

Evaluating agile scheduling methods for

a job shop problem

Ricardo de Sá Caetano Ferreira da Cunha

Mestrado Integrado em Engenharia e Gestão Industrial
Master’s Dissertation

Supervisor: Prof. Pedro Sanches Amorim

Co-supervisor: Prof. Luís Gonçalo Reis Figueira

2017-06-25

ii

Evaluating agile scheduling methods for a job shop problem

iii

“It is not the strongest of the species that survives, nor the most intelligent, but the one most

responsive to change”

Charles Darwin, 1809

iv

Evaluating agile scheduling methods for a job shop problem

v

Resumo

As exigências de um mercado cada vez mais global e a evolução tecnológica forçada pela

visão da Indústria 4.0, impõem a necessidade de novas ferramentas de tomada de decisão,

capazes de agir num espaço de tempo quase imediato. As técnicas tradicionais de controlo da

tomada de decisão são maioritariamente baseadas em estruturas centralizadas, o que

representa inúmeras desvantagens quando o sistema tem de tomar decisões ágeis e quase

imediatas, de forma a adaptar-se aos vários tipos de eventos imprevistos. Nesse sentido, a

descentralização da tomada de decisão pode ser uma solução interessante para ultrapassar

esses problemas.

Esta dissertação trata o problema de job-shop scheduling, em que várias técnicas ágeis e

descentralizadas são utilizadas e avaliadas, de forma a perceber qual é a perda de qualidade da

solução quando se opta por este tipo de métodos em detrimento de algoritmos centralizados

mais complexos. Para isso, foi desenvolvido um modelo de simulação adaptável a qualquer

ambiente job-shop, que foi validado com a aplicação dos problemas estudados por Lawrence

and Sewell (1997) (L&S). No sentido de estender a investigação feita por L&S, os métodos

que são utilizados no seu artigo, juntamente com métodos mais avançados orientados para a

otimização do tempo de setup, são implementados em instâncias de um problema real, que

são inevitavelmente mais complexas e envolvem setups dependentes da sequência. De forma

a estudar a influência desta última característica, as mesmas técnicas de scheduling são

aplicadas aos problemas estudados por L&S, mas em que são gerados quatro níveis de tempos

de setups para cada problema. Finalmente, utilizando um modelo de programação genética, é

desenvolvido um método ágil e descentralizado, capaz de se adaptar às características do

problema em que é aplicado.

Os resultados das experiências simuladas nas instâncias reais permitiram concluir que os

métodos orientados para a otimização do tempo de setup têm resultados significativamente

melhores do que as técnicas estudadas por L&S. Relativamente ao estudo do impacto to

tempo de setup, foi demonstrado que o aumento do nível do tempo de setup melhora a

performance relativa das regras orientadas ao tempo de setup. No entanto, mesmo para níveis

elevados de setup, as técnicas utilizadas por L&S obtêm maioritariamente os melhores

resultados nos problemas quando aplicadas às instâncias de referência usadas por estes

autores, mas com setups gerados. Finalmente, apesar do esforço computacional envolvido, a

técnica desenvolvida utilizando programação genética demonstra um bom comportamento,

não só face à presença de setups dependentes da sequência elevados, mas também revela uma

grande robustez à variação da incerteza dos tempos de processamento.

vi

Evaluating agile scheduling methods for a job shop problem

vii

Abstract

The new requirements of the global market and the new technological developments in

light of the vision of Industry 4.0 demand new decision-making tools capable of acting on a

real-time basis. Traditional production process modelling techniques rely heavily on central

decision-making structures, which present numerous disadvantages when they have to deal

with real systems, whose agility and responsiveness are fundamental to manage all kind of

disturbances. Decentralization of decision-making may be an interesting solution to overcome

these issues.

This dissertation is focused on a job-shop scheduling problem and involves the

implementation and evaluation of the performance of agile and decentralized methods,

analyzing the loss of quality in comparison with centralized and more complex algorithms. To

achieve this purpose, a simulation model to reproduce any job-shop environment is

developed. This model is validated with the application to the instances studied by Lawrence

and Sewell (1997) (L&S). In order to extend the investigation performed by L&S, the

methods proposed in their research together with more advanced setup-oriented methods are

implemented in real-world case problems, which are much more complex and involve

sequence-dependent setup times. Aiming at investigating the influence of sequence-dependent

setup times, the same scheduling methods are applied considering four levels of setups are

generated to the benchmark instances studied by L&S. Finally, an evolved agile and

decentralized method capable of adapting to the characteristics of the problem is developed

using a genetic programming model.

From the experiments performed with the real-world instances, it is concluded that

setup-oriented methods achieve significantly better performance than the methods studied by

L&S. Regarding the investigation of the impact of the setup times, it is shown that as setup

time increases, setup oriented methods achieve better performance. However, even for high

levels of setups these methods do not lead to better results than the others applied in the

benchmark instances of L&S. Finally and despite the heavy computational effort, the evolved

method using the genetic programming technique shows not only a good behavior in presence

of large sequence-dependent setup times, but also a good robustness against processing times’

uncertainty.

viii

Evaluating agile scheduling methods for a job shop problem

ix

Acknowledgements

I would like to thank my supervisor, Prof. Pedro Amorim, for the opportunity to work

with him and for the crucial definition of the guidelines that supported the development of

this master project. His competences and enthusiastic commitment have served me as

inspiration throughout this thesis.

I would also like to thank my co-supervisor, Prof. Gonçalo Figueira, who closely

followed the progress of this project. His expertise and knowledge were fundamental to help

me not only overcome the obstacles along the way, but also to open up my horizons,

introducing me a wide range of new concepts and techniques. But, his support went beyond

the technical assistance, and he has become a good friend along this time.

I am also grateful to my colleagues from CEGI, who not only helped me in the different

phases of this work with some technical advices, but also were an excellent company during

the lunch times, contributing to enrich me as person.

I would also like to thank to my friends, whose support was again essential to

accomplish one more step of my evolution.

Finally, I want to thank my family, with a special reference to my parents. Mãe and Pai

you are my examples and the support that helped me getting where I am today.

x

 Evaluating agile scheduling methods for a job shop problem

xi

Table of contents

1 Introduction .. 1
1.1 Motivation ... 1
1.2 Objectives .. 2
1.3 Methodology ... 2

2 Theoretical framing .. 5
2.1 History of manufacturing .. 5
2.2 Industry 4.0 .. 5
2.3 Centralization vs decentralization ... 6

2.3.1 Advantages and limitations .. 8

2.3.2 Best fit scenarios and applications ... 8
2.4 Scheduling ... 9

2.4.1 Scheduling problem description ... 9

2.4.2 Scheduling problem classification .. 11
2.5 Scheduling methods ... 14

2.5.1 Optimal approaches ... 14

2.5.2 Non-optimal approaches .. 16
2.6 Simulation .. 21

2.6.1 Methods of simulation .. 21

2.6.2 Simulation for scheduling problems ... 22

2.6.3 Simulation-optimization .. 22
2.7 Relevant techniques for this research .. 23

3 Description of case studies ... 25
3.1 Lawrence and Sewell’s research .. 25

3.1.1 Results and conclusions from the paper .. 26
3.2 Real-world case ... 27
3.3 Description of the problem under study .. 28

3.3.1 Problem definition .. 28

3.3.2 Characterization of the scheduling problem ... 28

4 Model and experiments’ design .. 31
4.1 Simulation model .. 31

4.1.1 Selection of the simulation method .. 31

4.1.2 Model components .. 31
4.2 Experiments’ design ... 35

4.2.1 Introduction of uncertainty .. 35

4.2.2 Static vs dynamic experiments .. 36

4.2.3 Lower Bounds .. 36
4.3 Implemented scheduling methods .. 37

4.3.1 Scheduling methods from Lawrence and Sewell ... 37

4.3.2 Advanced setup-oriented scheduling methods .. 38
4.4 Sequence-dependent setup times’ generation ... 41
4.5 Validation of the simulation model .. 42

5 Analysis of results ... 45
5.1 First experiments’ test .. 45

5.1.1 Results ... 45

5.1.2 Discussion of the results .. 46
5.2 Second experiments’ test ... 49

5.2.1 Results ... 49

5.2.2 Discussion of results .. 50

6 Evolved Methods ... 55
6.1 Method design .. 55

xii

6.2 Rule evolved .. 56
6.3 Tests and discussion of results .. 57

7 Conclusions and future work ... 59

References ... 61

Appendix A: Mean Performance of the methods applied to the benchmark intances for

both static and dynamic approaches ... 67

Appendix B: Mean Performance of the methods applied to the real-world instance for both

static and dynamic approaches ... 68

Appendix C: Mean makespan and production capacity for the benchmark instances with

setup level generated of 1 ... 69

Appendix D: Mean makespan and production capacity for the benchmark instances with setup

level generated of 0,75 .. 70

Appendix E: Mean makespan and production capacity for the benchmark instances with setup

level generated of 0,5 .. 71

Appendix F: Mean makespan and production capacity for the benchmark instances with setup

level generated of 0,25 .. 72

Appendix G: Mean makespan performance of the method evolved using genetic programming 73

 Evaluating agile scheduling methods for a job shop problem

xiii

List of Figures

Figure 1: Control architectures’ scheme (Dilts, Boyd and Whorms, 1991) 7

Figure 2: Setting of Predictive Reactive Scheduling .. 13

Figure 3: Branch and Bound tree (Pinedo, 2008) ... 15

Figure 4: Disjunctive graph representation (Barzegar, Motameni and Bozorgi, 2012) 17

Figure 5: Crossover process of a mathematical expression (Geiger, Uzsoy and Aytuǧ, 2006)20

Figure 6: Tree Hierarchical representation of a computer program generated by a GP (Ho and

Tay, 2005) ... 20

Figure 7: Agent-Based Modelling Scheme (Anylogic Web Page, 2017) 22

Figure 8: Comparison of the mean makespan performance of fixed (left) and dynamic (right)

sequence scheduling methods (based on the research o L&S) ... 27

Figure 9: State chart of the order agent .. 32

Figure 10: State chart of the machine agent ... 33

Figure 11: Environment of main agent during the simulation.. 34

Figure 12: Diagram of the functional mechanism of the interaction between agents 35

Figure 13: Encoding Process of the genetic algorithm ... 38

Figure 14: Flowchart of the genetic algorithm implemented algorithm 39

Figure 15: Pseudocode of the Constructive Heuristic scheduling method 40

Figure 16: Dispersion of the processing time of the set of 53 instances 42

Figure 17: Comparison of the mean makespan performance fixed (left) and dynamic (right)

sequence scheduling methods in the research of L&S (top) and in obtained results (bottom). 43

Figure 18: Difference of mean performance of static and dynamic methods for instances of

L&S(left) and real-world instances (right) ... 47

Figure 19: Mean performance of static and dynamic methods for real-world instances 47

Figure 20: Loss of quality of scheduling methods in real-world instances and in the research

of L&S .. 48

Figure 21: Mean performance of each scheduling method for each setup level 50

Figure 22: Relative ranking of scheduling method for each setup level 51

Figure 23: Loss of quality relatively to the most optimist lower bound at each setup level 52

Figure 24: Evolved rule using Genetic Programming .. 56

Figure 25: Quality of the solutions evaluated in the Genetic Programming model 57

Figure 26: Mean performance of the scheduling method for the benchmark instances with

setup level of 0,25(left), 0,5(center) and for the instances of the real-world case (right) 57

xiv

 Evaluating agile scheduling methods for a job shop problem

xv

List of Tables

Table 1: Size of the instances studied in the paper ... 25

Table 2: Mean performance of scheduling methods applied in the paper of L&S 26

Table 3: Size of the real-world case’s instances ... 28

Table 4: Dispatching Rules implemented in the simulation model .. 38

Table 5: Results obtained for the various scheduling methods and their differences from the

paper of L&S .. 43

Table 6: Results obtained for each scheduling method in the first set of experiences 46

Table 7: Mean performance of no setup oriented methods for real-word instances and in L&S

research ... 48

Table 8: Mean scheduling methods’ performance of all levels of uncertainty methods for each

setup level ... 49

Table 9: Percentage of working time and relative ranking of each method for the four setup

levels investigated .. 52

xvi

1

1 Introduction

1.1 Motivation

In the last decades, the world has moved towards a global economy, building a market

dynamic that fosters competition and thus present new requirements to producers. Nowadays,

companies must cope with customers demanding high quality products at lower costs, highly

customized and with short life cycles (Leitão, 2009). Hence, processes in supply networks

have to be constantly re-configured to adapt to the new changing conditions. In fact,

productivity, flexibility and agility to react to market demands are more than ever critical to

manufacturing.

In 2000s, the advantages of outsourcing and offshoring, moving low-skill

manufacturing to low-cost countries began to shrink, which forced companies to invest in

automation and robotics technologies with potential to reduce production costs and boost

productivity (Wee et al., 2015). There is no doubt that the advances in technologies with high

flexibility, such as robotics, will play an important role in future manufacturing, but its impact

in the overall decision making is still an open question.

This conjuncture of forces has emerged the concept of Industry 4.0 which conceives the

idea of Cyber-Physical Systems (CPS), interlinking both digital and physical world,

communicating through the Internet of Things and Services (Waschneck et al., 2016). In this

environment, robots are able to collaborate with humans in a shared workspace in the shop-

floor, and receive manufacturing orders in a completely flexible manufacturing scenario.

To turn this vision into reality, it is necessary to improve decision making tools to

develop systems able to provide good and robust decisions in reduced time frames, when

processing large data sets of information. This new paradigm represents a challenge for the

traditional production process modelling techniques, built upon centralized structures that

present good static optimized production solutions, but a weak capacity to response to

disturbances.

For real-world manufacturing, finding the right sequences and allocation of limited

resources to operational jobs over time is a difficult task, since generally the complexity of the

problem increases exponentially. The problem is even more complicated in a dynamic

environment, subject to a high level of uncertainty where several unexpected events can

happen and the new manufacturing paradigm amplifies even more this issue. Thus, novel

optimization methods, simulation or simulation based optimization tools are required to, not

only generate robust production schedules, but also to undertake real-time rescheduling to

cope with the production environment uncertainty.

2

1.2 Objectives

In the past few years several dynamic scheduling methods have been presented to deal

with the occurrence of real-time events (Ouelhadj and Petrovic, 2009). But the vision of

Industry 4.0, conceptualizing smart factories with CPS interconnected in an Internet of

Things, increases the complexity of the production. Furthermore, uncertainties due to the

volatile demand and shop floor disturbances are much more likely to happen due to today’s

market conjecture. In these circumstances, corrections of the planned schedule are difficult to

manage, and optimizing the production flow at a central level may become impossible at

some point (Wee et al., 2015).

In this context, decentralized scheduling methods are an interesting solution, since they

assure agile and flexible responses in a short timeframe. However, they can disregard the

quality of the solution, as there is a high likelihood that most of the times the scheduling

optimization is only done at a local level, rather than global.

There are numerous operational issues that can have impact on scheduling, impeding

the improvement of capacity management and hindering greater competitiveness. One of the

most common factors with major implications in scheduling is sequence-dependent setup

times, which significantly increases the complexity of the problem. Usually, these problems

require complex central heuristics to generate effective schedules.

Against this background, the fundamental research questions of the present master

thesis are the following:

1. Which cases motivate a decentralized decision-making structure?

2. What is the quality loss of decentralized scheduling methods when compared to

centralized solutions?

3. What is the advantage of performance of dynamic over the static scheduling methods?

4. What are the implications of sequence-dependent setup times on the quality of

decentralized and methods?

5. Are sequence dependent setup times a critical factor when optimizing for decentralize

methods?

6. Which scheduling methods can better cope with both sequence-dependent setup times and

uncertainty variation?

1.3 Methodology

The approach to address the above presented research questions is divided into two

fundamental parts.

Part 1: Theoretical foundation:

In the context of the actual conjuncture and in the future prospect of manufacturing, the

theoretical foundation aims at explaining what motivates the choice for a centralized or

decentralized decision-making structure. A qualitative analysis to assess the advantages and

limitations of both centralized and decentralized control approach is performed. Focusing on a

decentralized decision, an investigation is made of the scenarios that can benefit the most

from this control structure. Additionally, this part of the thesis aims at providing a review of

the scheduling problem’s classifications and the most common solving methods. A review of

the simulation techniques and their applications to scheduling is also presented.

Evaluating agile scheduling methods for a job shop problem

3

Part 2: Case-study and empirical research:

This research extends the work of Lawrence and Sewell (1997) (L&S) which provides a

good investigation about the performance of static and dynamic methods to job-shop

problems. In the present research, those methods are applied to a real-world case of a

Portuguese company in order to validate the conclusions presented in the above-mentioned

paper.

The instances of this real-world complex case have sequence-dependent setup time,

which constitutes a major difference from problems studied in the work of L&S. Thereby,

more advanced methods are implemented and their performance is evaluated, establishing a

comparison with those studied in L&S’s paper.

The methodical approach for the research is conducted using an agent-based simulation

model to predict the performance of the scheduling techniques in a simulated scenario. Two

sets of experiments are performed aiming at different objectives. In the first, dispatching rules

used in Lawrence and Sewell (1997) as well as more advanced setup-oriented techniques are

evaluated under several processing times’ uncertainty levels for the two sets of problems

(L&S and the real-world case). In these tests the goal is to understand whether the conclusions

from L&S’s work about both the static and dynamic methods and the performance of the

scheduling methods remain valid for larger and more complex problems with sequence-

dependent setup times.

Subsequently, the objective of the second set of tests is to understand the impact of

sequence-dependent setup times on the applied agile scheduling methods. Thereby, four setup

levels are established. Four each level setup times’ matrices are generated in correspondence

with each problem studied in the research of L&S. In these experiments both techniques

applied by L&S and the more advanced setup-oriented methods are implemented and

evaluated. The results of these tests are analysed and compared with those of the real-world

case to examine both the implication of the setup level on the performance of the scheduling

method and the influence of sequence-dependent setup times as a critical factor in

decentralized scheduling.

Finally, an adaptive method, which looks to several problems characteristics to be

properly adjust, is evolved through genetic programming. The final objective is to formulate

simple and agile rule that adapt to the specific features of the problem.

4

Evaluating agile scheduling methods for a job shop problem

5

2 Theoretical framing

2.1 History of manufacturing

The manufacturing industry we know today has been shaped by some radical

transformations along the times.

Before the 18th century, craft production was dominant, with skilled workers using

general purpose tools to produce exactly what customers wanted. Everything was done

manually and the quality of the products was heavily dependent on the ability of the

employees. At that time, the creation of the first steam engines and the intelligent use of

hydropower, enabled to introduce machinery in production to support craftsman work,

improving their productivity in a way that started the first industrial revolution.

The second period of radical transformations occurred in the beginning of the 20th

century when the use of electrical power replaced coal and steam power, which allowed

engineers not only to make important technological developments, but also to rethink the

division of labour. This established a paradigm shift in manufacturing, with factories mass

producing in large assembly lines. This era was epitomized by Henry Ford through the

creation of a line to build one single car model composed by identical interchangeable parts.

However, mass production requires stability and control of the production variables,

markets and the labour force. And in 1970s, globalization made these parameters become less

stable with the globalization. The global competition started to be fiercer and fiercer, which

altered the homogeneity of the market, since consumers had increased their power. To obtain

economies of scale and flexible production, meeting the volatile demand of the markets,

producers had to cope with more unpredictable and demanding customers. Mass production

of durable consumer goods had to be changed, by increasing the quality of products and at the

same time diversifying them with multiple models and other optional features.

The third revolution emerged in these years, when digital technology such as electronics

and information technology began to expand rapidly into industry. The advent of

microprocessors brought automation into plants on a large scale, and production become

increasingly based on computer system controls. Through information and communication

technology, new flexible automation solutions were developed and manufacturing production

became more flexible, automated and responsive to markets.

