terkaj & Tolio, et al. 2015). Extending this simulation through an interlinkage

with data from the real system and its digital shadow, that stores this real-time data, creates

the digital twin (Overbeck & Rose, et al. 2022). The advantage of a real-system interlinked

digital twin is that the actual behavior with the real jobs, breakdowns etc. can be studied

and a high fidelity understanding can be developed. Transferring the traditional approach of

evaluating planning and control measures to short-term decisions in a digital twin can be

achieved with a foresighted digital twin (May & Overbeck, et al. 2021). For the application

in complex manufacturing systems with high degrees of flexibility the implementation based

on a KG and ontology, such as in OntologySim (May & Kiefer & Kuhnle & Lanza 2022),

provides additional benefits as complex systems and their behavior can be flexibly modeled

and connected to the real system. Therefore, throughout these developments, ever shorter

decision intervals become possible, ever increasing accuracy allows better result predictions

and, hence, the benefit of transitioning towards these digital twins increases. Figure 2.28

illustrates this relationship. Therefore, the main advantage is that the knowledge graph based

digital twin can be used to improve, select and validated production control performance on

short notice in a flexible way. Hence, now the effects of decisions on complex systems can be

studied.
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Figure 2.28: Evolution and increased benefit from simulation to foresighted and ultimately

ontology-based Digital Twin for a production system.
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3 State-of-the-art literature review

Intelligently controlling complex manufacturing systems has been studied for years (Paternina-

Arboleda & Das 2001). Various approaches, ranging from reducing complexity in the system

through lean management, solving large scale optimization problems to dynamic, intelligent

decision-making, have been proposed. Acknowledging conflicting targets and integrating

dynamic restrictions becomes necessary in complex job shops to effectively control the

production. Machine Learning as means to leverage on both optimization and the ability to

improve over time holds great potential. Likewise, knowledge informed decisions and integra-

tive decision making has to be regarded. For intelligently controlling complex job shops with

time-constraints, the respective state-of-the-art research is introduced in the following Sec-

tion 3.1. Section 3.1.1 presents digital twin based approaches for intelligent production control

with a focus on the integration of static and dynamic knowledge integration as necessary for

complex job shops. Intelligent production control to handle time-constraints on a planning and

scheduling level is introduced in Section 3.1.2. Dispatching under time-constraints as short

term intelligent production control is presented in Section 3.1.3. Section 3.1.4 introduces

learning based production control with time-constraints. Concluding this literature review

Section 3.2 presents the research deficit that is addressed within this work.

3.1 Literature review of focus areas

Research conducted in fields related to this work, as shown in the following paragraphs,

can be analyzed and classified according to different dimensions. The selection of this

research is based on a rigor literature review process based on the grounded theory approach

by Wolfswinkel et al. (2013). Focusing on these dimensions the research deficit can be

analyzed.

System scope: Complex job shops are characterized by high volume high variant production

and exhibit the properties outlined in Section 2.2.3. As the complexity is magnified with

increasing system size and the exact degree of complexities regarded in a system driven

by stochastic processes, the setting and regarded system size has to be regarded. A major

industry that exhibits complex job shop properties and that suffers significantly under time-

constraints is semiconductor manufacturing. To properly address the identified research

questions the search space is restricted to a semiconductor manufacturing scope with time-

constraints.

Modeling: As the system regarded has to be abstracted to be understood and controlled,

the exact modeling approach is crucial. The approach developed in this thesis needs to be
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adaptive, executable in near real-time and connectable to real-world data to not delay produc-

tion. Within the realm of data-based modeling, explicit modeling approaches, experimental

studies and analytical or meta models can be used. The modeling choice heavily influences

the solution technique that can be used.

Solution: Based on the modeling approach, the solution technique plays a pivotal role in

performance and applicability to the selected problem scope. Exact and approximate solutions

can be distinguished. Their requirements on consistency, extensiveness and completeness

about data and the assumptions used during modeling and solution process vary. Thus, the

confidence in the results and the required computing effort vary alike.

Objective: Production control has to comprehensively evaluate different objectives. The focus

and intensity of regarding specific objectives, however, can vary vastly. In order to play a

significant role in the research within this thesis, time-constraints and general targets such

as the KPIs introduced before within the complex job shops shall be regarded. A dynamic

evaluation should be evaluated and, ideally, time-constraint violations minimized. The result

of this present work should follow a research approach in which the validation suggests the

transferability to other complex job shops and production control problems.

3.1.1 Digital twins for intelligent production control

Digital twins that incorporate near real-time data from the real system and digital shadow into

a simulation model on production system level can improve production control (Uhlemann

et al. 2017). Their benefits range from evaluating novel production control approaches in the

digital twin (Negri et al. 2017), to creating data in a digital twin that can be used in production

control (Uhlemann et al. 2017) up to coupling production control within a digital twin and

improving and selecting future production control (May & Overbeck, et al. 2021).

Uhlemann et al. (2017) describe a general approach of utilizing digital twins on a production

system level. By focusing on planning approaches, the authors praise the benefit of being able

to transform manual, intuition based processes to data based, dynamic processes, in a similar,

but more accurate, vein to DES. This allows handling of complexity as data interconnectedness

reduces manual effort for handling complexities. The approach is transferred to production

control to validate performances and obtain data that is hardly accessible and interpretable

from direct shopfloor sources. The approach is focused on SME with medium complex

production systems.

Negri et al. (2017) propose the entanglement of simulations on different levels through

the digital twin. Doing so can evaluate the performance of different production control ap-

proaches in real-time. They envision synchronized simulations in a digital twin to overcome
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the reality-to-simulation gap. This gap hinders effective implementability and assessment of

production control between the virtual and real world. The approach focuses on a wide range

of production systems but lacks a concrete application.

Min et al. (2019) implement a digital twin of a petrochemical factory and use real-time digital

twin data to start a pipeline of machine learning approaches that aim to be kept up to date.

The foremost goal is to synchronize chemical production to minimize waste and waiting. They

show that digital twins exhibit benefits when dealing with high dimensional data, time lags

and synchronizing time series data. The effectiveness is examined and the authors foresee

similar application in other industries.

May & Kuhnle, et al. (2020) research the applicability of digital twins, digital shadows and

related concepts in the PPC framework. The highest benefits comes from coupling operational

PPC with a digital twin and relaying the analyzed behavior to tactical decisions. They regard

a complex job shop in semiconductor manufacturing with a handful of machines aiming to

improve dispatching. Within the digital twin, different heuristics and reinforcement learning are

compared. Based on this comparison and additionally available data, novel, better heuristics

and reinforcement learning agents are delineated and partial autonomy is implemented.

The concept of implementing reinforcement learning for production control decisions such

as material flow (Overbeck & Hugues, et al. 2021) or maintenance (Hoffmann et al. 2021)

embedded within a digital twin is frequently regarded. Kuhnle et al. (2022) use a digital twin

of an area within a semiconductor manufacturing system to train reinforcement learning and

regard the explainability of decisions to improve both the reinforcement learning and traditional

production control. Doing so, they aim to overcome the limited understanding of black box

machine learning models which creates distrust in such systems. Valet et al. (2022) model a

real-world semiconductor manufacturing plant in a digital twin and optimize for opportunistic

maintenance decisions with deep reinforcement learning. The digital twin greatly improves

production control performance in this study.

May & Overbeck, et al. (2021) envision the real-time evaluation of production control in the

near-future within a foresighted digital twin. They realize the digital twin coupling with a

simple matrix production system and improve production control performance by selecting

specialized heuristics or reinforcement learning for short time periods depending on the

up-to-the-minute suitability instead on averaging over longer periods. A generalized version,

OntologySim, with knowledge graph based data integration is presented by May & Kiefer &

Kuhnle & Lanza (2022). The integration of real-system alike data, extensive interconnection,

a wide range of standardized KPIs and free foresight triggering benefits production control.
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In a nutshell, the virtual system replica in form of a digital twin that serves as a playground to

augment real world data, evaluate and improve production control is pivotal. Nevertheless,

the application in semiconductor manufacturing is far from real-world applicability. Additionally,

the integration of all complex job shop’s complexities, in particular time-constraints, is lacking

behind and no studies that do so have been identified. As a result an in-depth discussion and

tabular analysis is skipped. The general approach of digital twin is interesting to integrate real-

time data and glimpse into the future. Therefore, using digital twins to improve time-constraint

adherence is promising, despite not having been studied so far.

3.1.2 Dealing with time-constraints in capacity planning and scheduling

Following the PPC hierarchy, this section introduces the state-of-the-art in dealing with time-

constraints on a production planning level in capacity planning in Section 3.1.2.1. In a similar

vein, on the production control level, implementing tactical and operational PPC, scheduling

levers on ensuring time-constraint adherence are regarded in Section 3.1.2.2.

3.1.2.1 Capacity planning

The following presents an overview of the state-of-the-art in capacity planning approaches that

aim at or incorporate time-constraint adherence. Regarded studies are directly or indirectly

reducing time-constraint violation. The results are presented and clustered according to the

modeling and solution approach.

Queuing systems for capacity planning to reduce time constraint violation

Using queuing systems to model a complex job shop and its manifestation, i.e. a wafer fab, is

common. Robinson & Giglio (1999) predict the time constraint violation probability derived

using queuing theory. Following Kendall’s notation, a system of c Machines, denoted as

M/M/c, has a memoryless, Poisson arrival process and similarly a memoryless, exponential

service time. The authors regard a two element system. In a similar vein, Tu & Chen (2009a),

Tu & Chen (2009b), Tu & Chen (2010), Tu & Chen (2011) and Tu & Liou (2006) use a G/G/c

queuing model with generally independent service time and arrival times to develop a model

to determine the optimal capacity. They investigate the resulting queuing network to identify

the required number of machines under prescribed yield targets. Machine breakdowns are

included by Tu & Chen (2009b), who calculate the probability of wafers violating the time-

constraint. The approach can be extended to include batch equipment (Tu & Chen 2011). Ono

et al. (2006) assess tool group’s time-constraint violation risk with queuing models to improve

capacity at tool groups which are critical. As opposed to Kitamura et al. (2006) who restrict

work in progress (WIP) inventory between operations to derive an optimal capacity plan

that minimizes time-constraint violation. Decisive lower level production control, convoluted
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material flow, breakdowns, clustering tools or batching processes and machine dedications

are not regarded.

Experimental evaluation of time-constraint influence on capacity planning

Time-constraint influence on throughput and yield is studied by Pappert et al. (2016) who sim-

ulate a complex job shop accounting for time-constraints but not controlling time-constraints.

Time-constraints led to a large loss in throughput and yield and, hence, require an increased

capacity. In contrast to the technological requirements introduced in Section 2.1 they ad-

vocate for reducing time-constraints or increasing the time limits as much as possible. In

a previous study Huang et al. (2011) quantified the effects of time-constraints with similar

conclusions. Therefore, relaxing these constraints and properly dealing with time-constraints

on a production control level is key to reduced capacity and increase quality.

Machine Learning influence on capacity planning under time-constraints

With increasingly available real-time data from wafer fabs, the application of ML becomes

more beneficial. On a capacity level, Kuo et al. (2011) use an artificial neural network to predict

the WIP inventory levels on a tool group level. Through a sensitivity analysis the influence of

technical improvement measures, e.g. increased tool availability to reduce time-constraint

violation, on WIP inventory levels or cycle time are quantified. With real-world data from a

Taiwanese wafer fab the method for cycle time reduction is validated. Extending this work

with the effects of tool allocations, Chien & Kuo, et al. (2020) prove the influence of capacity

planning decisions on time-constraint adherence.

Capacity planning summary

All in all, integrating time-constraints into capacity planning considerations is paramount to

create suitable conditions and prevent poorly designed systems and capacities. The studies

are nevertheless not applicable to ensure time-constraint adherence throughout as longterm

probability distributions, approximate WIP inventory levels and assumptions on production

control are implemented. The models hence work very well to balance a trade-off between

time-constraints, costs and other operational KPIs as they on average allow good estimations.

However, individual time-constraint adherence cannot be regarded. Therefore, operational

production control is required to ensure time-constraint adherence on an operational level

(Ono et al. 2006).

3.1.2.2 Scheduling

Scheduling is an operational production control approach that allocates jobs to machines

under certain constraints. The typical time span of scheduling in complex jobs ranges up
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to hours or days but does not regard real-time decisions. Due to that abstract, prescriptive

nature it desirable to first regard scheduling for production control in complex job shops

and semiconductor manufacturing (Mönch & Fowler & Mason 2013). To achieve feasible

schedules in a dynamic, uncertain and complex manufacturing environment, the ability to

find solutions of acceptable quality in short time is pivotal. Dynamic rescheduling has to be

performed frequently so that waiting for long solution times is infeasible. In the absence of

sufficient data and powerful algorithms Bixby et al. (2006) formulated the hypothesis that

scheduling was more desirable to dispatching to control time-constraints in complex job shops

as an analytical approach is used to achieve coordination and control. Therefore, the majority

of research regarding time-constraints is on a scheduling level. Due to the high complexity

scheduling has not solved time-constraint adherence in complex job shops but it is still under

ongoing research. This research can best be clustered based on the modeling and solution

approaches used. The regarded problem size is paramount as large scheduling problems are

hardly solvable in acceptable time.

Exact solution approaches for scheduling with time-constraints

As lots in complex job shops can hardly be split freely, scheduling regards them as binary

allocations which leads to Mixed Integer Linear Programs (MILP) as efficient, linear modeling

approaches. Chen & Yang (2006) solve MILP open shop, job shop and flow shop models for

optimality with few machines. They aim to reduce makespan under time-constraints. Similarly,

Klemmt & Horn, et al. (2008) reduce cycle times and aim at minimizing waiting times. Kao

et al. (2011) reveal in a comparable study 18.5% utilization increase without sacrificing

time-constraint performance. However, these approaches regard only partial complex job

shops as they are restricted to furnace tools to preserve manageable computing effort. This

restriction in size is mirrored in the number of jobs that can be scheduled (Yu & Kim & Jung,

et al. 2013). In a relaxed Mixed Integer Programming (MIP) approach Yu & Kim & Jung, et al.

(2013) minimize waiting time variation to increase time-constraint adherence for up to 25 jobs.

Bigger problems are addressed with approximate solutions. An et al. (2016) can schedule up

to 30 lots in two machines with time-constraints by applying heuristics to find initial solutions

improving bound computation efficiency in a branch-and-bound algorithm. A similar technique

is used by Kim & Lee (2017) who can schedule 20 lots over three machines.

Beyond traditional time-based models Cho & Park, et al. (2014) compare a slot-based

formulation where the allocation is based on slot positions. They identify the need to consider

both times and slots as the results depend heavily on the problem parameters. Another

change, proposed by Maleck & Eckert (2017), successfully applies constraint programming

to scheduling under time-constraints. In a real, small scale production setting constraint

programming found solutions faster and resulted in better overall performance. They build
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upon the previous study by Maleck & Weigert, et al. (2017) who considered machine break

downs and reschedule hourly or during breakdowns and interruptions. Maleck & Nieke &

Bock & Pabst & Stehli (2018) refine the approach and apply it to a larger area in a complex

job shop.

Decomposition based scheduling with time-constraints

In contrast to branch-and-bound, decomposition methods divide the large scheduling problem

into smaller, individually solved subproblems. Through composition the overall schedule

can be obtained. A three level decomposition is proposed by Sun et al. (2005) to minimize

time-constraint violations and by Maleck & Nieke & Bock & Pabst & Schulze, et al. (2019)

to minimize cycle time. Bixby et al. (2006) use a recursive space-time allocation and deploy

their multi-objective algorithm in a real wafer-fab. Total tardiness is addressed by Klemmt &

Mönch (2012) with recursive near-optimal solution. Jung et al. (2013) and Jung et al. (2014)

use a similar approach to reduce time constraint violation rates and improve cycle time by

focusing on diffusion processes. Decomposition is performed along furnace tools and solved

with branch-and-bound.

Meta-heuristics for scheduling with time-constraints

To overcome the computational effort disadvantage of exact solution approaches meta-

heuristics often combine construction heuristics to find initial good solutions with neighborhood

search to improve these solutions. To address time-constraints in control of complex job shops

Su (2003) were the first to use a two-stage simulated annealing based algorithm to minimize

makespan. First, lots are allocated to batches and secondly the sequence within these

batches is determined through an interchange mechanism. They regard time-constrained

transfer from a batching equipment to a single tool. Yugma et al. (2012) propose a disjunctive

graph representation and solve this batching and scheduling problem through job insertion,

iterative sampling and simulated annealing. The object of study is limited to the diffusion

work area in a wafer fab. In the same setting Zhou & Wu (2017) apply a greedy construction

heuristic and simulated annealing. Similarly and in a recursive manner Nattaf et al. (2019)

apply heuristics and simulative annealing to both MILP and constraint programming models.

For larger problems, yet not regarding whole semiconductor fabs, Zhou & Lin, et al. (2019)

propose a cuckoo search algorithm as an evolutionary strategy that outperformed previous

approaches.

Genetic algorithms are alternative evolutionary meta-heuristics that have attracted many

researchers in controlling time-constraints. Mason et al. (2007) regard two time-constrained

batch processing steps and solve the multi-objective problem with NSGA-II and a genetic

algorithm with different batching rules. In the furnace work area Chien & Chen (2007) solve
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batch sequencing with genetic algorithms. Similarly, Klemmt & Horn, et al. (2008) apply genetic

algorithms to oven batching problems in a semiconductor fab. Later, Jia et al. (2013) use a

genetic algorithm for closed loop scheduling of parallel batch machines. Time-constraints are

controlled best by a subpopulation based genetic algorithm in a study by Wang & Chien, et al.

(2014). An improved genetic algorithm from Wang & Chien, et al. (2015) learns the probability

distribution in the population to outperform alternative heuristics and meta-heuristics. Most

recently, Lee (2020) harness increased computational power to grid search parametrization of

a genetic algorithm that outperformed simple heuristics and simulated annealing in reducing

total tardiness and hence minimizing time-constraint violations as a secondary target.

Heuristic scheduling under time-constraints

Faster decisions can be obtained from pure heuristic approaches that rely less on analytical

optimization but can be crafted based on simulative results. While many heuristics implicitly

regard time-constraint through WIP inventory control, they are rarely directly regarded within

heuristics as the complexity of these heuristics increases dramatically. Opposed to their

simulative annealing based algorithm Su (2003) additionally used simple heuristic. Only built

on heuristics Ham & Raiford, et al. (2006) create a rule based wet etch to furnace transitioning

algorithm. Based on a priority list from the furnace the wet etch scheduling serves both the

furnace and other work areas. The most successful real-world implementation is presented by

Yurtsever et al. (2009) who regard batch scheduling in the diffusion work area. They regard

multi-objective optimization under constraints, in particular time-constraints. The heuristic

focused on minimizing idle time between batches through priority based batch selection.

Results in a wafer fab in Austin, Texas, US decreased cycle times by up to 25% and increased

throughput up to 10%. Nevertheless, time-constraint adherence performance is not reported.

As opposed to Yu & Kim & Lee (2017) who regard a generalized two-machine flowshop

aiming to minimize time-constraint violation through waiting time variation control.

Other modeling approaches that use heuristics are shown by Perraudat et al. (2019) who build

a decision support system based on a kanban system model of a regarded subsystem. Wu &

Zhao, et al. (2016) however use an analytical model. They aim at quantifying the trade-off

between high capacity and low time-constraint violation and rework to control WIP inventory

levels.

Scheduling summary

All in all, time-constraints are frequently integrated into scheduling as direct or indirect objec-

tives. Scheduling without considering time-constraints is leading to large scrap rates (Maleck

& Nieke & Bock & Pabst & Stehli 2018) or reduced utilization and throughput if inventory

levels are artificially held low (Kao et al. 2011). Besides Yurtsever et al. (2009) the scheduling
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is restricted to few machines or one or two work areas, larger complex job shops as they

occur in semiconductor manufacturing fabs are not solved. The main disadvantage of the

proposed scheduling algorithms is that they seldom explicitly aim at ensuring time-constraint

adherence without sacrificing operational performance. Due to the highly dynamic nature

of complex job shops, prescribed schedules are quickly impossible to implement (Maleck &

Weigert, et al. 2017). Heuristics however are hardly capable to control these complex systems

or time-constraint violations are accepted for operational performance as in Yurtsever et al.

(2009). Thus, to effectively deal with intelligent production control under time-constraints,

dispatching decisions have to be controlled in real-time. However, current heuristics, while fast

in decision making with acceptable operational results, are incapable of effectively including

the complexities of a complex job shop into the decision making process.

3.1.3 Adhering to time-constraints in dispatching in complex job shops

To integrate real-time information and decide quickly, dispatching as the lowest PPC level

allocates jobs to available machines. In the context of complex job shops and semiconductor

manufacturing lots of wafers are assigned to available resources for processing. Therefore,

dispatching includes a gate-keeping decision for each lot (May & Behnen, et al. 2021) as

this lot does or does not continue to wait for processing or transport. Due to the dynamic

and hardly predictable nature of complex job shops, the schedule provided from scheduling

is implemented or changed during the dispatching. Therefore, quick reactions are required

and up-to-the-minute information about availability, breakdowns etc. has to be considered.

To address this speed, priority rules are widely used (Altenmüller et al. 2020) despite their

inability to regard global optimization perspectives (Valet et al. 2022). The available body of

knowledge can be clustered according to the modeling and solution approach.

Simulation based dispatching control

Reducing the impact of time-constraints is studied by Scholl & Domaschke (2000) who use a

simulation to research time-constraint impact between wet-etch and furnace operations. They

identify impact reduction measures to ensure less time-constraint violations through relaxing

of the lot order system depending on the time-constraints. Similarly, Pappert et al. (2016)

regard time-constraint influence in a coating work are with simulations to capture the dynamic

nature. Based on this investigation Zhang et al. (2016) introduce a dynamic control policy

heuristic to balance time-constraint violations and cycle time. Through this dynamic handling

average cycle times remain constant whereas time-constraint violations can be reduced. Lee

& Chen, et al. (2005) successfully introduce a five step control chain based on WIP inventory

levels and tool availability to easen the pain of time-constraints in a complex job shop. Another

rule based dispatching policy validated in simulations is provided by Tu & Chen & Liu (2010)
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who dynamically control WIP inventory and indirectly time-constraint adherence. Toyoshima

et al. (2013) further consider product-mix as a relevant factor. As opposed to Kobayashi et al.

(2013) who speed up time-constrained lots to increase adherence and improve throughput

in a reentrant job shop. Arima et al. (2015) follow up on this study through a combination of

loading rule and dispatcher. Processes in front of individual time-constraints are regarded

by Ciccullo et al. (2014) and Pirovano et al. (2020) who consider the gate keeping decision

and batching in a cleaning process with time-constraints towards diffusion processes in

semiconductor manufacturing. Kopp et al. (2020) propose a novel rule-based dispatching

concept validated in simulations that considers time-constraint criticality, setup times and

general lot priorities. All in all, increasing high fidelity simulations improve the applicability of

simulation based production control to complex job shops, the integration with near real-time

data in digital twins however is still missing.

Heuristic dispatching control under time-constraints

Beyond the simulation validated approaches, further heuristic, rule based dispatching is pro-

posed to increase time-constraint adherence. Chang & Chang (2012) regard time-constraints

between wet etch and furnace areas that considers batching and a likelihood ratio for cycle

time likelihood reduction for dispatching. A comparison of dispatching heuristics which affect

time-constraint adherence is performed by Maleck & Eckert (2017) who conclude with a

multi stage dispatching control policy related to Lee & Chen, et al. (2005) that considers tool

availability, WIP inventory levels and time-constraints. Focusing on the implant work area

Yang & Ke, et al. (2015) propose a rule based dispatching based on queuing theory that aims

to increase same recipe rates which helps reducing setup times. The underlying motive is

that in implant expiring time-constrained lots can skip the queue to be saved but come at

the expense of large tuning beam and setup costs. The combination of heuristic dispatching

with a neural network to select rule parameters by Li et al. (2012) and with binary integer

programming in a two-machine flowshop is also explored by Ham & Lee, et al. (2011).

Alternatively, Wu & Lin, et al. (2010) use a markov decision process to derive control policies.

They aim to minimize inventory holding and scrap costs, the latter stemming from time-

constraint violations. Based on this well-known relationship they apply value iteration to obtain

a simple control policy for a two-stage single product system. This approach is extended

towards parallel processing systems (Wu & Lin, et al. 2012) as well as an upstream batching

process (Wu & Cheng, et al. 2012). Then they improve their approach for multiple, different

products (Wu & Chien, et al. 2016). In general these markov decision process derived

dispatching rules decreased the scrap rate by up to 40% (Wu & Lin, et al. 2010) and up to

59% (Wu & Chien, et al. 2016). Due to the lack of applicability to larger systems owing to the

modeling assumptions Wang & Ju (2021) use domain knowledge to decompose a complex
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job shop into subsystems. Each of these is solved independently with policy or value iteration.

Through iteration the overall policy is obtained.

Controlling Dispatching through time-constraint adherence prediction

Instead of controlling the dispatching to achieve multi-criteria optimization, several authors

propose a novel production control approach for time-constrained complex job shops. The

underlying rationale is to predict the probability of time-constraint adherence for all considered

lots and control the gate keeping decision by excluding critical lots. Sadeghi et al. (2015)

propose a probabilistic approach by representing the problem as a disjunctive graph and

multiple times run a randomized list scheduling approach. Based on this randomization

time-constraint adherence is estimated through the proportion of schedules that adhere to

the time-constraint. Lima et al. (2017b), Lima et al. (2019) and Lima et al. (2021) extend this

approach with intelligent sampling to improve probability estimation and reduce computational

effort. One version of their algorithm is implemented into a decision support system to

manage larger semiconductor fabs (Lima et al. 2017a) which identifies tool interruptions

through shared recipes based machine grouping and time-constraint aggregation. These

approaches aimed at applicability under real industrial conditions. Similarly, the author of

this thesis in May & Maucher, et al. (2021) regards an entire semiconductor wafer fab as

a complex job shop aiming to reduce time-constraint violation by predicting the adherence

probability. Instead of sampling or randomization, the approach is based on a combination

of historical transition time data and near real-time data to predict the transition time and

time-constraint violation probability based on prediction intervals.

Dispatching summary

All in all, dispatching provides the largest lever to ensure time-constraint adherence in a

complex job shop. Due to the stochastic nature and large effects of machine breakdowns and

further stochastic processes, simulations and real-world data are frequently used to improve or

validate the proposed algorithms. There is a plethora of dispatching rules that aims to reduce

time-constraint violations but is based on the well known relationship between cycle time and

inventory (Maleck & Eckert 2017). The results in general support the approaches, however,

the regarded system size is often to small to control a complex job shop or a semiconductor

wafer fab as its instantiation (Ham & Lee, et al. 2011). A promising approach with good

results and applicability to larger, real industrial systems is the prediction of time-constraint

adherence through a probabilistic (Lima et al. 2021) or auto correlated approach (May &

Maucher, et al. 2021). With the advent of artificial intelligence and machine learning, novel

approaches can used to improve the prediction accuracy.
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3.1.4 Implementing learning based production control in job shops for
time-constraints

On a planning level, Chien & Kuo, et al. (2020) use a neural network to improve their previous

studies. They predict arrival rates and WIP inventory on a workgroup level to identify the

influence of varying allocations. They aim to smooth WIP inventory and cycle time to increase

the time-constraint adherence and overall throughput. On a dispatching level Schelthoff et al.

(2022) investigate features to accurately predict waiting times in a real semiconductor fab.

However, they do not study the influence on time-constraints or derive control actions to

improve operations or time-constraint adherence. In contrast to Chakravorty & Nagarur (2020)

who use an artificial neural network to control the gate keeping decision and restrict lots if

the predicted transition time is larger than the time-limit. May & Behnen, et al. (2021) use a

neural network and further multi-variate point estimators to predict the transition time. They

extend this point estimator with a prediction interval to calculate the risk of violating individual

time-constraints if lots are released at the gate keeping decision. With a similar quest May

& Albers, et al. (2021) successfully predict future queues in front of equipment to derive

transition time estimates and improve machine utilization.

