3,104 research outputs found

    Image Simulation in Remote Sensing

    Get PDF
    Remote sensing is being actively researched in the fields of environment, military and urban planning through technologies such as monitoring of natural climate phenomena on the earth, land cover classification, and object detection. Recently, satellites equipped with observation cameras of various resolutions were launched, and remote sensing images are acquired by various observation methods including cluster satellites. However, the atmospheric and environmental conditions present in the observed scene degrade the quality of images or interrupt the capture of the Earth's surface information. One method to overcome this is by generating synthetic images through image simulation. Synthetic images can be generated by using statistical or knowledge-based models or by using spectral and optic-based models to create a simulated image in place of the unobtained image at a required time. Various proposed methodologies will provide economical utility in the generation of image learning materials and time series data through image simulation. The 6 published articles cover various topics and applications central to Remote sensing image simulation. Although submission to this Special Issue is now closed, the need for further in-depth research and development related to image simulation of High-spatial and spectral resolution, sensor fusion and colorization remains.I would like to take this opportunity to express my most profound appreciation to the MDPI Book staff, the editorial team of Applied Sciences journal, especially Ms. Nimo Lang, the assistant editor of this Special Issue, talented authors, and professional reviewers

    Radar based positioning for unmanned surface vehicle under GPS denial environment

    Get PDF

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    First Analyses of Sentinel-1 Images for Maritime Surveillance

    Get PDF
    Sentinel-1 is the European Synthetic Aperture Radar (SAR) satellite operational since 3 October 2014. The SAR’s characteristics should make it suitable for maritime surveillance (ship detection), and it will routinely collect a large amount of maritime imagery over European and global seas. After its launch in April 2014, preliminary data have been made available to limited users in the satellite’s commissioning phase, and since the start of the operational phase data are available to the general public. These early data have been used to assess the quality of Sentinel-1 images and their suitability for ship detection. This was partly done by using the JRC’s ship detection software SUMO, after adaptation to ingest and process Sentinel-1 data. It is found that the sensor lives up to its specifications, thereby making it very useful for maritime surveillance thanks to its combination of wide swath and low noise at the medium resolution with which it will mostly be operated (“IW” and “EW” modes).JRC.G.3-Maritime affair

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    The role of brine release and sea ice drift for winter mixing and sea ice formation in the Baltic Sea

    Get PDF

    A novel spectral-spatial singular spectrum analysis technique for near real-time in-situ feature extraction in hyperspectral imaging.

    Get PDF
    As a cutting-edge technique for denoising and feature extraction, singular spectrum analysis (SSA) has been applied successfully for feature mining in hyperspectral images (HSI). However, when applying SSA for in situ feature extraction in HSI, conventional pixel-based 1-D SSA fails to produce satisfactory results, while the band-image-based 2D-SSA is also infeasible especially for the popularly used line-scan mode. To tackle these challenges, in this article, a novel 1.5D-SSA approach is proposed for in situ spectral-spatial feature extraction in HSI, where pixels from a small window are used as spatial information. For each sequentially acquired pixel, similar pixels are located from a window centered at the pixel to form an extended trajectory matrix for feature extraction. Classification results on two well-known benchmark HSI datasets and an actual urban scene dataset have demonstrated that the proposed 1.5D-SSA achieves the superior performance compared with several state-of-the-art spectral and spatial methods. In addition, the near real-time implementation in aligning to the HSI acquisition process can meet the requirement of online image analysis for more efficient feature extraction than the conventional offline workflow

    Earth resources. A continuing bibliography with indexes, issue 23

    Get PDF
    This bibliography lists 226 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and September 30, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives
    • …
    corecore