2.2 Industry 4.0

In the 1990s, outsourcing and offshoring allowed companies to enjoy of greater

profitability, by moving low-skilled manufacturing to low-cost countries. But in the 2000s the

wages of those countries rose and freight costs increased, which began to shrink the margins

of those strategies (Wee et al., 2015). So, industry players are now forced to find other

competitive advantages.

6

In 2011, the vision of the fourth Industrial revolution emerged as an approach to

strengthening the competitiveness of manufacturing industries in different areas (Hermann,

Pentek and Otto, 2016). In contrast with the other radical transformations that happened along

the history, this new revolution is expected to become a reality in the next 10 to 20 years. In

fact, Industry 4.0 is still a vision that describes a highly flexible control of production in

which Cyber-Physical Systems (CPS) are connected in an Internet of Things to communicate

with each other and more important to control each other in real time (Hermann, Pentek and

Otto, 2016).

Therefore, there is no need of a central control system to manage production. Instead,

decentralized and autocratic operating systems run locally and independently, monitoring the

physical processes of the factory. Those systems are able not just to self-optimize, but also, by

establishing communications and cooperating with other agents, to optimize the production as

a whole.

The optimization process is possible due to the virtual replication of the physical world

through sensor data, which capture real time information to measure the performance of the

actual processes. Then the necessary adjustments can be made to achieve the ideal processes

calculated by the system. Also, the spatial decoupling of physical assets and their monitoring

allows for more agility and flexibility to adapt and respond to disturbances in production

((Wee et al., 2015). In fact, the integration of CPS and the Internet of Things allows to

establish smart factories, capable of better managing complexity, and thus produce more

efficiently.

On the other hand, the integration of CPS, making decentralized decisions, form

complex networks, which increases the complexity of production. Thus, these systems need to

aggregate information comprehensively to support and collaborate with human operators.

This interaction is particularly important, since the role of human in production is altered in

the vision of Industry 4.0. In fact, humans are not merely operators, but they must be a

strategic decision-makers, working together with machines that conduct the exhausting and

unsafe tasks (Hermann, Pentek and Otto, 2016).

Nevertheless, as any major shift, there are challenges inherent to these transformations.

These issues according to (Wee et al., 2015) are mainly related with the lack of process and

control know-how of the employees; data security and safeguarding systems due to the

integration and information and data sharing; and the need of a uniform standard for data

transfer.

But the benefits of an Industry 4.0 model can outweigh the concerns for many

production facilities. In truth, for producers, it may mean highly flexible mass production with

the agility needed to easily adapt to market changes. Also, supply chains can be more readily

controlled when there is data at every level of the manufacturing process. In the customers’

perspective, they may benefit from the access to tailored made products at relatively

affordable prices.

2.3 Centralization vs decentralization

In the last decades, globalization has changed the world fundamentally, shaping a global

economy which transcend national and cultural borders. Nowadays, markets demand for

products with higher quality at lower costs, highly customized and with shorter life cycles,

which impose new requirements to manufacturing (Leitão, 2009). Companies are now forced

to compete not only at the price and quality level, but they should also be able to be

responsive and flexible to comply in the minimum time frame to customers’ requests.

On the other hand, the need to create competitive advantages, have been pushing

companies to embrace Industry 4.0, making use of the increasing digitalization and

Evaluating agile scheduling methods for a job shop problem

7

networking of men and products with each other (Sauter, Bode and Kittelberger, 2015). In

order to cope with the new demand requirements and with the increasing complexity of

production systems, companies should rethink their organizational structure. (Brettel,

Friederichsen and Keller, 2014).

In fact, traditional centralised control approaches, where all manufacturing activities and

resource are managed by a single decision maker, are no longer the most convenient to cope

with new production requirements. The fact that these control systems rely heavily on central

entity presents numerous disadvantages when they have to deal with real systems, whose

agility and responsiveness are fundamental to comply with demand requirements and manage

all kind of disturbances. In order to tackle these new challenges, the integration on new

technologies and control methods become necessary. (Hulsmann and Windt, 2007). This is

why Industry 4.0 aims at shifting the paradigm from a centralized control of non-intelligent

items towards a decentralized control of intelligent items in a distributed structure.

A decentralized control approach delegates the decision-making power to the

organizational units on the shop floor, which make it easier to handle complexity, since

decisions are taken at local level (Hulsmann and Windt, 2007). They reduce the number of

necessary arithmetic operations and thus they require fewer computational efforts and are

more time saving. On the other hand, a decentralized decision-making process requires the

availability of relevant information for the system elements (Hulsmann and Windt, 2007).

These capabilities seem particularly relevant to capture the full Industry 4.0 potential, since

they allow for more agility and flexibility on production processes (Wee et al., 2015) . The

expected benefit of decentralized structures is that in case of increasing system complexity in

combination with many disorders, autonomous local decisions are capable to improve the

performance of the system as a whole (Hulsmann and Windt, 2007).

In the past years, manufacturing control structures have attracted the attention of

researchers and several control architectures have been proposed. Dilts, Boyd, & Whorms

(1991) consider four basic types of control architectures: centralized, hierarchical, modified

hierarchical and heterarchical. In the centralized architecture, a single entity concentrates the

decision-making power and is responsible for all planning functions. The hierarchical

structure distributes decision power among the levels of the hierarchy, in an attempt to

introduce a better robustness to the system. The modified hierarchical structure shares many

similarities with the hierarchical one, but differs on the degree of autonomy of the

subordinates, which enabled to interact at the same hierarchical level, increasing the

expansibility of the system. Finally, the heterarchical architecture is composed by local

entities which communicate with each other without a central authority. Figure 1 displays a

graphical representation of each architecture’s scheme.

Figure 1: Control architectures’ scheme (Dilts, Boyd and Whorms, 1991)

In recent years a new approach of decentralized control, entitled autonomous control,

has been proposed to handle the increasing complexity and dynamics of the systems (Braun,

2014). This approach is characterized by the ability of autonomous and interacting entities to

process information, to render and execute decisions in a non-deterministic system (Hulsmann

Centralized Hierarchical
Modified

Hierarchical
Heterarchical

8

and Windt, 2007). Autonomy in decision-making is enabled by the alignment of the system

elements in a heterarchical organizational structure. In fact, each entity is characterized by

target-oriented-behaviour, and their objective can be dynamically updated during the

production process. This approach seems particularly interesting to align manufacturing

control and the vision of Industry 4.0.

2.3.1 Advantages and limitations

Effectively, both centralized and decentralized control concepts of decision-making

have advantages and limitations, which should be assessed to understand the best-case

application for each approach.

Advantages of centralized control are concerned to the easiness to access to global

information, which allows not only to perceive the overall system status, but the most

important to make optimization a reachable prospect. On the other hand, a centralized control

reduces the speed of response, especially when the system gets larger. A second disadvantage

is the reliance on a central unit, which means that if that unit fails, the whole system is

affected. Finally, modifications on a central system tend to be hard to be implemented, since

they can affect the dynamics of whole complex system.

Decentralized control structures evolved as a response to the disadvantages of

centralization. Therefore, decentralized control enables to achieve a full local autonomy,

which reduces complexity, increases flexibility and improves the fault-tolerance of the

system. Also, local decisions involve less complexity, which speeds up the system response.

However, there is a high likelihood that local entities have a greedy behaviour and, thus only

optimize the system at a local level.

2.3.2 Best fit scenarios and applications

As stated in the previous section, both central a distributed decisions structures present

advantages and limitations, which does not permit to find a common agreement about one

mandatory control structure that best fits to every case scenarios.

However, it is possible to identify the critical factors that drive the decision about the

degree of decentralization of the control structure. It is important to denote that the identified

elements do not act alone, but it is the combination of their effects that should orientate the

level centralization. First, the uncertainty on the shop floor level may require a different

approach to re-configure the system to the constant alterations. This means that in

environments subjected to production disturbances, such as machine failures or cancellation

and arrival of rush orders, and high levels of variability, decisions must require a decentralize

decision making structure that provides a quick reaction to the new conditions. A second

critical factor is the time frame to find a new solution. As stated in the section above,

centralized control tends to reduce the speed of response, particularly when the system

complexity increases, since they decide based on the global information of the system. In

production environments that demand real-time decisions, it is difficult to analyse centrally

the data. Another critical factor that should be taken into account is the amount of information

needed to be handled in the decision process. In fact, in systems where big amounts of data

are generated and need to be analysed, central decision-making will become a mission

impossible at some point.

To wrap up, it is the increasing need for flexibility and agility that drives the

decentralization of intelligence (Wee et al., 2015). Thus, in high complex manufacturing

systems, where large amounts of data are generated, decisions should if possible to be taken

locally. One industry that constitutes a good example of those manufacturing system is the

semiconductor industry. Effectively, this type of industry is a prime example of a highly

Evaluating agile scheduling methods for a job shop problem

9

complex system, in which the non-synchronization of supply and demand represents a critical

challenge (Aelker, Bauernhansl and Ehm, 2013). Furthermore, large amounts of data are

generated along the production which cannot be centrally analysed in real-time (Waschneck et

al., 2016). For these reasons, semiconductor is the perfect example of an industry where

decisions should if possible be taken locally.

2.4 Scheduling

Scheduling is defined as a decision-making process used on a regular basis in

manufacturing to allocate resources to tasks on a given period of time with one or more

objectives (Pinedo, 2008). Consequently, it plays a major role in most production systems,

since it can have a crucial impact on the productivity of the processes.

The scheduling problem in manufacturing started to be explored in the beginning of the

20th century with the work of Henry Gantt and other pioneers, but only in the 50s we find the

first publications on this area, showing the results of W.E.Smith, S.M.Johnson and

J.R.Jackson (Pinedo, 2008). Since then, a lot of authors have focused their attention on

scheduling developing methods for both deterministic and stochastic scheduling problems.

The new shape of global market demand imposes new challenges to production. In fact,

in a context of quick change in terms of demand variability, breakdowns, maintenances

stoppages and production capacity availability, innovative scheduling solutions for efficient

use in manufacture environment, are required. It’s is not enough to create static optimal

schedules with a perfect behaviour under a couple of conditions.

In today’s conjuncture, schedules must present good solutions even subjected to the

uncertainty of the production and other external issues. Solutions exploring real-time

responses to every type of events with low computation burden are needed to keep coherency

and optimize the decision-making.

In the next sub-sections, the descriptive notation used in scheduling and the

classification of different types of problems is presented and explained.

2.4.1 Scheduling problem description

The notation proposed by Graham et al. (1979) describes scheduling problem by a

triplet ||. Field  defines the machine environment and contains just one entry. Field 

details the characteristics and constraints of the process and can include none or multiple

entries. Finally, field concerns the optimization criteria to be considered and can include

one or more objectives.

According to Pinedo (2008) the possible machine environments to describe the field

are:

Single machine (1): In the case of a single machine all tasks are processed, one at a

time, by a single resource;

Identical machines in parallel (Pm): In this environment, there are m identical

machines and the job j requires a single operation in any machine that belongs to a

given subset Mj;

Machines in parallel with different speeds (Qm): This environment is identical to

the previous one, but the machines have different speeds, but they are independent of

the jobs being processed;

10

Unrelated machines in parallel (Rm): This environment is a further generalization

of the previous one. The difference is that different machines can process at different

speeds the job j which creates a dependency between machines and jobs;

Flow shop (Fm): Jobs have m operations that must be process on m machines

following the same route;

Flexible Flow Shop (FFc): this case is a generalization of the flow shop, but instead

of m machines in series there are c stages in series. At each stage there are a number of

identical machines in parallel to process the job. Jobs may skip some of the stages, but

the all follow the same order;

Job Shop (J): In this case there are m different machines and each job has its own

predetermined route to follow. Some machines may be missed;

Flexible Job Shop (FJc): This case is a generalization of a job shop problem and

parallel machine environment. Instead of m machines in series, there are c work

centres with a number of identical machines in parallel. Each job has its own route to

follow through the shop and requires processing at each work centre on only on

machine;

Flexible Job Shop (MRFJc): This case is a generalization of the job shop problem in

which each job may have more than one route with a number of operations associated

that are not necessarily equal (Golmakani and Birjandi, 2013);

Open Shop (O): Jobs must be processed once on each of the machines without a

predetermined route.

Field  characterizes the processing restrictions and constraints between jobs and tasks

and may include multiple entries. Some of the most common are exposed.

Release dates (rj): A job can only start after a given time t;

Preemptions (prmp): A job can be interrupted if there is a higher priority job to be

processed;

Precedence contraints (prec): A given job Jk requires another job Ji to be completed

before it is allowed to start its processing;

Sequence dependent setup times (sjk): The setup time of job Jk depends on the job Ji

being processed on the machine. In these cases, setup times cannot be considered part

of the processing times;

Batch processing (batch(b)): A machine may be able to process a number of jobs

simultaneously and the setup time takes place before the production of each batch

start. In this type of problems, jobs are divided into families and batches are created

with jobs of the same family;

Evaluating agile scheduling methods for a job shop problem

11

Breakdown (brkdwn): Machine breakdowns imply that a machine may no be

continuously available;

Recirculation (rcrc): It occurs in a job shop or flexible job shop when a job may visit

a machine or work centre more than once;

The last parameter to define the scheduling problem is the optimization criteria, γ. Some

of the most common objectives are presented.

Makespan (Cmax): Makespan is defined as the completion time of the last task

processed. A minimum makespan usually implies a good utilization of the machines;

Lateness (L): Lateness is defined as the difference between the completion time of a

job jC and its due date jd , jd- jC=jL . It is used to minimize the worst divergence

from the due dates;

Tardiness (T): Tardiness is defined as)0,(ax jd- jCmT = . If there is any late job the

value of tardiness is the same as lateness. However, it should be highlighted that these

indicators are very different: tardiness never assume negative values while lateness

does. It is usually used to minimize the total tardiness of the jobs;

Earliness (E): Earliness, define as)0,(ax jC-jdmE = , is the opposite of tardiness.

Usually this metric is used to minimize the inventories of finished products;

Production Capacity: Production capacity measures the units or time that machines

are actually processing in a specific time horizon;

Weighted Criteria: In most of the real-world problems, it is important to take into

account more than one metric, since there is not one single objective in production.

Through a weighted criterion is possible to establish the priorities of the metrics

considered and define one single objective function.

2.4.2 Scheduling problem classification

2.4.2.1 Deterministic vs Stochastic

The manufacturing scheduling becomes a complex combinatorial problem, more

specifically a non-polynomial (NP) problems, for larger scheduling problems. For a generic

problem with n jobs for m machines, the number of scheduling solutions is given by mn! .

And the complexity gets even bigger if uncertainty and other features of the problems as

setups are considered. Since the original mathematical formulation, developed in the 50s,

many types of approaches to formulate adequate schedules has been explored by the

literature.

According to Aytug et al. (2005), a first classification for these approaches is to split

them into two main areas: deterministic and stochastic scheduling research. In deterministic

models, all parameters are assumed to be known and the main idea is to plan the work through

the machines over a period of time, in the best way possible for optimize a specific objective.

Thus, the big majority of the solution methods developed assume that the schedule can be

executed in reality exactly as it was conceived (Aytug et al., 2005). However, the

12

uncertainties inherent to production and the lack of organizational discipline prevent the

execution of the theoretical schedule, since it quickly loose quality and feasibility. Besides,

most of the algorithms that showed optimal solutions solving academic toy-sized instances,

when applied to life-sized instances are very time-consuming (Van Dyke Parunak, 1991). In

stochastic scheduling, the input data for the parameters of the problem are not perfectly

known and thus they are computed as random variables of which the distributions are known

in advance (Bongaerts, 1998). These variations use to represent the stochasticity of a

manufacturing environment subjected to range of uncertainties such as machine failures,

quality problems, arrival of urgent jobs and a myriad of other possibilities. In fact, there are so

many specifications of a stochastic problem that there is no framework to fully characterize

that class of problems (Leung, 2004).

2.4.2.1 Static vs Dynamic vs Real-Time

Another very common classification of scheduling approaches found in the literature is

to distinguish offline/static scheduling, online/dynamic and real time.

The offline scheduling deals with a deterministic problem, since all information is

known à priori (Leung, 2004). In this approach, all jobs are received at one specific moment

in time and, then, the decision maker has a combinational problem to optimize a

predetermined objective. New entering jobs are not admitted until the proceeding scheduling

cycle is finished, and thus, a complete understanding of the system and the environment at the

time the jobs are available is required. A lot of efficient methods have been evolved to solve

this class of problems and many optimal solutions can be found in reasonable time. In the

cases that it is not possible to reach the optimal, heuristic methods such as neighbourhood

search techniques, metaheuristics or Lagrangian Relaxation, among others have shown good

results (Bongaerts, 1998).

However most manufacturing systems operate in dynamic environments in which

unpredictable rea-time events may cause a change in schedule plans, turning the previous

schedule rapidly infeasible. Usually, dynamic models allow for an intermittently continuous

stream of arriving orders that are always included in the current scheduling procedure. In fact,

Vieira, Herrmann and Lin (2003) aggregates these events into two categories, making a

distinction between situations triggered by resource related issues (machine breakdown,

operator illness unavailability or tool failures, etc) and job related issues (rush orders, job

cancellation, due date changes, etc).

In a dynamic approach, there is some kind of interactivity involving the scheduler and

the real system. In fact, certain events invoke the online scheduler, which generates one

appropriate schedule for the actual conditions of the system (Fohler and Fohler, 2015). As

stated by Mehta and Uzsoy (1998), Vieira, Herrmann and Lin (2003) and Ouelhadj and

Petrovic (2009) dynamic scheduling has been defined under three categories: completely

reactive scheduling, predictive-reactive scheduling and robust pro-active scheduling.

In a completely reactive scheduling approach, no base schedule is generated in advance

and decisions are made at a local level. For this reason, it is hard to develop global plan for all

activities, which makes difficult to predict the system performance. Usually dispatching rules

are an intuitive and easy method to apply under these circumstances, but it is important to

note that the schedule can be myopic, since that most of the times dispatching rules lack of a

global perspective of the system.

In predictive-reactive scheduling, a predictive schedule is generated in advance with the

objective of optimizing the performance of the schedule under the estimated conditions. When

disruptions occur during production, the predictive schedule is revised in order to maintain its

feasibility and improve its expected performance, if possible. In the definition of a predictive-

Evaluating agile scheduling methods for a job shop problem

13

reactive policy, it is important to take into account two main issues: the definition of the

moment of rescheduling and the method that should be used to do it.

Concerning the moment to reschedule, it is possible to revise the schedule continuously,

which means every time an event changes the actual state of the system; or periodically, in

which rescheduling takes place at predetermined time intervals. Since continuous reschedule

generates better realize schedules, but requires higher computation burden, some researchers

combine both strategies. This approach involves establishing a periodic rescheduling policy at

regular intervals, but if a disturbance with large impact on the system state occurs, the

schedule is reviewed (Church and Uzsoy, 1992) .

Regarding the methods to reschedule, four main approaches are mostly used in the

literature. In the right-shift rescheduling method, the original sequence of operations is

preserved, but the schedule is adjusted moving forward in time the operations to the end of the

unexpected event. In complete scheduling, all operations are rescheduled after the trigger. In

the match- up rescheduling of Bean et al. (1991) the new developed schedule is adjusted to

match the predictive schedule at same point later on. Finally, in multi-objective rescheduling,

the objective function of the new schedule incorporates not only one performance measure,

but also weights of modifications’ costs to prevent the new schedule to deviate from de

predictive one.

The last reschedule approach is robust scheduling, which attempts to generate predictive

schedules that contemplates certain predictability measures to absorb and adjust to some

foreseen disruptions. On one hand, the objective is minimizing the lateness to the best

schedule solution. And on the other hand, minimize the effect of uncertainties in the schedule,

measured by the deviation between the planned and the realised completion time (Ouelhadj

and Petrovic, 2009).

