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SUMMARY 

A lab-on-a-chip (LoC) is a system that integrates laboratory functions on a 

single integrated circuit of only millimeters to a few square centimeters to achieve the same 

analysis that traditionally takes place in biological laboratories. Nowadays, LoC 

technology has been applied in a variety of applications because of its capability to perform 

accurate microscale manipulations of cells for point-of-care diagnostics. On the other hand, 

such a result is not readily available from an LoC device and typically still requires a post-

inspection of the chip using traditional laboratory equipment such as a microscope, 

negating the advantages of the LoC technology.  

To solve this dilemma, we have developed portable and disposable biosensors for 

interfacing with and digitizing the information from an LoC system. Our sensor platform, 

named Microfluidic CODES, integrated with multiple microfluidic impedance sensors, 

electrically monitors and tracks spatially-manipulated cells on a microfluidic device. The 

sensor platform compresses information from each sensor into a 1-dimensional electrical 

waveform, and therefore, further signal processing is required to recover the readout of 

each sensor. To achieve this multiplexing, we specifically design each sensor to produce a 

distinct sensor waveform and implement advanced signal processing techniques to extract 

information of detected cells like size, speed, and sensor identity (location).  

My doctoral research mainly focuses on designing sensor multiplexing schemes 

and signal processing algorithms for the implementation of the Microfluidic CODES 

sensor platform. Currently, I have mainly developed three signal processing schemes for 
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this sensing technology. The first one is based on template correlation, the second one is 

based on the error-correction technique, and the third one is based on deep learning.  

Thanks to the fast signal processing speed and high accuracy, the deep learning-

based sensor platform also enables real-time cell measurements. Based on this, I also build 

a microfluidic feedback control system so that one could monitor and optimize the 

processing state within a microfluidic device.  

Finally, through collaboration, I have employed computational tools I developed to 

build integrated microfluidic cytometers that characterize cell properties such as cell 

mechanical properties, cell membrane antigens, and cell surface expressions. These 

integrated microfluidic cytometers have the potential to enable various point-of-care assays 

for biomedical purposes. 
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CHAPTER 1. INTRODUCTION 

Over the past decades, the advancements in fabrication technologies have driven 

the miniaturization of microchips to the point they are ubiquitously available and 

increasingly pervasive in daily life. While the integrated circuits such as computer 

microprocessors, where billions of transistors are integrated onto a millimeter-square chip, 

are at the forefront of this revolution, it also leads to the development of Lab-on-a-Chip 

(LoC) systems, where nanoliters of samples are processed in lithographically-defined 

microfluidic channels essentially to perform the same analysis that traditionally takes place 

in biology laboratories. By performing a variety of plumbing processes such as fluid 

transport, mixing, separation, cell sorting, or heating on the chip, LoC systems have been 

applied in applications, such as point-of-care diagnostics [1], genomic research [2], on-

chip immune tests [3], analytical chemistry assays [4], and environmental monitoring [5]. 

1.1 Microfluidic Devices for Cell Discrimination  

At the heart of numerous LoC-based sample analysis are accurate microscale 

discriminations of cells within microfluidic devices. A typical microfluidic device is 

engineered to screen a heterogeneous population of cells and discriminate them based on a 

contrast in their biophysical or biochemical properties. As such, tracking spatially 

segregated cells (i.e., to detect the locations of the cells on the device) offers a way to 

identify detrimental cells or pathogens that may be mixed with normal cells in a sample to 

diagnose a disease. In fact, microfluidic devices are so efficient in identifying cells of 

different origin, they have been demonstrated to isolate a single cancer cell admixed with 



 2 

billons of blood cells from the blood samples of cancer patients for early detection of 

cancers [6].  

1.1.1 Cell Discrimination based on Biophysical Properties 

Cell discrimination by biophysical properties, such as size, shape, mechanical 

property, and electrical property, are promising areas for real-time disease diagnostic and 

other biomedical applications [7]. Most of these discriminations use label-free approaches, 

which don’t require antibody labeling or expensive chemical reagents, thus reducing 

sample preparation time while improving throughput and cell viability [51]. 

Size has been widely used as a biomarker for cell discriminations. Size-based cell 

separation is especially attractive as studies have reported that cancer cells are larger in 

size as compared to other hematologic cells [8]. Therefore, differences in cell size can be 

used for cancer cell selection without the knowledge of target cells’ biochemical 

characteristics. Several methods have been introduced for size-based cell discrimination, 

including membrane filtration [7], inertial separation [9], deterministic lateral displacement 

(DLD) [10], pinched flow fractionation [11]. Size-based cell discrimination has been used 

for biomedical applications including isolation of leukocyte [12], plasma [13], CTCs [14], 

and waterborne pathogens [15]. 

Shape is another property for cell discriminations. For example, cancerous cells are 

morphologically characterized by large nucleus, having irregular sizes and shapes [16]. 

This is because in the development of cancer, alterations in the cell DNA give cells a 

property called pleomorphism, causing cells with different shapes and sizes. The main 
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method developed for shape-based cell discrimination is DLD [17]. Shape-based cell 

discrimination has been used for the isolation of bacteria [18] and RBCs [19]. 

The mechanical characterization of single cells is also an essential point for 

understanding cell properties. For example, mechanical property has been reported to be 

correlated with pathophysiological states in diseases, such as malaria and cancer.  One of 

the methods developed for mechanical property-based cell discrimination is the DLD [17]. 

Hydrodynamic sorting [20] with constriction structures is also developed for the same 

purpose. Mechanical property-based cell discrimination has been used for the 

differentiation of HeLa cells [21] and CTCs [6].  

Single-cell size-independent electrical properties, such as specific membrane 

capacitance and cytoplasm conductivity, are also intrinsic cellular parameters for 

evaluating the status of cells [22]. Therefore, cell electrical properties have emerged as 

promising electrical indicators for cell status evaluation. The main method developed for 

electrical property-based cell discrimination is dielectrophoresis (DEP) [23][24]. In a DEP 

system, force is induced on a dielectric particle when it is placed in a non-uniform electric 

field. In this situation, cells are polarized, and experience a corresponding translational 

force, called DEP force, which could further deflect cells. The polarization of a cell 

depends on its electrical properties, which can be characterized by the deflection of cells. 

Electrical property-based cell discrimination has been implemented in several biomedical 

applications including isolation of cancer cells [25], bacteria [26], pathogens [27], and 

immune cells [28]. 
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Several other cell biophysical properties have also been used for cell 

discriminations, including density, compressibility, and intrinsic magnetic properties.  

Acoustophoresis-based cell discrimination [29][30] uses cell density and compressibility 

to distinguish different cell types and has been used, as an example, to distinguish CTCs 

and WBCs [31]. Specifically, in an acoustophoresis system, a force field provided by an 

acoustic source is implemented across a microfluidic chamber, and high-intensity sound 

waves interact with the chamber to generate pressure gradients that push cells into specific 

spatial locations. The magnitude of the force depends on the density and compressibility 

of the cell. As for intrinsic magnetic properties, applications have been demonstrated to 

separate RBCs and WBCs based on their distinct magnetic properties [32].  

1.1.2 Cell Discrimination based on Biochemical Properties 

Cell biochemical properties feature various cell surface markers (essential proteins 

or carbohydrates) involved in a variety of cell functions [33][34]. For example, surface 

antigens of a cell play an important role in the interactions with other cells and therefore 

serve as key biomarkers for pathological/physiological analysis [35]. As different cell types 

usually express different surface expressions, one can use cell surface markers as 

fingerprints to identify and classify cells. Furthermore, as the expression of cell surface 

markers keeps changing at different stages of a cell, one can also use cell surface markers 

to estimate cell stages [36]. Generally, a wide range of applications can be performed if 

one can identify cell surface markers or even manipulate cells based on surface markers. 

Currently, microfluidic biochemical properties-based cell discrimination can be 

categorized into fluorescence-activated cell sorting (FACS) [37], magnetic-activated cell 

sorting (MACS) [38], and affinity enrichment (biopanning) [39]. 
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In traditional FACS, the target cells are first labeled with antibody-linked 

fluorescent dye [51]. Then an optical detection system is used to identify specific 

fluorescent markers, which is only presented in target cells. Whenever a target cell is 

identified, the cell is electrostatically deflected to a collection. FACS can be incorporated 

in a microfluidic device by implementing a switching mechanism to manipulate and sort 

individual cells instead of electrostatic charging and defection. Microfluidic-based FACS 

has been applied in hematopoiesis [40], oncology [41], and stem cell biology research [42]. 

Similar to FACS, MACS is also an antibody-labeled approach to enrich a cell 

subpopulation of interest in a heterogeneous mixture based on magnetophoresis 

[188][189]. Specifically, target cells are labeled with magnetic beads that are 

functionalized with antibodies specific to their membrane antigens. Immunomagnetically 

labeled cells are then differentially displaced in a microfluidic chamber under an external 

magnetic field based on their specific magnetic load. While magnetophoresis is typically 

employed for binary separations (i.e., magnetically labeled cells from unlabeled cells), 

separation of cells into multiple subpopulations based on their magnetic loads has also been 

demonstrated [43]. Microfluidic-based MACS has also been used in other cancer-related 

research [44][190]. 

Affinity enrichment is a cell isolation method where target cells flow through a 

surface that is functionalized with antibodies [45]. Due to antibody coupling, target cells 

are captured and bonded on the surface. This process can be generally divided into four 

steps. First, corresponding surfaces are functionalized with antibodies. Second, target cells 

are captured and bonded on the surface. Third, other cells, including low-affinity ones and 

non-target ones are washed away from the surface. Last, the antibodies are recovered for 
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the next round of cell capturing. On the other hand, low capture efficiency and purity levels 

keep this method from being widely used [51].  

Affinity enrichment can be readily incorporated with microfluidic devices for a 

range of applications for cell characterizations [46]. Multiple innovations have also been 

introduced in these applications for an improvement of capture efficiency and yield purity. 

For example, Kurkuri et al. achieved a capture efficiency between 80% to 90% for cancer 

cells [47]. In this work, microposts are used as functioning surfaces for an increased surface 

area. An alternate way to increase surface area is introduced by Mitchell et al [48]. In this 

work, E-selectin-coated Halloysite nanotubes (HNT) were attached to the capture surface 

to increase the area for CTC isolation from leukocytes. Other than cancer cells, 

microfluidic affinity enrichment has also been used for isolation of leukocyte [49] and 

hematopoietic stem cells [50]. 

Furthermore, captured cells can be released with aptamer functionalized surface, so 

that target cells can be isolated and extracted [51]. For example, Zhang et al., introduce a 

device for the isolation of E. coli from a mixture with different bacterial species [52]. After 

the capturing stage, they heat the surface, and aptamer biding is disrupted, and captured E. 

coli cells are released. Different adhesion strengths on different cells can also be used for 

cell sorting. Bussonie et al. introduce a technique in which they first use a device to capture 

HEK293 and A7R5 cells and then use a surface acoustic wave to detach the cells so that 

they can efficiently sort HEK 293 from A7R5 cells [53].  

1.1.3 Hybrid Cell Discrimination Methods 
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Cell discrimination techniques that simultaneously exploit both biophysical and/or 

biochemical properties have also been developed. As each single cell discrimination 

method has its own advantages and disadvantages, combining different methods in a single 

device can enhance the cell discrimination capability by achieving a greater specificity, 

allowing us to isolate cells with more nuanced differences. Hybrid methods are commonly 

used for separating cell targets from a mixture of multiple cell types [51]. 

Applications integrating multiple cell discrimination techniques have been 

introduced for cancer cell isolations. For example, Karabacak et al. has developed a 

microfluidic device with three stages for CTC isolation from whole blood [54]. In the first 

stage, based on cell biophysical properties, DLD is used to isolate WBCs and CTCs from 

other blood cells, given the RBCs are high deformable and platelets are small in size. In 

the second stage, still based on biophysical properties, isolated WBCs and CTCs are lined 

up using an inertial focusing chamber. Finally, in the last stage, magnetophoresis is used 

to separate WBCs, which have been magnetically labeled, from CTCs. The last stage is 

based on cell biochemical properties.  

Still using hybrid methods for CTC isolation, Chu et al. have developed a 

monolithic 3D printed device with two compartments for the negative enrichment of CTCs 

directly from whole blood samples [55]. The first compartment consists of a stack of 32 

microfluidic layers for leukocyte depletion based on the common leukocyte antigen 

(CD45). In the second compartment, based on the cell size differences between nucleated 

and anucleated cells, a micropore filter membrane is used to remove anucleated cells while 

retaining nucleated (CTCs) cells on the filter efficiently. This device combines 
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immunoaffinity capture of leukocytes and microfiltration to negatively enrich CTCs from 

clinically relevant volume of whole blood samples.  

Applications integrating multiple cell discrimination techniques are also developed 

to isolate other types of cells. For example, Huang et al. have developed a technology for 

separating immature RBCs (NRBCs) from the blood of pregnant women [56]. In their 

device, the first stage, based on size contrast, separates NRBCs and WBCs from mature 

RBCs, and the second state performs separation on WBCs and NRBCs based on cell 

intrinsic magnetic properties. In another example, Kim et al. combine dielectrophoresis and 

magnetophoresis to separate three different strains of E. coli bacteria. In this work, Strain 

A bacteria were tagged with polystyrene beads and deflected away by DEP forces. Strain 

B bacteria were tagged with treptavidin-coated magnetic particles and captured by a 

magnet. Finally, Strain C bacteria, the unlabeled target, were isolated [57].  

1.2 Sensing Systems for Microfluidic Devices 

While highly effective in performing cell discriminations, microfluidic devices 

often lack a native sensing scheme and hence often act as upstream sample preparation 

elements prior to quantitative measurements, typically performed with off-chip sensing 

instruments such as an optical microscope [58] or a flow cytometer [59]. This 

disconnection between microfluidic manipulations and quantitative measurements is an 

important factor hampering the widespread adoption of these potentially revolutionary 

tools as quantitative assays outside of academic research laboratories, for example, in 

resource-limited or in point-of-care settings, where they can be truly transformative in 

healthcare delivery. An alternative sensing approach is on-chip sensing through integrated 
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sensors [60][61]. Capitalizing on the development of microfabrication techniques, 

integrated sensors with different sensing modalities can be patterned and integrated inside 

a microfluidic device, removing the need for bulky and expensive external hardware. 

1.2.1 Off-chip Sensing 

One of the most widely used methods for off-chip sensing is the image-based 

inspection of the microfluidic device, which has been implemented in a number of 

biomedical applications [62][63][64]. The image-based method creates a magnified image 

of a sample. This process generally consists of three steps. First, the sample is illuminated 

by a light source. Second, a compound of lenses, typically with an objective lens and an 

eyepiece, are used to magnify the sample image. Third, magnified sample images are 

brought to a detector, such as complementary metal-oxide-semiconductor (CMOS) 

cameras or charge-coupled devices (CCD). Image-based methods have been widely used 

in determining the growth status and growth rate of live cells [65][66][67], allowing for 

monitoring of individual cells over an extended period of time. On the other hand, during 

this process, excessive amounts of data are generated. To efficiently and accurately process 

these imaging data, an image processing algorithm can be designed and used. Heo et al. 

develop an image-based technology for label-free single-cell analysis [68]. In their work, 

a microscope and a high-speed camera are used to capture cell images and a deep learning-

based image processing algorithm is introduced to classify K562 cells and human RBCs. 

In another work presented by Praljak et al. [69], sickle RBCs are automatically identified 

from high-resolution images captured by a microscope.  
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Fluorescence imaging is another widely used method for off-chip sensing. 

Fluorescence detection features its good selectivity and sensitivity [70]. In a fluorescence 

detection system, samples pass through an excitation source, and fluorescent emission is 

detected using optical sensors [71]. A variety of excitation sources can be used, such as a 

focused laser beam or scattered light. Laser-induced fluorescence system is most easily 

adapted to the dimensions of microfluidic devices. The reason is that the coherence and 

low divergence of a laser beam make it easy to focus on very small structures and to obtain 

high irradiation [72]. The light-based excitation system is less expensive but more flexible 

alternative in terms of the choice of the wavelength. The fluorescent analysis is so versatile 

and applicable that it has become a significant technique for detecting and analysis of 

different biomolecules. A recent work introduced by Guo et al. uses a fluorescence-based 

microscope to detect proteins [73]. In their work, ZnO nanowires are integrated inside 

microfluidic devices for enhanced fluorescence detection. Another example of using 

fluorescence detection on protein is introduced by Challa et al. [74]. In their work, proteins 

and protein complexes are visualized and sized in real-time. Other than protein, 

fluorescence-based detection has also been used for the detection of cells [75], virus [76], 

and DNA [77].  

Acoustic sensing relies on the reflection of the acoustic wave (e.g., high-frequency 

ultrasound) from the sample to be detected. In such a system, the ultrasonic signal is 

measured by an external ultrasonic transducer. From the reflected signal spectrum from the 

particles, one could acquire particle information such as size and count. This technique can 

also be implemented on streaming parties, such as cell flowing in a microfluidic channel. 

With acoustic sensing, multiple applications have been developed for sample 



 11 

characterization. Komatsu et al. have introduced a diagnostic method that uses high-

frequency ultrasound (30 MHz) to measure polystyrene particles with two diameters (80 

µm and 100 µm) [78]. The reflected spectrum from the particles shows local maximum 

values at either 80 µm or 100 µm, indicating the effectiveness of the technology on size 

characterization. Other examples include a direct quantification of analyte concentration 

by resonant acoustic profiling developed by Godber et al. [79] and photoacoustic flow 

cytometry developed for CTC detection [80]. 

Flow cytometry is another off-chip sensing technique that provides rapid multi-

parametric analysis of particles in solution. A modern flow cytometer can analyze 

suspended particles at a rate of 50000 particles per second [82]. In a conventional flow 

cytometer, lasers are utilized to produce light signals that can be read by detectors such as 

photodiodes or photomultiplier tubes [81], and particles are driven through the laser beam 

on a one by one basis. Given this requirement, a particle concentration process is generally 

needed to avoid coincidences and interferences between particles.  Therefore, given the 

capability in sample manipulation and focusing, microfluidic devices are perfect tools as 

an upstream sample-analyzing stage for flow cytometry [82]. For example, as shown by 

Oakey et al., inertial particle focusing is effective for flow cytometry analysis [83]. The 

authors in this work present a staged channel design consisting of both curved and straight 

sections that order particles into a single streamline, and they demonstrate excellent 

measurement precision and resolution from standard flow cytometry. Other than inertial 

focusing, flow cytometry also show effectiveness in combining with microfluidic devices 

that perform DEP [84] and hydrodynamic focusing [85].  
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Even though off-chip sensing features powerful equipment, the implementation of 

these external instruments comes with the penalty of bulkiness and high cost from the 

equipment, negating the portable and affordable advantages of microfluidic devices. 

1.2.2 On-chip Sensing 

On-chip sensing features integrated sensors that sense and detect samples within a 

microfluidic device. Much like the microfluidic devices themselves, the low cost, portable, 

and flexible nature of on-chip sensing make it an optimal interrogation technique for 

microfluidic devices. Based on the mode of sensing, microfluidic on-chip sensing can be 

mainly classified into electrical sensing [96], optical sensing [86], magnetic sensing [89], 

and mass spectrometry (MS) [92].  

For on-chip optical sensing, CMOS image sensors (CIS) can be integrated within a 

microfluidic system, so that sample information can be optically measured within a 

microfluidic device [86][87]. However, most of these systems suffer from low resolution 

as there is no optical lens, and therefore, further image processing techniques, such as 

super-resolution (SR) processing, are required to recover the information. Huang et al. have 

introduced a lensless microfluidic imaging system, which directly integrates a microfluidic 

channel on a small CIS, and a white light source is used to illuminate the system from 

above [88]. In their work, to further enhance the low-resolution images captured by the 

CIS sensor, they have introduced a deep learning model to understand the correspondence 

between a low-resolution image and its high-resolution counterpart. Specifically, a low-

resolution lensless cell image is processed by a trained deep learning model and a high-

resolution cell image is outputted. The experimental results showed that the cell resolution 
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is improved by 4x. The system further enables lensless blood cell imaging and counting 

and the cell counting results matched well with a commercial flow cytometer. 

Magnetic sensing is another commonly-used on-chip sensing technique. For 

example, the magnetoresistive (MR) sensor, also called a spin-valve sensor, is a type of 

magnetic sensor that can be integrated into microfluidic devices [89]. The integrated MR 

sensor is composed of a non-magnetic metal layer between two ferromagnetic metal layers. 

One of the ferromagnetic metal layers (the pinned layer) has its magnetization fixed by an 

adjacent antiferromagnetic layer, and the other one (the free layer) is free to rotate. When 

magnetic beads (or particles labeled with magnetic beads) flow through the area of the 

sensor, a corresponding change in the magnetic field results in a rotation of the free layer, 

which in turn causes the change of the sensor resistance. Integrated MR sensors have been 

applied to several applications. Albuquerque et al. have developed integrated MR sensors 

for the detection and monitoring of colorectal cancer [90]. In this work, MR sensors are 

coupled to a portable platform to detect carcinoembryonic antigen (CEA), which is a 

commonly used blood biomarker for colorectal cancer detection and stage monitoring in 

the clinical setting. Their detection reaches a sensitivity level of nanograms per milliliter. 

Low throughput is a common problem for MR sensors. To solve this limitation, Loureiro 

et al. developed an MR-based cytometer [91], which not only counts, but also determines 

the magnetic orientation, flowing height, and speed of single micron-sized magnetic beads 

moving with velocities of 8–35 mm/s. 

Mass spectrometry (MS) is a technique that measures the mass of a molecule by 

measuring the mass-to-charge ratio of its ion [92]. MS allows the ionization of intact 

molecules to obtain a highly accurate molecular weight, making the identification of 
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molecules easier. The high sensitivity and selectivity make MS become an important 

analytical tool for the analysis of biomolecules. Multiple applications of integrating MS 

into microfluidic devices have been developed. Hardouin et al. have introduced a 

microfluidic device coupled with ion trap MS for the identification of protein [93]. The 

device can be used for identifying protein biomarkers, even expressed in very low levels. 

