78 research outputs found

    AuRUS: explaining the validation of UML/OCL conceptual schemas

    Get PDF
    The validation and the verification of conceptual schemas have attracted a lot of interest during the last years, and several tools have been developed to automate this process as much as possible. This is achieved, in general, by assessing whether the schema satisfies different kinds of desirable properties which ensure that the schema is correct. In this paper we describe AuRUS, a tool we have developed to analyze UML/OCL conceptual schemas and to explain their (in)correctness. When a property is satisfied, AuRUS provides a sample instantiation of the schema showing a particular situation where the property holds. When it is not, AuRUS provides an explanation for such unsatisfiability, i.e., a set of integrity constraints which is in contradiction with the property.Peer ReviewedPostprint (author’s final draft

    A review of slicing techniques in software engineering

    Get PDF
    Program slice is the part of program that may take the program off the path of the desired output at some point of its execution. Such point is known as the slicing criterion. This point is generally identified at a location in a given program coupled with the subset of variables of program. This process in which program slices are computed is called program slicing. Weiser was the person who gave the original definition of program slice in 1979. Since its first definition, many ideas related to the program slice have been formulated along with the numerous numbers of techniques to compute program slice. Meanwhile, distinction between the static slice and dynamic slice was also made. Program slicing is now among the most useful techniques that can fetch the particular elements of a program which are related to a particular computation. Quite a large numbers of variants for the program slicing have been analyzed along with the algorithms to compute the slice. Model based slicing split the large architectures of software into smaller sub models during early stages of SDLC. Software testing is regarded as an activity to evaluate the functionality and features of a system. It verifies whether the system is meeting the requirement or not. A common practice now is to extract the sub models out of the giant models based upon the slicing criteria. Process of model based slicing is utilized to extract the desired lump out of slice diagram. This specific survey focuses on slicing techniques in the fields of numerous programing paradigms like web applications, object oriented, and components based. Owing to the efforts of various researchers, this technique has been extended to numerous other platforms that include debugging of program, program integration and analysis, testing and maintenance of software, reengineering, and reverse engineering. This survey portrays on the role of model based slicing and various techniques that are being taken on to compute the slices

    Verifying UML/OCL operation contracts

    Get PDF
    In current model-driven development approaches, software models are the primary artifacts of the development process. Therefore, assessment of their correctness is a key issue to ensure the quality of the final application. Research on model consistency has focused mostly on the models' static aspects. Instead, this paper addresses the verification of their dynamic aspects, expressed as a set of operations defined by means of pre/postcondition contracts. This paper presents an automatic method based on Constraint Programming to verify UML models extended with OCL constraints and operation contracts. In our approach, both static and dynamic aspects are translated into a Constraint Satisfaction Problem. Then, compliance of the operations with respect to several correctness properties such as operation executability or determinism are formally verified

    Towards Verification of UML Class Models using Formal Specification Methods: A Review

    Get PDF
    Abstract In today s world many elements of our lives are being affected by software and for that we are in greater need of high-quality software The Unified Modeling Language UML is considered the de facto standard for object-oriented software model development UML class diagram plays an important role in the design and specification of software systems A class diagram provides a static description of system component

