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Abstract

With the development of artificial intelligence, the artificial neural networks (ANN) are
widely used in the control, decision‐making and prediction of complex discrete event
manufacturing systems. Wafer fabrication is one of the most complicated and high
competence manufacturing phases. The production scheduling and yield prediction are
two critical issues in the operation of semiconductor wafer fabrication system (SWFS).
This chapter proposed two fuzzy neural networks for the production rescheduling
strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐
based  rescheduling  decision  model  is  implemented,  which  can  rapidly  choose  an
optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines
according to the current system disturbances. The experimental results demonstrate the
effectiveness of proposed FNN‐based rescheduling decision mechanism approach over
the  alternatives  (back‐propagation  neural  network  and  Multivariate  regression).
Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to
improve prediction accuracy of die yield in which the impact factors of yield and critical
electrical test parameters are considered simultaneously and are taken as independent
variables. The comparison experiment verifies the proposed yield prediction method
improves  on three  traditional  yield prediction methods with respect  to  prediction
accuracy.

Keywords: semiconductor wafer fabrication system, rescheduling, fuzzy neural net‐
works, yield prediction, decision mechanism
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1. The production scheduling and yield prediction of semiconductor wafer
fabrication system (SWFS)

The semiconductor wafer fabrication system (SWFS) is one of the most sophisticated manufac‐
turing systems. This kind of manufacture system is characterised by a different type of wafer
process (batch and single process), hundreds of process steps, the large and expensive device,
production unforeseen circumstances and re‐entrant flow [1]. Semiconductor manufacturing
orders are usually global, dynamic and customer driven since the 1990s. As a result, semicon‐
ductor manufacturers strive to achieve high‐quality products using advance manufacturing
technologies (such as process planning and scheduling and digitized indicators’ prediction
technologies) [2]. In recent years, production scheduling and yield prediction are always two
issues above all in the complex SWFS.

An organization's competitive advantage is increasingly dependent on its response to market
changes and opportunities, and in response to unforeseen circumstances (i.e. Machine
breakdown, rush orders), so it is important to reduce inventory and cycle time, and improve
resource utilization. Therefore, production scheduling is required to optimize the operation
of SWFS and has been reviewed by Uzsoy and his colleagues [3]. SWFS operates in uncertain
dynamic environments, facing with a lot of disturbances, such as machine failure, a lot of
rework and rush orders [4]. Production rescheduling has been viewed as an efficient approach
in responding to these uncertainties raised by the external environment and internal conditions
of production [5]. In job shop and flow shop, heuristic algorithms and discrete event simulation
methods are mainly applied in production scheduling problems [6–8]. However, the SWFS is
large‐scaled, complicated system with re‐entrant flows, which is different from typical job and
flow shop. Many rescheduling strategies improving traditional job shop rescheduling methods
have been proposed and applied in SWFS in the recent decade [9, 10]. These methods using a
single rescheduling strategy are not enough for the real‐time dynamic manufacturing envi‐
ronment, which is more complex with disruptive events every day. For this reason, a layered
rescheduling framework is needed to select rescheduling methodologies in SWFS according
to the present system status.

Yield prediction plays an indispensable role in the semiconductor manufacturing factory for
its powerful function of reducing cost, increasing production and maintaining a good rela‐
tionship with customers. Before a malfunction is detected, the accurate prediction model of
yield will serve as a warning role and help people take proactive measures to reduce the
number of defect's wafers and increase the total yield of SWFS. An accurate prediction of yield
plays a useful role in releasing the plan of production and optimizing the process of produc‐
tion, which will make the cycle time shorter and reduce fabrication cost of average units. To
offer a reasonable and acceptable price and satisfy the customers, the prediction of manufac‐
turing costs for products is necessary if they are still under development and the accurate
prediction of yield can provide some advice for Ref. [11]. To maintain the good relationship
with the customers, the order's due data should be guaranteed and the accurate prediction of
yield is also useful in this aspect. Some organic problems located on the wafer such as
microscopic particles, cluster defects, photo‐resist, critical processing parameters would be the
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factors which affect the yield of the semiconductor wafer. With the statistic analysis models
[12] and traditional artificial neural network (ANN) models [13], the prediction of semicon‐
ductor fabrication system's yield is difficult. A fuzzy neural network (FNN)‐based yield model
for yield prediction of semiconductor manufacturing systems is proposes in this chapter. In
this system, the impacted factors, which are cluster defects, the defect's key attributed param‐
eters, key electrical test parameters, should be considered in the same time. By this way, the
precision of the wafer yield's prediction is improved.

2. The application of ANN in production scheduling and yield prediction
of the SWFS

For selecting a scheduling strategy, the FNN approach is widely used. FNN is also an effective
methodology for prediction of discrete event manufacturing systems, control and decision‐
making [14, 15]. For demonstrating the relationship between the monitoring features of a
flexible manufacturing system and the conditions of tools, Li et al. [16] presented a fuzzy neural
network approach. For controlling manufacturing process, Zhou et al. [17] used a fuzzy neural
network approach. Chang et al. [18] created a FNN model of flow time estimation with data,
which are generated from a foundry service company. The product design time was estimated
with the FNN approach by Xu and Yan [19]. Chang et al. [20] used FNN approach to estimate
the influence of the process on the results of the wafer fabrication in SWFS. However, the FNN
approach has not been used to solve the problem of SWFS rescheduling problem. This chapter
proposes the FNN‐based rescheduling decision mechanism for SWFS. This methodology can
solve the uncertainty problem and express the expert knowledge in weighted values. In the
neural network, the evaluation of local weight values is the knowledge modelling of control
rules. Rescheduling strategies, SWFS state parameters, disturbance parameters can be
identified and analysed in this model. In this model, we can build the nonlinear relationship
between these three components. With this approach, the layered rescheduling approach will
be selected that make the yields rapid responsiveness and high productivity of the SWFS in
an environment full of randomness.