Other MS systems are also introduced. An LC-ESI-MS system is developed by Armenta 

et al. for multiple proteins detection from breast cancer cellular extract [94]. A chip-liquid 

chromatography LC-MS system is developed by Horvatovich et al. for label-free profiling 

of human serum [95]. 

Among all the on-chip sensing techniques, one of the most flexible sensing 

modalities is electrical sensing. Compared to other aforementioned sensing methods, 

electrical sensing is simple, easy to integrate into microfluidic devices, doesn’t require 

particle labeling, and has a high throughput. These electrical sensors, also called Coulter 

counters [96], electrically detect impedance variations caused by suspended particles, 

transducing cell information into electrical signals that can be readily interpreted. This 

sensing scheme that Coulter counters employ is called resistive pulse sensing (RPS). In the 

original setting of an RPS system, a pore-bearing membrane is placed between two 

electrolyte-filled chambers. When the cells of interest, initially suspended in one of the 

chambers, are driven across the membrane through the pore, the electrical impedance is 

modulated. The number and sizes of cells can be determined from the number and the 

amplitudes of the intermittent changes in the electrical current, respectively. Coulter 

counters excel at rapid enumeration and sizing of suspended cells and therefore find 

widespread use in different applications such as hematology [97], oncology [96], 
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microbiology [99], pathology [100], pharmacology [101], industrial applications [102], 

and environmental monitoring [103].  

 

Figure 1 - Realization of the RPS scheme within a microfluidic system. (a) A pore 
structure. (b) Microfluidic channel with parallel electrodes. (c) Microfluidic channel 
with coplanar electrodes. 

Through microfabrication techniques, the RPS scheme can be readily incorporated 

within a microfluidic system. One realization example is the use of a pore structure [104]. 

In such a device, an electric field is applied across a membrane with a micropore. The 

transient drop in the cross-membrane electric current is measured upon the translocation of 

particles through the pore (Figure 1a). Another realization of the RPS scheme is the use of 

microfluidic channels and electrodes. In such a device, suspended particles pass through 

microfluidic channels and interact with electrodes (parallel or coplanar) that provide the 

electric field (Figure 1b, 1c). The impedance variation in the sensing region of the 

microfluidic channel is detected by the electric field, and the corresponding electrical 

readout is acquired. Microfluidic Coulter counters have been implemented in the detection 

and analysis of cells [105][106],  DNA molecules [107][108], proteins [109], and viruses 

[110].  
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1.3 Monitoring of Microfluidic Cell Discrimination with Integrated Sensors 

When microfluidic devices differentiate cells into different locations based on their 

biophysical or biochemical properties, a spatiotemporal tracking of the manipulated cells 

(e.g. determining the microfluidic channel/chamber they are sorted into or the location 

where they are captured) transforms microfluidic devices into a flow cytometry performing 

various cellular and molecular assays. On the other hand, this spatiotemporal information 

is typically obtained through microscopic imaging of the chip, which constitutes a 

bottleneck in employing these microfluidic devices outside the laboratory. Therefore, a 

microfluidic device with integrated sensors that can spatiotemporally track manipulated 

particles can help realize a fully integrated, low-cost system that would especially be useful 

for analysis of samples in mobile and/or resource-limited settings. 

Given the simplicity and flexibility of the electrical sensing modality, the Coulter 

counter would be an ideal choice for on-chip sensing. While a single Coulter counter 

provides a measurement at a single node on a microfluidic device, multiple Coulter 

counters, when allocated at different locations of interest, give a bigger picture of the 

device. At the same time, distributed Coulter counters also allow the monitoring of a 

microfluidic device with multiple layers, for which an optical sensor may not work well. 

For a microfluidic sensor network with multiple Coulter counters, an efficient multiplexing 

strategy among different sensors is a key issue to solve so that signals from each sensor 

can be acquired without increasing the complexity of external hardware. That is to say, we 

want to design a microfluidic device with multiple Coulter counters that share the same 

output channel so that we can monitor multiple nodes on the device without increasing the 

external hardware for signal acquisition.   
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Figure 2 - Concept illustration of the Microfluidic CODES sensor platform. Coplanar 
electrodes are patterned to encode each sensor with a specific digital spreading code so that 
when cells pass through, each sensor produces a location-specific electrical signature 
waveform.  

We have introduced a microfluidic Coulter sensor network, called Microfluidic 

CODES [111][112][113], that can transduce spatial manipulation of cells on a microfluidic 

device into an electrical signal in order to infer a variety of properties of a cell from its 

motion within the device. To multiplex distributed sensors in the network, we specifically 

design each sensor to produce a location-specific electrical signature waveform, similar to 

the principle of code-division multiple access (CDMA) [114], a spread spectrum 

telecommunications technique commonly used in telecommunication systems. In this case, by 

identifying these signature waveforms from individual measurement nodes through 

computational analysis of the sensor output, one can electrically track the motion of cells 

within the device in lieu of imaging for cytometric analysis. Specifically, to assign each 

distributed sensor a signature waveform, we micropattern coplanar electrodes so that different 

sensors have distinct underlying electrode patterns, following the specifically-designed digital 

spreading codes (Figure 2).  
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Figure 3 - Fabrication of the Microfluidic CODES device in terms of the (a) PDMS 
microfluidic layer, (b) surface electrodes layer, and (c) the final device. 

The Microfluidic CODES device is composed of a glass substrate with 

micropatterned surface electrodes that generate digital codes and a polydimethylsiloxane 

(PDMS) microfluidic layer. We fabricate our device using conventional microfabrication 

techniques and soft lithography (Figure 3). We create surface electrodes on a glass wafer 

using a lift-off process. A 1.5 µm-thick negative photoresist is patterned using optical 

lithography followed by e-beam deposition of 20 nm-thick Cr and 80 nm-thick Au film 

stacks. The lift-off process is completed in acetone under mild sonication, and the patterned 

wafer is diced to create individual chips. The microfluidic layer is fabricated using soft 

lithography. A 15 µm-thick SU-8 photoresist is patterned on a silicon wafer using optical 

lithography to fabricate the mold. A PDMS prepolymer and crosslinker (Sylgard 184, Dow 

Corning) are mixed at a ratio of 10 : 1 and poured on the mold, degassed, and then cured 

at 65 °C for 4 hours. The Cured PDMS peeled off from the mold and glass substrate with 

surface electrodes are activated in oxygen plasma, aligned, and bonded to create the final 

device. 
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How reliably and rapidly the code-multiplexed information from the Coulter sensor 

network can be processed directly determines the capability of the technology. During this 

process, several challenges need to be solved. First, cells with different sizes will induce 

sensor waveforms with different powers, which can be analogous to the near-far problem 

in a telecommunication system. Second, multiple cells could simultaneously interact with 

the same sensor, causing same-sensor interferences, which can be analogous to the 

situation when a user signal in a telecommunication system can be reflected by buildings 

and reach the base station as an inference. Third, cells arrive at the sensing region randomly 

without any regulations, which can be analogous to the asynchronization between users in 

the telecommunication system.  

Facing all of the above challenges, my Ph.D. work mainly focuses on designing 

signal multiplexing/demultiplexing schemes and algorithms for the Microfluidic CODES 

sensor platform and then applying Microfluidic CODES for biomedical applications. 

Given this purpose, this thesis is organized into the following chapters. 

In CHAPTER 2, I explore literature on several categories of signal 

demultiplexing/separation algorithms, some of which are applied for the analysis of code-

multiplexed Coulter signals. In Section 2.1, traditional signal multiplexing/demultiplexing 

techniques used in telecommunication systems are illustrated. In Section 2.2, several 

statistical signal separation algorithms are discussed. Section 2.3 focuses on deep learning-

based signal separation methods. 

In CHAPTER 3, I present different signal processing schemes for Microfluidic 

CODES sensor platforms that I developed. The first signal processing scheme of the 
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Microfluidic CODES utilizes a template-based correlation algorithm to increase accuracy in 

resolving interferences [111][112][113] (Section 3.1). The second signal processing scheme 

utilizes a built-in error correction signal for distributed Coulter sensing, relaxing sensor 

design constraints [115][116] (Section 3.2). The third signal processing scheme is based on 

a deep learning model, increasing design flexibilities and enabling real-time applications 

[117][118][119] (Section 3.3). Other than these, I have also investigated the application of 

independent component analysis (ICA) and frequency-division multiplexing access 

(FDMA) in the Microfluidic CODES technology [118] (Section 3.4 and Section 3.5). 

In CHAPTER 4, I demonstrate an adaptive microfluidic system based on the 

Microfluidic CODES technology [121]. While conventionally, a microfluidic platform is 

typically designed to function under optimized conditions [122][123][124], which rarely 

account for specimen heterogeneity and internal/external perturbations, the introduced 

adaptive system will not only be less prone to artifacts due to sample heterogeneity, but 

also offer new capabilities for performing experiments/measurements under closed-loop 

controlled stimuli for basic research. 

Finally, in CHAPTER 5, I demonstrate several Microfluidic CODES-enabled 

integrated cytometers that utilize the computational approaches that I developed. These 

applications include cell mechanophenotyping [125] (Section 5.1), cell 

immunophenotyping [126][127][128] (Section 5.2), and cell membrane antigen expression 

profiling [129]-[132] (Section 5.3).   
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CHAPTER 2. LITERATURE SURVEY  

2.1 Signal Multiplexing / Demultiplexing 

Signal multiplexing is the process of combining information from multiple sources 

into a single signal. The advantage of signal multiplexing is that by transmitting a large 

number of signals with a single medium, we save transmission cost. Even though the 

transmissions occur on the same channel, they do not necessarily occur at the same 

instant/frequency. This gives us flexibility in how to combine different signals together. In 

this case, in order to transmit these signals over a common channel, it is essential to 

implement specific methods to keep these signals apart or separable to avoid permanent 

information loss, so that they can be further recovered at the receiving side, which performs 

signal demultiplexing based on the multiplexing strategy. 

2.1.1 Time-division Multiplexing 

Time-division multiplexing (TDM) [134][138] is the first version multiplexing 

scheme that has been developed and employed in real-life applications such as wired and 

wireless networks. In the TDM, at the transmitter side, signals from different sources are 

allocated over non-overlapping short time slots to share the same communication medium, 

and all the signals operate at the same frequency band. At the receiver side, by detecting 

and connecting distinct time slots, the desired signals can be recovered.  As these time slots 

are small, data transmission appears to be parallel in this case.  

One of the key problems to solve in TDM is the synchronization between the 

multiplexer (transmitter) and demultiplexer (receiver). The multiplexer and the 
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demultiplexer have to be properly synchronized so that there will be no cross-talk among 

different channels (signals). Therefore, synchronization bits are generally added at the 

beginning of each time frame as an indication, which also allows the demultiplexer to 

separate the incoming time slots accurately. Based on the corresponding synchronization 

strategy, TDM can be categorized into synchronous TDM and asynchronous TDM. Shortly, 

In the synchronous TDM, the time slots are arranged in a round-robin manner [136]. That 

is to say, if there are N source signals, then a single time frame consists of N time slots, no 

matter whether there is data from a particular source or not. This will cause empty time 

slots, which cause waste. On the other hand, asynchronous TDM is designed to overcome 

this limitation, where time slots are dynamically allocated on demand [137]. 

2.1.2 Frequency-division Multiplexing 

In the frequency-division multiplexing (FDM) [133][135], the total frequency 

bandwidth available in a communication medium is divided into a series of non-

overlapping frequency bands, and each source signal is allocated in a distinct frequency 

band. Therefore, even though all the source signals are transmitted within a single channel 

at the same time, ideally, no overlapping happens among them in the frequency domain. 

At the receiver side, the demultiplexer employs proper filters to extract the desired signal 

in each bandwidth. The extracted bandpass signals will be converted to baseband signals 

with further processes at destinations. FDM has been used in multiple applications, 

including the first generation of cellular telephones [139], cable television [140], and FM 

radio broadcasting [141].  
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FDM has several advantages. First, FDM is simple to set up, especially on the 

transmitter side. This kind of multiplexing is popularly used with many real-life 

applications mentioned above. FDM also is not sensitive to propagation delays that might 

happen in the transmission process. Furthermore, it allows maximum transmission link 

usage. On the other hand, in FDM, the need for filters at the receiver side results in 

expensive and complicated construct design. Also, as FDM is a technique for analog signal 

and analog signal has limited frequency range, implementation of linear amplifiers in FDM 

systems is sometimes necessary.  

2.1.3 Code-division Multiplexing 

Code division multiplexing (CDM) [114], also called the spread-spectrum 

technique, is a type of multiplexing technique in which the multiplexer encodes each source 

signal with a unique code (spreading sequence) that is generated by a pseudorandom 

sequence generator or other generators. In this process, a narrowband signal is spread over 

a large band of frequency, so CDM takes full advantage of the available spectrum. Encoded 

source signals share a common transmission channel and are decoded at the demultiplexer. 

To achieve that, the demultiplexer also needs to know the same spreading sequence used 

at the transmitter side.  

Choosing a well-defined code plays a critical role in the spreading process. 

Mathematically, the similarity between two discrete spreading sequences is defined by the 

correlation between them. For optimal performance, the set of spreading sequences should 

be designed to be orthogonal. That is, the correlation between two spreading sequences 

(i.e., cross-correlation) is zero, while the correlation of the digital spreading code with itself 
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(i.e., autocorrelation) is maximized. Several well-established spreading sequence sets 

include the Gold code [142][191] and Walsh code [143].  

Several developed demultiplexing schemes for CDM include parallel interference 

cancelation (PIC) [144], successive interference cancelation (SIC) [145]. Both of them are 

correlation-based algorithms, relying on the correlation property among encoded user 

information. In a standard correlation-based CDM detector, a matched filter bank 

[146][148] is implemented for all the users, and user information is estimated. For the PIC, 

given a specific user, the interferences produced by other users are simultaneously removed. 

For the SIC, given a specific user, the interferences produced by other users are removed 

in succession regarding the power of the component (starting from the strongest signal). 

Therefore, For the PIC, as compared with the SIC, the delay required to complete the whole 

operation is decreased. On the other hand, the SIC structure is not only simpler, requiring 

less hardware, but is also more robust in doing the cancellation [147]. 

2.2 Statistical Signal Separation 

Statistical signal separation is the process of solving blind source separation (BSS) 

[149] problems using statistical methods. In a BSS problem, we separate a set of source 

signals from a set of mixed signals, without the need for information about the source 

signals or the mixing process. A classical blind signal separation problem is the so-called 

cocktail party problem, with N people in a room talking simultaneously to N different 

microphones. The goal is to recover each speech signal from the N microphone outputs. 

The human brain can handle this sort of auditory source separation problem, but it is a 

difficult problem in signal processing. Mathematically, a BSS problem can be modeled by 
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an n-dimensional random variable X=AS, where S is a vector whose coordinates are 

independent random variables corresponding to each people [150]. The objective is to 

recover the matrix A given random samples from X. Several methods have been developed 

to solve this problem. 

2.2.1 Independent Component Analysis 

Independent component analysis (ICA) is a computational technique for separating 

independent source signals from a mixed one, which is a linear combination of each source 

signal [151][152]. ICA attempts to find the underlying source signals by some simple 

assumptions of their statistical properties. First, the underlying source signals are assumed 

to be independent of each other, which is realistic if they correspond to distinct physical 

identities (like different persons). Second, it is assumed that each source signal has a non-

Gaussian distribution, which is crucial for recovering the underlying components that 

created the data. Furthermore, ICA typically requires that the number of observations 

(mixed signals) is equal to or larger than the number of contained source signals.  

ICA can be categorized into an unsupervised learning method as it takes the input 

data in the form of a single data matrix and does not necessarily know the desired output 

(or label) of the system [153]. This is in contrast to classical methods in regression or 

classification, where each data point needs to be labeled. In this way, ICA can be used to 

investigate the underlying structure. ICA has been used for the separation of artifacts in 

magnetoencephalography (MEG) data [154], finding hidden factors in financial data [155], 

and reducing noises in images [156].  

2.2.2 Principle Component Analysis 
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Principal component analysis (PCA) [157] is a technique for reducing the 

dimensionality of high-dimensional datasets, increasing interpretability but at the same 

time minimizing information loss. More specifically, given a dataset, PCA finds the 

component vectors that explain the maximum amount of variance by N linearly 

transformed components. In this case, the first principal component is the projection on the 

direction in which the variance of the projection is maximized. PCA can be used to reduce 

the dimension of data to remove unwanted components in the signal. By using a few 

components, each data point can be represented by fewer numbers of variables (instead of 

maybe thousands of variables). Data points can then be plotted, making it easier to visually 

assess similarities and differences between data points. In practice, PCA has been 

implemented in areas such as image processing [158], quantitative finance [159], and 

neuroscience [160]. 

Mathematical derivation shows that PCA can be performed as the solving of an 

eigenvalue decomposition problem (EVD) or, alternatively, from the singular value 

decomposition (SVD) of the centered data matrix [161]. PCA can be based on either the 

covariance matrix or the correlation matrix. SVD is a widely used technique to decompose 

a matrix into several component matrices, exposing useful properties of the original matrix, 

including rank and singular value. 

2.2.3 Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) methods have received a lot of attention 

in the audio processing community, particularly because of their good performance in 

solving signal separation problems and their ability to automatically extract sparse and 
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interpretable factors [162]. In NMF, using low-rank matrix approximation, an input 

matrix X is factorized into two sub-matrices W and H, where X = WH. Each column of 

W is a basis element and is the fundamental building blocks from which we can 

reconstruct approximations to the original data. Each column of H is the coordinates of 

a data point in the basis defined by W. That is to say, H tells us how to reconstruct an 

approximation of an original data point from a linear combination of columns in W.  

Traditional NMF algorithms consist of two separate stages. In the first stage, the 

training stage, a generative model is learned. In the second stage, the testing stage, the 

pre-learned model is used for a variety of high-level tasks. Currently, NMF has been used 

in applications including image processing [163], text processing [164], and audio 

processing [165]. 

2.3 Deep Learning-based Signal Processing / Separation 

Machine learning (ML) is a key research area in data analysis and signal processing. 

Unlike model-based signal processing, ML focuses on providing a machine with the ability 

to learn from experience without being explicitly programmed. More specifically, ML-

based algorithms update and optimize their internal parameters by learning from an 

existing dataset (training data) and make predictions on a future unseen dataset (testing 

data). Currently, ML has been widely used in areas including material science [199], 

computer science [200] and healthcare [201]. 

Among various ML models, deep learning is a popular learning model for complex 

pattern recognition tasks [202]. Deep learning is a representation learning method that is 

originally inspired by the biological neural network that constitutes human brains. Like the 
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vast network of neurons in a brain, a deep learning model, also named an artificial neural 

network (ANN), is based on a collection of interconnected nodes called artificial neurons. 

These artificial neurons make up multiple computational layers, and each layer performs a 

nonlinear transformation on the output of the previous layer. To draw an appropriate 

representation in each layer, the ANN uses the backpropagation algorithm to tune its 

internal parameters (weights), which are used to compute the representation. In this way, 

the input signal is approximated by a hierarchy of features from low level to high level 

layer by layer. Because of this nonlinear multilayer structure, deep learning has great 

potential in representing very complex functions and solving highly nonlinear problems 

[203][204][205]. Deep learning has been implemented in various signal separation tasks, 

including independent source number estimation [184], single-channel speech separation 

[183], music source separation [186], and image denoising [187].  

The adoption of deep learning in processing sensor signals has gained much 

attention and development. Compared to traditional signal processing methods, deep 

learning models have a greater potential in signal modeling. Furthermore, the efficiency of 

deep learning structures also enables real-time applications. Currently, three categories of 

deep learning structures are commonly used for processing sensor signals, namely the 

feedforward neural network, the convolutional neural network, and the recurrent neural 

network. 

2.3.1 Feedforward Neural Networks 

A feedforward neural network (FNN), also known as a multilayer perceptron, is the 

simplest type of ANN and forms the basis of other ANN architectures [202]. In an FNN, 
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signals only flow forward, from the input layer, through the hidden layers, to the output 

layer. Each neuron in one layer performs a weighted summation of neuron values in the 

previous layer. Then a nonlinear function is applied to the summed value for a nonlinear 

activation.  

To implement the FNN to process sensor signals, a feature extraction process is 

typically required, and extracted features are then used as the input to the FNN. Hu et al. 

have introduced an FNN for Electrocardiogram (ECG) signal classification [166]. To 

enhance the classification result, an adaptive multilayer perceptron structure is used for 

feature (QRS) detection. Extracted QRS complexes are further used for the ECG 

classification. Other feature extraction methods for sensor signals include wavelet 

transformation, Fourier transform, and independent component analysis. FNN has also 

been used in the study of Electroencephalography (EEG) signals such as EEG classification 

[167], brain tumor detection [168], and emotion detection [169]. FNN has also been used 

for signal separation problems [170].  

2.3.2 Convolutional Neural Networks 

The convolutional neural network (ConvNet) is often used when the input signal 

presents local saliences [202]. A typical ConvNet consists of several artificial neuron 

layers, including convolutional layers, activation layers, and pooling layers. The 

convolutional layer extracts local saliences and features from the input signal using 

multiple sliding feature detectors (kernels with specific weights). These kernels promise 

the ability of the ConvNet to be invariant to the transformation and shift of features in the 

input signal. After each convolutional layer, an activation layer is usually added, 
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introducing nonlinear properties to the model by applying a specific activation function. 

The pooling layers are usually placed in-between two convolutional layers. They 

successively down-sample and input signal, reducing the number of parameters and 

computations in the network. Pooling layers also give ConvNets the ability to detect 

features at different sizes.  

