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Abstract  

Changing customer demands increase the complexity and importance of production scheduling, 
requiring better scheduling algorithms, e.g., machine learning algorithms. At the same time, current 
research often neglects practical constraints, e.g., changeovers or transportation. To address this issue, 
we derive a representation of the scheduling problem and develop a reference architecture for future 
scheduling applications to increase the impact of future research. To achieve this goal, we apply a design 
science research approach and, first, rigorously identify the problem and derive requirements for a 
scheduling application based on a structured literature review. Then, we develop the problem 
representation and reference architecture as design science artifacts. Finally, we demonstrate the 
artifacts in an application scenario and publish the resulting prototypical scheduling application, 
enabling machine learning-based scheduling algorithms, for usage in future development projects. Our 
results guide future research into including practical constraints and provide practitioners with a 
framework for developing scheduling applications. 

Keywords Production Scheduling, Scheduling Application, Problem Representation, Reference 
Architecture, Machine Learning. 
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1 Introduction 

Customers of manufacturing companies increasingly demand individualized products, summarized in 
the Mass Customization Theory (Da Silveira et al. 2001). This trend requires more changeovers in 
production, which increases the relevance of good production scheduling (Yang and Takakuwa 2017). 
In addition, dynamic influences on production (e.g., rush orders, machine breakdowns) render 
schedules invalid, requiring the ability to create new schedules quickly (Baykasoğlu and Ozsoydan 
2018). Not reacting quickly to these dynamic effects can lead to decreased efficiency in production 
(Freier 2020). Scheduling algorithms can meet these challenges.  

Currently, scheduling is primarily done manually by experts or with the help of heuristics, e.g., priority 
rules. The quality of manually created schedules depends on the scheduler's intuition and experience (Li 
and Olafsson 2005) and, thus, is not instant and error-prone (Liang et al. 2022). In turn, priority rules 
can create schedules in a sufficiently fast time but often lack quality, especially in complex scheduling 
problems (Kück et al. 2016). Alternatively, mathematical programming or evolutionary algorithms 
cannot cope with uncertainty and unexpected incidents, making them not applicable to modern, 
complex scheduling problems (Kuhnle et al. 2019).  

The increase in complexity and insufficient current solutions require improved scheduling algorithms. 
Machine learning algorithms can learn from past situations and create schedules fast enough to react 
well to unforeseen situations (Waschneck et al. 2018). Such algorithms require accurate data 
representing the current production and, depending on the algorithm, training data (Shalev-Shwartz 
and Ben-David 2014). Cyber-physical systems, manufacturing equipment embedded with sensors and 
actors to realize the real-time availability of data on the equipment and communication between 
equipment, can provide the data required by these algorithms (Monostori 2014). The technological 
advances are summarized in the concept of “Industry 4.0” (Lasi et al. 2014) and “Advanced 
Manufacturing Systems” (Tao et al. 2017). Still, current research (e.g., Saqlain et al. 2022) on using 
machine learning for production scheduling primarily focuses on the standard Operations Research 
scheduling problem (Taillard 1993) that ignores the increase in complexity and additional constraints 
to consider (Baykasoğlu and Ozsoydan 2018; c.f., Section 4.1).  

For future research to impact practice, research must consider the increased complexity. Therefore, as 
a basis for future research on scheduling algorithms, a representation of a scheduling problem, including 
the current complexity, is required. For practice to adopt newly developed scheduling algorithms based 
on the problem representation, a reference architecture is needed to include the newly developed 
algorithms in the existing production planning and control systems. Such a reference architecture would 
ease the adoption of new scheduling algorithms (e.g., machine learning algorithms) and allow 
researchers to evaluate newly developed algorithms quickly in comparison with existing ones. Following 
this aim, we address the following research questions in this paper: 

RQ1: How can a problem representation be designed, that includes previously unconsidered 
complexity from practice? 

RQ2: How can an application for continuous production scheduling in practice be designed, that 
includes previously unconsidered complexity from practice and enables machine learning algorithms 
for scheduling? 