To predict the wafer yield, Tong et al. [21] proposed a neural network‐based approach through
considering the clustering phenomenon of the defects in integrated circuit manufacturing. It
was proved that the proposed approach was effective. For predicting wafer yield for integrated
circuit with clustered defects, Tong and Chao [22] used a general regression neural network
(GRNN) approach. Defect clustering patterns are simulated from three aspects: the size of chip,
percentage of defects and the cluster pattern. A case study demonstrated the effectiveness of
the approach of the model. For the lack of reliability and accuracy in the prediction of yield,
an approach of a fuzzy set for yield learning was proposed by Chen and Wang [23]. A few of
examples enhanced the reliability and precision of the forecasting of the yield. Chen and Lin
[24] proposed a fuzzy‐neural system with expert opinions, which can increase the precision of
semiconductor yield prediction. The artificial intelligent‐based yield forecasting models
demonstrated above have some limitations that it only takes consideration of the physical
parameters of wafer and the important attributed parameters of defects in wafer without
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considering the influence of variation of the key electrical test parameters. With the combining
of neural network (NN) and memory‐based reasoning (MBR), an integrated framework for a
yield management system with techniques of hybrid machine learning was given by Chung
and Sang [25]. In the forecasting model of the yield, some key electrical test parameters have
been taken into consideration. With the use of wafer level electrical test data, a parametric
neural forecasting model was constructed by Kim et al. [26] and Kim [27]. However, these yield
forecasting models have not taken the attributed parameters of defects in wafer into consid‐
eration. This chapter proposes a yield forecasting model with the consideration of the wafer
electrical test parameters and important attributed parameters of defects in wafer.

3. Artificial neural network for rescheduling decision mechanism in the
SWFS

3.1. Layered rescheduling framework of SWFS

A layered rescheduling framework is proposed in order to reschedule the SWFS for the
unstable environment which is shown in Figure 1. In the process of rescheduling framework,
a three layers of rescheduling strategies are used. a three layers are machine group layer,
machine layer and the system layer. The strategies of the rescheduling implement the dynamic
scheduling, the global scheduling of SWFS and the machine scheduling. To choose the
particular rescheduling strategy, the optimal rescheduling decision mechanism based on FNN
approach. The layered rescheduling framework is described in detail in the following para‐
graph.

Global scheduling of SWFS. If there are some changes in the large‐scale SWFS's condition or
there are some disturbances, the rescheduling is needed and the global rescheduling of SWFS
is managed for the adjustment of the global scheduling [28]. With the machine group layer's
adjusted scheduling objectives, a local dynamic scheduling algorithm is applied for scheduling
in the machine group layer [29]. In the end, with the machine group layer's adjusted scheduling
objectives, machine scheduling is processed in real‐time and the optimal machine real‐time
scheduling solutions are achieved.

Dynamic scheduling of SWFS. If there are some changes in the medium‐scale SWFS's condition
or there are some disturbances, the rescheduling in the machine group layer is needed and the
local dynamic scheduling of SWFS is managed. In order to adjust the local scheduling of a
machine group, a local dynamic scheduling algorithm is applied. With the adjusted scheduling
objectives of the machine layer taken into consideration, machine scheduling of SWFS is
processed.

Machine scheduling of SWFS. If there are some changes in the large‐scale SWFS's condition or
there are some disturbances, the rescheduling is just accomplished and in the same time, the
machine scheduling is processed. Though they are same in the operation sequences of the lots,
they are different in the operation start times of delayed lots.
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FNN‐based optimal rescheduling decision mechanism. With the consideration of the statuses
and disturbances to SWFS, the rescheduling layer is chosen by optimal rescheduling decision
mechanism. According to the fuzzy neural network, an algorithm for the system is stated in
this paper.

Figure 1. Layered rescheduling framework of SWFS.

3.2. FNN‐based decision mechanism for rescheduling

Fuzzy neural network (FNN) is an ingenious combination of fuzzy logic and neural network,
which inherits the advantages from both fuzzy system and neural network. The FNN has the
characteristics of processing fuzzy information with fuzzy algorithms and learning with a
high‐speed parallel structure. The FNN approach is therefore adaptable and robust, and is well
suited for the SMS rescheduling problem.

The FNN‐based rescheduling decision model consists of an input layer, several hidden layers
and an output layer. Input parameters connected with disturbances and state parameters are
accepted in the input layer. The hidden layers calculate and transform the input parameters
using fuzzy logic theory. The output layer produces the decision‐making response of the
rescheduling model. More details of this method are described.

3.2.1. Input factors in the proposed FNN model

The SMS's state and disturbance parameters are treated as input of the FNN, which can be
detailed as: system disturbances parameter, average queue length, stability of SMS, average
relative load and average slack time.
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3.2.1.1. System disturbances parameter

Since the operating environments of SMS are uncertain and dynamic, disturbances mainly
include: machine failures, lot reworks and rush orders. Once a disturbance has happened, an
optimal rescheduling strategy must be selected and carried out to guarantee the stability and
efficiency of SMS. Disturbances are converted into machine work times to quantify their effect.
The mapping of disturbances to machine work times is defined as follows.

(1) Machine failures. The processing time in SMS increases if machine failures happen.

Suppose that �� refers to the increased process time caused by all machine failures, then,

f ff
jij j

f f
ji

M F m M

t t
Î Î

= å å (1)

where ��� is the failed machine group j, ��� refers to the failed machine i of machine group j,����  represents the repair time of machine i of machine group j, and �� is the set of failed machine
group.