A major advantage of the ConvNet compared with the FNN is that the ConvNet 

combines both feature extraction and pattern recognition into a single body. During the 

training process, each kernel in a ConvNet learns to extract optimized features directly 

from the input data. This scheme is extremely useful for unstructured input data such as 

electrical signals, images, and videos, where feature extraction and feature engineering can 

be troublesome. Examples of using ConvNets on sensor signals include hand gesture 

classifications from electromyographic (EMG) signals [171], diabetes predictions [172], 

and atrial fibrillation detection from ECG signals [173]. ConvNet has also been used for 

various of signal separation applications including monoaural audio source separation 

[174] and vocals and musical separation [175]. 

2.3.3 Recurrent Neural Networks 

Stemming from the need for analyzing input data with sequential and temporal 

features, recurrent neural network (RNN) is one of the prominent research subjects in deep 

learning [202]. The RNN is distinguished by its “memory” as it can memorize information 

from previous predictions and use it for current and future predictions. Such a closed-loop 

setting in the network creates a feedback mechanism, allowing the model to make 

appropriate predictions based on a prior. Another advance that builds upon the RNN is the 
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long short-term memory (LSTM) [202]. An LSTM unit is typically composed of a cell, an 

input gate, an output gate, and a forget gate. These gates are highly effective in forgetting 

insignificant information, keeping relevant information, and conveying them to the next 

state. The LSTM solves several drawbacks of the traditional RNN structure, such as the 

exploding/vanishing gradient and limitation to short-term dependencies.  

RNN has demonstrated great effectiveness in areas such as speech recognition, 

machine translation, handwriting recognition, and video understanding. Research has also 

been done in applying the RNN for biomedical sensor signals. Several ECG-related 

applications have been introduced [176][177]. Meanwhile, RNN has also been applied for 

processing EEG signals for depression prediction [178], epilepsy seizure detection [179], 

and sleep stage classifications [180]. RNN/LSTM has also been used for various of speech 

signal separation applications [181][182][183].   
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CHAPTER 3. PROCESSING OF CODE-MULTIPLEXED 
SIGNALS 

In the Microfluidic CODES sensor platform, each sensor in the network is formed 

by a distinctly-patterned array of coplanar electrodes and therefore produces a signal 

distinguishable from other sensors’ when it detects a particle. As all the distributed sensors 

share a single electrical output, when multiple sensors activate at the same time (multiple 

cells occupy the sensing volume simultaneously), individual sensor waveforms (signature 

waveforms) interfere with each other, and a signal processing algorithm is required to 

further demultiplex sensor readout.  

With the goal of designing algorithms with better performance, we have mainly 

introduced three signal processing schemes, namely the correlation-based processing, the 

error-correction-based processing, and the deep learning-based processing. We also 

investigated the implementation of FDMA and ICA in designing the algorithm. 

3.1 Correlation-based Processing of Microfluidic CODES Signals 

The first signal processing scheme for the Microfluidic CODES utilizes a correlation-

based signal processing algorithm to decode sensor signals. The digital code for each distributed 

sensor is specifically designed to have good correlation properties, similar to the orthogonal 

digital spreading sequences used in traditional CDMA communication networks to differentiate 

between cell phone users. In this case, sensor signature waveforms can easily be distinguished 

through computation (correlation) even when they interfere with each other. 

3.1.1 Hardware Design 
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3.1.1.1 Design of Orthogonal Digital Codes 

We consider two aspects when designing the digital codes. First, they should be 

mutually-orthogonal. Second, they have good timing properties. As cells arrive at 

microfluidic channels at random times, our digital codes should work (maintain good 

correlation properties) even when they are misaligned with random phase shifts. In this 

case, while it is not possible to always maintain perfectly orthogonality, various quasi-

orthogonal digital spreading sequences have been designed for telecommunication 

systems. Among these, Gold codes [142][189] are commonly used to minimize multi-user 

interference in CDMA communication since they have both desirable autocorrelation and 

cross-correlation properties. Therefore, in this work, we used Gold codes to encode 

distributed sensors. 

We generated four 7-bit long Gold codes to encode four distributed sensors in our 

device. Since a full review of the mathematical framework to generate Gold codes is 

beyond the scope of this dissertation and can be found elsewhere [112], we therefore briefly 

outline our design process: First, we used two linear feedback shift-registers representing 

two primitive polynomials (x3 + x2 + 1 and x3 + x + 1) to generate a preferred pair of 7-bit 

maximal length pseudorandom noise sequences (m-sequences). Second, cyclic shifts of the 

preferred pair of m-sequences (m1 = 1001011 and m2 = 1110100) were added in mod 2 to 

generate four distinct Gold codes, specifically g1 = 1010110, g2 = 0111111, g3 = 0100010 

and g4 = 0011000. Finally, we validated the Gold codes by analyzing their autocorrelation 

and periodic cross-correlation properties (Figure 4). 
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Figure 4 - Periodic auto- and cross-correlation of four 7-bit Gold codes. Auto-correlation 
peak can be identified when a code correlates with itself. 

3.1.1.2 Design of the Microfluidic Device 

As proof of principle, we designed a microfluidic device with four Coulter sensors, each 

of which was encoded by the aforementioned 7-bit long Gold code. In the device, three coplanar 

electrodes were micropatterned to construct the sensor. We first placed positive and negative 

electrodes on opposite sides of each microfluidic channel. These electrodes each extended into 

the microfluidic channel through 10 µm-wide electrode fingers. For each microfluidic channel, 

positive and negative fingers were ordered to follow the unique digital code. Second, the 

common electrode fingers were placed in between the positive and negative electrode fingers, 

leaving 10 µm-wide gaps between any two fingers. In this configuration, each bit spatially 

corresponds to a center-to-center distance between common electrode fingers, while the 
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electrode finger in between determined the bit polarity. Finally, to minimize undesired 

conduction in the microfluidic channels outside the coding region, we placed positive and 

negative electrode traces far from the outer common electrode fingers (Figure 5). A close-up 

view of the sensor structure is demonstrated in Figure 6.  

Microfluidic CODES using correlation-based signal processing scheme is easily 

scalable. More sensors can be incorporated in the device when designed to produce output 

signals distinguishable from the rest. One way to expand the sensor network is to design 

sensors based on larger orthogonal code sets with longer digital codes. Longer orthogonal 

codes with more bits provide higher processing gain in decoding and can be distinguished 

from each other when there is interference. Based on this, we also designed a microfluidic 

device with 10 channels, each encoded with a 31-bit long Gold code (Figure 7, Figure 10, 

Figure 11). 

 

 

Figure 5 - Electrode design of the Microfluidic CODES using correlation-based signal 
processing scheme. Each sensor is encoded with a 7-bit Gold code. Left: Image of the electrode 
patterns on four channels. Right: We add different colors on different electrodes to 
demonstrate the sensing principle.  
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Figure 6 - Close-up image showing the structure and corresponding code of each sensor in 
the Microfluidic CODES. Code 1: 1010110; Code 2: 0111111; Code 3: 0100010; Code 4: 
0011000. 
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Figure 7 - Design and picture of the 10-channel Microfluidic CODES using correlation-based 
signal processing scheme. Each sensor is encoded with a 31-bit Gold code. Top: Picture of the 
10-channel device. Bottom: Image of the electrode patterns on 10 channels. 

 

Our experimental setup consisted of a syringe pump for driving the biological 

sample through the microfluidic chip, electronic hardware for data acquisition and 

processing of raw sensor signals, and an optical microscope equipped with a highspeed 

camera for the visual analysis of cell flow in the microfluidic channels (Figure 8). 
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Figure 8 - Experimental setup for sensor characterizing in the Microfluidic CODES. 
Excitation signal is applied to the common electrodes, and the output signal is acquired from 
the sensing electrodes and followed a signal path comprised of transimpedance amplifiers 
and a differential amplifier. A lock-in amplifier is used to demodulate the signal. 

 

A 400 kHz sine wave, specifically chosen to bypass the double layer capacitance at 

the electrode-liquid interface, was applied to the common electrodes to excite the Coulter 

sensor network, and the output signal was acquired from the sensing electrodes and 

followed a signal path comprised of transimpedance amplifiers and a differential amplifier. 

Specifically, the differential amplifier was used to subtract the positive electrode signal 

from the negative electrode signal so that the resultant electrical current would lead to 

positive peaks in the output. A lock-in amplifier (HF2LI, Zurich Instruments) was used to 

demodulate the signal, and the demodulated signal was sampled into a computer with a 

sampling rate of 1M Hz for processing. 
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Figure 9 - Measured electrical signals (left) and their correlations (right) for the Microfluidic 
CODES using correlation-based signal processing scheme. Auto-correlation peak can be 
identified when the signal correlates with the template corresponding to itself. 
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3.1.2 Software Design 

We designed a LabVIEW program to process sensor network data (Figure 12). Our 

data signal was initially oversampled (50 kHz) to prevent aliasing. Then a low-pass-filtered 

(with a cut-off frequency of 5 kHz) was applied to eliminate the high-frequency noise. The 

next step was extracting the activate section form the raw data stream, so that idle time 

frames with no sensor activity was eliminated to increase the efficiency of the decoding 

process. To identify activate sections, the zero-crossing rate (ZCR) was used as the 

discrimination parameter, as ZCR for noise is expected to be greater than that of sensor 

signals. Specifically, for this experiment, we calculated ZCR every 200 samples (about 20% 

of the estimated particle transit time based on the flow rate), and we treated time frames 

with ZCR < 0.2 as activate section (containing sensor signals). 

Recorded electrical signals corresponding to four individual sensors are shown with 

associated ideal digital codes in Figure 9. Recorded signals closely match with the ideal 

square pulses, while small deviations do exist. Such deviations result from a combination 

of several factors including the non-uniform electric field between coplanar electrodes, 

coupling between different electrode pairs, spherical shape of cells, as well as the constant 

flow speed of cells in microfluidic channels. We created a template library based on the 

recoded sensor signals (details in the next paragraph). By correlating the recorded signals 

with all of the templates in the library, we determined a template that produced the 

maximum correlation peak (Figure 9, right), which is also the auto-correlation peak. As the 

digital codes for microfluidic channels are designed to be orthogonal to each other, a 

dominant auto-correlation peak could robustly be identified in this process. Using this 

approach, we could computationally determine the microfluidic channel the cell passed 
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through, the duration of the sensor signal, and therefore the flow speed of the cell. 31-bit 

sensor signals are shown in Figure 10, and corresponding correlation results are shown in 

Figure 11. Compared with 7-bit correlation results, 31-bit codes provide higher processing 

gain. 

 

Figure 10 - Measured 31-bit electrical signals and corresponding Gold code sequences. 
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Figure 11 - Correlation of 31-bit electrical signals. Auto-correlation peak can be identified 
when the signal correlates with the template corresponding to itself. 
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Figure 12 - Signal processing workflow of the correlation-based signal processing algorithm. 
A LabView program is implemented to process sensor signals. Sensor waveforms are first 
identified and extracted from raw sensor data. SIC is then used to decode each sensor 
waveform. 

Each template in the template library used for correlation calculation is an average 

of multiple non-interfering sensor waveforms from one of the sensors. We designed a 

program to automatically search non-interfering sensor waveforms from the raw data 

stream. A waveform is treated as a template waveform if it meets two conditions: (1) the 

correlation produces a dominant correlation peak with one of the codes in the codeset. Here 

the “dominant” means the amplitude of the largest correlation peak is at least twice of that 

of the secondary correlation peak.; (2) the duration of the waveform agrees with the one 

calculated based on the expected particle flow speed. Here the “agrees” means the signal 

duration is within 150% of the estimated signal duration. These two conditions 

simultaneously ensure that the sensor waveform is a non-interfering waveform. Selected 

non-interfering sensor waveforms (n>20) were then grouped for individual sensors, 

normalized in terms for duration and power, and then averaged. Using the experimental 

data to construct the template library allows us to accommodate variations in the sensor 

signals due to artifacts in device fabrication.  
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Given an identified sensor waveform, we correlated it with all of the templates in 

the template library. By finding the specific template that yields the maximum correlation 

peak, we first determined the sensor identity of the sensor waveform. Then from the 

duration of the template that yielded the maximum correlation peak, we could further 

determine the duration of the sensor waveform, which corresponds to cell residence time 

on the sensing region, thus the cell flow speed. Third, from the value of the maximum 

correlation peak, we estimated the power of the sensor waveform, which corresponded to 

the size of the cell. 

The correlation-based signal processing scheme can resolve situations when 

multiple cells simultaneously interact with coding electrodes. When such overlaps occur, 

multiple sensor waveforms will overlay and interfere in the time domain, causing the final 

sensor waveform deformed and deviate from the original shape determined by the 

underlying spreading sequence. In this case, the resultant waveform cannot readily be 

associated with any single template corresponding to a specific sensor. Accurately 

decoding such overlapping signals is particularly important for reliable processing high-

density, where interferences are more likely to occur.  
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samples, where interferences are more likely to occur. 

 

Figure 13 - Signal processing of the correlation-based algorithm based on successive 
interference cancellation (SIC).  Given an interfering sensor waveform, signal components 
are successive identified and subtracted from the input. 

To resolve interfering sensor signals, we developed an iterative approach based on a 

successive interference cancellation (SIC) scheme used for multi-user detection in CDMA. 

First, we determined the dominant autocorrelation peak corresponding to the strongest 

interfering signal by correlating the recorded waveform with the template library (Figure 

13, 1st row, 2nd plot). Using the amplitude and time of the autocorrelation peak as well as 

the template used, we estimated the signal due to this specific cell (Figure 13, 1st row, 3rd 

plot). This estimated signal was then subtracted from the original signal, effectively 

removing the interference due to the largest cell (Figure 13, 2nd row, 1st plot). This process 
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iterated until the correlation of the template library with the residual signal did not produce 

a clear autocorrelation peak for any channel (Figure 13, 5th row, 2nd plot).  

 

Figure 14 - Validation of the coincident signal decoding by the correlation-based algorithm. 
Decoding result is validated by video. (a) Reconstructed signal with original signal. (b) 
Estimation for the amplitude, duration, and relative timing of each estimated sensor signal. 
(c) Video record used for validation of the decoding result. 

Following the termination of the interference cancellation process, we 

reconstructed an estimation of the waveform by combining all the estimated signals from 

each iteration (Figure 14a). Using an optimization process based on a least squares 

approximation to minimize the mean square error between the original waveform and the 

reconstructed signal, we updated our estimates for the amplitude, duration, and relative 

timing of individual sensor code signals (Figure 14b). We also estimated the size of the 
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cells detected based on the amplitude of the estimated individual sensor signals. To achieve 

this, we calibrated the electrical signal amplitudes with optically measured cell sizes using 

linear regression (Figure 15). Figure 14c shows the simultaneously recorded high-speed 

microscopy image used for validating the decoding result. 

 

Figure 15 - Calibration between signal amplitude and cell volume. Based on the Coulter 
principle, there is a linear relation between cell volume and signal amplitude. MATLAB is 
used for fitting the parameters. 

The introduced SIC approach is essential in processing samples containing particles 

with varying sizes such as biological cells and other particles. Successively canceling 

interference from signals with higher power to lower power ensures the detection and 

estimation of small signals, which are otherwise buried in strong interfering signals from 

larger cells. Furthermore, we have demonstrated that SIC is capable of solving coincident 

cells from different sensors, it should be noted that coincident cells from the same sensor 

can also be resolved, as coincident cells from the same sensor simply corresponds to 
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interference of the same digital code with its time-shifted form. With SIC, correlation can 

still extract the components one by one. 

A comparison of our results from the Correlation-based algorithm with the 

information obtained from the simultaneously recorded high speed microscope images 

shows that the cell size and speed can be accurately measured, which validates our results 

(Table 1). 

Table 1 - Comparison of electrically and optically measured parameters for a signal acquired 
by the Microfluidic CODES using correlation-based signal processing scheme in Figure 13. 

Measurement 
type 

𝑟()* 
(µm) 

𝑟()+ 
(µm) 

𝑟(), 
(µm) 

𝑟()- 
(µm) 

∆𝑡* 
(ms) 

∆𝑡+ 
(ms) 

∆𝑡, 
(ms) 

Electrical 8.01 6.49 5.30 6.55 0.465 1.705 0.744 
Optical 8.32 6.77 5.68 7.04 0.375 1.625 0.750 

The timing of the cells entering through each sensor can also be determined using 

SIC. When performing correlation with a shifting window, the time point at which we get 

the autocorrelation peak corresponds to the starting point of the corresponding sensor 

waveform. Therefore, during the decoding process, we could also estimate the time delay 

between each detected cell. A comparison of our estimates using Microfluidic CODES 

with the information obtained from the simultaneously recorded high-speed video with a 

known frame rate shows that the time delay differences between the coincident cells in 

Figure 14 can accurately be determined (Table 1). 
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Figure 16 - Measured cell radius and speed for each sensor through the Microfluidic CODES 
using correlation-based signal processing scheme.  

To demonstrate the reproducibility of our results and also the performance of the 

correlation-based algorithm for a high throughput sample processing, we analyzed 

electrical signals corresponding to >1,000 cells. The signals were automatically decoded 

in MATLAB by running the algorithm explained above and the accuracy of our results was 

evaluated by directly comparing our results with optical data from simultaneously recorded 

high-speed video. Our analysis indicates that electrical signals from 96.15% of cells 

(973/1,012) are accurately decoded. Success rate for decoding non-overlapping and 

overlapping cell signals is 98.71% (688/697) and 90.48% (285/315), respectively. Using 

calibration parameters (Figure 15), we also measured the size and flow speed of cells in 

our analysis (Figure 16). Our cell size measurement results match with the optically 

measured cell size distribution (Figure 17). 
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Figure 17 - Comparison of electrically (a) and optically (b) measured cell size distribution of 
HeyA8 human ovarian cancer cell line r through the correlation-based algorithm. They 
match with each other. 

 

We have shown that with the correlation-based scheme, Microfluidic CODES is 

easily scalable with longer digital codes. Longer orthogonal codes with more bits provide 

higher processing gain in decoding and can be distinguished from each other when there is 

interference. On the other hand, longer Gold codes in the device also means larger sensing 

volume, which increases the expected number of interfering sensors. Likewise, increasing 

the number of sensors for a given sample density will lead to more particles overlapping 

due to an increase in the overall sensing volume. As such, the density of the particles in the 

sample is a critical parameter that needs to be considered in using the Microfluidic CODES 

technology. The maximum particle density that can be resolved (in analogy with the 

channel capacity of a CDMA telecommunications network) depends on several factors 

such as the individual sensor signals and their relation, the decoding scheme, layout of the 

microfluidic device, and the electronic noise level. Depending on the application, the 

sample can be diluted to reach a particle density that produces an acceptable error rate.  
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From signal processing perspective, decoding of time waveforms using the 

correlation-based algorithm is not computationally intensive using current systems as 

evidenced by the fact that cell phone communications on a CDMA network can be 

demultiplexed in real time. Furthermore, the physical events to be decoded in microfluidic 

devices happen much slower than bit transmission rate in cell phone communications 

allowing us to use more advanced and time-consuming algorithms such as SIC and an 

optimization processes, which we use to iteratively resolve overlapping signals from 

sensors. 

Taken together, with the correlation-based processing scheme, Microfluidic 

CODES is a versatile, scalable electronic sensing technology that can be readily integrated 

into various microfluidic devices to realize quantitative assays by tracking particles as they 

are processed on the chip. The technology is very easy to implement, because (1) it is very 

simple from a hardware perspective (2) it is directly compatible with the soft lithography 

(3) it provides a direct electronic read-out without any active on-chip component, and (4) 

it relies on simple computational algorithms for signal processing and data interpretation. 

3.2 Error-correction-based Processing of Microfluidic CODES Signals 

The second signal processing scheme for the Microfluidic CODES utilizes an error-

correction-based signal processing algorithm to decode sensor signals. An important feature 

of the error-correction-based signal processing is that the Microfluidic CODES sensor 

network introduced in this work uses unipolar non-orthogonal digital codes to increase the 

multiplexing capacity [115][116]. Employing orthogonal codes (Gold codes) to encode 

Coulter sensors at different locations introduces challenges in scaling the sensor network. 
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Specifically, larger sensor networks require encoding different sensors with longer 

orthogonal waveforms, leading to (1) more complex electrode layout [192] and (2) more 

sensor interference due to coincident cells [193][194]. Alternatively, more information can 

be packed into a waveform for a given signal duration (i.e., bandwidth) if non-orthogonal 

waveforms are used. However, the disadvantage of using non-orthogonal waveforms 

compared to orthogonal ones is the additional ambiguity in the decoding process. 

Specifically, the interference between sensors in the network from coincident cells causes 

output signals to be underdetermined for decoding due to the non-optimized crosstalk 

between non-orthogonal sensor waveforms. 

To alleviate the ambiguity in the decoding of interfering non-orthogonal waveforms 

from sensors, we integrate redundancy in our sensor design for error correction/mitigation, 

which is a technique commonly used in data compression/transmission [195]. Specifically, 

in our design, each sensor in the network shares an extra detector with a dedicated output 

in addition to the code-generating electrodes micromachined to produce distinct electrical 

waveforms linked to specific locations on the microfluidic chip (Figure 18a). This extra 

detector is a conventional Coulter sensor and generates a single-bit pulse signal (error-

correction signal) that contains information on count, size, and speed of cells detected in a 

given time-window (Figure 18b).  In the decoding process, this extra information is then 

used to prevent the misinterpretation of the code-multiplexed signal by eliminating 

erroneous outcomes that conflict with the error-correction signal (Figure 18c). Because of 

its smaller footprint, the error-correction sensor is less prone to sensor interference from 

coincident cells and effectively sets the multiplexing capacity of the code-multiplexed 

sensor network. Importantly, our approach decouples sensor network multiplexing 
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capacity from the code complexity and allows the use of smaller sensors with less chance 

of coincidence while ensuring reliable recovery of information in the presence of 

interference.  