A fundamentally different approach is presented by Wang & Hu, et al. (2020) who train a

reinforcement learner to dispatch lots under time-constraints. However, their results are worse

than the traditional approaches and suffer from high computational effort. Altenmüller et al.

(2020) successfully train a deep reinforcement learning agent in an abstracted small complex

job shop simulation with strict time-constraints. In a similarly sized simulation model Valet

et al. (2022) control lot dispatching and maintenance to improve throughput and reduce

scrap through time-constraint violation. The reinforcement learning approaches, however, are

restricted to smaller size problems due to the slow speed of large scale simulations and high

computational effort to train them.

All in all, learning based production control recently gained momentum with increased data

availability and cheaper training. Simulation based reinforcement learning as of now lacks

large scale applicability but provides promising results. Time-constraint violation prediction

with the help of machine learning is showing good results, however, the interrelations of waiting

times and queues as well as the transition from point estimators to uncertainty informed

machine learning are challenging.

3.2 Research deficit

Considering time-constraints in all levels of the PPC taxonomy is a widely regarded area

of research. Due to the dynamic nature of time-constraints and their fulfillment in a large

real complex job shop in semiconductor manufacturing, production control on dispatching
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level is most promising. To address this challenge, heuristics and mathematical models are

most widely applied to deal with time-constraints in research and real fabs. The presented

approaches are, however, not applicable in real-world scenarios as they typically heavily

simplify the system, restrict the number of machines to only a handful and do not take

into account transition heterogeneity in a real complex job shop. Therefore, results usually

cannot be validated in a real-world semiconductor manufacturing environment. Thus, the

real-world state-of-the-art method of choice is to employ human operators that individually

support time-constraint adherence on local levels. Their decisions are based on logic and

learning from the past. Hence, machine learning approaches are promising techniques

to incorporate this decision making in an intelligent and automated way. Most pressing is,

thus, the ability of production control to correctly handle gate keeping decisions with time-

constraints to reduce scrap, increase yield and throughput on an operational level. While

simulations have been used to train or derive such policies in small scale systems, their

application or extension with digital twins is a generally promising field that has yet to be

applied to intelligent production control of time-constrained complex job shops. The summary

of the presented research work dealing with time-constraints in production planning and

control for complex job shops is highlighted in the following, Table 3.1 reviews capacity

planning and intelligent production control, Table 3.2 presents scheduling approaches and

Table 3.3 regards dispatching approaches. The presented studies are clustered according to

the dimensions introduced in Section 3.1. These are filled by the identified concept through

the grounded theory based literature review. First, the modeling dimension can be associated

to experiments, regarding data or a subsystem of a real wafer fab, to queuing systems, as

a mathematical modeling, to MI(L)P, with a mixed integer linear or non-linear program, to

disjunctive graphs, based on a graph theoretic understanding of the regarded system, or

to markov decision processes. Second, the dimension solution approach makes use of

traditional queuing theory or exact, for instance branch-and-bound methods. Alternatively,

heuristics or meta-heuristics have been used which are nowadays complemented by machine

learning approaches. Lastly, the objective dimension distinguishes the degree of interest in

minimizing time constraint violations and similarly analyzes the application of time-constraint

violation probability estimations. In total, the research deficit can therefore be summarized as

follows and gives rise to the overarching research questions (RQ) introduced in Chapter 1.

1. Digital twins provide a valuable tool to improve production control but so far have

not been applied to real world complex job shops and have not been used to control

time-constraints in semiconductor manufacturing in real-time.

RQ1 How to use static and dynamic knowledge graph based production system replicas to

support production planning and control with time-constraints?
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2. Most existing approaches cannot effectively integrate real time real-world data and fail

to properly ensure time-constraint adherence in complex job shops due to the dynamic

nature and large problem size.

RQ2 How to use real-world real time data to avoid time-constraint violations with a data-based

approach for production control for complex job shops?

3. Integrating intelligent, machine learning based approaches and their inherent uncertainty

to quantify probabilities is a novel approach that has not yet been methodologically

described properly and then applied to time-constraint complex job shops with different

structures.

RQ3 How to enrich and extend machine learning algorithms to accurately capture the aleatoric

and epistemic uncertainty in large-scale complex job shops when predicting time-

constraint adherence?

4. Heuristics and simple, non intelligent production control policies are the norm and

require frequent adaptations and human interventions to successfully control a complex

job shop. These approaches are in particular not capable of acquiring knowledge and

integrating it into decision making which results in the inability to effectively reduce

time-constraint violations with production control.

RQ4 How to use long-term and real-time knowledge acquired within a factory to holistically

reduce time-constraint violations with intelligent production control?

5. A real world applicability in semiconductor wafer fabs, with the specific aim to ensure

time-constraint adherence, has rarely been considered for production control. A notable

improvement over the industrial state-of-the-art of manual control for time-constraints

has hardly been realized.

RQ5 How does the learning-based intelligent production control for complex job shop perform

in ensuring time-constraint adherence in a real-world setting?
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Table 3.1: Overview of relevant research on capacity planning and intelligent production

control approaches for time-constrained complex job shops.
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Capacity planning (Section 3.1.2.1)

Robinson & Giglio 1999 � � � � � � � � � � � ��
Kitamura et al. 2006 � � � � � � � � � � � ��
Ono et al. 2006 � � � � � � � � � � � ��
Tu & Liou 2006 � � � � � � � � � � � ��
Tu & Chen 2009a � � � � � � � � � � � ��
Tu & Chen 2009b � � � � � � � � � � � ��
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Intelligent production control approaches (Section 3.1.4)
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Wang & Hu, et al. 2020 � � � � � � � � �� � �� �
Chakravorty & Nagarur 2020 � � � � � � � � � � � ��
May & Maucher, et al. 2021 � � � �� � � �� � � �� � �
May & Behnen, et al. 2021 � � � �� � � �� � � � � �
May & Albers, et al. 2021 � � � � � � � � � � �� �
Schelthoff et al. 2022 � � � � � � � � � � � �
Valet et al. 2022 �� � � � � � � � � � �� �

Legend: � considered �� partially considered � not considered



74 State-of-the-art literature review

Table 3.2: Overview of relevant research on scheduling for time-constrained complex job

shops.

Modeling Solution Object.

Maleck & Nieke & Bock & Pabst & Schulze, et al. 2019

Approach by E
xp

er
im

en
ts

Q
ue

ui
ng

S
ys

te
m

M
I(L

)P

D
is

ju
nc

tiv
e

gr
ap

h

M
ar

ko
v

de
ci

si
on

pr
oc

es
s

Q
ue

ui
ng

Th
eo

ry

E
xa

ct
,b

ra
nc

h-
an

d-
bo

un
d

H
eu

ri
st

ic

M
et

a-
H

eu
ri

st
ic

M
ac

hi
ne

Le
ar

ni
ng

M
in

.t
im

e-
co

ns
tr

ai
nt

vi
ol

at
io

n

E
st

im
at

e
vi

ol
at

io
n

pr
ob

ab
ili

ty

Scheduling (Section 3.1.2.2)

Su 2003 � � � � � � � � � � �� �
Sun et al. 2005 � � � � � � � � � � � �
Bixby et al. 2006 � � � � � � � � � � �� �
Chen & Yang 2006 � � � � � � � � � � �� �
Ham & Raiford, et al. 2006 � � � � � � � � � � �� �
Chien & Chen 2007 � � � � � � � � � � �� �
Mason et al. 2007 � � � � � � � � � � �� �
Klemmt & Horn, et al. 2008 � � � � � � � � � � �� �
Yurtsever et al. 2009 � � � � � � � � � � �� �
Kao et al. 2011 � � � � � � � � � � �� �
Klemmt & Mönch 2012 � � � � � � � � � � � �
Yugma et al. 2012 � � � � � � � � � � �� �
Jia et al. 2013 � � � � � � � � � � �� �
Jung et al. 2013 � � � � � � � � � � �� �
Yu & Kim & Jung, et al. 2013 � � � � � � � � � � �� �
Cho & Park, et al. 2014 � � � � � � � � � � �� �
Jung et al. 2014 � � � � � � � � � � �� �
Wang & Chien, et al. 2014 � � � � � � � � � � �� �
Wang & Chien, et al. 2015 � � � � � � � � � � �� �
An et al. 2016 � � � � � � � � � � �� �
Wu & Zhao, et al. 2016 � � � � � � � � � � � �
Kim & Lee 2017 � � � � � � � � � � �� �
Maleck & Eckert 2017 � � � � � � � � � � �� �
Maleck & Weigert, et al. 2017 � � � � � � � � � � �� �
Yu & Kim & Lee 2017 � � � � � � � � � � �� �
Zhou & Wu 2017 � � � � � � � � � � �� �
Maleck & Nieke & Bock & Pabst & Stehli 2018 � � � � � � � � � � �� �
Wang & Srivathsan, et al. 2018 � � � � � � � � � � �� �
Maleck & Nieke & Bock & Pabst & Schulze, et al. 2019 � � � � � � � � � � �� �
Nattaf et al. 2019 � � � � � � � � � � � �
Perraudat et al. 2019 � � � � � � � � � � �� �
Zhou & Lin, et al. 2019 � � � � � � � � � � � �
Lee 2020 � � � � � � � � � � �� �

Legend: � considered �� partially considered � not considered



State-of-the-art literature review 75

Table 3.3: Overview of relevant research on dispatching for time-constrained complex job

shops.
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4 Intelligent Production Control for time-contrained complex
job shops

Within this chapter the methodological approach is developed in order to achieve the objectives

set out in Section 1.3 and to address the research deficit as derived in Section 3.2. The

overarching goal is to develop a novel production control method for complex job shops that

can improve time-constraint adherence. The investigation is based on the implementation of a

data-driven algorithm for making the gate keeping decision in front of time-constraints. In order

to implement this approach, traditional time series predictors, machine learning algorithms

and their uncertainty are regarded to improve the applicability of uncertainty driven intelligent

decision making in manufacturing. Furthermore, the integration of a knowledge graph based

digital twin is analyzed. The overall structure can be seen in Figure 4.1 which introduces the

methodological overall approach. Possibly, the result of this research is an applicable method

to derive a data-driven, intelligent complex job shop production control for time-constraint

gate keeping decisions to avoid manual effort and increase the time-constraint adherence.

Owing to the ever increasing complexity in manufacturing, the transferability of the approach

and of some of the developed tools to different complex job shops and production control

methods motivates this research.

Figure 4.1: Methodological approach to obtain the intelligent production for time-constraint

gate keeping in complex job shops.
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The general problem and its scope and assumptions are framed in Section 4.1 to facilitate

the overall problem solving approach. Then, the description of the proposed method is split

into two parts. First, Section 4.2 introduces the modeling of the production system and an

instantiation as a digital twin based on a discrete event simulation answering RQ1. Second,

the general architecture to implement this intelligent production control for time-constraint

gate keeping in complex job shops is described in Section 4.3 to address RQ2. Next, the

approaches used to predict transition times and derive time-constraint adherence probabilities

based on uncertainty quantification are introduced in Section 4.4 to present a solution to

RQ3. The evaluation of the proposed transition time predictors and the comparison with

benchmarks is presented in Section 4.5 and hence addresses RQ4. The application to a

real-world complex job shop in a semiconductor wafer fab is later introduced in Chapter 5 to

answer the final research question 5.

During previous research of the author of this thesis several aspects and ideas that this

thesis is based on have been introduced. Most notably, the following research is used. Firstly,

the conceptualization of a foresighted digital twin is introduced by May & Overbeck, et al.

(2021). Secondly, one approach to the production system modeling with the ontology based

OntologySim as a foresighted digital twin is published in the paper by May & Kiefer & Kuhnle

& Lanza (2022). Thirdly, the understanding of the real-world complex job shop and inventory

predictions are introduced by May & Albers, et al. (2021). Additionally, a uni-variate prediction

approach is presented in the work of May & Maucher, et al. (2021) while a multi-variate

approach is presented by May & Behnen, et al. (2021).

4.1 Problem scope and assumptions

The general scope of this work is narrowed down in Chapter 1 and explained in Chapter 2.

Based on the identified research deficit as outlined in Chapter 3, the scope can be specified

with the following assumptions:

1. A large complex job shop is regarded which is represented as an entire semiconductor

wafer fab as the research object. Within this manufacturing system lots denote products

that need to be processed in a reentrant manner. Transitions between processing

equipment may or may not be time-constrained as identified through real-time data from

operations. Production orders arrive according to the production program set outside

the system.

2. In the PPC hierarchy dispatching is regarded insofar as that the gate keeping decision

in front of equipment whether or not a particular time-constrained lot is processed is

controlled. A single decision making algorithm for the entire manufacturing system is

regarded.
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3. Due to the differing criticality of time-constraints, the decision making algorithm can

make use of a hierarchical algorithm that treats more critical time-constraints differently

and with more computational effort than uncritical time-constraints.

4. Real-time, real-world production data represents the real-system so that decisions

are based on the actual state of the complex job shop. Through regarding different

time-snippets of the systems over multiple years a generalization can be achieved.

5. For validation purposes the proposed algorithms are implemented and fit during one

part of the time-frame and then evaluated on an unknown, unseen part of the time-frame

of the regarded production system. The validation takes place with the comparison of

past behavior as observed or proposed by the developed algorithm. Nevertheless, the

actual implementation and roll-out of this algorithm in the real semiconductor wafer fab

is not part of this work.

6. To ensure possible application in the ever changing setup of a complex job shop,

frequent tuning and training of the algorithm will be necessary. The proposed algorithm

implements and includes these updates for short-term changes within the time-frames

that span several months each. However, for longer-term application regular tuning and

training of the algorithm will be necessary. Due to the regarded different time-frames,

this behavior is already mimicked but not regarded explicitly as a part of this work.

4.2 Modeling the production system

A prerequisite to the following steps of the introduced model lies in understanding the coherent

modeling approach. In fact, two modeling approaches are required: Firstly, to possibly evaluate

production control decisions before enacting them, a foresighted digital twin is required.

Secondly, to frame the decision making framework for the gate keeping decision of time-

constraints a novel approach is required. For the former there are multiple reasons a discrete

event simulation model should be used. Real-world dynamics have to be implemented and the

behavior of the system under decision making should be studied. To create this foresighted

digital twin a homogeneous data model in both real-world manufacturing system and the digital

twin should be used which is flexible and extendable. A modeling approach that facilitates the

decision making framework is required to implement the intelligent production control in the

subsequent chapters.

The organization of this section follows the visual presentation in Figure 4.2. The most relevant

system elements of this complex job shop are described in Section 4.2.1. Subsequently a

simulation and digital twin model is derived which is presented in Section 4.2.2. Based on

this system modeling and to enable the intelligent production control for time-constraint gate
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keeping decisions, the transitional modeling approach is derived. Section 4.2.3 presents this

approach. Neither the proposed simulation and digital twin, nor the transitional modeling

approach aim at completeness for applicability on all levels but form the prerequisites for the

following decision making as introduced in later chapters.

Figure 4.2: Organization of Section 4.2.

4.2.1 Relevant system elements

The aim of this research is to provide a methodological approach and solution to gate keeping

production control for time-constraints in complex jobs shops. While applicability in real-world

manufacturing systems is required the approach should be as generic as possible. During

the manufacturing process this gate keeping decision can be triggered whenever a possible

time-constraint lot may be selected to start processing. The relevant elements that need to be

considered are based on industrial partner discussion and extended with system elements

typically used in the identified literature review. Thus, in order to capture a complex job shop

with time-constraints the following system elements need to be considered.

System level influences

First, the setting and external influences need to be considered on a systemic level. The

overall system setting suffers from large and increasing competition, so that operational

excellence is paramount. Therefore, within a complex job shop, possibly with thousands of

machines as in the regarded semiconductor wafer fab, utilizing this capital intensive equipment

should not be compromised and aggressive due dates need to be met. This leads to a large

fluctuation in demand both on an individual level and on an aggregated demand figure. The

result is an environment characterized by highly dynamic behavior and order releases into the

manufacturing system, in other words systems are operated with dynamical operating points.

Hence, product release is a key element that needs to be modeled within the approach.
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A similar speed of change happens on the shopfloor as material flow equipment can be

exchanged, upgraded or is under maintenance. In a complex job shop such temporary or

longer-term changes do not disrupt the production but still need to be reflected in the modeling

approach. This results in a need to coherently abstract the modeling approach from static

layout and planning decisions that are usually the foundation of a manufacturing system

model to a dynamic approach.

Machine level elements

On a machine and equipment level frequent and stochastic breakdowns have a decisive effect

on the production system. Therefore, machines must be modeled as the central elements of

the production system. In contrast to static modeling these stochastic breakdown dynamics

have to be considered and modeled within the approach. Not only the breakdown dynamics

are stochastic and have a large spread but also the processing time in a complex job shop

can vary greatly. The processing time depends on product specific requirements, i.e. process

complexity for this particular product, on the equipment condition and on the random behavior

and quality rate during the processing. Thus, these stochastic process times need to be

considered. Furthermore, setup times depend on sequences, i.e. the time required to setup

the machine for a particular product depends on both the product and the previous product

on this machine. Such sequence dependent setup times need to be modeled as important

elements.

A larger effect can be attributed to machine dedications as certain machines are restricted to

performing certain processes and due to the technological complexity in complex job shops.

Therefore, machine capabilities must be modeled within the approach. Due to the different

types of machines and their differing behavior, single job, batching, continuous processes

and alternatives must be modeled within the machine. Additionally, a control system in front

of the machines, the so called gate keeping decision, has to be modeled as a key element to

sustain both the variability created by machine dedications and breakdowns as well as the

gate keeping decision that is to be implemented during this thesis.

Material and process flow elements

A decisive driver for the complexity of complex job shops is the heterogeneity of products and

their general modeling. Therefore, products and variants need to be flexibly modeled and

have to contain required processes and interrelations such as time-constraints. The result is a

product that comes with required processes that can be matched with the capabilities on the

machine level. These products’ structured processes define the route that the products are

taking through the complex job shop. In semiconductor manufacturing this includes reentrant

flow, so that several hundred process steps and recurrently visiting machines or machine
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groups have to be modeled. Time-constraints need to be modeled and associated with the

respective processes, so that coherent modeling is ensured.

Overall, the property of irregular, non linear material flow is an observable fact for complex

job shops that needs to be modeled. The underlying rationale is that the knowledge about

availabilities and operational capabilities of machines coupled with required processes from

products alone are insufficient to describe this behavior. At the core of this orchestration is

the production control from the PPC hierarchy. Therefore, the production control level and

information shall be directly or implicitly included in the modeling of the system.

Past behavior

As the dynamics in a complex job shop unfold over time many indirect relations and influences

can only be implemented and only become obvious if long term behavior and short term

behavior, in other words the recent behavior of the system, is regarded and can be used to

model the system. This element of a past behavior is a fundamental difference to standard

modeling approaches. The way of integrating this modeling as well as the degree and length

of past behavior considered, nevertheless, is regarded in the following research.

4.2.2 Simulation and foresighted digital twin modeling

At the core of the foresighted digital twin to be construct lies a simulation (May & Overbeck, et

al. 2021) which is a discrete event simulation (DES) model for the scope of an entire production

system. To obtain the flexibility and changeability in the simulation model, necessary to map

to a complex job shop, it is based on an ontology and knowledge graph as introduced in

Section 4.2.2.1. For a foresighted digital twin the interconnection to the real-world system’s

real-time data and behavior is necessary which uses a state representation in form of a

knowledge graph as explained in Section 4.2.2.2.

4.2.2.1 Ontology-based production simulation

In order to implement the relevant system elements into the simulation and achieve a high

validity, the approach is based on the OntologySim introduced by May & Kiefer & Kuhnle &

Lanza (2022). The elements that are modeled within the simulation can be categorized into

products, resources and events. Instead of the traditional wording of orders, products is used

to clearly denote the reentrant flow and enable a decoupling of customer orders (of potentially

multiple products) and manufacturing internal lots regarded in the real-world semiconductor

manufacturing use-case. While resources follow the traditional system modeling and naming

approach, events constitute a novel group elements. To create such a flexible simulation and

following the OntologySim approach events are defined to coherently describe the system
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Figure 4.3: Categorization of system elements in the simulation.

and its state. Figure 4.3 illustrates these types of elements and the respective content of

these elements which are introduced in the following.

Product definition

In this generalized approach a product is defined by its route or process sequence, the current

state within this sequence and associated events, time-constraints within the route and general

information. Through the state and general information about location, quality information

and a unique identifier the product is instantiated from the abstract route definition. A route is

defined by a sequence of processes that need to be undergone during the manufacturing. To

account for complex production plans that allow for different paths through this sequence a

graph based sequence structure with linked predecessors and successors is kept. Within each

graph element a process is described including information about (estimated) processing

times and time-constraints. The latter is stored as a beginning and ending process associated

with a time limit. Doing so permits the realization of all types of time-constraints. As the product

is part of the overall ontology, or of instantiated the overall knowledge graph, events are also

associated with the product. While not regarded in this use-case, merging and unmerging

of products, for instance in disassembly, can be achieved with this flexible knowledge graph

based approach. This is visualized in Figure 4.4 with product and events as overarching

concepts as well as datatypes highlighted. Clearly, the interrelations between processes and

time-constraints despite being part of different system elements, as introduced before, can

be seen. On the lowest level concrete data types, such as arrays for process information, can

be seen.
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Figure 4.4: Concept of a simplified product modeled in the simulation based on May & Kiefer

& Kuhnle & Lanza (2022).

Resource definition

As processes change the properties of products during production they resemble the central

element in a production system. Additionally, time-constraints restrict the transition time

between the end and beginning of two processes. The concept of such a processing resource

or machine is described first and visualized in Figure 4.5. The underlying motive is the

representation of the material flow within such a processing resource as queues, based

on May & Kiefer & Kuhnle & Lanza (2022). Products can be in a buffer state, both in- and

outbound which may even be the same queue, or in the production process (prod_queue).

Each processing resource can perform the process according to its capabilities and technical

refinements for these processes such as maximum temperatures or available production

chamber space. Here, through implicit couplings of the positions in a production queue, batch

processing can be realized. Likewise, the machine itself can be in a down state with different

down types such as planned, unplanned, during repair or waiting for maintenance, in an up

and running or idling and setup state. This behavior and the end of a production process

is triggered, as in every discrete event simulation, through the event list. However, these

events are modeled and connected to the resource concept and product concept, so that

the interrelation between resource, product and event, for instance in the end of processing

where a product is transferred from a buffer position the the production position, is accurately

reflected.

Note that each of theses subentities are modeled based on the regarded production system,

so that the detailed information about the types of products, downtimes, setups etc. is similarly
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Figure 4.5: Concept of a simplified processing resource modeled in the simulation based on

May & Kiefer & Kuhnle & Lanza (2022).

saved in the ontology described knowledge graph to obtain a single source of truth during the

simulation. Therefore, both deterministic known and stochastic behavior can be tied to this.

Each resource has additional data such as location or neighborhood information and a unique

identifier. Through the ontology and knowledge graph flexibility this processing resource

concept can be easily extended to individual use-case need. The required control logic for

product selection to the next process can incorporate a simple first-in-first-out heuristic or be

extracted through the event handling as described in the following.

Secondly, material flow equipment is described. The general setup of a resource consisting

of a queue is kept. For conveyor style material flow equipment this behavior is an accurate

reflection, while for automated guided vehicles and individual transport, the queue length is

restricted to the capacity and the location becomes flexible. Note that a relationship between

entities from zero to n ∈ N are possible due to the ontology based knowledge graph. Similarly

to processing equipment breakdowns and maintenance are modeled. Average speeds or

real observed speeds can be tied to the respective equipment. Through location and route

information the estimated transportation time can be obtained. However, pure transportation

time makes only a small percentage of the overall transition time between two processes as

waiting, sorting or rerouting have a much larger effect. To mimic real-world complex job shop
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behavior and avoid deadlocks material flow equipment can pre-reserve queue positions if

enacted by the production control logic. The control logic is integrated through an interface

and can query all the information available within the knowledge graph.

Event definition

To recreate the dynamics of a real manufacturing system within the simulation, events are

used. An event is stored within the ontology and can be a past, present or future event.

To attain real-world comparability future events such as future breakdowns or processing

times are restricted and not observable for production control or any simulation controller.

Every event is characterized by its starting time, its (expected) duration and type as well as a

unique identifier and the interconnection to the relevant products and resources. Based on the

approach from May & Kiefer & Kuhnle & Lanza (2022) the actual state of each resource can

be referred to the events and if past events are stored past states of products and resources

can be recreated. Indirectly every event is interconnected with products and resources but it

is not required that both resource and product are connected, e.g. for machine breakdowns

or time-constraint violations. Figure 4.6 visualizes the structure of an event.

Figure 4.6: Concept of events modeled in the simulation based on May & Kiefer & Kuhnle &

Lanza (2022).

Events are created either from scratch during the simulation initialization and the production

control that assigns products to material flow and processing equipment or from past events.

Exemplary the processing of a job at a machine is explained. First at the end of the mainte-

nance period the next machine breakdown is sampled from the mean time to failure statistics

and a future event is created. At the same time a particular product from the buffer requiring

a certain process is selected and the following two events are created: Firstly, the setup

event starting at the same time and requiring the setup duration. Secondly, the beginning of

processing after the setup for the process duration. In case the before sampled breakdown
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event occurs before the end of setup and processing events these events are interrupted

for the breakdown duration. After the setup event has elapsed it is transferred to the past

events.

Compact ontologies and small knowledge graphs have significant performance advantages

(Lamy 2016). Thus, past events are only made available one directionally. Any other events

and entities in the simulation ontology and instantiated knowledge graph are bidirectionally

connected to enable inferring knowledge, implementing flexible changes and provide direct

access. This tremendously reduces computational effort as only fewer, new events have to be

iterated and queried (May & Kiefer & Kuhnle & Lanza 2022). Besides computational efficiency

this flexibility motivates the usage of the ontology based approach as opposed to traditional

relational or object oriented modeling.

Reasoning and initialization

A valid configuration is necessary to initialize the simulation. Thus, the first step starts with

a reasoning over the provided system description, which may be a knowledge graph in a

standard exchange format such as owl. The procedure is based on the implementation of

the OntologySim which was introduced by May & Kiefer & Kuhnle & Lanza (2022). Then, a

wrapper class approach is implemented in which all elements in the knowledge graph are

made directly accessible through the programming of a wrapper class in the simulation. This

tremendously reduces computational effort during the simulation, as fewer queries to access

the entities are necessary. Nevertheless, the possibility to query and do reasoning on the

knowledge graph itself remains.

For the initialization initial events have to be created. For instance breakdowns are sampled

and current resource states determined. Through the knowledge graph based approach it is

possible to warm start the situation and alter it during runtime. In other words products can

already be placed in the manufacturing environment, for instance in buffers and processes

and real-world breakdowns can be dynamically implemented. If warmstarts are used process

starting times may be prescribed or derived from the system state.

Simulation process

During the simulation run all events are connected to an event lists, as visually introduced

in Figure 4.7. The current simulation time is in the knowledge graph and referred to from

the event list. Past events are connected unilaterally but not queried. During one time-step

all currently open events are queried if their starting date plus duration is equal or smaller

than the current time. These events are then finished, transferred to past events and possibly

novel events created. In this example, after event 1 has just passed, it was transferred to
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past events. Then, two novel events are created, the first one being event 3 for a setup and

secondly the future event 5 for processing. During every discrete event time step production

control can be triggered. Then the time is incrementally increased to the start of the next

event or the end of any current event. Start times or durations of events can be increased or

changed by other events, e.g. an unscheduled breakdown needs maintenance and the end

of a process is deferred by that required time.

Figure 4.7: Events during an exemplary simulation run based on May & Kiefer & Kuhnle &

Lanza (2022).

Production control can be triggered based on individual events, through an inserted production

control event corresponding to a timely trigger, as a general control logic that is queried at any

event or through manual interventions. Manual interventions should be avoided if simulation

studies are performed as there is a great risk of manually inserting errors.

Product release into the system and order dispatching i.e. transport to machines and gate

keeping decisions in front of the process equipment constitute possible production control.