Figure 2: Setting of Predictive Reactive Scheduling

The real-time scheduling is very similar approach to dynamic scheduling. The big

difference is that in the online approach, there is no enforcing limits in latency, while in real-

time scheduling, the response to the triggered events must be very quick, generally in seconds

base.

To conclude, it is noticeable that dynamic and real-time approaches accommodates

considerable flexibility and agility to respond to unforeseen system disturbances, but the lack

of a global perception, at the end, can generate schedules with performances far from the

optimum. On the other hand, a static approach provides a global overview of the system, but

14

it does not have the capacity to adapt to the unexpected disturbances. Therefore, the behaviour

of static approaches is expected to be superior in static environments, while online methods

are more likely to better cope with the stochasticity of the system.

2.5 Scheduling methods

This section presents some of the main developments and solution approaches for

scheduling problems. A lot of methodologies have been proposed to tackle not only general

scheduling instances, but real-world problems as well. The goal is to explain some of the

methods that were considered more useful regarding the future direction of the project,

clarifying their advantages and disadvantages and the motivation to explore them.

2.5.1 Optimal approaches

For the resolution of basic scheduling problems, optimal methods were proposed for

small and some medium size problems. Some of the most known in the literature are

presented.

2.5.1.1 Johnson Rule

Johnson’s rule was proposed by Johnson (1954), is a method to minimize the makespan

in the case of two work centres. Under a couple of conditions, this method prove to generate

optimal schedules for the two-machine problem.

2.5.1.2 Dynamic Programming

Dynamic programming is method used to solve complex problems. In a succinct

description, the idea behind this technique is to break down the problem in a collection of

simpler subproblems recursively, solve them and store all the results to avoid computing them

again. Then the dynamic programming algorithm examines the previously solved

subproblems and combines their solutions, according to their contribution to the objective

function, to find the optimal solution for the global problem (Cormen et al., 2001). At each

iteration, it determines the optimal solution for a subproblem, which is larger than all

previously solved subproblems.

Held and Karp (1962) proposed well-known equation and a dynamic programming

formulation to find optimal sequences either for scheduling problems or travel salesman

problem or the assemble-line balancing problem. Authors as Gromicho et al. (2012) used that

technique to develop more efficient dynamic programming approaches for the job shop

scheduling problem. Although this approach presented good results for relatively small

benchmark problems, but it can hardly solve more complex problems, becoming impractical

to handle real-world problems (Nguyen, Mei and Zhang, 2017).

2.5.1.3 Mixed-Integer Linear Programming (MILP)

The evolution of computer processers enabled to solve some combinatorial problems

and Mixed-Integer Linear Programming (MILP) formulations were used to solve small and

some medium size instances. Its rigorousness, flexibility and extensive modelling capabilities

make it a very attractive methodology to solve some scheduling problems (Floudas and Lin,

2005).

MILP formulations for scheduling can be classified into continuous and discrete time

models, regarding its time representation. Discrete splits time into a finite number of periods

and each task is associated to one of them. One major disadvantage of this representation is

that the solution quality is highly dependent on the size of the periods (short periods increase

the solution quality). For that reason, research efforts have been spent to explore continuous-

Evaluating agile scheduling methods for a job shop problem

15

time models. The model proposed by Manne (1960) and later extended by Liao and You

(1996) showed quick optimal solutions for small instances.

2.5.1.4 Branch and Bound

Branch and Bounds procedures are enumeration schemes where certain schedules or

classes of schedules are discarded by showing that the values of the objective obtained with

schedules from this class are larger than a provable lower bound (Pinedo, 2008). This lower

bound is greater or equal to the value of the objective of a schedule obtained earlier. This

strategy explores big number of solutions, but prevents an exhaustive enumeration search

which would not be viable. To do that Branch and Bound uses a branching rule which states

that when the level k-1 are scheduled, one given job jk only need to be considered if no job

still to scheduled cannot be processed before the release time of jk
. That is rjk<minl

{ }
l

p+)
l

r(t,max
J∈l

min<
jk

r , with J representing the set of jobs not yet scheduled and t is time

when jk-1 is completed. Figure 3 shows an example of a B&B tree solution for sequence

problems

Figure 3: Branch and Bound tree (Pinedo, 2008)

There are several ways to calculate bounds for a node at a given level k-1. An easy

method is to use a preemptive EDD rule to schedule the remaining jobs on that node. This

rule is known to be optimal to one machine problem with release dates and with the objective

of minimizing the lateness (1|rj,prmp|Lmax) and thus it provides a lower bound for the

problem.

This method received a considerable amount of attention and reasonably effective

enumerative branch-and-bound procedures has been developed. One example is the B&B

proposed by Applegate and Cook (1991) which provides a relatively fast optimization

procedure for deterministic job-shop makespan problems with size of 10 jobs and 10

machines and 15 jobs and 15 machines. However, when increasing the complexity of the

problems, for example by introducing sequence-dependent setup times, the computational

time required to solve these algorithms explodes, and they are hardly able to solve the

problems.

2.5.1.5 Constraint Programming

Constraint Programming is method evolved used in artificial intelligence, but recently it

has been adopted for operations research as an optimization method. In contrast, to

mathematical programming, CP does accept nonlinear equations without a large increment of

the computational burden.

16

CP is a method designed to find feasible solutions rather than optimal ones, and for that

reason it focuses on the constraints and variables and not in the objective function. The

algorithm starts by finding a feasible solution and then a new constraint is created by stating

that the value of the objective function must be less (minimization) or higher (maximization)

than that of the last solution found. The goal is to gradually narrow down a very large set of

possible solutions, ensuring that the objective function improves over time until the optimal

value is found.

In the scheduling field of research, authors as Khayat, Langevin and Riopel (2006)

applied this approach with good results for relatively small size instances.

2.5.2 Non-optimal approaches

As it was already mentioned, scheduling problems are NP-hard, which do not allow to

find always optimal solutions in a reasonable time. Therefore, a lot of research has been done

to evolve other methodologies that do not guarantee optimal solutions, but are capable to find

reasonable good ones in a relatively short time. In this section, some non-optimal methods are

presented, although it should be noticed that there is a vast literature exploring this area and

every possible review would not be complete.

2.5.2.1 Constructive and Improvement Heuristics

The complexity of scheduling problems justified the development of heretics, which can

be classified into constructive and improvement methods. Constructive heuristics build a

schedule starting with an empty solution, and use a repetitive process to construct a complete.

In contrast, improvement heuristics develop an existing schedule further by making local

moves, as interchanging jobs (Koulamas, 1998). But there are also methods that use a hybrid

approach, combining both strategies to evolve good schedules. One of the most popular

heuristics for job shop problems is the Shifting Bottleneck heuristic which uses both heuristic

methods and it is presented and explained in the section below.

a) Shifting Bottleneck (SB)

One of the most successful heuristic procedures developed for J|CMax is the shifting

Bottleneck heuristic. This method was first proposed by Adams, Balas and Zawack (1988)

and tries to decompose the problem into a single-machine for each machine at a time. At each

iteration, a lower bound is calculated for each unscheduled machine, and the one with the

largest lower bound is scheduled optimally without regard to the other unscheduled machines.

In the end of this procedure, an attempt to improve the schedules already established is made,

before finding the next bottleneck and repeat the process described.

Usually this heuristic uses the disjunctive graph representation, where nodes are tasks to

be performed, the conjunctive arcs connect the operations of the same jobs and the disjunctive

arcs connect operations processed on the same resource. When the schedule of the critical

machine is selected, it is optimized by setting its disjunctive arcs. Figure 4 exhibits an

example of disjunctive graph representation.

Lawrence and Sewell (1997) in their research applied this method to 53 deterministic

instances, obtaining an average of the ratio primal/dual gap of 4.4%. In their SB heuristic they

use a branch and bound method to solve the single-machine subproblems generated

Evaluating agile scheduling methods for a job shop problem

17

Figure 4: Disjunctive graph representation (Barzegar, Motameni and Bozorgi, 2012)

2.5.2.2 Meta-Heuristics

Meta-heuristics are high level heuristics which guide local search methods to escape

from local optima, exploring a larger solution space (Hilier and Lieberman, 2015). In all

metaheuristic procedures, it is critical to find a right balance between diversification

(exploration of the search space, getting out of the local optimum) and intensification

(exploitation of the accumulated search experience, usually ending in a local optimum) (Blum

and Roli, 2003).

There are many ways to classify metaheuristics algorithms. One of the most common to

distinguish these methods is characterizing in population-based or single point search,

depending on the number of solutions used at the same time. Algorithms that work with single

solutions, also called trajectory methods, use to comprehend local search-based

metaheuristics, like Tabu Search. In contrast, Population-based metaheuristics, such as

Genetic Algorithms, describe the evolution of a set of points in the search space.

Due to its adaptability, these methods and capacity to find reasonable good solutions for

very complex problems, metaheuristics have attracted the attention of many researchers. Tabu

search , simulated annealing, and genetic algorithms have been frequently used to solve static

deterministic production scheduling problems (Ouelhadj and Petrovic, 2009). However, in

dynamic scheduling, less attention has been done to this class of methods, since usually they

require a relatively big computational burden. When they are applied to dynamic problems,

the approach involves the decomposition of the problem into corresponding static scheduling

sub-problems and then use meta-heuristics to solve those static problems (Lou et al., 2012).

a) Genetic Algorithms (GA)

Genetic Algorithm is a population-based metaheuristic based on an analogy to a natural

phenomenon of the theory of evolution formulated by Charles Darwin, firstly proposed by

Goldberg, Korb and Deb (1989).

For each iteration of a GA considers a population of solutions, which represent the

currently living members of the species. Then, a portion of those members is selected to

breed a new generation. Usually, that selection process is biased towards the choice of the

fittest members of the population. To generate a second population of solutions, the selected

members are combined through genetic operators, namely crossover and mutation. Crossover

https://www.hindawi.com/journals/jam/2012/651310/fig2/

18

involves selecting a pair of “parents” solutions to produce “child” solutions, who share some

of the features of both “parents”. Since the fittest members are more likely to become parents,

the genetic algorithm will gradually tend to generate fitter populations. Sporadically, mutation

may occur, this means that certain children may possess features that are not owned by either

parent. This operator enables the GA to explore other regions of the solution space. Finally,

the process described so far is repeated until some termination condition is reached.

Although these algorithms seem more suitable to solve static deterministic problems

because of the high computational time spent, some authors as Chryssolouris and

Subramaniam (2001) developed genetic algorithm for dynamic scheduling problems. In fact,

he obtained significantly superior results over common dispatching rules for medium size

instances with a stochastic environment.

2.5.2.3 Dispatching Rules

In dynamic scheduling problems, especially when decisions must be made in a short

time frame like in real-time scheduling, there is the need of methods that provide quickly

relatively good solutions. For that reason, dispatching rules have been extensively applied in

research and practice (Nguyen et al., 2012).

Generally dispatching rules are greedy heuristics that assign a priority to all available

operations to be scheduled, and the one with highest priority is selected to be processed. This

type of rule considers the sequencing decision as a set of independent decentralized one-

machine problem (Haupt, 1989). Since they can be easily modified when real-world

characteristics of the system change and they are easily scalable to every problem size,

dispatching rules has been widely explored both by researches and practitioners (Nguyen et

al., 2012).

In the work of Lawrence and Sewell (1997) several dispatching rules are tested in 53

instances, considering several uncertainty levels in processing times. The authors compared

the performance of the rules between each other, with other heuristic and with the optimal

results. The rules tested are briefly explained in this section.

First-come, First-Served (FCFS): Tasks are sequenced according to their

release dates. This rule aims at reducing the variation of the waiting time between all

the different tasks.

Short Process Time / Longest Process Time (SPT) / (LPT): Tasks are

sequenced according their processing time. SPT is used to minimize the mean job flow

time, at the expense of jobs with long processing times. LPT is used to balance the

load in problems with parallel machines, because at the end of the time horizon tasks

with shorted processing time can be used to adjust some gaps created by larger tasks.

Largest Successive Difference (LSD): Tasks are sequenced according to the

difference between the processing time on its successor machine and the processing

time of the current machine. Whenever a machine becomes available, the job in queue

with the larges difference is selected. This rule aims at reducing machine starving

Most Operations Remaining (MOR): Tasks are scheduled according to the

number of machines yet to visit. Usually time-in-queue is critical for the job’s

flowtime and this rule aims at reducing that time by anticipating longer total queue-

waits jobs.

Evaluating agile scheduling methods for a job shop problem

19

Most Work Following (MWF): Tasks are scheduled according the expected

processing time on their remaining successor machines and the one with the longest

time is selected. Its objective is to minimize the maximum tardiness and lateness.

Longest Tail Remaining (LTR): Tasks are scheduled according the right tail

on the distribution of their total remaining processing time. Since Jobs with long right

tails have the potential of increasing makespan more than do jobs with short right tails,

they are scheduled first. The right tail is calculated as the um of the remaining

expected processing time, including the processing time of the current machine, plus a

constant multiple of the standard deviation of the remaining processing time,

Kσ+pi=RT
R

∑ , where R is the set of remaining uncompleted operations on the routing

job, σ is the standard deviation o its remaining processing times, given by ∑=
R

Kσσ ,

where Kσ is the standard deviation of the processing time of the job on machine k ,

and K is a constant.

a) Improved Dispatching Rules

As stated by Pinedo (2008), dispatching rules are clearly a useful methods to find

reasonable good schedules to a single objective, but a realistic objective may be a

combination of several basic objectives and, sorting the jobs accordingly to only one

parameter may not yield acceptable schedules. Also, Blackstone, Phillips and Hogg (1982)

refer that there is no single rule that outperforms all the others. In fact, depending on the job

configuration, operation conditions and objective function, DR can have large variations in

terms of performance. For those reasons, many researchers developed methods to elaborate

more effective and adaptive dispatching rules.

i. Combination of Dispatching Rules

One of the most straightforward ways is to improve the performance of DR without

affecting their simplicity is to use a combination of simple DRs (Nguyen et al., 2012).

Usually researchers use weights to model the rule in conformance to the objectives of the

problem (Panwalkar and Iskander, 1977).

ii. Composite Dispatching Rules

Composite dispatch rules are heuristic combinations of single dispatching rules in the

form of a sophisticated priority function of various attributes associated either to a job or a

machine (Nguyen et al., 2012). Examples of job attributes are weight, processing time and

due date, while machine attributes are speed, the number of jobs waiting for processing and

the total amount of processing that is waiting in queue. According to Ho and Tay (2005),

results show that with careful combination, the composite dispatching rules perform better

than the single ones with regards to the quality of schedules.

Modelling composite rules can be a tedious and time-consuming process. Hence,

Hyper-heuristics (HH) have emerged as a way to automate the design of heuristics

(Waschneck et al., 2016). HH is a methodology to generate heuristics to solve hard

computational problems , this means that HH is a high-level approach that given a particular

problem instance and an number of low-level heuristics can select the appropriate low-level

heuristic (Gendreau, Michel and Potvin, 2010). Usually evolutionary algorithms are employed

as HH are employed to evolve dispatching rules. One of those methods that has been

successfully applied is genetic programming, which is explained in the next section (Ho and

Tay, 2005), (Hildebrandt, Heger and Scholz-Reiter, 2010).

20

iii. Genetic Programming (GP)

Designing a good heuristic is not a trivial task and, effectively it can be a very time-

consuming process and require a great knowledge about the problem. For this reason, Hyper-

heuristic methods have been developed to improve the exploration of the heuristic search

space. In the last decade, genetic programming has been the dominating technique for

designing production scheduling heuristics, due to the flexibility of its representation system

and to its powerful search mechanism (Nguyen, Mei and Zhang, 2017).

GP is an evolutionary computation method, based on the Darwinian principle of

reproduction and survival of the fittest, firstly proposed by Koza (1992). Fundamentally, GP

extends the representation scheme of genetic algorithms into general, tree hierarchical

computer programs of dynamically changing size and shape (Miyashita, 2000). At each

iteration, GP transforms populations of programs into other population of fitter computer

programs. The fitness of the program is determined based on the quality and efficiency of the

program in solving the target one. The Figure 5 show how the reproduction process of

computer programs is done through crossover.

.

Figure 5: Crossover process of a mathematical expression (Geiger, Uzsoy and Aytuǧ, 2006)

Generally, a GP individual is a specific combination of elements selected from two sets.

The terminal set, which consist either by program’s inputs or constants, and the function set

that define the grammar based of GP, and it can include arithmetic operators, logical operators

or even specialized functions (Nguyen, Mei and Zhang, 2017).

Figure 6 is a graphical representation of a solution generated by a GP.

Figure 6: Tree Hierarchical representation of a computer program generated by a GP (Ho and

Tay, 2005)

Evaluating agile scheduling methods for a job shop problem

21

Typically applications of GP are the automatic creation of mathematical formula, but

the generation of composite dispatching rules is a problem of a similar nature (Pickardt et al.,

2013). Therefore, many researchers as Nguyen et al. (2012), Hildebrandt, Heger and Scholz-

Reiter (2010), Tay and Ho (2008) Pickardt and Branke (2012) developed GP methods to

evolve dispatching rules, obtaining good results both in deterministic and stochastic

environments.

2.6 Simulation

Simulation is a technique that aims at virtually reproducing a real-world process or

system, imitating its evolution over a time horizon. It uses mathematical models to recreate

situations often repeatedly. Usually it is used to analyse stochastic systems that operate

indefinitely in various areas of activity such as manufacturing, services, defence and

healthcare, among others.

Effectively, the advances of technology contributed to increase the computational speed,

and now large time periods can be simulated in a matter of seconds. Since the computer

records the performance of the simulated system for a big number of alternative designs or

operating procedures, simulation enables to evaluate and compare each alternative, before

choosing the most adequate (Hilier and Lieberman, 2015).

Undoubtedly, simulation provides a more intuitive representation of the real system, and

reveals cause-effect relationships that would be very difficult to understand through analytical

formulations. For example, in the specific case of scheduling, the impacts of dispatching rules

are very difficult to be explained, but simulation allow to test and make experiments

comparing the performance of the rules for different scenarios.

Since simulation creates a virtual model of the reality, the acquisition of valid source

information about system is a critical issue. Furthermore, every assumptions and

approximations should be validated to make sure that the model outcomes are trustable.

However, simulations have also disadvantages when compared to analytical models and

other optimization methods. In fact, developing a simulation model can take more time than

an analytical one and it is also less fit to determine optimal solutions (Hilier and Lieberman,

2015).

2.6.1 Methods of simulation

To better answer to the large range of applications in simulation, four main methods

were developed: Monte Carlo Simulation, System dynamics, Discrete Event Modelling and

Agent Based Modelling.

Monte Carlo Simulation was first used in the 40s by scientists for the construction of the

atomic bomb. It is numerical experimentation technique, inspired by the gambling casinos, to

obtain the statistics of the output variables of a system, given those of the input variables

(Jacoboni and Lugli, 2012). In each experiment, the values of the input variables are sampled

based on their distributions and the output variables are calculated using the computational

model. Then, a representative number of experiments should be performed to compute with a

degree of confidence the statistics of the output.

System Dynamics is a method developed in the 50s to understand the nonlinear

behaviour of complex systems. In this method, the system is modelled as causally closed

structure that defines its own behaviour, through circular causal dependencies.

Discrete Event Modelling was first developed in the 60s and it is a technique that

approximate continuous real-world processes with non-continuous events defined by the

modeller. The model is specified graphically as a process flowchart, where blocks represent

22

operations. This type of graphic framework is actually very intuitive explains the reason why

this method has been so much used in very different areas of businesses.