 

Figure 18 - Concept illustration of the Microfluidic CODES using error-correction-based 
signal processing scheme. (a) Concept device. Each sensor has an error-correction electrode 
and a coding electrode.  (b) Concept sensor signal. (c) Block diagram showing the signal 
processing. 

 

3.2.1 Hardware Design 

For experimental testing of our sensors, we designed and fabricated an analytical 

microfluidic device integrated with a network of 10 code-multiplexed Coulter sensors 

(Figure 19a). In our sensor network, three coplanar electrodes, a common electrode, two 

sensing electrodes (an error-correction electrode and a coding electrode) were 

micropatterned to form an error-correction section and a coding section for each sensor. In 
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the designed layout, the common electrode was used to drive the entire sensor network 

with a voltage source, and the error-correction and the coding electrodes were used to 

measure the cell-induced impedance changes in the network by measuring changes in the 

electrical current flow.  

 

Figure 19 - Design of the Microfluidic CODES using error-correction-based signal processing 
scheme. (a) A 10-channel device. (b) Close-up of the electrode design on two channels. (c) 
Device image. 

While the minimum binary code length needed to distinguish 10 sensors is 4 bits, 

as 23 < 10 < 24, we chose to encode each sensor in the network with 5-bit binary codes. 

This is because longer codes carried more information and could be identified with less 

ambiguity in the decoding process. On the other hand, sensor codes cannot be extended 
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excessively as decoding longer codes will lead to higher device complexity, more sensor 

interference, and additional computation time. 

To implement these codes in the device, common and coding electrode traces are 

routed along opposite sides of a microfluidic channel and wherever a positive bit (“1”) is 

needed, two 10 µm-wide electrode fingers, one from each trace, are extended into the 

microfluidic channel such that there is 10 µm gap between the two electrode fingers. 

Likewise, the absence of an electrode finger pair is interpreted as a negative bit (“0”), 

effectively creating sensors with assigned unipolar digital codes (Figure 19b). Once 

interdigitated electrode patterns are aligned with microfluidic channels, the electrical 

current flow is confined to sections of the electrolyte-filled microfluidic channels that fall 

in between oppositely-charged electrodes. Therefore, it is only when cells occupied these 

electrically-active locations, that the electrical impedance is modulated, and the sensor 

output signal is produced.  

In operation, cells flowing in microfluidic channels sequentially occupy 

electrically-active regions, producing a unipolar pulse sequence based on the underlying 

electrode pattern at that location. We specifically designed the electrode layout to generate 

isolated bit pulses in the code signals. First, we set the distance between adjacent electrode 

pairs, i.e., bits, to be larger than but close to the average cell diameter. This is because an 

excessively large gap would lower sensitivity and produce a less pronounced bit pulse. 

Second, we designed the neighboring fingers of adjacent electrode pairs to have the same 

polarity, i.e., both to be common or sensing electrodes. This layout ensures no electric field 

is present in between signal-generating electrode pairs. In addition, we designed the 

microfluidic channel height to be close to the average cell diameter to maximize sensitivity 
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and also minimize variations in the cell-to-electrode distance. Nevertheless, this constraint 

could be relaxed to accommodate cell populations with large variations in size either by 

designing a higher microfluidic channel as small cells occupying a fraction of the channel 

height could still be detected, or by vertically focusing cells to the floor of the microfluidic 

channel [196], which would guarantee high sensitivity and also minimize undesired 

variations the in the cell-to-electrode distance. A finished sensor platform is shown in 

Figure 19c. 

 

Figure 20 - Data acquisition and sample signals of the Microfluidic CODES using error-
correction-based signal processing scheme. (a) Experimental setup. (b) Signals from each 
sensor follows the corresponding code. (c) An interfering signal. 

 

3.2.2 Software Design 
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3.2.2.1 Sensor Testing and Data Acquisition 

To acquire the sensor response to cells flowing in the microfluidic channels, we 

excited the sensor network with an AC signal and measure the resulting current amplitude 

with a lock-in amplifier (Figure 20a). The sensor network was excited from the common 

electrode with a 2-Vpp, 500-kHz sinusoid signal with a function generator. Electrical 

current signals from the error-correction and the coding electrodes were each converted 

into voltage signals using a transimpedance amplifier, and the signal amplitudes are 

measured by the two-channel lock-in amplifier. Signal amplitude information was then 

sampled at 50 kHz into the computer through a data acquisition board (PCIe-6361, National 

Instruments). It should also be noted that the sensor network could be driven at multiple 

frequencies simultaneously. This multi-frequency approach would then allow 

simultaneous measurements of cell size, speed, location along with dielectric properties 

(i.e., frequency response). 

To characterize our sensor network, we analyzed error-correction and code signals 

from all sensors in the network (Figure 20b). As expected, both signals were synchronized 

with the code signal pulses lagging the error-correction pulses with a delay that depends 

on the cell flow speed. Moreover, amplitudes of individual pulses increased with the size 

of the detected cell as the change in the impedance is proportional to the displaced volume 

of the electrolyte, according to the Coulter principle. Sensor code signals corresponding to 

detections of single cells were isolated from each other in the recorded output waveform 

and could directly be recognized as they closely matched the digital codes used to encode 

each sensor (Figure 20b). For samples with high cell density, multiple cells coincidentally 
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detected by the sensor network lead to interferences of sensor waveforms and require 

further analysis to recover sensor identities, as will be explained later (Figure 20c). 

 

Figure 21 - Template generation of the Microfluidic CODES using error-correction-based 
signal processing scheme. (a) Template generation of a signal. (b) Bit amplitude variation. (c) 
Template for each sensor. 

We also characterized the sensor code waveforms in terms of their uniformity. By 

comparing sensor code signals obtained from hundreds of cells for each sensor, we find 

that the amplitudes of pulses produced by the same cell varied from one bit to another 

(Figure 21a). To investigate the signal variation across the sensor network, we fabricated 

microfluidic devices with a serpentine microfluidic channel (Figure 22a), where a cell 

sequentially interacted with all the sensors in the network and allowed direct comparisons 

between waveforms from different sensors in response to the same cell (Figure 22b). By 

averaging normalized amplitudes for each bit in those recorded code signals, we were able 

to determine bit amplitude variation patterns across the sensor network (Figure 21b). 



 59 

Furthermore, we observed these bit amplitude variation patterns to change in different 

devices with identical electrode patterns, a result we considered to be due to fabrication-

related differences (Figure 22c). On the other hand, the relative amplitudes of bits within a 

code signal were observed to not change significantly for different cells detected by the 

same sensor. For all sensors in the network, we measured the standard deviations for the 

relative amplitude of individual bits in normalized signals between different events (Figure 

21c) and concluded that the mean normalized amplitudes of bits for the sensor network 

could be used to construct a template library from recorded data to accommodate device- 

and sample-specific variations. 

3.2.2.2 Interpretation of Error-correction Signals 

We analyzed the error-correction pulses to estimate the arrival time, size, and flow 

speed of cells. Among these parameters, the arrival time information was readily accessible 

as an error-correction pulse was produced each time a cell is detected by our sensor 

network. The cell size was estimated from the peak amplitude of the error-correction pulse 

according to the Coulter principle. We calibrated the electrical data through linear 

regression of the cubic root of the error-correction pulse amplitude versus the cell radius 

measured by high-speed microscopy. Estimation of the cell flow speed was achieved by 

analyzing the full profile of the error-correcting pulse as described below since the pulse 

duration could not directly be attributed to cell flow speed and was also affected by the cell 

size and the electrode geometry. 
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Figure 22 - Characterization of cross-sensor and cross-platform signal variation of the 
Microfluidic CODES using error-correction-based signal processing scheme. (a) A device 
with a serpentine channel. (b) 10 signals generated by one cell flowing through the serpentine 
channel. (c) Template bit maps of three devices.  

 

Figure 23 - Concept of the KNN algorithm. 

We developed a machine learning-based model to predict the cell flow speed from 

the profile of the error-correction pulse. Our model employs the K-nearest neighbors (K-

NN) algorithm [197], which searches the training data set for the K most similar (i.e., 

minimum Euclidean distance) instances and averages their values to make a prediction 

(Figure 23). To represent the error-correction pulse profile, we extracted four features (X1, 

X2, X3, and X4 representing the peak amplitude and the pulse width at ¾, ½, and ¼ of the 
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peak amplitude, respectively) (Figure 23b). We chose the cell travel time from the error-

correction section to the coding section (Y) as the property to be estimated. Combining the 

predicted cell travel time with known sensor dimensions, we could calculate the cell flow 

speed (60 µm / Y) and estimate the duration of the code waveform (4*Y) (Figure 24). 

 

Figure 24 - Feature extraction of the error-correction signal for the KNN algorithm. Four 
features are extracted from the error-correction signal for a prediction of cell speed (signal 
duration). 

 

Figure 25 - Use cross validation to determine the optimal K for the KNN algorithm. The 
optimal K is determined to be 5. 
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To test the accuracy of the K-NN model, we trained our machine-learning 

algorithm, evaluated its error rate under varying parameters, and optimized the 

computational design based on characterization results. To train our model, we constructed 

a dataset with >1000 sensor waveforms, which was aggregated by automatically screening 

the raw sensor network data and identifying timeframes with sensor activity. For each cell 

detected, we directly extracted four features from the error-correction pulse (X1 to X4) and 

recorded the corresponding travel time (Y). To evaluate the performance of our K-NN 

model, we used the two-fold cross-validation. Briefly, we first randomly split the dataset 

into two equal halves. Then we evaluated the model by training the model on one half and 

testing on the same half (i.e., in-sample testing) and also by training the model on one half 

while testing on the other half (i.e., out-of-sample testing). In this process, each signal in 

the testing subset was treated as a new instance, and the cell travel time (Y) was predicted 

by searching and averaging the K nearest neighbors in the training subset. An overall error 

rate was calculated from the average deviation of the prediction from the actual value. This 

process was performed for K values ranging from 1 to 20 and repeated for 50 times for 

statistical power (Figure 25, left). We found that lower K values make the model with high-

variance and more noise-prone (i.e., overfitting), while increasing the K value excessively 

makes the model biased and prevents it from catching subtle differences (i.e., underfitting). 

The optimal value of K was determined as five, which yields the minimum average out-of-

sample error rate (10.5%) (Figure 25, right). When tested, the optimized algorithm is able 

to find five error-correction pulses that matched well in profile to the sensor data and 

average cell speed values associated with these pulses to predict cell flow speed (Figure 

26).   
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Figure 26 - An error-correction signal with its five nearest neighbors identified by the KNN 
algorithm. Their shapes almost align with each other. 

 

3.2.2.3 Interpretation of Code Signals 

We analyzed the coded sensor data to recover signals from individual sensors in the 

network based on the template libraries and information acquired from the analysis of the 

error-correction signal. In this decoding process, for each error-correction pulse, we first 

generated 10 signature waveforms accounting for all sensor codes in the network (Figure 
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27). When generating these candidate signals, (1) the peak amplitudes were determined 

based on the cell size estimated from the error-correction pulse and also on the previously 

generated template library, which provides the ratios between amplitudes of different 

pulses in the candidate waveform, (2) the candidate waveform duration and the delay 

between signals were set based on the estimated cell flow speed. Computer-generated 

waveforms were then compared with the actual signal, and the one yielding the minimum 

mean square error (MMSE) was identified as a match to determine the sensor identity. This 

analysis scheme is also successful in decoding interfering sensor signals due to coincident 

cells. To decode interfering code signals, error-correction pulses were first used to 

determine the number, sizes, and flow speeds of coincident cells (Figure 27a), and 10N 

different signal combinations (Figure 27b) were evaluated to find the matching 

combination with MMSE, where N is the number of cells coincidently detected in a given 

time interval. 
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Figure 27 - Interpretation process of code signals of the Microfluidic CODES using error-
correction-based signal processing scheme (a) A 3-cell interfering sensor signal. (b) Each 
error-correction signal generates 10 possibilities and combine with those generate by other 
error-correction signals. (c) The estimated code signal matches with the original code signal. 

Figure 28a shows a recorded pre-coding sensor signal and the code signal from 10 

cells flowed over the sensor network in a duration of 60 ms. In the decoding process, 10 

pre-coding sensor pulses were first analyzed by the machine learning stage to estimate the 
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speed of each cell. Based on these estimations, each pre-coding pulse was used to generate 

10 possible code signals based on the templates (i.e., pulse scaling factors) created for the 

10 sensors in the network. All possible combinations of these estimated code signals for 

10 pre-coding sensor pulses were analyzed and the combination yielding the MMSE fit to 

the recorded code signal is identified as the optimal solution. The output from our decoding 

algorithm and the recorded code signal closely matched (Figure 28b). Our result indicated 

that 10 cells flow through different microfluidic channels in the following order: 8, 7, 8, 6, 

6, 7, 8, 7, 9, 7. We validated this result using the high-speed optical microscopy images. 

 
 

Figure 28 - Interpretation of a code signal generated by 10 cells from the Microfluidic CODES 
using error-correction-based signal processing scheme. (a) An interfering signal generated 
by 10 cells. (b) The estimated code signal matches with the original code signal, indicating the 
correctness. 
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Figure 29 - Interpretation of code signals with interfering error-correction signals of 
the Microfluidic CODES using error-correction-based signal processing scheme. (a) 
A representative recorded signal from two coincident cells with the interfering 
error-correction pulses. (b)Estimation of individual error-correction pulses via 
curve fitting. (c) Feature extraction of estimated error-correction signals. (d) The 
recorded code signal overlaid with the estimated code signal.  

Besides interfering code waveforms, we observeed cases, where error-correction 

pulses from different sensors also interfered (Figure 29a). In these cases, high cell density 

in the suspension led to multiple cells coincidentally interacting with error-correction 

electrodes despite their significantly smaller footprint than coding electrodes. To recover 

data in those instances, we first deconvolved interfering error-correction pulses. First, a 

peak-search algorithm was used to determine the number of contained individual pulses in 

the error-correction signal. Second, a curve-fitting algorithm was used to fit the interfering 

error-correction signal with a certain number of individual Gaussian-shaped pulses with 

different amplitudes and durations (Figure 29b). Gaussian-shaped pulses were specifically 

chosen in this fitting process because the profile of a resistive pulse followed a Gaussian 

profile [198]. Estimated error-correction pulses were then analyzed individually according 
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to the decoding process explained earlier to estimate cell size and speed (Figure 29c), and 

based on these parameters, the corresponding code signal was estimated (Figure 29d). 

 

Figure 30 - Combining the MMSE fitting with a moving-window approach for 
signal processing of the Microfluidic CODES using error-correction-based signal 
processing scheme. (a) A section of a recorded output signal that contains data from 
10 cells. (b) Iterative decoding of the sensor waveform through a sliding window. (c). 
The data from the images matched the results from the sensor network. 
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To evaluate the accuracy of our sensor network, we compared the results from the 

decoded electrical data stream to the simultaneously recorded microscope images, regarded 

as the ground truth, and calculated the error rate in our measurements. In order to capture 

fast-flowing cells, images were acquired by employing an optical microscope equipped 

with a high-speed camera set to record cell flow across the whole sensor network at 1000 

frames per second. 

To automatically analyze the electrical data from the sensor network, we 

implemented our decoding algorithm in MATLAB. To perform the decoding of sensor 

waveforms on a continuous data stream, we combined the MMSE fitting with a moving-

window approach. Briefly, we processed the output signal three error-correction pulses at 

a time. Once the decoding of a timeframe is completed, the window was shifted by one 

error-correction pulse, and the process was iterated until the whole data stream is decoded. 

The computational complexity of this process scales as O((N-M+1)*10M), where 10 is the 

number of code-multiplexed sensors, N is the total number of cells detected in the time 

interval, and M is the number of cells analyzed at a time within the moving window, 

respectively. 

A direct comparison of processed sensor signal blocks with corresponding 

microscope images shows successful tracking of cells over the sensor network (Figure 30). 

We investigated step-by-step decoding of a 70 ms-long time interval that contains data 

from 10 cells (Figure 30a) as an example to illustrate coherence between electrical and 

visual data. Starting with the first window containing the first three error-correction pulses 

and sliding one pulse at a time, we were able to find a closely-matching estimation with 
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the recorded experimental signal (Figure 30b). Both sensor identities and the sequence of 

cell flow obtained from the decoded data agree with the high-speed microscopy data 

(Figure 30c).  

 

Figure 31 - Benchmarking sensor network results of the Microfluidic CODES using error-
correction-based signal processing scheme against microscopy. (a) Cell size. (b) Cell flow 
speed. (c) Cell sensor identity. 

To quantitively characterize the sensor network performance, we compared cell 

speed and sensor identity measurements from the electrical waveform and the associated 

high-speed video footage corresponding to >1200 cells. Due to the limited resolution of 

high-speed videos, we performed image-based cell size measurements with the ImageJ 

software on still, high-resolution microscope images of a surrogate cell population sampled 

from the same tissue culture (Figure 31). Optically-measured cell size distribution closely 

matches with that acquired from our sensor network (Figure 31a), with the Kullback–

Leibler (KL) divergence between these two distributions calculated to be 0.044. Besides 

the errors introduced by the computational decoding process, the small divergence between 

the prediction and the ground truth comes from the fact that the cells analyzed by the sensor 

platform and microscope are not the same population. Optically-measured cell flow speed 

distribution matches well with that acquired from the sensor platform, especially for flow 

speeds between 20 and 70 mm/s. (Figure 31b). Higher KL divergence (0.435) is mainly 

due to the mismatch in the lower end of the cell flow speed. Loss of accuracy with lower 
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cell speed is due to the training dataset lacking cells with lower flow speeds, which could 

be improved by expanding the dataset to include a wider range of cell flow speeds. As for 

the accuracy of predicting sensor identity (i.e., spatial information), the success rate is 

measured as 90.07%, demonstrating cells could accurately be tracked with the on-chip 

sensor network (Figure 31c). 

3.3 Deep Learning-based Processing of Microfluidic CODES Signals 

The deep learning-based signal processing scheme of the Microfluidic CODES uses 

deep neural networks to recognize sensor signals. The technology doesn’t rely on 

orthogonality among digital spreading codes, but on recognizing the specific waveform 

patterns (bipolar digital codes) of sensor signals. The workflow of the entire system 

developed in this work can be divided into three blocks (Figure 32). Specifically, deep 

neural networks are designed and trained to interpret the output waveform. Trained neural 

networks provide the size, flow speed, and sensor identity for each particle detected on the 

microfluidic chip.  

 

Figure 32 - Concept illustration of the deep learning-based processing of the Microfluidic 
CODES. Sensor signal is interpreted by a deep neural network to get the information of cell 
size, speed, and location. 
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3.3.1 Hardware Design 

As a test platform, we designed a code-multiplexed Coulter sensor network with 

ten sensors (Figure 33). Each sensor was designed to produce a distinct but non-orthogonal 

waveform. To create the spreading codes, we generated ten 15-bit bipolar code sequences, 

where each bit was treated as a Bernoulli random variable with p = 0.5. The design and 

fabrication process of the microfluidic device was the same as the Correlation-based 

Microfluidic CODES, where three electrodes were patterned to encode different channels a 

specific spreading code. Specifically, the generated code sequences are: Sensor 1: 

010101011000101; Sensor 2: 111110001001100; Sensor 3: 100010100101100; Sensor 4: 

000101110011011; Sensor 5: 101111001001000; Sensor 6: 110000100110100; Sensor 7: 

110100011111110; Sensor 8: 111011000011010; Sensor 9: 110011111001111; Sensor 10: 

100111110101110. 
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Figure 33 - Design and experimental setup of the Microfluidic CODES using deep learning-
based signal processing scheme. (a) Electrode design of the device. Each sensor is encoded 
with a randomly-generated sequence. (b) A close-up image for the first sensor. (c) 
Experimental setup. 

3.3.2 Data Augmentation 

We first processed recorded sensor waveforms to construct the training data for 

ConvNets. To extract representative sensor waveforms from the raw sensor output signal, 

we developed a signal-identification program. With this program, sensor waveforms were 

discovered by computing the signal variance within a sliding window as the window 

traversed the entire raw sensor output signal. The sole purpose of this process is to identify 

and mark the regions of interest in the raw sensor output signal with potential sensor 

activity to be used in subsequent operations. 

To automatically label each identified sensor waveform with the corresponding 

sensor identity, we implemented a correlation-based algorithm. By computing the cross-

correlation between each extracted sensor waveform with a template library containing all 

code sequences, the algorithm obtained two vital pieces of information about each 

waveform. First, it determined if the waveform is a non-interfering sensor waveform (i.e., 

contains only one signature waveform), or an interference sensor waveform, which 

contained multiple signature waveforms interfering with each other. This differentiation 

was achieved by comparing the amplitude of the primary correlation peak to that of the 

secondary correlation peak. Second, for each non-interfering sensor waveform, the 

algorithm identified and labeled its corresponding sensor identity based on the code 

template that produced the primary correlation peak. At the same time, the power and 

duration of each labeled non-interfering sensor waveform were also calculated. Labeled 
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non-interfering sensor waveforms were first manually checked for an accuracy assertion, 

then normalized, and used to construct the training data.  

To increase the number of waveforms available for constructing the training data, 

and thereby improve the performance of our ConvNets, we employed a data augmentation 

process on the labeled non-interfering sensor waveforms. We first randomly picked 

waveforms from the dataset and then scaled their power and duration in the digital domain 

to simulate signals for cells that have different sizes and speeds, respectively. In this 

process, the power and duration of a waveform were treated as random variables, whose 

distributions were ensured to match those of the original dataset. Additive white Gaussian 

noise (SNR = 30 dB, to mimic experimental noise level) was then added to each augmented 

waveform to introduce variation in the training data set against potential overfitting. We 

repeated this pick-and-vary process and create a waveform database of 1,000,000 

augmented non-interfering sensor waveforms to be used for training data construction.  