Order release is contacted at any event and can insert a novel event of releasing an order

into the system. Either real production plans or statistical estimations can be used. Order

dispatching is based on the prescribed process sequence for each product. It comprises

transport decisions between different process equipment but cannot freely assign products

to machines. Rule-based behavior from the regarded use case is implemented although

extensions for the inclusions of reinforcement learning dispatching, as outlined by Kuhnle et al.

(2022), are prepared. At the end of each processing step, in other words once the processing

event on a processing equipment is finished, the next product to be processed needs to be

selected. The selection can be done rule-based as in real-world complex job shops. During

this the gate keeping decision for each lot in the buffer has to be taken which is interfaced to

the production control to be developed.
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4.2.2.2 Foresighted digital twin based on knowledge graphs

To glimpse into one or several likely paths the dynamics of a production system take from

a certain point in time the application of a foresighted digital twin is used (May & Overbeck,

et al. 2021). This foresighted digital twin follows the scheme outlined in Section 2.4.2. For the

knowledge graph based instantiation real-world real-time system data is aggregated into a

graph and includes past events and current events starting time and type. To instantiate a

foresighted digital twin it has to be enhanced with production control transfer, the possibility to

track KPIs in the used simulation and data imputation to fill in missing information from the

real system. Reasoning over the knowledge graph can support this data imputation. Finally, a

deep copy of this real system representing knowledge graph is made and used within the

simulation model to generate foresight as illustrated in Figure 4.8.

Figure 4.8: Product process flow chart with the regarded PPC decisions and the focus on

time-constraint gate keeping decisions.

Deep copy

The so created instantiated ontology of the current real-system status, as shown in Figure 4.8,

cannot be altered as it is interlinked with the real system. Instead a deep copy of this

knowledge graph is to be made. This deep copy is the initial state of the digital twin and

represents the current status. Before being able to use this current status, the deep copy

needs to be completed to be capable of running the digital twin and obtaining foresight.

Control transfer

If digital twins are not used to train and improve production control reflecting the actual

production control with high accuracy is important (Overbeck & Rose, et al. 2022). On the

production system level Programmable Logic Controller (PLC) control is abstracted into the

machine behavior as simulated. Releasing lots as the order release into the regarded system
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is based on a prescribed process resulting in an order release schedule. Therefore, the

short-term schedule can be transferred easily into the digital twin as the foresight period

hardly exceeds this time horizon. Thus, the main complexity lies in transferring the scheduling

and dispatching control logic into the digital twin.

Scheduling is performed on a time horizon of hours to shifts, so that at the time of instantiation

a partial schedule is still present that can be copied into the digital twin. As the computational

effort for these optimizations is high, and results are only obtained after waiting time, the

inclusion of a scheduling mechanism into the foresighted digital twin would massively hinder

the foresight as valuable time is wasted. In a complex job shop a great part of the initially

proposed schedule is anyhow overthrown by real-time dispatching as breakdowns, time-

constraint violations and the actual behavior does not permit the direct implementation of the

schedules. Therefore, for a foresighted digital twin relying on the dispatching for real-time

decision making is sufficient.

Short-term, real-time decision are taken by dispatching and sequencing in front of machine

queues which includes the gate keeping decision. Dispatching is currently controlled by

priority rules in real-world complex job shops (Kuhnle et al. 2022). Therefore, the knowledge

about the priority rule used can obtained from interactions with workers. Due to their simplicity,

they can be easily transferred and implement. The main challenge lies in the transfer of

sequencing algorithms in front of processing equipment as heterogeneous priority rules,

machine dedications, and their temporal inconsistency impede automation (Waschneck et al.

2016). Therefore, if the control transfer is not easily manageable, the following simplification

can be used.

Instead of regarding groups of similar equipment and shared queues with machine dedications

each equipment can be considered separately in a routing allocation problem. For a product

the route is expected to include priorities for equipment or random sampling is assumed.

In case of breakdowns the machine dedication information but not necessarily the exact

algorithm for redistribution needs to be known as human interaction cannot be fully included

in the digital twin ex ante.

Data imputation and reasoning

To deal with incomplete data in the real-systems database missing data has to imputed.

Consider the value xi being unknown but related to xj through temporal, averaged or material

(i.e. physical) relationship. When regarding KPIs intrinsic material relations, for instance

through a defining graph are well known (May & Fang, et al. 2022), these should be used

to impute missing data. The imputation algorithm is then described through pseudocode

in Algorithm 1. It can be used to obtain the imputed data ximpute
i that shall not exceed an
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expected small derivation of ε from the original value based on the L2 norm that implements

a quadratic distance function in a two dimensional euclidean space.

Algorithm 1 Imputation Algorithm

Require: xi is unknown, xj for j �= i, j ∈ J known with i ∪ J = {0, 1, 2, 3, ..., n} with

n > 5 ∈ N
Ensure: Minimize ε with (ximpute

i − xi)2 ≤ ε
ximpute

k ← xk−1+xk+1
2 ∀k − 1, k, k + 1 �= i

εtemporal = 1
n−5

∑n−1
k=1∀k−1,k,k+1 �=i(x

impute
k−1 + ximpute

k + ximpute
k+1 − xk−1 − xk − xk+1)2

εaveraged = 1
n−1

∑
k∈J

[
( 1

n−1
∑

h∈J(xh) − xk)2
]

let εmaterial denote the error from an approx. known relationship of xi and the known yi

if εmaterial ≤ εaveraged and εmaterial ≤ εtemporal then
xi ← calculated according to relationship with yi

else if εtemporal ≤ εaveraged and εtemporal ≤ εmaterial then
xi ← xi−1+xi+1

2
else

xi ← 1
n−1

∑
k∈J xk

end if

In order to deal with heterogeneously missing data and different data point, this imputa-

tion algorithm favors simple and computationally efficient approaches. Thus, for temporal

relationships a linear relationship between xi−1, xi, xi+1 is regarded and the mean average

quadratic deviation used as an error. As the main information, necessary to obtain, is limited

and restricted to times, failures etc. this restriction, for the sake of computational speed, is

acceptable. If values are sampled from a random distribution without auto-correlation or

remain constant, the average quadratic deviation from the mean is used. For many processes

in a production system inherent relationships are known, so that these can be used to impute

the missing values. Based on the temporal locally lowest estimated error the missing value is

imputed.

Additionally, reasoning over the knowledge graph is necessary to complete information

not directly contained in or imputed from the real system information. The requirement for

reasoning is the availability of an ontology or a filled knowledge graph. Most importantly, future

events have to be associated to the event lists. Let ei,m ∈ E denote event ei associated with

equipment m ∈ M . Then aei,j denotes the start of this event, bei,j denotes the type b ∈ B and

dei,j the duration. Each equipment m has the following three event lists: Ep,m for past events,

Ec,m for current events and Ef,m for future events. Reasoning creates the initial future events

and potentially missing duration. Algorithm 2 introduces the reasoning algorithm to obtain

missing values and events for breakdowns. The underlying approach is to iterate over existing

events from the past and current list to generate the missing future events, for instance to
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create a maintenance event after the expected time to failure. Likewise, current breakdowns

are reasoned to create an event for normal operation resumption. All other values that are

acquired from the knowledge graph follow the same scheme.

Algorithm 2 Event reasoning Algorithm

Require: aei,j , bei,j are known for all ei,j ∈ ⋃
j∈M

[
Ep,j ∪ Ec,j

]
and dei,j is known for all ei,j ∈⋃

j∈M Ep,j

Ensure: missing dei,j and ei,j are known

for m ∈ M do
if ∃bei,m ∈ Bbreakdowns∀ei,m then

if bei,m /∈ Bbreakdowns∀ei,m ∈ Ec,m then
j = max i ∀bei,m ∈ Bbreakdowns

if ∃ei,m∀bei,m ∈ Bbreakdowns then
create ej∗,m with bej∗,m

∈ Bbreakdowns, aej∗,m
= aej,m + dej,m +

MTBFsampled,m, dej∗,m
= MTTRsampled,m

end if
else

dej,m = MTTRsampled,m

if dej,m ≤ now then
dej,m = now

end if
create ej∗,m with bej∗,m

∈ Bbreakdowns, aej∗,m
= aej,m +dej,m +MTBFsampled,m, dej∗,m

=
MTTRsampled,m

end if
else

create ei∗,m with bei∗,m
∈ Bbreakdowns, aei∗,m

= 0 + MTBFsampled,m, dej∗,m
=

MTTRsampled,m

end if
end for

Running the foresighted digital twin

This digital twin contains the current status amended with missing and reasonable values

and events. Given the discrete event simulation capability this simulation coupled with the

transferred production control policies can start a simulation to create foresight. By changing

production control policies or taking different production control policy decisions in copies of

this digital twin the short term behavior can be analyzed as the KPIs are holistically stored.

One possible implementation of this approach is presented and discussed in May & Kiefer &

Kuhnle & Lanza (2022).
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4.2.3 Transitional modeling approach

In contrast to the foresighted digital twin based modeling approach the transitional approach

follows a different rationale. Not an executable system representation of the entire system

is used but a subaggregation model as introduced in the following is implemented. The

transitional modeling approach based on the work of May & Maucher, et al. (2021) regards

the disjunctive set of processing and transporting operations. Processing creates value and

takes place in processing equipment which is regarded as stationary. Any time spent between

processes is regarded as non value creating and may be spend on a transport equipment

or in a buffer. Due to the material flow complexity in a complex job shop the exact route,

involved transport equipment, buffers and time required may vary heavily and are a-priori

unknown. Therefore, the short term static processing equipment is modeled as vertices V in

a graph G = (V, E). The possible transition of any product through transporting and waiting

is modeled as an edge e ∈ E in the graph G. While Figure 4.9 presents this transition and

graph structure analogously to the actual layout, G is a general graph and does not rely on

this spatial representation.

Figure 4.9: Graph based transitional modeling approach as a complex job shop abstraction

with an exemplary transition based on May & Maucher, et al. (2021).

Dynamic transitional model

In a complex job shop the complexity originates from the dynamics of the system and

the degressive high degrees of freedom. Therefore, not only the graph of transitions that

connect equipment is important but also the dynamic material flow on these transitions. Thus,

this graph is extended with temporal information about the current jobs on a transition and

in a processing equipment as outlined by Figure 4.10. The maximum overlying graph of

all transitions that are used more than once is then the sparse transitional model graph

Gsparse = (V, Esparse). The sparse transitional graph is dynamic so that over time novel

prior unused transitions can be added. Regarding this graph at a given time has a large
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similarity with the knowledge graph based production system model. However, due to the

high abstraction important information about the past and current events as well as details

are not included. Therefore, the transitional graph can be obtained from a knowledge graph

representation easily but not vice versa.

Figure 4.10: Sparse transitional model graph and the temporal graph including material flow

represented through boxes on the transition based on May & Maucher, et al.

(2021).

The main advantage of this transitional model graph is that it breaks the large convoluted

real complex job shop model apart into a set of processing equipment as vertices and a

set of transitions or edges connecting these. If each individual transition is regarded and

there is significant auto-correlation, a full system view with complexities beyond available

computational effort can be avoided. Therefore, the current status of each transition needs to

be regarded. The current and past behavior, in other words the start and duration of each

product, passing the transition has to be recorded.

Transitional queue construction algorithm

To obtain this transitional information about products that are or have been traveling on one

transition from a current knowledge graph based representation or the real production system

log data it is necessary to calculate past times and behavior. From this transaction log data

of the real complex job shop it is necessary to identify timely sorted transaction pairs which

are defined by two consecutive processing operations for each product identifier. Then, the

following algorithm introduced in Algorithm 3 can be used to calculate queues over these

transitions and in front of machines. It makes use of transition pairs, i.e. a transition that pairs

two processing resources, and the past transition data which tracks the transition time and

dates of lots traveling on the transitions.

Algorithm 3 calculates the transitional data ordered by actual transition completion time and

a queue estimation for any regarded time. To calculate the initial transition and queue data
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Algorithm 3 Transitional queue construction algorithm (pseudocode)

Require: transition_pairs and past_transition_data

Ensure: Current transition and queue data is available

initial_transition_data = calc_initial_transition_data(transition_pairs,past_transition_data)

initial_queue = calc_initial_queue(transition_pairs,past_transition_data)

for i in transition_pairs do
lot = i.get_lot()

transition = (i.get_start_equipment(),i.get_ending_equipment())

for j in get_lots(transition) do
if j.arrival_time ≥ lot.arrival_time then

transition.insert_lot_at_position(lot,j-1)

break

end if
end for
equip = i.get_start_equipment()

current_queue = initial_queue.get_equipment(equip).get_current_queue()

if lot /∈ current_queue then
current_queue.append(lot)

end if
current_queue.get_entry_by_lot(lot).exit_time = i.start_time

equip = i.get_end_equipment()

target_queue = initial_queue.get_equipment(equip).get_current_queue()

target_queue.append(lot)

target_queue.get_entry_by_lot(lot).entry_time = i.start_time

end for
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information from past time snippets can be included or, due to missing information, zero is

assumed. This assumption is sufficient as the transitional model requires far less information

than other models, so that a long history can be included. The warm start phase, until the

initial assumption is not influential anymore, can then be excluded. Based on this initial

transition and queue data transitional pairs are iterated to identify all products in transit which

are then used to complement the current queue information.

4.3 Intelligent production control architecture for time-constraint
adherence

Based on the two introduced simulation and transitional data based modeling approaches

for the system architecture the control architecture is described in this section as outlined

in Figure 4.11. Therefore, the conceptional model is described based on process flows in

Section 4.3.1. Both the foresighted digital twin based gate keeping control and the transitional

model based decision making are introduced in Section 4.3.2. The designed algorithm is

implemented during operations which is proposed in Section 4.3.3.

Figure 4.11: Organization of Section 4.3.

4.3.1 Control flow architecture

To minimize the economical and ecological effect of time-constraint violations reducing the

number of violations is desirable. As time-constraints are associated with individual products

or lots that flow through the production system, multiple production control levers can be taken.

As illustrated in Figure 4.12 three production control decision can be controlled to reduce

time-constraint violations. First, order release controls the number of novel lots released into

the production system. As the production targets should not be compromised through slow

order release for lower violation rates, the value of controlling this decision for time-constraint

adherence is low. Secondly, order dispatching which controls the transport of lots between

resources can be controlled. However, time-constraints are violated to a much larger degree
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due to the waiting time than due to pure transporting. Therefore, the focus is on controlling

time-constraint gate keeping before any processing starts on the equipment as the third

control decision. Thus, those lots with high time-constraint violation probability are held back.

The main advantage is that any lot saved from scrapping due to a time-constraint violation is

a pareto improvement over the status quo as general system performance is not affected if

instead of a high risk time-constrained lot another lot is processed.

Figure 4.12: Product process flow chart with the regarded PPC decisions and the focus on

time-constraint gate keeping decisions.

Gate keeping for time-constraints is a highly dynamic task as illustrated in Figure 4.13.

Whenever one lot finished processing at an equipment, here it is lot Z, the next lot or the

next batch of lots for batch processing needs to be selected. Within this set of selected

lots there should not be any time-constrained lot with a violation probability greater or equal

to a threshold. Therefore, the gate keeping decision model restricts the scheduling and

dispatching degree of freedom by withholding any of these lots. This decision has to be

taken whenever there is a time-constraint lot in the possibly selectable lots A, B, C, .... As

illustrated, typically there are non time-constrained lots that can be selected alternatively.

Nevertheless, as time-constraint violation results in scrapping not selecting any lot can be

better than scrapping. The next gate keeping decision for a withhold lot happens at another

time which results in changes in the system, the derived transitional and digital twin model

and therefore ensure lots are not unnecessarily withhold for prolonged periods.

First, the current system state is abstracted into the foresighted digital twin model and the

transitional modeling which subsequently update the individual models used during decision

making. Both models can coexist at the same time, although for individual decision using

either the transitional approach or the foresighted digital twin can be sufficient. Based on

these updated models each possibly selectable lot is regarded and evaluated with respect to

its expected transition time. In other words the expected time of transitioning to the start of
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Figure 4.13: Decision framework for time-constrained lots gate keeping decision.

the following process is determined for all time-constraints lots waiting in front of the regarded

equipment, i.e. lots A, B, ... in Figure 4.13. Based on these estimates the individual probability

of violating the prescribed, known time-limit is calculated. If the probability exceeds a certain

threshold the associated lot cannot be selected for processing on the regarded equipment

by higher production control levels. As soon as the next equipment can possibly select a

time-constrained lot for processing this procedure is repeated. Therefore, quick decision

making is required to avoid processing interruptions as the majority of time-constrained lots

or lots in general is not critical.

4.3.2 Intelligent production control for time-constraint gate keeping decisions

In order to determine whether or not a particular lot is blocked for processing for the production

control the time-constraint gate keeping decision follows Algorithm 4 which requires the

time-constrained lot in question, access to the current production system state as well as

the selection of risks, in other words coverages, that are tolerated. It can make use of the

selected model. Any time-constrained lot can possibly be blocked to avoid time-constraint

violations. The selected models are then queried to produce transition time estimates which

are consequently evaluated against the time-constraints to identify the violation risk. To

preserve computational effort the choice of models can be selected or dynamically controlled,

i.e. to include several models for close to risk lots. This algorithms main hyperparameter is

the selection of tolerable risk through a threshold. If the models risk estimation exceeds the

threshold further processing is prohibited. Due to the sequential nature of this gate keeping

decision, any blocked lot will be evaluate in the subsequent gate keeping decisions based on

the updated system representation.
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Algorithm 4 Time-constrained lot gate keeping algorithm (pseudocode)

Require: time_constrained_lot, production_system_state, risk_threshold, model_choice,

release_risk = 1

Ensure: time_constrained_lot is only released if release_risk ≤ risk_threshold

time_constrained_lot.is_blocked = true
foresighted_digital_twin_model.initialize(production_system_state)

transitional_model.update(production_system_state)

if transitional_model ∈ model_choice then
transition = transitional_model.get_transition(time_constrained_lot.current_equipment,

time_constrained_lot.next_equipment)

distribution_expected_transitioning_time = transition.calc_distribution(transition.last)

release_risk = min(1, calc_release_risk(distribution_expected_transitioning_time,

time_constrained_lot.time_limit))

end if
if foresighted_digital_twin_model ∈ model_choice then

initialize no_of_rollouts, transition_duration_list, no_of_violations = 0

for i ∈ range(no_of_rollouts) do
foresighted_digital_twin_model.rollout_until(

foresighted_time_constrained_lot.last_process

�= time_constrained_lot.last_process)

transition_duration_list.update(resulting_duration(foresighted_digital_twin_model.

foresighted_time_constrained_lot.transition))

if transition_duration_list.last ≥ time_constrained_lot.time_limit then
no_of_violations = no_of_violations + 1

end if
foresighted_digital_twin_model.reset(now)

end for
release_risk = max(release_risk, calc_release_risk(transition_duration_list,

time_constrained_lot.time_limit, no_of_violations, no_of_rollouts))

end if
if release_risk ≤ risk_threshold then

time_constrained_lot.is_blocked = false
end if
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In the following the two distinct approaches for evaluating the risk of this gate keeping decision

are presented. Within each approach several models can be implemented and evaluated.

This sequential gate keeping decision model avoids traditionally complicated decision making

based on the skewed past data. As the goal is to minimize time-constraint violations and

which in current production control is done by human supervisors who aim at fulfilling this goal

the number of violations is significantly lower than the number of time-constraint adherent

transitions. Therefore, end-to-end evaluation of the violations based on the historical data

alone is doomed to fail due to heavy bias.

4.3.2.1 Foresighted digital twin based time-constraint gate keeping

The foresighted digital twin is rolled out several times. Each roll out represents the simulation

from the instantiated moment until the end of the foresight horizon. While the production

control is transferred or mirrored as accurately as possible, each rollout still yields different

results. There are various possibilities to recreate the stochastic, dynamic nature with different

outcomes in the foresighted digital twin. Hence, this production control follows three steps.

First, the rollout mechanism is selected. Second, the simulation of foresight is performed and,

third the risk has to be evaluated which is interlinked to the selected rollout mechanism.

Rollout mechanisms

A rollout describes the process of simulating the current simulation status until the end of the

regarded period as introduced in Figure 4.14. As an event discrete simulation is a deterministic

tool variability is modeled through statistical distributions for process or repairing times, failure

and breakdown probabilities etc.. Through controlling this variation and sampling different

behavior can be simulated. The following rollout mechanisms have been identified in the

course of this work:

Figure 4.14: General rollout procedure.

1. Random sampling describes the simplest rollout mechanism that is identical to a

regular DES implementation. Any stochastic values are randomly sampled from the
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underlying distribution. The main advantage is that sampling sufficiently often can

explore the most likely regions of system development.

2. Scenario technique describes an approach in which instead of sampling of stochastic

values prior selected values are stored and inserted into the simulation. The benefit

lies in the ability to manually inflict desired behavior or circumstances. For instance, a

planned sudden change can be manually described to avoid out of distribution sampling

when compared to the original distribution.

3. Seeded random sampling describes random sampling with a selected seed given to all

distributional sampling. Note that each individual distribution needs to be seeded so that

behavioral change does not change the sampled values. Seeding has the advantage of

creating reproducibility in case of same seeds.

4. Targeted sampling describes sampling of values from a subset of the underlying

distribution. For instance, the distribution can be cutoff to exclude particularly low or

high values. Alternatively, the space can be restricted through the definition of upper

and lower quantiles in which sampling is applied. The main advantage of restricting

sampling is the possibility to regard worst-case or x quantiled worst-case scenarios.

5. Any combination of the above can be used to control the rollout and its value creation

for the foresight.

The selection of the rollout mechanism is crucial as the results are heavily influenced and,

thus, the rollout results have to be interpreted based on the knowledge of the used and

parametrized rollouts. Besides the rollout mechanism and its parameters for one individual

rollout, the overall rollout strategy remains paramount. Rollout strategy herein refers to

the combination of rollout mechanisms and their parametrization to guide to exploration

of the system behavior through the large space of possible futures. Last but not least, the

computational effort of the rollout mechanisms as well as the scalability potential through

parallelization has to be regarded.

Simulation and rollout during foresight period

Each rollout runs until the end of the pre-selected foresight period in other words until the time-

constrained lot has started processing on the target equipment. Parallelization reduces the

computational time required to run multiple simulations and enables scalability across different

hardware. As shown in Figure 4.15 the rollout strategy, which determines the individual rollout

mechanisms and their parametrization during the simulation run, is the basis for controlling

the rollout. This leads to different production control decisions being implemented, different

behavior and different associated times from the beginning of the rollout and in parallel. In
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turn, different sampled time for processing, maintenance, repair etc. lead to a divergence

of the individual simulation runs. Parallelization is possible with more than the two depicted

mechanisms and parametrizations as suggested in Figure 4.15.

Figure 4.15: Parallelization of rollout behavior during a foresight period.

Risk evaluation

In principle two risk evaluations are possible. First, the algorithmic evaluation based on

the results obtained from the different foresight rollouts and the rollout mechanisms and

parameters. Second, the evaluation based on priority rules based on the rollout results. The

latter can be combined with manual human intervention as an interpretation. Independently

of the rollout strategy and knowledge about it, simple rules lead to a risk evaluation. However,

the main disadvantage lies in low explainability and comparability of this priority based risk

evaluation as parameters, rollout mechanism, strategy and priority rules heavily influence the

result.

Thus, algorithmic evaluation is desirable for the application in a complex job shop with a large

number of gate keeping decisions during short time intervals. Due to the folding of several

statistical distributions during the simulation and rollout process, tampering with the sampling

or underlying distribution in the rollout process can heavily influence its results. Therefore,

algorithmic evaluation requires random sampling. The presence of seeds however does not

prohibit algorithmic evaluations. The simplest algorithmic evaluation is regarding the mean

of time-constraint adherence over the different rollouts, i.e. nadherence

nadherence+nviolation
. Based on the

law of great numbers for a sufficiently large number of rollouts this value can be taken as the

representative adherence probability within the modeled system. However, only few samples
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can be taken due to the high computational effort. Thus, alternatively, the recorded transition

times can be used to fit a transition time probability distribution. Comparing the allowed risk

is possible as the probability of a transition time greater or equal than the time-limit can be

calculated based on this distribution. Nevertheless, this distribution is not necessarily close to

the ground truth and the distribution type may be unknown.

All in all, the application of the foresighted digital twin is most beneficial if restricted to few cases

with high added value through the digital twin to preserve computational effort. Combining a

simple random sampling rollout mechanism with a simple algorithmic risk evaluation is most

meaningful to avoid behavior far from the real-system and reduce computational effort.

4.3.2.2 Transitional model based time-constraint gate keeping

In fact, the transitional model regards each individual transition separately to determine the

time-constraint adherence of a lot that is supposed to be processed and the flow over this

transition. May & Maucher, et al. (2021) note the inherent auto-correlation of the transition

times regarding an individual transition. Figure 4.16 presents the lowest auto-correlation

transition T1. Additionally, T2 is presented as another transition with a high degree of auto-

correlation between transition times, as identifiable by the auto-correlation over the time lag t

in other words the auto-correlation of a transition time compared to its t-th preceding transition

time. Find additional traditional data analysis in the appendix. As past transition times can be

retrieved from the transitional model, this inherent auto-correlation can be exploited to predict

future transition times.

Figure 4.16: Exemplary auto-correlation between consecutive transition times on the same

transition based on May & Maucher, et al. (2021).

In order to make use of auto-correlation between values over time, a time-series analysis

can be used. As introduced in Section 2.3.5 uni-variate and multi-variate time-series can

be distinguished. Fitting a time-series model to the regarded time-series yields a predictor

that can be used to predict future transition times as illustrated in Figure 4.17. Typically a
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point estimator gives a single value for the predicted transition time (Sadeghi et al. 2015).

Comparing this individual value with the known upper time-limit however does not suffice as

the uncertainty of this prediction is not regarded and, thus, cannot be taken into account when

evaluating the time-constraint adherence probability. Therefore, including this uncertainty into

the decision making process yields better results (May & Behnen, et al. 2021). By including

this prediction uncertainty from the predictor model, the time-series itself and the uncertainty

inherent to the model, the probability density function can be estimated and prediction interval

constructed. Based on the confidence of the upper limit prediction interval and the known

time-limit it can be evaluated to decide whether or not the violation probability is acceptably

small.

Figure 4.17: Transitional model based on May & Maucher, et al. (2021) and May & Behnen,

et al. (2021).

Time series point estimator

As time series stretch associated values over a similar domain, in this case indexed by time

steps, only individual realizations are regarded. Therefore, additional information such as

the actual time that passed between two time-steps is lost. Nevertheless, time series with

significant auto-correlation, in other words with an auto-correlation of about 0.4 or above

to the predecessor, are effectively usable to create good prediction models (Farahani et al.

2023). Uni-variate models solely regard past realizations of the time-series to predict the

next realization. Alternatively, multi-variate models can be augmented with additional relevant

data to improve the prediction. As increasingly high-variate prediction models drive the

model complexity and risk for potential overfitting, low multi-variate or uni-variate models are

preferable according to Occam’s razor if similar performance is obtained (Russell & Norvig
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2021). Time series models are fit to decrease an error function described over the predicted

and actual value so that the result are good estimations of the next realization.

Time-constraint adherence based on prediction interval

To evaluate the time-constraint adherence based on the prediction model the uncertainty

informed prediction interval can be used. The prediction interval with a selected coverage,

in other words the confidence in the interval, can be used to obtain the probability of the

transition time being smaller or equal to the prescribed time-limit. There are multiple ways and

factors to consider when obtaining the prediction interval based on the time-series prediction

model. The following uncertainties can be included or interchangeably used:

1. Predictor model uncertainty stems from the uncertainty within the prediction model.

The prediction model is fit to the visible past of the time-series through a set of parame-

ters that is fixed. As a perfect fit is impossible to obtain these parameters of the model

combined with the chosen model lead to an uncertainty within the model compared to

the ground truth. If possible this uncertainty should be regarded when constructing the

prediction interval to obtain the adherence probability.