    Testing and test-driven development of conceptual schemas

    Get PDF
    The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of its implementation. However, the quality of an IS can be largely determined in the first stages of its development. Several studies reveal that more than half the errors that occur during systems development are requirements errors. A requirements error is defined as a mismatch between requirements specification and stakeholders¿ needs and expectations. Conceptual modeling is an essential activity in requirements engineering aimed at developing the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS needs to know in order to perform its functions. A conceptual schema specification has semantic quality when it is valid and complete. Validity means that the schema is correct (the knowledge it defines is true for the domain) and relevant (the knowledge it defines is necessary for the system). Completeness means that the conceptual schema includes all relevant knowledge. The validation of a conceptual schema pursues the detection of requirements errors in order to improve its semantic quality. Conceptual schema validation is still a critical challenge in requirements engineering. In this work we contribute to this challenge, taking into account that, since conceptual schemas of IS can be specified in executable artifacts, they can be tested. In this context, the main contributions of this Thesis are (1) an approach to test conceptual schemas of information systems, and (2) a novel method for the incremental development of conceptual schemas supported by continuous test-driven validation. As far as we know, this is the first work that proposes and implements an environment for automated testing of UML/OCL conceptual schemas, and the first work that explores the use of test-driven approaches in conceptual modeling. The testing of conceptual schemas may be an important and practical means for their validation. It allows checking correctness and completeness according to stakeholders¿ needs and expectations. Moreover, in conjunction with the automatic check of basic test adequacy criteria, we can also analyze the relevance of the elements defined in the schema. The testing environment we propose requires a specialized language for writing tests of conceptual schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used to specify automated tests of executable schemas specified in UML/OCL. We also describe a prototype implementation of a test processor that makes feasible the approach in practice. The conceptual schema testing approach supports test-last validation of conceptual schemas, but it also makes sense to test incomplete conceptual schemas while they are developed. This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our second main contribution. TDCM is a novel conceptual modeling method based on the main principles of Test-Driven Development (TDD), an extreme programming method in which a software system is developed in short iterations driven by tests. We have applied the method in several case studies, in the context of Design Research, which is the general research framework we adopted. Finally, we also describe an integration approach of TDCM into a broad set of software development methodologies, including the Unified Process development methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-oriented requirements engineering methods.Els enfocaments per assegurar la qualitat deis sistemes d'informació s'han basal tradicional m en! en l'avaluació de la seva implementació. No obstan! aix6, la qualitat d'un sis tema d'informació pot ser ampliament determinada en les primeres fases del seu desenvolupament. Diversos estudis indiquen que més de la meitat deis errors de software són errors de requisits . Un error de requisit es defineix com una desalineació entre l'especificació deis requisits i les necessitats i expectatives de les parts im plicades (stakeholders ). La modelització conceptual és una activitat essencial en l'enginyeria de requisits , l'objectiu de la qual és desenvolupar !'esquema conceptual d'un sistema d'informació. L'esquema conceptual és el coneixement general que un sistema d'informació requereix per tal de desenvolupar les seves funcions . Un esquema conceptual té qualitat semantica quan és va lid i complet. La valides a implica que !'esquema sigui correcte (el coneixement definit és cert peral domini) i rellevant (el coneixement definit és necessari peral sistema). La completes a significa que !'esquema conceptual inclou tot el coneixement rellevant. La validació de !'esquema conceptual té coma objectiu la detecció d'errors de requisits per tal de millorar la qualitat semantica. La validació d'esquemes conceptuals és un repte crític en l'enginyeria de requisits . Aquesta te si contribueix a aquest repte i es basa en el fet que els es quemes conceptuals de sistemes d'informació poden ser especificats en artefactes executables i, per tant, poden ser provats. Les principals contribucions de la te si són (1) un enfocament pera les pro ves d'esquemes conceptuals de sistemes d'informació, i (2) una metodología innovadora pel desenvolupament incremental d'esquemes conceptuals assistit per una validació continuada basada en proves . Les pro ves d'esquemes conceptuals poden ser una im portant i practica técnica pera la se va validació, jaque permeten provar la correctesa i la completesa d'acord ambles necessitats i expectatives de les parts interessades. En conjunció amb la comprovació d'un conjunt basic de criteris d'adequació de les proves, també podem analitzar la rellevancia deis elements definits a !'esquema. L'entorn de test proposat inclou un llenguatge especialitzat per escriure proves automatitzades d'esquemes conceptuals, anomenat Conceptual Schema Testing Language (CSTL). També hem descrit i implementa! a un prototip de processador de tes tos que fa possible l'aplicació de l'enfocament proposat a la practica. D'acord amb l'estat de l'art en validació d'esquemes conceptuals , aquest és el primer treball que proposa i implementa un entorn pel testing automatitzat d'esquemes conceptuals definits en UML!OCL. L'enfocament de proves d'esquemes conceptuals permet dura terme la validació d'esquemes existents , pero també té sentit provar es quemes conceptuals incomplets m entre estant sent desenvolupats. Aquest fet és la base de la metodología Test-Driven Conceptual Modeling (TDCM), que és la segona contribució principal. El TDCM és una metodología de modelització conceptual basada en principis basics del Test-Driven Development (TDD), un métode de programació en el qual un sistema software és desenvolupat en petites iteracions guiades per proves. També hem aplicat el métode en diversos casos d'estudi en el context de la metodología de recerca Design Science Research. Finalment, hem proposat enfocaments d'integració del TDCM en diverses metodologies de desenvolupament de software

    Automatic Generation of Acceptance Test Cases from Use Case Specifications: an NLP-based Approach