Besides the non-interfering sensor waveforms, we also generated a database of 

interfering sensor waveforms to train our algorithm for resolving data from coincident 

cells. We created interfering sensor waveforms in the digital domain by adding two non-

interfering sensor waveforms of known amplitudes and durations with a certain time delay. 

We repeated this process by randomly drawing different pairs of non-interfering sensor 

waveforms from the waveform database and adding them with a randomly-determined time 

delay to create a large database that covers different coincidence scenarios. For this work, 

we randomly picked 150,000 signals from the waveform database to construct a database 

of non-interfering sensor waveforms and used the remaining 850,000 to construct a 

database of interfering sensor waveforms. 
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3.3.3 Software Design (V1) - based on Interference Cancellation 

3.3.3.1 ConvNet Design 

 

Figure 34 - Concept and ConvNet design of the Microfluidic CODES using the first version 
deep learning-based signal processing scheme. The deep learning model predicts the position 
and class of the signal component with the highest power. 

In the first version deep learning-based signal processing scheme, a ConvNet is 

trained to predict the position and sensor identity of the signal component with the highest 

power in an input sensor waveform. This signal is then estimated and subtracted from the 

input sensor waveform. Specifically, we designed a ConvNet with 4 convolutional layers, 

each of which is followed by a max-pooling layer and ReLU nonlinearities (Figure 34). 

Following the convolutional layers are two fully-connected layers and the output layer. The 

output layer has 13 nodes, where the first 10 nodes represent 10 classes (sensors) and the 

last 3 nodes represent the positioning parameters, including start time, amplitude, and 

duration of the signal. Given an input signal, the ConvNet detects the sensor signal 

contained in it, along with the corresponding positioning parameters. The positioning 

parameters are then used to calculate the flow speed and the size of the particle. Specifically, 

when the input signal is an overlapping sensor signal (contains multiple sensor signals 

overlaid with each other), the ConvNet will first detect the dominant sensor signal, and an 
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estimation of the dominant sensor signal will be reconstructed and subtracted from the 

original input signal. The residue signal will be fed into the same ConvNet for further 

detection. 

 

 

Figure 35 - Processing of non-interfering signals through the first version deep learning-based 
signal processing scheme 

3.3.3.2 ConvNet Querying 

Given a non-interfering signal, the ConvNet outputs the probability with which the 

input belongs to each sensor in the network. The identity of the sensor with highest 

probability is determined as the classification result (sensor 6 with a probability of 83% in 

this specific example). The ConvNet also output the bounding parameters, which are used 

to build a bounding box for the signal.  

Given an interference signal, the strongest sensor signal is first detected and 

reconstructed based on the sensor identity and the bounding parameters. The reconstructed 
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signal is then subtracted from the original signal. The residue signal is then fed into the 

ConvNet for further processing. 

 

Figure 36 - Processing of interfering signals through the second version deep learning-based 
signal processing scheme for the Microfluidic CODES. Given an interfering sensor waveform 
(top), the signal component with the higher power (middle) is estimated and subtracted from 
the input (bottom). 
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Figure 37 - Concept and ConvNet design of the second version deep learning-based processing 
for the Microfluidic CODES. (a) The signal processing workflow. (b) ConvNet design. (c) 
Given an input signal, the ConvNet predicts the probability with which the input signal 
belonged to each and every Coulter sensor in the microfluidic device. 

3.3.4 Software Design (V2) - based on Multiclass Classification  

3.3.4.1 ConvNet Design 

In the second version deep learning model, we used the multiclass classification 

scheme [206] to design the deep learning model. Specifically, we built a ConvNet that 
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contained four convolutional layers (Figure 37b). The first convolutional layer (Conv-1) 

has 32 convolutional kernels of size 5, resulting in 192 trainable parameters. The output 

feature map is then processed by Conv-2, which also has 32 convolutional kernels of size 

5, and a total of 5152 trainable parameters. A max-pooling layer is placed right after Conv-

2 to down-sample the convolved signal, and the output is fed into Conv-3, which contains 

64 kernels and 10304 trainable parameters, and then Conv-4, which contains 64 kernels 

and 20544 trainable parameters. Another max-pooling layer is placed after Conv-4. 

Following the second max-pooling layer are a flatten layer and two dense (fully connected) 

layers, in which the first dense layer has 180224 trainable parameters and the second has 

640 trainable parameters. The model has a total of 217056 trainable parameters. The second 

dense layer feeds the final output layer, which has 10 nodes, representing 10 Coulter 

sensors (10 classes). Given an input signal, the ConvNet predicts the probability with which 

the input signal belonged to each and every Coulter sensor in the microfluidic device. A 

predetermined probability threshold is used to predict the identity of the activated sensor 

(Figure 37c). 

3.3.4.2 ConvNet Training 

The ConvNet is trained with a batch size of 500 (batch size: the number of training 

signals processed before the model is updated), and an epoch number of 30 (epoch number: 

the number of times the learning algorithm works through the entire training dataset). The 

binary cross entropy (BCE) is used as the loss function to calculate the classification error. 

The Adam optimizer is used to minimize the error in each iteration. The learning rate is set 

to 0.001 for the first 10 epochs, 0.0001 for epochs 11 through 20, and 0.00001 for epochs 

21 through 30.  
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Figure 38 – Training (a) and testing (b) performance of the second version deep learning 
model for the Microfluidic CODES. 

As the number of training epoch increases, the ConvNet improves itself to better 

represent the input data. After 25 epochs, the training and testing losses remain below 0.11 

and 0.13, respectively, and the training and testing accuracies remain above 95% and 86%, 

respectively (Figure 38). 

3.3.4.3 ConvNet Querying 

For non-interfering sensor signals (Figure 39, the first and second rows), the 

ConvNet output for the corresponding sensor is close to 100%, while outputs for other 

sensors are nearly 0%. In this case, we could easily identify the activated sensor. For 

interfering sensor signals due to coincident particles (Figure 39, the third row), the 

corresponding output probabilities are reduced but the activated sensor identity could be 

correctly determined by using a predetermined threshold value (33% for this work). 
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Figure 39 - ConvNet query of the second version deep learning model for the Microfluidic 
CODES. The first and second rows show the processing result for non-interfering signals. 
The third shows the processing result for interfering signals. 

 

The query speed is over 800 particles/s, which represents an ~100× increase over 

the template-based algorithm (SIC) demonstrated in our earlier work. Query speeds of this 

order can potentially enable real-time particle analysis in LoC devices with code-

multiplexed sensor networks. 
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Figure 40 - Design of the two-stage ConvNet structure in the third version deep learning-
based signal processing scheme for the Microfluidic CODES. (a) Signal processing workflow, 
where two ConvNet are trained to process the signal. (b) ConvNet structure. 

3.3.5 Software Design (V3) - based on Region Proposal 

3.3.5.1 ConvNet Design 

In the third version deep learning model, to process the code-multiplexed Coulter 

sensor signal, we developed a two-stage ConvNet structure (Figure 40a). The first stage 

ConvNet is the region proposal network (RPN), which searches an input signal for regions 

(bounding boxes) that potentially contain signature waveforms. At the same time, the scale 

of each bounding box is used to estimate the amplitude and duration of the signature 

waveform providing information on the size and speed of the corresponding particle, 

respectively. The second stage ConvNet is the sensor classification network (SCN), which 

is trained to perform sensor-identity classification on signature waveforms extracted from 

the first stage. The SCN predicts the probability with which the input signature waveform 

belongs to each and every Coulter sensor in the network integrated on the microfluidic 

device.  
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Table 2 - ConvNet design parameters in the third version deep learning model for the 
Microfluidic CODES. The ConvNet contains four layers and a total of 217056 training 
parameters. 

The RPN and the SCN share the same structure for feature extraction (Figure 40b). 

We adapted our ConvNet structure from a work [207].  that aims pattern recognition in 

grayscale images. The structure is optimized using the Bayesian optimization algorithm 

[208]. We choose this structure due to several reasons: (1) We analogize the classification 

of sensor waveforms in an electrical signal to object recognition in an image frame; (2) 

Greyscale images have only one channel, like our electrical waveform and therefore the 

ConvNet can be compact for faster processing.  Both of our ConvNets contain four 

convolutional layers, each of which is activated by a ReLU layer. A max-pooling layer is 

placed after the second and the fourth convolutional layers. Two dense layers are placed at 

last. The model has a total of 217056 trainable parameters. For reproducibility, detailed 

 C-
size 

C-
Stride 

C-pad Act P-size P-
stride 

Params O/P shape 

Input - - - - - - - (200) 
Conv-1 (5) 1 0 - - - 192 (32, 196) 

Activation-1 - - - ReLU - - - (32, 196) 
Conv-2 (5) 1 0 - - - 5152 (32, 192) 

Activation-2 - - - ReLU - - - (32, 192) 
Maxpooling-1 - - - - (2) 2 - (32, 96) 

Conv-3 (5) 1 0 - - - 10304 (64, 92) 
Activation-3 - - - ReLU - - - (64, 92) 

Conv-4 (5) 1 0 - - - 20544 (64, 88) 
Activation-4 - - - ReLU - - - (64, 88) 

Maxpooling-2 - - - - (2) 2 - (64, 44) 
Flatten - - - - - - - (2816) 

Dense-1 - - - - - - 180224 (64) 
Activation-5 - - - ReLU - - - (64) 

Dense-2 - - - - - - 640 (-) 
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information on our ConvNet design parameters is presented in Table 2. 

3.3.5.2 Training Data Construction 

 

Figure 41 - Construction of training data of the third version deep learning-based signal 
processing scheme for the Microfluidic CODES.  

Using the constructed non-interfering and interfering sensor waveform database, 

we created different training data for the RPN and the SCN because of the specific role 

each ConvNet played in the algorithm. For the RPN, the training data consists of non-

interfering and interfering sensor waveforms directly from the database along with labels 

on waveforms’ amplitudes and durations. For the SCN, the interfering sensor waveforms 

need to be pre-conditioned in the digital domain as if they are already processed by a 

“perfect” RPN because the RPN output is fed into the SCN in our algorithm. Specifically, 

this process involved extracting sections of an interfering sensor waveform such that the 

extracted section includes one of the signature waveforms in full along with parts of the 

contaminating waveform. The extracted section was then labeled with the sensor identity 
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corresponding to the full signature waveform, and it was used to train the SCN to identify 

the sensor in the presence of interference (Figure 41). 

Table 3 - Hyper-parameters for ConvNets training in the third version deep learning model 
for the Microfluidic CODES. 

3.3.5.3 ConvNet Training 

We trained both ConvNets with a batch size of 500 and an epoch number of 50. In 

each iteration, we updated parameters by employing a stochastic gradient descent (SGD) 

optimizer. We used the grid search to determine the optimal combination of the learning 

rate and the momentum. In this process, the learning rate and the momentum was chosen 

from two different lists ([0.1, 0.01, 0.001, 0.0001, 0.00001] and [0.5, 0.9, 0.99], 

respectively), which were assembled based on typical values used in practice. For the PRN, 

we used the mean square error (MSE) to compute the error between actual bounding boxes 

and predicted bounding boxes. For the SCN, we used the cross-entropy to calculate the 

classification error. Furthermore, we employed an L2 regularization in training the SCN to 

prevent overfitting. Hyper-parameters for training the networks are shown in Table 3.  

 

 Loss 
function 

Optimizer Regularization Learning 
rate 

Momentum Batch 
size 

Epochs 

RPN MSE SGD N/A 0.001 0.9 500 50 
SCN Cross- 

Entropy 
SGD L2 0.001 0.9 500 50 
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Figure 42 - ConvNet querying of the third version deep learning model for the Microfluidic 
CODES. (a) For a non-interfering sensor waveform, the RPN produces one bounding box 
that contains the signature waveform. The detected signature waveform is then extracted, 
normalized, and fed into the SCN. (c) For an interfering sensor waveform, the RPN produces 
two bounding boxes for two signature waveforms. The detected signature waveforms are then 
extracted, normalized, and fed into the SCN. (b)(d) Simultaneously recorded high-speed 
camera image confirms decoding result. 

3.3.5.4 ConvNet Querying 

Trained ConvNets are used to process experimental signals. For non-interfering 

sensor waveforms (Figure 42a, I), as the input contains only one signature waveform, the 

RPN only produces one valid bounding box (Figure 42a, II). Then the input signal is clipped 

according to the bounding box, and the extracted waveform is normalized in power (Figure 

42a, III). The normalized waveform is fed into the SCN for sensor identity classification. 

The sensor identity is determined by the index of the output node with the highest 
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probability value (Figure 42a, IV). For interfering sensor waveforms (Figure 42c, I), multiple 

bounding boxes are identified (Figure 42c, II). The predicted bounding boxes have different 

lengths and heights, according to different durations and amplitudes of the detected 

signature waveforms, respectively. Similarly, the waveform in each bounding box is then 

extracted, normalized, and processed by the SCN (Figure 42c, III). The SCN then 

determines the identities of the two sensors that detect the cells and provides the confidence 

levels for its prediction (Figure 42c, IV). The algorithm predictions are validated using a 

simultaneously recorded high-speed video of the cell flowing in the device (Figure 42b & 

Figure 42d).  

 

Figure 43 - ConvNet (a) training and (b) testing accuracy and loss of the third version deep 
learning model for the Microfluidic CODES. Each ConvNet is trained for 50 epochs.  

3.3.5.5 ConvNet Testing 

To test the ConvNets, we first constructed two testing datasets, one for single cells 

and another for coincident cells. Each of these sets contains signature waveforms from 900 

cells. Each ConvNet is then tested separately with these two testing datasets for non-

interfering and interfering sensor waveforms. For the RPN, the bounding box regression 
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accuracy on non-interfering sensor waveforms is higher than that on interfering ones 

(Figure 43a). This difference is expected as the bounding box for a non-interfering sensor 

waveform is the entirety of the input sensor waveform with only one signature waveform 

present. In contrast, for an interfering sensor waveform, the interference between signature 

waveforms results in less predictable boundaries, leading to lower accuracy. We observe 

that the accuracy of the RPN for both non-interfering and interfering sensor waveforms 

increases with the training epoch number and remained stable after 45 epochs (Figure 43a). 

We achieve a final testing accuracy of 97% on non-interfering sensor waveforms, and 92% 

on interfering sensor waveforms at epoch 50. 

 

Figure 44 - ConvNet testing of size and speed prediction of the third version deep learning 
model for the Microfluidic CODES. Distributions of (a) Cell size and (b) cell flow speed are 
given. 

Heights of the predicted bounding boxes were used to estimate sizes of detected 

cells. Because the height of each predicted bounding box corresponds to the amplitude of 

the identified signature waveform, it could be used to determine the cell volume, according 

to the Coulter principle. Following the calibration of signal amplitude for cell size using 

microscope images, we compared algorithm predictions with the actual size data directly 
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calculated from the testing data. To observe potential effects of interference-induced error 

in size estimation, we analyzed non-interfering (Figure 44a, I) and interfering (Figure 44a, 

II) sensor waveforms separately and observe that resulting size distributions closely match 

with each other. Furthermore, the size measurements from our algorithm also agree well 

with the size distribution directly calculated from the testing data (Figure 44a, III). 

For the speed estimation, we used the length of each predicted bounding box, which 

corresponds to the duration of the identified signature waveform. Because the duration of 

the waveform provides the residence time of a flowing cell in the sensing region, by 

combining the waveform duration with the physical length of the coded sensor, we could 

calculate the speed of each cell. Using our algorithm, we calculated the flow speed for 

single (Figure 44b, I) and coincident (Figure 44b, II) cells separately. The calculated speed 

distributions for both tests match, demonstrating the negligible effect of sensor interference 

on cell speed estimations. The results are also in close agreement with the speed data 

(Figure 44b, III) directly calculated from the testing data.  

 

Figure 45 - Confusion matrix of the sensor identity prediction of the third version deep 
learning model for the Microfluidic CODES. (a) Prediction for non-interfering signals. (b) 
Prediction for interfering signals. 
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Figure 46 - Testing the ConvNets by cascading the RPN and SCN of the third version deep 
learning model for the Microfluidic CODES. (a) Prediction for non-interfering signals. (b) 
Prediction for interfering signals. 

For the sensor identity estimation, we first tested SCN alone to test its accuracy in 

sensor identity classification for non-interfering and interfering sensor waveforms. The 

classification accuracy for non-interfering sensor waveforms is found to be higher than that 

of interfering ones (Figure 43b). This difference is expected because a non-interfering 

sensor waveform faithfully followed the pattern of the assigned code sequence. While 

deviations could result from differences in shape, size, and vertical position of a cell, those 

are often not at a level to negate the underlying signature waveform. However, for an 

interfering sensor waveform, part of a signature waveform is by definition distorted by 

contaminating signature waveforms. The partial deviation could be significant enough, 

especially if the interfering cell is larger, to dominate the signature waveform pattern and 
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lower the classification accuracy. Nevertheless, we achieved a testing accuracy of 99% for 

non-interfering sensor waveforms, and 95% for interfering sensor waveforms. 

Furthermore, confusion matrices for the tests of non-interfering (Figure 45a) and 

interfering sensor waveforms (Figure 45b) do not present a misclassification bias for any 

specific sensor combination. 

 

Figure 47 - Signal process speed of (a) RPN and (b) SCN of the third version deep learning 
model for the Microfluidic CODES. On average, the RPN required ~610 ms, and the SCN 
required ~670 ms, to process 1000 input waveforms. 

We completed the testing of our algorithm by cascading the RPN and the SCN. In 

this setting, each testing signal is first processed by the RPN, and the extracted signature 

waveforms are then classified by the SCN. The accuracy was calculated by comparing the 

total number of cells detected by each code-multiplexed Coulter sensor (sensor identity 

distribution) with the known number of each signature waveform in the testing data (Figure 

46a & Figure 46b). We achieved an accuracy of 97% for single cells and 85% for 

coincident cells. The overall testing accuracy for the cascaded ConvNets (i.e., the complete 

algorithm) is less than the calculated accuracy for a single ConvNet due to the propagation 

of the error. Specifically, the bounding-box estimation errors that occur in the first stage 
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(RPN), including occasional missing of low-power signature waveforms in interfering 

sensor waveforms, propagated to the second stage (SCN), resulting in reduced 

classification accuracy.  

The processing speed is an essential factor when evaluating an algorithm. To 

estimate the processing speed, we used each ConvNet to process 1000 input waveforms 

and record the unit processing time for each input (Figure 47a & Figure 47b). We also 

calculated the cumulative time elapsed as each ConvNet processed those 1000 waveforms. 

As the RPN and the SCN share the same structure (same number of parameters), they have 

similar processing speeds. On average, the RPN required ~610 ms, and the SCN required 

~670 ms, to process 1000 input waveforms. Based on these metrics, the two-stage ConvNet 

structure could process 780 cells per second (2.7 GHz Intel Core i7, Intel). Processing 

speeds of this order can potentially make real-time analysis possible for a variety of sample 

types.  

To interpret the trained ConvNets, we also visualized the learned parameters of 

kernels in each convolutional layer. The kernels in the first two convolutional layers 

(Figure 48) learn first-order features in a coded sensor waveform such as orientations and 

amplitudes of individual pulses. In deeper convolutional layers, the patterns of kernels 

become more complex, indicating that the last two layers represented more abstract 

information, including slopes and transitions between two adjacent pulses (Figure 49). This 

observed hierarchical representation matches with the fact that a ConvNet interprets input 

as a hierarchy of features with increasing abstraction. In our ConvNet, a few kernels in 

deeper layers showed noisy patterns, indicating these kernels are not activated given the 

specific training data. 
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Figure 48 - ConvNet weight visualization (Conv-1 and Conv-2) of the third version deep 
learning model for the Microfluidic CODES 
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Figure 49 - ConvNet weight visualization (Conv-3 and Conv-4) of the third version deep 
learning model for the Microfluidic CODES. 
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Figure 50 - ConvNet validation via optical imaging of the third version deep learning model 
for the Microfluidic CODES. (a) Validation of the original device. (b) Cross-platform 
validation by using replicate devices. (c) Cross-cell line validation by using two new cell lines 
(MDA-MB-231 and PC3). 
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3.3.5.6 ConvNet Validation via Optical Imaging 

To independently validate the performance of our algorithm, we compared the 

algorithm results with a simultaneously recorded high-speed (1000 fps) microscopy video 

footage of human cancer cells flowing through the microfluidic device. The video is 

recorded by placing all the sensors within the same field of view so that the whole sensor 

network activity can be visually acquired. By processing the recorded video of ~1000 cells 

by a custom-built image-processing program, speed and the sensor identity for each cell 

are automatically determined. Cell size distribution is obtained in a separate experiment by 

imaging cells of the same type and processing the recorded images with the ImageJ 

software. Microscope-measured cell size (Figure 50a, I) and cell speed (Figure 50a, II) 

histograms closely match with the prediction. Besides algorithm-induced errors, the 

differences from optical measurements of cell properties are expected to be due to several 

factors: (1) the cells used for imaging might have had a different size distribution from the 

cells detected by the device even though they are sampled from the same tissue culture; (2) 

accuracy in cell size measurements might have suffered from calibration errors as well as 

the sensor-proximity effects in the microfluidic channel; (3) optical cell speed 

measurements with the high-speed camera are prone to errors from low spatial and 

temporal resolution. In terms of the sensor identity prediction, our algorithm is able to 

identify the correct sensor with an overall accuracy of 90.3% (Figure 50a, III). These results 

validated the ability of our algorithm to accurately capture the microfluidic activity of the 

cells and their characteristics. 
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3.3.5.7 Cross-platform ConvNet Validation 

To be of practical utility, trained ConvNets should be directly applicable to signals 

from other LoC devices with identical sensor designs. Furthermore, using the same device 

to generate both the training and testing signals might artificially enhance the measured 

accuracy of our algorithm. Therefore, we tested the cross-platform operability by training 

our algorithm on data from one device and testing its performance on other devices. For 

this purpose, we fabricated two microfluidic devices, which were replicas of the original 

device (the training device) we used in this study. Even though all the three devices have 

the same electrode design, their signature waveforms for each Coulter sensor were 

expected to show observable differences due to variations from the fabrication processes 

and the electrical contacts. 