2. Time-series inherent uncertainty describes the uncertainty within the time-series itself.

During the construction of the prediction interval, a suitable basis for the time-series

uncertainty has to be selected. Simply put, one can assume a normal distribution or

a transformation of a normal distribution to represent the underlying data generation

process. With this selection the prediction interval can be constructed around the point

estimator.

3. Model free uncertainty in form of the Chebyshev model for quantiles (Jørgensen &

Sjoeberg 2003) can be selected to create the prediction interval alternatively. If no other

assumption on the data generation process can be made Chebyshev still provides a

possible solution. However, the interval width of this Chebyshev base model surpasses

all other models.

4.3.3 Implementation of time-constraint gate keeping decisions in operations

During operation of the complex job shop, real-time real world behavior drastically changes

both the current state of the production system and the transition models. Instant foresighted

digital twin instantiation is necessary, so that in parallel to operations a knowledge graph

based model and real-time data has to be updated. Due to the high computational effort,

the foresight rollout can also be triggered in advance, however, that reduces the accuracy

as all events until the actual decision are not regarded. This trade-off is not present in the
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transitional model as the time-series and their uncertainty evaluation are comparably fast

once the prediction model is trained. However, for the transitional model time series models

for all used transitions must be stored. In a large complex job shop with n machines this can

lead up to n(n − 1) transition models. Nevertheless, the actual number of sufficiently often

used transitions is much less. Note that the transition model approach excludes single use

transitions or transitions with a long time between each realization as no model can be built

or the auto-correlation is not endorsed by any causality.

Thus, the two approaches, namely foresighted digital twin and transitional model, are both

kept up to date at the same time. The transitional model can the be used to quickly generate

predictions and evaluate decisions and whenever an application is not permissible, i.e. too

few data or too complex time-constraints, the foresighted digital twin is used.

4.4 Transition time and adherence prediction

Predicting the transition time and the time-constraint adherence probability is based on both

the foresighted digital twin approach as explained in Section 4.4.1 and the transitional model

outlined in Section 4.4.2. Each model can perform a point estimation of the expected transition

time until the end of the time constraint and an uncertainty informed adherence probability

estimation. The models’ characteristics are widely differing. While the evaluation of a time

series model as in the transitional model requires saving the state of many models at a time

but is performed computationally fast, the instantiation of a foresighted digital twin has a

high computational effort but only requires one up-to-date knowledge graph as a system

representation. Therefore, in the following both approaches are presented and individually

regarded as visualized in Figure 4.18. For a later implementation including the near real-time

requirements the computational speed has to optimize for the operational performance.

Figure 4.18: Organization of Section 4.4.
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In order to make use of both advantages and disadvantages, the precision process is then

split according to expected benefit from more computationally intense models over the fast,

transition models. As shown in Figure 4.19 at first simple time-constraints that limit two-

consecutive processes are regarded with the transitional model. Only if there is no clear

decision with the prescribed confidence level about a violation the foresighted digital twin

model is used to obtain a clearer result. For time-link areas that restrict the time between

two non-consecutive processes or consist of two directly succeeding simple time-constraints

the same decision logic is used. However, instead of obtaining one individual prediction from

the transitional model, multiple transition times and expected processing times have to be

combined and evaluated. Complex time-constraints with overlapping simple time-constraints

are evaluated with the foresighted digital twin.

Figure 4.19: General decision process for gate keeping with time-constraint adherence pre-

diction.

4.4.1 Time-constraint adherence prediction with foresighted digital twin

The time-constraint adherence prediction based on the foresighted digital twin makes use

of an abstracted digital twin model that is up to date at the decision time as illustrated in

Figure 4.20. Within this each individual time-constrained lot is considered separately as the

transitions do not necessarily have to be identical and the gate keeping decision restricts

only an individual lot. For batching operations different batch combinations with or without

one or several time-constrained lots are regarded. For each of these gate keeping decisions

several parallel foresight periods are simulated in the digital twin. Therefore, the underlying

knowledge graph is copied and instantiated multiple times during the rollout strategy. In the

illustration in Figure 4.20 the time-constrained lots and multiple rollouts each are illustrated.

Once the time-constrained lot has passed the subsequently required processing operation
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these rollouts are halted. Each instantiation is evaluated separately whether or not the time-

constraint was violated and regarding the transition time used. As the rollout strategy has

to be set before and as discussed earlier a seeded random sampling is used. Based on

these individual values and knowledge about the rollout strategy the final evaluation restricts

high risk lots as a withholding gate keeping decision due to probable violations. For instance

in Figure 4.20 lot C is restricted due to the gate keeping decision and identified possible

violation.

As the risk of restricting a lot falsely is associated with low costs or no costs at a time the

decision to restrict high risk lots, even if they still have a considerable chance of adhering to

the time-constraint, is much more beneficial than falsely letting a violating lot pass. Thus, to

speed up the number of rollouts and their evaluation lots are restricted if more than 5% of the

regarded instantiations lead to a violation. This can be referred to as a 95% safety interval. As

later shown in the benchmarking and implementation this parameter can be varied, however,

it should reflect the complexity in a complex job shop so that higher risks break the promise

of significantly reducing time-constraint violations.

Figure 4.20: Using the foresighted digital twin to predict time-constraint adherence for the

gate keeping decision.

Regarding the final objective of reducing time-constraint violations through intelligent pro-

duction control a higher safety interval corresponds to a lower violation rate. However, if

no time-constrained lots are released at all no violations go hand in hand with clogging the

production system as the number of lots in a system is not infinite. Thus, the aim is to minimize

time-constraint violations without heavily impeding the production flow and throughput which

translates into a safety interval smaller than 100%. In fact the safety interval and rollout

strategy constitute the set of hyperparameters of the foresighted digital twin based model.
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These parameters can be tuned based on historic data for each individual use-case by ex

post evaluation of the desired trade-off obtained.

Complex time-constraints and timelink area constraints

In order to predict the adherence or violation of complex time-constraints, i.e. these time-

constraints with more than one single transition with a time-limit, the uncertainty of the

prediction increases as longer time-spans have to be simulated. Thus, the evaluation and

hyperparameters can be changed. Nevertheless, the overall decision process remains identi-

cal to simple time-constraints as the foresight obtained through several simulations from the

status quo forms the basis.

A longer time-horizon increases the windows of opportunity to change dispatching and

sequencing as a result from standard changes during manufacturing in a complex job shop.

Theoretically, known changes can also be coupled to the foresighted digital twin. However,

in this scenario of time-constraint violations such changes are unknown in advance and

therefore not regarded.

Gate keeping decisions during foresight period

While general production control can be transferred into the foresighted digital twin, the gate

keeping decision itself is hardly transferable if the decision is based on a simulation rollout.

That would lead to a combinatorial explosion as for each time-constrained lot that can be

selected during the foresight period, another foresighted digital twin or several had to be

started. Likewise, the simulation would take exponentially longer with longer simulation times.

While the gate keeping decision has a large influence on the individual lot and its transition

time, the overall influence on another lot rarely turns into a large effect. As any lots arriving at

the target equipment after the time-constrained lot are in the queue behind them, random

or seeded random sampling is used for the gate keeping decisions of other lots during a

simulation process.

4.4.2 Time-constraint adherence prediction with transition model

The transitional model consists of one or more prediction models for each sufficiently used

transition. With each of these models, the goal is to evaluate the time-constraint adherence

probability so that the gate keeping decision can withhold this lot if necessary. Thus, instead

of only evaluating the transition time point estimator ŷ the upper limit of the prediction interval

has to be compared to the prescribed time-limit. Doing so captures the uncertainty in the

prediction and time-series. The confidence of the next time series value being lower than

this one-sided prediction interval is described with α which corresponds to a probability of

exceeding this upper limit of 1 − α. Based on the student’s t-distribution this confidence can
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be converted into the factored standard deviation depending on the variance V ar(e). Thus,

formally, the upper prediction interval limit can be described with Equation 4.1, as visualized

in Figure 4.17.

ŷ + t1−α ×
√

V ar(e) 4.1

This upper prediction interval, described as the value that with a 1 − α confidence will not

be exceeded by the next time series value, has to be compared to the upper time limit. As

discussed only upper time limit time-constraints are regarded. The transitional approach

for an individual prediction is for now limited to simple time-constraints that fully lie on the

same transition so that the next time-series realization can be evaluated as the transition time

corresponding to the time-constrained lot in question. Hence, the upper prediction interval

should be smaller or equal to the prescribed time limit du as shown in Equation 4.2.

ŷ + t1−α ×
√

V ar(e) ≤ du 4.2

Equation 4.2 can be restructured to obtain the time-constraint adherence probability by

computation, as follows:

t1−α ≤ du − ŷ√
V ar(e)

4.3

By using Equation 4.3 the corresponding probability value can be determined from the cumu-

lative density function of the student’s t-distribution. Comparing the obtained probability with

the selected confidence level 1−α the violation of this time-constraint is likely if the probability

is lower than the confidence interval. Thus, Equation 4.3 illustrates the transitional modeling

approach as it is interpretable as the time-constraint adherence probability. Therefore, each

transition model consists of first a regression model used to predict the point estimate for

the next transition time based on the auto-correlation of transition times as the underlying

approach introduced before. Secondly, the model consists of the corresponding prediction

interval to obtain the probability of time-constraint violations.

Thus, the known time limit, the observation, in other words the ex post realization of the

transition time and the known upper limit of the prediction interval can be regarded as

illustrated in Figure 4.21. There are three interesting cases starting with the actual ex post

transition time (the observation) exceeding the upper prediction interval and time limit. This

is a wrongly unidentified time-constraint violation (false positive) and should be avoided.
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Through arbitrarily low α this case can be avoided. However, this comes at high operational

expenses as the number of withhold lots increases accordingly. Thus, the confidence should

be kept as low as possible. In turn this has two more interesting cases. Secondly, in a false

alarm, the upper prediction interval exceeds the time limit and the gate keeping decision

restricts the lot. This is not optimal for the operational process and should be minimized

with a higher α but in general the costs associated are significantly less than for violations

(May & Maucher, et al. 2021). Thirdly, if the realized value actually exceeds the time limit but

was identified before a time-constraint violation could be inhibited. The latter case is only

observable in ex post comparisons as outlined in the benchmarking and results. Last but not

least, in the standard case in which the upper prediction interval and the realized transition

time does not exceed the time limit is most common.

Figure 4.21: Transitional model based gate keeping based on one-sided prediction interval.

The main advantage of this approach is that each transition is regarded and evaluated

separately. Therefore, the peculiarities on each transition, such as batching or not batching,

are implicitly included in the observed past transition times. Moreover, each lot has its own

time limit for the time-constraint, so that the upper limit that should not be exceeded in fact

varies, in contrast to the simplified illustration in Figure 4.21. Nevertheless, the observed

transition time can be used for the time series prediction, irrespective of the actual time

limit and irrespective of the skewed data set with a much larger share of time-constraint

adherences than violations in a real-world complex job shop. Additionally, any transitioning

of a lot on this transition, whether or not time-constrained, leaves a trace and observation

that can be used to improve and update the model. Last but not least, lots that were shifted

in a transition due to breakdowns and machine dedications are also part of the model, and

hence both standard and more complex cases are included. Thus, the number of lots one

can learn from increases by a large factor, as only a number of lots at each transitions is

time-constrained depending on the technological requirements as outlined in Section 2.1.
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This can be exploited to reduce the uncertainty and, hence, the prediction interval width. In

turn this improves the transitional models prediction capabilities and operational performance

due to more accurate gate keeping. Using one-sided prediction intervals is rarely regarded

and to understand the theoretical background and the derived formulas the following section

introduces the prediction interval approach used in this thesis.

4.4.3 Obtaining Prediction Intervals for time-series

In the following the process to obtain prediction intervals and value their quality with dedicated

loss functions is introduced. Firstly, prediction intervals are formally described and secondly

their evaluation is presented. Prediction intervals for sophisticated machine learning models

can be obtained with methods introduced in the section hereafter.

4.4.3.1 Introduction to Prediction Intervals

Estimations from a statistical point of view are split into point estimations and interval estima-

tions. Point estimations provide a probability or a single value while interval estimations derive

a range with an associated degree of uncertainty (Handl & Kuhlenkasper 2018). Confidence

intervals are a prime example for interval estimations as they give the range of estimates of an

unknown parameter, such as the mean or variance, according to a selected confidence level.

In light of time series and general predictions as introduced in paragraph 2.3.5 prediction

intervals regard the uncertainty associated with the single next data point. Concretely, a

prediction interval for the next data point estimates the interval from which it is sampled. Con-

sider the independently and according to a normal distribution N(μ, σ2) identically distributed

stochastic variables X1, ..., Xn where the actual μ and σ are unknown. Using the student’s t

distribution and estimators X̄ and s the corresponding two-sided confidence and prediction

interval can be obtained. Selecting a confidence, and similarly a coverage in the prediction

interval, of 1 − α, the confidence interval can be be given as Equation 4.4 while the prediction

interval can be given as Equation 4.5.

⎡
⎣X̄ − tn−1;1−α/2

s√
n

, X̄ + tn−1;1−α/2
s√
n

⎤
⎦ 4.4

⎡
⎣X̄ − tn−1;1−α/2s

√
1 + 1

n
, X̄ + tn−1;1−α/2s

√
1 + 1

n

⎤
⎦ 4.5

Comparing the confidence and prediction interval shows that the prediction interval exhibits

a higher uncertainty leading to a larger interval as elaborated in Equation 4.6. While the
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confidence interval width converges to zero with increasing sample size n, the prediction

interval’s width is always larger than zero despite arbitrarily large sample sizes.

tn−1;1−α/2s

√
1 + 1

n
≥ tn−1;1−α/2

s√
n√

1 + 1
n

≥
√

1
n

4.6

As the aim of this thesis is the intelligent control of time-constraints in complex job shops

which limit the maximum transition time future realizations of the transition time have to be

regarded. As a result, prediction intervals are used throughout. As the limit is an upper limit

for the transition time, the prediction interval in fact only needs to be one sided, which can be

given in Equation 4.7. ⎛
⎝−∞, X̄ + tn−1;1−αs

√
1 + 1

n

⎤
⎦ 4.7

4.4.3.2 Loss function derivation for Prediction Intervals

In order to compare several models that aim at generating sufficiently good prediction a model

assessement should evaluate their ability to produce well fit prediction intervals. Ultimately, the

best fitting model can then be used to control the gate keeping decision for time-constrained

lots. While point estimators can easily be compared with standard methods, such as the Mean

Absolute Error (MAE) or the Mean Squared Error (MES) which apply an absolute or squared

penalty function on the errors, in other words the difference between predicted and observed

values. Thus, greater deviations lead to higher errors and ultimately to a worse performance

evaluation. The simplest conversion of this approach to prediction intervals lies in the trivial

calculation of a classification loss on the number of observations that were realized in the

predicted interval. With the free selection of α any coverage 1 − α can be realized, so that

broad coverages that include all data realization in the prediction interval are favored. Such

infinitely large prediction intervals, however, provide no meaningful model. Thus, the achieved

coverage and the interval width need a trade-off to produce suitable prediction intervals.

Therefore, prediction interval loss functions that suit the actual application need to be derived.

Desirable properties for interval loss functions
In other cases loss function derivation for prediction intervals has already been studied.

Askanazi et al. (2018) identify five properties desirable or any prediction interval loss function

L to be created. First, an inverse trade-off between coverage and length is considered

in L. To prevent arbitrarily large prediction intervals, as explained above, this property is
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crucial. Second, the Casella paradox stating that Loss functions that too strongly enforce

short intervals widths creates stark interval miscalibration (Casella et al. 1993) should be

avoided. Third, to ensure consistency the shortest well-calibrated prediction interval has to

minimize the loss. For instance, if the underlying Data Generation Process (DGP) is known

and the shortest well-calibrated prediction interval is obtained there cannot exist another wider

prediction interval forecast at the same coverage 1 − α which achieves a lower loss L. Forth,

the Loss function evaluation of prediction intervals must be obtainable without knowledge

about the DGP to ensure applicability. Fifth, the forecasting quantiles to obtain the prediction

interval shall not be necessary to calculate the Loss L and finally evaluate the prediction

intervals.

Description of the Winkler Loss
The Winkler Loss Lwinkler(y, d, λ) constitutes the most frequently used loss function for

prediction intervals (Askanazi et al. 2018). Thus, the following paragraphs describes the

Winkler loss and evaluates the applicability to the prediction intervals that shall be used

to predict time-constraint adherence. The Winkler Loss can be constrained to the interval

[0, ∞) where a lower loss indicates a better prediction interval. The following notation is used:

d denotes the length of the interval and du as well as dl denote the respective upper and

lowever prediction interval bounds. Then the Winkler Loss can be given as in Equation 4.8.

|d| constitutes the first term that penalizes large interval widths. The second term λl(dl −
X)1{X < dl} penalizes values lower than the lower bound, whereas the third term λu(X −
du)1{X > du} penalizes outliers larger than the upper bound. To find a balance between the

interval width and coverage the parameters λl and λu are used and should correspond to

1/λl + 1/λu = α (Gneiting & Raftery 2007).

Lwinkler(X, d, λ) = |d| + λl(dl − X)1{X < dl} + λu(X − du)1{X > du} 4.8

Reasons for using the Winkler Loss
When measuring the Winkler Loss with the five desired properties set forth by Askanazi

et al. (2018) it becomes apparent that only the first and second property are fulfilled. The

Winkler Loss evaluation is based on the quantiles that were used to obtain the interval. As

both α and λ depend on the selected quantile the Winkler loss does not fulfill the desired

properties four and five. As a matter of fact this can be used to show that the Winkler Loss

also prefers intervals that are closer to the selected quantiles compared to those further away

which leads to a violation of the third desired property (May & Maucher, et al. 2021). Since

the later obtained models that are evaluated with the Winkler loss are quantile based and not

derived from nonparametric models, these violations can be accepted (Gneiting & Raftery
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2007). After all the Winkler is good at given a desired coverage finding the best prediction

interval. This is particularly important for the desired application as not only the best interval

but the best interval in conjunction with a selected coverage that should be achieved to reach

business purposes is required.

Derivation of a custom Winkler Loss
Another major argument for using the Winkler loss lies in the possibility to adjust it to create

an individualized loss function. As time-constraints violations come from maximum time limits

for transition times that are exceed only a one-sided prediction interval shall be considered,

namely the upper prediction interval. Thus, the one-sided prediction interval Winkler loss has

to derived. The two-sided interval score uses the prediction of multiple quantiles r1, ..., rk

to derive the Winkler loss as shown in Equation 4.9 based on Gneiting & Raftery (2007).

Concretely, k = 2, lu and ll represent the upper and lower bounds corresponding to the 1 − α
2

quantile for the two-sided interval score. Following the suggestion from Gneiting & Raftery

(2007) α1 is therefore set to α
2 while α2 is set to 1− α

2 and s and h are set to s1(x) = s2(x) = 2x
a

and h(x) = −2x
α as both function require to be polynomial in x. While h can be in general

arbitrary, s must be non-decreasing. Equation 4.10 this two-sided Winkler loss where the

scoring rule sign is reversed for obtaining the negatively oriented interval score.

L(r1, ..., rk; X; α) =
k∑

i=1
[αisi(ri) + (si(X) − si(ri))1{X ≤ ri}] + h(X) 4.9

Ltwo−sided(dl, du; X; α) = (du − dl) + 2
α

(dl − X)1{X < dl} + 2
α

(X − du)1{X > du} 4.10

As time-constraint adherence in gate keeping decisions for intelligent production control

focuses exclusively on the upper limit of the prediction interval the one-sided interval score

must be obtained. Thus, k = 1 is selected as solely the upper limit du shall be regarded.

Additionally, α1 = 1 − α is selected as the 1 − α coverage level’s upper bound is considered.

Accordingly, s1(x) = x
α and h(x) = −x

α are selected. Following some rearrangements the

inserted formulas yield the once again reversed scoring rule to finally constitute the one-sided

Winkler loss function as shown in Equation 4.11 (May & Maucher, et al. 2021) which is

analogously developed to the two-sided Winkler loss as shown in Gneiting & Raftery (2007).
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Lone−sided(du; X; α) = (1 − α)du

α
+ (X

α
− du

α
)1{X ≤ du} − X

α

= du

α
− X

α
− du + 1

α
(X − du)1{X ≤ du}

= −du + 1
α

(du − X) + 1
α

(X − du)1{X ≤ du}

= −du + 1
α

(du − X)(1 − 1{X ≤ du})

= −du + 1
α

(du − X)1{X > du}

4.11

Lone−sided(du; X; α) = du + 1
α

(X − du)1{X > du} 4.12

Beyond the derivation of the one-sided Winkler loss it becomes apparent that the approach

has to be adapted to evaluate not only one data point as shown in Gneiting & Raftery (2007)

but to regard a larger data set. Thus, the overall loss is extended as an average of multiple

data points. By doing so models of different complexities become comparable on a larger

scale. The advantage of a non scaled average is that additionally compound models that use

different prediction intervals for different subsets can still be effectively compared with one

another. As a result the finally used custom one-sided loss function used can be given as

Equation 4.13.

Lone−sided(du; Xi, ..., Xn; α) = 1
n

⎛
⎜⎝ n∑

j=1
du

i + 1
α

n∑
j=1

[(Xj − du
j )1{Xj > du

j }]

⎞
⎟⎠ 4.13

4.4.3.3 Basic prediction interval estimators

To obtain the prediction intervals as outlined before and shown in Figure 4.22, relevant as-

sumptions as to the underlying data generation process have to be taken. First, no assumption

leads to the application of Chebyshev to avoid estimation of a probability density function.

Alternatively, the historic observations can be regarded as being i.i.d. distributed to fit a distri-

bution which can be used to obtain prediction intervals, for instance a normal or lognormal

distribution. As an alternative the predictor inherent uncertainty can be used to generate the

prediction interval. For the basic interval estimation predictor inherent uncertainty is not yet

regarded.

Regarding historic transition times can support identifying suitable distributions of those and

the required underlying information that can help in creating the upper prediction interval.
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Figure 4.22: Three approaches to obtain basic prediction interval estimators (a) Chebyshev,

(b) assumed Normal distribution or (c) assumed Lognormal distribution.

Thus, sampling transitions with a large available number of observations during a predefined

observation space can be visualized as in Figure 4.23 on the left side. The transitions are

numbered to obscure the actual material flow but the data remains unchanged. A right skewed

normal distribution could be used to approximate this behavior and improve from a distribution

free setting. Given the underlying multiplicative independent random variable product the

central limit theorem suggest a normal distribution in the log domain (Gneiting & Raftery

2007). Nevertheless, the distribution has a very long tail from singular very long transition

time cases. Through a natural logarithm transformation large values can be moved closer to

the mean to deal with the long tails. Likewise, smaller values would be stretched out to deal

with the heavy right-skewness. The results can be seen on the right side of Figure 4.23 and

indicate a potential normal distribution after logarithmic transformation.

Testing for normality with the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test can be used to test if an observed distribution fits an assumed

underlying distribution that has to be predefined for the test. Thus, it is a nonparametric

goodness-of-fit test (Dodge 2008). H0 describes the null hypothesis which assumes the both

accumulated functions F (x) and G(x), that describe the observed and assumed distributions,

are sufficiently equal. T is the statistical test which is the maximum absolute difference

between the two distribution functions. Therefore, the test can be described in Equation 4.14

as:

T = sup
x

|F (x) − G(x)| 4.14
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Figure 4.23: Observed transition time distribution and logarithmic transformation.

Exemplarily the Kolmogorov-Smirnov test is reported for the transition time distribution T1

having the largest available data and visually seems to correspond to a normal distribution

after transformation. Thus, a rejection of the hypothesis H0 in this case would likely also

correspond to a rejection in the other transitions. The critical value of test T can be reported

as 0.0473. The Kn;1−α/2 quantile for the two-sided Kolmogorov-Smirnov can be derived

from respective table. However, for quantiles with large sample size (greater than 35) the

approximation Equation 4.15 should be used (May & Maucher, et al. 2021):

Kn;1−α/2 =
√

ln( 2
α)√

2n
4.15



118 Intelligent Production Control for time-contrained complex job shops

This yields for the sample size greater than six thousand and the α level of 0.05 the critical

value 0.0165. As 0.0473 > 0.0165 and hence the statistical test value being greater than the

critical value the H0 hypothesis has to be rejected with a 0.05 confidence level. Thus, the

assumption of equal normal distributions cannot be confirmed which, regarding the visual

comparison, is surprising.

Taking one step back the usage of the large sample size Kolmogorov-Smirnov approximation

might be responsible for this rejection. Filion (2015) confirms this influence of the sample size

as the critical value, for large sample sizes, becomes very small. As the observed distributions

are rarely ideally following the symmetry requirement this often results in H0 hypothesis

rejections. Thus, only random subsets of the observed period are regarded for the following

Kolmogorov-Smirnov test. For instance, Figure 4.24 in addition to the original test reports

the test of first 30 records of transition T1. The latter leads to a critical value of 0.2417 which

is larger than the statistical test T resulting in 0.1095. Thus, herein the H0 hypothesis is not

rejected. Note that not rejecting is not directly implying that it should be accepted. Therefore,

from a purely statistical point of view the logarithmic transformation does not result in a

normal distribution of the transition times. Nevertheless, this error might be acceptable as

both smaller sample sizes and visual comparisons indicate only minor deviations.

Figure 4.24: Kolmogorov-Smirnov test comparison for large sample size and selection of the

first 30 records based on May & Maucher, et al. (2021).

As explained, for an observed set of transition records that form a distribution the upper

prediction interval can be given by Equation 4.16 with the mean ȳ, standard deviation s,

sample size n for any given coverage level. Thus, the coverage level needs to be defined in

the following. Firstly, most importantly the underlying distribution has to be assumed.

ȳ + tn−1;1−α/2s

√
1 + 1

n
4.16
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Base case model with Chebyshev’s inequality, assumed normal distribution and
assumed logarithmic transformed normal distribution

There are two main approaches to obtain the prediction intervals. Firstly, the prediction interval

model can be based on the point estimator inherent uncertainty which might be quantified

with a holdout data-set as introduced in Section 4.4.3.4. Secondly, the underlying distribution

of the time series has to be identified and prediction interval quality measured through the

previously defined Winkler loss. The latter is introduced in the following with three different

approaches assuming no distribution with Chebyshev, assuming a normal distribution or a

logarithmic transformed normal distribution. The latter might not be statistically validated

through the Kolmogorov-Smirnov test as explained earlier, however, they can still significantly

reduce the prediction interval width.

In general, the Chebyshev inequality is known to be applicable for obtaining prediction interval

without any knowledge or assumption of the distribution (Jørgensen & Sjoeberg 2003). The

assertions deducted with Chebyshev’s inequality work without any known probabilities so

that boundaries are deducted instead of precise values. Based on Chebyshev’s inequality in

Equation 4.17 which is two-sided the one sided form, named Chebyshev Cantelli inequality,

can derived:

P (|X − μ| ≥ a) ≤ σ2

a2 4.17

P (X − μ ≥ a) ≤ σ2

σ2 + a2 4.18

In short the one-sided Chebyshev Cantelli inequality in Equation 4.18 give the upper bound

for realization probability of the stochastic X being above the specified value of a greater then

the mean. Thus, μ + a make up this upper bound and the probability of exceeding it is the

prescribed α. They can be associated as follows:

P (X − μ ≥ a) = P (X ≥ μ + a) = P (X ≥ du) ≤ σ2

σ2 + a2 = α 4.19

With given α based on Equation 4.20 one can get a based on the standard deviation σ as

a = σ
√

1
α − 1. In turn the standard deviation can be estimated from the regarded sample

and the mean ȳ can likewise be obtained. All in all, this can be combined to obtain the upper

prediction interval as in :
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du = μ + a − μ + σ

√
1
α

− 1 = ȳ + s

√
1
α

− 1 4.20

In a similar vein the prediction intervals can be constructed for the normal distribution and

the logarithmic transformation model. All distributions are fit to the observed transitional

data, which results in a large number of fits. Then the same approach is used to obtain the

prediction intervals. As these assumptions restrict the form of the probability density function

the underlying rationale is that tigther and hence more favorable prediction intervals can be

obtained.