To answer these questions, we first cover the theoretical foundations and related research to introduce 
the topic and provide a common understanding (Section 2). Afterwards, we present our research design 
(Section 3), followed by the results of our research in Section 4. Namely, in this Section, we derive the 
requirements of a scheduling application, develop a representation of a practical scheduling problem, 
create a reference architecture for continuous production scheduling in practice, and demonstrate the 
developed artifacts in an application scenario. Finally, we conclude our research in Section 5. 

2 Scheduling and Related Research 

Production scheduling is part of production planning and control used in many manufacturing and 
service industries (Pinedo 2016). It is the time-related allocation of production tasks to production 
resources, e.g., machines, for released production jobs (Pinedo 2016). Furthermore, production 
scheduling is responsible for monitoring the plan's fulfillment and, in the case of deviations, taking 
countermeasures such as repairing or rescheduling (Sabuncuoglu and Goren 2009; Schneeweiß 1999). 
Research distinguishes between the following problem classes, describing the shop floor: single 
machine, parallel machine, flow shop, job shop, and open shop (Pinedo 2016). 
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The objectives vary in companies. Often, minimization of lead times, tardiness, or costs are used as 
objectives (Toader 2017). Because scheduling is an np-hard problem, an optimal schedule for realistic 
problem sizes cannot be found in polynomial time (Garey and Johnson 1979), requiring heuristic 
methods, e.g., machine learning algorithms. 

Besides the standard scheduling problem (Taillard 1993), additional constraints exist in practice (Groth 
et al. 2024): Changeovers between operations on machines are commonly required (Vela et al. 2010). 
Buffers before and after production resources are often neglected (Kardos et al. 2021) but are essential 
to realistic schedules (Tamaki et al. 1999). Some productions prioritize jobs, thus, scheduling must also 
consider the prioritization of jobs (Nguyen et al. 2019). Dynamic influences (e.g., rush orders, machine 
breakdowns) may invalidate static schedules. Scheduling can consider potential dynamic influences to 
foster the creation of low-risk schedules (Baykasoğlu and Ozsoydan 2018). For some productions, the 
transportation on the shop floor (e.g., automated guided vehicles, forklifts) is closely tied to the 
manufacturing scheduling problem and must also be scheduled. In such cases, production scheduling 
should include the transportation problem (Li et al. 2022). Scheduling literature rarely includes these 
constraints (Groth et al. 2024). 

For the standard scheduling problem, a formal problem representation already exists, containing 
information on the machine environment, job characteristics, and optimality criteria (Graham et al. 
1979). Varela et al. (2005) extend on this and present how this formal problem representation can be 
used for an XML-based application programming interface. Similarly, Schmidt (1996) suggests an 
object-oriented data structure for the problem representation. For scheduling problems to be solved 
using Genetic Algorithms, Yingzi et al. (2009) name priority rule-based, random keys, and operation-
based representation as possibilities. Finally, Maravelias (2012) discusses the problem representation 
of the chemical industry, drawing similarities to discrete manufacturing in the case of sequential 
processing. These representations assume fixed assignments of operations to production resources, not 
allowing alternative paths of jobs through production, and do not include the constraints mentioned 
above from practice. Additionally, ontologies exist for production scheduling. Smith and Becker (1997) 
and Rajpathak et al. (2001) provide general ontologies for scheduling. Both ontologies are general but 
lack concrete applicability in developing scheduling systems, thus not providing a standard data format. 
Sanko and Kotkas (2016) present an ontology that describes the result of scheduling usable in the 
execution of the scheduling plan, therefore making it not applicable to describing the scheduling 
problem. Consequently, to answer RQ1, we extend the problem representation of the scheduling 
problem to include constraints from practice and to make the problem representation directly usable in 
developing scheduling systems. 