We processed ~1000 human ovarian cancer cells sampled from the same PBS 

suspension with each replica microfluidic device. High-speed microscopy videos are 

recorded as a benchmark to determine the cross-platform accuracy of our algorithm. The 

videos were processed, and microscopy measurements were compared with the algorithm 

predictions for the cell size, cell flow speed, and sensor identity. For both replica devices, 

the microscope-measured cell size (Figure 50b, I & Figure 50c, I) and flow speed (Figure 

50b, II & Figure 50c, II) distributions match closely with algorithm results, yielding similar 

mean and variance. As for sensor identities, we achieved 90.65% (Figure 50b, III), and 

89.42% (Figure 50c, III) accuracy on Replica #1 and Replica #2, respectively. Taken 

together, these results demonstrate the robustness of our trained ConvNets against cross-

platform waveform variations, leading us to the conclusion that a pre-trained network could 
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directly be used to interpret sensor signals from different microfluidic designs, as long as 

the same set of code sequences is used in the sensor network. 

3.3.5.8 Cross-cell type ConvNet Validation 

To be used in a variety of applications, trained ConvNets should be directly 

applicable to signals generated by any cell types. Therefore, we tested the cross-cell type 

compatibility of our technique by applying our ConvNet, trained with human ovarian 

cancer cells (HeyA8) to interpret signals from the processing of human breast (MDA-MB-

231) and prostate (PC3) cancer cell lines. For these measurements, we fabricated two 

identical microfluidic devices (replicas of the training device) and separately processed the 

two cell lines on these devices. Simultaneously-recorded high-speed microscopy videos 

are treated as the ground truth to calculate the cross-cell type accuracy. For both cell lines, 

the microscope-measured cell size (Figure 50d, I & Figure 50e, I) and flow speed (Figure 

50d, II & Figure 50e, II) distributions matched closely with algorithm results, yielding 

similar mean and variance. As for sensor identities, we achieved 89.76% (Figure 50d, III), 

and 91.11% (Figure 50e, III) accuracy on MDA-MB-231 and PC3, respectively. These 

results demonstrate the compatibility of trained ConvNets with different sample types and 

the potential of our technique for general-purpose cytometry application. 

3.4 FDMA-based Processing of Microfluidic CODES Signal 

We also investigated the implementation of FDMA in decoding our sensor signals. 

Besides CDMA, FDMA is another effective way for signal multiplexing in digital 

communication systems. In an FDMA system, each source signal is allocated in a distinct 

frequency range. Therefore, even though all the source signals are transmitted within a 
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single transmission channel at the same time, no overlapping happens among them in the 

frequency domain. Therefore, we can use filter to extract the information in each frequency 

band.  

We have introduced an adaptation of Microfluidic CODES, which combines 

CDMA with FDMA, to multiplex detection of particles with an electrical sensor network. 

However, we were not simply driving each sensor using an excitation signal with a distinct 

frequency, we actually introduced frequency differences by designing the electrode pattern. 

In our sensor network, all sensors were interconnected and monitored from a single 

electrical output. For multiplexing the sensor data, each sensor was designed to generate a 

distinct waveform when it detected a particle. We specifically designed the sensor structure 

so that signals from individual sensors had distinguishable frequency spectra. Therefore, 

frequency-domain analysis of the output signal can be used to determine which sensor in 

the network is activated in a given time window. In the case of coincident particles causing 

multiple sensors to be activated simultaneously, each sensor effectively operates in a non-

overlapping frequency band, allowing us to resolve individual sensor signals (Figure 51). 
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Figure 51 - Concept illustration of the FDMA-based processing of the Microfluidic CODES. 
The signal generated from each sensor is designed at a specific frequency band. 

 

Figure 52 - Electrode design of the Microfluidic CODES using FDMA-based processing. By 
designing the electrode pattern for each sensor, the signal generated from each sensor is 
designed at a specific frequency band. 

 

3.4.1 Hardware Design 

As a proof of principle, we created a network of four sensors (Figure 52), by 

designing the electrode patterns with different spatial frequencies, we effectively allocated 

a distinct temporal frequency band to each sensor. Besides the electrode spatial pattern, the 

frequency spectrum of any individual sensor signal was determined by the flow speed of 
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the detected particle. To measure the flow speed, our device included a pre-modulation 

sensor that was shared by all sensors in the network. We use a machine learning model 

based on the KNN algorithm to estimate the speed of the particle. Once we knew particle 

speeds present in the system, we used this information in the decoding process to predict 

possible frequency spectrum for individual sensors and searched for them in the output 

signal spectrum. 

 

Figure 53 - Sensor signal of the Microfluidic CODES using FDMA-based processing. (a) 
Sensor signal from each sensor shows different frequency. (b) Discrete Fourier transform 
(DFT) for each sensor signal shows distinct peaks. 
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Figure 54 - Sensor signal processing of an interfering signal of the Microfluidic CODES using 
FDMA-based processing. (a) An interfering sensor waveform with 2 cells. (b) DFT shows two 
peaks. 

 

3.4.2 Software Design 

Figure 53 shows that individual sensor signals can be discriminated in the 

frequency domain. An important feature of our technology is that it can resolve cells in 

microfluidic channels when they coincide in the sensing volume. Here, we demonstrate a 

case in Figure 54, where we resolve two coincident cells. We determine from two peaks in 

the frequency spectrum that the cells are in the first and second sensors. 
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3.5 ICA-based Processing of Microfluidic CODES Signals 

 

Figure 55 - Concept of the ICA-based processing for the Microfluidic CODES. Independent 
component analysis (ICA) is used for signal separation. 

We also investigated the implementation of ICA in decoding our sensor signals. 

The ICA is a mathematical method for separating a multivariate signal into additive 

components. In ICA, we assume that the multivariate signal is a linear combination of 

components that are statistically independent. As shown in Figure 55, each of the two input 

signals is a linear combination of two source signals, s1 and s2, and ICA can extract the two 

independent sources by processing the inputs.  

3.5.1 Hardware Design 

To test the algorithm, we used the 10-channel (sensor) 31-bit Gold code 

Microfluidic CODES device (Figure 7) for characterization. It should be noted that, ICA 
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does not rely on the orthogonality among spreading codes, and here we just used this device 

as an example to demonstrate the work. 

 

Figure 56 - Sensor signal of the ICA-based Microfluidic CODES. With four signals with 
different amplitudes at four excitation signals.  

We prepared a suspension of MDA-MB-231 human breast cancer cells in 

phosphate buffer saline (PBS) to test the device. The cell suspension was loaded into a 

syringe and driven into the device using a syringe pump. At the same time, we used a lock-

in amplifier (HF2LI with multi-frequency option) to excite the common electrode with a 

multi-frequency signal that contained signals in 4 frequencies (222 kHz, 460 kHz, 759 kHz, 

and 1 MHz), but with the same amplitude. Then we recorded the sensor output and 

demodulate the output with 4 independent oscillators to extract the signal in each frequency. 

Figure 56 shows sensor signals for one MDA cell corresponding to 4 frequencies.  
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Figure 57 - Frequency response of MDA cells. At different frequency, signal amplitudes show 
different error bars. 

3.5.2 Software Design 

By processing sufficient number of cells, we generate the frequency response of 

MDA cells (Figure 57). We could see that the larger the excitation frequency, the cells 

induce signal with larger amplitudes. 

When two sensors are activated at the same time (Figure 58a), we fed multi-

frequency overlapping signals into the ICA and separated the two subcomponents (Figure 

58b). Then by correlating these two subcomponents with signal of each sensor, we detected 

the auto-correlation peak and determined the activated sensors. 
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Figure 58 - Sensor signal processing using ICA for the Microfluidic CODES. (a) An 
interfering signal acquired with four frequencies. (b) Signal separated by ICA. (c) Using 
correlation to acquire the identity of the signal. 

3.6 Discussion 

Combining the techniques from telecommunications, signal processing, and 

microfluidics, we have introduced the microfluidic CODES technology, a scalable 

electronic sensing platform to detect particles in multiple locations on a microfluidic device 

from a single electrical output. The microfluidic CODES relies on multiplexing an array of 

micromachined Coulter counters, each designed to produce a distinct digital code when a 

particle is detected. Furthermore, a signal process algorithm is designed to process sensor 

output. 
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The design of the signal processing algorithm (for demultiplexing) also relies on 

the design of the signal multiplexing scheme. Based on the spreading codes used for 

encoding each sensor, the signal processing algorithm should not only be able to address 

the difference between different spreading codes, but also identify them when they interfere 

and deform. Based on the specific multiplexing/demultiplexing principle, we have mainly 

introduced three versions of signal processing schemes for the Microfluidic CODES 

technology, namely the correlation-based, the error-correction-based, and the deep 

learning-based scheme. We demonstrated that our technology could readily be applied to 

detect human cancer cells on a multi-channel microfluidic chip. Importantly, our 

technology can also resolve particles with a high accuracy if they overlap in time, a feature 

that is required to process samples with a high particle density. Microfluidic CODES offers 

a simple, all-electronic interface for tracking particles on microfluidic devices and is 

particularly well suited to create integrated, low-cost cytometry for cell- or particle-based 

assays that are needed for point-of-care tests in resource-limited settings. 

Through theoretical analysis, we also investigated the effect of sensor signal 

interference due to coincident cells on the performance of the signal processing algorithm 

[193]. In an interfering sensor waveform, interference from one sensor appears as the noise 

of another sensor, leading to lower SNR. Eventually, interferences lead to errors in the 

decoding process. We mathematically modeled the relationship between the interference 

among different sensors and its effect on the bit error rate and then estimated the error rate 

as a function of expected coincident cells. Generally, as the number of coincident cells 

increases, the bit error rate also increases.  Furthermore, as the expected number of 

coincident cells depends on the product of sensing volume and the particle concentration 
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(i.e., number of cells per unit volume), we also calculated the error rate as functions of 

sample and device properties.  

The aforementioned modeling analysis not only estimated the device performance 

when processing different samples, but also provide proper guidance in designing the 

sensor platform. Generally, when designing the spreading codes, several aspects need to 

be considered. First, each code should be distinct, so that it can be used as a signature for 

each distributed sensor. Second, the length of the codes should not be too long, as longer 

codes will not only increase the complexity of the coplanar electrodes but also enlarge the 

volume of the sensing region. When the sensing volume increases, the expected number of 

coincident cells in the sensing region, which is the product of sensing volume and the 

particle concentration (i.e., number of cells per unit volume), also increases. The increasing 

number of coincident cells will further increase the error rate of the signal processing 

algorithm. Therefore, when designing the algorithm, we focus on the goal of using shorter 

spreading codes and designing signal processing algorithms with lower error rates and 

higher processing speed. On the other hand, the particle density can be tuned through 

dilution to achieve a target error rate for a given sensor network design. 

Microfluidic CODES-based cytometers have several advantages over conventional 

cytometers. First, compared to traditional impedance-based flow cytometers that only 

count and size cells, the Microfluidic CODES also tracks the location of manipulated cells, 

providing another dimension of information for cell analysis. Second, the Microfluidic 

CODES can measure any cell property, not necessarily measurable by a conventional 

cytometer, as long as the cell property can be used for differential microfluidic 

manipulation. Third, the use of electrical sensors instead of optical detection allows system 
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integration and miniaturization to realize low-cost and portable systems that can perform 

as accurately as conventional systems. Finally, compared to imaging-based cytometry, 

which can also provide spatial information on cell manipulation, the Microfluidic CODES 

(1) offers a nonrigid “field of view” that can be tuned to any microfluidic platform for cell 

manipulation, (2) has a higher sub-millisecond temporal resolution, which can only be 

matched by specialized high-speed camera systems and (3) can efficiently compress spatial 

measurements on cells into an electrical waveform that could be processed more efficiently 

than video footage. 
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CHAPTER 4. MICROFLUIDIC CODES-BASED FEEDBACK 
CONTROL SYSTEM 

While highly effective in manipulating cells, microfluidic devices are designed and 

experimentally optimized to operate under well-controlled conditions that cannot 

universally be maintained in practice [122][123]. Inevitable perturbations to device 

operation such as variation in the flow rate due to clogged channels [124] or fabrication-

related deviations in device geometry [116] could go unnoticed and translate into process 

artifacts. Moreover, differences between sample viscosities could lead to different flow 

dynamics [124] even if the rest of the operation parameters could be made equal. Therefore, 

microfluidic devices for cell analysis need to be engineered to preempt those potential 

artifacts due to process/sample variance if they are to be deployed in the field for 

biomedical applications. 

One strategy to ensure the microfluidic device operates under optimized conditions 

irrespective of unforeseen perturbations is to employ a feedback control. A feedback-

controlled system automatically regulates a process variable by constantly monitoring 

instantaneous changes (i.e., error) and countering those by triggering a negating stimulus 

to maintain that process variable at a set value. Establishing a feedback control on a 

microfluidic therefore requires a quantitative assessment of the state of the device, a control 

algorithm (i.e., controller), and a control input to the system to change its state. In fact, 

feedback control has been successfully demonstrated in regulating microfluidic systems 

for a variety of applications, including digital microfluidics [209], productions of micro-

droplets [210], modulations of fluidic properties [211],  and automated regulations of fluid 

height [212], pressure [213], and temperature [214] in microfluidic chambers. 
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To implement feedback control with cell manipulation, we have demonstrated a 

system where the process variable is controlled within a feedback loop based on direct 

measurements on cells being manipulated within a microfluidic chip [121]. Our system 

utilizes (1) a network of electrical sensors (Microfluidic CODES) distributed across the 

microfluidic device to make measurements on flowing cells, (2) a trained deep learning 

algorithm to process the raw sensor data and produce actionable control signals, and (3) a 

controller that updates external stimuli to regulate the process variable. In a proof-of-

principle demonstration, we use the deep learning-based signal processing scheme to 

measure cell flow speeds across the device and control a programmable pressure pump to 

maintain the same flow speed irrespective of perturbations. We characterize the system 

performance under static and dynamic perturbations and demonstrate its stability. 

 

Figure 59 - Concept illustration of the Microfluidic CODES-based feedback control system. 
A feedback loop is constructed among a sensing unit, a signal processing unit, and a feedback 
control unit. 
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The introduced adaptive microfluidic system is composed of three main units: the 

sensing unit, the signal processing unit, and the feedback control unit (Figure 59).  

The sensing unit is a microfluidic sensor platform consisted of surface micro-

electrodes, which are designed to produce electrical signals when a cell is detected. To 

detect cells within the device, we utilize the fact that suspended cells modulated the 

electrical current as they flow over these microelectrodes. To monitor the cell flow 

throughout the whole device, we create a network of sensors distributed to multiple 

measurement nodes. Because all sensors are electrically connected, the data from the 

network could be acquired as a single time waveform. Nevertheless, by designing each 

sensor to produce a distinct waveform, we ensure a lossless recovery of information from 

individual sensors in the recorded electrical signal. 

The signal processing unit acquires raw sensor data, analyzes its content, and 

calculates parameters such as size, instantaneous location, and speed for every cell. The 

signal processing unit could be considered as a combination of a data acquisition block and 

a data interpretation block. The data acquisition block consists of signal acquisition 

software and hardware, including amplifiers and a data acquisition board, which extracts, 

amplified, and transmitted sensor waveforms in real-time. Conditioned sensor waveforms 

are then processed by the data interpretation block. The sensor waveforms are analyzed 

using a deep learning model specifically to perform cell measurements in real-time. Real-

time analysis of sensor data then allows timely intervention by the controller to modulate 

the device settings. 
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The feedback control unit regulates a process variable based on the measurements 

on cells. Measured cell parameters are compared to a predetermined target value (setpoint), 

and the process variable is continuously updated to minimize the difference between the 

two. In this work, we set our feedback loop on the cell flow speed without loss of any 

generality and update the driving pressure of the sample by controlling a pressure pump. 

A regulated flow ensures cells to flow at a determined speed inside the device irrespective 

of external perturbations or potential miscalibration of the pressure pump or device 

geometry. 

4.1 Design of Sensing Unit 

We designed our microfluidic sensor platform following the Microfluidic CODES 

using deep learning-based signal processing scheme (Figure 60). Our sensor network was 

composed of eight coded Coulter sensors distributed across eight 30 µm-wide microfluidic 

channels. Each sensor was designed to produce a unique binary sequence, specifically a 

randomly-generated 15-bit code sequence. The fabrication and experimental setup also 

followed the design of the Microfluidic CODES technology using the deep learning-based 

signal processing scheme. 
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Figure 60 - Sensor design and experimental setup of the Microfluidic CODES-based feedback 
control system. (a) A microscopy image of the microfluidic sensor platform with eight code-
multiplexed Coulter sensors. Each sensor is designed with a unique electrode pattern 
determined by a distinct binary code sequence. (b) A block diagram for the experimental set-
up. (c) The signature waveform for each coded sensor. 

4.2 Design of Signal Processing Unit 

4.2.1 Real-time Signal Processing Environment 

We developed a real-time signal processing environment that could continuously 

acquire, identify, and extract sensor waveforms corresponding to individual cell events 

(Figure 61a). Because cells randomly interact with sensors at different locations, the sensor 

waveforms asynchronously appear in the data stream (Figure 61c). To make the 

information available to the controller in a timely fashion, we continuously screened short 

blocks (50 samples) from the data stream to catch potential sensor activity. For each data 

block (iteration), we first calculated signal power (i.e., variance) and compared it with a 

predefined threshold value (variance of the baseline noise) to determine whether the signal 

in the current data block originated from a triggered sensor or is simply noise. If it was 
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scored as sensor data, these samples would be temporarily stored in a buffer. Next, by 

comparing the current data block’s signal variance with that of the previous data block, we 

determined if the data block corresponded to either beginning or ending of a sensor 

waveform. If the data block was identified as an ending block, all the data blocks stored in 

the buffer were combined and marked as a complete sensor waveform to be identified, 

followed by clearing the buffer for the next sensor waveform (Figure 61b). 

We implemented the continuous data acquisition in LabVIEW, and the PyDAQmx 

package [215] was used as a software interface between the data acquisition board and 

Python, a programming language commonly employed for machine learning-based data 

analysis. An off-line simulation of the signal extraction scheme demonstrats that sensor 

waveforms with varying amplitudes and durations are successfully identified from a 

recorded sensor data stream (Figure 61c). It should be noted that some of these extracted 

sensor waveforms are individual ones induced by a single cell, and some are interfering 

ones induced by coincident cells interacting with one or multiple sensors simultaneously. 

The pattern of individual sensor waveforms closely follows the binary code sequences used 

to encode each sensor so that they could readily be recognized, while interfering sensor 

waveforms require specific algorithms to demultiplex and interpret the cell information. 
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Figure 61 - Real-time sensor waveform identification of the Microfluidic CODES-based 
feedback control system. (a) A flow diagram illustrating the environment implemented for 
real-time sensor waveform identification and extraction. (b) An illustration of the process of 
identifying a sensor waveform. (c) Multiple sensor waveforms are successfully identified from 
an experimental data stream 

4.2.2 Deep Learning-based Data Interpretation 

We further improved the deep learning-based signal processing algorithm. 

Specifically, we still implemented a 2-stage ConvNet structure to interpret extracted sensor 

waveforms (Figure 62a). Given an input sensor waveform, the first stage, named region 

proposal network (RPN), predicts the number of signature waveforms contained in that 

waveform (e.g., 1 if isolated signature waveform or >1 if the sensor waveform resulted 
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from the interference of multiple signature waveforms) and proposes a bounding box on 

each individual signature waveform. Each identified signature waveform is then extracted 

and fed into the second stage, named sensor classification network (SCN), for a further 

sensor identity (location) classification. Combining the predictions from two stages, the 

property and behavior of detected cells are estimated. First, the number of identified 

signature waveforms indicates the number of detected cells. Second, the height of the 

bounding box represents the amplitude of the signature waveform, which, based on the 

Coulter principle is proportional to the size (volume) of the detected cell. Third, the width 

of the bounding box represents the duration of the signature waveform, which represents 

the time the cell spent passing through the entire sensing region of the corresponding sensor 

(cell residence time). This could be further used to calculate the speed of the cell. Fourth, 

the predicted sensor identity provides the location information of the cell as sensors are 

distributed at different locations on the microfluidic sensor platform. All of this information 

provides an on-demand snapshot of the state of cell manipulation within the microfluidic 

device. 

In our ConvNet model, the RPN and the SCN share the same structure for feature 

extraction, while each has a distinct output layer (Figure 62b). Specifically, each ConvNet 

contains four convolutional layers, each of which is followed by a ReLU layer for a non-

linear activation. After the second and fourth convolutional layers, a max-pooling layer is 

placed to down-sample the feature map. Two dense (fully-connected) layers are placed 

after the second max-pooling layer (right before the output layer). The output layer of the 

RPN has two groups of nodes, where the first group predicts the number of contained 

signature waveforms in the input sensor waveform, and the second group fits a bounding 
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box for each identified signature waveform. The output layer of the SCN has eight nodes, 

each representing one of the eight distributed Coulter sensors on the microfluidic device.  

 

Figure 62 - Implementation of the deep learning-based sensor waveform interpretation of the 
Microfluidic CODES-based feedback control system. (a) A workflow showing the decoding 
process of the 2-stage ConvNet model. (b) The structure of the ConvNet model. (c) ConvNet 
decoding process for a representative 3-cell interfering sensor waveform. 