4.4.3.4 Prediction Intervals for Neural Networks

As an alternative to directly estimating the prediction error based on the overall distribution

outlined above one can split the prediction error into the aleatoric uncertainty of general noise

and the epistemic uncertainty of the used prediction model. In the following the statistical

foundation and underlying approach is presented. Ultimately, this section introduces the

approach to obtain prediction intervals for a single prediction from the prediction models

uncertainty quantification.

Splitting the total variance of the prediction error

When regarding the prediction error the original observation Xi, in a similar vein to the time

series methods introduced in paragraph 2.3.5 can be given as a composition of the signal

xi, i.e. the part that can be learned and stems from an understandable stochastic process,

and a noise based error term εi (Chatfield 2001). For statistical purposes it is often assumed

that the noise in the observation is identically, normal distributed around zero with constant

variance. Then the observation Xi can be given as shown in Equation 4.21.

Xi = xi + εi 4.21

Then using the model to produce a prediction X̂i and comparing it with the actual observation

Xi yields the prediction error ei given as the difference shown in Equation 4.22.

ei = Xi − X̂i = [Xi − X̂i] + εi. 4.22

Consequently, Khosravi et al. (2011) give the total variance of the prediction error as Equa-

tion 4.23 if both terms on the right hand side of Equation 4.22 are statistically independent.

Then the noise’s variance σ2
ε̂ can be understood as the aleatoric, irreducible uncertainty
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intrinsically linked to the underlying distribution in the date (Abdar et al. 2021). Following

the approach from Zhu & Laptev (2017) this variance of the noise can be estimated through

dividing the squared distance between observations Xi and multiple predictors performing an

ensemble prediction X̂i over the values in a test set nt as shown in Equation 4.24.

V ar(e) = σ2
i = σ2

X̂i
+ σ2

ε̂ . 4.23

σ2
ε̂ = 1

nt

nt∑
i=1

(Xi − X̂i)
2

4.24

The model inherent variance of the prediction σ2
X̂i

on the contrary is based on misspecified

models or insufficiently used information (Khosravi et al. 2011). It is in the context of machine

learning usually denoted as the epistemic uncertainty that is a feature of the used model

and has to be considered when selecting the models. Unavoidable uncertainty is caused by

random noise from within the data, in contrast to the model’s prediction uncertainty that can

be reduced with quality data and suitable model selection. A thorough derivation of the used

quantification appraoch is given in the following.

Obtaining neural network (NN) prediction intervals

Neural networks possess the capability to solve many different tasks, yet their function is

still often considered as a black box. Some insight comes from analyzing individual neurons

that may be more active for certain results, i.e. for picture classifications a set of neurons is

only active when the respective class is triggered, their importance to the performance is

not increased compared to other neurons (Morcos et al. 2018). To extend the applicability

of neural networks and use or reduce their epistemic uncertainty the underlying uncertainty

must first be quantified with uncertainty quantification (UQ). Within the literature two UQ

methods stand out due to their applicability to a wide range of neural networks: bootstrapping

and monte carlo dropout. The uncertainty quantification finally used is derived from these.

Bootstrapping for quantifying uncertainty of neural networks

Bootstrapping is the most popular method in literature to construct prediction intervals from

the quantified uncertainty in neural networks (Khosravi et al. 2011). The main approach is as

follows: the distribution of a population is approximated by examination of the distribution of

random samples of the population. There are several bootstrapping types that slightly alter

the procedure, for instance smooth, parametric, paired and wild (Kabir et al. 2018). Concretely,

for neural networks an ensemble that consists of N neural networks has to be trained. Then,



122 Intelligent Production Control for time-contrained complex job shops

each network’s prediction in the ensemble is differentiated as X̂i,n. X̂i is then obtained as the

average of the ensemble predictions. The variance associated with these N predictions can

then be used as an estimate for the model uncertainty σ2
X̂i

. The average and variance can be

calculated with Equation 4.25 and Equation 4.26 (Khosravi et al. 2011).

X̂i = 1
N

N∑
i=1

X̂i,n 4.25

σ2
X̂i

= 1
N − 1

N∑
n=1

(X̂i,n − X̂i)2. 4.26

For individual tasks training an ensemble of multiple neural networks as predictor which is

computationally significantly more expensive by approximately the factor N is tolerable to

obtain distribution predictions and model uncertainty. With increasing complexity of individual

models this becomes hardly possible for larger problems. Given the large number of transi-

tions and hence large number of prediction models that need to be trained the application

bootstrapping is not feasible in this use-case.

Monte Carlo dropout for quantifying uncertainty of neural networks
In contrast to bootstrapping, monte carlo dropout obtains the ensemble predictors from

different dropouts on the same neural network. Originally, dropout is technique widely used

for regularization to prevent overfitting in deep neural networks. During every training step a

random selection of neurons and their associated connections and weights is removed for

only the individual training step. As a result the predictor is comparably agnostic to excluding

a small random selection of neurons. Figure 4.25 presents a comparison of a neural network

with droupout applied during this training step and a general fully conected neural network.

Given a neural network trained with dropout applied, the model uncertainty can be determined

through a prediction with different random neuron sets in the dropout. In general, it can

be shown that the application of dropout in front of each hidden layer is comparable to

approximating a probabilitic deep Gaussion process (Gal & Ghahramani 2016). Concretely,

X̂i,n predictions can be obtained with N stochastic forward passes. Then, Zhu & Laptev (2017)

use the obtained sample variance to estimate the model uncertainty σ2
X̂i

. Then,Equation 4.27

gives the model uncertainty obtained by applying dropout N times for the final prediction.

σ2
X̂i

= 1
N − 1

N∑
n=1

(X̂i,n − X̂i)2. 4.27
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Figure 4.25: Comparison of a neural network with droupout applied during this training step

and a general fully conected neural network.

The model architecture must be adapted through the introduction of dropout layers to enable

Monte Carlo dropout. However, in general, the computational effort in comparison with

bootstrapping can be starkly reduced. Based on this, the Monte Carlo dropout approach

applied in this study can be derived: First, each neural network used for point estimation

implements dropout layers distributed in front of all hidden layers in the neural network shape

Gal & Ghahramani (2016). This is acceptable despite high computational effort and, thus,

preserves the ability to apply the gate keeping decision in reasonable time. Second, a random

dropout is performed for each of the dropout layers in a random order ten times each. This

prevents being stuck in local dropout optima Zhu & Laptev (2017), whereas the number of

runs is constrained to reduce the computational effort without starkly compromising on the

performance. Lastly, the overall uncertainty can then be derived as follows, where h denotes

the number of hidden layers:

σ2
X̂i

= 1
10h − 1

10h∑
n=1

(X̂i,n − X̂i)2. 4.28

Empirical methods are required to determine the model uncertainty for neural networks due to

the network’s complex structure and behavior. The NN prediction error’s total variance V ar(e),
thus, is the sum of the estimated model uncertainty. This model uncertainty is determined with

the adjusted Monte Carlo dropout and the variance of the data-inherent noise. Combining this
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with a point estimation and the selection of a confidence level, enables obtaining an interval

forecast.

4.5 Performance evaluation for prediction and prediction interval
benchmarks

To evaluate the applicability of the approach within this section individual subaspects of

the proposed intelligent production control for time-constrained complex jobs is evaluated

according to the structure presented in Figure 4.26. Therefore, at first the ability of using the

foresighted digital twin as a point estimator and its computationally required effort is regarded

in Section 4.5.1. Next, Section 4.5.2 regards the state-of-the-art approach and evaluates

the point estimation capabilities of the various transitional model approaches proposed. A

hyperparameter optimization is performed within. At last, Section 4.5.3 studies the prediction

interval approaches that are proposed and identifies the most suitable prediction interval

to be used for the final evaluation. Additionally, the model coverage and data coverage are

juxtaposed.

Figure 4.26: Organization of Section 4.5.

4.5.1 Foresighted digital twin computational performance

The computational effort for running a foresighted digital twin as outlined before through an

instantiation of a real-world complex job shop of several hundred to more than one thousand

equipment is high. Two aspects of computational effort are distinguished as they necessitate

certain hardware requirements to be fulfilled. First, the knowledge graph based state of the

real-world system at the time of instantiation and its development during the foresight period

require storage. Through parallelization this can be multiplied to speed up the simulation

process. Experiments show that in the regarded use case 8GB random-access memory

(RAM) are more than sufficient to represent such a large system over the course of a rollout.



Intelligent Production Control for time-contrained complex job shops 125

This allows a parallel rollout on commercially available systems. To preserve industrial know-

how exact numbers are not reported but the generalized version in form of the OntologSim

(May & Kiefer & Kuhnle & Lanza 2022) for loosely coupled manufacturing systems is publicly

and OpenAccess available for anyone to interact and try out. The second computational effort

is based on the number of computing operations necessary to run the simulation. The size

and implementation play a decisive role as a larger system comes with more events at the

same time and the complexity of the transferred production control linearly increases the

required computational effort. Based on the available hardware and the overall computational

effort the computation time can be obtained. On a more general level the OntolgySim (May &

Kiefer & Kuhnle & Lanza 2022) is available to study exact use-case specific computational

effort. Again, to avoid the disclosure of details the reported summary can confirm a rollout

being possible over several seconds in a commercially available platform. Thus, the gate

keeping decision can be based on the foresighted digital twin as long as the number of rollouts

is limited or sufficient computing resources are provided. In the evaluation the application to

ex post data is less strict with real-time requirements. All in all, the applicability is given with

commercially available systems.

Figure 4.27: Single random sampling rollout point estimator from the foresighted digital twin

for an exemplary transition with a sequence of 45 lot transitions.

To measure the prediction ability the foresighted digital twin is used to obtain single transition

time predictors from one rollout each. As shown in Figure 4.27 a sufficiently accurate point

estimator can be obtained from a single rollout prediction. However, on average the prediction

seems to come with a number of clear under- and overestimations. Thus, following the better

safe than sorry rationale restricting the lot during a foresight period if only few estimates predict

a time-constraint violation is rational. Due to the high computational effort large scale sampling

is anyhow hard to implement. Additionally, the foresighted digital twin approach only regards
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a small subset of risky or very complex time-constraints, so that this high computational effort

is acceptable.

4.5.2 State-of-the-art and predictor benchmark performance

At first, this section introduces the actual real-world semiconductor manufacturing wafer fab

that is used to benchmark the predictor performance and represents the common approach

of ensuring time-constraint adherence in semiconductor frontend wafer manufacturing as a

complex job shop manifestation. Then the state-of-the-art machine learning models used for

the single- and multi-variate transition time prediction are introduced.

Industrial time-constraint violation minimization

For the industrial validation a real-world frontend semiconductor fab is used as it represents

the most complex job shop with a plethora of time-constraints. Given the technological

necessity introduced in Section 2.1.3 time-constraints are heterogeneously distributed on lots

and transitions in semiconductor manufacturing. The regarded use case individual equipment

in the order of one thousand, each with several process capabilities and machine dedications.

As the scheduling and dispatching approaches are not capable of accurately recognizing and

incorporating time-constraints on such large system levels scheduling typically ignores the

time-constraints. On a dispatching level human operators, each responsible for a work area

in the system, can manually perform gate keeping decisions and withhold individual lots if

they deem it necessary. Additionally, in some cases manually skipping queues to finally start

processing before the end of the time limit can be performed. The latter, however, is hardly

ever possible and comes at the expense of other violations and setup increases as well as

manual effort. Thus, many time-constraints are violated as the gate keepers are unaware of

the overall system situation of this complex job shop.

For instance, in a short validation time slot this error prone handling of time-constraint gate

keeping waved a lot through that can barely make it within the time limit. By manually trying

to intervene and skip the queues two other time-constrained lots were hindered in adhering

to their individual time-constraint. This error prone human decision making is thus a major

obstacle. Given shifts and imperfect updates during shift changes the situation is aggravated.

Thus, in the regarded complex job shop based on the available data in retrospect any correctly

predicted time-constraint violation and gate keeping withholding is a direct improvement over

the status quo. Hence, the aim is to build an automated or partially automated gate keeping

decision model to reduce time-constraint violations.
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Single- and multi-variate predictors

To build such a system the single-variate predictors as introduced in Section 2.3.4.1 based

on the pure past transition times are trained and used. To that end the python library pm-

darima which brings an ARIMA model implementation and automatic p, q, d hyperparameter

optimization for the Autoregressive and moving average processes. As ARIMA is capable of

expressing at least as good time series in this case as simpler ARMA, AR or MA models, only

ARIMA is used. The hyperparameters are internally optimized with a grid search whereas

each transition model with its individual time series is optimized. Both p and q are restricted to

{0, 1, ..., 5} while the order d of the differencing operator is constrained to {0, 1, 2} Additionally,

a hold-out test dataset is hold and the models can be evaluated. The results of this point

estimation with ARIMA can be seen in Figure 4.28

Figure 4.28: Exemplary ARIMA point estimator for a transition.

In a similar vein the machine learning models NN, LSTM and GRU for time-series prediction

are trained with the python library keras. Multi-variate models are extend with information

about current breakdown and queue behavior at the destination equipment following the

approach from May & Behnen, et al. (2021). Automation is key as several models, each type

once for every regarded transition, has to be built. Thus, the overall procedure is standardized

for all models and single-variate to multi-variate models alike. First, an input layer is mapped

through one or several hidden layers of potentially individualized layer types to the output

layer. In general, a l2 weight and bias regularization is performed on all hidden layers to

improve the Monte-Carlo dropout as proposed by Gal & Ghahramani (2016), that is later

used for the uncertainty quantification. For the loss function uniquely the mean squared error

(MSE) is used. In order to perform regression tasks MSE is a standard approach with the

benefit of the residuals of the time prediction being distributed around zero. This is beneficial

for the prediction interval construction. To minimize this MSE as the loss function during the

training setting the Adam optimizer is applied to learn biases and weights Bock et al. (2018).
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A validation set is used to interrupt training if the validation loss increases for five epochs

consecutively. Figure 4.29 visualizes this approach and the result of an exemplary training

where the errors converge on both training and validation datasets.

Figure 4.29: Development of the loss for the training and validation datasets over the training

epochs.

As for the architectural choices the number of neurons in the first layer is restricted to

{30, ..., 80}, in the second layer to {10, ..., 50} and the dropout rate to the interval [0.1, 0.4].
As sufficiently large neuronal networks of two or more hidden layers are universal function

approximators more hidden layers are excluded for now. These hyperparameters are tuned

to identify the best performance on a given metric in the validation dataset. Beyond sim-

ple grid or random search that train every possible combination in an inefficient, random,

uninform hyperparameter selection in the search space a more guided approach can be

used. As systematic, mathematically founded approach bayesian hyperparameter tuning

uses a probabilistic surrogate model to predict the score on the evaluation metric in the

validation data for input parameter combinations. These predictions and hyperparameters

optimized in the surrogate model are the run through an evaluation in the actual model

to identify the performance and update the surrogate model. As a python library hyperopt

offers an implementation of this bayesian hyperparameter tuning used in this case Bergstra

et al. (2013). More sophisticated approaches are not regarded as the model size should be

constrained to not overly increase the model inherent uncertainty and thus the prediction

interval width. A number of different multi-variate data extensions and their encodings are

used in the Evaluation and introduced respectively. Nevertheless, the underlying approach

remains identical to the herein presented. An example of this is reported in Figure 4.30 and

further analyses are available in the appendix.
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Figure 4.30: Exemplary neural network point estimator for a transition trained on the proposed

approach.

4.5.3 Prediction interval model evaluation

Once the individual point estimators are trained and their point estimation optimized the main

parameter is the assessment of the interval estimation through its expected coverage 1 − α.

For a given α only the share of α observed realizations of the transition time should exceed

the estimated upper bound. There are differences between the intended coverage, i.e. the

α selected to optimize the time-constraint violation prediction, and the realized coverage

of actually achieved share of transition times that exceeds the estimated upper bound in a

post-ex comparison. To do so, a training data to fit the models has to be separated from the

validation data used to obtain the realized coverage. As the intended coverage α can be

varied a good selection should be achieved.

Note that the overall coverage α is in this case reported and decided for all transitions si-

multaneously. They could be individually varied and tuned which, however, would result in

tremendous manual labor necessary and a high risk of overfit. The results are reported in

Figure 4.31 and show a large deviation for the Chebyshev model and increasingly lower

deviations between expected optimal coverage and actually realized coverage for the normal

and logarithmic model. Thus, while the normal distribution assumption could not be con-

firmed by the Kolmogorov-Smirnov test as outlined before, the model fit is good enough to

significantly reduce the deviations between expected and realized coverage. The logarithmic

transformed normal model visually performs best as deviations are smaller. In particular for

higher coverages it is important as a coverage smaller than 30% is much less acceptable

than a broader coverage to inhibit more time-constraint violations.
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Figure 4.31: Comparing expected and observed prediction interval coverages based on May

& Maucher, et al. (2021) and May & Behnen, et al. (2021).

Deriving the optimal coverage level

When challenging the human operators with a coverage level and thus safety level of identified

violations higher values are much more anticipated and range between 70% and 100%. As

perfect coverage can only be guaranteed by infinitely large prediction intervals this range is

reduced up to 99%. The visualization in Figure 4.31 confirms their understanding as in this

coverage region the best fit between expected and observed coverage can be seen.

More importantly, the coverage level directly influences the required observations as higher

(or lower) coverages can only be sufficiently well assumed if there is sufficient data i.e.

observations. This relationship is explained by Handl & Kuhlenkasper (2018) who give the

following Equation 4.29:

n ≤ 2 − α

α
4.29

Concretely, for instance setting α to 0.05 gives a required minimum of 39 samples as compre-

hensively illustrated in Table 4.1. As each transition is regarded individually not all possible

transitions will fulfill this property and thus not all gate keeping decisions can be modeled.

Additionally, simply increasing the observation space hardly helps as this results in longer
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observations of time-series and perhaps the underlying reality has much changed since the

39th past observation several months ago. Hence, the desired coverage level and required

number of observations must be regarded as a trade-off to be decided against the background

of hindering as many time-constraint violations as feasibly possible. Therefore, the sample

size and maximum coverage can be limited.

Table 4.1: Comparing coverage levels and required sample sizes for the logarithmic model.

exp. coverage req. sample size no. of accept. transitions perc. of usable transitions

99.00% 199 387 41%

97.50% 79 474 50%

95.00% 39 540 57%

92.50% 26 628 68%

90.00% 19 672 71%

85.00% 13 818 86%

80.00% 9 824 87%

77.50% 8 852 90%

75.00% 7 894 95%

70.00% 6 914 99%

Based on the best performing logarithmic model, as shown in Figure 4.31, for a week long val-

idation time frame 1000 transitions are randomly selected to illustrate the coverage selection

process. These 1000 are reduced to transitions that are used at least on two non-consecutive

days as otherwise the system behavior is hardly capable of dealing as a prediction for auto-

mated decision making. Table 4.1 reports the required sample size for a selection of suitable

coverage levels in the interval reported by responsible staff. For each selected expected

coverage additionally the share of acceptable transitions is reported. This highlights very

well that in the real industrial setting and based on the stringent statistical requirements to

close bonds are hardly implementable. Through expert interviews the associated trade-off of

coverage and required sample size can be narrowed down to 80% and 75% being acceptable.

To achieve a higher number of transitions and still keep a low sample size requirement 80%

was identified as the preferred coverage. This will be taken into account for the consecutive

evaluation.

Winkler loss prediction interval evaluation

Given the preferred 80% coverage the different prediction intervals approaches are imple-

mented in the above selected validation period. To score the prediction intervals and again

compare the possible distributional assumptions the previously derived one sided Winkler

Loss is used. Therefore, the period is split into 67% training, the previous validation period,
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and the remaining 33% for testing. As no hyperparameters are fit no validation data is re-

quired. The predictions and loss function calculation is done on the testing data. The results

are reported in Table 4.2. Overall the Chebyshev model performs inferior to the normal and

logarithmic model having the highest loss. The distribution-less wide prediction intervals lead

to high upper bounds and thus to a high first term loss. The first term loss describes the

average loss from the upper bound ( 1
n

∑n
i=1 du

i ). In contrast to the logarithmic and normal

model the second term ( 1
n

∑n
i=1[(yi −du

i )1{yi > du
i }]) is small. As expected the overall loss for

the normal and logarithmic model is much smaller with the logarithmic model outperforming

the normal model due to lower upper prediction bounds. Thus, the normal models wider

prediction interval lead to a larger loss. All in all, for the selected 80% coverage level the

logarithmic model is preferred and should be used in the following.

Table 4.2: Custom one-sided Winkler Loss for the regarded period and different distributional

assumptions.

Model First term Second Term Score

Chebyshev model 6,844 696 7,540

Normal model 4,434 2,020 6,454

Logarithmic model 3,369 2,70 6,070

Prediction interval for machine learning predictors

Alternatively, if suitable machine learning estimators are used, a hold-out data set can be used

to derive the individual prediction interval (May & Behnen, et al. 2021). The disadvantage

is that for each model, that is for each regarded transition in this case, a suitably sized

hold-out data set has to be taken aside. For simple ARIMA models the prediction of the

residual variance can be performed through a separate pass on the hold out data set with

the added values of tn−1;1−α

√
σ2

ε̂ (1 + 1
n). The newly obtained estimate can then be seen as

the constructed corresponding prediction interval (May & Behnen, et al. 2021). For complex

multi-variate machine learning models such as LSTMs and NNs the introduced Monte-Carlo

dropout is implement to similarly obtain the prediction intervals. A sample is reported in

Figure 4.32 wherein the residuals are then used to obtain the prediction interval. As shown

the approach is feasible as the residuals are approximately normally distributed and fall

around zero.

4.6 Summary of the overall approach and framework

The overall approach for intelligent production control of time-constrained complex job shops

is based on a clear model of the regarded production system and proposes a gate keeping

production control decision to be implemented in the real system as shown in Figure 4.33.
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Figure 4.32: Residual analysis and prediction ability of a feed-forward neural network based

on May & Behnen, et al. (2021).

From various data sources real-time information about lots and their current place in the

production system is combined with general layout and failure and processing information.

This fusion can give birth to both a foresighted digital twin in a knowledge graph based

simulation and a transition model that exploits statistical relations of these time series so that

a good prediction of the estimated transition time can be compared with the time-constraint

induced upper transition time limit. A decision model then implements the gate keeping

decision and holds back risky lots as evaluated by the uncertainty quantification based

prediction interval. Overall, the following process is implemented:

Figure 4.33: Summary of own approach and the implemented process elements.

1. Digital twin is the data and data model that is obtained from the up-to-date operation of

the complex job shop. It incorporates a data preparation into a knowledge graph based
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approach and into transitionally ordered data. This pipeline has to be automated to

enable later decision making.

2. Foresighted digital twin describes the short term simulation of the digital twin into

a period of foresight. It is based on the digital twin as an instantiated and augmented

version of the digital shadow.

3. Transitional time series are used to describe the typically auto-correlated time series

data of transition times based on individual transitions typically between two transitions.

This is prepared to create a suitable transition time predictor.

4. Training of point estimators describes the fitting of predictors to the individual transition

times based on the underlying time series from the earlier step. For each predictor

several models have to be fit and optimized automatically. Automating the update

mechanism over time ensures that the models are synced with the underlying reality.

5. Decision model is the general gate keeping decision model that is based on the

prediction interval to quantify the time-constraint violation probability.

a) Gate keeping triggers are used to trigger the decision model by updating the

previously described pipeline and querying a gate keeping decision. Typically the

possible processing of a time constraint lot is this trigger.

b) Foresighted digital twin prediction is usedif complexer time-constraints or transi-

tions with insufficient data to form an analyzable time series are regarded. Therefore,

the digital twin is instantiated and several foresights are regarded based on the

defined rollout strategy. This is used to obtain a time-constraint violation probability

for the specific lot.

c) Transitional prediction from a trained point estimator as well as the associated

prediction interval is performed. As prediction models ARIMA, NN, GRU and LSTM

are implemented and used. A comparison will follow based on their operational gate

keeping performance. The risk of exceeding and, thus, violating the time-constraint

is then derived from student’s t-distribution according to tn−1;1−α = du−ŷ

s
√

1+ 1
n

.

6. Evaluation is required to evaluate the time-constraint adherence, implement the gate

keeping decision. If the risk identified by the decision model is below the predefined

threshold the gate keeping decision does not restrict this lot.

As shown in the performance evaluation all predictors from simple, complex and digital twin

based models provide a good point estimator. Similarly, the proposed prediction intervals
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fulfill their promise of providing concise upper bounds that can be used to evaluate the time-

constraint adherence during the proposed approach. In the following chapter this introduced

model is put together and evaluated in an industrial example. Therefore, a semiconductor

front end wafer fabs as the most suitable real-world complex job shop serves as the system

to be studied.
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5 Evaluation and computational results

To properly evaluate the proposed intelligent production control for gate keeping of time-

constraints in complex job shops, at first the concretely regarded real-world system use

case is described. The description emphasizes the problem setup and available data over

the necessary time horizon. To be a suitable validation use case the previously defined

requirements are regarded. Then the individual performance of the proposed approaches are

reported for the regarded validation use case.

The regarded use case is a semiconductor manufacturing plant which exhibits certain trends

and individual peculiarities introduced in earlier chapters. While the overall production planning

and control algorithms that operated in a cascaded way are not changed, a gate keeping

decision is implemented on the factory level to reduce the time-constraint violations in this

exemplary use case. To avoid the trap of building a model and evaluating it on the same

available information two longer term periods are regarded. The first for creating and designing

the models as well as their initial, already reported, performance evaluation. The second for

evaluating the performance as shown in the following. Each separate the time frames into

training, validation and test data sets to avoid the same mishap on each model level. These

are then used to cope with extreme uncertainty and complexity in the regarded complex job

shop. To deal with the frequent changes within such a system a frequent updating and robust

approach is needed. Thus, the two approaches based on the foresighted digital twin with

foresight and the transitional model are combined. Each is individually and jointly evaluated to

reduce time-constraint violations as much as possible without sacrificing general operational

performance. Later the overall approach and the general performance summary is presented.

The discussion follows in the next chapter.

To that end, the real use case is introduced and discussed in Section 5.1. This includes the

setting and transfer as well as preparation required for the applied models. It presents the

state-of-the-art performance which serves as the benchmark in this case. Then, Section 5.2

describes the exact performance measures that can be used to rate and compare the perfor-

mance of individual production control. Next, the foresighted digital twin model is analyzed

and its performance reported and discussed in Section 5.3. In a similar vein Section 5.4

analyzes, reports and discusses the performance of the transitional models with its individual

underlying single- and multi-variate predictors. Finally, the overall model and performance

is summarized and put into perspective in Section 5.5. This includes the selection of the

final best performing model combination among the various transitional models that can be

combined with the foresighted digital twin model.
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5.1 Semiconductor fab as a complex job shop application and
benchmark

For validation purposes a second time frame of the regarded complex job shop with a time

span of several months is used. The real-world complex job shop is a semiconductor manu-

facturing factory. Concretely, the frontend wafer fab as the most complex complex job shop

available is regarded. Due to the large fluctuations in quantity and actually produced ICs the

product mix and state within a semiconductor fab drastically changes daily. As explained the

operation on the verge of the physically and organizationally possible makes semiconductor

manufacturing the most complex job shop available. This leads to operational excellence

being the single most important target for semiconductor manufacturers. Thus, having an

efficient production planning and control system that highly utilizes capital intensive equipment

and ensures technological required constraints such as time-constraints are adhered to is

paramount. Therefore, regarding such a semiconductor fab for validation purposes is ideal.

To avoid revealing sensitive data certain values over time and sizes are not fully reported, the

time-constraint adherences however can be revealed.

This regarded wafer fab has a large number of equipment in the magnitude order of one

thousand. Thus, the number of potential transitions is in the magnitude order of one million.