Reference architectures often have a different scope than just scheduling, considering upstream (e.g., a 
reference architecture for machine resource planning; Howard et al. 1999) or downstream processes 
(e.g., a reference architecture to transfer scheduling results to machines and enterprise resource 
planning software; Cândido et al. 2013). Framinan and Ruiz (2010) propose an architecture of a 
scheduling system after identifying requirements. This architecture pools multiple business tasks into 
the scheduling system (e.g., user interface, database), limiting its use in a service-oriented software 
landscape in a company. Vidoni and Vecchietti (2016) present a reference architecture for scheduling 
and other planning processes. It does not include specific requirements through the use of machine 
learning for scheduling algorithms. In contrast, Cunha et al. (2020) present an architecture for 
scheduling with deep reinforcement learning agents, following the requirements of a reinforcement 
learning architecture. Lastly, Shukla et al. (2018) propose a multi-agent-based architecture, working 
with different types of agents, including scheduling agents, that create schedules. These reference 
architectures are not generally applicable to work with scheduling algorithms based on machine 
learning. Thus, we develop, answering RQ2, a reference architecture for developing scheduling 
applications that include the constraints from practice and are suitable for machine learning algorithms 
for scheduling. 

3 Research Design 

To answer the research questions and, thus, develop a reference architecture including the problem 
representation that represents the previously unconsidered complexity, we use the problem-centered 
mix-method design science research approach adapted from Peffers et al. (2007). This research method 
guides the creation of artifacts, e.g., implementations or reference models. In our research, we followed 
the research progress depicted in Figure 1. 

First, to ensure practical relevance and rigor theoretical grounding (Gregor and Hevner 2013), we 
conducted a structured literature review according to Webster and Watson (2002) and vom Brocke et 
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al. (2009). The structured literature review aimed to determine the state of the art of using machine 
learning for production scheduling and to identify constraints from practice. We used these results to 
derive requirements for the problem representation and reference architecture. Due to the aim of finding 
relevant concepts and a large amount of available research on the production scheduling problem, the 
literature scope is selective.  

 

Figure 1. Research design adapted from Peffers et al. (2007) 

We searched scientific and practice-oriented databases (IEEE Xplore, SpringerLink, ScienceDirect, 
AISeL, ACM, EbscoHost, Emerald, WISO) not limited to highly ranked journals to include practical case 
studies. To extend the existing problem representations and reference architectures for the applicability 
of machine learning-based scheduling algorithms, we used the search term “machine learning” AND 
“production scheduling”. We find papers relevant for our analysis if the research uses machine learning 
to solve the production scheduling problem, or discusses requirements, the problem representation, or 
the architecture of a scheduling application. We excluded literature that is not specifically about 
production scheduling but other application areas. We found 1721 papers and excluded 1561 papers due 
to missing relevance or as duplicates after screening the title and abstract. After a full-text analysis of 
the remaining 160 papers and a forward and backward search, 117 relevant publications remained. We 
present the details of the methodology and results of the structured literature review in Groth et al. 
(2024). 

In the first step, we analyze the literature review results to identify constraints to production scheduling 
that are required in practice. In the second step, we build on this to define the objective of a solution and 
derive requirements that the artifacts must fulfill. 

In the third step, we derived the artifacts based on the previous results and set objectives. First, we 
developed the problem representation, which implements the requirements identified in step 2. The 
problem representation served as a theoretical foundation for the subsequent development of the 
reference architecture. In step 4, we demonstrated the artifacts in a laboratory study. Therefore, we 
implemented the reference architecture in a priority rule scheduling application prototype and 
published the resulting scheduling application prototype to enable the use in other development projects 
to maximize the impact of this research project and to ease the inclusion of the identified constraints in 
future research. 

4 Design of a Scheduling Application Framework Including 
Practical Constraints 

In the following, we present the results of the structured literature review and design the artifacts. First, 
we identify the problem (Section 4.1). Afterwards, we use our findings to derive the objectives as 
requirements for a scheduling application (Section 4.2). Based on the previous results, in Section 4.3, 
we design the problem representation and the reference architecture of a scheduling application in 
Section 4.4. Finally, in Section 4.5, we demonstrate the resulting artifacts in an exemplary application 
scenario, thus, completing our research process. 
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4.1 Problem Identification 

For manufacturing companies, it is essential to quickly generate good production schedules to achieve 
high efficiency and meet production deadlines driven by changes in customer demand described in 
Section 1. Nevertheless, we find, as the result of our literature review, that constraints from practice (c.f., 
Section 2) are often neglected in research. Including those constraints in research is required to be of 
relevance for producing companies that handles with these constraints. 