(2) Lot reworks. Lot reworks raise the output requirement of SMS. Suppose that �� is the
additional process time incurred by all lot reworks, then,

r r r
j jk j

r r
jk

M F p R

t t
Î Î

= å å (2)

where ��� refers to the machine group j operating the rework lots, ��� refers to the set of the
rework lots operated by the machine group j, ��� refers to the rework lot k operated by the

machine group j, ����  refers to the process time of the rework lot k operated by the machine

group j, �� refers to the set of the machine group that operate rework lots.

(3) Rush orders. Rush orders also demand more of the production requirement of SMS.

Suppose that �� is the process time required by all rush orders, then,

o o o
j jk j

o o
jk

M F q R

t t
Î Î

= å å (3)

where ��� represents the machine group j, that operates the rush orders in current plan time

phase, ��� represents the set of the lots operated by machine group j in the rush orders; ���
represents the lot k in the rush orders operated by machine group j, ����  is the process time of
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the lot k operated by the machine group j in the rush orders, �� represents the set of the machine
group which are related with rush orders.

(4) System disturbances parameter. Suppose that �� is the system disturbances parameter,
denoting the total effect of disturbances on SMS scheduling. The formula to calculate �� is
shown as the (4).

f r otd t t t= + + (4)

3.2.1.2. Average queue length

Average queue length of machine groups reflecting the utility of the machine group is affected
by disturbances. L is the average queue length of machine groups affected by disturbances;
and the formula is shown in (5).

( )r f o
j

j
M F F F

L
L

N
Î È È=
å

(5)

where �� denotes the machine group � , �� means queue length of machine group ��, � refers

to the number of machine group that affected by disturbances.

3.2.1.3. Stability of SMS

The stability of SMS is defined as the deviation in predicted average start time of a rescheduled
strategy from the real start time. � denotes the stability of SMS, which is shown in (6).
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=

å

å
(6)

where ��′�� is practical start time of process stage s of product i, ���� is computational start time

of process stage s of product i which optimized with a global scheduling algorithm or re‐
scheduling strategy, ��� is the number of process stage s of product i, �� is the current time when

disturbance happens, � is set of tasks of all machine group in SMS.

3.2.1.4. Average relative loads

Average relative loads denote the loads of machine groups measured from the current time to
the end of the scheduling horizon which can be affected by disturbances. Let � represent the
average relative loads, the formula for calculation is shown in (7).
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where ���� denotes process time of process stage s of product i, �� denotes the time point when

scheduling is ended, �� denotes the number of machine of machine group ��, �� represents

set of tasks of machine group which affected by disturbances.

3.2.1.5. Average slack time

Average slack time represents the space that the machine groups can be adjusted when
disturbances happen. Suppose �� is the average slack time, shown in (8).
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3.2.2. Output variables

The output variables in the FNN output layer are related to the layered rescheduling strategies,
which consists of the rescheduling in system layer, machine group layer, and machine layer.
If a particular layered rescheduling strategy is selected, then the corresponding output variable
is close to 1, otherwise it equals to 0. In FNN‐based rescheduling decision model, suppose that�1, �2, �3 are defined as output variables, then �1, �2, �3 correspond to the rescheduling in

system layer, rescheduling in machine group layer, and rescheduling in machine layer,
respectively.

3.2.3. The structure of FNN

There are five layers in the rescheduling decision model based on FNN, as illustrated in
Figure 2.

a. The input vector is X = [x1, x2, x3, x4, x5]T = [L, �, �, ��, ��]T. The function of node input‐
output is:

(1) (1)(0) (1) (1); ; 1,2, 5i i i i i if x x x g f i= = = = = L (9)

b. In the second layer which is the fuzzifer layer, the function of the Gauss membership is
adopted.
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In this formula, cij is the centre and σij is width. The node input–output function is:
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c. In the third layer as the rule layer, each node in the layer is a fuzzy rule which not only
matches the front part of the fuzzy rule but also calculates the adaptive of the rule,

5

1
( ),

1,2, ,
l lj li l il

a u x

j n
=

= P

= L
(12)

In this layer, the input‐–output function is:
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(13)

d. In the fourth layer which is the normalized layer. In this layer, the node numbers are the
same in the third layer. It normalized the adaptive values of these rules. And the input‐
output function is:

( 4 )

( 4 )

(3)

(3)
1 1

(4) (4)
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j j
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= =

= = =

å å
L1,2,

(14)

e. The last layer is the output layer. It defuzzify the output variables. And each node
describes a rescheduling strategy. While a rescheduling strategy is chose, the correspond‐
ing output is 1 or 0. The input‐output function is:
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where ��� is the connection weight parameter.

Figure 2. FNN structure.

3.2.4. The strategy of the fuzzy inference

The Mamdani‐based fuzzy inference is applied in this FNN‐based rescheduling decision
model with a assumption that the fuzzy rule Ri describes the relationship between input and
output. Then,
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Ri:

IF x1 is A1i and x2 is A2i and … and xm is Ami,

THEN y1 is B1i and y2 is B2i and … and ym is Bki,

where

i = 1, 2, …, n.

n: number of rules.

m: number of input variables.

k: number of output variables.

Aji: value of fuzzy linguistic variable xj.

Bji: value of fuzzy linguistic variable yj.

