78 research outputs found

    Artificial Neural Networks in Production Scheduling and Yield Prediction of Semiconductor Wafer Fabrication System

    Get PDF
    With the development of artificial intelligence, the artificial neural networks (ANN) are widely used in the control, decision‐making and prediction of complex discrete event manufacturing systems. Wafer fabrication is one of the most complicated and high competence manufacturing phases. The production scheduling and yield prediction are two critical issues in the operation of semiconductor wafer fabrication system (SWFS). This chapter proposed two fuzzy neural networks for the production rescheduling strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐based rescheduling decision model is implemented, which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to the current system disturbances. The experimental results demonstrate the effectiveness of proposed FNN‐based rescheduling decision mechanism approach over the alternatives (back‐propagation neural network and Multivariate regression). Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to improve prediction accuracy of die yield in which the impact factors of yield and critical electrical test parameters are considered simultaneously and are taken as independent variables. The comparison experiment verifies the proposed yield prediction method improves on three traditional yield prediction methods with respect to prediction accuracy

    Design of a Reference Architecture for Production Scheduling Applications based on a Problem Representation including Practical Constraints

    Get PDF
    Changing customer demands increase the complexity and importance of production scheduling, requiring better scheduling algorithms, e.g., machine learning algorithms. At the same time, current research often neglects practical constraints, e.g., changeovers or transportation. To address this issue, we derive a representation of the scheduling problem and develop a reference architecture for future scheduling applications to increase the impact of future research. To achieve this goal, we apply a design science research approach and, first, rigorously identify the problem and derive requirements for a scheduling application based on a structured literature review. Then, we develop the problem representation and reference architecture as design science artifacts. Finally, we demonstrate the artifacts in an application scenario and publish the resulting prototypical scheduling application, enabling machine learning-based scheduling algorithms, for usage in future development projects. Our results guide future research into including practical constraints and provide practitioners with a framework for developing scheduling applications

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Optimization for process planning and scheduling in parts manufacturing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A dynamic scheduling method with Conv-Dueling and generalized representation based on reinforcement learning

    Get PDF
    In modern industrial manufacturing, there are uncertain dynamic disturbances between processing machines and jobs which will disrupt the original production plan. This research focuses on dynamic multi-objective flexible scheduling problems such as the multi-constraint relationship among machines, jobs, and uncertain disturbance events. The possible disturbance events include job insertion, machine breakdown, and processing time change. The paper proposes a conv-dueling network model, a multidimensional state representation of the job processing information, and multiple scheduling objectives for minimizing makespan and delay time, while maximizing the completion punctuality rate. We design a multidimensional state space that includes job and machine processing information, an efficient and complete intelligent agent scheduling action space, and a compound scheduling reward function that combines the main task and the branch task. The unsupervised training of the network model utilizes the dueling-double-deep Q-network (D3QN) algorithm. Finally, based on the multi-constraint and multi-disturbance production environment information, the multidimensional state representation matrix of the job is used as input and the optimal scheduling rules are output after the feature extraction of the conv-dueling network model and decision making. This study carries out simulation experiments on 50 test cases. The results show the proposed conv-dueling network model can quickly converge for DQN, DDQN, and D3QN algorithms, and has good stability and universality. The experimental results indicate that the scheduling algorithm proposed in this paper outperforms DQN, DDQN, and single scheduling algorithms in all three scheduling objectives. It also demonstrates high robustness and excellent comprehensive scheduling performance

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction
    • 

    corecore