As constraints, extending the literature scheduling problem (Taillard 1993), we found changeovers, 
buffers at production resources, prioritization of jobs, dynamics of the production and inclusion of the 
transportation scheduling problem to be of relevance but often missing in research. Out of these 
constraints, changeovers are most considered in in the literature that applied machine learning for 
scheduling. Still, only 18 % of the literature included changeovers in their algorithm (Vela et al. 2010). 
Buffers at production resources were only considered in 4 % (Tamaki et al. 1999), while prioritization of 
jobs was included in 10 % of publications (Nguyen et al. 2019). 6 % of the literature considered dynamics 
(Wang et al. 2013), and only 3 % included the transportation problem (Li et al. 2022). For research to 
be useful for practice, it must consider the above constraints.  

Research is often conducted without considering the constraints because the standard literature 
problem is well-defined, and the problem representation is provided in the form of benchmark problems 
(Taillard 1993). Therefore, as a step to guide future research to include the practical constraints, a 
problem representation is required that includes the practical constraints. Additionally, to foster the 
adoption of the representation by researchers and practitioners, a reference architecture could guide the 
development of a scheduling application that uses the problem representation.  

4.2 Objectives of a Solution 

To solve the identified problem, we first develop a problem representation of the scheduling problem, 
including the practical constraints discussed above. This problem representation structures the 
scheduling problem and should be used to describe a scheduling problem in scheduling applications. 
Then, using the problem representation, we develop a reference architecture of a scheduling application 
to use the problem representation in scheduling problems.  

 

# Requirement Description Examplary Reference 

R1 Support all problem classes Pinedo 2016 

R2 Support sequence-dependent changeovers Rolf et al. 2020 

R3 Support buffers of flexible size at production resources Qu et al. 2016 

R4 Support a no-wait condition of operations 
Tavakkoli-Moghaddam et 
al. 2008 

R5 
Support prioritization as goal weights, priority classes, 
and continuous priority values 

Niemeyer and Shiroma 
1996; Riley et al. 2016; 
Zhou et al. 2019 

R6 
Support planned buffers in operations to reduce risk 
through dynamic production speed 

Zhang et al. 2020 

R7 Support dynamics by integrating uncertainties  Zheng et al. 2010 

R8 Support dynamics by simulation uncertainties Aytug et al. 1998 

R9 Support scheduling of transportation resources  Li et al. 2022 

R10 
Support simultaneous production on a production 
resource with exclusion conditions 

Xue et al. 2004 

R11 
Support minimum storage periods of intermediary 
products 

Jian et al. 2004 

R12 Support limited amount of production aids Graham et al. 1979 

R13 Support jobs with release dates Nie et al. 2010 

Table 1. Requirements of a general production scheduling application 
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To achieve these objectives, we use the results of the structured literature review to identify 
requirements that the problem representation and reference architecture must fulfill and extend the 
standard scheduling problem. Therefore, the neglected constraints from practice served as a starting 
point and are extended with additional requirements found in the literature specific to extending the 
standard scheduling problem (Taillard 1993). Table 1 summarizes the resulting 13 requirements. 

First, to be generally applicable, the scheduling application must support all shop floor classes [R1], 
summarized in the problem classes (Pinedo 2016). Additionally, it must support sequence-dependent 
changeovers (Rolf et al. 2020) [R2], thus including other, more straightforward changeover types like 
product-dependent changeovers (e.g., Qu et al. 2016). To ensure practical resulting schedules, the 
algorithm must support buffers of flexible sizes at production resources (Qu et al. 2016) [R3]. If 
materials may not be stored between operations, but instead, the subsequent operation must start 
immediately after the competition of the previous operation, a no-wait condition is required (Tavakkoli-
Moghaddam et al. 2008) [R4]. In the literature, we found that prioritization of jobs is handled in two 
ways: First, prioritization can be considered in the goal function as weights, usually when minimizing 
tardiness (Riley et al. 2016). Second, the algorithm can integrate priorities as priority classes (Niemeyer 
and Shiroma 1996) or as continuous priority values (Zhou et al. 2019). A general scheduling application 
must include both cases [R5]. 