3.3. Result and discussion

3.3.1. Experiment on the proposed FNN approach

In this section, the experiments are conducted to evaluate the effectiveness of the proposed
FNN rescheduling decision mechanism. A discrete event simulation model is run to gather
the experiment data, which is based on a 6‐in. SWFS in Shanghai. This SWFS is composed by
eleven machine groups, which add up to thirty‐four machines in total. And three types of
wafers are put into the SWFS. The processes of all three types of wafer lots are divided into
dozes of stages, which is composed by a key step and several successive normal steps. One
hundred and fifty records of rescheduling decision are collected from the simulation model,
and shown in Table 1. Ninety records are used in model training, and 60 are taken to evaluate
the model. The presented FNN approach is compared with the back propagation network
(BPN) approach and the multivariate regression methodology, since the BPN and multivariate
regression approaches are widely used in the rescheduling strategy decision and proven to be
competitive [30, 31]. Furthermore, the detail numerical comparison of the FNN approach,
BPNN approach and multivariate regression are demonstrated as follows.

Now, it's going to compare the experimental results which are made by these three methods.
Figure 3 shows the optimal rescheduling decision value and the model outputs. It shows that
the FNN rescheduling method has the best convergence. We also contrast the RMSE and the

decision coefficients �2 of these three methodologies in Table 2. The FNN has the best

performance for the RMSE which is 0.042 and has the largest of the �2 values which is 0.9941.
Hence, the rescheduling decision based on FNN has the best performance in these three
methods.
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Samples

no

Average

queue

length of

disturbed

machine

stations x1

(lot)

Stability of

scheduling

x2 (h)

Average

load of

disturbed

machine

stations x3

(100%)

Average

slack time

of

disturbed

machine

stations x4

(h)

Disturbance

x5 (h)

Optimal rescheduling decision objective

Rescheduling

in machine

layer y1

Rescheduling

in machine

group layer y2

Rescheduling

in system

layer y3

1 1 1.10 0.59 6.42 2.14 1 0 0

2 2 0.78 0.52 6.51 2.01 1 0 0

3 0 0.81 0.46 5.16 1.76 1 0 0

4 0 0.48 0.1 5.81 1.21 1 0 0

5 2 0.49 0.14 4.62 1.42 1 0 0

6 1 0.52 0.12 5.54 1.79 1 0 0

7 2 0.74 0.17 5.16 1.13 1 0 0

8 0 0.76 0.07 4.49 1.64 1 0 0

9 6 0.38 0.29 4.86 1.4 1 0 0

10 5 0.37 0.26 5.17 2.21 1 0 0

.. .. .. .. .. .. .. .. ..

141 6 4.23 0.75 3.81 9.81 0 0 1

142 4 4.15 0.76 5.64 9.18 0 0 1

143 5 4.01 0.76 4.97 9.77 0 0 1

144 2 0.81 0.38 1.87 9.87 0 0 1

145 4 0.87 0.37 2.41 10.11 0 0 1

146 2 0.68 0.42 2.18 9.42 0 0 1

147 2 0.72 0.35 2.18 9.76 0 0 1

148 2 0.91 0.23 2.7 9.13 0 0 1

149 1 0.87 0.21 2.97 9.73 0 0 1

150 2 0.87 0.31 2.77 10.18 0 0 1

Table 1. One hundred and fifty records for numerical experiments.
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Figure 3. The relationship between the rescheduling strategy output and ideal target output for the FNN, BPNN and
multivariate regression methods. (a) FNN‐based output value, (b) BPNN‐based output value and (c) multivariate re‐
gression‐based output value.

Rescheduling strategy model RMSE R2

R2
Y1

R2
Y2

R2
Y3

FNN 0.0042 0.9880 0.9762 0.9941

BPNN 0.0132 0.9745 0.9178 0.9274

Multivariate regression 0.0897 0.85887 0.75566 0.70813

Table 2. Comparison of RMSE and decision coefficients among the FNN, BPNN and multivariate regression methods.
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3.3.2. Experiment on the proposed rescheduling decision mechanism

The FNN rescheduling decision mechanism is used in our layered rescheduling method
(Method 1). There are two other different rescheduling methods. One is the monolayer‐based
rescheduling approach (Method 2). Another one is the first come first served (FCFS) approach
(Method 23). In our method, the FNN rescheduling decision mechanism figures out the optimal
rescheduling approaches which include the global scheduling of SWFS, the dynamic sched‐
uling and the machine scheduling. By contrast, the Method 2 only considers the rescheduling
of the machine group layer. But in practice, the Method 3 is widely used in the Fab. In order
to prove the efficiency of our approach, we also compared these three rescheduling methods
in terms of the machine utilization and the daily movement, which are the important system
targets for SWFS.

In the case study, the data are collected from a 6‐in. SWFS in Shanghai. It products three kinds
of lots which are renamed as A, B and C. The whole process is shown in Table 4. This SWFS
has eleven key machine groups (shown in Table 3). which has 34 machines with MTTF and
MTTR parameters. They are explained in Section 5. The SWFS simulation model is built by
eM‐plant 7.0 software. In the simulation, it took 12 days, including a 5‐day warm‐up. Ten times
repeated trials of the same stimulation, in which the initiated loads of machines were different,
were performed (3 rescheduling methods 10 replications). The results are shown in Figures 4
and 5, which illustrate:

1. Method 1 performs well in the rescheduling decision in the SWFS.

2. Method 1 outperforms method 2 and 3, which indicates the layered rescheduling method
is more suitable than the conventional FCFS rescheduling approach and monolayer‐based
rescheduling approach in the complex SWFS.

