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1
Introduction

The aim of this thesis is to deeply investigate the link between multigrid methods, fast itera-

tive solvers for sparse ill-conditioned linear systems, and subdivision schemes, simple iter-

ative algorithms for generation of smooth curves and surfaces. The main goal is to improve

the convergence rate and the computational cost of multigrid methods taking advantage of

the reproduction and regularity properties of underlying subdivision.

Multigrid methods. Multigrid methods are fast iterative solvers for sparse and ill-conditioned
linear systems

Anx = bn , An ∈Cn×n , bn ∈Cn , (1.1)

where usually An ∈Cn×n is assumed to be symmetric and positive definite. A basic two-grid
method (TGM) combines the action of a smoother and a coarse grid correction: the smoother is
usually a simple iterative method such as Gauss-Seidel, weighted Jacobi or weighted Richard-
son [3, 70]; the coarse grid correction amounts to solving the residual equation exactly on a
coarser grid. A V-cycle multigrid method solves the residual equation approximately within
the recursive application of the two-grid method, until the coarsest level is reached and there
the resulting small system of equations is solved exactly [8, 9, 48, 71].

The algebraic multigrid (AMG) method has been designed for the solution of linear systems
of equations (1.1) whose system matrices are symmetric and positive definite [63]. The AMG
method exploits the algebraic properties of the system matrix An in (1.1) and constructs the
coarser system matrices preserving the algebraic properties of An . Recently [2, 3, 5, 6, 15, 34, 42,
69], AMG methods have been defined for the d-level circulant matrix algebra, and extended to
other matrix algebras and to the class of d-level Toeplitz matrices.

The grid transfer operators, called prolongation P and restriction R, define the coarse grid
correction and they are an essential part of any multigrid method. The choice of these operators

1



Chapter 1. Introduction

is crucial for the definition of a convergent and optimal 1 multigrid method and becomes
cumbersome especially for severally ill-conditioned problems or on complex domains. A
common choice is to define the prolongation and the restriction from the coefficients of the
d-variate trigonometric polynomials p and r , respectively. Usually, P and R are defined
as d-level circulant or d-level Toeplitz matrices of appropriate order generated by p and
r , respectively. This way, the properties of the grid transfer operators are encoded in the
trigonometric polynomials p, r and, thus, the effectiveness of the coarse grid correction can be
analyzed in terms of the properties of p and r .

In the case of algebraic TGMs, the Galerkin approach, namely r = cp, c ∈ (0,+∞), is usually
used. The sufficient conditions for the convergence of the TGM are then defined in terms of
the order of the zeros of the trigonometric polynomial p [5, 31, 34, 42, 43, 67, 69]. More precisely,
let f be the d-variate trigonometric polynomial associated to the d-level circulant or Toeplitz
system matrix An in (1.1). Suppose that f vanishes only at x0 ∈ [0,2π)d and it is strictly positive
everywhere else. Then, a sufficient condition for the convergence of the TGM is that

(i) lim
x→x0

|p(y)|2

f (x)
<+∞ ∀y ∈Ω(x) \ {x},

(ii)
∑

y∈Ω(x)

|p(x)|2 > 0, ∀x ∈ [0,2π)d ,

where Ω(x) ⊂ [0,2π)d is a finite set depending on x ∈Cd whose structure is defined accordingly
to the selected projection strategy. The symbol approach is a generalization of the LFA [31],
which is a classical tool for the convergence analysis of multigrid method applied to linear
systems of equations (1.1) derived via discretization of a constant-coefficients differential
operator.