R6-8 handle the topic of dynamics of the production. To reduce risk through dynamic influences, we 
found literature that plans buffers into the production time of operations (Zhang et al. 2020) [R6]. As 
with the prioritization of jobs, dynamics can be used in the algorithm (Zheng et al. 2010) [R7], or it can 
be evaluated, in this case, by simulation of the uncertain influences (Aytug et al. 1998) [R8]. 
Furthermore, if transportation on the shop floor is a success factor, the scheduling application must 
support the simultaneous scheduling of transportation resources (Li et al. 2022) [R9]. Some production 
resources (e.g., ovens) can be used simultaneously by multiple operations with exclusion conditions 
(e.g., if operations require different temperatures) (Xue et al. 2004). A scheduling application must also 
support this [R10]. Intermediary products may require a minimum storage period (e.g., for cooling), 
which must also be supported (Jian et al. 2004) [R11]. Furthermore, certain operations may need 
production aids only available in limited quantities (Graham et al. 1979) [R12]. Finally, jobs can have 
release dates [R13]. It is useful to consider jobs with release dates in scheduling as it allows for better 
schedules because more information about the future is available (Nie et al. 2010). 

4.3 Design of a Problem Representation Including Practical Constraints 

Using the problem representation of Graham et al. (1979) and the derived requirements as a basis, we 
developed a representation of the scheduling problem, including the identified practical constraints. We 
employ an Entity Relationship Model according to Chen (1976) because the relevant entities, their 
attributes, and the relations between them describe the scheduling problem. Figure 2 presents the 
resulting Entity Relationship Model. 

A scheduling problem has a goal in the form of a function and consists of multiple production jobs. 
Each production job has a priority [R5], a due date to determine tardiness, and a release date 
representing the earliest start of production [R13]. It embodies multiple operations, each representing 
one production step. If all operations of a production job are completed, the job is fulfilled. Each 
operation can have multiple predecessors and define which operations cannot be produced 
simultaneously. A minimum storage time can be used to define a timespan before the next operation 
may be started (e.g., for cooling) [R11].  

Materials can be any initial, intermediary, or final products. An operation produces one material in a 
specific amount; if multiple resulting materials are provided, they are alternative results. Combined with 
the exclusion of simultaneous production of operations, the sequence can be flexible, thus supporting 
open shop productions. The predecessor definitions support the remaining problem classes [R1]. The 
flexible definition of operations, their dependency, and resulting materials also allow transportation to 
be represented [R9]. Therefore, the transportation resources must be modeled as production resources. 
Suppose the transportation times used for calculation vary between different production resources. In 
this case, one physical material may be modeled as multiple materials in the scheduling representation, 
thus allowing different production times defined in the relationship between material and production 
resource. For example, the physical material A may be modeled as material A at machine 1 and material 
A at machine 2. Additionally, a no-wait condition can be defined for each predecessor definition of an 
operation [R4]. Furthermore, operations may need production aids (e.g., special tools) only available 
in limited quantities [R12].  
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Production resources, e.g., machines, can produce materials, where times and costs are defined for 
each production resource and material, potentially as a function instead of static values representing 
complex dependencies (e.g., time = 10 + 3*produced_amount). Planned buffers in production speed 
and costs can be considered in these values [R6]. In addition, each machine defines sequence-dependent 
changeovers, i.e., from and to a material, with times and costs as functions [R2]. Each material has a 
buffer usage, and each production resource can have a buffer with a given size before and after it [R3]. 
Furthermore, each production resource may have failure and time/cost deviation probabilities to allow 
the algorithm to integrate uncertainties [R7].  

Finally, if a physical production resource can produce multiple operations simultaneously, it must be 
modeled as two production resources. Simultaneous production conditions can be defined for 
those production resources, consisting of the type of the condition (e.g., material exclusions) and the 
associated values [R10]. 