However, the actual number of observed transitions is less than 5% of these. Of these only a

small subset has time-constrained lots that travel on the respective transition. Additionally,

not every lot that travels on such a potentially time-constrained transition has an upper time-

limit due a time-constraint. Overall, in a subset of the regarded validation period there were

approximately 10.000 time-constraint transitions on the equipment ranging in the order of

thousand. Of these time-constrained transitions significantly less than 5% were violated. While

this is a far too low number to provide any end to end learning of violation or adherences

with such an imbalanced dataset, the actual number of violations being far greater than 100

leaves great room for improvement. As any lot with its wafers is associated with a value in

the magnitude order of a new car (Mönch & Fowler & Mason 2013) there are significant

economical savings possible. Likewise, ecological savings are possible as the energy and

water usage for semiconductor manufacturing is among the highest.

All in all, over the regarded period each time-constrained lot that is expected to exceed the

time-constraint prescribed time limit has to be withhold by the gate keeping decision. For

one exemplary transition the actually observed transition times can be seen in Figure 5.1.

Clearly, the time series is highly complex. To evaluate the performance of the proposed

model in being able to correctly predict time-constraint violations this historic data is regarded

and observed time-constraints are ex post evaluated with the proposed approach. If the

approach is capable of identifying time-constraint violations observed in the real-world data
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it can offer superior performance. Therefore, the current human operator based handling

of time-constraints which is indirectly observed in the data serves as the benchmark. As

introduced in the state-of-the-art other approaches are not capable of handling such large

scale semiconductor manufacturing systems as the complexity explosion leads to excessive

computational effort.

Figure 5.1: Exemplary observed transition time and split into training, validation and test time

frames.

Additionally, when regarding both the foresighted digital twin model and the transitional

modeling a sufficiently large past behavior has to be observed to recreate the actual system

states. This includes data about maintenance and breakdowns in the magnitude order of

several ten thousand events during the regarded period. Thus, the classic split of the data

into training data, to create the data basis and train the parameters of prediction models,

validation data, to select the most suitable models with hyperparameters based on previously

unseen data, and test data to evaluate the final performance is applied. The training data is

set to 70% while validation and test data each make up 15% as illustrated in Figure 5.1.

5.2 Performance evaluation of time-constraint adherence

To evaluate this proposed model on ex post data several performance metrics can be used.

First, Section 5.2.1 introduces performance metrics that can be used to evaluate and compare

the prediction intervals from different models. This can help comparing the differently obtained

and different types of prediction intervals. Additionally, individual point estimators can be

evaluated with traditional errors such as the mean squared error (MSE). However, this point

estimator evaluation itself is meaningless, as the overall performance in correctly providing

a decision for the gate keeping decision for time-constrained lots is what really counts.

Irrespective of the model used, irrespective of the prediction interval and decision logic, it all
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boils down to how many time-constraint violations can be prevented. In the regarded ex post

evaluation of the data set this is equal to the number of correctly predicted time-constraint

violations in the dataset. Section 5.2.2 provides the performance metrics for this evaluation.

5.2.1 Performance metrics for the evaluation of Prediction Interval Quality

For the evaluation of the prediction interval quality both the prediction interval coverage

probability (PICP) and the mean prediction interval width (MPIW) are required (Khosravi et al.

2011). The PICP should exceed the confidence level 1 − α as it is constructed through the

division of the number of predictions not exceeding the upper limit du through the test set size

nt. It’s importance stems from the fact that the PICP measures the ability of the prediction

interval to properly classify the upper limit exceeding realizations according to the following

equation.

PICP = 1
nt

nt∑
i=1

ŷi, with ŷi =

⎧⎪⎪⎨
⎪⎪⎩

1, ŷi ≤ du
i

0, ŷi > du
i

5.1

Second, the width of the interval has to be controlled to avoid a perfect coverage with arbitrarily

wide prediction intervals. This trade-off is found in the MPIW which can be calculated as the

sum of upper bounds divided by the number of predictions as follows.

MPIW = 1
nt

nt∑
i=1

du
i 5.2

Comparing Multiple Models

To compare the prediction intervals obtained from multiple models the absolute Error (AE)

can be used. The AE is the sum of the predictions’ absolute residuals calculated with the

observation yi and model prediction ŷi. One alternative to the proposed model is a simple

predictor which in any case predicts the mean of the observations y. To put the model’s

performance into perspective the relative absolute error (RAE) can be used, which compares

the model to the simple predictor’s performance as formalized in the following. The benefit of

the model, compared to the simple predictor, can also be used for comparison as in Equation

5.3.
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RAE =

N∑
i=1

|yi − ŷi|
N∑

i=1
|yi − y|

5.3

5.2.2 Performance metrics for the binary classification evaluation

The evaluation of time-constraints is based on a binary classification, i.e. whether or not a

lot has exceeded the maximum time allowed. Recall, precision and accuracy, as defined in

Table 5.1, are used to evaluate the model performance. These are based on two characteris-

tics for each time-constrained lot, first the binary value of violation (positive) or adherence

(negative) to a time constraint and second the binary value of the model classification (true)

or misclassification (false). The resulting four classes are the number of True Positive (TP),

where positives stands for violation and true for being correctly classified by the model, True

Negative (TN), correctly classified adherences, False Negative (FN) and False Positive (FP).

In short, recall is defined as the division of correctly identified violations by all predicted

violations and interpreted as the proportion of correctly identified true positives. Precision

in a similar vein can be interpreted as the faith one can have into the validity of a violation

prediction. As a measure of the overall prediction ability, independently of violation and

adherence, the standard criterion of accuracy is used.

Table 5.1: Recall, precision and accuracy calculation.

Recall Precision Accuracy

TP

TP + FN
5.4

TP

TP + FP
5.5

TP + TN

TP + TN + FP + FN
5.6

5.3 Evaluation of Foresighted Digital Twin-based production control
approach

In the following the foresighted digital twin based gate keeping production control approach to

achieve time-constraint adherence is evaluated. The evaluation takes place on the 15% test

data so that a comparison to the later evaluated machine learning based prediction models

is fair. The preceding behavior as captured in the data captured before is used to create

the up-to-the-minute representation of the real system used to instantiate the digital twin as

outlined before. However, as to the large computational effort of the digital twin model and
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as to follow the previously introduced decision model the digital twin and its foresight period

should only be used for unclear and complex situations. Thus, the selection of time-constraints

is reduced to frequent violators and complex time-constraints. Otherwise the model complexity

would not enable acceptable runtimes. At first, the simulation and its prediction capabilities

are evaluated in Section 5.3.1. Next, Section 5.3.2 evaluates the performance in the binary

time-constraint adherence through gate keeping task.

5.3.1 Evaluation of the simulation model prediction

As shown in Section 4.5.1 a single random sampling rollout point estimator can provide a

prediction for the next transition time. While errors are larger than with perfectly fit prediction

models the foresighted digital twin has other values. To evaluate the simulation model and its

capability of generally predicting the transitions times sufficiently well a larger evaluation has

to take place.

Therefore, for a time-constrained transition with violations the random sampling rollout point

estimation was repeated for 20 times to obtain 20 different point estimators under different

stochastic drawn samples. Note, that this process is very resource intensive so that an

overall evaluation of the entire dataset over months for all transitions is impossible to obtain.

Nevertheless, sufficient performance over changing environments over time for the complex

time-constraints is a fair evaluation. The foresighted digital twin model is based on simulating

the overall wafer fab with processing, material flow and breakdowns and maintenance. Thus,

for each rollout within the knowledge graph based digital twin the entire fab is simulated

for a certain foresight period. Due to the computational complexity an application to any

time-constraint in the real world data set is hardly possible with limited resources. However,

the major advantage is that the foresighted digital twin does not need a minimum number of

observations as time-constraints and can be applied for complex time-constraints. Therefore,

it is not necessary to evaluate the simulation as a prediction model on all transitions over the

regarded horizon, but sufficient to evaluate its performance on a subset.

The results of this evaluation are presented in Figure 5.2, where the time limits from the

time-constraints and the observed transition times are reported. The point estimator of the

predicted transition time is obtained as the mean of the 20 transition times obtained from

the rollouts. In a similar vein, this discrete residual function is used to present a cutoff of

80% mimicking the prediction interval. 80% are selected as the maximum upper bound as

illustrated in Chapter 4.

Overall the prediction is visually seen quite accurate and the observed transition times for

a large majority fall into this 80% confidence interval. Remarkable is that the fine-tuned

simulation through the regarded number of rollouts does not seem to have a bias towards
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Figure 5.2: Exemplary observed transition time, predicted transition time, time limits and the

prediction interval at the designated coverage, where actual violations can be

seen whenever the observed transition time exceeds the time limit.

over- or underestimating the transition times. This behavior is often seen in regular simulation

projects. However, they do not rely on instantiated digital twins but rather averages and

normally regard different performance characteristics than the transition time. Nevertheless,

in quite a few number of observations the observations deviate from the selected interval. Thus,

this confirms that for the gate keeping decision for time-constrained lots a more conservative

approach must be taken. Therefore, 5% of observed time limit exceeds are taken for the later

binary evaluation of the capability to withhold time-constraint violators. In case 5% or more of

the observed realizations in the rollout violate the time-constraint the lot is restricted.

5.3.2 Evaluation of binary classification

As explained the foresighted digital twin and its prediction capabilities heavily depend on the

rollout and decision logic that takes into account this rollout strategy. Due to the complexity a

rollout strategy evaluation is not possible. Therefore, based on the results shown above, the

better safe than sorry strategy is used in which the rollout is a seeded random sampling and

the decision logic is the simple heuristic of only allowing lots to be picked for processing that

have not shown a 5% or higher chance of violating its time-constraint within the observed

rollouts. Based on the reduced evaluation data set used for this foresighted digital twin to

preserve computational efficiency and focus on the complexer time-constraints the following

confusion matrix can be reported in Table 5.2.

Of the regarded time constraints, the vast majority has in the real world system adhered to

the time-constraint. This regarded subset, due to the selection rules of complex and critical

time-constraints, is not representative. 21 time-constraints were violated which is below 2%.

Out of these more than 65%, known as the recall, were correctly identified and could have
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Table 5.2: Confusion matrix for the binary classification of time-constraint violation and adher-

ence of the foresighted digital twin model in the reduced test data set.

Actual violation Actual adherence
Predicted violation 14 458

Predicted adherence 7 2011

been saved from scrapping with the proposed approach. In general recall should be aimed at

reaching higher values of 95% or more. But that would inevitably increase the number false

positive predicted violations of actual adherence and hence lead to a much lower precision

than the achieved 3%. The achieved 3% is from a general perspective low. However, one has

to keep in mind that the costs of a false negative prediction are by several orders of magnitude

larger than that of false positive gate keeping decisions. The latter is acceptable as long as

equipment utilization can be kept high and the lot that is hold back can start processing in one

of the subsequent decisions. Thus, the result is a great improvement over the state-of-the-art

production control that served as the comparison by providing the underlying data set and

reached 0% precision. Overall, the model achieves an accuracy of approximately 81%, as

shown in Table 5.3.

Table 5.3: Recall, precision and accuracy for the foresighted digital twin based approach.

Foresighted digital twin approach
Recall 66.67%

Precision 2.93%

Accuracy 81.33%

5.4 Evaluation of transitional model based production control
approach

In a similar vein to the evaluation of the foresighted digital twin for gate keeping production

control for time-constrained complex job shop the transitional modeling approach is evaluated.

The underlying dataset is identical and the 15% test dataset is used for pure evaluation.

However, as the transitional modeling approach cannot deal with complex time-constraint

these are excluded. Additionally, the dataset covers all regarded transitions and hence a larger

number of transitions as the foresighted digital twin approach as the computational effort

is far lower than for the knowledge graph based simulation. At first the selected predictors

and the architecture and hyperparameter optimization, if applicable, are briefly stated. Then,

Section 5.4.1 presents the evaluation of the point estimators and prediction intervals. The

final binary classification of the gate keeping production control performance to ensure

time-constraint adherence is presented in Section 5.4.2.
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Predictor models used

Overall, the following machine learning prediction models are trained and used to obtain

the point estimators and prediction intervals. First, an ARIMA model is fit to the time series

followed by a feed-forward neural network. Then, GRU and LSTM models are fit. They are

briefly mentioned in the following.

First, as a simple time series model an ARIMA model is selected. As shown by May &

Maucher, et al. 2021 the increasing capabilities of more sophisticated simple time series

model like ARIMA and ARMA greatly outperforms the simple AR and MA models. Thus, it is

sufficient to regard the most sophisticated approach. Due to the low number of parameters to

be fit the model is still easy to handle and fit.

To increase the ability of incorporating non linear relationships a neural network is fit. This NN

is based on the proposed multi-variate approach from May & Behnen, et al. (2021). Therefore,

it incorporates current breakdown and queue behavior at the target machine. Again, a good

compromise between many parameters and possibly better point estimators but much wider

prediction intervals has to be made.

Similarly, the LSTM approach is based on the proposal from May & Behnen, et al. (2021).

As the LSTM is made to be fit to spatio-temporal data such as the regarded time series of

transition times it has performed well in that study. The multi-variate approach is identical to

the NN to achieve both good point estimators and prediction intervals.

Lastly, GRU are novel time series machine learning models that provide a good fit for various

time series (Yamak et al. 2019). In other applications their results have been on par or better

than state-of-the-art models such as LSTM.

All models are trained and the prediction intervals obtained with previously outlined methods.

They are automatically fit as introduced later.

Architecture of the ML Models

The model architecture and approach is identical to the architecture and hyperparameter

search introduced in Section 4.4.2. As explained for every transition, the model input is

derived and a model is trained. A good model fit is irreplaceable in using it to obtain good

point estimators and prediction intervals. However, the quality cannot be manually improved

for the large number of transitions that is to be regarded.

Each model’s architecture and hyperparameters are optimized according to the following

procedure with a fixed training, validation and test data set split of 0.7, 0.15 and 0.15.
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• Architecture: A variety of experiments if performed on the number of layers, bias and

kernel regularization as well as activation function for the feedforward neural networks

with minimum two dense layers.

• Sequence length: Through a grid search the best performing length of the input sequence

is selected.

• Hyperparameters: The optimal hyperparameters are found with a grid search imple-

mented as the python library hyperopt.

5.4.1 Evaluation of the influence of multi-variate prediction intervals

After selecting the coverage and method to calculate the prediction interval the individual

models can be built. ARIMA is an uni-variate time series modeling approach that can solely

predict the transition time based on observed past transition times. All other, namely NN,

LSTM and GRU are multi-variate models that can incorporate more parameters. May &

Behnen, et al. (2021) have studied the influence of further parameters on the transition time

prediction capability and selected the models that best improve the decision. Within this thesis

the multi-variate selection is based on that study so that NN, LSTM and GRU contain current

breakdown and queue behavior at the destination equipment. As the prediction has to be

made in advance no future queue information is available and hence cannot be integrated.

To address such an issue May & Albers, et al. (2021) successfully predicted future queue

lengths based on current complex job shop state information. However, the approach still

yields an error larger than 5% which diminishes their explanatory power concerning future

transition times. Also, more parameters increase the neural network sizes which lead to wider

prediction interval which is undesired.

Thus, the prediction intervals of these multi-variate models can be compared with the intro-

duced performance measures prediction interval coverage probability (PICP), mean prediction

interval width (MPIW) and relative absolute error (RAE). Table 5.4 reports these values. Clearly,

the PCIP close to 1 and equal or higher than the selected coverage interval of 80% favors

LSTM models. Note that this is averaged over the whole dataset. Likewise, MPIW and RAE

show better prediction interval performance for the LSTM model. Due to the LSTM approach

the number of parameters in its structure with a similar architecture is lower than that of a NN

for instance, which could explain the lower epistemic uncertainty and thus better prediction

intervals.

Beyond the purely statistical comparison each model with the maximum coverage of 80%

can be illustrated for exemplary transitions to visually confirm the good point estimators and

prediction intervals. An example transition at a random point in time of the validation data
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Table 5.4: Prediction interval coverage probability and mean prediction interval width of the

NN, LSTM and GRU models.

NN model GRU model LSTM model
PICP 0.8941 0.9256 0.9390

MPIW 9.677 8.977 7.671

RAE 0.9996 0.8720 0.6957

is selected and reported with time limits from the time-constraints for the ARIMA model in

Figure 5.3, for the NN model in Figure 5.4, for the LSTM model in Figure 5.5 and for the

GRU model in Figure 5.6. Clearly, all models in general can be used as good transition time

estimators that visually correspond both for point estimators and the associated prediction

intervals to the later observed real data. The time-constraint adherence can thus be predicted

very well. Notice that in the NN model a few false alarms would have been triggered with the

80% coverage interval. Thus, in the following for the binary classification the preferred 80%

coverage interval is used.

Figure 5.3: Exemplary observed transition with point estimators and prediction intervals at

the maximum coverage of 80% with an ARIMA model.

All in all, the proposed uni- and multi-variate prediction models perform sufficiently well by

providing acceptable point estimators and small prediction intervals. Overall, the ARIMA and

LSTM model outperform the NN and GRU model with respect to the regarded prediction

intervals with coverage or confidence of 80%. Nevertheless, all models are later evaluated

against the binary classification as the pure statistical and visual evaluation is insufficient.

5.4.2 Evaluation of binary classification

Implementing the transitional models with the preferred 80% coverage level enables a direct

comparison of their performance. To do that the models were implemented and used the model
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Figure 5.4: Exemplary observed transition with point estimators and prediction intervals at

the maximum coverage of 80% with a NN model.

Figure 5.5: Exemplary observed transition with point estimators and prediction intervals at

the maximum coverage of 80% with a LSTM model.

inherent epistemic uncertainty estimation techniques that showcased a better performance

for the prediction interval for machine learning models. For the ARIMA implementation the

preferred logarithmic transformation of a normal model is used to derive the prediction interval.

Then the identified performance metrics are reported in Table 5.5.

Recall describes the ability to detect the violated time-constraints. In this performance metric

the simple ARIMA based model performs best and can identify and correctly withhold all time

constraint violations. The LSTM model is able to withhold 90% correctly which is its closest

match. Both GRU and NN model perform inferior.

The precision shows the performance of correctly withholding lots without high numbers

of unnecessarily restricted lots. This performance measure is secondarily important as the

utilization of capital intensive equipment has to be high. Here, LSTM performs best but
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Figure 5.6: Exemplary observed transition with point estimators and prediction intervals at

the maximum coverage of 80% with a GRU model.

Table 5.5: Recall, precision and accuracy comparison for the selected prediction models in

the transitional modeling approach with the preferred 80% coverage interval.

ARIMA model NN model LSTM model GRU model
Recall 100.0% 38.46% 90.9% 82.9%

Precision 11.73% 2.82% 16.67% 3.78%

Accuracy 97.31% 95.21% 98.72% 96.5%

still restricts about six times the number of necessarily restricted lots. The ARIMA model

performs only slightly less at about 12%. Both GRU and NN model cannot keep up with this

performance.

From an overall perspective using the accuracy yields good performances of all models

in the magnitude order of 95% to 99% which is a very good performance from a machine

learning perspective. However, as the dataset is highly imbalanced and most time-constraints

in the observed time period are processed in time a simple always predict adherence would

perform comparably or even better. Thus, it is important to use domain knowledge to build

and evaluate the models, in this cased centrally on Recall and Precision.

All in all, both the simple ARIMA model due to its simplicity and capability of avoiding overfit

and the complex LSTM model that can handle long- and short-term data perform best and

can withhold almost all violated time-constraint. Monetarily that would translate to saving in

the magnitude order of million Euros for the regarded time period.

Nevertheless, there are still too many requirements and several false negative predictions that

impede a direct implementation with industrial companies. For an industrial implementation

the reliability of the digital twin interconnection to the underlying real-world data has to be



Evaluation and computational results 149

ensured. Likewise, the change management driven decision about the exact implementation

form and logic has to be taken. This includes in particular in which way the gate keeping

decision is implemented to the responsible worker. In general weak indications, warnings

for potential high risk selections up to prohibitive measures are possible. Lastly, the internal

financial evaluation has to take place to ultimately weigh up the savings from avoiding time-

constraint violations with the hidden costs of false positive, i.e. falsely restricting lots. Based

on the preliminary evaluation these costs are currently negligibly small. However, for a holistic

evaluation implementation costs and costs for keeping this intelligent production control

system up to date as well as all further costs and savings have to be regarded in an integrated

manner. Furthermore, comparison with alternative projects cannot be overlooked. To address

this gap further research is necessary, for instance improving upon hyperparameters for an

individual transition as visualized in the appendix.

5.5 Summary of evaluation and computational results

In a nutshell, the evaluated foresighted digital twin and transitional model based intelligent

production control for time-constraint adherence in complex job shops lives up to the promise

of minimizing the number of time-constraint violations. In the regarded validation real-world

semiconductor wafer fab more than two third of all time-constraint violations could have been

prevented by the proposed model. Considering the value of such scraped lots in the magnitude

order of several ten thousand Euros, this would relate to financial savings in the magnitude

order of millions of Euros. Moreover, the large stress on operators could be reduced and

valuable expert attention focused on different aspects. Additionally, that reduced scrap could

massively reduce the carbon and water footprint of produced chips.

Concretely, simpler time-constraints can sufficiently well be classified with the fast transitional

model. Here surprisingly both the simple ARIMA model due to its low complexity and epistemic

uncertainty as well as the LSTM model due to its good point estimators and acceptably small

prediction interval perform best. Nevertheless, the NN and GRU model still perform acceptably

well as they could still save a considerable share of the scrapped time-constrained lots in

the validation wafer fab and time frame. Complex time-constraints can be actively controlled

through the same gate keeping production control decision by using the foresighted digital

twin based approach. The computationally intensive foresighted digital twin model can still be

used to control complexer time-constraints and selected periods. It performs acceptably good

and is able to withhold a large share of time-constrained lots that would otherwise have to

be scrapped. Even for these complex time-constraints more than half of the time-constraint

violations would have been avoidable with the proposed approach which cannot be controlled

with any traditional approaches.
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Therefore, the overall model is capable of avoiding a large share of time-constraint violations

that are currently unavoidable and cannot be reasonably controlled. Concretely, between 67%

and up to 99% of the time constraints that were violated in the real world setting could have

been prevented. Consequently, the evaluation and real-world data evaluation can be regarded

as a success. Likewise, computational complexity is insofar limited as the applicability to real

world cases could be shown.

Thus, all in all the evaluation of the proposed intelligent production control for gate keeping of

time-constrained lots in complex job shops yields competitive results superior to implemented

state-of-the-art approaches. Therefore, an implementation into real-world complex job shops

should be regarded in subsequent work.
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6 Discussion and Outlook

An approach for intelligent gate keeping production control of time-constrained lots in complex

job shops is presented within this work. Based on a real-world semiconductor frontend wafer

fab as the most complex job shop the approach is validated. Section 6.1 juxtaposes the

approach and its computational results with the research questions, research deficit and

requirements derived in Section 1.3 and Section 3.2 as well as Chapter 2. A future research

direction is presented in Section 6.2.

6.1 Discussion

Deriving an intelligent production control for time-constrained complex job shops based on

real-time data is the underlying research goal of this work. On the bedrock of this overarching

goal five research hypotheses are set forth. Corresponding requirements were derived and

the state-of-the-art was evaluated to extend this to the overall research deficit. Based on the

research questions the approach and results are critically discussed in the following.

1. How to use static and dynamic knowledge graph based production system replicas to

support production planning and control with time-constraints?

The implemented foresighted digital twin is based on a knowledge graph based production

system replica. Both static information about machines, capabilities and layouts as well as

dynamic information about the current system state in form of the position of individual lots

in the system and the maintenance and breakdown behavior are intertwined. Through the

current state information the digital twin is instantiated to either accurately train and derive

the following production planning and control decision through foresight or to evaluate the

behavior control behavior in a more real-time like manner. The former is implemented and

used within the proposed approach to control the gate keeping decision to improve time-

constraint adherence. As illustrated in the results the approach is applicable in complex cases

that cannot be solved otherwise. The results show that such knowledge graph based system

replica helps improving the control system on the desired target. Time-constraint adherence

can be more accurately controlled with the help of this knowledge graph based simulation

than with the state-of-the-art methods.

However, the computational effort for such an highly detailed knowledge graph based simula-

tion is very high. Therefore, results are only obtained after a certain time period. Additionally,

despite the graph based approach it remains a discrete event simulation that cannot be

analytically described or derived to find optima. Moreover, the required data and information

level is very high and augmentations are necessary to successfully instantiate this foresighted
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digital twin. While automation can alleviate some of this pain a large effort is still required.

Nevertheless, due to the implementable reasoning and automation the effort can be kept

lower than for alternative production system simulation models.

2. How to use real-world real time data to avoid time-constraint violations with a data-based

approach for production control for complex job shops?

The presented approach to minimize time-constraint violations and hence to avoid as many

time-constraint violations as possible can be based on available real-time data used in time

series models. On each individual transition which is time-constrained an individual model

for the time series of time spent between ending the process on the source equipment

and beginning the subsequent process on the destination equipment is built. A number of

time series modeling techniques is then used to predict a point estimation of the required

transition time. This transition time prediction can then be evaluated against the known time-

constraint time limit. As shown the approach in general is feasible to obtain good transition

time predictions and facilitate a decision model. To accurately reflect the uncertainty in

prediction a prediction interval is used during this decision model. The results show that the

majority of state-of-the-art uncontrolled time-constraint violations can be avoided with this

real-time data based approach.

However, this data intensive approach requires a large number of observations and hence

for a complex job shop large data bases have to be held up to date. In turn, each time-

constrained transition time series needs one model to be fit, stored and evaluated as well

as retrained frequently to incorporate novel data and concept drifts. Thus, a non negligible

effort for keeping and using these models has to be made. Nevertheless, this effort for the

regarded time span of the real-world semiconductor manufacturing wafer fab was tolerable by

commercially available hardware. Therefore, implementations are still possible, even for large

complex systems yet they are not to be underestimated.

3. How to enrich and extend machine learning algorithms to accurately capture the aleatoric

and epistemic uncertainty in large-scale complex job shops when predicting time-

constraint adherence?

For the above presented time series predictors several complex state-of-the-art machine

learning algorithms are used to obtain point estimators. To include the uncertainty stemming

from the complex interconnected material flow, frequent control changes and maintenance

which heavily influences the stochastic distributed transition times a feasible approach is

presented. First, the overall aleatoric uncertainty and distribution of these transition times can

be used to obtain a prediction interval based on assumptions on the underlying distributions
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which are then fit. Through the novel proposed one-sided Winkler loss they can be evaluated.

Second, alternatively the uncertainty can be derived from the machine learning model inherent,

epistemic uncertainty that can be evaluated through Monte Carlo dropout on a hold-out

dataset. The latter approach requires higher computational effort and leaves less observations

for the initial fit as the hold-out dataset needs to be reserved. Both approaches can be

effectively used to derive the prediction interval of the transition time around the point estimator.

Combined these can be compared to the time-constraint inflicted upper time limit to derive

the time constraint adherence probability. The results show that this probability can be

accurately predicted ex ante so that the gate keeping decision can greatly reduce the number

of time-constraint violations.

However, process has stringent requirements on the minimum number of observations to

ensure sufficiently small prediction intervals. Therefore, it is not applicable in few rarely

observed cases. Additionally, complex time-constraints cannot be effectively evaluated based

on these transition time predictions alone. Nevertheless, the vast majority of time-constraints

can be controlled and most violations can be prevented with this fast applicable real-time

method. Still, the computational effort for obtaining these distributions and uncertainties

should not be underestimated. Frequent changes in a complex job shop require constant

updating.

4. How to use long-term and real-time knowledge acquired within a factory to holistically

reduce time-constraint violations with intelligent production control?

To sufficiently address this first research question the focus is put on complex job shops

which signify the most complex discrete production systems and include time-constraints as

the most adverse condition. The model of a complex job shop is general enough to cover a

wide range of flexible production system even with less complex circumstances. Thus, the

complex job shop model is well suited cover nowadays complex and less complex systems

as well as their increasing complexity in wake of the mega-trends faced by manufacturing.