For the algebraic V-cycle method, different grid transfer operators can be defined at each
recursive step. Thus, we have a set of trigonometric polynomials p j , r j . Due to the Galerkin
approach, namely r j = c j p j , c j ∈ (0,+∞), the coarser matrices are still d-level circulant or
d-level Toeplitz matrices. Under the hypothesis that the associated symbol f j vanishes only
at x j ∈ [0,2π)d and all f j are strictly positive everywhere else, a sufficient condition for the
convergence of the V-cycle method is that the trigonometric polynomials p j satisfy

(i) lim
x→x j

|p j (y)|
f j (x)

<+∞ ∀y ∈Ω(x) \ {x},

(ii)
∑

y∈Ω(x)

|p j (x)|2 > 0, ∀x ∈ [0,2π)d .

(1.2)

We remark that the V-cycle conditions (i) and (ii) are well-known in the multigrid community
for standard up-sampling strategy with the factor 2 in each coordinate direction [2, 3]. The
generalization of the V-cycle conditions (i) and (ii) in the case of arbitrary up-sampling
strategy is presented in chapter 3, subsection 3.5.3.

1I.e. the convergence rate is linear.
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Subdivision schemes. Subdivision schemes are efficient recursive tools for generating smooth
curves and surfaces and they are used in many fields ranging from computer graphics to signal
and image processing. The starting point of the subdivision algorithm is a scalar sequence
of control points in ℓ(Zd ). At each recursive step, a new sequence is defined by applying
simple, linear and local refinement rules to the sequence defined at the previous recursive
step. The structure of the refinement rules depends on an expansive dilation matrix M ∈Zd×d ,
ρ(M−1) < 1, which determines also the rate of the refinement process. In this thesis, we
consider refinement rules whose coefficients are the same at each subdivision level. Thus, the
refinement coefficients can be stored in a Laurent polynomial a, called subdivision symbol.

Attaching the data refined at the k-th subdivision level to the grid M−kZd , we can inter-
preter the subdivision process as a generation of “denser” data sequences. If the dilation M and
the refinement coefficients are chosen appropriately, these increasingly denser data sequences
will approach a continuous (or smoother) d-variate function.

The limit of a convergent subdivision scheme applied to the specific starting data called
the delta sequence, defines the so-called basic limit function. It is well-known that the basic
limit function satisfies a refinement equation defined by the dilation M and its integer shifts
build the foundation of a multiresolution analysis [11, 39].

If the starting data are sampled from a function π belonging to the space Πq of d-variate
polynomials of total degree less than or equal to q , it is natural to ask if the subdivision limit is
an element of the same space and, if yes, under which assumptions this limit coincides with π.
Such properties of subdivision are called generation and reproduction of the functional space
Πq , respectively. Certain algebraic properties of the symbol a characterize the properties of
generation and reproduction of the functional space Πq . A convergent stationary subdivision
scheme generates the space Πq if the associated symbol a satisfies ( [11,59]) the zero conditions

Dµa(ε) = 0, ∀ε ∈ EM \ {1 } , γ ∈Nd
0 , |µ| ≤ q,

where we denote by Dµ the µ-th directional derivative and |µ| :=µ1+ . . .+µd . The finite set EM

is defined accordingly to the dilation M . Moreover, in order to guarantee the reproduction of
polynomials of total degree less than or equal to s ≤ q , the symbol a should additionally satisfy
( [12, 20])

Dµa(1) = |det M |
d∏

i=1

γi−1∏

ℓi=0

(τi −ℓi ), τ= (τ1, . . . ,τd ) ∈Rd , γ ∈Nd
0 , |µ| ≤ s.

The parameter τ ∈Rd is the shift-parameter appearing in the parametrization associated with
the subdivision scheme

t(k)(α) = t(k)(0)+M−kα, t(k)(0) = t(k−1)(0)−M−kτ, t(0)(0) = 0, α ∈Zd , k ≥ 0.

The choice of τ ∈Rd affects neither the convergence nor the polynomial generation property
of the scheme, but its choice is crucial to guarantee the maximum degree of polynomial
reproduction s.