Finally, agent based modelling was developed in 2002-2003 to answer new

requirements of the systems in some areas of business. Nowadays, with the increasing

complexity of the systems, the modeller may not be able to express how the process flow

works, but he may have some insights about the individual behaviour of each entity. In agent

based modelling, agents are firstly characterized individually and then connected to each other

in a specific virtual created environment. Thus, the behaviour of the system as a whole

emerges from the interactions of all the agents, exhibiting its intrinsic dynamics. It is also

noticeable that Agent Based Modelling permits to enhance the extensibility of simulation,

since the creation of an agent is independent of the number of agents created. This modularity

allows the modeller to stipulate the amount of same type agents that he intends to be

necessary. Figure 7 represents the communication between agents and displays a typical state

chart that defines the behaviour of an agent.

Figure 7: Agent-Based Modelling Scheme (Anylogic Web Page, 2017)

2.6.2 Simulation for scheduling problems

Simulation in scheduling is mainly used in dynamic scheduling problems, namely to

assess the performance of dispatching rules in the shop floor conditions. In fact, the impacts

generated by dispatching procedures are difficult to be explained using analytical techniques

and thus, simulation enabled to make rapid progress in this specific field. Kaban, Othman and

Rohmah (2012) evaluated and compared the performance of 44 dispatching rules for different

measures in a job-shop.

Another application of simulation in scheduling is provided by Kim and Kim (1994),

who present a simulation-based real-time methodology for a flexible manufacturing system.

In their scheduling approach, they apply priority rules dynamically, based on the experiments

tested in a discrete event simulation. The real-time control system reviews the system’s state

periodically and checks if its performance keeps similar to the simulated one. If the

performance of the actual dispatching rule is worse than a given threshold, a new simulation

is done for the remaining operations in order to adapt to actual the system’s conditions.

Another different application of simulation has been developed in the field of artificial

intelligence. Nakasuka and Yoshida (1992) evolved in their research an AI method, using

earlier system simulations to determine what the best rule is for each system state.

2.6.3 Simulation-optimization

Traditionally, simulation and optimization are two unrelated concepts of operations

research, but the improvement of computational power promoted the design of techniques that

combined both (Figueira and Almada-Lobo, 2014). In fact, putting together the great detail of

simulation techniques and the ability to find good or optimal solutions with optimization

https://www.anylogic.com/use-of-simulation/agent-based-modeling/

Evaluating agile scheduling methods for a job shop problem

23

methods seems to be very a promising approach, though it is not deeply explored by the

literature. To provide a better overview of the existing methods in this field, Figueira &

Almada-Lobo (2014) proposed a taxonomy to classify the whole range of methods that have

been applied. The authors identified four categories of methods in which is possible to screen

any simulation-optimization technique. The first is Evaluation Function (EF) that

encompasses iterative procedures which use simulation as an evaluator function, orientating

the exploration of better solutions in the search space. The second category, Surrogate Model

Construction (SMC), comprises methods that also apply simulation as an evaluator. However,

their main goal is not to search the solution space, but to formulate a surrogate model used

either to guide the search or to be itself explored. The third category includes methods that use

simulation for optimization. More specifically, these methods use simulation as a tool to

improve the parameters or extend a given analytical model, making it more accurate and far-

reaching to different scenarios. Finally, the fourth category, Solution Generation (SG)

comprehends methods which use simulation models that incorporate optimization procedures

to generate solutions.

Despite the evident potential advantages of these methodologies, they have not attracted

a lot of attention in the literature to solve scheduling problems. The approaches found involve

most of the times the use of simulation to evaluate simple scheduling rules and select the one

which shows the best performance regarding a determined objective (Kim and Kim, 1994).

Instead, one possible interesting use of simulation could be to use it as Evaluation Function to

evolve simple rules.

2.7 Relevant techniques for this research

In the scope of this research, agile decentralized methods are evaluated for a job shop

problem. Hence, from the methods above presented, this research explores dispatching rules,

constructive heuristics and meta-heuristics for the scheduling problems. Furthermore,

simulation and simulation optimization techniques are used both for evaluating scheduling

methods and for evolving a new adaptive composite dispatching rule.

24

Evaluating agile scheduling methods for a job shop problem

25

3 Description of case studies

The research conducted is based on by two case-studies, namely the work of Lawrence

and Sewell (1997) (L&S) and a real-world case of a Portuguese company of metal packages.

In this section both cases are presented and explained.

3.1 Lawrence and Sewell’s research

The research of Lawrence and Sewell (1997) studies the performance of static and

dynamic methods to solve job-shop problems. More specifically, these authors examine the

trade-off between fixed schedules and dynamic schedules, solving problems with uncertainty

at processing times’ level. Moreover, optimal algorithms and heuristic techniques are applied

to analyse the relative performance and their robustness to cope with uncertainty.

In their work, L&S evaluated various scheduling methods in 53 standard job shop

instances. Makespan is the only objective and the instances range in size from 6 machines and

6 jobs to 15 machines and 20 jobs. The problem set is composed by 5 instances generated by

Adams, Balas and Zawack, (1988), 3 instances of Muth and Thompson (1963), 40 instances

created by Lawrence (1984) and 5 instances of Applegate and Cook (1991). Table 1

summarizes the size of these instances.

 Table 1: Size of the instances studied in the paper

Regarding the solution techniques evaluated, L&S tested three types of methods: one

optimal solution algorithm, one heuristic method and a few dispatching rules. The optimal

solution algorithm (OPT) of Applegate and Cook (1991) is a branch and bound method that

uses a shifting bottleneck heuristic to provide good upper bounds and efficiently trim the

research tree. This method provided optimal solutions for 42 of the 53 problems and the

Size (NJob x NMac) N Operations N Problems

6 x 6 36 1

10 x 5 50 5

15 x 5 75 5

20 x 5 100 5

10 x 10 100 12

15 x10 150 5

20 x 10 200 5

30 x 10 300 5

15 x 15 225 5

20 x 15 300 2

Total - 53

26

remaining were solved with an heuristic proposed also by Applegate and Cook (1991), which

provided results with an average primal/dual gap of 3,5%. The heuristic method tested was

the shifting bottleneck heuristic (SB), firstly proposed by Adams, Balas and Zawack (1988).

Furthermore, seven dispatching rules were assessed: First-Come first-served (FCFS), Shortest

processing time (SPT), Longest processing time (LPT), Largest successive difference (LSD),

Longest tail remaining, (LTR), Most work following (MWF) and Most operations remaining

(MOR).

For the experiments of static schedules, all the methodologies were evaluated, while for

dynamic schedules, optimal solution techniques were not tested. In fact, dynamic sequences

have higher computational requirements, and test the optimal solution method would involve

too much computational effort.

The stochasticity of scheduling was implemented by introducing an uncertainty

component in processing times, considering 10 possible levels of variation.

3.1.1 Results and conclusions from the paper

The principal results of the experiments are summarized in Table 2, which reports the

mean makespan performance as a fraction of the optimal makespan of the corresponding

problem for all problem instances. The results of the different dispatching rules are exposed

for both static and dynamic scheduling approaches.

Table 2: Mean performance of scheduling methods applied in the paper of L&S

Results

Rule 0 0,2 0,4 0,6 0,8 1

SB/DYN 1,016 1,056 1,127 1,236 1,329 1,434

MWF/DYN 1,113 1,130 1,169 1,253 1,329 1,423

LTR/DYN 1,137 1,157 1,200 1,285 1,358 1,454

LSD/DYN 1,165 1,186 1,226 1,307 1,380 1,454

MOR/DYN 1,199 1,211 1,249 1,334 1,409 1,494

FCFS/DYN 1,199 1,211 1,249 1,334 1,409 1,494

SPT/DYN 1,215 1,231 1,271 1,343 1,420 1,522

LPT/DYN 1,317 1,340 1,381 1,481 1,557 1,650

OPT/SEQ 1,000 1,080 1,198 1,351 1,487 1,630

SB/STAT 1,037 1,097 1,201 1,346 1,476 1,618

MWF/STAT 1,113 1,155 1,241 1,381 1,500 1,627

LTR/STAT 1,137 1,185 1,274 1,412 1,532 1,665

LSD/STAT 1,165 1,220 1,319 1,468 1,597 1,730

MOR/STAT 1,199 1,237 1,318 1,450 1,567 1,699

FCFS/STAT 1,199 1,237 1,319 1,450 1,567 1,699

SPT/STAT 1,215 1,270 1,375 1,506 1,645 1,787

LPT/STAT 1,317 1,373 1,476 1,623 1,755 1,895

Figure 8 displays the graphical representation of the results reported in Table 2, providing a

better perception of the evolution of the deterioration of each scheduling method as the

uncertainty level increases.

Evaluating agile scheduling methods for a job shop problem

27

Figure 8: Comparison of the mean makespan performance of fixed (left) and dynamic (right) sequence

scheduling methods (based on the research o L&S)

In the analysis of the results of static methods, L&S concluded that, for moderate

uncertainty levels, OPT offers a small advantage over SB in exchange for more computational

effort. For higher levels of uncertainty, MWF have very similar performance as SB and OPT.

It is also worthy to note that for the majority of the uncertainty levels, SPT and LPT perform

worse than the naive FCFS.

Concerning the dynamic methods, from the results provided by L&S it can be stated

that SB outperforms OPT for nearly any level of processing times’ uncertainty. It is also

mentioned that MWF performs better than the optimal algorithm for high uncertainty levels

(cv > 0,3). Actually, its performance converges to SB as uncertainty increases, and MWF

requires far less computational effort.

Regarding the comparison of static and scheduling methods, it is evident that dynamic

scheduling methods quickly surpass static techniques, even for moderate amounts of

uncertainty. In fact, the authors assure that, from a practical perspective, the advantage of

more sophisticated solution methods quickly deteriorates as uncertainty increases, and simple

scheduling rules dynamically applied can yield comparable or even superior results.

3.2 Real-world case

In order to verify whether the key takeaways from the research of L&S remain valid for

more complex problems, the same methodology followed by L&S was applied to a real-world

case, where setup times are a major concern. More specifically, the same procedure was

followed in the case of a Portuguese company that produces metal packages for different

types of products.

The production plant of the company is composed by seven machines which are fairly

flexible. In truth, they can perform similar tasks, although with different performances. The

jobs that arrive to the system have one or more routes with a certain number of operations

associated. The setup times are sequence dependent, which means that the preparation time

depends both on the difference from one operation to the next and on the direction of the

change. Thus, changing from the operation 1 to 2 takes a different time than changing from to

2 to1, which generates an asymmetric setup matrix. It is also important to highlight that setup

times have a large relative proportional representation to the processing times, and thereby

they constitute a major difference from the problems investigated in the research of L&S.

According to the literature this problem can be classified as a multi-route job shop,

which contrasts with the type of problem studied by L&S. Therefore, in the scope of this

research, the routes of the jobs were previously defined, which means that the allocation of

the jobs is previously established. With this assumption, the problem can be characterized as a

job-shop and compared to the instances evaluated by L&S.

28

Under these circumstances, 5 instances of the real-world case were generated to serve as

a test-bed. Since these problems are real-world examples, they involve a bigger number of

orders and operations than those investigated by L&S, which increases the complexity of the

scheduling. Table 3 displays the size of these instances.

Table 3: Size of the real-world case’s instances

3.3 Description of the problem under study

In this section, it is presented the characterization and classification of problem and a

succinct explanation of the approach followed is provided.

3.3.1 Problem definition

As stated in the subsection 1.3, this master’s project aims at extending the research of

Lawrence and Sewell (1997) and verify whether their results remain valid for more complex

real-world problems, namely with the introduction of sequence-dependent setup times.

Thereby in a first approach, a simulation model was developed and validated by comparing

the results of the 53 instances studied in the paper.

Then, the first set of experiments was done, testing the more complex environments of

instances from the real-world case. In these tests, more advanced setup-oriented methods are

implemented both statically and dynamically to evaluate their performance and examine

whether they are able to achieve better results. At the end, the results are compared with the

set of 53 instances to understand if the conclusions of the paper of L&S remain valid in a

different type of problems.

The second set of tests aimed at analysing the effect of sequence-dependent setup times

in the performance of agile methods in order to better understand the difference from the

results exposed in the paper of L&S. For these experiments, four levels of sequence-

dependent setup times were generated and evaluated for the set of 53 problems studied in

L&S’s paper. In these experiments only dynamic sequences are tested, since the effect of

using static or dynamic methods was studied at the first experiments’ set. In this study, the

objective is to perceive the evolution of the scheduling methods’ performance with the

gradual increment of setup times.

3.3.2 Characterization of the scheduling problem

The developed simulation model replicates a shop floor in which N parallel machines

process M orders. This simulation aims at studying not only the instances of the paper of

L&S, but also more complex cases with a higher number of orders and with sequence

dependent setup times.

Size (NJob x NMac) N Operations N Problems

248 x 6 450 1

239 x 6 416 1

247 x 6 442 1

233 x 6 366 1

238 x 6 401 1

Total - 5

Evaluating agile scheduling methods for a job shop problem

29

According the classification explained in the Subsection 2.4.1, the machine environment

(α) is a typical job shop, since there are N parallel machines and M Jobs with a fixed machine

route. The jobs have go through the machines, but not necessarily through all.

The job characteristics (β) of the problems are slightly different considering the 53

instances of the paper and the instances of the real-world case. In fact, none of the instances

consider precedence constraints nor pre-emption, and all the jobs are available to right in the

beginning. However, they differ from each other in two aspects. Firstly, in the real-world case

instances there is sequence-dependent setup time and secondly, they consider recirculation.

Finally, regarding the optimality criteria (γ), all the scheduling methods were evaluated

according to two optimization criteria. In the paper of L&S, only makespan is evaluated, but it

can be a myopic measure. More specifically, optimizing the schedule of one machine does not

guarantee that either the other machines are optimized, or they are being used efficiently. This

is especially critical when the workloads of the resources are very distinct from each other.

Therefore, to better assess the performance of the scheduling methods, another metric

was considered in the second set of experiments. It was computed the production capacity,

which refers to the percentage of time that the machines are effectively working in a specified

time horizon, and they are not idle or in a setup phase. In this research, the period considered

was the minimum time among the most optimist schedules’ times of each machine. This

optimist schedule is computed by summing up all the process time of the operations in the

machine and adding the minimum setup time of each operation to be performed.

30

Evaluating agile scheduling methods for a job shop problem

31

4 Model and experiments’ design

This chapter presents the developed simulation model, containing a description of its

main components and then an explanation about the functional mechanism that supports the

interactions between all the actors involved. Subsequently, the scenarios evaluated in the

experiments simulation are described. Finally, the methods to improve and evolved good

scheduling solutions are explained.

4.1 Simulation model

The simulation model was developed in Anylogic software which supports object-

oriented model design. Its inherent Java environment provides limitless extensibility through

the access to external libraries and data sources or by allowing the development of customized

Java code. Thereby, all the methods implemented in this model were programmed using Java

code.

4.1.1 Selection of the simulation method

The increasing complexity of new manufacturing systems is making scheduling a much

harder and elaborated task. Thereby, it is not easy to characterize the behaviour of the entire

system, and hardly the impacts of any modification are predictable. In this context, simulation

seems an appropriate method to virtually represent the real system, perceiving its cause-effect

relationships that otherwise would be very difficult to understand.

Therefore, a simulation model was developed to recreate the typical manufacturing

environment of a job-shop problem. For the conception of this model, it was important not

only to guarantee that it could represent correctly the complexity inherent to the production

system, but also to assure that the simulation model was modular and easy to be extended or

modified according to the specifications of on any studied system. This last requirement was

imperative, since the objective of this model was to investigate problems with distinct

characteristics.

For these reasons, the simulation modelling method selected was Agent Based

Modelling. In fact, it is an adequate method both to represent complex flows with various

interactions and to enhancing the modularity and extensibility of the model.

4.1.2 Model components

The structure that supports the simulation model is composed by three agents and their

interactions. The characteristics of each agent and its behaviour as well as the functional

mechanism of its interactions are presented and explained the following sections.

32

4.1.2.1 Order Agent

The order agent represents one job that arrives at the plant. It is defined by four

parameters that must be established at the moment of the creation of the agent:

Id: it is an identification number that allows to distinguish one given job;

Route Machines: A parameter that saves the sequence of machines where the job

must be processed;

Route Operations: A parameter that refers to the operations to be processed in each

machine;

Route Times: It is the parameter that defines the expected processing times of each

operation on the machine.

The order agent can assume two states in the period of time it is in the system. When an

order is created it goes immediately to the Waiting state. Then, every time the job is being

processed on a given machine it turns to the state InMachine and recovers the Waiting State

when the operation is finished. This process is repeated until no more operations are left to

perform and then the job reaches its final state. Figure 9 shows the graphical representation of

the behaviour of the agent order.

Figure 9: State chart of the order agent

Finally, the variables processingTime, machine, operation and taskNumber are used to

save the information of the current or next operation to be performed in a given machine.

4.1.2.2 Machine Agent

The machine agent represents the resource machine in the plant. At the moment of

creation of a machine agent, the modeller should define three parameters.

Evaluating agile scheduling methods for a job shop problem

33

Id: It is the parameter that identifies one machine among the others

X: It is the parameter that defines the x coordinate of the position of the machine in

the environment

Y: It is the parameter that defines the y coordinate of the position of the machine in

environment

The machine agent can adopt one of three possible states while it is in the system. When

it is created, it automatically gets Idle, which means that there is no job to be performed at a

certain moment. When a job arrives and it is the next to be processed, the machine’s state

changes to Setup while the machine is being prepared to execute the operation. When the

setup is completed, the job starts to be processed and the machine’s state changes to

Processing. This process is unleashed every time that new operations appear to be processed

on the machine. The diagram of the Figure 10 illustrates the state chart of the machine agent

Figure 10: State chart of the machine agent

The machine agent contains variables which store the orders that are being or were

previously processed. Another important record is the collection queue which serves as a

ledger of the orders that are waiting to be processed on the machine at a certain moment of

time. The machine agent is also endowed with functions to calculate the setup time of the

operations. Since setups can be dependent on the sequence of operations, every time that an

order is going to be processed, the machine immediately computes the setup time of the

operation, given the previous processed one.

4.1.2.3 Main Agent

The main agent represents the environment where the other agents of the system

interact. Thereby, it is in the main agent that both orders and machines are created and

positioned. Then, from the communication between orders and machines and the dynamics of

their intrinsic behaviour, emerges the simulation model that can be visualized and recorded.

In the simulation developed within this project, all the machines are created at the start-

up and placed in their proper places. Then, an event is automatically triggered at time 0 and

all the orders of the problem are generated and sent to the respective machines where they are

going to be processed first.

34

During the simulation, the main agent monitors the number of orders that are already

finished and records the finishing times in a dataset. In this manner, when the last order is

performed, the simulation automatically points out the value of the makespan.

Figure 11 shows an example of the simulation model provided by the main agent, in

which the rectangles are the machines and the circles are the orders. The different colours of

the agents represent their state at that moment.

Figure 11: Environment of main agent during the simulation

It is also in the main agent that the settings of the environment are established, namely the

unit of time or the speed of the movement. Moreover, the main agent is responsible to receive

all the input data from the instances before the simulation starts. For this purpose, the

modeller should define before the simulation starts, the parameters of the instance that should

be read.

4.1.2.4 Functional Mechanism and Interactions

The functional mechanism behind the simulation model is composed by all the

interaction in the system that produce the dynamics of the simulation. Those interactions are a

product of the communication between the agents and are regulated by their intrinsic

behaviour.

At the beginning of the simulation, all the orders are generated by the main agent,

according to the inputs of the model, and then it sends them to the queues of the machines. At

this point, the first interaction between the agents in the system occurs, resulting from the

communication of the main agent and the machines. In this process, the main agent sends a

message with a type order to the machine, which saves that record in its queue collection.

When the queue collection is not empty, the machine agent leaves the state idle and

sends a notification message to the next order that is going to be processed. The order changes

its state, and sends back a notification to the machine, informing that it is ready to be

processed.