We built a training dataset with 1,000,000 training waveforms. In the training 

dataset, each sensor has roughly the same amount of training data, and 1/3 of which are 

non-interfering sensor waveforms, 1/3 are 2-cell interfering sensor waveforms, and 1/3 are 

3-cell interfering sensor waveforms. To increase the number of waveforms available for 

constructing the training dataset, we employed a data augmentation process. Briefly, each 

interfering training waveform is manually combined from randomly-scaled non-interfering 

sensor waveforms.  
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Figure 63 - Training accuracy and loss of (a) RPN and (b) SCN of the Microfluidic CODES-
based feedback control system. 

After training both ConvNets for 50 epochs (Figure 63), we generated a validation 

dataset and a test dataset to validate the ConvNets. The validation dataset is used to evaluate 

the performance of the ConvNets after each training epoch (Figure 64), and the test dataset 

is used to validate the final trained ConvNets via real-time experimental data. Similar to 

the training dataset, the validation dataset was manually constructed, in which all the 

interfering sensor waveforms were manually built from labeled but unseen non-interfering 

ones, of which we knew the ground truth of cell number, bounding box. and sensor identity. 

In this case, we also calculated the accuracy of all the predictions given sensor waveforms 

with different number of interfering cells (Figure 64). The test dataset was automatically 

recorded during an experiment, along with an optical recording. Then we used a video 

processing algorithm to extract cell information from the recording as the ground truth. 

Afterward, we compared the ConvNets-predicted distributions with optically-measured 

distributions in terms of cell size, speed, and sensor identity (Figure 65). 
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Figure 64 - Validation of the ConvNets (through the validation dataset) of the Microfluidic 
CODES-based feedback control system. Accuracy of (a) cell number, (b) bounding box and 
(c) Sensor identity are given. 

 

Figure 65 - Validation of the ConvNets (through the test dataset) of the Microfluidic CODES-
based feedback control system. Distributions of (a) Cell size, (b) cell flow speed, and (c) Sensor 
identity are given. 

 

The decoding process of a 3-cell interfering sensor waveform from the validation 

dataset is demonstrated (Figure 62c). Given the input sensor waveform (Figure 62c, I), the 

RPN predicts the number of signature waveforms (cells) producing the observed signal 

with a confidence level (Figure 62c, II) and marks individual signature waveforms making 

up the signal with bounding boxes (Figure 62c, III). Once the signature waveforms within 

the bounding boxes are extracted and normalized (Figure 62c, IV), the SCN makes a sensor 

identity prediction on each identified signature waveform and reports the confidence level 

for each prediction (Figure 62c, V).  
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Figure 66 - Design and characterization of the Microfluidic CODES-based feedback control 
system. (a) A block diagram showing the proportional-integral (PI) controller in the 
microfluidic feedback control system. (b)The monotonic relation between the pump pressure 
and the cell residence time. (c) Step response of the feedback control system given different 
combinations of feedback gain (K) and averaging window size (W). 

4.3 Design of Feedback Control Unit 

4.3.1 Design of the Feedback Control System 

To demonstrate closed-loop control of cell manipulation in the microfluidic device, 

we developed a feedback control system that regulated cell flow speed based on 

measurements on processed cells. Besides the fact that cell flow speed is of practical 

importance for a variety of cell manipulation/sorting applications in microfluidic devices, 

it has a simple dependence on the driving pressure, making it an ideal parameter for proof-

of-concept demonstration of closed-loop control. The designed feedback control system 
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could be abstracted into a plant and a feedback controller (Figure 66a). The plant consists 

of the programmable pressure pump, the sensing unit, and the signal processing unit 

producing a measured process variable,	𝑦(𝑡), which is the variable to be controlled in the 

system. The goal of the feedback control system is to regulate the control input (the pump 

pressure), so that the process variable could approach the setpoint, 𝑟(𝑡), as the target value 

of the process variable. This is achieved by the system continuously calculating an error 

value,	𝑒(𝑡), as a difference between the instantaneous process variable and the setpoint and 

the feedback controller attempting to minimize the error by generating an appropriate 

adjustment value, 𝑢(𝑡), to update the control input in the plant. 

The core part of our feedback control system is the feedback controller, which 

determines the parameters adjusting the control input given a specific error value. For our 

study, we implemented a proportional-integral (PI) controller, which adjusted the control 

input based on a weighted sum of present and past error values [216].  As such, the 

adjustment value to the pressure pump is computed by 

𝑢(𝑡) = 	𝐾𝑒(𝑡) +	
𝐾
𝑇9
: 𝑒(𝜏)𝑑𝜏
=>

?
 

where 𝐾 is the feedback gain, and  𝑇9 is the integration period.  

To regulate the cell flow speed in a feedback control loop, we chose the measured 

time that a cell interacted with a sensor (cell residence time) as the process variable. The 

cell residence time was calculated as the quotient of the sensor size and the cell flow speed, 

which has a linear relationship with the driving pressure (Figure 67). Therefore, the cell 

residence time has a non-linear but monotonic relation with the driving pressure and hence 
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could be adjusted by updating the pressure pump settings (Figure 66b). Each time a cell 

(i.e., event) is detected, our system measures the cell residence time, compares it with the 

setpoint, and calculates an error value, based on which, the PI controller produces an 

updated setting for the programmable pressure pump. 

 

Figure 67 - The calibration between the driving pressure and the cell flow speed in the 
Microfluidic CODES-based feedback control system. 

4.3.2 Step Response of the Feedback Control System 

To characterize our feedback control system, we processed a model biological 

sample with a density of 5 x 105 cells ml-1. We first measured the step response of the 

system. In these measurements, we set the setpoint for cell residence time at 10 ms, 

corresponding to a pressure of 95 mbar. Then we abruptly changed the setpoint from 10 

ms to 30 ms and monitor changes in the process variable as it converged to the new setpoint 

(Figure 66c). We analyzed the effects of the feedback gain (𝐾) and the averaging window 

size (𝑊), which set the number of earlier cell measurements considered when calculating 
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the instantaneous cell residence time. Specifically, we selected 𝐾 from a list of [0.05, 0.10, 

0.15] and 𝑊  from a list of [5, 10, 15]. For each parameter combination, we evaluated the 

step response against multiple metrics: First, we measured the rise time, defined as the 

number of events required for the cell residence time to rise from 10% to 90% of the 

setpoint, indicating how fast the system responds to a change in the setpoint. Second, we 

measured the settling time from the number of events required for the cell residence time 

to enter and stay within a certain error band (15%) around the setpoint, indicating how fast 

the system converges. Note that because our measurements are only updated when a cell 

is detected by the sensor network, we chose our unit of progress as the cell detection events 

rather than the actual time commonly used in these analyses. Finally, we analyzed the 

response in its overshoot from how much the cell residence time exceeds the new setpoint 

before convergence, representing the maximum swing of the control system.    

Analysis of step responses from different feedback controllers clearly shows the 

effect of varying feedback parameters. Increasing the feedback gain results in a faster 

response due to a higher sensitivity to the error value but also leads to larger swings and a 

less stable system. With a higher 𝐾, the rise time decreases, the overshoot increases, and 

the settling time increases (Table 4), an expected response from a PI controller [216]. 

Varying the 𝑊 , on the other hand, acts as a noise filter for cell residence time 

measurements. Because cell flow speed within a microfluidic device has an intrinsic 

variance due to Poiseuille flow profile [217] within channels or non-uniform hydraulic 

resistance across the device, averaging measurements over multiple cells reduces noise in 

calculated error values. This results in a smoother response but increased the time to 

convergence. 
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Table 4 - The effect of the feedback gain (K) on the rise time, overshoot, and settling time of 
the system for W = 15 in the Microfluidic CODES-based feedback control system. 

 

4.3.3 Tracking of Dynamic Setpoints 

Next, we tested our system’s ability to follow a varying setpoint for the process 

variable. A dynamic setpoint for a process variable could be helpful in practice for 

applications where sweeping operational settings of a microfluidic device could enable a 

parametric analysis on a sample. In characterizing our system for dynamic setpoints, we 

chose a 𝐾 of 0.1 and a 𝑊 of 5 to build the feedback controller. We programed the setpoint 

to vary with a controlled pattern and monitor how well the instantaneous cell residence 

time in the microfluidic device followed the programmed function (Figure 68). We first 

ramped the cell residence time from 10 ms to 30 ms and found that the system was able to 

track the setpoint successfully (Figure 68a). Next, we modulated the setpoint sinusoidally, 

and the system was able to respond with a small but noticeable delay (Figure 68b). Finally, 

we modulated the setpoint in the form of a square wave. While we clearly observed the 

feedback delay and ringing on both rising and falling edges, the system recovered in 

between and was able to track the setpoint successfully (Figure 68c).  

 

𝑲 Rise time (events) Overshoot (ms) Settling time (events) 
0.05 55 3.4 73 
0.10 31 13.3 171 
0.15 18 23.1 188 
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Figure 68 - Tracking dynamic setpoints to characterize the Microfluidic CODES-based 
feedback control system in terms of (a) ramp, (b) sine, and (c) square wave. In each case, the 
cell residence time closed tracks the dynamic setpoint, demonstrating the high accuracy and 
fast converging speed of the feedback control system. 

4.3.4 Feedback Control under Perturbation 

To investigate the feedback response under external perturbations, we added 

another pressure pump (perturbing pump) to the system and monitored the response of the 

perturbed system. The perturbing pump was connected to the outlet of the microfluidic 

device to perturb cell flow speed by countering the driving pressure pump connected to the 

inlet, and the feedback system was engaged to keep the cells flowing at the same speed 

irrespective of the external perturbation by adjusting the driving pressure. Initially, the net 

forward pressure was set at 100 mbar with a 200-mbar driving pressure and a 100-mbar 

perturbing pressure and this condition produces a ~9-ms cell residence time. We also set 

the parameters as 𝐾 = 0.1 and 𝑊 = 10 for the feedback controller. Later, we modified the 

perturbing pressure in 50 mbar steps between 0-200 mbar (Figure 69a, I, IV). Despite such 
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a perturbation, the measured instantaneous cell residence time remained at 9 ms, which is 

the setpoint for our feedback controller (Figure 69a, II, V). Transient ringing in the 

measured cell residence time coincides with the changes in the perturbation signal as 

anticipated and is quenched after a few events. The asymmetric ringing of the instantaneous 

cell residence time at the rising and falling edges of the perturbing pressure is expected due 

to the non-linear dependence between the cell residence time and the driving pressure 

(Figure 66b). Finally, comparing the feedback-controlled driving pressure with the 

perturbing pressure shows that the driving pressure is adjusted to balance the perturbing 

pressure changes (Figure 69a, III, VI), maintaining a constant forward pressure. It should 

be noted that all the automatic adjustments to the driving pressure pump are made based 

on the aggregate cell residence time data collected from the network of distributed 

electrical sensors (Figure 69b) without prior knowledge on the perturbation. Taken 

together, these results show the ability of the feedback system to successfully adapt to the 

changing perturbation.  

Table 5 - Optically measured cell flow speeds (𝛍𝐦/𝐬) at nine different time periods during 
the perturbation experiment closely match the expected cell flow speed (35.12	𝛍𝐦/𝐬) in the 
Microfluidic CODES-based feedback control system. 

Time period 1 2 3 4 5 6 7 8 9 

Cell flow speed (𝛍𝐦/𝐬) 34.50 34.05 33.15 33.60 32.26 35.84 35.84 36.29 35.39 

Accuracy (%) 98.2 97.0 94.4 95.7 91.9 97.9 97.9 96.7 99.2 

 

To independently validate the effectiveness of the feedback control in maintaining 

the cell flow speed within the microfluidic device, we directly measured the flow speed of 
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cells with high-speed microscopy while the device was under perturbation. Cells were 

randomly sampled for imaging throughout the experiments, and the measurements were 

compared against the setpoint flow speed (obtained by converting the target cell residence 

time) (Table 5). The microscopically-measured cell flow speed (n=10) at different time 

periods (Figure 69a, I) is found to have an average <3.5% deviation from the setpoint flow 

speed of 35.12 𝜇𝑚/𝑠 with a 1.39 𝜇𝑚/𝑠 standard deviation among the measured cell flow 

speeds. These results prove the ability of the developed feedback-controlled system to 

maintain a process variable based on direct measurements on cell state under a continuous 

perturbation. 

 

Figure 69 - Adding continuous external perturbations to characterize the Microfluidic 
CODES-based feedback control system. (a) System performance under continuous 
perturbations. (b) Cell residence time in terms of different locations (sensor identities). Cells 
at different locations are regulated to have the same cell residence time. 

We further observed the performance of the system under different perturbing 

pressures (Figure 70). Initially, the driving pressure was set to 300 mbar, and the perturbing 

pressure was set to 0 mbar. Then we changed the perturbing pressure with five different 
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values (50, 100, 150, 200, 250 mbar) and observed the performance of the system. We 

characterized the system regarding two parameters: (1) the maximum deviation represents 

the maximum distance (ms) between the instantaneous cell residence time and the setpoint 

(Figure 70a); (2) the recovery time (events) represents the number of events required for 

the instantaneous cell residence time to recover to and be stable around the setpoint (Figure 

70b). With perturbing pressures ranging from 50 to 250 mbar, the system could 

successfully recover to the setpoint with increasing maximum deviation and recovery time.  

 

Figure 70 - Adding different external perturbations to characterize the Microfluidic CODES-
based feedback control system. (a) The maximum deviation of the cell residence time (ms) 
away from the setpoint. (b) The number of events required for the cell residence time to 
recover to and be stable around the setpoint after the perturbation. 

 

4.4 Discussion 

We demonstrate a microfluidic system in which the spatiotemporal state of each 

manipulated cell is continuously monitored with a built-in electrical sensor network, not 

only as a means for quantitative analysis but also to control and adapt the device operation 
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based on these measurements on the sample under test. Importantly, monitoring of cells 

within the microfluidic device through electrical signals from the sensor network does not 

have the redundancy of imaging and hence requires less computational resources, which 

enables us to implement real-time closed-loop control on process variables. Finally, the 

fact that measurements for closed-loop control could be performed solely using sensors 

within the microfluidic device eliminates the need for external instruments such as a 

microscope or high-speed cameras and demonstrates the feasibility of creating adaptive 

lab-on-a-chip devices that could be operated outside of research laboratories. 

Existing feedback-controlled microfluidic systems either utilize isolated sensors 

that directly measure a process variable such as pH, temperature, or impedance or utilize 

arrays of discrete sensors with dedicated readouts for spatial information. In contrast, we 

could set our feedback loop on multi-dimensional spatiotemporal data from cells within 

the device while still acting on a one-dimensional electrical waveform. This aspect makes 

our approach advantageous for implementing adaptive yet low-cost microfluidic cell-based 

assays. Additionally, we could extract, through computation, cell information including 

size, speed, and location, any combination of which could be further used as the process 

variable of the feedback system. When combined with differential manipulation of cells, 

such spatiotemporal data can be linked to cell biochemical/biophysical properties, further 

expanding the choice of process variables for the feedback loop. 

In terms of electrically tracking cells over the microfluidic device, our deep 

learning-based demultiplexing scheme offers several advantages over traditional 

demultiplexing techniques used in code division multiple access (CDMA) 

telecommunication networks. Traditional approaches employed for demultiplexing coded 
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electrical signals rely on the correlation of the signal with a set of template waveforms to 

identify specific patterns. While computationally inexpensive, correlation-based 

demultiplexing requires a special code-set with individual codes being mutually orthogonal 

with each other, effectively constraining the design of sensors in the network. In contrast, 

deep learning-based analysis of the output signal allowed us to identify differentiating 

features between individual sensor waveforms irrespective of the degree of correlation 

between them and utilize these differences to rapidly decode the output signal. Besides 

increased flexibility in design, the ability to train the ConvNets with actual waveforms from 

sensors rather than relying on model-based templates of ideal square waveforms increases 

the sensitivity of deep learning-based demultiplexing. It should also be noted that, even 

though the deep learning model introduced in this work was designed to interpret 

waveforms from coincidental detection of up to 3 cells, waveforms due to more coincident 

cells could be resolved, albeit with less accuracy, by modifying the training dataset and the 

structure of the ConvNets. 

The ability to continuously and quantitatively assess the manipulation of cells or 

other particles in a microfluidic device in real-time through built-in sensors and to change 

the state of the device in response presents exciting opportunities. While this work 

demonstrates the regulation of cell flow speed under perturbation as proof of principle, the 

cell spatiotemporal data generated by networked sensors contain a wealth of information 

about the sample under test and could be fully utilized to command a variety of actuators 

internally or externally. From the operational point of view, the applications could range 

from controlling valves to redirect flows based on the instantaneous distribution of cells on 

the device to the detection of clogged channels or malfunctioning devices. Furthermore, 



 132 

microfluidic systems coupled with different types of stimuli ranging from chemicals to 

physical transducers could either be automatically tuned to achieve a desired sample 

response or alternatively be employed to perform automated experiments by sweeping 

different parameters in a closed-loop setting to extract multi-parametric information from 

the sample under test. 
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CHAPTER 5. MICROFLUIDIC CODES-BASED CELL 
CHARACTERIZATIONS 

Microfluidic CODES not only provides a quantitative electronic output to plastic 

lab-on-a-chip devices while retaining their simplicity and frugality, but also transforms the 

Coulter sensing from a technique that is limited to sizing and counting of cells to a 

technology that analyzes cells with respect to any parameter that can be used to 

differentially manipulate cells on a microfluidic device such as mechanical properties 

[125], immunophenotype [126][127], and cell surface expression [129][130]. 

5.1 Cell Mechanophenotyping  

Interrogating the mechanical properties of cells and microorganisms reveals a 

multitude of insights into their state. Hence, such measurements have been used to obtain 

stem cell differentiation stage [218], disease progression in blood-related pathologies such 

as sickle cell disease [219] and provide insight into the metastatic propensity of tumor cells 

[220]. Furthermore, being a label-free biomarker, the cell mechanical phenotype affords 

ease of use and flexibility in instrumentation. 

Recent advances in microfluidic technologies have enabled researchers to 

characterize cell stiffness by measuring the time that it takes to traverse a 

photolithographically defined constrictive microfluidic channel [221]. A fundamental 

limitation to this approach is the low throughput due to the time spent by the cells as each 

of them undergoes compression to enter the constrictive channel. Furthermore, during the 

time a cell is passing through a constriction, that channel is idle and cannot accept another 

cell. To overcome the throughput limit, we developed a microfluidic device with parallel 
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constriction channels, each of which is monitored by multiplexed electrical sensors 

positioned at the entrance and exit of each constriction (Figure 71). 

 

Figure 71 - Concept illustration for Microfluidic CODES-based cell mechanophenotyping. 
Sensor network are patterned at the entry and exit of a constriction channel to record the 
information of cells entering and exiting the constriction channel. 

 

5.1.1 System Design 

Our goal is to create a device that can measure cell stiffness via the constrictive 

channel without having to suffer a throughput penalty. To this end, we have made two 

fundamental design choices. The first is the use of parallel channels, which allows 

simultaneous measurements of multiple cells. All the channels feature a constrictive zone 

(5 µm wide by 50 µm long) and two electrical sensors, each one placed before and after the 

constriction. These sensors log the constriction entry and exit time of every cell processed. 

The second design choice is that of the electrical sensors themselves, which are code-

multiplexed based on the introduced Microfluidic CODES scheme.  
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As we have introduced, the electrical sensors are a series of coplanar electrode pairs 

that use the Coulter principle to detect the cells. The excitation signal is applied to the 

common electrode, and the sink is the sensing electrode that is patterned adjacent to the 

common electrode. By arranging these electrode pairs in particular sequences, we are able 

to create sensors that produce signature bipolar signals unique to each channel.  

 

Figure 72 - Microscope image of the device for Microfluidic CODES-based cell 
mechanophenotyping. 

Here we demonstrate a proof-of-principle device consisting of 16 parallel channels, 

each featuring a constriction zone, integrated with a sensor network (Figure 72). Each 

constriction employs two electrical sensors (entry and exit) that log the entry and exit time 

for the cell. The electrical detection technique is based on the error-correction based-

Microfluidic CODES scheme, which enables the assignment of a unique identifier to each 

channel. Each sensor is a unique sequence of 7 binary bits, where a ‘1’ bit and ‘0’ bit is 

represented by the presence and absence of an electrode pair, respectively. These electrodes 
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maintain an AC electric field between them (500 kHz, 200 mVpp). When a cell flows over 

the electrode pairs in the sensor, a sequence of pulses, which can be uniquely linked to a 

particular constriction, is generated. In some versions of this technology, an additional 

‘trigger’ bit is also patterned at the beginning of every sensor to aid in signal processing. It 

should be noted that device based on correlation-based processing was also introduced. 

 

Figure 73 - Sensor signals for Microfluidic CODES-based cell mechanophenotyping. For each 
cell, the entry sensor network signal is paired with the exit sensor network signal, so that we 
can get the cell information before and after the constriction channel. 

 

5.1.2 Sensor Signal Processing 

We also demonstrate the signals from the device using correlation-based 

Microfluidic CODES. Each of the two outputs produced by the device, namely the entry 

sensor network detections and the exit sensor network detections, are cumulative output 

currents of the individual sensors within the network (Figure 73). While this architecture 

simplifies the hardware and affords scalability, it necessitates advanced signal processing. 
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Specifically, if two or more sensors within a network register cell detections at the same 

time, the signals interfere and get distorted. We refer to these distorted signals as interfering 

cases, and recovered the signals using the successive interference cancellation. With the 

program, the timestamps of the identified codes, for both interfering and non-interfering 

cases, are aggregated and transit times are calculated by measuring the duration between 

each code in the entry data stream and its complement in the exit data stream. 

 

Figure 74 - Scatter plot showing peak signal amplitude vs. transit time for two cell lines 
measured using the Microfluidic CODES-based cell mechanophenotyping. 