 

Figure 2. Entity Relationship Model of the problem representation 

This problem representation meets the requirements set in Section 4.2 and, thus, answers RQ1. R8 
(Support dynamics by simulation of uncertainties) is not mentioned in this Section as it is only a 
requirement regarding functionality and not relevant to the data structure. Thus, it is just included in 
the reference architecture of a scheduling application. 
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4.4 Design of a Reference Architecture for a Scheduling Application 

As a second artifact, using the problem representation, we developed a reference architecture for a 
scheduling application that includes the practical constraints, thus answering RQ2. Figure 3 presents 
the resulting reference architecture, where each box depicts a service.  

In developing the reference architecture, we followed the service-oriented architecture (OASIS 2006) to 
ensure high flexibility, allowing a seamless exchange of the scheduling algorithm. Additionally, the 
architecture aims to support machine learning scheduling algorithms and, thus, supports the training 
of algorithms (Shalev-Shwartz and Ben-David 2014). The derived problem representation serves as a 
data structure used between the services. 

The API layer handles requests for a new schedule, requiring the complete problem representation 
discussed in Section 4.3 as input (1). When the API layer receives the generated schedule for the given 
problem, it returns it to the requester. Additionally, the API layer offers an input to receive training data 
(2). Algorithms that can train themselves to adapt to changing situations require training data 
representing the current production situation. If and how training data is handled depends on the 
scheduling algorithm.  

 

 

Figure 3. Reference architecture of a scheduling application 

The API layer passes training data, as a scheduling problem, to the underlying training controller 
(3). The training controller uses this training data for continuous training of the scheduling algorithm 
(4). This continuous training allows the algorithm to adapt to the current situation (Shalev-Shwartz and 
Ben-David 2014). The training controller alters the scheduling problem to train the algorithm with 
similar problems. Depending on the type of algorithm used (reinforcement learning, supervised 
learning), the training data received can be annotated if required. Additionally, the training controller 
is responsible for evaluating generated training results, and it controls the adaptions of the algorithm, 
e.g., in the form of rewards with reinforcement learning (Groth et al. 2021) or weight recalculations with 
Neural Networks (Zhao et al. 2005). The training controller uses the evaluation simulation engine to 
evaluate the generated schedules (5). 

Regarding schedule requests, the API layer provides the received problem to the schedule request 
controller (6). The schedule request controller is responsible for creating schedules, evaluating the 
generated schedule, and returning the result to the API layer. Therefore, it passes the scheduling 
problem to the scheduling algorithm (7) and sends the resulting schedule to the evaluation simulation 
engine (8).  

The scheduling algorithm performs the schedule generation. It either implements the algorithm 
directly or serves as a gateway to an independently deployed scheduling algorithm.  

The evaluation simulation engine is responsible for evaluating schedules. For this, the training 
controller and schedule request controller pass generated schedules to the evaluation simulation engine. 
A simulation of the schedule is required if uncertainties (e.g., machine failures) should be simulated 
[R8]. For this purpose, a discrete event simulation could be used (Jeffrey and Seaton 1995), allowing the 
incorporation of random events into the evaluation (Banks 1996). In the case of an external simulation 
engine (e.g., Plant Simulation 2023), the evaluation simulation engine can act as a gateway and send the 
problem to the external simulation engine, potentially adjusting the data structure if required. 
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The presented reference architecture is practical if used in the context of a service-oriented architecture 
that consists of other applications. Enterprise Resource Planning software and cyber-physical systems 
provide the initially required data. Only the data relevant to scheduling is needed. Therefore, an 
intermediary system, e.g., a Production Planning and Control software, could aggregate the data and 
create the scheduling problem before sending it to the scheduling application (Kistner and Steven 2001). 
Such a system could also send regular updates on the current production situation as training data to 
the scheduling application. The resulting schedules can either be automatically used in production or 
passed to a Decision Support System (Freier and Schumann 2020) in which a person in charge can 
modify the schedule or decide on alternative schedules. The first method allows for quick reactions to 
unforeseen situations, thus reducing the costs of slow reactions (Freier 2020). The latter method is 
helpful if the generated schedules are not the optimal solution and an experienced person is available 
who can decide on the best schedule for the production.  

