63 research outputs found

    A family of non-oscillatory 6-point interpolatory subdivision schemes

    Get PDF
    In this paper we propose and analyze a new family of nonlinear subdivision schemes which can be considered non-oscillatory versions of the 6-point Deslauries-Dubuc (DD) interpolatory scheme, just as the Power p schemes are considered nonlinear non-oscillatory versions of the 4-point DD interpolatory scheme. Their design principle may be related to that of the Power p schemes and it is based on a weighted analog of the Power p mean. We prove that the new schemes reproduce exactly polynomials of degree three and stay ’close’ to the 6-point DD scheme in smooth regions. In addition, we prove that the first and second difference schemes are well defined for each member of the family, which allows us to give a simple proof of the uniform convergence of these schemes and also to study their stability as in [19, 22]. However our theoretical study of stability is not conclusive and we perform a series of numerical experiments that seem to point out that only a few members of the new family of schemes are stable. On the other hand, extensive numerical testing reveals that, for smooth data, the approximation order and the regularity of the limit function may be similar to that of the 6-point DD scheme and larger than what is obtained with the Power p schemes

    Smoothness of Nonlinear and Non-Separable Subdivision Schemes

    Full text link
    We study in this paper nonlinear subdivision schemes in a multivariate setting allowing arbitrary dilation matrix. We investigate the convergence of such iterative process to some limit function. Our analysis is based on some conditions on the contractivity of the associated scheme for the differences. In particular, we show the regularity of the limit function, in LpL^p and Sobolev spaces

    The PCHIP subdivision scheme

    Get PDF
    In this paper we propose and analyze a nonlinear subdivision scheme based on the monotononicity-preserving third order Hermite-type interpolatory technique implemented in the PCHIP package in Matlab. We prove the convergence and the stability of the PCHIP nonlinear subdivision process by employing a novel technique based on the study of the generalized Jacobian of the first difference scheme.MTM2011-2274

    Multigrid methods and stationary subdivisions

    Get PDF
    Multigridmethods are fast iterative solvers for sparse large ill-conditioned linear systems of equations derived, for instance, via discretization of PDEs in fluid dynamics, electrostatics and continuummechanics problems. Subdivision schemes are simple iterative algorithms for generation of smooth curves and surfaces with applications in 3D computer graphics and animation industry. This thesis presents the first definition and analysis of subdivision based multigrid methods. The main goal is to improve the convergence rate and the computational cost of multigrid taking advantage of the reproduction and regularity properties of underlying subdivision. The analysis focuses on the grid transfer operators appearing at the coarse grid correction step in the multigrid procedure. The convergence of multigrid is expressed in terms of algebraic properties of the trigonometric polynomial associated to the grid transfer operator. We interpreter the coarse-to-fine grid transfer operator as one step of subdivision. We reformulate the algebraic properties ensuring multigrid convergence in terms of regularity and generation properties of subdivision. The theoretical analysis is supported by numerical experiments for both algebraic and geometric multigrid. The numerical tests with the bivariate anisotropic Laplacian ask for subdivision schemes with anisotropic dilation. We construct a family of interpolatory subdivision schemes with such dilation which are optimal in terms of the size of the support versus their polynomial generation properties. The numerical tests confirmthe validity of our theoretical analysis

    Subdivision schemes for curve design and image analysis

    Get PDF
    Subdivision schemes are able to produce functions, which are smooth up to pixel accuracy, in a few steps through an iterative process. They take as input a coarse control polygon and iteratively generate new points using some algebraic or geometric rules. Therefore, they are a powerful tool for creating and displaying functions, in particular in computer graphics, computer-aided design, and signal analysis. A lot of research on univariate subdivision schemes is concerned with the convergence and the smoothness of the limit curve, especially for schemes where the new points are a linear combination of points from the previous iteration. Much less is known for non-linear schemes: in many cases there are only ad hoc proofs or numerical evidence about the regularity of these schemes. For schemes that use a geometric construction, it could be interesting to study the continuity of geometric entities. Dyn and Hormann propose sufficient conditions such that the subdivision process converges and the limit curve is tangent continuous. These conditions can be satisfied by any interpolatory scheme and they depend only on edge lengths and angles. The goal of my work is to generalize these conditions and to find a sufficient constraint, which guarantees that a generic interpolatory subdivision scheme gives limit curves with continuous curvature. To require the continuity of the curvature it seems natural to come up with a condition that depends on the difference of curvatures of neighbouring circles. The proof of the proposed condition is not completed, but we give a numerical evidence of it. A key feature of subdivision schemes is that they can be used in different fields of approximation theory. Due to their well-known relation with multiresolution analysis they can be exploited also in image analysis. In fact, subdivision schemes allow for an efficient computation of the wavelet transform using the filterbank. One current issue in signal processing is the analysis of anisotropic signals. Shearlet transforms allow to do it using the concept of multiple subdivision schemes. One drawback, however, is the big number of filters needed for analysing the signal given. The number of filters is related to the determinant of the expanding matrix considered. Therefore, a part of my work is devoted to find expanding matrices that give a smaller number of filters compared to the shearlet case. We present a family of anisotropic matrices for any dimension d with smaller determinant than shearlets. At the same time, these matrices allow for the definition of a valid directional transform and associated multiple subdivision schemes

    Analysis of a new nonlinear interpolatory subdivision scheme on σ quasi-uniform grids

    Get PDF
    In this paper, we introduce and analyze the behavior of a nonlinear subdivision operator called PPH, which comes from its associated PPH nonlinear reconstruction operator on nonuniform grids. The acronym PPH stands for Piecewise Polynomial Harmonic, since the reconstruction is built by using piecewise polynomials defined by means of an adaption based on the use of the weighted Harmonic mean. The novelty of this work lies in the generalization of the already existing PPH subdivision scheme to the nonuniform case. We define the corresponding subdivision scheme and study some important issues related to subdivision schemes such as convergence, smoothness of the limit function, and preservation of convexity. In order to obtain general results, we consider s quasi-uniform grids. We also perform some numerical experiments to reinforce the theoretical results.This research was funded by the Fundación Séneca, Agencia de Ciencia y Technología de la Región de Murcia grant number 20928/PI/18 and by the Spanish national research project PID2019-108336GB-I00
    • …
    corecore