Explicitly, production planning and control on a system level and through state-of-the-art

implementations is considered. As the complexities culminate an approach to control the

gate keeping of lots as part of production control is derived. This approach makes use of

long-term data and knowledge of previous behavior and layout information distilled into the

transition models and foresighted digital twin. Additionally, real-time data is implemented

into these decision models to facilitate real-time decision making for improving the time-

constraint adherence. However, this reliance on historic behavior and real-time data permits

the immediate application in novel circumstances as ample time to learn and adapt is required.

Using the foresighted digital twin approach can shorten this adaption and learning time for



154 Discussion and Outlook

novel systems and bridge concept drifts. Nevertheless, there are minor limitations in the

applicability to any novel production system using the provided framework.

The underlying approach to facilitate these gate keeping decisions is based on a twofold

time-constraint adherence evaluation. First, a current state based foresighted simulation

model is used to obtain a transition time prediction through simulating through the foresight

period. Second, a transitional modeling approach uses single- and multi-variate time-series

models to predict future transition times. These predictions can be evaluated against the

prescribed time limits by using prediction intervals and optimized decision rules based on

the obtained time-constraint adherence probability selected according to the coverage. This

framework is generalized and can easily be transferred as it is based on dynamic decision

making. There is a high compatibility to the manual state-of-the-art control and rule-based

approaches. This dynamic and interacting production control is adaptive i.e. reacting to the

system and its likely future behavior.

Knowledge is acquired through the application of learning algorithms on historic and current

data. This distilled knowledge is available through the machine learning models which imple-

ment intelligent behavior. Therefore, the intelligent real-time production control for complex

job shops is realized. The results show that the majority of currently not identified time-

constraint violations can be effectively controlled and avoided with the proposed approach.

Overall the models greatly outperform the current production control methods used to con-

trol time-constraint adherence as shown in the real-world semiconductor frontend wafer fab

validation.

However, as shown in the overall results there is trade-off between the coverage of identified

time-constraint violations and the number of unnecessarily withhold lots. Thus, careful fine-

tuning and implementation with a large degree of domain knowledge is required.

5. How does the learning-based intelligent production control for complex job shop perform

in ensuring time-constraint adherence in a real-world setting?

The proposed approach is validated in a real-world semiconductor manufacturing frontend

wafer fab which serves as the most complex real-world complex job shop. Complexities and

time-constraints are abundant, so that the number of observed time-constraint violations is

significant. Yet, the state-of-the-art production control is already capable of preventing the

vast majority of time-constraint violations. Thus, the proposed approach which makes use

of transition time predictions with machine learning and a digital twin based on all observed

transition times irrespective of time-constraint violations has a decisive advantage over

any end-to-end time-constraint control approaches. Over two separately regarded datasets

containing the real behavior of each several months the approach could prevent the majority
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of time-constraint violations of the state-of-the-art methods. Thus, it vastly outperforms its

benchmarks and could save scrapping of lots worth of in total up to several million Euro.

However, the performance decreases with the time-constraint complexity as the uncertainty

increases vastly. Moreover, a large number of false positive predictions shows that also

non-violating lots are withhold unnecessarily during the gate keeping decision making. Up to

a certain degree this is acceptable as the costs of withholding are negligibly small compared

to a time-constraint violation. Nevertheless, decreasing the number of false positive violation

predictions without compromising on the true positive violation predictions could improve the

models further and spur faster integration. Additionally, the approach is currently validated with

the real-world wafer fab data but not implemented and used by operators as a real-time control

system. For the validation regarding the same system during another time-frame is sufficiently

showing the applicability, but for reaping the benefits of the approach an implementation and

further fine-tuning would be beneficial.

6.2 Outlook and further considerations

A contribution towards the research deficit of effectively controlling time-constraint violations

through production control in complex job shops is made through the presented approach.

This approach takes a great step towards better production control for complex job shops

through sophisticated, artificial intelligence based models. There is still a long way to go and

several future research directions were identified through the course of this work.

First, the presented approach is implemented and validated on several months of a semicon-

ductor manufacturing plant. This frontend wafer fab is the most complex available complex

job shop. Nevertheless, due to the vast number of possible transitions and events some are

still only rarely present in the dataset leading to possibly improvable performance. Therefore,

more data from more systems and from longer time frames should be regarded. Additionally,

the implementation of long-term fit simulations which learn the simulation fit to reality for a full

wafer fab and could provide artificial training data. Similarly, a coupling of these approaches

with the knowledge graph based digital twin could speed up its computation improving results

and applicability. Alternatively, these rare events and missing data based transitions could be

regarded with techniques that reduce the required data such as cross validation.

Second, the currently used machine learning models apply a loss function that optimizes

for the point estimator but does not regard the prediction interval directly. Thus, including

the prediction interval into the loss function could enable the machine learning model to

perform better on this multi-job task of good point estimators and narrow prediction intervals.

For deep neural networks Jiang & Deng (2023) propose an approach to include confidence

intervals which could be evaluated for extension towards prediction intervals. Additionally,
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the performance of the multi-variate predictors could be improved through extensions with

more comprehensive features. For instance, a fusion with the foresighted digital twin to more

accurately reflect the system’s short-term behavior could provide a large benefit. Alternatively,

the prediction quality with respect to point estimator and prediction interval could be improved

through grouping and sorting of transitions based on equipment to increase the available

database. Based on both domain knowledge and grouping algorithms provided by recent

industrial implementations the results and computational effort could be improved.

Third, the prediction models can be expanded by regarding more algorithms, such as pattern

recognition based approaches (Farahani et al. 2023) or novel time series models (Pham

& Kuestenmacher, et al. 2023). Another frequently used approach is ensemble learning

where several different model are trained and decision are derived through aggregation.

Such ensemble learning could combine individual model benefits of good point estimators

with sufficiently small prediction intervals which has been regarded on a general scale

by Lakshminarayanan et al. (2017). Alternatively, the decision models can be simplified to

improve speed and explainability for instance if simple decision rules are derived from complex

machine learning models as introduced for reinforcement learning by Kuhnle et al. (2022). In

the foresighted digital twin model several aspects are currently fit as the underlying algorithms

are not available which results in a real-to-sim gap. Through inferring of algorithms based on

observations for instance with black box based quantum computing could vastly reduce this

real-to-sim and thus improve the predictions obtained during the foresight periods.

Fourth, the gate keeping decision which aims at reducing the number of time-constraint

violations to improve the overall system performance could be augmented and combined to

include scheduling decisions or be included into scheduling decision. For instance sequencing

control could be derived that prioritizes time-constrained lots under certain circumstances

to actively enforce time-constraint adherence. While the state-of-the-art research is far from

regarding complex and large enough systems this approach is particularly promising if

successfully implemented.

Last but not least, the approach should be applied to less complex job shops and other

industries that exhibit time constraints such as in food processing, temperature based pro-

cesses, gluing or in chemical treatments. One example is the control of galvano baths in

electro-plating. This could allow other complex systems to reap the benefits of such a system

and extened state of knowledge as a wider range of complex systems would be regarded.
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7 Conclusion

Manufacturing under ever increasing complexities and stringent requirements increases

the need for operational excellence which is fundamentally dependent on the possibility to

invent ever improving intelligent production control. Intelligent production control for complex

systems, such as controlling the gate keeping decision for time-constraints in complex job

shops, relies on the availability of abundant and suitable data to exploit the full potential

of self-improving artificial intelligence. While AI has become increasingly powerful complex

job shops with time-constraints are still regarded with rigid models with strict assumptions

and computational bounds that do not permit real-world applicability. Implementing machine

learning and foresighted digital twins to provide a solution to time-constraints in complex job

shops has not been sufficiently and successfully regarded.

To that end, this work overcomes this research deficit and presents a novel production control

for gate keeping of time-constraints in complex job shops. The automated production control

approach interacts with the real system and continuously updates its models. Beyond largely

improving time-constraint adherence the currently manual effort required can be saved.

The presented comprehensive methodology to obtain probabilities for certain events in com-

plex manufacturing systems through a combination of point and interval predictors is central

to its success. Entangling the production system model with the real system through a digital

twin that can provide foresight provides one solution. Additionally, single- and multivariate time

series predictors are trained and their uncertainty evaluated to create the required prediction

intervals. Solutions for the challenges of training, tuning and validating such models are imple-

mented and presented. For prediction intervals the one-sided Winkler Loss as an evaluation

metric is derived and novel methods to derive the prediction interval of various machine

learning models are implemented. Based on the point estimator and prediction interval the

known upper limit time-constraint can be evaluated resulting in the time-constraint adherence

probability. The decision model is implemented upon this basis. Within the regarded validation

time frames of the real-world semiconductor frontend wafer fab the proposed model outper-

forms the state-of-the-art and generates significant financial and environmental savings. The

performance is robust over system changes over time. Thus, this research presents a strong

contribution to intelligent production control for complex autonomous production systems.

Not only current complex job shop operations managers in semiconductor manufacturing but

all potentially complex production areas should evaluate the potential of this or related ap-

proaches to greatly improve operational performance and find a new sweet-spot of balancing

complexity with flexibility and stringent product-inherent manufacturing constraints.
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Appendices

A1 Additional data analysis of the real-world semiconductor
manufacturing dataset

Within a complex job shop the high degree of stochastic influences and convoluted material

flow leads to high variations in the actual transition time. The transition time denotes the

time a lot spends between two operations and which may or may not be limited by time-

constraints. Regarding the real-world semiconductor manufacturing plant which is regarded for

the validation, the actual transition times observed can vary significantly as the depend on the

processing times, distances and criticality of certain equipment and operations. Figure A1.1

visualizes the large variation in transition times, which underlines the need to intelligently

apply production control to enforce time-constraint adherence. In a similar vein, the operations

that are required subsequently to arriving at the transitions destination from the identical

sending equipment heavily influences the observed transition times as shown in the right

part of Figure A1.1. By regarding transitions individually and by leveraging time series model

the proposed approach aims to develop and intelligent production control for these time-

constrained complex job shops.

Figure A1.1: Comparison of transition time distribution in a boxplot for transitions (left) and

operations (right) from the real-world example.

Besides the geospatial and operational influence, the stochastic behavior of the underlying

equipment used is exhibiting a large influence on the actual transition time observed and,

hence, on the number of time-constraint violations. Figure A1.2 visualizes the influence of

a breakdown of the target equipment on the transition time of a corresponding transition.

In case a breakdown occurs after the lot has been started operating or while it is in transit,

the transition time is heavily influenced as shown on the left. Therefore, using predictive
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approaches such as the foresighted digital twin can leverage good expectations about such

events. On the other hand, there is a much lighter influence on the transition time if a current

breakdown is known before dispatching the respective lot.

Figure A1.2: Comparison of transition times for two equipment under the influence of break-

downs during the lots being in transit (left) and the influence of a current break-

down on lots to be dispatched.
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A2 Additional experimental evaluation of transition time
prediction

Accurate predictions of the transition time are key to well adjusted prediction intervals to

intelligently control the gate keeping production control decision for improving time-constraint

adherence in complex job shops. Regarding one individual transition (T9) as in the following

Figure A2.1 illustrates the high degree of variability in transition times, just for one transition.

Using the time series prediction models a predictor is built to predict these timings as

visualized. Clearly, the ARIMA model is not fully capable of perfectly predicting the transition

time, thus, magnifying the need to use the prediction interval extension to not only regard

one value but the cumulative probability of realizations at or below the time-constraint time

limit. The density of transition usage changes over time visualizing the high degree of change

present in a complex job shop and in this particular real-world semiconductor manufacturing

plant.

Figure A2.1: Visualization of an exemplary transition and the ARIMA point estimator for one

randomly selected week.

In a similar vein Figure A2.2 shows the same transition during the same week and highlights

the LSTM made predictions. From visual comparison the LSTM seems more capable of

predicting the exact transition times. However, for the prediction interval the overall interval

quality and not solely the point estimator is decisive. Therefore, as discussed in Chapter 5 the

overall model needs to be regarded, where the prediction interval is additionally influenced
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by the width that is depending on the quality and number of parameters in the prediction

model.

Figure A2.2: Visualization of an exemplary transition and the LSTM point estimator for one

randomly selected week.
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A3 Additional experimental evaluation of time-constraint
adherence prediction

As an alternative to the pre-selected coverage of 80% an ex post evaluation of the individual

coverage levels is possible. Figure A3.1 shows an exemplary transition where all time-

constrained lots have been regarded with their individual adherence probability sorted in

a descending order. Clearly, based on the 80% coverage interval all three time-constraint

violations would be preventable. A lower coverage of 75% would lead to one violation. This

ex post evaluation, however, is hardly suitable for selecting the coverage as an individual

transition specific coverage would have to be identified, stored and continuously updated. For

future work this is promising.

Figure A3.1: Exemplary transition schowing adherence prediction with final ARIMA model at

given coverage of 80% based on May; Maucher, et al. (2021)



Band 0
Dr.-Ing. Wu Hong-qi

Adaptive Volumenstromregelung mit Hilfe von drehzahlgeregelten 
Elektroantrieben 

Band 1
Dr.-Ing. Heinrich Weiß

Fräsen mit Schneidkeramik - Verhalten des System 
Werkzeugmaschine-Werkzeug-Werkstück und Prozessanalyse 

Band 2
Dr.-Ing. Hans-Jürgen Stierle

Entwicklung und Untersuchung hydrostatischer Lager für die 
Axialkolbenmaschine 

Band 3
Dr.-Ing. Herbert Hörner

Untersuchung des Geräuschverhaltens druckgeregelter Axialkolbenpumpen 

Band 4
Dr.-Ing. Rolf-Dieter Brückbauer

Digitale Drehzahlregelung unter der besonderen Berücksichtigung 
von Quantisierungseffekten 

Band 5
Dr.-Ing. Gerhard Staiger

Graphisch interaktive NC-Programmierung von Drehteilen im Werkstattbereich 

Band 6
Dr.-Ing. Karl Peters

Ein Beitrag zur Berechnung und Kompensation von Positionierfehlern an 
Industrierobotern

Forschungsberichte aus dem wbk
Institut für Produktionstechnik 
Karlsruher Institut für Technologie (KIT)

Bisher erschienene Bände:



Band 7
Dr.-Ing. Paul Stauss

Automatisierte Inbetriebnahme und Sicherung der Zuverlässigkeit und 
Verfügbarkeit numerisch gesteuerter Fertigungseinrichtungen

Band 8
Dr.-Ing. Günter Möckesch

Konzeption und Realisierung eines strategischen, integrierten 
Gesamtplanungs- und -bearbeitungssystems zur Optimierung der 
Drehteilorganisation für auftragsbezogene Drehereien 

Band 9
Dr.-Ing. Thomas Oestreicher

Rechnergestützte Projektierung von Steuerungen 

Band 10
Dr.-Ing. Thomas Selinger

Teilautomatisierte werkstattnahe NC-Programmerstellung im Umfeld einer 
integrierten Informationsverarbeitung 

Band 11
Dr.-Ing. Thomas Buchholz

Prozessmodell Fräsen, Rechnerunterstützte Analyse, Optimierung 
und Überwachung 

Band 12
Dr.-Ing. Bernhard Reichling

Lasergestützte Positions- und Bahnvermessung von Industrierobotern 

Band 13
Dr.-Ing. Hans-Jürgen Lesser

Rechnergestützte Methoden zur Auswahl anforderungsgerechter  
Verbindungselemente 

Band 14
Dr.-Ing. Hans-Jürgen Lauffer

Einsatz von Prozessmodellen zur rechnerunterstützten Auslegung  
von Räumwerkzeugen 

Band 15
Dr.-Ing. Michael C. Wilhelm

Rechnergestützte Prüfplanung im Informationsverbund moderner  
Produktionssysteme 



Band 16
Dr.-Ing. Martin Ochs

Entwurf eines Programmsystems zur wissensbasierten Planung 
und Konfigurierung 

Band 17
Dr.-Ing. Heinz-Joachim Schneider

Erhöhung der Verfügbarkeit von hochautomatisierten 
Produktionseinrichtungen mit Hilfe der Fertigungsleittechnik 

Band 18
Dr.-Ing. Hans-Reiner Ludwig

Beanspruchungsanalyse der Werkzeugschneiden beim Stirnplanfräsen 

Band 19
Dr.-Ing. Rudolf Wieser

Methoden zur rechnergestützten Konfigurierung von Fertigungsanlagen 

Band 20
Dr.-Ing. Edgar Schmitt

Werkstattsteuerung bei wechselnder Auftragsstruktur 

Band 21
Dr.-Ing. Wilhelm Enderle

Verfügbarkeitssteigerung automatisierter Montagesysteme 
durch selbsttätige Behebung prozessbedingter Störungen 

Band 22
Dr.-Ing. Dieter Buchberger

Rechnergestützte Strukturplanung von Produktionssystemen 

Band 23
Prof. Dr.-Ing. Jürgen Fleischer

Rechnerunterstützte Technologieplanung für die flexibel 
automatisierte Fertigung von Abkantteilen

Band 24

Adaptierbare und adaptive Benutzerschnittstellen 

Band 25
Dr.-Ing. Thomas Friedmann

Integration von Produktentwicklung und Montageplanung durch neue  
rechnergestützte Verfahren 



Band 26
Dr.-Ing. Robert Zurrin

Variables Formhonen durch rechnergestützte Hornprozesssteuerung 

Band 27
Dr.-Ing. Karl-Heinz Bergen

Langhub-Innenrundhonen von Grauguss und Stahl mit einem 
elektromechanischem Vorschubsystem 

Band 28
Dr.-Ing. Andreas Liebisch

Einflüsse des Festwalzens auf die Eigenspannungsverteilung und die  
Dauerfestigkeit einsatzgehärteter Zahnräder 

Band 29
Dr.-Ing. Rolf Ziegler

Auslegung und Optimierung schneller Servopumpen 

Band 30
Dr.-Ing. Rainer Bartl

Datenmodellgestützte Wissensverarbeitung zur Diagnose und 
Informationsunterstützung in technischen Systemen 

Band 31
Dr.-Ing. Ulrich Golz

Analyse, Modellbildung und Optimierung des Betriebsverhaltens von  
Kugelgewindetrieben 

Band 32
Dr.-Ing. Stephan Timmermann

Automatisierung der Feinbearbeitung in der Fertigung von 
Hohlformwerkzeugen 

Band 33
Dr.-Ing. Thomas Noe

Rechnergestützter Wissenserwerb zur Erstellung von Überwachungs- und 
Diagnoseexpertensystemen für hydraulische Anlagen 

Band 34
Dr.-Ing. Ralf Lenschow

Rechnerintegrierte Erstellung und Verifikation von Steuerungsprogrammen 
als Komponente einer durchgängigen Planungsmethodik 



Band 35
Dr.-Ing. Matthias Kallabis

Räumen gehärteter Werkstoffe mit kristallinen Hartstoffen 

Band 36
Dr.-Ing. Heiner-Michael Honeck

Rückführung von Fertigungsdaten zur Unterstützung einer 
fertigungsgerechten Konstruktion 

Band 37
Dr.-Ing. Manfred Rohr

Automatisierte Technologieplanung am Beispiel der Komplettbearbeitung 
auf Dreh-/Fräszellen 

Band 38
Dr.-Ing. Martin Steuer

Entwicklung von Softwarewerkzeugen zur wissensbasierten
Inbetriebnahme von komplexen Serienmaschinen 

Band 39
Dr.-Ing. Siegfried Beichter

Rechnergestützte technische Problemlösung bei der 
Angebotserstellung von flexiblen Drehzellen 

Band 40
Dr.-Ing. Thomas Steitz

Methodik zur marktorientierten Entwicklung von Werkzeugmaschinen mit 
Integration von funktionsbasierter Strukturierung und Kostenschätzung 

Band 41
Dr.-Ing. Michael Richter

Wissensbasierte Projektierung elektrohydraulischer Regelungen 

Band 42
Dr.-Ing. Roman Kuhn

Technologieplanungssystem Fräsen. Wissensbasierte Auswahl von Werkzeugen, 
Schneidkörpern und Schnittbedingungen für das Fertigingsverfahren Fräsen
 
Band 43
Dr.-Ing. Hubert Klein

Rechnerunterstützte Qualitätssicherung bei der Produktion von 
Bauteilen mit frei geformten Oberflächen 



Band 44
Dr.-Ing. Christian Hoffmann

Konzeption und Realisierung eines fertigungsintegrierten Koordinaten-
messgerätes 

Band 45
Dr.-Ing. Volker Frey

Planung der Leittechnik für flexible Fertigungsanlagen 

Band 46
Dr.-Ing. Achim Feller

Kalkulation in der Angebotsphase mit dem selbsttätig abgeleiteten  
Erfahrungswissen der Arbeitsplanung 

Band 47
Dr.-Ing. Markus Klaiber

Produktivitätssteigerung durch rechnerunterstütztes Einfahren 
von NC-Programmen 

Band 48
Dr.-Ing. Roland Minges

Verbesserung der Genauigkeit beim fünfachsigen Fräsen von Freiformflächen 

Band 49
Dr.-Ing. Wolfgang Bernhart

Beitrag zur Bewertung von Montagevarianten: Rechnergestützte Hilfsmittel zur 
kostenorientierten, parallelen Entwicklung von Produkt und Montagesystem 

Band 50
Dr.-Ing. Peter Ganghoff

Wissensbasierte Unterstützung der Planung technischer Systeme: 
Konzeption eines Planungswerkzeuges und exemplarische Anwendung 
im Bereich der Montagesystemplanung

Band 51
Dr.-Ing. Frank Maier

Rechnergestützte Prozessregelung beim flexiblen Gesenkbiegen durch  
Rückführung von Qualitätsinformationen 

Band 52
Dr.-Ing. Frank Debus

Ansatz eines rechnerunterstützten Planungsmanagements für die Planung  
in verteilten Strukturen 



Band 53
Dr.-Ing. Joachim Weinbrecht

Ein Verfahren zur zielorientierten Reaktion auf Planabweichungen in der 
Werkstattregelung 

Band 54
Dr.-Ing. Gerd Herrmann

Reduzierung des Entwicklungsaufwandes für anwendungsspezifische  
Zellenrechnersoftware durch Rechnerunterstützung 

Band 55
Dr.-Ing. Robert Wassmer

Verschleissentwicklung im tribologischen System Fräsen: Beiträge 
zur Methodik der Prozessmodellierung auf der Basis tribologisher  
Untersuchungen beim Fräsen 

Band 56
Dr.-Ing. Peter Uebelhoer

Inprocess-Geometriemessung beim Honen 

Band 57
Dr.-Ing. Hans-Joachim Schelberg

Objektorientierte Projektierung von SPS-Software 

Band 58
Dr.-Ing. Klaus Boes

Integration der Qualitätsentwicklung in featurebasierte CAD/CAM-Prozessketten 

Band 59
Dr.-Ing. Martin Schreiber

Wirtschaftliche Investitionsbewertung komplexer Produktions- 
systeme unter Berücksichtigung von Unsicherheit 

Band 60
Dr.-Ing. Ralf Steuernagel

Offenes adaptives Engineering-Werkzeug zur automatisierten 
Erstellung von entscheidungsunterstützenden Informationssystemen 

Band 62
Dr.-Ing. Uwe Schauer

Qualitätsorientierte Feinbearbeitung mit Industrierobotern: Regelungsansatz 
für die Freiformflächenfertigung des Werkzeug- und Formenbaus 



Band 63
Dr.-Ing. Simone Loeper

Kennzahlengestütztes Beratungssystem zur Verbesserung der
Logistikleistung in der Werkstattfertigung 

Band 64
Dr.-Ing. Achim Raab

Räumen mit hartstoffbeschichteten HSS-Werkzeugen 

Band 65, 
Dr.-Ing. Jan Erik Burghardt

Unterstützung der NC-Verfahrenskette durch ein bearbeitungs- 
elementorientiertes, lernfähiges Technologieplanungssystem 

Band 66
Dr.-Ing. Christian Tritsch

Flexible Demontage technischer Gebrauchsgüter: Ansatz zur Planung und 
(teil-)automatisierten Durchführung industireller Demontageprozesse

Band 67
Dr.-Ing. Oliver Eitrich

Prozessorientiertes Kostenmodell für die entwicklungsbegleitende Vorkalkulation 

Band 68
Dr.-Ing. Oliver Wilke

Optimierte Antriebskonzepte für Räummaschinen - Potentiale zur Leistungs-
steigerung 

Band 69
Dr.-Ing. Thilo Sieth

Rechnergestützte Modellierungsmethodik zerspantechnologischer Prozesse 

Band 70
Dr.-Ing. Jan Linnenbuerger

Entwicklung neuer Verfahren zur automatisierten Erfassung der geometri-
schen Abweichungen an Linearachsen und Drehschwenkköpfen 

Band 71
Dr.-Ing. Mathias Klimmek

Fraktionierung technischer Produkte mittels eines frei beweglichen  
Wasserstrahlwerkzeuges 



Band 72
Dr.-Ing. Marko Hartel

Kennzahlenbasiertes Bewertungssystem zur Beurteilung der 
Demontage- und Recyclingeignung von Produkten 

Band 73
Dr.-Ing. Jörg Schaupp

Wechselwirkung zwischen der Maschinen- und Hauptspindelantriebsdynamik 
und dem Zerspanprozess beim Fräsen 

Band 74
Dr.-Ing. Bernhard Neisius

Konzeption und Realisierung eines experimentellen Telemanipulators  
für die Laparoskopie 

Band 75
Dr.-Ing. Wolfgang Walter

Erfolgsversprechende Muster für betriebliche Ideenfindungsprozesse. 
Ein Beitrag zur Steigerung der Innovationsfähigkeit 

Band 76
Dr.-Ing. Julian Weber

Ein Ansatz zur Bewertung von Entwicklungsergebnissen in virtuellen Szenarien 

Band 77
Dr.-Ing. Dipl. Wirtsch.-Ing. Markus Posur

Unterstützung der Auftragsdurchsetzung in der Fertigung durch  
Kommunikation über mobile Rechner 

Band 78
Dr.-Ing. Frank Fleissner

Prozessorientierte Prüfplanung auf Basis von Bearbeitungsobjekten für die 
Kleinserienfertigung am Beispiel der Bohr- und Fräsbearbeitung 

Band 79
Dr.-Ing. Anton Haberkern

Leistungsfähigere Kugelgewindetriebe durch Beschichtung 

Band 80
Dr.-Ing. Dominik Matt

Objektorientierte Prozess- und Strukturinnovation (OPUS) 



Band 81
Dr.-Ing. Jürgen Andres

Robotersysteme für den Wohnungsbau: Beitrag zur Automatisierung des 
Mauerwerkabaus und der Elektroinstallation auf Baustellen 

Band 82
Dr.-Ing. Dipl.Wirtschaftsing. Simone Riedmiller

Der Prozesskalender - Eine Methodik zur marktorientierten 
Entwicklung von Prozessen 

Band 83
Dr.-Ing. Dietmar Tilch

Analyse der Geometrieparameter von Präzisionsgewinden auf der Basis einer 
Least-Squares-Estimation 

Band 84
Dr.-Ing. Dipl.-Kfm. Oliver Stiefbold

Konzeption eines reaktionsschnellen Planungssystems für Logistikketten auf 
Basis von Software-Agenten 

Band 85
Dr.-Ing. Ulrich Walter

Einfluss von Kühlschmierstoff auf den Zerspanprozess beim Fräsen: Beitrag 
zum Prozessverständniss auf Basis von zerspantechnischen Untersuchungen 

Band 86
Dr.-Ing. Bernd Werner

Konzeption von teilautonomer Gruppenarbeit unter Berücksichtigung  
kultureller Einflüsse 

Band 87
Dr.-Ing. Ulf Osmers

Projektieren Speicherprogrammierbarer Steuerungen mit Virtual Reality 

Band 88
Dr.-Ing. Oliver Doerfel

Optimierung der Zerspantechnik beim Fertigungsverfahren 
Wälzstossen: Analyse des Potentials zur Trockenbearbeitung 

Band 89
Dr.-Ing. Peter Baumgartner

Stufenmethode zur Schnittstellengestaltung in der internationalen Produktion



Band 90
Dr.-Ing. Dirk Vossmann

Wissensmanagement in der Produktentwicklung durch Qualitäts- 
methodenverbund und Qualitätsmethodenintegration