Thesis overview. The thesis is organized as follows:

3



Chapter 1. Introduction

Chapter 1. We introduce the notation used throughout the thesis. Then, we describe circulant,
d-level circulant, Toeplitz and d-level Toeplitz matrices and we recall a few of their well-
known properties. Indeed, due to the matrix algebra structure, AMG methods have been
defined for circulant and d-level circulant matrices (see chapter 3); nevertheless, they
can be generalized to the class of Toeplitz and d-level Toeplitz matrices for our numerical
experiments (see chapters 5 and 6). Finally, we present the Richardson, Jacobi and
Gauss-Seidel iterative methods, which are used to define the smoother in the multigrid
procedure (see chapter 3).

Chapter 2. First, we define the algebraic multigrid method (AMG) and report the well-known
results about its convergence and optimality using the approach of Ruge-Stüben in [63].
Then, we define the AMG method for circulant [15, 34] and d-level circulant [5] matrix
algebra with general up-sampling strategy. We relax the necessary conditions for the
convergence of the TGM, see Theorem 3.7, and provide the first result, see Theorem 3.8,
about the convergence of the V-cycle method generalizing the approach in [2, 3] for the
standard up-sampling strategy. We conclude the chapter providing some well-known
examples of grid transfer operators which already hint to a possible connection between
AMG and subdivision.

Chapter 3. We introduce stationary subdivision and we describe some of its important proper-
ties, such as interpolation, generation and reproduction of polynomials. We also provide
the tools and methods proposed in the literature for the analysis of stationary subdivision
schemes. Then, we present the first analysis of subdivision based multigrid. Especially,
we construct grid transfer operators in the multigrid procedure from the symbols of
certain subdivision schemes and we analyze the subdivision properties which guarantee
the convergence and optimality of a multigrid method. We highlight that polynomial
generation property plays a fundamental role in our analysis, see Theorem 4.4, together
with the stability of the basic limit function, see Theorem 4.5, and zero conditions of the
subdivision symbol, see Theorem 4.7.

Chapter 4. We construct univariate and bivariate grid transfer operators from the symbols
of well-known subdivision schemes and we test their efficacy on several numerical ex-
amples. In the univariate setting, we consider the symbols of binary and ternary primal
pseudo-splines. In the bivariate setting, we consider well known approximating and in-

terpolating subdivision schemes with dilation M =
(
m 0
0 m

)

, m = 2,3, such as symmetric

2-directional box splines and binary and ternary Kobbelt subdivision schemes. Due to
the symmetry of this dilation matrix, our numerical tests for the anisotropic Laplacian
problem fail (see subsection 5.4.3), leading to the need of grid transfer operators defined

from the symbols of anisotropic subdivision schemes with dilation M =
(
2 0
0 m

)

, m > 2.

Chapter 5. We focus on bivariate subdivision schemes with anisotropic dilation M =
(
2 0
0 m

)

,

m > 2. We construct a family of interpolatory subdivision schemes which are optimal in

4



terms of the size of their support versus their polynomial generation properties. Then, we

construct a new family of approximating subdivision schemes with dilation M =
(
2 0
0 3

)

depending on parameters (J ,L) characterized by a fixed degree of polynomial generation
2J −1 and an increasing degree of polynomial reproduction 2L+1, L = 0, . . . , J −1. Finally,
we define grid transfer operators from the symbols of our new families of anisotropic
subdivision schemes and test their applicability for AMG on several numerical examples.
Especially, we consider the anisotropic Laplacian problem and overcome the conver-
gence problems observed in the symmetric context in chapter 5.

5
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2
Notation and Background

The aim of this introductive chapter is to fix the notation used through the thesis and to
introduce the tools that will be widely used in the next chapters for the definition and the
analysis of subdivision based multigrid. Especially, in section 2.1, we fix the key notation about
matrices, sequences and functional spaces. Section 2.2 concerns multi-index notation and it
exploits the multi-index operations that will be used in the next chapters. In section 2.3, we
define unilevel and multilevel circulant and Toeplitz matrices and we recall the basic results
about their properties. Finally, in section 2.4, we recall the definition of standard iterative
methods from literature.