Machine
group
number

Processing
type

Number
of
machine

Batch
size

MTBF MTTR

1 Ion implant 3 1 70 1

2 Ion implant 4 1 70 1

3 Diffusion 3 5 100 2

4 Diffusion 4 5 110 2

5 Etching 2 1 90 1

6 Etching 4 1 80 1

7 Etching 3 1 60 1

8 Etching 2 1 70 1

9 Lithography 4 1 90 1

10 Lithography 3 1 80 1

11 Lithography 2 1 100 1

Table 3. Configuration of SWFS.
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Stage
number

Number of
time
period by
product A

Machine
group
number of
product A

Process
time of
product A
by key
machine
t/hour

Number
of time
period by
product B

Machine
group
number of
product
B

Process
time of
product B
by key
machine
t/hour

Number
of time
period by
product C

Machine
group
number of
product C

Process
time of
product C
by key
machine
t/hour

1 1 8 1 1 10 1 1 10 1

2 1 7 1 1 8 1 1 8 1

3 1 10 1 4 5 1 2 5 1

4 1 9 1 1 10 1 1 8 1

5 5 0 1 1 1 1 1 0 1

6 3 0 1 1 6 1 4 3 6

7 4 2 4 1 10 1 1 8 1

8 1 8 1 1 9 1 2 5 1

9 1 5 1 6 0 1 2 2 3

10 1 3 3 1 0 1 1 8 1

11 1 0 1 1 4 1 2 5 3

12 2 10 1 1 8 1 1 0 1

13 1 0 1 2 1 1 2 3 6

14 4 4 2 3 2 3 1 8 1

15 1 6 1 1 10 1 2 9 1

16 2 1 1 1 8 1 2 4 1

17 3 4 2 2 5 2 3 0 1

18 1 9 1 1 3 1 1 8 1

19 1 5 1 2 5 1 3 6 1

20 1 8 1 1 9 1 2 1 1

21 3 3 3 1 1 1 1 8 1

22 1 5 1 2 5 1 3 7 1

23 4 2 4 1 9 1 2 2 3

24 1 9 1 3 0 1 2 5 1

25 3 4 2 3 2 3 1 0 1

26 2 0 1 2 10 1 1 9 1

27 1 8 1 2 7 1 2 4 1

28 1 7 1 – – – 1 1 1

29 2 3 3 – – – – – –

30 1 2 1 – – – – – –

Table 4. Lot products whole process.
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Figure 4. The utilization of machine group.

Figure 5. The utilization of machine group.
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4. Artificial neural network approach for die yield prediction in the SWFS

4.1. FNN‐based yield prediction model

The yield prediction model based on FNN is composed of three parts, which are an input layer,
an output layer and several hidden layers. The three parts do the different jobs respectively.
The input layer serves to accept input parameters connected with yield. The output layer does
the job to get the yield response of the prediction model. The hidden layers are applied to
compute and convert the input parameters which are on the basis of fuzzy logical theory. The
following sections show a more detailed yield prediction model based on FNN.

4.1.1. Variables in FNN input layer

The input variables in the FNN prediction model include the following parameters: the critical
electrical test parameters, wafer physical parameters and key parameters of defects in wafer.
Critical process parameters refer to those electrical test parameters which are generally tested
at the end of the wafer processing, and they have notable influences on the yield. Wafer physical
parameters mainly refer to the size of the chip. Key parameters of defects in wafer Contain a
number of defects, clustering parameter, mean number of defects in each chip and mean a
number of defects in each unit area. Among these input variables, the critical electrical test
parameters and clustering parameters are complex, and we will discuss them in the following
sections.

4.1.1.1. Critical electrical test parameters

In the process of fabricating complex semiconductor wafer, there are more than one hundred
electrical test parameters related to the probed wafer. This paper mainly does the research on
establishing the exact relationship of a small number of critical electrical test parameters with
yield. These critical electrical test parameters have significant influence on yield, and they have
high correlating coefficients or exhibit a ‘cliff’ in the correlation graphs which means they can
quickly improve the yield. Wong [32] proposed the hybrid statistical correlation analysis
method, and the critical electrical test parameters are identified based on this method. Here,
we remove some details of these electrical test parameters for confidentiality.

4.1.1.2. Clustering parameter

Clustering parameter displays cluster or clumps degrees of wafer defects in the defect map
[33]. Suppose that the clustering parameter is expressed by c, shown in Eq. (1).

2 2

2 2min ,v ws sc
v w

ì ü
= í ý

î þ
(22)
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where the sample mean and variance of �� is represented by �2 and ��2; and the sample mean

and variance of �� are represented by ��2 . �� and �� are a series of defect intervals on the x and

y axis defined as:

( ) ( 1) , 1,2,...,i i iV x x i n-= - =
(23)

( ) ( 1) , 1,2,...,i i iW y y i n-= - = (24)

where x(i) refers to the ith smallest defect coordinates on x axis, and similarly, y(i) refers to the
ith smallest defect coordinates on y axis, x(0) = y(0) = 0, and n refers to the quantity of defects
on one wafer. If the defects are randomly scattered, the value of CI is close to 1, and when
clustering of defects appears, the value of CI is likely to be greater than 1.

4.1.2. FNN structure

There are five layers in the rescheduling decision model based on FNN, as illustrated in
Figure 6.

Figure 6. FNN model structure.

a. The input vector is X = [x1, x2, x3, …, xm]. The function of node input‐output is:
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(1) (1) (1) (1); ; 1,2,i i i i if x x g f i m= = = = L (4‐4)

b. In the second layer which is the fuzzifer layer, the function of the Gauss membership is
adopted.

2

2

( )

( )
i ij

ij

x c

ij iu x e s

-
-

= (25)

In this formula, cij is the centre and ��� is width. The node input‐output function is:

2

( 2) 2

( )(1) 2
(2) (2) (1) (2)

2

( )
; ( )

i ij

ij ij

x c

fi ij
ij ij ij i ij

ij

x c
f x u x g e e s

s

-
--

= - = = = = (26)

where � = 1, 2,⋯� and � = �, �,⋯, ��.
c.