 

5.1.3 Preliminary Results 

Two human cancer cell lines, namely HeyA8 (human ovarian carcinoma) and 

LNCaP (human prostate carcinoma), that are known to possess similar size but differing 

stiffnesses [222], were separately processed to demonstrate our device’s 

mechanophenotyping capabilities. 
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We measured the size of each cell from the peak amplitude of the corresponding 

sensor signal based on the Coulter principle. By plotting the transit time against the peak 

signal amplitude for each processed cell (Figure 74), we could observe the effect of cell 

size on the constriction transit time. The data show a clear trend that for both cell lines, the 

cells which take longer to traverse the constriction produced larger peak signal amplitudes. 

 

Figure 75 - Distribution of the transit times taken by two cell lines to clear the constrictions 
measured using the Microfluidic CODES-based cell mechanophenotyping. 

In addition to the cell size, the transit time is also affected by cell stiffness in our 

measurements. When comparing the transit time distributions of both cell lines (Figure 75), 

we observed that HeyA8 cells, on average, took longer to clear the constrictions compared 

to LNCaP cells. To decouple the effect of cell size on the transit time measurements, we 

grouped the transit time data based on cell size. Direct comparison of transit time for 

similarly sized HEY and LNCaP cells shows that HeyA8 cells consistently take longer to 

pass through the constriction and hence the HeyA8 cells are found to be stiffer than the 

LNCaP cells. 
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5.2 Cell Immunophenotyping  

 Immunophenotyping (i.e., identifying the membrane protein expression, usually 

CD antigens, of cells) is widely used to characterize cells in lineages of differentiation from 

hematopoietic stem cell, and also to diagnose and classify diseases derived from those cells. 

This process typically requires flow cytometers or fluorescence microscopy, which are 

typically housed in centralized laboratories. While microfluidic devices have been used as 

immunophenotyping assays through immunoaffinity-based capture of the target cells, these 

devices either require external tools for readout [223] or are limited to a single antigen type 

[110]. Here, we present a method for combinatorial immunophenotyping of cells against 

multiple antibodies in a microfluidic system, that readily provides quantitative results as 

an electrical signal. Our approach is based on the integration of multiple cell capture 

chambers, each selectively functionalized with a specific antibody, with Microfluidic 

CODES. 

5.2.1 System Design 

We designed and fabricated a proof-of-concept device with a 2×2 capture chamber 

array, each functionalized by a specific antibody (Figure 76). The microfluidic chambers 

were arranged as two parallel tracks, with each track consisting of two serially connected 

chambers. In each chamber, micropillars were used to increase the cell capture efficiency. 

Code-multiplexed electrical sensors encoded with distinct digital codes were placed at 

strategic locations across the device to quantify the capture rate in each chamber through 

differential counts. All of the sensor data was collected from a single waveform, which is 

computationally analyzed to obtain immunophenotyping results. Our device was fully 
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integrated yet frugal, consisting of a polydimethylsiloxane (PDMS) microfluidic channel 

layer fabricated using a soft lithography process, and an electrode-patterned glass substrate 

fabricated with a lift-off process. 

 

Figure 76 - Microscope image of the device for Microfluidic CODES-based cell 
immunophenotyping. 

To functionalize our device, we developed a new technique to selectively modify 

individual capture chambers (Figure 77). Briefly, prior to bonding, the PDMS layer was 

first treated with (3-Mercaptopropyl)-trimethoxysilane solution droplets for 1 hour, 

followed by incubation with N-y-maleimidobutyryloxy-succinimide-ester (GMBS) for 30 

minutes and NeutrAvidin solution for 1 hour. After washing and gentle drying, the PDMS 

layer was aligned and reversibly attached to an auxiliary PDMS layer consisting of 

microscale features that isolated individual chambers by sealing the fluidic channels in 

between. The auxiliary component also had pre-punched holes above the chambers and 

allowed different biotinylated antibody solutions to be introduced and selectively incubated 

in different chambers for 1 hour. Finally, the PDMS layer was sealed with the glass 
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substrate using vacuum and primed with bovine serum albumin to block non-specific cell 

adhesion. 

 

Figure 77 - Functionalization of the microfluidic capture chambers the device for 
Microfluidic CODES-based cell immunophenotyping. (a) Chamber structure. (b) 
Functioning result. 

5.2.2 Sensor Signal Processing 

We used the SIC for processing the sensor signal and acquired cell information. 

5.2.3 Preliminary Results 

We tested the device with human blood sample following the lysis of red blood 

cells. The chambers of the device were pre-treated with four different antibodies (anti-

CD66b, anti-CD15, anti-CD38, and anti-CD45 antibodies), and the sample was driven 

through the device using a syringe pump. A 500 kHz sine wave was applied to drive the 

sensor network, and signals from the sensors were measured using a lock-in amplifier. 

 By acquiring all the sensor network data from a single electrical waveform, the 

number of cells passing through each sensor was obtained from the digital processing of 

the recorded signal on a computer (Code 1,1: 2541, Code 1,2: 1015, Code 1,3: 574, Code 

2,1: 576, Code 2,2: 356, Code 2,3: 305). Based on the processed sensor data, the fraction 

of each immunophenotype (Chamber 1,1 (CD66b+): 60.0%), Chamber 1,2 (CD66b-

CD15+): 17.4%), Chamber 2,1 (CD38+): 38.2%, Chamber 2,2 (CD38-CD45+): 8.85%) is 
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calculated. The number of captured cells in each chamber was also confirmed using 

microscopy (Figure 78), and the fraction of each subpopulation closely agrees with results 

from a commercial flow cytometer (Abbott, CELL-DYN Ruby). 

 

Figure 78 - Experimental setup of the microfluidic capture chambers the device for 
Microfluidic CODES-based cell immunophenotyping. (a) Concept illustration of the working 
principle. (b) Image showing the capture result. 

 

5.3 Cell Membrane Antigen Expression Profiling 

Membrane antigens dictate biochemical interactions of a cell with its environment 

and are often used as diagnostic and therapeutic biomarkers for clinical applications. As 

such, identification of cell membrane antigens and quantification of their expression at the 

single-cell level is of great interest for applications ranging from drug discovery to medical 

diagnostics. Fluorescence-based flow cytometry is the current gold standard for 

quantitative surface expression analysis, but it involves highly complex, expensive and 

bulky instrumentation limiting its use to laboratories with skilled technicians. Therefore, 

devices that can achieve similar functionality in a low-cost portable platform could 

potentially impact biomedical testing in resource-limited settings. 
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Due to its simplicity and specificity, magnetophoresis is commonly used in bulk 

and microfluidic cell separation to enrich a cell subpopulation of interest in a heterogeneous 

mixture [224]. As part of this process, target cells are labeled with magnetic beads that are 

functionalized with antibodies specific to their membrane antigens. Immunomagnetically 

labeled cells are then differentially displaced under an external magnetic field based on 

their specific magnetic load. While magnetophoresis is typically employed for binary 

separations (i.e., magnetically labeled cells from unlabeled cells), separation of cells into 

multiple subpopulations based on their magnetic loads has also been demonstrated [225]. 

In this work, we introduce a microfluidic system that uniquely couples 

magnetophoretic cell sorting with an array of code-multiplexed resistive pulse sensors to 

electrically quantify the spatial mapping of cells in the sorting process. Because magnetic 

load (i.e., the number of the beads on the cell) is correlated with the cell’s surface 

expression, we can use our sensor data to profile surface antigen expression in a cell 

population directly from an electrical signal. 

5.3.1 System Design 

Our device (Figure 79) consisted of three stages. In the first stage, cells, 

magnetically-labelled against a specific antigen, are hydrodynamically focused into a 

single flow stream using a sheath flow. In the second stage, cells deflected into one of the 

eight outlets based on their magnetic loads under a transverse magnetic field generated by 

the permanent magnet embedded in the device. In the final stage, cells flowing through 

each outlet channel were detected and counted by the code-multiplexed electrical sensor. 

All sections combined, the device offers both separation of cell subpopulations and an 
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integrated quantification capability, and therefore can be considered as a low-cost, all-

electronic alternative to a fluorescent activated cell sorter. 

 

Figure 79 - Microscope image of the device for Microfluidic CODES-based cell membrane 
antigen expression profiling. 

The microfluidic device features a 30 µm-wide inlet channel for the cell population 

and a buffer solution inlet that bifurcates into eight 30 µm-wide channels. The 

magnetophoretic deflection chamber is 8 mm long and 3 mm wide. A permanent magnet, 

placed 1.5 mm away from the edge of the deflection chamber, generates the external 

magnetic field required to deflect magnetically labeled cells. At the outlet, the flow is 

divided into eight 30 µm-wide outlet channels. On the floor of each outlet channel, coded 

sensors consisting of 5 µm-wide electrodes are placed to quantify magnetically sorted cell 

subpopulations. 

The electrode sensor network at the device outlet is designed based on the 

Microfluidic CODES technology that we introduced. Briefly, the sensor in each outlet 
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channel was formed by distinctly patterned surface electrodes that produce distinguishable 

signal patterns when a cell flows over them (Figure 80). In this work, each sensor was 

specifically designed to generate a 31-bit digital code (Gold code) signal that is orthogonal 

to the signals produced by sensors monitoring other outlets. This multiplexed sensor 

network architecture provides two advantages: First, it allows us to effectively label 

magnetically deflected cells in the electrical output waveform with signature codes that can 

be associated with the specific outlet channel that the cell is sorted into. Second, it enables 

simultaneous monitoring of all outlet channels from a single electrical output, significantly 

simplifying the hardware. Importantly, recovery of interfering sensor signals is ensured 

due to the orthogonality of sensor signals from different outlets. Taken together, our sensor 

system enables electronic quantification of fractionated cell subpopulations. 

 

Figure 80 - Microscope image of the sensor network for Microfluidic CODES-based cell 
membrane antigen expression profiling. 

5.3.2 Sensor Signal Processing 
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We use the SIC for processing the sensor signal and acquired cell information. 

 

Figure 81 - Simulation of the magnetic field magnitude and proportional gradient with the 
deflection chamber of the device for Microfluidic CODES-based cell membrane antigen 
expression profiling. 

5.3.3 Preliminary Results 

We first simulated the magnetic field distribution within the magnetophoretic 

deflection chamber using finite element analysis (Figure 81). For a 1.5 mm distance 

between the magnet and the edge of the magnetophoretic deflection chamber, our 

simulations indicate that the magnetic field magnitude changes from 0.2 T to 0.1 T over a 

distance of 3 mm in the transverse direction. The simulation results enable us to calculate 

magnetic forces and the transit time (i.e., flow rate) required for a cell labeled with a given 

number of magnetic beads to deflect into a specific outlet channel. 

To experimentally demonstrate the effect of sample flow rate on the magnetic 

deflection in our device, we analyzed the trajectory of magnetic beads as a function of the 

inlet pressure. 1 µm magnetic beads are injected from the cell inlet into a device that has 4 

mm long and 1.7 mm wide deflection chamber. The trajectory of magnetic beads under 

different drive pressures was obtained from the stationary beads at the base of the channel 
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due to sedimentation (Figure 82). Driven with 120 mbar inlet pressure, the magnetic beads 

left the chamber from the 3rd (from the top) outlet. When the driving pressure was reduced 

to 50 mbar, the beads deflected more, and arrived at the 4th and 5th outlets. Further 

decreasing the pressure to 30 mbar resulted in beads leaving the system from the 6th outlet. 

 

Figure 82 - Sedimentation pattern showing the deflection trajectory of the 1 µm magnetic 
beads in the deflection chamber of the device for Microfluidic CODES-based cell membrane 
antigen expression profiling. 

We tested our system by processing breast cancer cell line (MDA-MB-231) 

population suspended in 1X PBS solution. Magnetically-labelled cells were pneumatically 

driven through our microfluidic device at 50 mbar using a computer-controlled pressure 

regulator. 1X PBS solution was driven from the buffer inlet under the same pressure to 

create the sheath flow. To electrically detect the cells, the common electrode of the sensor 

array was excited by a 500 kHz sine wave, and the electrical current signals were acquired 

from two (positive and negative) sensing electrodes and extracted by amplifiers. 

A total of 821 cells were analyzed in our experiment. The distribution of cells in 

different outlets was presented as a histogram showing fraction of cells deflected into each 
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outlet channel (Figure 83). For qualitative comparison, we also analyzed a cell population 

from the same batch using flow cytometry to validate the result.  

 

Figure 83 - Histogram showing the fraction of MDA-MB-231 cells defected into different 
outlet channels of the device for Microfluidic CODES-based cell membrane antigen 
expression profiling. 

 

5.4 Discussion 

Combining with the Microfluidic CODES technology, we have introduced a 

fundamentally different flow cytometry approach that is more amenable to hardware 

integration and cost reduction than its conventional counterpart. Our approach allowed the 

whole flow cytometer to be realized as a disposable microfluidic platform that can directly 

be interfaced electronically. Specifically, our integrated flow cytometer is composed of 

two stages, a cell-discriminating stage, and a sensing stage. In the cell-discriminating stage, 

target cells were spatially manipulated based on certain properties, so that the sensing stage, 

equipped with the microfluidic CODES sensing technology, electrically detected target 

cells. Combining the functionalities from both stages, target cells can be characterized. 
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Currently, we have introduced integrated flow cytometry for the characterization of cell 

mechanical properties, immunophenotype, and cell surface expression. We believe our 

cytometry technique addresses several issues that currently limit the point-of-care adoption 

of conventional fluorescence-based flow cytometry by offering a chip-based, electronic 

alternative that is especially well suited for mobile and resource-limited scenarios. 

The cell-discriminating stage utilizes the exciting opportunity offered by lab-on-a-

chip devices to deterministically screen a large number of cells. In the cell-discriminating 

stage, a type of force, such as mechanical, electrical, magnetic, or chemical force, can be 

engineered to fractionate cell suspensions with high-throughput based on the contrast in 

their properties such as size, shape, elasticity, and electrical properties. In this sense, the 

cell-discriminating stage can be seen as an upstream sample preparation stage. which maps 

cells to different locations on the chip according to properties under investigation, prior to 

analytical measurements.  

Even though we mainly focused on measuring a certain property of a cell 

(discriminating cells based on a specific property), the cell-discriminating stage can be 

designed to incorporate multiple substages so that multiple cell properties can be used as a 

discriminator at the same time. In this case, under the multi-dimensional measurement, 

more complex cell differentiation can be achieved. For example, by concatenating a DLD 

stage, an inertial focusing stage, and a magnetophoresis stage, CTCs can be extracted from 

whole blood [54]. Concatenating multiple substages of cell differentiation increases the 

capability of the cell-discriminating stage so that the whole microfluidic platform can be 

used in more versatile situations for healthcare purposes. 
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The sensing stage utilizes the Microfluidic CODES technology for a distributed 

Coulter detection of differentiated cells in the previous stage so that cell spatial information 

can be transduced into cell property information. Three factors need to be addressed when 

designing the sensing stage. First, the number of code-multiplexed sensors can be increased 

to enhance the resolution and capacity of the measurement. However, when the number of 

sensors increases, the sensing area is also inevitably enlarged (also due to the potential 

increase of code length when more sensors are integrated), resulting in more interference 

among code-multiplexed Coulter sensors. More inference further decreases the signal SNR 

and increases the error rate. Therefore, the tradeoff between the sensor capacity and the 

signal processing accuracy needs to be addressed. The second factor, which is also 

correlated with the first one, is that the sample concentration needs to be adjusted 

accordingly. As the expected number of coincident cells is related to the sensing area and 

sample concentration, when the sensor dimension (number of sensors, length of code, 

width of electrodes) is fixed, the sample concentration should be adjusted to achieve a 

target error rate. That is to say, when the sample is whole blood, a dilution process might 

be needed before the measuring process. Third, when integrating more sensors, the design 

and physical implementation of the scaled sensor network should also prioritize 

minimization of the electrode trace resistance to ensure a uniform response from the 

sensors in the network. 

Currently, the sensing stage mainly acts as a downstream result collector and 

analyzer, and there’s no communication from the sensing stage back to the cell-

discriminating stage. This setup is straightforward but requires human intervention in the 

cell-discriminating stage to ensure a proper cell differentiating performance. For example, 
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in a cell sorting chamber, the cell flow rate needs to be manually determined so that target 

cells can be properly isolated. On the other hand, a further step forward of this technology 

is to build a feedback connection from the sensing stage back to the cell-discriminating 

stage, in which case, the cell discriminating stage could use the current result (measured 

by the sensing stage) to adjust itself so that an optimal condition can be reached. 

Constructing a feedback loop between these two stages will enable a fully-automated and 

integrated flow cytometry. More details will be illustrated in the next chapter. 

Our technology can be easily fully-integrated. To activate code-multiplexed sensors 

in the sensing stage, a function generator is required to provide the excitation signal and to 

further extract sensor waveforms, a lock-in amplifier is required to do the demodulation. 

Currently, we are still using an external function generator and lock-in amplifier, which is 

not ideal for point-of-care purposes. On the other hand, we can integrate microfluidic 

chambers and required external hardware within a PCB so that the entire microfluidic 

platform can be a standalone device. Compared with traditional flow cytometry, which has 

the drawback of high cost, operational complexity, and bulky instrumentation, our 

technology has a great potential to be adopted in resource-poor settings, being useful to 

detect and monitor prevalent infectious diseases. 
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CHAPTER 6. CONCLUSIONS AND OUTLOOK 

6.1 Innovations 

A multitude of integrated Counter sensors can be distributed across a microfluidic 

platform to provide spatiotemporal information from processed/manipulated cells. Such 

information provides Coulter counters with the ability to analyze cell populations by 

monitoring cells’ responses to various stimuli on the device besides their conventional use 

for sizing and counting cells. These responses can be further used to characterize cell 

properties. On the other hand, accessing information from all Coulter sensors in a scalable 

manner requires reliable demultiplexing strategies so that individual sensor data can be 

recovered with minimal loss. 

To solve this problem, we develop the Microfluidic CODES, which is a multiplexed 

sensing technology that can be incorporated within a microfluid device for a spatial-

temporal analysis of particles. In a Microfluidic CODES sensor platform, we spread a 

single Coulter counter across a whole microfluidic device by micropatterning its electrodes 

to create multiple measurement nodes, and location-specific Coulter signatures could be 

realized with distinct electrode patterns at each node. Based on different demultiplexing 

schemes, we have introduced three versions of this technology, namely the Correlation-

based, the error-correction-based, and the deep learning-based one. Each version has its 

own characteristic and is validated with a high-speed camera.   

Combining the Microfluidic CODES with a cell manipulation chamber, we have 

developed fully-electronic cutometers for characterizations of cell properties, such as 

mechanical property, immunophenotype, and cell surface expression. 
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Moreover, in the aforementioned Microfluidic CODES-based cytometers, it will be 

more interesting if monitored cell information can be further used to automatically enhance 

cell manipulation performance through feedback control. We therefore introduce a 

Microfluidic CODES-based feedback control system. As proof of principle, we use this 

feedback system to regulate the cell residence time in a microfluidic device. Specifically, 

we first build a real-time signal processing environment, in which a ConvNet based model 

is trained to interpret sensor waveforms with high speed and accuracy. Then, a PI controller 

is used to process the interpreted result and constantly generate an adjustment signal to 

update a programmable pressure pump. The control system performs well on constant 

target and dynamic target, and converges fast given an external perturbation, demonstrating 

that the presented approach can readily be employed for various kinds of microfluidic cell 

manipulation applications. 

6.2 Future Work 

6.2.1 Future work on the Deep Learning Model 

We have already obtained promising results using ConvNets to process interfering 

Coulter sensor signals. Currently, the model has two stages, the RPN and the SCN. The 

two-stage structure is easy to build, but these two stages need to be trained separately, and 

also decrease the signal processing speed. Combining these two stages into an end-to-end 

model will be a big forward to the model. 
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Currently, the model is designed to interpret waveforms with a maximum of four 

coincident cells. This is enough in most situations. However, when the sample density is 

very high, two problems might occur. First, interfering waveforms with more cells will be 

detected. Currently, to increase the maximum number of coincident cells that can be solved, 

we need to modify the output layer of the ConvNet and retrain the model. We could come 

up with a better strategy to increase the efficiency. The second problem is there is a trade-

off between the accuracy and the complexity of the ConvNet model.  If we want to reliably 

solve sensor waveforms with more coincident cells, we probably need to increase the 

number of parameters in the model, which will decrease the signal processing speed. We 

could find an equilibrium in this trade-off. 

Another problem is how to ensure real-time processing given an extremely high-

density sample. When the signal processing speed cannot follow the data acquisition speed, 

the hardware will overflow and report errors. We could add some internal function to keep 

the hardware working (like dropping new samples) before overflow happens.   

6.2.2 Future work on the Feedback-Enhanced Integrated Cytometers 

We have demonstrated the combination of the Microfluidic CODES sensor 

platform with a microfluidic cell manipulation chamber for cell characterizations. On the 

other hand, these cell manipulation chambers are typically designed to function under 

optimized conditions. For example, we need to manually set the pressure pump that drives 

the cell samples to ensure a good cell manipulation result. 

To develop a fully-automated integrated cytometer, we could add the Microfluidic 

CODES-based feedback mechanism with a cell manipulation chamber, so that the system 
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could automatically adjust and work in an optimal condition. For example, in a fully-

automated electronic microfluidic cytometer for the profiling of cell membrane antigen 

expression, magnetically sorted cells are directed into discrete outlets with a programmable 

pressure pump, and the outlets are concurrently monitored by a Microfluidic CODES 

sensor network to quantify cell fractions. Based on the current fraction, the system 

automatically updates the pressure pump through a feedback loop, so that the sample flow 

rate can be adjusted accordingly in real-time, which, in turn, enhances and optimize the 

dynamic range of the system (Figure 84).  

 

Figure 84 - Concept illustration of a fully-automated integrated cytometer for a profiling of 
cell membrane antigen expression. 
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