4.5 Demonstration 

To revise the requirements and developed artifacts, we demonstrate the developed artifacts in an 
application scenario according to the research design presented in Section 3. Therefore, we conducted a 
laboratory study in which we implemented the reference architecture and the problem representation 
in a fictional scheduling problem that includes all constraints discussed above and used the priority rule 
first-in-first-out (FIFO) as a scheduling algorithm (Pinedo 2016). We decided to use FIFO as it is easy 
to comprehend and widely used (Schuh 2007). 

For the demonstration, we used TypeScript, which extends JavaScript with types (TypeScript 2023). We 
decided on TypeScript because the types guide and ease the development, and we have previous 
experience with it. Furthermore, it is a well-established and popular programming language (Stack 
Overflow 2022). Finally, the ecosystem around TypeScript allows us to publish the developed artifact as 
a module that other researchers or practitioners can import into their development projects (npm 2023). 

The prototypical scheduling application implements the reference architecture depicted in Figure 3. A 
REST API represents the API layer (Masse 2011), providing the POST methods schedule and training. 
Each method accepts the scheduling problem described in Figure 2 as a JSON object following an 
interface definition. Jobs, materials, simultaneous production conditions, production resources, 
production aids, and buffers are provided as attributes of the scheduling problem, operations are 
attributes of a job, and changeovers are attributes of a production resource. Function (i.e., goal, time, 
and cost function) are modeled as objects representing arithmetic operations, constants, and variables, 
enabling an efficient calculation of the resulting values at runtime. The other attributes of the entities 
are implemented as defined in Figure 2. To enable subsequent use of the schedules, we extended the 
above definition by identifiers for the entities. Furthermore, to reduce the number of definitions of 
changeovers and production times and costs required, we added material groups to the definition of 
materials, changeovers, and production times and costs. 

We developed the remaining parts of the architecture as TypeScript services, implementing the 
necessary functionalities. The scheduling algorithm implements the priority rule first-in-first-out for 
demonstration purposes (Pinedo 2016). The resulting application is available for use in other 
applications in the following git project: https://gitlab.com/michael-groth/acis-2023-design-of-a-
reference-architecture-for-production-scheduling-applications-based-on-a-problem-representation-
including-practical-constraints.  

We tested the scheduling application with a fictional production scenario of a bike manufacturer. Figure 
4 depicts the chosen production scenario. The scenario included parallel operations with a common 
predecessor and an optional production step not required by all jobs. The assembly step required 
material-dependent tools only available in limited quantities. Furthermore, the packaging step takes 
place at one packaging machine that can package two products simultaneously, thus modeled as two 
production resources. To test the simultaneous production exclusion conditions, we assumed that it 
could not package some products simultaneously. Additionally, after lacquering, the products must not 
be processed further for a given timeframe. The production scenario has two buffer zones limiting the 
amount of work in progress. For jobs, we also defined jobs with later release dates.  

The demonstration scenario purposely did not include the requirement of uncertainties, thus enabling 
us to verify the proposed concept in application areas that only have a subset of the above-defined 
requirements. In the development, we left out all parts only relevant for uncertainties. Still, the problem 
representation and reference architecture were applicable. 

https://gitlab.com/michael-groth/acis-2023-design-of-a-reference-architecture-for-production-scheduling-applications-based-on-a-problem-representation-including-practical-constraints
https://gitlab.com/michael-groth/acis-2023-design-of-a-reference-architecture-for-production-scheduling-applications-based-on-a-problem-representation-including-practical-constraints
https://gitlab.com/michael-groth/acis-2023-design-of-a-reference-architecture-for-production-scheduling-applications-based-on-a-problem-representation-including-practical-constraints
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Figure 4 Production scenario used in the demonstration 

As a result of the demonstration, we found that the presented problem representation and reference 
architecture helped us develop the prototypical scheduling application by providing the structure of the 
scheduling problem and defining the responsibilities of the architectural layers. With this, we enable 
researchers and practitioners to use the problem representation and reference architecture 
implemented in the published prototypical scheduling application as a starting point for developing 
scheduling applications focused on meaningful scheduling algorithms applicable in practice. 
Additionally, the reference architecture provides a framework for the development of scheduling 
applications and allows a seamless exchange of scheduling algorithms, thus easing the evaluation of 
scheduling algorithms. 