Band 91
Dr.-Ing. Martin Plass

Beitrag zur Optimierung des Honprozesses durch den Aufbau einer  
Honprozessregelung 

Band 92
Dr.-Ing. Titus Konold

Optimierung der Fünfachsfräsbearbeitung durch eine kennzahlen- 
unterstützte CAM-Umgebung 

Band 93
Dr.-Ing. Jürgen Brath

Unterstützung der Produktionsplanung in der Halbleiterfertigung durch 
risikoberücksichtigende Betriebskennlinien 

Band 94
Dr.-Ing. Dirk Geisinger

Ein Konzept zur marktorientierten Produktentwicklung 

Band 95
Dr.-Ing. Marco Lanza

Entwurf der Systemunterstützung des verteilten Engineering mit Axiomatic Design 

Band 96
Dr.-Ing. Volker Hüntrup

Untersuchungen zur Mikrostrukturierbarkeit von Stählen durch das Ferti-
gungsverfahren Fräsen 

Band 97
Dr.-Ing. Frank Reinboth

Interne Stützung zur Genauigkeitsverbesserung in der Inertialmesstechnik: 
Beitrag zur Senkung der Anforderungen an Inertialsensoren 

Band 98
Dr.-Ing. Lutz Trender

Entwicklungsintegrierte Kalkulation von Produktlebenszykluskosten auf 
Basis der ressourcenorientierten Prozesskostenrechnung 



Band 99
Dr.-Ing. Cornelia Kafka

Konzeption und Umsetzung eines Leitfadens zum industriellen 
Einsatz von Data-Mining 

Band 100
Dr.-Ing. Gebhard Selinger

Rechnerunterstützung der informellen Kommunikation in verteilten  
Unternehmensstrukturen 

Band 101
Dr.-Ing. Thomas Windmüller

Verbesserung bestehender Geschäftsprozesse durch eine 
mitarbeiterorientierte Informationsversorgung 

Band 102
Dr.-Ing. Knud Lembke

Theoretische und experimentelle Untersuchung eines bistabilen 
elektrohydraulischen Linearantriebs 

Band 103
Dr.-Ing. Ulrich Thies

Methode zur Unterstützung der variantengerechten Konstruktion von  
industriell eingesetzten Kleingeräten 

Band 104
Dr.-Ing. Andreas Schmälzle

Bewertungssystem für die Generalüberholung von Montageanlagen      – Ein 
Beitrag zur wirtschaftlichen Gestaltung geschlossener Facility- Managment-
Systeme im Anlagenbau 

Band 105
Dr.-Ing. Thorsten Frank

Vergleichende Untersuchungen schneller elektromechanischer 
Vorschubachsen mit Kugelgewindetrieb 

Band 106
Dr.-Ing. Achim Agostini

Reihenfolgeplanung unter Berücksichtigung von Interaktionen: 
Beitrag zur ganzheitlichen Strukturierung und Verarbeitung von
Interaktionen von Bearbeitungsobjekten 



Band 107
Dr.-Ing. Thomas Barrho

Flexible, zeitfenstergesteuerte Auftragseinplanung in segmentierten 
Fertigungsstrukturen 

Band 108
Dr.-Ing. Michael Scharer

Quality Gate-Ansatz mit integriertem Risikomanagement 

Band 109
Dr.-Ing. Ulrich Suchy

Entwicklung und Untersuchung eines neuartigen Mischkopfes für das Wasser 
Abrasivstrahlschneiden 

Band 110
Dr.-Ing. Sellal Mussa

Aktive Korrektur von Verlagerungsfehlern in Werkzeugmaschinen 

Band 111
Dr.-Ing. Andreas Hühsam

Modellbildung und experimentelle Untersuchung des Wälzschälprozesses 

Band 112
Dr.-Ing. Axel Plutowsky

Charakterisierung eines optischen Messsystems und den Bedingungen des 
Arbeitsraums einer Werkzeugmaschine 

Band 113
Dr.-Ing. Robert Landwehr

Konsequent dezentralisierte Steuerung mit Industrial Ethernet und offenen 
Applikationsprotokollen 

Band 114
Dr.-Ing. Christoph Dill

Turbulenzreaktionsprozesse 

Band 115
Dr.-Ing. Michael Baumeister

Fabrikplanung im turbulenten Umfeld 

Band 116
Dr.-Ing. Christoph Gönnheimer

Konzept zur Verbesserung der Elektromagnetischen Verträglichkeit (EMV) in 
Produktionssystemen durch intelligente Sensor/Aktor-Anbindung 



Band 117
Dr.-Ing. Lutz Demuß

Ein Reifemodell für die Bewertung und Entwicklung von Dienstleistungs-
organisationen: Das Service Management Maturity Modell (SMMM) 

Band 118
Dr.-Ing. Jörg Söhner

Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der 
Finite-Element-Methode 

Band 119
Dr.-Ing. Judith Elsner

Informationsmanagement für mehrstufige Mikro-Fertigungsprozesse 

Band 120
Dr.-Ing. Lijing Xie

Estimation Of Two-dimension Tool Wear Based On Finite Element Method

Band 121
Dr.-Ing. Ansgar Blessing

Geometrischer Entwurf mikromechatronischer Systeme 

Band 122
Dr.-Ing. Rainer Ebner

Steigerung der Effizienz mehrachsiger Fräsprozesse durch neue 
Planungsmethoden mit hoher Benutzerunterstützung 

Band 123
Dr.-Ing. Silja Klinkel

Multikriterielle Feinplanung in teilautonomen Produktionsbereichen – Ein 
Beitrag zur produkt- und prozessorientierten Planung und Steuerung 

Band 124
Dr.-Ing. Wolfgang Neithardt

Methodik zur Simulation und Optimierung von Werkzeugmaschinen in der 
Konzept- und Entwurfsphase auf Basis der Mehrkörpersimulation 

Band 125
Dr.-Ing. Andreas Mehr

Hartfeinbearbeitung von Verzahnungen mit kristallinen diamantbeschichteten 
Werkzeugen beim Fertigungsverfahren Wälzstoßen 



Band 126
Dr.-Ing. Martin Gutmann

Entwicklung einer methodischen Vorgehensweise zur Diagnose von 
hydraulischen Produktionsmaschinen 

Band 127
Dr.-Ing. Gisela Lanza

Simulative Anlaufunterstützung auf Basis der Qualitätsfähigkeiten von 
Produktionsprozessen 

Band 128
Dr.-Ing. Ulf Dambacher

Kugelgewindetrieb mit hohem Druckwinkel 

Band 129
Dr.-Ing. Carsten Buchholz

Systematische Konzeption und Aufbau einer automatisierten 
Produktionszelle für pulverspritzgegossene Mikrobauteile 

Band 130
Dr.-Ing. Heiner Lang

Trocken-Räumen mit hohen Schnittgeschwindigkeiten 

Band 131
Dr.-Ing. Daniel Nesges

Prognose operationeller Verfügbarkeiten von Werkzeugmaschinen unter 
Berücksichtigung von Serviceleistungen 

Im Shaker Verlag erschienene Bände:

Band 132
Dr.-Ing. Andreas Bechle

Beitrag zur prozesssicheren Bearbeitung beim Hochleistungs- 
fertigungsverfahren Wälzschälen

Band 133
Dr.-Ing. Markus Herm

Konfiguration globaler Wertschöpfungsnetzwerke auf 
Basis von Business Capabilities



Band 134
Dr.-Ing. Hanno Tritschler

Werkzeug- und Zerspanprozessoptimierung beim Hartfräsen 
von Mikrostrukturen in Stahl

Band 135
Dr.-Ing. Christian Munzinger

Adaptronische Strebe zur Steifigkeitssteigerung 
von Werkzeugmaschinen

Band 136
Dr.-Ing. Andreas Stepping

Fabrikplanung im Umfeld von Wertschöpfungsnetzwerken und 
ganzheitlichen Produktionssystemen

Band 137
Dr.-Ing. Martin Dyck

Beitrag zur Analyse thermische bedingter Werkstückdeformationen 
in Trockenbearbeitungsprozessen

Band 138
Dr.-Ing. Siegfried Schmalzried

Dreidimensionales optisches Messsystem für eine effizientere 
geometrische Maschinenbeurteilung

Band 139
Dr.-Ing. Marc Wawerla

Risikomanagement von Garantieleistungen

Band 140
Dr.-Ing. Ivesa Buchholz

Strategien zur Qualitätssicherung mikromechanischer Bauteile 
mittels multisensorieller Koordinatenmesstechnik

Band 141
Dr.-Ing. Jan Kotschenreuther

Empirische Erweiterung von Modellen der Makrozerspanung 
auf den Bereich der Mikrobearbeitung

Band 142
Dr.-Ing. Andreas Knödel

Adaptronische hydrostatische Drucktascheneinheit



Band 143
Dr.-Ing. Gregor Stengel

Fliegendes Abtrennen räumlich gekrümmter Strangpressprofile mittels 
Industrierobotern

Band 144
Dr.-Ing. Udo Weismann

Lebenszyklusorientiertes interorganisationelles Anlagencontrolling

Band 145
Dr.-Ing. Rüdiger Pabst

Mathematische Modellierung der Wärmestromdichte zur Simulation 
des thermischen Bauteilverhaltens bei der Trockenbearbeitung

Band 146
Dr.-Ing. Jan Wieser

Intelligente Instandhaltung zur Verfügbarkeitssteigerung 
von Werkzeugmaschinen

Band 147
Dr.-Ing. Sebastian Haupt

Effiziente und kostenoptimale Herstellung von Mikrostrukturen durch 
eine Verfahrenskombination von Bahnerosion und Laserablation

Band 148
Dr.-Ing. Matthias Schlipf

Statistische Prozessregelung von Fertigungs- und Messprozess zur 
Erreichung einer variabilitätsarmen Produktion mikromechanischer Bauteile

Band 149
Dr.-Ing. Jan Philipp Schmidt-Ewig

Methodische Erarbeitung und Umsetzung eines neuartigen 
Maschinenkonzeptes zur produktflexiblen Bearbeitung räumlich 
gekrümmter Strangpressprofile

Band 150
Dr.-Ing. Thomas Ender

Prognose von Personalbedarfen im Produktionsanlauf
unter Berücksichtigung dynamischer Planungsgrößen



Band 151
Dr.-Ing. Kathrin Peter

Bewertung und Optimierung der Effektivität von Lean Methoden 
in der Kleinserienproduktion

Band 152
Dr.-Ing. Matthias Schopp

Sensorbasierte Zustandsdiagnose und -prognose von Kugelgewindetrieben

Band 153
Dr.-Ing. Martin Kipfmüller

Aufwandsoptimierte Simulation von Werkzeugmaschinen

Band 154
Dr.-Ing. Carsten Schmidt

Development of a database to consider multi wear mechanisms 
within chip forming simulation

Band 155
Dr.-Ing. Stephan Niggeschmidt

Ausfallgerechte Ersatzteilbereitstellung im Maschinen- und Anlagenbau  
mittels lastabhängiger Lebensdauerprognose

Band 156
Dr.-Ing. Jochen Conrad Peters

Bewertung des Einflusses von Formabweichungen in der 
Mikro-Koordinatenmesstechnik

Band 157
Dr.-Ing. Jörg Ude

Entscheidungsunterstützung für die Konfiguration 
globaler Wertschöpfungsnetzwerke

Band 158
Dr.-Ing. Stefan Weiler

Strategien zur wirtschaftlichen Gestaltung der globalen Beschaffung

Band 159
Dr.-Ing. Jan Rühl

Monetäre Flexibilitäts- und Risikobewertung



Band 160
Dr.-Ing. Daniel Ruch

Positions- und Konturerfassung räumlich gekrümmter Profile auf Basis 
bauteilimmanenter Markierungen

Band 161
Dr.-Ing. Manuel Tröndle

Flexible Zuführung von Mikrobauteilen mit piezoelektrischen
Schwingförderern

Band 162
Dr.-Ing. Benjamin Viering

Mikroverzahnungsnormal

Band 163
Dr.-Ing. Chris Becke

Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen
Bohrungsbearbeitung an faserverstärkten Kunststoffen

Band 164
Dr.-Ing. Patrick Werner

Dynamische Optimierung und Unsicherheitsbewertung der lastabhängigen 
präventiven Instandhaltung von Maschinenkomponenten

Band 165
Dr.-Ing. Martin Weis

Kompensation systematischer Fehler bei Werkzeugmaschinen durch
self-sensing Aktoren

Band 166
Dr.-Ing. Markus Schneider

Kompensation von Konturabweichungen bei gerundeten Strangpressprofilen 
durch robotergestützte Führungswerkzeuge

Band 167
Dr.-Ing. Ester M. R. Ruprecht

Prozesskette zur Herstellung schichtbasierter Systeme mit integrierten
Kavitäten



Band 168
Dr.-Ing. Alexander Broos

Simulationsgestützte Ermittlung der Komponentenbelastung für die
Lebensdauerprognose an Werkzeugmaschinen

Band 169
Dr.-Ing. Frederik Zanger

Segmentspanbildung, Werkzeugverschleiß, Randschichtzustand und
Bauteileigenschaften: Numerische Analysen zur Optimierung des
Zerspanungsprozesses am Beispiel von Ti-6Al-4V

Band 170
Dr.-Ing. Benjamin Behmann

Servicefähigkeit 

Band 171
Dr.-Ing. Annabel Gabriele Jondral

Simulationsgestützte Optimierung und Wirtschaftlichkeitsbewertung
des Lean-Methodeneinsatzes

Band 172
Dr.-Ing. Christoph Ruhs

Automatisierte Prozessabfolge zur qualitätssicheren Herstellung von
Kavitäten mittels Mikrobahnerosion

Band 173
Dr.-Ing. Steven Peters

Markoffsche Entscheidungsprozesse zur Kapazitäts- und Investitionsplanung
von Produktionssystemen

Band 174
Dr.-Ing. Christoph Kühlewein

Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von
3D-FEM-Simulation – 3D-FEM Kinematik- und Spanbildungssimulation

Band 175
Dr.-Ing. Adam-Mwanga Dieckmann

Auslegung und Fertigungsprozessgestaltung sintergefügter Verbindungen
für MIM-Bauteile



Band 176
Dr.-Ing. Heiko Hennrich

Aufbau eines kombinierten belastungs- und zustandsorientierten Diagnose-
und Prognosesystems für Kugelgewindetriebe

Band 177
Dr.-Ing. Stefan Herder

Piezoelektrischer Self-Sensing-Aktor zur Vorspannungsregelung in
adaptronischen Kugelgewindetrieben

Band 178
Dr.-Ing. Alexander Ochs

Ultraschall-Strömungsgreifer für die Handhabung textiler Halbzeuge
bei der automatisierten Fertigung von RTM-Bauteilen

Band 179
Dr.-Ing. Jürgen Michna

Numerische und experimentelle Untersuchung zerspanungsbedingter
Gefügeumwandlungen und Modellierung des thermo-mechanischen
Lastkollektivs beim Bohren von 42CrMo4

Band 180
Dr.-Ing. Jörg Elser

Vorrichtungsfreie räumliche Anordnung von Fügepartnern auf Basis
von Bauteilmarkierungen

Band 181
Dr.-Ing. Katharina Klimscha

Einfluss des Fügespalts auf die erreichbare Verbindungsqualität beim Sinterfügen

Band 182
Dr.-Ing. Patricia Weber

Steigerung der Prozesswiederholbarkeit mittels Analyse akustischer Emissionen 
bei der Mikrolaserablation mit UV-Pikosekundenlasern

Band 183
Dr.-Ing. Jochen Schädel

Automatisiertes Fügen von Tragprofilen mittels Faserwickeln



Band 184
Dr.-Ing. Martin Krauße

Aufwandsoptimierte Simulation von Produktionsanlagen durch Vergrößerung 
der Geltungsbereiche von Teilmodellen

Band 185
Dr.-Ing. Raphael Moser

Strategische Planung globaler Produktionsnetzwerke
Bestimmung von Wandlungsbedarf und Wandlungszeitpunkt mittels
multikriterieller Optimierung

Band 186
Dr.-Ing. Martin Otter

Methode zur Kompensation fertigungsbedingter Gestaltabweichungen für die 
Montage von Aluminium Space-Frame-Strukturen

Band 187
Dr.-Ing. Urs Leberle

Produktive und flexible Gleitförderung kleiner Bauteile auf phasenflexiblen 
Schwingförderern mit piezoelektrischen 2D-Antriebselementen

Band 188
Dr.-Ing. Johannes Book

Modellierung und Bewertung von Qualitätsmanagementstrategien in globalen 
Wertschöpfungsnetzwerken

Band 189
Dr.-Ing. Florian Ambrosy

Optimierung von Zerspanungsprozessen zur prozesssicheren Fertigung nanokri-
stalliner Randschichten am Beispiel von 42CrMo4

Band 190
Dr.-Ing. Adrian Kölmel

Integrierte Messtechnik für Prozessketten unreifer Technologien am Beispiel der 
Batterieproduktion für Elektrofahrzeuge

Band 191
Dr.-Ing. Henning Wagner

Featurebasierte Technologieplanung zum Preforming von textilen Halbzeugen



Band 192
Dr.-Ing. Johannes Gebhardt

Strukturoptimierung von in FVK eingebetteten metallischen 
Lasteinleitungselementen

Band 193
Dr.-Ing. Jörg Bauer

Hochintegriertes hydraulisches Vorschubsystem für die Bearbeitung kleiner 
Werkstücke mit hohen Fertigungsanforderungen

Band 194
Dr.-Ing. Nicole Stricker

Robustheit verketteter Produktionssysteme
Robustheitsevaluation und Selektion des Kennzahlensystems der Robustheit

Band 195
Dr.-Ing. Anna Sauer

Konfiguration von Montagelinien unreifer Produkttechnologien am Beispiel der 
Batteriemontage für Elektrofahrzeuge

Band 196
Dr.-Ing. Florian Sell-Le Blanc

Prozessmodell für das Linearwickeln unrunder Zahnspulen
Ein Beitrag zur orthozyklischen Spulenwickeltechnik

Band 197
Dr.-Ing. Frederic Förster

Geregeltes Handhabungssystem zum zuverlässigen und energieeffizienten 
Handling textiler Kohlenstofffaserzuschnitte

Band 198
Dr.-Ing. Nikolay Boev

Numerische Beschreibung von Wechselwirkungen zwischen Zerspanprozess und 
Maschine am Beispiel Räumen

Band 199
Dr.-Ing. Sebastian Greinacher

Simulationsgestützte Mehrzieloptimierung schlanker und ressourceneffizienter 
Produktionssysteme



Band 200
Dr.-Ing. Benjamin Häfner

Lebensdauerprognose in Abhängigkeit der Fertigungsabweichungen  
bei Mikroverzahnungen

Band 201
Dr.-Ing. Stefan Klotz

Dynamische Parameteranpassung bei der Bohrungsherstellung in 
faserverstärkten Kunststoffen unter zusätzlicher Berücksichtigung 
der Einspannsituation

Band 202
Dr.-Ing. Johannes Stoll

Bewertung konkurrierender Fertigungsfolgen mittels Kostensimulation und 
stochastischer Mehrzieloptimierung
Anwendung am Beispiel der Blechpaketfertigung für automobile Elektromotoren

Band 203
Dr.-Ing. Simon-Frederik Koch

Fügen von Metall-Faserverbund-Hybridwellen im Schleuderverfahren
ein Beitrag zur fertigungsgerechten intrinsischen Hybridisierung

Band 204
Dr.-Ing. Julius Ficht

Numerische Untersuchung der Eigenspannungsentwicklung für sequenzielle 
Zerspanungsprozesse

Band 205
Dr.-Ing. Manuel Baumeister

Automatisierte Fertigung von Einzelblattstapeln in der Lithium-Ionen-
Zellproduktion

Band 206
Dr.-Ing. Daniel Bertsch

Optimierung der Werkzeug- und Prozessauslegung für das Wälzschälen von 
Innenverzahnungen



Band 207
Dr.-Ing. Kyle James Kippenbrock

Deconvolution of Industrial Measurement and Manufacturing Processes 
for Improved Process Capability Assessments

Band 208
Dr.-Ing. Farboud Bejnoud

Experimentelle Prozesskettenbetrachtung für Räumbauteile am Beispiel 
einer einsatzgehärteten PKW-Schiebemuffe

Band 209
Dr.-Ing. Steffen Dosch

Herstellungsübergreifende Informationsübertragung zur effizienten Produktion 
von Werkzeugmaschinen am Beispiel von Kugelgewindetrieben

Band 210
Dr.-Ing. Emanuel Moser

Migrationsplanung globaler Produktionsnetzwerke

Band 211
Dr.-Ing. Jan Hochdörffer

Integrierte Produktallokationsstrategie und Konfigurationssequenz in 
globalen Produktionsnetzwerken

Band 212
Dr.-Ing. Tobias Arndt

Bewertung und Steigerung der Prozessqualität in globalen 
Produktionsnetzwerken
 
Band 213
Dr.-Ing. Manuel Peter

Unwuchtminimale Montage von Permanentmagnetrotoren durch modellbasierte 
Online-Optimierung
 
Band 214
Dr.-Ing. Robin Kopf

Kostenorientierte Planung von Fertigungsfolgen additiver Technologien



Band 215
Dr.-Ing. Harald Meier

Einfluss des Räumens auf den Bauteilzustand in der Prozesskette 
Weichbearbeitung – Wärmebehandllung – Hartbearbeitung

Band 216
Dr.-Ing. Daniel Brabandt

Qualitätssicherung von textilen Kohlenstofffaser-Preforms mittels 
optischer Messtechnik

Band 217
Dr.-Ing. Alexandra Schabunow

Einstellung von Aufnahmeparametern mittels projektionsbasierter Qualitäts-
kenngrößen in der industriellen Röntgen-Computertomographie

Band 218
Dr.-Ing. Jens Bürgin

Robuste Auftragsplanung in Produktionsnetzwerken
Mittelfristige Planung der variantenreichen Serienproduktion unter Unsicherheit 

Band 219
Dr.-Ing. Michael Gerstenmeyer

Entwicklung und Analyse eines mechanischen Oberflächenbehandlungs-
verfahrens unter Verwendung des Zerspanungswerkzeuges

Band 220
Dr.-Ing. Jacques Burtscher

Erhöhung der Bearbeitungsstabilität von Werkzeugmaschinen durch  
semi-passive masseneinstellbare Dämpfungssysteme

Band 221
Dr.-Ing. Dietrich Berger

Qualitätssicherung von textilen Kohlenstofffaser-Preforms mittels prozess-
integrierter Wirbelstromsensor-Arrays



Band 222
Dr.-Ing. Fabian Johannes Ballier

Systematic gripper arrangement for a handling device in lightweight 
production processes

Band 223
Dr.-Ing. Marielouise Schäferling, geb. Zaiß 

Development of a Data Fusion-Based Multi-Sensor System for Hybrid 
Sheet Molding Compound

Band 224
Dr.-Ing. Quirin Spiller

Additive Herstellung von Metallbauteilen mit dem ARBURG Kunststoff-
Freiformen

Band 225
Dr.-Ing. Andreas Spohrer

Steigerung der Ressourceneffizienz und Verfügbarkeit von Kugelgewinde-
trieben durch adaptive Schmierung

Band 226
Dr.-Ing. Johannes Fisel

Veränderungsfähigkeit getakteter Fließmontagesysteme
Planung der Fließbandabstimmung am Beispiel der Automobilmontage

Band 227
Dr.-Ing. Patrick Bollig

Numerische Entwicklung von Strategien zur Kompensation thermisch 
bedingter Verzüge beim Bohren von 42CrMo4

Band 228
Dr.-Ing. Ramona Pfeiffer, geb. Singer

Untersuchung der prozessbestimmenden Größen für die anforderungsgerechte 
Gestaltung von Pouchzellen-Verpackungen

Band 229
Dr.-Ing. Florian Baumann

Additive Fertigung von endlosfaserverstärkten Kunststoffen mit dem  
ARBURG Kunststoff-Freiform Verfahren



Band 230
Dr.-Ing. Tom Stähr

Methodik zur Planung und Konfigurationsauswahl skalierbarer Montage-
systeme – Ein Beitrag zur skalierbaren Automatisierung

Band 231
Dr.-Ing. Jan Schwennen

Einbringung und Gestaltung von Lasteinleitungsstrukturen für im RTM- 
Verfahren hergestellte FVK-Sandwichbauteile

Band 232
Dr.-Ing. Sven Coutandin

Prozessstrategien für das automatisierte Preforming von bebinderten textilen 
Halbzeugen mit einem segmentierten Werkzeugsystem

Band 233
Dr.-Ing. Christoph Liebrecht

Entscheidungsunterstützung für den Industrie 4.0-Methodeneinsatz
Strukturierung, Bewertung und Ableitung von Implementierungsreihenfolgen

Band 234
Dr.-Ing. Stefan Treber

Transparenzsteigerung in Produktionsnetzwerken
Verbesserung des Störungsmanagements durch verstärkten 
 Informationsaustausch

Band 235
Dr.-Ing. Marius Dackweiler

Modellierung des Fügewickelprozesses zur Herstellung von leichten 
Fachwerkstrukturen

Band 236
Dr.-Ing. Fabio Echsler Minguillon

Prädiktiv-reaktives Scheduling zur Steigerung der Robustheit in der  
Matrix-Produktion

Band 237
Dr.-Ing. Sebastian Haag

Entwicklung eines Verfahrensablaufes zur Herstellung von Batteriezellsta-
peln mit großformatigem, rechteckigem Stapelformat und kontinuierlichen 
Materialbahnen



Band 238
Dr.-Ing. Raphael Wagner

Strategien zur funktionsorientierten Qualitätsregelung in der 
S erienproduktion

Band 239
Dr.-Ing. Christopher Ehrmann

Ausfallfrüherkennung von Ritzel-Zahnstangen- Trieben mittels 
Acoustic Emission

Band 240
Dr.-Ing. Janna Hofmann 

Prozessmodellierung des Fünf-Achs-Nadelwickelns zur Implementierung 
einer trajektoriebasierten Drahtzugkraftregelung

Band 241
Dr.-Ing. Andreas Kuhnle 

Adaptive Order Dispatching based on Reinforcement Learning
Application in a Complex Job Shop in the Semiconductor Industry

Band 242
Dr.-Ing. Andreas Greiber 

Fertigung optimierter technischer Oberflächen durch eine 
 Verfahrenskombination aus Fliehkraft-Tauchgleitschleifen und Laserablation

Band 243
Dr.-Ing. Jan Niclas Eschner 

Entwicklung einer akustischen Prozessüberwachung zur 
Porenbestimmung im Laserstrahlschmelzen

Band 244
Dr.-Ing. Sven Roth 

Schädigungsfreie Anbindung von hybriden FVK/Metall-Bauteilen an 
metallische Tragstrukturen durch Widerstandspunktschweißen

Band 245
Dr.-Ing. Sina Kathrin Peukert 

Robustheitssteigerung in Produktionsnetzwerken mithilfe eines integrierten 
Störungsmanagements



Band 246
Dr.-Ing. Alexander Jacob 

Hochiterative Technologieplanung
Rekursive Optimierung produkt- und fertigungsbezogener  
Freiheitsgrade am Beispiel der hybrid-additiven Fertigung

Band 247
Dr.-Ing. Patrick Moll 

Ressourceneffiziente Herstellung von Langfaser-Preforms  
im Faserblasverfahren

Band 248
Dr.-Ing. Eric Thore Segebade 

Erhöhung der Verschleißbeständigkeit von Bauteilen aus Ti-6Al-4V mittels 
simulationsgestützer Zerspanung und mechanischer Mikrotexturierung

Band 249
Dr.-Ing. Shun Yang  

Regionalized implementation strategy of smart  
automation within assembly systems in China

Band 250
Dr.-Ing. Constantin Carl Hofmann

Vorausschauende und reaktive Mehrzieloptimierung  
für die Produktionssteuerung einer Matrixproduktion

Band 251
Dr.-Ing. Paul Ruhland

Prozesskette zur Herstellung von hybriden Faser-Metall-Preforms
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