When the machine finishes that operation, the order receives a message informing that it

is free and should decide whether to go to the queue of the next machine or to leave the

system if there are no more operations remaining. The machine changes back to state Idle and

picks the next order when it arrives to the queue.

This process occurs in a loop to every order and machine in the simulation until no

more orders exist with operations to be performed. The diagram of the Figure 12 illustrates

the communication process that was described.

Evaluating agile scheduling methods for a job shop problem

35

Figure 12: Diagram of the functional mechanism of the interaction between agents

4.2 Experiments’ design

The first step of the methodology proposed in this master’s project was to develop the

simulation model that could replicate the research study of L&S. The model would be

validated if the obtained results were similar and then it could be used to study the real-world

problem and compare its results with the ones of the generated instances. In this context, the

simulation model was prepared to receive the input data either from the deterministic problem

set of the 53 instances or the 5 real-world instances or the modified 53 instances with

sequence-dependent setup times.

4.2.1 Introduction of uncertainty

Uncertainty was introduced into the problems by perturbing job processing times, as it

was done in the research of L&S. Thereby, the processing time provided by the instances was

treated as the expected processing time, pt=E[pt]. The standard deviation was calculated

considering a coefficient that controls the level of variance assumed in a given experiment,

=cv*E[pt]. The deterministic case, which considers a null deviation, has cv=0, while

experiments with higher uncertainty levels consider higher values of cv.

The perturbation of the processing times was introduced using a gamma distribution

because it only comprehends non-negative values which makes it widely used in the literature

to represent processing times for various applications. The parameters  and  of the

distribution were computed through their relationship with the expected value, µ=E[pt] and

variance, 2=(cv*E[pt])2 of the processing times, which means that =µ2/2 and =2 / µ .

Hence, it is possible to generate the value of the processing time of a given operation by

randomly sampling one value form the resulting gamma distribution.

Nevertheless, it is noticeable that L&S reported that they also implemented a log-

normal distribution, but the results did not reveal sensitive to that alteration.

In the designing of the experiments were considered 6 levels of processing times’

variation, introduced by setting the values of cv = {0, 0.2, 0.4, 0.6, 0.8, 1}. For each instance

and a given uncertainty level, 25 perturbed problems were simulated to study a certain

36

scheduling method, apart from the deterministic case. This does not require a significant level

of replications, since it is not affected by the effect of stochasticity. At the end, with the

described experimental design, a total of 126 problems were tested to evaluate one scheduling

method for a given instance.

4.2.2 Static vs dynamic experiments

One of the objectives of the experiment is to investigate the relative utility of using

dynamic methods rather than static. Therefore, the simulation model was adapted to test

scheduling methods both when the sequences of orders for each machine is established before

the simulation runs and when the sequence of orders is evolving and being determined while

the simulation is running.

For the dynamic approach, all the orders are released to the system and sent to the next

processing machine. In the queue of each machine they are sorted according to a certain rule

or method that updates the sequence every time a new order arrives to the queue. When the

order is finally processed to the machine, it goes towards the next one. This processed is

repeated in a loop and a sequence of orders in one machine is dynamically generated. It is

worthy to note that dynamic sequences involve a higher computational burden than static

approaches, since the simulation model must recalculate the sequence of the queue every time

a new operation arrives.

For the static approach, fixed-sequence schedules are inputted to the system, which pre-

establishes the queue collection of each machine and does not allow any possible modification

during the simulation. Thereby, the machine picks an order only when it is available in the

queue. Otherwise, the machine must wait until the the order arrives.

In these circumstances, static sequences had to be generated before the simulation runs,

for each scheduling method implemented. For this purpose, the methods were firstly

simulated in the dynamic model and the sequences resulting from the deterministic case in

each machine were recorded. Then these sequences were used as the input of each machine

for the static approach. It is noteworthy that assuming equal sequences for static and dynamic

approaches in the deterministic case is a valid assumption for all the methods evaluated, since

dynamically updating the schedule do not allows for improvement opportunities for any of the

evaluated methods.

4.2.3 Lower Bounds

Effectively, comparing directly the resulted makespan of the instances is not a valid

approach, since they have different sizes and processing times. Thereby, in the first set of

experiments, the same procedure followed in the work of L&S was used to measure the

quality of the scheduling methods evaluated. In their procedure, the maximum machine’s

makespan of a given scheduling method is compared with the optimal schedule’s makespan.

However, the authors were only able to compute the optimal schedules for 42 of 53 instances

and the remaining were solved using a heuristic method developed by Applegate and Cook

(1991). As it is not known which problems were solved optimally, in this research, the

makespan value reference of each problem was given by Resende and Gonçalves (2013) who

provide optimal makespan values for all the 53 simulated instances. These different reference

values may cause a small gap in the comparison of results, when validating the model.

Concerning the real-world case, the reference makespan values are obtained using a

complex and centralized heuristic. Despite these values are not optimal, they constitute very

good solutions for such large and complex problems.

Regarding the second set of experiments, the instances evaluated are new generated

problems, which do not have optimal benchmark solutions available. Thus, optimal lower

Evaluating agile scheduling methods for a job shop problem

37

bounds of each problem were computed, considering the most optimist scenario, where the

operations take their minimum setup time plus processing time to be performed.

4.3 Implemented scheduling methods

In the context of this dissertation, the methodologies evaluated by L&S were first

developed to serve as validation of the model. Then, more sophisticated techniques were

explored to improve the quality of the schedules. In this section, the scheduling methods

implemented in the simulation are presented and explained.

4.3.1 Scheduling methods from Lawrence and Sewell

As it was already mentioned in the section 3.1, the research of L&S evaluated three

types of methods: one optimal, the Shifting Bottleneck heuristic and several dispatching rules.

In the context of this master thesis not all of these techniques were considered relevant and,

thus only two of them were focused.

4.3.1.1 Optimal algorithm

The optimal solution algorithm used in the paper of L&S and firstly proposed by

Applegate and Cook (1991) is a good approach to solve deterministic problems of small and

medium size. However, when the size and complexity of the instances increases, it requires a

heavy computational burden and, in various cases, optimal solutions cannot be found.

Effectively, this method was only able to solve 42 of the 53 instances evaluated on the

investigation of L&S. Since the purpose of this dissertation is to apply the scheduling

methods not only to the 53 instances, but also to bigger and more complex real-world

problems involving also sequence dependent setup times, this approach did not seem

attractive to cope with such complex problems and, hence, it was not implemented.

4.3.1.2 Shifting Bottleneck Heuristic

The scheduling heuristic implemented in the research of L&S was the Shifting

Bottleneck Heuristic of Adams, Balas and Zawack (1988). This heuristic is known to

outperform various dispatching rules and have near optimal performances when applied to

benchmark J||Cmax problems (Ovacik and Uzsoy, 1997). In concordance, it is the heuristic

procedure with the best performance in the research L&S.

However, the method implemented uses an exact branch and bound algorithm to solve

their single-machine subproblems and the presence of sequence-dependent setup times

renders the subproblems intractable (Ovacik and Uzsoy, 1997). Thereby, as the purpose of the

research of this master thesis is not to exactly replicate the study of L&S, but to extend it to

more complex and real problems, it was developed a genetic-algorithm to obtain approximate

solution to the subproblems.

Still, that the use of any heuristic approach that can be applied to the subproblems does

not guarantee feasible solutions at intermediate iterations. The fact that the release times and

due dates calculated from the network representation of the partial schedules do not capture

all the constraints imposed on subsequent iterations by the partial schedule makes impossible

to prevent the generation of unfeasible solutions without seriously affecting the computational

effort and the quality of those solutions (Ovacik and Uzsoy, 1997). For this reason, the

Shifting Bottleneck heuristic was not included in the model.

4.3.1.3 Dispatching rules

Concerning the dispatching rules evaluated by L&S, all those simple the simple

heuristics were implanted in the simulation. The implementation was done through the

38

creation of a function that sorts the all the orders in the queue collection of a given machine.

The function ranks the priority of each order according to the rule and it is activated every

time a new order arrives to the queue. When the order leaves the queue, there is no need to

call the function again because it would not change the current queue’s sequence. The

Dispatching rules implemented are First-Come first-served (FCFS), Shortest processing time

(SPT), Longest processing time (LPT), Largest successive difference (LSD), Longest tail

remaining, (LTR), Most work following (MWF) and Most operations remaining (MOR).

These methods are summarized in Table 4.

Table 4: Dispatching Rules implemented in the simulation model

FCFS First-Come first-served

SPT Shortest processing time

LPT Longest processing time

LSD Largest successive difference

LTR Longest tail remaining

MWF Most work following

MOR Most operations remaining

4.3.2 Advanced setup-oriented scheduling methods

Besides the methods evaluated in the research of L&S, a meta-heuristic, a scheduling

heuristic and a dispatching rule were developed. All these methods have in consideration the

setup time, which is a critical factor in more complex environments. Next, these techniques

are presented and explained.

4.3.2.1 Genetic algorithm (GA)

The Genetic Algorithm implemented was based on the Biased random-key genetic

algorithm proposed by Gonçalves and Resende, (2011) for combinatorial problems. In this

technique, the chromosomes are represented as a vector of randomly generated real numbers

in the interval [0,1]. Then, a decoder algorithm associates it to a solution of the combinatorial

optimization in order to calculate the fitness of the solution. The association is done by sorting

the vector of random keys and then the resulting ranking of the sorted keys can represent a

sequence. The Figure 13 illustrates the decoding process described.

Figure 13: Encoding Process of the genetic algorithm

Evaluating agile scheduling methods for a job shop problem

39

The GA method implemented generates initially a population of 75 random-key vectors

which provide 75 different solutions. After computing its fitness, a tournament selection

method choses 20 solutions to produce 50 new solutions created by crossover. The

tournament selection choses randomly 2 solutions, compares them and chooses the best with a

probability of 75%. This process is done iteratively until 20 random-key vectors are selected.

The crossover process picks two random solutions of the group of 20 and computes its fitness.

Then a new solution is generated by selecting the elements of the best parent with a

probability of 70%. This way, introducing a bias on selection of each element of the new

vector, the new generated solutions are more likely to inherit characteristics of the best parent.

At the end, the new produced solutions and the parents are put together and compared.

Then half of them (35) will remain in the algorithm, while the 35 missing solutions to

continue the algorithm are generated in a new iteration. This process is done in a loop until

100 iterations are performed. Figure 14 shows a flowchart of the described process.

Figure 14: Flowchart of the genetic algorithm implemented algorithm

The parameters of the implemented algorithm were tuned on an experimental basis. The

algorithm does not perform an exhaustive search due to the fact that it would become too

time-consuming, especially if applied in dynamic schedules. Thus, the parameters were

established finding a good balance between the quality of the solutions and the time of

running.

4.3.2.2 Greedy heuristic (GH)

The greedy heuristic is a simple priority rule only applicable to instances with setup

time. This method sorts the queue by picking, in each evaluation step, the element among

those who are available with the least setup time, given the order that is processed in front of

it. When setups are sequence-dependent, the setup of each operation changes in each

evaluation step and thus the setups of all operations available to be chosen next to have to be

recalculated. This heuristic is named “greedy” since it always looks for the best element

according to the rule, and for this reason it may yield myopic solutions.

4.3.2.3 Constructive Heuristic (CH)

The constructive heuristic implemented is a scheduling method that aims at extending

the capabilities of the greedy heuristic. In fact, choosing always the order with minimum

setup may provide a worse solution in the end than if we consider the possibility of choosing

not the element with the shortest setup time, but one of the shortest.

Therefore, this heuristic generates a population of solutions with a selection method that

enables to select other elements rather than the one with the least setup time be selected. In

the end, the queue setup time of each solution is computed and the one with the shortest setup

time is selected.

Effectively, the selection method uses a similar approach to the greedy heuristic,

regarding the comparison of each element with the one that will be processed in front of it.

40

However, instead of choosing the shortest setup time, weights are calculated for each element,
f)SiTS(=Wi , in which Wi is the weight of the element i, TS is sum of the setup times of all

elements and, Si is setup time of the element i and f is the factor of greediness. Then the

probability of selection of each member is computed by normalizing the weights of the

elements. Given these probabilities, the next member of the queue is selected. It is noteworthy

that the bigger the factor of greediness, the greedier are the methods and more difficulty exits

in evolving new solutions. This parameter was defined equal to 3 in the simulation model. In

Figure 15, the pseudocode of this method is described.

Function Constructive Heuristic (OperationReference, queueOperations)

If not OrderInProcess then

Select pair (O1, O2) in queueOperations with minimum setup

InitialList.append(O1,O2)

queueOperations.remove (O1, O2)

OperationReference ← O2

Else

OperationReference ← OrderInProcess

End if

Repeat k times

List_k.append(initialList)

availOperation ← queueOperations

While availOperation >  do

totalSetup ← 0

For all op  availOperations do

setup_i = setup (OperationReference, op)

totalSetup += setup_i

End for

totalSecore ← 0

For all op  availOperations do

score_i = (totalSetup / setup_i) ^f actorGreedy

totalScore += score_i

End for

For all op  availOperations do

prob_i = score_i / totalScore

End for

Select op  availOperations according to prob values

queueSetup_k += setup (operationReference, op)

operationReference ← op

list_k.append(operationReference)

availOperations.remove(OperationReference)

End While

Select list_k with least queueSetup_k

Figure 15: Pseudocode of the Constructive Heuristic scheduling method

Evaluating agile scheduling methods for a job shop problem

41

4.3.2.4 Short setup and processing time

Setup and Processing Time (SSPT) is a dispatching rule proposed by Wilbrecht and

Prescott (1969), which can be described as modification of the Shortest Processing Time

(SPT). Effectively, SSPT is a rule that adds the setup of a job to its processing time when

determining the priorities of the orders. Then, the order with the smallest priority index is

selected to be processing next According to Pickardt and Branke (2012), this rule is more

effective in minimizing the flowtimes than either the SPT or the GH.

4.3.2.5 Minimum Marginal Setup Time (MMS)

Minimum Marginal Setup Time (MMS) is dispatching rule, firstly suggested by Arzi

and Raviv (1998). This rule is slightly more sophisticated than GH, since it considers more

operational variables that just the setup time. In fact, in this methods the job’s required setup

time is divided by the number of waiting operations to determine its priority. Then the job

with the shortest marginal setup time is selected to be processed. Thereby, this rule combines

two objectives, focusing not only on the orders with a short setup time to improve the mean

flow time, but also looks at reducing the time-in-queue by taking into consideration the longer

total queue-waits jobs.

4.3.2.6 Shortest Normalised Setup and Processing Time (SNSPT)

Shortest Normalised Setup And Processing Time (SNSPT), proposed by Kochhar and

Morris (1987) is a rule, in which both processing time and setup time are divided by their

respective average values in the queue and weighted before being summed up to form the

priority index. In fact, this rule enables to adjust the method to the circumstances where it is

applied by giving preference to one of the included variables. However, the authors do not

provide any guidance on how to derive properly the weights of the rule and, thus, in the case

of this project, the weights of processing time and setup time were considered equal.

4.4 Sequence-dependent setup times’ generation

In order to create comparable problems, the generation of setup times for the set of 53

instances should consider not only the relative relation between the sizes of the setup times

and processing times of the real-word instances, but also the mean processing time of each

instance for which it is generated. Thereby, the setups modelling involved two phases. In the

first, it was computed the average proportion of setup times and processing times of the real-

word instances. Secondly the setup times was generated through the construction of a matrix

of setups for each one of the 53 instances studied by L&S.

In the first phase, it was computed the mean processing times and setup times of each

real-world instance as well as its standard deviations. Then calculated the mean proportion of

the setup times and processing times and the proportion of its standard deviations was

calculated. In fact, it was verified that the setup times are relatively large in comparison with

the processing time, since the calculated proportion for the times was 1,1624=)
PT

ST
p(and for

the deviations 2357,0=)
stdev(PT)

stdev(ST)
p(.

In the second phase, the mean processing time and its standard deviation were

calculated for all the 53 instances. The dispersion of the obtained values indicated that 48

problems have similar mean processing times and standard deviation, 3 of the remaining also

share identic values and the others have very distinct mean processing times. Figure

16displays the dispersion of the obtained values.

42

Figure 16: Dispersion of the processing time of the set of 53 instances

Therefore, it was necessary to generate four different distributions to sample the setup

times’ values for all the instances. It was used a gamma distribution to sample random

matrices for each problem.

Since the purpose of this research is to evaluate the effect of the setup times as a

differentiator factor of the problems, four setup levels were generated. The first keeps the

same proportion of the setup and processing times and the proportion of the standard

deviation of the real-world instances. The second level considers the proportions multiplied

by a factor of 0,75; the third multiplies these proportions by 0,5; and the fourth by 0,25. In

these circumstances, four matrices of setups were generated for each problem, which results

in a total of 212 setup times’ matrices generated.

4.5 Validation of the simulation model

This section presents the evaluation tests and analysis executed to validate the

simulation model. The validation was done by comparing the results of the scheduling

methods implemented for the set of 53 instances with the results provided by the research of

Lawrence and Sewell (1997). Then, the quality of the results of the simulation and the

possible causes behind some differences are discussed.

The principal results of the experiments are summarized in Figure 17, which reports the

mean makespan performance as a fraction of the optimal makespan of the corresponding

problem for all instances. The top graphics display the results from the research of L&S, and

the results obtained are showed in the bottom of the figure. The mean performance is

represented as a function of the uncertainty level, by gradually increasing cv.

Evaluating agile scheduling methods for a job shop problem

43

Figure 17: Comparison of the mean makespan performance fixed (left) and dynamic (right) sequence scheduling

methods in the research of L&S (top) and in obtained results (bottom).

Analysing the graphics, it is possible to verify that they have a similar shape, which

indicates that the simulation is providing similar results. However, the introduction of

uncertainty generates different conditions for the problems, and the effect of stochasticity can

induce some divergences in the final results.

Therefore, a rigorous comparison between the results from the simulation and those

from the research of L&S was made only for the deterministic case to have fixed reference

values to compare with. Since for the deterministic case, the results of the methods were equal

for static and dynamic approaches, it was only necessary to compare one of the approaches.

The results obtained in the simulation and the results of L&S are put together in Table

5. On the right side of this table, the performance of methods evaluated is ranked.

Table 5: Results obtained for the various scheduling methods and their differences from the paper of L&S

Differences Ranking

Scheduling

Method

Results

obtained

Paper form

L&S
Differences

Results

Obtained

Paper form

L&S

MWF 1,120 1,113 0,007 1 1

LTR 1,145 1,137 0,008 2 2

LSD 1,191 1,165 0,026 4 3

MOR 1,168 1,199 0,031 3 4

FCFC 1,208 1,199 0,009 5 4

SPT 1,220 1,215 0,005 6 6

LPT 1,328 1,317 0,011 7 7

The analysis of Table 5 suggests that there are slight differences between the results

obtained and those from the research of L&S. Although the differences are residual, it is

believed they can be explained by two factors. First, as stated in section 4.2.3, the lower

44

bounds used to compute the fractional value of the performance are, in some cases, smaller

than those used by L&S. Thereby, it is expected that the value of the mean performance of the

scheduling methods can be marginally bigger than in the results of L&S, which happens for

almost all the rules tested except for MOR.

The second possible explanation of the differences is the fact that there is no second rule

to apply in cases of a draw between the priorities of orders. Since, in these cases, no rule is

explicitly applied in the research of L&S, FCFS was the decision criteria implemented.

However, FCFS is a naive rule, which essentially provides random sequences, and thus there

may be some differences in the scheduling methods where more draws happen. Effectively,

MOR is the method more subjected to these situations and it is the one which registers the

bigger difference. It is also believed that this fact can be the cause of the incoherency of the

fractional performance of MOR be bigger in the results of L&S than in the simulated ones.

Finally, it is noteworthy that despite the existence of these small differences, the relative

performance difference between the methods remains almost the same. In fact, according to

the right side of Table 5, only two rules switch positions in the performance’s ranking of the

methods.