    Get PDF
    Acceptance testing is a validation activity performed to ensure the conformance of software systems with respect to their functional requirements. In safety critical systems, it plays a crucial role since it is enforced by software standards, which mandate that each requirement be validated by such testing in a clearly traceable manner. Test engineers need to identify all the representative test execution scenarios from requirements, determine the runtime conditions that trigger these scenarios, and finally provide the input data that satisfy these conditions. Given that requirements specifications are typically large and often provided in natural language (e.g., use case specifications), the generation of acceptance test cases tends to be expensive and error-prone. In this paper, we present Use Case Modeling for System-level, Acceptance Tests Generation (UMTG), an approach that supports the generation of executable, system-level, acceptance test cases from requirements specifications in natural language, with the goal of reducing the manual effort required to generate test cases and ensuring requirements coverage. More specifically, UMTG automates the generation of acceptance test cases based on use case specifications and a domain model for the system under test, which are commonly produced in many development environments. Unlike existing approaches, it does not impose strong restrictions on the expressiveness of use case specifications. We rely on recent advances in natural language processing to automatically identify test scenarios and to generate formal constraints that capture conditions triggering the execution of the scenarios, thus enabling the generation of test data. In two industrial case studies, UMTG automatically and correctly translated 95% of the use case specification steps into formal constraints required for test data generation; furthermore, it generated test cases that exercise not only all the test scenarios manually implemented by experts, but also some critical scenarios not previously considered

    A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants.

    Get PDF
    Verifying whether a UML class diagram is consistent involves finding valid instances that provably meet its constraints defined in Object Constraint Language (OCL). Recent studies have shown that many existing tools and techniques not only can find valid instances but also pinpoint the conflicts among the OCL constraints. However, they do not scale well and are often unable to locate the conflicts when the number of OCL constraints significantly increases. In this paper, we present a novel approach that is capable of verifying UML class diagrams with a large number of OCL constraints. Our approach has two distinct features: (1) it provides a query language that allows users to choose parts of a UML class diagram to be verified. (2) a new algorithm that can handle an extreme size of OCL invariants via concurrent verification. We have implemented a new automated tool called: QMaxUSE. The evaluation results suggest that QMaxUSE has the potential to be adapted by industry and offers up to 30x efficiency improvement in verifying UML class diagrams with a large number of OCL constraints

    Consistency of UML based designs using ontology reasoners

    Get PDF
    Software plays an important role in our society and economy. Software development is an intricate process, and it comprises many different tasks: gathering requirements, designing new solutions that fulfill these requirements, as well as implementing these designs using a programming language into a working system. As a consequence, the development of high quality software is a core problem in software engineering. This thesis focuses on the validation of software designs. The issue of the analysis of designs is of great importance, since errors originating from designs may appear in the final system. It is considered economical to rectify the problems as early in the software development process as possible. Practitioners often create and visualize designs using modeling languages, one of the more popular being the Uni ed Modeling Language (UML). The analysis of the designs can be done manually, but in case of large systems, the need of mechanisms that automatically analyze these designs arises. In this thesis, we propose an automatic approach to analyze UML based designs using logic reasoners. This approach firstly proposes the translations of the UML based designs into a language understandable by reasoners in the form of logic facts, and secondly shows how to use the logic reasoners to infer the logical consequences of these logic facts. We have implemented the proposed translations in the form of a tool that can be used with any standard compliant UML modeling tool. Moreover, we authenticate the proposed approach by automatically validating hundreds of UML based designs that consist of thousands of model elements available in an online model repository. The proposed approach is limited in scope, but is fully automatic and does not require any expertise of logic languages from the user. We exemplify the proposed approach with two applications, which include the validation of domain specific languages and the validation of web service interfaces

    Ontology-Based Verification of UML Class/OCL Model

    Get PDF
    Software models describe structures, relationships and features of the software. Modern software development methodologies such as MDE (Model Driven Engineering) use models as core elements. In MDE, the code is automatically generated from the model and model errors can implicitly shift into the code, which are difficult to find and fix. Model verification is a promising solution to this problem. However, coverage of all facets of model verification is a painful job and existing formal/semi-formal verification methods are greatly inspired by mathematics and difficult to understand by the software practitioners. This work considers particularly UML Class/OCL (Unified Modeling Language Class/Object Constraint Language) model and presents an ontology-based verification method. In the proposed method, a class diagram is transformed into ontology specified in OWL (Web Ontology Language) and constraints into SPARQL NAF (Negation as Failure) queries. This work tries to demonstrate that the proposed approach can efficiently cover all aspects of UML Class/OCL model verification
    corecore