In the third layer as the rule layer, each node in the layer is a fuzzy rule which not only
matches the front part of the fuzzy rule but also calculates the adaptive of the rule,

(1)

1
( ), 1,2, ,

i

m

j il ii
a u x j n

=
= P = L (27)

In this layer, the input‐output function is:

(3) (2) (1) (3) (3) (3)

1 1
( ); ; 1,2, ,

i i

m m

j il il i j j j ji i
f x u x x a g f j n

= =
= P = P = = = = L (28)

d.
In the fourth layer which is the normalized layer. In this layer, the node numbers are the
same in the third layer. It normalized the adaptive values of these rules. And the input‐
output function is:

1

, 1,2, ,j
j n

i
i

a
b j n

a
=

= =

å
L

(29)

Node input‐output function in this layer is as follows.
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(3)
(4) (4) (4) (4)

(3)

1 1

; ; 1,2, ,j j
j j j j jn n

i i
i i

x a
f x b g f j n

x a
= =

= = = = = =

å å
L

(30)

e. The last layer is the output layer. It defuzzify the output variables. And each node
describes a rescheduling strategy. While a rescheduling strategy is chose, the correspond‐
ing output is 1 or 0. The input‐output function is:

(5) (4) (5) (5) (5)

1 1
;

n n

j j j j out
j j

f w x w b O x g f
= =

= = = = =å å (31)

where �� is connection weight parameter of output layer, and ���� is the output of FNN
model.

4.2. Case study

In this section, the experiments are conducted to evaluate the effectiveness of the proposed
FNN method. This section presents a numerical experiment study to demonstrate the
effectiveness of the approach proposed. Seven hundred and twenty wafer samples are obtained
from a 6 in. SWFS in Shanghai, and each sample includes 360 records of wafer yield. Five
hundred and fifty‐two records are used in model training, and 168 are taken to evaluate the
model. The attributes contained in each record are, in order, number of defects, clustering
parameter, die yield, mean number of defects per unit area, chip size parameter, mean number
of defects per chip, and 28 electrical test parameters, which is shown in Table 5. Each feature
is acquired by test during the critical manufacturing process. The presented FNN approach is
compared with the Poisson model, negative binomial model and BPNN approaches, since the
three approaches are widely used in research on yield predicting and have been proved to be
competitive [34–36]. Furthermore, the detail numerical comparison of the FNN approach,
Poisson model, negative binomial model and BPNN approaches are demonstrated as follows.

Record Number

of

defects  

Mean

number

of

defects/

chip 

… Chip

size

parameter

(cm2) 

Clustering

parameter 

Process

parameter

1 

Process

parameter

2 

… Process

parameter

28 

Yield

(%) 

1 21 0.14094 … 1 0.51836 322.7498 0.060865 … 1.169573 0.86577

2 45 0.30201 … 1 0.70814 324.4634 0.061573 … 1.172481 0.73826

3 16 0.10738 … 1 0.65597 322.1903 0.060648 … 1.176223 0.89262

4 21 0.14094 … 1 1.0277 313.9659 0.065036 … 1.162216 0.87248
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Record Number

of

defects  

Mean

number

of

defects/

chip 

… Chip

size

parameter

(cm2) 

Clustering

parameter 

Process

parameter

1 

Process

parameter

2 

… Process

parameter

28 

Yield

(%) 

5 46 0.30872 … 1 0.59023 313.0953 0.068286 … 1.183461 0.73826

6 35 0.2349 … 1 0.73168 323.9832 0.061867 … 1.164384 0.81879

7 7 0.04698 … 1 0.73807 315.9001 0.059539 … 1.177436 0.95302

8 49 0.32886 … 1 0.75913 310.9356 0.060887 … 1.180799 0.72483

9 9 0.060403 … 1 0.57871 310.6571 0.06439 … 1.168414 0.9396

10 33 0.22148 … 1 0.83289 310.0921 0.068695 … 1.179983 0.80537

11 37 0.24832 … 1 0.69348 322.2567 0.068536 … 1.160716 0.77181

12 48 0.32215 … 1 0.9089 323.7277 0.069959 … 1.162259 0.73154

13 12 0.080537 … 1 0.6154 321.1246 0.067403 … 1.176334 0.91946

14 33 0.22148 … 1 0.85056 313.0574 0.068778 … 1.170839 0.78523

15 47 0.31544 … 1 1.0109 313.5133 0.063245 … 1.172714 0.72483

… … … … … … … … … … …

705 31 0.31959 … 1.44 1.0678 310.2484 0.065854 … 1.168734 0.82474

706 35 0.36082 … 1.44 0.67849 321.1613 0.06883 … 1.166041 0.83505

707 61 0.62887 … 1.44 1.00661 314.3752 0.066945 … 1.184936 0.75258

708 71 0.73196 … 1.44 0.95411 321.3472 0.061456 … 1.164627 0.7732

709 82 0.84536 … 1.44 1.5379 311.5562 0.060457 … 1.160369 0.73196

710 32 0.3299 … 1.44 1.2404 313.4114 0.067197 … 1.160229 0.80412

711 79 0.81443 … 1.44 1.5407 317.3192 0.067454 … 1.175912 0.7732

712 72 0.74227 … 1.44 2.4467 323.099 0.062285 … 1.171942 0.76289

713 58 0.59794 … 1.44 2.32601 318.6861 0.068344 … 1.174814 0.76289

714 57 0.58763 … 1.44 1.0014 316.3194 0.065981 … 1.173957 0.79381

715 73 0.75258 … 1.44 1.3139 322.1991 0.065962 … 1.180853 0.73196

716 46 0.47423 … 1.44 1.6882 320.4291 0.069517 … 1.166221 0.79381

717 80 0.82474 … 1.44 1.57021 316.6195 0.062461 … 1.16293 0.74227

718 38 0.39175 … 1.44 2.0034 317.0604 0.06606 … 1.171795 0.79381

719 18 0.18557 … 1.44 0.81646 323.2213 0.064985 … 1.167234 0.8866

720 72 0.74227 … 1.44 0.95479 319.6768 0.068621 … 1.175982 0.73196

Table 5. Partial wafer measurements parameters and yield.
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4.2.1. Experiment on fuzzy neural network