In conclusion, the differences found between the simulation and the research of L&S are

marginal and can be explained. Therefore, the simulation seems not to have external factors of

deviation and thereby it is validated.

Evaluating agile scheduling methods for a job shop problem

45

5 Analysis of results

This chapter presents the simulation results obtained and a discussion about their

analysis in light of the research topics of this dissertation. It is divided into two major

sections. The first addresses the first set of experiments, where techniques used in the research

of L&S and the more advanced setup-oriented methods are evaluated for the real-word

instances. The second section describes the results and analysis of the second set of

experiments, where the same methods are evaluated for four setup levels generated for the set

of 53 instances of the research of L&S.

5.1 First experiments’ test

The first experiments’ test aims at studying whether the conclusions of the research of

L&S remain valid for larger and more complex problems with sequence-setup times. More

specifically, in these tests either the relative utility of dynamic methods over static, or the

evaluation of the performance of agile scheduling methods, or the quality loss of

decentralized methods are studied in a more complex problem. Moreover, more advanced

setup-oriented methods are implemented to compare their performance with those of the

techniques used by L&S.

In this set of tests, the only optimality criteria used is the makespan and the results are

presented as a fraction, in which the nominator is the makespan and the denominator refers to

the quasi-optimal solution for the respective problem. Thereby it is possible not only to

compare the performance of problems with different sizes and processing times, but also to

perceive the loss of quality of agile methods against the centralized ones.

In these experiments, both static and dynamic approaches are tested and compared for

all the scheduling methods already mentioned.

5.1.1 Results

Table 6 displays the results obtained for all the scheduling methods for both static and

dynamic approaches. At the bottom of the table, the mean performance of the more

sophisticated centralized heuristic is exhibited. Each cell refers to the mean performance of all

the five instances evaluated.

46

Table 6: Results obtained for each scheduling method in the first set of experiences

Results

Method 0 0,2 0,4 0,6 0,8 1

FCFC/DYN 1,444 1,462 1,459 1,476 1,502 1,532

SPT/DYN 1,501 1,525 1,540 1,552 1,585 1,624

LPT/DYN 1,496 1,515 1,506 1,532 1,541 1,591

LSD/DYN 1,431 1,462 1,443 1,471 1,488 1,512

MWF/DYN 1,443 1,450 1,449 1,465 1,501 1,514

LTR/DYN 1,502 1,509 1,512 1,516 1,552 1,568

MOR/DYN 1,440 1,438 1,434 1,440 1,461 1,493

SSPT/DYN 1,444 1,373 1,378 1,400 1,409 1,444

MMS/DYN 1,012 1,031 1,066 1,102 1,153 1,148

SNSPT/DYN 1,158 1,168 1,203 1,212 1,269 1,306

GA/DYN 1,390 1,431 1,423 1,378 1,470 1,541

GH/DYN 1,047 1,061 1,124 1,106 1,166 1,249

CH/DYN 1,046 1,056 1,080 1,119 1,145 1,239

FCFC/STAT 1,444 1,443 1,446 1,465 1,484 1,563

SPT/STAT 1,501 1,510 1,520 1,559 1,613 1,610

LPT/STAT 1,496 1,532 1,565 1,606 1,660 1,725

LSD/STAT 1,431 1,445 1,466 1,492 1,511 1,570

MWF/STAT 1,443 1,446 1,469 1,480 1,511 1,532

LTR/STAT 1,502 1,529 1,558 1,599 1,646 1,665

MOR/STAT 1,440 1,447 1,442 1,441 1,471 1,497

SSPT/STAT 1,444 1,475 1,468 1,515 1,528 1,596

MMS/STAT 1,012 1,035 1,081 1,109 1,147 1,195

SNSPT/STAT 1,158 1,199 1,212 1,229 1,292 1,350

GA/STAT 1,390 1,476 1,497 1,526 1,546 1,594

GH/STAT 1,046 1,065 1,113 1,149 1,201 1,254

CH/STAT 1,049 1,067 1,106 1,133 1,201 1,295

OPT/STAT 1,000 1,023 1,064 1,099 1,153 1,192

5.1.2 Discussion of the results

The discussion of the results from the first experiments’ set aims at providing answers

to the three above mentioned main objectives of these tests.

Regarding the study of the relative utility of dynamic over static methods, it is verified

that dynamic techniques do not demonstrate a clear advantage over static as L&S present in

their research. In fact, the difference between the slope of dynamic techniques and static is

considerably lower than the displayed in the results of L&S, which indicates that static

methods do not deteriorate so quickly in the real-world case problems in comparison with

dynamic methods. This diminishing of the relative utility of dynamic methods can be

explained by loss of processing times’ proportional importance to influence the makespan,

due to the introduction of setup times. In other words, the setup times dilute the importance of

processing times as an influence factor of the makespan and thus, their variations are not so

explicitly revealed in the final makespan. Figure 18 displays the comparison of the mean

performance between static and dynamic methods for both the instances of L&S and those

from real-world case.

Evaluating agile scheduling methods for a job shop problem

47

Figure 18: Difference of mean performance of static and dynamic methods for instances of L&S(left) and real-

world instances (right)

Concerning the evaluation of the scheduling methods’ performance, the results enable to

understand that GH, CH, MMS and SNSPT methods have significantly better performance

than the other applied rules. In fact, the curve that characterises the performance of these

methods is very close to the orange line of Figure 19, which represents the performance of the

near-optimal centralized algorithm. This means that local and decentralized setup-oriented

methods are able to achieve comparable or even superior results than central and complex

algorithms.

These remarks suggest that setup time is a critical factor in problems with sequence-

dependent setup times. Figure 19 displays the mean performance of static and dynamic

methods for the real-world instances. It shows that MMS is the best performing method for

almost all uncertainty levels.

Figure 19: Mean performance of static and dynamic methods for real-world instances

An analysis of the rules that are not setup-oriented enables to verify that the relative

performance of the methods seems to maintain quite similar to the results of L&S. In truth, as

in the research of L&S, MOR, MWF and LSD are the best performance rules, while SPT and

LPT generate the worst schedules. These results suggest that considering the following work

of the jobs, either the number of machines or the amount of processing time remaining, seem

to be an important property of a scheduling rule. In contrast considering the current

processing time does not benefit the performance of the method. These results can be

explained by the fact that uncertainty is introduced through the variation of processing times

and thus rules that focus only on the current processing time are more subjected to the effects

of variations. Table 7 puts together the mean results from both sets of problems and presents

the relative ranking of each method.

48

Table 7: Mean performance of no setup oriented methods for real-word instances and in L&S research

Real-world Instances Instances from L&S

Method Mean Performance Ranking Mean Performance Ranking

FCFC 1,479 4 1,384 5

SPT 1,555 7 1,407 6

LPT 1,530 6 1,560 7

LSD 1,468 2 1,372 4

MWF 1,470 3 1,295 1

LTR 1,527 5 1,351 3

MOR 1,451 1 1,350 2

Finally, the first experiments’ set aims at investigating the loss of quality of agile and

decentralized methods in comparison with central and more sophisticated scheduling

solutions. For that purpose, the makespan of the agile methods of each problem is compared

with the performance of the complex and centralized algorithm. The deterioration of the

solution quality is given by the difference between the fractional mean performance in all

levels of uncertainty and 1. Figure 20 displays the deterioration of the solutions for the

uncertainty levels simulated. It shows that the level of deterioration of the aggregate

performance of the rules decreases as the uncertainty increases. Furthermore, this figure

demonstrates that the loss of quality of setup-oriented methods (around 15%) is significantly

lower than that of other techniques (around 40%). Finally, at a desegregated level, Figure 20

shows that the performance of the results of the best performing evaluated method (MMS) can

achieve equal or better results than the decentralized algorithm for high uncertainty levels (cv

= 0.8 or cv = 1.0).

Figure 20: Loss of quality of scheduling methods in real-world instances and in the research of L&S

To summarize, there are clear differences between the two simulated sets of problems

caused mainly by the introduction of sequence-dependent setup times. In fact, it is verified

that the introduction of setup times dilutes the processing times’ uncertainty, diminishing the

divergence of performance of static and dynamic sequences. Furthermore, the results show

that the best performing scheduling methods are setup-oriented, revealing a significant

advantage over the techniques studied by L&S. Finally, the loss of quality of scheduling

solutions provided by agile and decentralized methods seems fairly large if all the studied

techniques are included. However, it reduces as the uncertainty level increases. It is also

noteworthy that a more desegregated view, including only the setup-oriented methods, shows

a reasonable degree of solution’s deterioration. Focusing only on the best decentralized

performing method, it can be concluded that it achieves comparable or superior results than

the centralized and complex algorithm.

Evaluating agile scheduling methods for a job shop problem

49

These observations strengthen the initial hypothesis that setup times are a critical factor

in scheduling for problems with sequence-dependent setup times. In the second experiments’

set, the influence of setup times is deeply explored.

5.2 Second experiments’ test

The instances of the real-world case and the set of 53 instances studied by L&S have

intrinsic differences, which are clearly reflected on the performance of the evaluated

scheduling methods. As stated in the previous section, setup-oriented methods techniques

obtained significantly better performances than the others for the real-world instances.

Thereby, it is important to understand the impact of the setup times in the selection of the best

method, since sequence-dependent setup times are the most relevant differences between the

problems. It is equally important to understand whether this discrepancy of performance is

only caused by the introduction of sequence-dependent setup times, or there are other factors

that should be taken into account.

Therefore, sequence-dependent setup times were generated for the instances

investigated by L&S in order to study the comparable problems with the real-world instances.

Four levels of setup times were created to better perceive their effect over the performance of

the methods. It is noteworthy that since the effect of the static and dynamic schedules was a

topic already discussed in the previous section, this part only focuses on dynamic approaches

to evaluate other research questions.

5.2.1 Results

The experiments for each setup level were simulated in the exact same conditions as

previous experiments’ set. However, previously the results were displayed as the fraction

value of the makespan and the optimal or quasi-optimal solution for the respective problem,

and now those values are not known. Thereby, the lower bound of each problem for each

setup level was computed using a simple method in which the lower bound is the maximum

machine makespan of the problem, considering that each operation is in the machine the

processing time plus the minimum possible setup time. It is noteworthy that to keep the

coherency and do a fair comparison of the results, the same lower bounds were computed for

the real-world instances.

The average of the mean performance obtained at each uncertainty level for all setup

levels and for the real-world instances is summarized in Table 8.

Table 8: Mean scheduling methods’ performance of all levels of uncertainty methods for each setup level

Method SL = 0,25 SL = 0,5 SL = 0,75 SL = 1 Real-world Case

FCFS 1,565 1,593 1,619 2,233 1,781

SPT 1,589 1,629 1,661 2,274 1,869

LPT 1,709 1,729 1,740 2,357 1,841

LSD 1,557 1,598 1,630 2,215 1,765

MWF 1,467 1,500 1,523 2,073 1,768

LTR 1,513 1,543 1,568 2,131 1,835

MOR 1,512 1,540 1,566 2,160 1,745

SSPT 1,577 1,617 1,648 2,235 1,692

MMS 1,492 1,516 1,537 2,098 1,306

SNSPT

GA

1,586

1,578

1,625

1,621

1,654

1,572

2,233

2,227

1,467

1,782

CH 1,599 1,621 1,629 2,213 1,353

GH 1,600 1,622 1,630 2,217 1,342

50

Figure 21 puts together the four uncertainty levels to display the mean performance of each

method for a given level processing times’ uncertainty.

Figure 21: Mean performance of each scheduling method for each setup level

5.2.2 Discussion of results

The discussion of the results from the second experiments’ test focuses on the

investigation of the influence of sequence-dependent setup times in the performance of the

scheduling methods.

Analysing the global performance of the rules through the observation of Figure 21, it is

verified that for a given setup level the slope of the curves reduces as the level of setup

increases. This indicates that the effect of the processing times’ uncertainty is less significant

for higher levels of setups due to the loss of relative importance of processing time over the

final makespan.

Focusing on the relative performance of the rules, the results indicate that there are not

relevant differences from each setup level, and the relative performance of each method is

very stable.

One interesting observation is that GH and CH, which are rules that only focus on setup

times, seem to improve gradually for higher levels of setups. Despite in the real-world case

these methods showed significantly better performances over the no setup time oriented

method, the same conclusions cannot be taken for these experiments. Thereby, sequence-

dependent setup times seem to be an important factor for the selection of the scheduling

method but it is not as critical as expected.

Effectively, the results of the second experiment show that MWF is always the best

performance rule in all levels of setup, MMS, LTR and MOR being the following best

performing techniques. It is noteworthy that all these methods consider the future work of the

jobs, giving priority to those which have either more time to be processed or more machines

Evaluating agile scheduling methods for a job shop problem

51

to visit. This analysis suggests that the work in following machines is important to the

selection of the methods.

In contrast, SPT and LPT have the worst performances for almost all setup levels. Also,

other processing time oriented methods, such as SSPT and SNSPT do not have very good

relative performances. It is also noteworthy that LSD is the method which reduces the most its

relative ranking. These observations indicate that processing time is not a good parameter to

focus on the selection of the scheduling technique. Figure 22 displays the relative ranking of

mean performance of the studied scheduling methods.

Figure 22: Relative ranking of scheduling method for each setup level

In fact, the conclusions taken in the of the real-word instances is quite different, since

the performance of setup-oriented methods was considerably better than the others which do

not occurs in this experiment.

Nevertheless, it is evident that setup times influences the selection of the method since,

the higher the setup times, the more important setups are, even though in these set of

experiments, setup oriented methods do not show very good performances, mainly for lower

setup levels. This indicates that there may be other attributes that differentiate the problems

and that are as critical or possibly more critical for the selection of the best scheduling method

to apply. Comparing the performance of no setup-oriented methods, MWF and MOR are also

the best performing methods for the real-world instances, which strengthen the idea that

future work of jobs should be considered on the selection of the method. Another fact that

supports this idea is the performance of MMS, which is one of the best scheduling techniques

for both the instances studied by L&S and the real-world case. This rule derives from both

setup and following work of job.

In fact, the instances studied by L&S and the real-world problems have clear differences

which can justify the difference of quality of setup-oriented methods. Concerning the number

of orders, the real-world instances have a considerably higher number of orders per machine

which makes that each queue have a higher number of orders to schedule at a given time.

Since the methods are applied locally, having a higher number of orders, setup-oriented

methods have a large probability to find good solutions in terms of the queue total setup time.

Thus, in problems with high number of orders per machine setup-oriented methods are more

likely to obtain good solutions.

Regarding the loss of quality of the scheduling methods, it is noticeable that for higher

setup times the performance of the methods deteriorates considerably. In fact, as shown in

Figure 23 quality decreases gradually with as setup times increase. It is also possible to

52

visualize that setup-oriented methods have a higher loss of quality for the lower setup levels

(0.25 and 0.5), but lower for higher setup levels (0.75 and 1) than no setup-oriented methods.

This indicates that for a high portion of setup relatively to processing time, decentralized

methods should be investigated in more detail, when compared to centralized ones.

Figure 23: Loss of quality relatively to the most optimist lower bound at each setup level

In order to have another indicator about the performance of each scheduling method,

another optimality criteria were employed: the percentage of total working time of the

machines. As it was mentioned in section 3.3.2, makespan can be myopic, which means that

optimizing one machine does not assure that the remaining machines are optimized. Thereby,

by computing the percentage of time that all the machines are actually working, it is possible

to have perspective information about whether the methods are being efficient in certain time

period or not. This measure is especially critical in a real word case, where the schedulers

should not provide a one-shot schedule with an excellent performance, but that disregards a

right balance between the utilization of machines. Instead, it is necessary to generate a

schedule with good performance and properly balanced, so it can accommodate future orders

which will arrive to the shop-floor. The results obtained with this metric as well as the relative

ranking of the methods for each level of setup are displayed in Table 9.

Table 9: Percentage of working time and relative ranking of each method for the four setup levels investigated

Method SL = 0,25 SL = 0,5 SL = 0,75 SL = 1

FCFC 0,7849 8 0,7353 10 0,7020 7 0,6769 3

SPT 0,7947 3 0,7390 3 0,7014 10 0,6733 11

LPT 0,7700 13 0,7270 13 0,6961 13 0,6720 13

LSD 0,7941 4 0,7392 1 0,7020 8 0,6741 8

MWF 0,7834 11 0,7333 11 0,6996 12 0,6737 10

LTR 0,7802 12 0,7325 12 0,6998 11 0,6752 7

MOR 0,7849 9 0,7366 8 0,7021 6 0,6766 5

SSPT 0,7952 2 0,7388 4 0,7019 9 0,6729 12

MMS 0,7867 6 0,7371 7 0,7039 1 0,6778 1

SNSPT 0,7953 1 0,7391 2 0,7032 4 0,6739 9

GA 0,7923 5 0,7378 6 0,7023 5 0,6759 6

CH 0,7851 7 0,7364 9 0,7034 3 0,6774 2

GH 0,7844 10 0,7381 5 0,7036 2 0,6767 4

An analysis of this table enables to perceive that the bigger the setup level, the worse is

the performance the schedules for this optimality criteria. In fact, when setup times’ relative

Evaluating agile scheduling methods for a job shop problem

53

proportion to processing times increases, machines spend more time being prepared than they

are processing in a relative scale.

Another important observation is that setup-oriented methods, such as CH, GH and

MMS increase their relative performance, since they prioritize orders with less setup and thus

machines will try to minimize the times of preparation to being actually producing. In

contrast, processing times’ oriented methods decrease their performance as setup level

increases. In fact, giving preference to shorter orders, makes that more orders are processed in

a given time period and more setups will be done. Thereby, the total setup time of the system

is increased and the percentage of working time reduces.

It is also interesting to observe that MWF, that performed reasonably well in both the

real-wold instances and the setup of problems of L&S, has a poor performance regarding this

metric. Contrarily, MMS which is the best performing rule for real-world instances and one of

the bests in the second experiments’ tests, can perform quite well in this criterion. In fact, its

relative performance increases as the setup time increase, since it considers the setup time.

To summarize, in the previous experiments setup-oriented-methods showed

significantly better performances over other techniques, but a deeper analysis of the impact of

setup times was necessary. In this second set of experiments, four levels of setups were

evaluated and the results evidenced that, effectively, setup times affect the performance of the

scheduling methods. It was verified that that relative ranking of setup-oriented methods, such

as CH and GH, tend to increase as the setup level increases. Furthermore, it was observed that

the quality of the scheduling solutions reduces considerably at a certain level of setup, which

indicates that setup times should be wisely studied when opting for decentralized instead of

centralized methods.

However, the implications of setup times are not so large as expected. In fact, for the

same proportion of setup and processing time the setup-oriented methods did not evidence a

great advantage over the other techniques as they did in the first experiments of the real-world

case. Actually, the analysis of the results showed that there are other factors, such as the

following work of jobs, that may be as critical as setup times for the performance of the

methods, since rules like MOR and MWF showed good performances for both the real-word

instances and the instances of L&S. This idea is further supported by the fact that one of the

best performing rules for both experiments was MMS, which considers not only the setup

time, but also the number of machines remaining of given a job.

Concerning the optimality criteria of production capacity, results enabled to understand

that scheduling rules, that have great performances in makespan, may not guarantee the best

balance between the machines. This is evidenced by the performance of rules like MWF,

which showed good results in terms of makespan, but does not assure a sustainable schedule

in a continuous production horizon. This can have serious implications in a real case schedule,

which must be prepared to accommodate new arriving orders.

54

Evaluating agile scheduling methods for a job shop problem

55

6 Evolved Methods

The investigation performed in the first experiments’ set evidenced that the different

characteristics of the problems can deeply influence the performance of scheduling methods.

More specifically, setup-oriented methods showed significantly better performances over the

other techniques when applied to real-world problems with sequence-dependent setup times.