5 Discussion and Conclusion 

The present work aimed to increase the practical relevance of future production scheduling research by 
including practical constraints in future research. Therefore, we derived a representation of the 
scheduling problem (RQ1) and developed a reference architecture for future scheduling applications 
(RQ2). To answer the research questions, we used a problem-oriented design science research approach 
adopted from Peffers et al. (2007). Following this methodology, we used a structured literature review 
to identify 13 requirements specific to extending the literature scheduling problem that the problem 
representation and reference architecture must fulfill. Afterwards, we answered RQ1, developing a 
representation of the extended scheduling problem. We presented the representation as an Entity 
Relationship Model. After this, we answered RQ2 and designed a reference architecture of a scheduling 
application using the problem representation. It follows a service-oriented design providing flexibility 
(OASIS 2006). To ensure the requirements were met with the two developed artifacts, we demonstrated 
them in a laboratory study using a fictional problem scenario. Employing this scenario, we implemented 
the problem representation and reference architecture in a prototype and published the resulting 
prototypical implementation as a git project for subsequent use by researchers and practitioners. We 
found both artifacts helpful in the laboratory study because they provided a framework for the 
development and ensured a consistent data structure.  

The proposed architecture would fit into a manufacturing application landscape because of the service-
oriented design. Primarily, a manufacturing execution system (MES) would be responsible for initiating 
the creation of a schedule whenever rescheduling is required (e.g., delays in production, the arrival of 
new jobs) and transferring the resulting schedule to production. The MES would collect the required 
information from connected systems (e.g., enterprise resource planning, edge devices for monitoring 
machines). Alternatively, this could be done by a middleware layer between the MES and the scheduling 
application. Due to the service-oriented design, the responsibilities are separated, and the proposed 
architecture would fit into different manufacturing application landscapes. 

However, we acknowledge that our research has some limitations. First, the literature review might not 
have found all relevant practical constraints and, therefore, requirements, even though we followed a 
structured approach and tried to minimize subjective influences. Second, we only conducted a 
demonstration of the artifacts. An evaluation using a machine learning algorithm that requires training 
and a real scheduling problem is missing. Such an evaluation could add insight from a scheduling 
application development point of view. Additionally, an evaluation with experts from the industry to 
validate the results is missing. Consequently, we plan an evaluation of the developed artifacts in future 
studies. 

Buffer zone A Buffer zone B

Limited amount of tools
(production aids)

Simultaneous production
with exclusion conditions

Assembly B

Assembly A

Frame Welding

Lacquering
Machine

Packaging A

Packaging B

production flow optional stepLegend: workstation Required storage period Buffer



Australasian Conference on Information Systems  Groth & Schumann 
2023, Wellington  Scheduling Problem Representation and Architecture 

  11 

Nevertheless, the results can help guide future scheduling research to include practical constraints and 
help practitioners with more meaningful future research, closing the gap between research and practice. 
Therefore, the artifact of the problem representation serves as a starting point for scheduling 
applications that include practical constraints. The published prototypical scheduling application, 
including interfaces of the problem representation, increases the speed of scheduling application 
development and allows developers to focus on the development of the algorithm itself. Furthermore, 
the results serve as a starting point for standardizing the scheduling problem to make scheduling 
algorithms developed in research applicable in most practice scenarios, as following the architecture 
and problem representation makes scheduling algorithms exchangeable. The artifact of the reference 
architecture holds as a framework for developing scheduling applications for practice and research, 
focused, given the service-oriented architecture, on a seamless exchange of scheduling algorithms and 
guides standardization, mainly if the problem representation is used within the application. The main 
contributions of this work are the aid in developing scheduling systems through standardization and 
generally applicable scheduling architecture, with its focus on enabling machine learning-based 
scheduling systems. For future research, the proposed architecture could also be generalized to support 
scheduling algorithms other than machine learning algorithms. Overall, from a methodical point of 
view, the artifacts serve as a level-1 design science contribution to research (Gregor and Hevner 2013) 
and present the impact of information systems research on operations research. 
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