The algorithm was programmed in Matlab 6.5, and ten factors were treated as input of the
model, which are mean number of defects per chip, chip size, clustering parameter, mean
number of defects per unit area, the number of defects per wafer and another five critical
electrical test parameters.

Twenty‐six rules for classification were identified the fuzzifier layer in the model. The 552
samples were utilized in the training of the FNN model with fivefold cross‐validation. The
learning process was explored in Figure 7. Afterward, the trained model was assessed by
another 168 samples, which is demonstrated in Table 6. Furthermore, the linear regression
analysis of the output of the FNN model is detailed in Figure 8.

Figure 7. Fuzzy neural network learning curve.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.72514 0.000432

2 0.69128 0.69118 0.000146

3 0.8255 0.8337 0.009929

4 0.75168 0.74329 0.011168

5 0.75839 0.758 0.000513

6 0.73154 0.73031 0.001677

7 0.89933 0.89876 0.000632

8 0.75168 0.75211 0.000576

9 0.74497 0.74409 0.001179

10 0.75168 0.75002 0.002209

11 0.7651 0.7637 0.001824
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Samples The actual yield The predicted yield Relative error

12 0.85235 0.85658 0.004967

13 0.89933 0.90485 0.006143

14 0.9396 0.93918 0.000452

15 0.81208 0.81559 0.00432

… … … …

160 0.75258 0.73323 0.025707

161 0.86598 0.84315 0.026365

162 0.74227 0.74376 0.002008

163 0.8866 0.88606 0.000609

164 0.73196 0.72817 0.005175

165 0.7732 0.76827 0.006381

166 0.75258 0.7456 0.009278

167 0.82474 0.83413 0.011391

168 0.83505 0.82249 0.01504

Table 6. The predicted yield based on FNN.

Figure 8. The linear regression analysis of the output of the FNN model.

4.2.2. Experiment of Poisson model

The Poisson model was built to predict wafer yield as follows.

0D AY e-= (38)
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In the model, Y means the wafer yield, �0 denotes the defect density, and � is the chip size.

The yield was forecasted by Poisson model, and the results of 168 samples can be found in
Table 7. The lineal correlation analysis between the actual wafer yield and the prediction value
is shown in Figure 9.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.57675 0.20429

2 0.69128 0.48117 0.30395

3 0.8255 0.79597 0.035769

4 0.75168 0.6552 0.12836

5 0.75839 0.66853 0.11849

6 0.73154 0.58064 0.20627

7 0.89933 0.89218 0.007953

8 0.75168 0.65081 0.13419

9 0.74497 0.61679 0.17206

10 0.75168 0.61267 0.18493

11 0.7651 0.59644 0.22044

12 0.85235 0.83988 0.014634

13 0.89933 0.87439 0.027733

14 0.9396 0.92883 0.011459

15 0.81208 0.74932 0.077284

… … … …

160 0.75258 0.55222 0.26623

161 0.86598 0.75422 0.12905

162 0.74227 0.49038 0.33936

163 0.8866 0.84934 0.042026

164 0.73196 0.40431 0.44763

165 0.7732 0.48316 0.37512

166 0.75258 0.43547 0.42137

167 0.82474 0.75422 0.085502

168 0.83505 0.74311 0.1101

Table 7. The predicted yield based on the Poisson model.
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Figure 9. The linear regression analysis of the output of the Poisson model.

4.2.3. Experiment of negative binomial model

The negative binomial model is built to predict wafer yield as follows.

( )1 D A/a0

1
+ aY = (38)

In this model, � means the defect‐limited wafer yield, �0 denotes the defect density, and � is
the cluster coefficient. The yield was forecasted by negative binomial model and the results of
168 samples can be found in Table 8. The lineal correlation analysis between the actual wafer
yield and the prediction value is shown in Figure 10.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.6395 0.11772

2 0.69128 0.57001 0.17543

3 0.8255 0.81257 0.015659

4 0.75168 0.69885 0.070289

5 0.75839 0.70919 0.064881

6 0.73154 0.64239 0.12187

7 0.89933 0.89708 0.002499

8 0.75168 0.69546 0.074787
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Samples The actual yield The predicted yield Relative error

9 0.74497 0.66949 0.10132

10 0.75168 0.66637 0.11349

11 0.7651 0.65417 0.14499

12 0.85235 0.85037 0.002326

13 0.89933 0.88098 0.020408

14 0.9396 0.93102 0.009135

15 0.81208 0.7737 0.047256

… … … …

160 0.75258 0.61346 0.18486

161 0.86598 0.7748 0.10529

162 0.74227 0.5669 0.23626

163 0.8866 0.85746 0.032863

164 0.73196 0.50341 0.31225

165 0.7732 0.56152 0.27377

166 0.75258 0.52626 0.30072

167 0.82474 0.7748 0.06055

168 0.83505 0.76546 0.083336

Table 8. The predicted yield based on the negative binomial model.