The study of the second experiments’ set aimed at understanding the influence of setup

times in the performance of scheduling methods applied to the problems of the research of

L&S, with generated sequence-dependent setup times. However, in contrast to what was

initially expected, the performance of sequence-dependent methods was not as good as in the

real-world case instances. In fact, an improvement of performance of these methods as setup

times increase was verified, but other techniques that perform well in L&S research, maintain

their good performances even with high levels of setup time. Therefore, besides this

parameter, other factors are believed to influence the selection of the best scheduling method,

depending on the specific characteristics of the problem.

In order to develop a rule which considers several characteristics and can easily adapt

to the applied environment, a new adaptive method was evolved using genetic programming.

In this section, the design of the method is presented as well as the obtained rule. Next, the

method is applied to the 53 instances of L&S and the results are compared with those

obtained in the previous experiments.

6.1 Method design

The development of the genetic programming model was done using Heuristic Lab,

which is a software that provides a framework to develop heuristic and evolutionary

algorithms for a wide range of applications. In this research, the purpose is to develop a

simulation optimization technique that uses simulation as an evaluation function of the quality

of the methods generated by the evolutionary algorithm. Thus, the genetic programming

model developed in Heuristic lab, which runs the optimization algorithm, was connected to

Anylogic, where the solutions scheduling methods created were assessed.

The genetic programming model in heuristic lab is composed by a genetic algorithm, in

which solutions are encoded by symbolic tree, which represents mathematical expressions.

Fundamentally, these expressions represent functions used to evaluate each job in the queue,

associating a priority index to each member. Thereby, a new queue is generated by sorting the

jobs in queue in the descending order of its priority indexes. It is also important to refer that

each generated method is applied dynamically, which means that every time a new job arrives

to the queue, the queue is revaluated by the scheduling method.

The objective of this genetic programming model is to evolve a simple and clear agile

method, that adapts to various problems characteristics, and thus only simple operations were

included. Consequently, the symbolic tree only involves the four main arithmetic functions:

56

addition, subtraction, multiplication, and division; The terminals can only include four

variables: current processing time(Pt), number of operations remaining(NOps), remaining

processing time(RPt) and setup time(St). In the selection of these variables the goal was to

include the ones enabling the genetic programming model to generate any rule that was

investigated by the two experiments ‘set. In truth, the chosen four variables only do not allow

the model to generate SNSPT and LTR which considers other operators as the average.

Regarding the size of the symbolic tree, the algorithm limits the generation of solutions to tree

with maximum depth 5 and maximum length 32.

Since the simulation is relatively computational heavy, a small group of instances was

selected to be used in the genetic programming. This selection aimed at representing the

whole range of problems and thus it includes either instances with large number of jobs, or

large number of machines or even a large proportion of jobs to machine. Thereby, three

instances of L&S and of the real-wold case were selected. Furthermore, to represent effect of

stochasticity in processing times, the medium level of uncertainty (cv = 0.6) was introduced,

simulating 15 perturbed problems for each instance. To include the influence of setup times

on the performance of the methods, each instance of L&S was simulated considering both the

highest level of setup times (SL=1) and the lowest level (SL=0,25). At the end, for each

instance of L&S 30 problems are evaluated and 15 for the instances of the real-world case,

which results in 120 problems are assessed.

The parametrization of the genetic algorithm was done performing small sets

experiments with a reduced number of instances, where some modifications of the parameters

are tested. Also, the parameterization took into consideration the orientation provided by the

paper Tsai and Fu (2014). The final algorithm uses a population size of 30, with 2 elite

members and performs 12 generations. It considers a crossover probability of 90% and a

mutation probability of 15 %. This parameterization results in 43200 simulation’s runs

necessary.

6.2 Rule evolved

The genetic programming model generated a rule that only includes 3 of the 4 possible

variables, which demonstrates that processing times seem not to be relevant to improve the

performance of the methods. The rule created is displayed in Figure 24.

Figure 24: Evolved rule using Genetic Programming

The Figure 25 displays the performance of the genetic algorithm, and it possible to

visualize the convergence of the average quality of the solutions to the best-found solution. In

fact, the average quality of the rules quickly approximates of the best-found, since from the

generation 7, the average quality is lower than 1.5.

Evaluating agile scheduling methods for a job shop problem

57

Figure 25: Quality of the solutions evaluated in the Genetic Programming model

6.3 Tests and discussion of results

The evolved rule was applied in all the 53 instances for both the highest setup level and

the lowest setup level and for the 5 instances of the real-world case. The obtained results for

some of the best performing rules and the worst in each group of problems are displayed in

Figure 26.

Figure 26: Mean performance of the scheduling method for the benchmark instances with setup level of

0,25(left), 0,5(center) and for the instances of the real-world case (right)

Analysing Figure 26 it is possible to understand that the evolved rule achieved generally

good results in terms of makespan performance for each one of the three groups of problems

where it was applied. More precisely, for the benchmark instances with setup level of 0,25, it

is the second best performing rule for all levels of uncertainty. In the case of setup level of 1,

the evolved method achieved the best performance with a significant difference from the other

methods. Finally, concerning the real-world instances, the rule demonstrates to be very robust

to processing times’ uncertainty, since its performance does not deteriorate significantly as the

uncertainty increases. In fact, for the lower levels of uncertainty, the evolved method

performs well, but it cannot achieve the results obtained by MMS, CH or GH. However, as

uncertainty increases, the performance of the evolved method converges to the performance

of these methods.

To conclude, the rule generated using the genetic programming model achieves high

performances even in presence of both sequence-dependent setup-times and processing times’

uncertainty.

58

Evaluating agile scheduling methods for a job shop problem

59

7 Conclusions and future work

The new demand requirements forced by the global economy, and the increasing

complexity of productions systems due to the vision of the fourth Industrial revolution impose

new requirements for manufacturing. Traditional production process modelling techniques

rely heavily on central decision-making structures, which present numerous disadvantages

when they must deal with real systems, whose agility and responsiveness are fundamental to

manage all kind of disturbances. Decentralization of decision-making may be an interesting

solution to overcome these issues.

In light of the research question exposed in section 1.2, this dissertation extends the

work of L&S, who evaluated centralized and decentralized scheduling methods for a range of

benchmark instances, considering processing time variation. In this project, the same

methodology was applied to real-world instances to verify whether the conclusions of L&S

remain valid for more complex problems, namely with introduction of sequence-dependent

setup times. For that propose an adaptive agent-based simulation model was developed to

evaluate the methods proposed by L&S. Additionally, more advanced setup-oriented methods

were implemented and tested in problems with different characteristics of jobs and machines.

Two sets of experiments were performed. In the first the scheduling methods were applied to

static and dynamically to the complex instances of a real-world case. In the second, the impact

of sequence-dependent setup times in the performance of the agile scheduling methods was

investigated, by generating four levels of setups for the benchmark instances studied by L&S.

This enabled to perceive the evolution of the scheduling methods’ performance with the

gradual increment of setup times, establishing a parallel comparison with the results in the

real-world instances. Finally, a genetic programming model was implemented to develop an

agile and responsive scheduling methods which aims at weighting the most relevant attributes

according to the intrinsic characteristics of the problem where it is applied.,

The first research question “Which cases motivate a decentralized decision-making

structure?” has been addressed comprehensively by assessing the advantages and

disadvantages of centralized and decentralized decision structures and making a survey of the

best fit scenarios and applications of decentralized systems. It is observed that highest profit

of decentralize decision-making structures is achieved when applied to highly complex

manufacturing systems, where large amounts of data are generated, such as the semiconductor

industry.

The second research question “What is the quality loss of decentralized scheduling

methods when compared to centralized solutions?” has been treated in the first set of

experiments, where the scheduling methods were applied to the real-world instances. The

results showed that as uncertainty increases, the loss of quality of decentralized methods

diminishes. It was also concluded that despite the average loss of quality of decentralized

methods was fairly large (around 25 %), a more desegregated analysis revealed that setup-

oriented methods had an acceptable loss of quality (around 15%). The results were even more

satisfactory when analysing the best performing method, which exhibited better performances

60

than the complex and centralized technique for high uncertainty levels, and comparable

performances at the lower levels.

The third research question is about the advantage of performance of dynamic over

static scheduling methods and it was tackled in first set of experiments. In fact, in more

complex and larger instances, with sequence-dependent setup times, the advantage of using

dynamic methods was lower than the results provided by L&S, even in high levels of

processing times’ uncertainty. This is related to the fact that setup times reduce the

importance of processing times as an influence factor of the makespan and thus, their

variations are not so explicitly revealed in the final performance.

Regarding the fourth research question, about the implications of sequence-dependent

setup times in the quality of the solutions of decentralized and agile scheduling methods, the

first set of experiments enabled to verify that setup-oriented methods have significantly better

performances over the methods investigated in the paper of L&S. In fact, MMS is the best

performing method for almost all uncertainty levels. Concerning the methods investigated by

L&S, MOR and MWF showed good relative results, as it concluded in the analysis of L&S.

The second experiment’s set enabled to perceive that the performance of setup-oriented

methods improves with the level of setup, even though these methods did not show results as

good as when applied to the real-world instances. Effectively, rules who perform well without

setups, such as MOR and MWF and MMS were the ones who perform the best.

The fifth research question “Are sequence dependent setup times a critical factor when

optimizing for decentralize methods?” has been addressed in the second set of experiments.

The observation of the results showed that the performance of setup-oriented methods

improves as the setup level increases, which indicates that setup times influence the

performance of the scheduling methods. However, even for the high setup levels, the best

performing rules still were rules which consider other attributes besides setup times, such as

the number of operations remaining or the processing time reaming. This indicates that other

characteristics of the problem, besides setup times, are also critical to the selection of the best

scheduling method. Regarding the loss of quality of decentralized and agile methods, the

second set of experiments showed that as setup level increases, the performance of

decentralized and agile methods deteriorate relatively to the lower bound solutions of the

problems, which means that in presence of high level of sequence-dependent setups relatively

to processing times, the choice for decentralized methods needs to be evaluated carefully.

The last research question, about the best performing methods in presence of sequence-

dependent setup times, has been addressed in both the first and the second sets of

experiments. In fact, in the first set of experiments MMS has shown to be the best performing

rule, but other setup-oriented methods, such as CH and GH, also showed good results. In the

second experiments set, rules which consider the future work of the jobs are the ones which

perform the best. More precisely, MWF, MOR and MMS were the best performing methods.

Finally and despite the heavy computational effort, the evolved method using the

genetic programming technique showed not only a good behavior in presence of large

sequence-dependent setup times, but also a good robustness against processing times’

uncertainty.

In the scope of this dissertation, the influence sequence-dependent setup times was

assessed as the critical factor to impact the performance of scheduling methods in complex

manufacturing environments. In a broader research, it would be relevant to explore other

characteristics of the problems to assess their implications on the performance of the

scheduling methods. Moreover, other agile decentralized methods should be evolved to

achieve comparable performances to those of centralized methods, even at low uncertainty

levels, motivating the choice of decentralization.

Evaluating agile scheduling methods for a job shop problem

61

References

Adams, J., Balas, E. and Zawack, D. (1988) ‘The Shifting Bottleneck Procedure for Job Shop

Scheduling’. Management Science, 34(3).

Aelker, J., Bauernhansl, T. and Ehm, H. (2013) ‘Managing complexity in supply chains: A

discussion of current approaches on the example of the semiconductor industry’, Procedia

CIRP. Elsevier B.V., 7, pp. 79–84. doi: 10.1016/j.procir.2013.05.014.

Anylogic Web Page (2017). Available at: https://www.anylogic.com/use-of-simulation/agent-

based-modeling/ (Accessed: 25 June 2017).

Applegate, D. and Cook, W. (1991) ‘A computational study of the job-shop scheduling

problem’, ORSA Jounal on Computing, 3(August 2015), pp. 149–156. doi:

10.1287/ijoc.3.2.149.

Arzi, Y. and Raviv, D. (1998) ‘Dispatching in a workstation belonging to a re-entrant

production line under sequence-dependent set-up times’, Production Planning & Control,

9(7), pp. 690–699. doi: 10.1080/095372898233696.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S. and Uzsoy, R. (2005) ‘Executing

production schedules in the face of uncertainties: A review and some future directions’,

European Journal of Operational Research, 161(1), pp. 86–110. doi:

10.1016/j.ejor.2003.08.027.

Barzegar, B., Motameni, H. and Bozorgi, H. (2012) ‘Solving flexible job-shop scheduling

problem using gravitational search algorithm and colored Petri net’, Journal of Applied

Mathematics, 2012. doi: 10.1155/2012/651310.

Bean, J. C., Birge, J. R., Mittenthal, J. and Noon, C. E. (1991) ‘Matchup Scheduling with

Multiple Resources, Release Dates and Disruptions’, Operations Research, 39(3), pp. 470–

483. doi: 10.1287/opre.39.3.470.

Blackstone, J. H., Phillips, D. T. and Hogg, G. L. (1982) ‘A state-of-the-art survey of

dispatching rules for manufacturing job shop operations’, International Journal of Production

Research, 20(1), pp. 27–45. doi: 10.1080/00207548208947745.

Blum, C. and Roli, A. (2003) ‘Metaheuristics in combinatorial optimization: overview and

conceptual comparison’, ACM Computing Surveys, 35(3), pp. 189–213. doi: 10.1007/s10479-

005-3971-7.

62

Bongaerts, L. (1998) Integration of Scheduling and Control, 24 European Symposium on

Computer Aided Process Engineering. doi: 10.1016/B978-0-444-63456-6.50072-7.

Braun, P. (2014) ‘Analysis of production planning and control systems for automotive

powertrain assembly lines concerning the level of decentralization in the context of Industrie

4 . 0’.

Brettel, M., Friederichsen, N. and Keller, M. (2014) ‘How virtualization, decentralization and

network building change the manufacturing landscape: An industry 4.0 perspective’,

International Journal of, 8(1), pp. 37–44. doi: scholar.waset.org/1999.8/9997144.

Chryssolouris, G. and Subramaniam, V. (2001) ‘Dynamic scheduling of manufacturing job

shops using genetic algorithms’, Journal of Intelligent Manufacturing, 12, pp. 281–293.

Church, L. K. and Uzsoy, R. (1992) ‘Analysis of periodic and event-driven rescheduling

policies in dynamic shops’, International Journal of Computer Integrated Manufacturing,

5(3), pp. 153–163. doi: 10.1080/09511929208944524.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001) Introduction to

Algorithms. MIT Press & McGraw–Hill.

Dilts, D. M., Boyd, N. P. and Whorms, H. H. (1991) ‘The evolution of control architectures

for automated manufacturing systems’, Journal of Manufacturing Systems, 10(1), pp. 79–93.

doi: 10.1016/0278-6125(91)90049-8.

Van Dyke Parunak, H. (1991) ‘Characterizing the manufacturing scheduling problem’,

Journal of Manufacturing Systems, 10(3), pp. 241–259. doi: 10.1016/0278-6125(91)90037-3.

Figueira, G. and Almada-Lobo, B. (2014) ‘Hybrid simulation-optimization methods: A

taxonomy and discussion’, Simulation Modelling Practice and Theory. Elsevier B.V., 46, pp.

118–134. doi: 10.1016/j.simpat.2014.03.007.

Floudas, C. A. and Lin, X. (2005) ‘Mixed integer linear programming in process scheduling:

Modeling, algorithms, and applications’, Annals of Operations Research, 139(1), pp. 131–

162. doi: 10.1007/s10479-005-3446-x.

Fohler, G. and Fohler, G. (2015) ‘What is the Difference Between Offline and Online

Scheduling ?’, (March), pp. 1–3.

Geiger, C. D., Uzsoy, R. and Aytuǧ, H. (2006) ‘Rapid modeling and discovery of priority

dispatching rules: An autonomous learning approach’, Journal of Scheduling, 9(1), pp. 7–34.

doi: 10.1007/s10951-006-5591-8.

Gendreau, Michel and Potvin, J.-Y. (2010) Handbook of Metaheurisitcs. Springer. doi:

10.1007/978-1-4614-1900-6.

Goldberg, D. E., Korb, B. and Deb, K. (1989) ‘M essy Genetic Algorithms : Motivation ,

Analysis , and First Results’, Engineering, 3, pp. 493–530.

Evaluating agile scheduling methods for a job shop problem

63

Golmakani, H. R. and Birjandi, A. R. (2013) ‘A two-phase algorithm for multiple-route job

shop scheduling problem subject to makespan’, International Journal of Advanced

Manufacturing Technology, 67(1–4), pp. 203–216. doi: 10.1007/s00170-013-4767-6.

Gonçalves, J. F. and Resende, M. G. C. (2011) ‘Biased random-key genetic algorithms for

combinatorial optimization’, Journal of Heuristics, 17(5), pp. 487–525. doi: 10.1007/s10732-

010-9143-1.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. H. G. R. (1979) ‘Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey’, Annals of Discrete

Mathematics, 5(C), pp. 287–326. doi: 10.1016/S0167-5060(08)70356-X.

Gromicho, J. A. S., Van Hoorn, J. J., Saldanha-Da-Gama, F. and Timmer, G. T. (2012)

‘Solving the job-shop scheduling problem optimally by dynamic programming’, Computers

and Operations Research. Elsevier, 39(12), pp. 2968–2977. doi: 10.1016/j.cor.2012.02.024.

Haupt, R. (1989) ‘A survey of priority rule-based scheduling’, OR Spektrum, 11(1), pp. 3–16.

doi: 10.1007/BF01721162.

Held, M. and Karp, R. M. (1962) ‘A Dynamic Programming Approach to Sequencing

Problems’, Journal of the Society for Industrial and Applied Mathematics, pp. 196–210. doi:

10.1137/0110015.

Hermann, M., Pentek, T. and Otto, B. (2016) ‘Design principles for industrie 4.0 scenarios’,

Proceedings of the Annual Hawaii International Conference on System Sciences, 2016–

March, pp. 3928–3937. doi: 10.1109/HICSS.2016.488.

Hildebrandt, T., Heger, J. and Scholz-Reiter, B. (2010) ‘Towards improved dispatching rules

for complex shop floor scenarios: a genetic programming approach’, GECCO ’10:

Proceedings of the 12th annual conference on Genetic and evolutionary computation, pp.

257–264. doi: doi:10.1145/1830483.1830530.

Hilier, F. and Lieberman, G. (2015) Introduction to Operational Research, Introduction to

Operational Research. doi: 10.2307/2077150.

Ho, N. B. and Tay, J. C. (2005) ‘Evolving dispatching rules for solving the flexible job-shop

problem’, Evolutionary Computation, 2005. The 2005 IEEE Congress on, 3, pp. 2848–2855.

doi: 10.1109/CEC.2005.1555052.

Hulsmann, M. and Windt, K. (2007) Understanding Autonomous Cooperation and Control in

Logistics. Springer.

Jacoboni, C. and Lugli, P. (2012) The Monte Carlo Method for Semiconductor Device

Simulation. Springer Science & Business Media.

Johnson, S. M. (1954) ‘Optimal two- and three-stage production schedules with setup times

included’, Naval Research Logistics Quarterly, 1(1), pp. 61–68. doi:

10.1002/nav.3800010110.

Kaban, A. K., Othman, Z. and Rohmah, D. S. (2012) ‘Comparison of dispatching rules in job-

64

shop Schedulingproblem Usingsimulation: A case study’, International Journal of Simulation

Modelling, 11(3), pp. 129–140. doi: 10.2507/IJSIMM11(3)2.201.

Khayat, G. El, Langevin, A. and Riopel, D. (2006) ‘Integrated production and material

handling scheduling using mathematical programming and constraint programming’,

European Journal of Operational Research, 175(3), pp. 1818–1832. doi:

10.1016/j.ejor.2005.02.077.

Kim, M. H. and Kim, Y.-D. (1994) ‘Simulation-based real-time scheduling in a flexible

manufacturing system’, Journal of Manufacturing Systems, 13(2), pp. 85–93. doi:

http://dx.doi.org/10.1016/0278-6125(94)90024-8.