Figure 10. The linear regression analysis of the output of the negative binomial model.
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4.2.4. Experiment of back‐propagation neural network

A three layer BPNN is applied to predict wafer yield with ten input factors as same as the
proposed FNN. The number of hidden neurons is determined by the empirical formula and
selected to be 35. The yield was forecasted by BPNN and the results of 168 samples can be
found in Table 9. The lineal correlation analysis between the actual wafer yield and the
prediction value is shown in Figure 11.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.73495 0.013962

2 0.69128 0.7263 0.050661

3 0.8255 0.82385 0.001994

4 0.75168 0.76318 0.015293

5 0.75839 0.75985 0.001919

6 0.73154 0.75042 0.025807

7 0.89933 0.89876 0.000632

8 0.75168 0.76104 0.012456

9 0.74497 0.75932 0.019268

10 0.75168 0.73971 0.015921

11 0.7651 0.76666 0.002033

12 0.85235 0.83068 0.025423

13 0.89933 0.87383 0.028359

14 0.9396 0.93471 0.005204

15 0.81208 0.79469 0.021415

… … … …

160 0.75258 0.72724 0.033671

161 0.86598 0.8581 0.009105

162 0.74227 0.7096 0.044007

163 0.8866 0.89151 0.005535

164 0.73196 0.68805 0.059996

165 0.7732 0.72722 0.059471

166 0.75258 0.71576 0.048929

167 0.82474 0.82683 0.00253

168 0.83505 0.82845 0.007907

Table 9. The predicted yield based on BPNN.
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Figure 11. The linear regression analysis of the output of BPNN.

4.2.5. Results discussion

Aiming to assess the performance the proposed FNN methods, experiment with three contrast
method was conducted for comparison. The lineal correlation analyses between the actual
wafer yield and the prediction value of four methods are shown in Figure 12, which indicates
that the FNN method outperforms other three methods from the view of convergence. The

Figure 12. The relationship between the actual yields and predicted yields based on the FNN, BPNN and Poisson mod‐
el and negative binomial model approach.
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results of four methods in the RMSE and correlation coefficient R is presented in Table 10. The
RMSE of the FNN method is 0.017, which is the smallest value above the four methods, and
the R of the FNN‐based model is 0.941, which is larger than other three methods. It indicates
that the proposed FNN‐based approach is more accurate and effective than other three
methods, which are widely used in the yield predicting.

Yield prediction model The actual yield The predicted yield RMSE R

Average SD Average SD

Poisson model 0.80864 0.06168 0.65394 0.18694 0.0169 0.637

Negative binomial model 0.70047 0.14789 0.0123 0.693

BPNN 0.80691 0.05736 0.0024 0.886

FNN 0.80838 0.05711 0.0017 0.941

Table 10. The comparisons of RMSE and correlation coefficients among the FNN, BPNN, Poisson model and negative
binomial model.

5. Conclusion

The artificial neural networks (ANN) have a wide range of applications. For example, in
complex discrete event manufacturing systems, they can be used to control, make decision and
predict. SWFS is exactly such a complex manufacturing system. It has many characteristics,
such as a mix of different process types, re‐entrant flows, very expensive equipment and
sequence dependent setup times and so on. In order to get more applications of ANN used in
quality analysis and production scheduling in the semiconductor wafer fabrication system,
this chapter implements two novel fuzzy neural networks that are used in the yield prediction
of SWFS and rescheduling decision separately.

In the respect of rescheduling decision, this chapter puts forward a new method using a FNN
model with which a system can make itself adapted to the current states and disturbances. In
uncertain dynamic environments, current states and disturbances of the system are mathe‐
matically characterized. Rescheduling decision model, which assuming FNN builds the
relationship between the inputs (i.e. disturbance, system state parameters) and the outputs
(i.e. disturbance, system state parameters) of FNN. According to the current system distur‐
bances, an optimal rescheduling method which can be used to schedule the semiconductor
wafer fabrication lines is chosen by the make‐decision model. We do experiment studies in
Shanghai, which are based on 6‐in. SWFS. The proposed rescheduling decision mechanism is
proved to be effective by the linear regression between ideal targets and output of FNN. The
rescheduling decision‐making method which is proposed is demonstrated to be accurate by
comparing with regression and traditional BPNN. We also do the comparison between the
layered rescheduling method which is on the basis of FNN rescheduling decision mechanism
and the two methods that are FCFS approach and the rescheduling approach based on the
monolayer. The results indicate that, in respect of machine utilization and daily movement,
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layered rescheduling method, which is on the basis of FNN rescheduling decision mechanism,
is superior to the other two approaches.

A yield prediction method for semiconductor manufacturing systems which is on the basis of
new fuzzy neural networks is proposed for the yield prediction. This method builds the yield
prediction model based on FNN by using the following parameters as input variables, which
are the number of defects in each wafer, mean number of defects in each chip, mean number
of defects in each unit area, clustering parameter, chip size and five critical electrical test
parameters.

According to the data from the experiment studies in Shanghai which are based on 6‐in. SWFS.
The proposed rescheduling decision mechanism is proved to be effective by the linear
regression between ideal targets and output of FNN. The rescheduling decision‐making
method which is proposed is demonstrated to be accurate by comparing with regression and
traditional BPNN. The approach proposed in this paper has the advantage that it considers
more variables’ influences than other model such as negative binomial yield model, BPNN
model and Poisson yield model. The variables here include physical parameters of wafer, key
attributed parameters of defects and wafer electrical test parameters on wafer yield and so on.
In a word, the model proposed in this paper is more accurate than the other traditional yield
prediction approaches.
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