Kochhar, S. and Morris, R. J. T. (1987) ‘Heuristic methods for flexible flow line scheduling’,

Journal of Manufacturing Systems, 6(4), pp. 299–314. doi: 10.1016/0278-6125(87)90006-9.

Koulamas, C. (1998) ‘A new constructive heuristic for the flowshop scheduling problem’,

European Journal of Operational Research, 105(1), pp. 66–71. doi: 10.1016/S0377-

2217(97)00027-1.

Koza, J. R. (1992) Genetic programming: On the programming of computers by means of

natural selection, Biosystems. The MIT Press. doi: 10.1016/0303-2647(94)90062-0.

Lawrence, S. (1984) Resouce constrained project scheduling: an experimental investigation

of heuristic scheduling techniques.

Lawrence, S. R. and Sewell, E. C. (1997) ‘Heuristic, optimal, static, and dynamic schedules

when processing times are uncertain’, Journal of Operations Management, 15(1), pp. 71–82.

doi: 10.1016/S0272-6963(96)00090-3.

Leitão, P. (2009) ‘Agent-based distributed manufacturing control: A state-of-the-art survey’,

Engineering Applications of Artificial Intelligence, 22(7), pp. 979–991. doi:

10.1016/j.engappai.2008.09.005.

Leung, J. Y.-T. (2004) Handbook of Scheduling, Algorithms, Models and Performance

Analysis, Methods.

Liao, C.-J. and You, C.-T. (1996) ‘Operational Research Society is collaborating with JSTOR

to digitize, preserve, and extend access to Journal of the Operational Research Society. ®

www.jstor.org’, Journal of the Operational Research Society, 47, pp. 697–701.

Lou, P., Liu, Q., Zhou, Z., Wang, H. and Sun, S. X. (2012) ‘Multi-agent-based proactive-

reactive scheduling for a job shop’, International Journal of Advanced Manufacturing

Technology, 59(1–4), pp. 311–324. doi: 10.1007/s00170-011-3482-4.

Manne, A. S. (1960) ‘On the Job-Shop Scheduling Problem’, Operations Research, 8(2), pp.

219–223.

Mehta, S. V. and Uzsoy, R. M. (1998) ‘Predictable scheduling of a job shop subject to

breakdowns’, IEEE Transactions on Robotics and Automation, 14(3), pp. 365–378. doi:

10.1109/70.678447.

Evaluating agile scheduling methods for a job shop problem

65

Miyashita, K. (2000) ‘Job-Shop Scheduling with Genetic Programming’, in GECCO’00

Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation. Las

Vegas, Nevada: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©2000, pp. 505–

512.

Muth, J. F. and Thompson, G. L. (1963) Industrial Scheduling. Englewood Cliffs, N.J. :

Prentice-Hall.

Nakasuka, S. and Yoshida, T. (1992) ‘Dynamic scheduling system utilizing machine learning

as a knowledge acquisition tool’, International Journal of Production Research, 30(2), pp.

411–431. doi: 10.1080/00207549208942903.

Nguyen, S., Mei, Y. and Zhang, M. (2017) ‘Genetic programming for production scheduling:

a survey with a unified framework’, Complex & Intelligent Systems. Springer Berlin

Heidelberg, 3(1), pp. 41–66. doi: 10.1007/s40747-017-0036-x.

Nguyen, S., Zhang, M., Member, S., Johnston, M., Tan, K. C. and Member, S. (2012) ‘A

Computational Study of Representations in Genetic Programming to Evolve Dispatching

Rules for the Job Shop Scheduling ... A Computational Study of Representations in Genetic

Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem’,

17(January), pp. 621–639. doi: 10.1109/TEVC.2012.2227326.

Ouelhadj, D. and Petrovic, S. (2009) ‘A survey of dynamic scheduling in manufacturing

systems’, Journal of Scheduling, 12(4), pp. 417–431. doi: 10.1007/s10951-008-0090-8.

Ovacik, I. M. and Uzsoy, R. (1997) Decomposition methods for complex factory scheduling

problems.

Panwalkar, S. S. and Iskander, W. (1977) ‘A Survey of Scheduling Rules’, Operations

Research, 25(1), pp. 45–61. doi: 10.1287/opre.25.1.45.

Pickardt, C. W. and Branke, J. (2012) ‘Setup-oriented dispatching rules – a survey’,

International Journal of Production Research, 50(20), pp. 5823–5842. doi:

10.1080/00207543.2011.629634.

Pickardt, C. W., Hildebrandt, T., Branke, J., Heger, J. and Scholz-Reiter, B. (2013)

‘Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems’,

International Journal of Production Economics, 145(1), pp. 67–77. doi:

10.1016/j.ijpe.2012.10.016.

Pinedo, M. L. (2008) Scheduling. doi: 10.1007/978-0-387-78935-4.

Resende, M. G. C. and Gonçalves, J. F. (2013) ‘A Biased Random-key Genetic Algorithm for

Job-Shop Scheduling’, (February 2011), pp. 1–25.

Sauter, R., Bode, M. and Kittelberger, D. (2015) ‘“How Industry 4.0 Is Changing How We

Manage Value Creation”’, Horváth & Partners. Available at: https://www.horvath-

partners.com/fileadmin/horvath-

partners.com/assets/05_Media_Center/PDFs/englisch/Industry_4.0_EN_web-g.pdf.

66

Tay, J. C. and Ho, N. B. (2008) ‘Evolving dispatching rules using genetic programming for

solving multi-objective flexible job-shop problems’, Computers and Industrial Engineering,

54(3), pp. 453–473. doi: 10.1016/j.cie.2007.08.008.

Tsai, S. C. and Fu, S. Y. (2014) ‘Genetic-algorithm-based simulation optimization

considering a single stochastic constraint’, European Journal of Operational Research.

Elsevier B.V., 236(1), pp. 113–125. doi: 10.1016/j.ejor.2013.11.034.

Vieira, G. E., Herrmann, J. W. and Lin, E. (2003) ‘Rescheduling Manufacturing Systems : a

Framework of Strategies , Policies , and Methods’, pp. 39–62.

Waschneck, B., Altenmüller, T., Bauernhansl, T. and Kyek, A. (2016) ‘Production

Scheduling in Complex Job Shops from an Industrie 4 . 0 Perspective : A Review and

Challenges in the Semiconductor Industry’.

Wee, D., Kelly, R., Cattel, J. and Breunig, M. (2015) ‘Industry 4.0 - how to navigate

digitization of the manufacturing sector’, McKinsey & Company, pp. 1–62. doi:

10.1007/s13398-014-0173-7.2.

Wilbrecht, J. K. and Prescott, W. B. (1969) ‘The Influence of Setup Time on Job Shop

Performance’, Management Science, 16(4), pp. B274–B280. doi: 10.1287/mnsc.16.4.B274.

Evaluating agile scheduling methods for a job shop problem

67

Appendix A: Mean Performance of the methods applied to
the benchmark instances for both static and dynamic
approaches

Results

Method 0 0,2 0,4 0,6 0,8 1

FCFC/STAT 1,208 1,226 1,339 1,488 1,622 1,703

SPT/STAT 1,220 1,266 1,380 1,491 1,705 1,860

LPT/STAT 1,328 1,373 1,504 1,666 1,785 1,967

LSD/STAT 1,191 1,222 1,355 1,503 1,616 1,799

MWF/STST 1,120 1,145 1,244 1,397 1,493 1,692

LTR1/STAT 1,145 1,169 1,285 1,419 1,576 1,722

MOR/STAT 1,168 1,194 1,311 1,454 1,562 1,717

FCFC/DYN 1,208 1,221 1,266 1,331 1,414 1,518

SPT/DYN 1,220 1,237 1,283 1,348 1,422 1,525

LPT/DYN 1,328 1,348 1,403 1,481 1,564 1,677

LSD/DYN 1,191 1,207 1,249 1,314 1,393 1,501

MWF/DYN 1,120 1,139 1,185 1,251 1,333 1,436

LTR1/DYN 1,145 1,168 1,222 1,297 1,384 1,496

MOR/DYN 1,168 1,179 1,223 1,285 1,366 1,473

Average Results

STAT 1,197 1,228 1,345 1,488 1,623 1,780

DYN 1,197 1,214 1,262 1,330 1,411 1,518

68

Appendix B: Mean Performance of the methods applied to
the real-world instances for both static and dynamic
approaches

Results

Method 0 0,2 0,4 0,6 0,8 1

FCFC/DYN 1,4441 1,4622 1,4591 1,4760 1,5020 1,5316

SPT/DYN 1,5011 1,5251 1,5400 1,5521 1,5853 1,6235

LPT/DYN 1,4960 1,5148 1,5065 1,5316 1,5414 1,5906

LSD/DYN 1,4307 1,4623 1,4434 1,4714 1,4882 1,5119

MWF/DYN 1,4428 1,4504 1,4489 1,4649 1,5007 1,5144

LTR/DYN 1,5025 1,5088 1,5119 1,5157 1,5521 1,5682

MOR/DYN 1,4402 1,4376 1,4336 1,4403 1,4607 1,4932

SSPT/DYN 1,4441 1,3727 1,3783 1,4001 1,4087 1,4441

MMS/DYN 1,0123 1,0308 1,0657 1,1018 1,1532 1,1480

SNSPT/DYN 1,1583 1,1676 1,2029 1,2119 1,2695 1,3058

GA/DYN 1,3898 1,4313 1,4225 1,3776 1,4698 1,5411

GH/DYN 1,0471 1,0608 1,1238 1,1063 1,1660 1,2488

CH/DYN 1,0455 1,0562 1,0799 1,1190 1,1453 1,2387

FCFC/STAT 1,4441 1,4427 1,4457 1,4648 1,4839 1,5626

SPT/STAT 1,5011 1,5103 1,5203 1,5590 1,6128 1,6099

LPT/STAT 1,4960 1,5319 1,5652 1,6061 1,6596 1,7247

LSD/STAT 1,4307 1,4450 1,4661 1,4922 1,5106 1,5699

MWF/STAT 1,4428 1,4459 1,4691 1,4801 1,5106 1,5322

LTR/STAT 1,5025 1,5293 1,5577 1,5995 1,6462 1,6649

MOR/STAT 1,4402 1,4466 1,4417 1,4415 1,4708 1,4971

SSPT/STAT 1,4441 1,4783 1,4569 1,5028 1,5345 1,5876

MMS/STAT 1,0123 1,0345 1,0837 1,1149 1,1489 1,1998

SNSPT/STAT 1,1583 1,2008 1,2106 1,2410 1,2984 1,3865

GA/STAT 1,3898 1,4764 1,4972 1,5265 1,5458 1,5936

GH/STAT 1,0455 1,0653 1,1134 1,1494 1,2012 1,2542

CH/STAT 1,0493 1,0666 1,1057 1,1327 1,2015 1,2955

Average Results

DYN 1,3740 1,3909 1,3970 1,4055 1,4412 1,4862

STAT 1,3351 1,3595 1,3795 1,4085 1,4481 1,4983

Evaluating agile scheduling methods for a job shop problem

69

Appendix C: Mean makespan and production capacity for
the benchmark instances with setup level generated of 1

Results Makespan
Method 0 0,2 0,4 0,6 0,8 1

FCFC 1,591 1,598 1,617 1,646 1,669 1,728

SPT 1,620 1,687 1,704 1,736 1,763 1,815

LPT 1,698 1,711 1,732 1,764 1,797 1,854

LSD 1,609 1,615 1,634 1,657 1,687 1,748

MWF 1,493 1,503 1,526 1,555 1,588 1,641

LTR 1,524 1,536 1,560 1,598 1,639 1,701

MOR 1,557 1,555 1,567 1,590 1,618 1,666

SSPT 1,648 1,634 1,653 1,676 1,708 1,756

MMS 1,513 1,518 1,535 1,558 1,588 1,644

SNSPT 1,622 1,634 1,652 1,682 1,709 1,766

GA 1,550 1,594 1,620 1,648 1,680 1,742

CH 1,584 1,601 1,620 1,649 1,682 1,740

GH 1,590 1,605 1,621 1,652 1,683 1,742

Results Production Capacity

Method 0 0,2 0,4 0,6 0,8 1

FCFC 0,680 0,679 0,680 0,677 0,673 0,673

SPT 0,677 0,675 0,673 0,673 0,672 0,669

LPT 0,675 0,673 0,672 0,672 0,671 0,669

LSD 0,678 0,677 0,675 0,674 0,670 0,670

MWF 0,677 0,674 0,673 0,675 0,672 0,671

LTR 0,677 0,677 0,674 0,675 0,675 0,672

MOR 0,679 0,680 0,677 0,677 0,676 0,670

SSPT 0,675 0,675 0,675 0,674 0,671 0,667

MMS 0,681 0,680 0,679 0,676 0,676 0,673

SNSPT 0,678 0,675 0,675 0,674 0,671 0,670

GA 0,680 0,678 0,676 0,677 0,673 0,671

CH 0,679 0,679 0,679 0,677 0,676 0,674

GH 0,681 0,678 0,678 0,675 0,675 0,673

70

Appendix D: Mean makespan and production capacity for
the benchmark instances with setup level generated of 0,75

Results Makespan
Method 0 0,2 0,4 0,6 0,8 1

FCFC 1,556 1,565 1,590 1,621 1,658 1,722

SPT 1,598 1,603 1,627 1,662 1,704 1,772

LPT 1,659 1,679 1,704 1,748 1,790 1,863

LSD 1,568 1,577 1,599 1,630 1,668 1,737

MWF 1,450 1,466 1,492 1,529 1,569 1,634

LTR 1,482 1,501 1,530 1,576 1,625 1,694

MOR 1,508 1,518 1,537 1,565 1,604 1,663

SSPT 1,588 1,596 1,617 1,650 1,687 1,750

MMS 1,474 1,486 1,507 1,538 1,577 1,642

SNSPT 1,594 1,599 1,619 1,656 1,691 1,764

GA 1,503 1,518 1,536 1,584 1,617 1,677

CH 1,568 1,571 1,591 1,630 1,672 1,742

GH 1,567 1,575 1,595 1,628 1,674 1,744

Results Production Capacity

Method 0 0,2 0,4 0,6 0,8 1

FCFC 0,705 0,706 0,704 0,703 0,697 0,697

SPT 0,706 0,704 0,703 0,702 0,698 0,696

LPT 0,700 0,699 0,699 0,695 0,691 0,692

LSD 0,709 0,704 0,703 0,701 0,697 0,697

MWF 0,700 0,700 0,701 0,699 0,699 0,697

LTR 0,703 0,702 0,702 0,699 0,697 0,696

MOR 0,706 0,707 0,703 0,702 0,699 0,696

SSPT 0,704 0,703 0,703 0,702 0,701 0,699

MMS 0,706 0,706 0,707 0,704 0,703 0,696

SNSPT 0,706 0,704 0,705 0,703 0,701 0,700

GA 0,705 0,706 0,704 0,703 0,698 0,697

CH 0,707 0,707 0,706 0,702 0,700 0,697

GH 0,709 0,706 0,706 0,703 0,699 0,699

Evaluating agile scheduling methods for a job shop problem

71

Appendix E: Mean makespan and production capacity for
the benchmark instances with setup level generated of 0,5

Results Makespan
Method 0 0,2 0,4 0,6 0,8 1

FCFC 1,512 1,530 1,554 1,596 1,645 1,722

SPT 1,547 1,559 1,589 1,632 1,681 1,767

LPT 1,642 1,651 1,682 1,734 1,793 1,871

LSD 1,526 1,532 1,553 1,598 1,647 1,732

MWF 1,413 1,428 1,461 1,505 1,558 1,632

LTR 1,436 1,461 1,501 1,555 1,611 1,694

MOR 1,465 1,478 1,502 1,542 1,588 1,664

SSPT 1,540 1,552 1,577 1,618 1,667 1,745

MMS 1,441 1,446 1,476 1,515 1,570 1,649

SNSPT 1,551 1,553 1,584 1,620 1,678 1,762

GA 1,499 1,543 1,568 1,618 1,667 1,752

CH 1,550 1,545 1,572 1,623 1,674 1,760

GH 1,537 1,552 1,578 1,623 1,680 1,758

Results Production Capacity

Method 0 0,2 0,4 0,6 0,8 1

FCFC 0,7433 0,7412 0,7374 0,7346 0,7301 0,7251

SPT 0,7398 0,7433 0,7408 0,7391 0,7376 0,7336

LPT 0,7334 0,7340 0,7269 0,7252 0,7231 0,7196

LSD 0,7457 0,7426 0,7410 0,7381 0,7349 0,7329

MWF 0,7371 0,7358 0,7370 0,7329 0,7311 0,7262

LTR 0,7366 0,7380 0,7359 0,7330 0,7278 0,7237

MOR 0,7420 0,7412 0,7395 0,7357 0,7329 0,7280

SSPT 0,7391 0,7415 0,7419 0,7389 0,7384 0,7329

MMS 0,7410 0,7412 0,7397 0,7371 0,7339 0,7296

SNSPT 0,7405 0,7429 0,7408 0,7403 0,7370 0,7330

GA 0,7420 0,7436 0,7390 0,7372 0,7331 0,7320

CH 0,7452 0,7411 0,7395 0,7334 0,7323 0,7267

GH 0,7475 0,7446 0,7403 0,7369 0,7320 0,7272

72

Appendix F: Mean makespan and production capacity for
the benchmark instances with setup level generated of 0,25

Results Makespan
Method 0 0,2 0,4 0,6 0,8 1

FCFC 1,469 1,476 1,509 1,565 1,636 1,734

SPT 1,485 1,499 1,535 1,592 1,662 1,759

LPT 1,599 1,607 1,651 1,712 1,789 1,894

LSD 1,451 1,467 1,505 1,561 1,626 1,730

MWF 1,358 1,373 1,417 1,472 1,546 1,636

LTR 1,389 1,407 1,455 1,523 1,600 1,701

MOR 1,419 1,427 1,459 1,513 1,579 1,676

SSPT 1,484 1,493 1,524 1,579 1,642 1,743

MMS 1,395 1,403 1,439 1,494 1,562 1,661

SNSPT 1,486 1,503 1,533 1,587 1,654 1,754

GA 1,451 1,483 1,522 1,584 1,658 1,766

CH 1,493 1,510 1,544 1,603 1,669 1,777

GH 1,499 1,510 1,544 1,603 1,669 1,777

Results Production Capacity

Method 0 0,2 0,4 0,6 0,8 1

FCFC 0,680 0,679 0,680 0,677 0,673 0,673

SPT 0,677 0,675 0,673 0,673 0,672 0,669

LPT 0,675 0,673 0,672 0,672 0,671 0,669

LSD 0,678 0,677 0,675 0,674 0,670 0,670

MWF 0,677 0,674 0,673 0,675 0,672 0,671

LTR 0,677 0,677 0,674 0,675 0,675 0,672

MOR 0,679 0,680 0,677 0,677 0,676 0,670

SSPT 0,675 0,675 0,675 0,674 0,671 0,667

MMS 0,681 0,680 0,679 0,676 0,676 0,673

SNSPT 0,678 0,675 0,675 0,674 0,671 0,670

GA 0,680 0,678 0,676 0,677 0,673 0,671

CH 0,679 0,679 0,679 0,677 0,676 0,674

GH 0,681 0,678 0,678 0,675 0,675 0,673

Evaluating agile scheduling methods for a job shop problem

73

Appendix G: Mean makespan performance of the method
evolved using genetic programming

 cv

Set of instances 0 0,2 0,4 0,6 0,8 1

Real-world 1,183 1,193 1,184 1,188 1,184 1,192

SL = 1 1,450 1,451 1,470 1,494 1,533 1,578

SL = 0,25 1,363 1,374 1,410 1,466 1,537 1,635

74