2.1 NOTATION

⋆ N is the set of all positive integers and N0 =N∪ {0},

⋆ For K ∈ {Z, R, C }, Kn×n is the linear space of n ×n matrices with coefficients in the field
K.

⋆ For K ∈ {Z, R, C }, Kn is the linear space of n ×1 column vectors with coefficients in the
field K.

⋆ Given A ∈Kn×n , we denote by

∗ AT the transpose of A,

∗ A∗ the conjugate transpose of A,

∗ λ j (A), j = 1, . . . ,n, the eigenvalues of A,

∗ ρ(A) = max
j=1,...,n

|λ j (A)| the spectral radius of A,

7



Chapter 2. Notation and Background

∗ rank(A) the rank of A,

∗ det(A) the determinant of A.

⋆ Given A ∈Kn×n , we say that

∗ A is Hermitian if A = A∗,

∗ A is symmetric if A = AT ,

∗ A is unitary if A A∗ = A∗A = In , where In ∈Zn×n is the identity matrix of order n,

∗ A is positive definite if A is Hermitian and x∗Ax > 0 for all x ∈Kn ,

∗ A is positive semi-definite if A is Hermitian and x∗Ax ≥ 0 for all x ∈Kn .

⋆ Given A, B ∈Kn×n , we say that

∗ A ≺ B if B − A is positive definite,

∗ A ¹ B if B − A is positive semi-definite.

⋆ If A ∈Kn×n is Hermitian positive semi-definite, A
1
2 is the nonnegative square root of A

and

‖x‖A = ‖A
1
2 x‖2 =

√

x∗(

A
1
2
)∗

A
1
2 x, ∀x ∈Kn .

⋆ We denote by

∗ ℓ(Zd ) the space of complex sequences indexed by Zd , namely

ℓ(Zd ) =
{

p = {p(α) ∈C : α ∈Zd }
}

,

where p(α) denotes the α-th element of the sequence p,

∗ ℓ0(Zd ) ⊂ ℓ(Zd ) the space of sequences with finite support,

∗ ℓ∞(Zd ) ⊂ ℓ(Zd ) the space of bounded sequences equipped with the norm

‖p‖∞ = sup
α∈Zd

|p(α)|, ∀p ∈ ℓ∞(Zd ).

⋆ C(Rd ), C([0,2π)d ) are the spaces of continuous functions defined over Rd and [0,2π)d ,
respectively.

⋆ i ∈C is the imaginary unit, namely i2 =−1.

⋆ ⊗ is the Kronecker product.

⋆ Given n ∈Nd
0 , we define N (n) =

d∏

i=1

ni ∈N0.
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2.2. Multi-index notation

2.2 MULTI-INDEX NOTATION

Let µ = (µ1, . . . ,µd ) ∈ Nd
0 . We say that µ is a d-index of length |µ| = µ1 + . . .+µd . Let ei ∈ Rd ,

i = 1, . . . ,d , be the i -th unit vector of Rd , namely

ei (k) = δi ,k , k = 1, . . . ,d .

We denote by Dµ the mixed partial derivative D
µ1
e1

. . .D
µd
ed

, where D
µi
ei

, i = 1, . . . ,d , is the deriva-
tive of order µi along the direction ei , namely

D
µi
ei

f = Dei

(

D
µi−1
ei

f
)

, Dei
f (x) = lim

h→0

f (x)− f (x−hei )

h
, x ∈Rd , f ∈ C |µ|(Rd ).

Let µ= (µ1, . . . ,µd ) ∈Nd
0 and ν= (ν1, . . . ,νd ) ∈Nd be two d-indexes. The d-indexes operations

µν, µν and µ/ν are always intended component-wise, namely

µν =
(

µ
ν1
1 , . . . ,µνd

d

)

∈Nd
0 , µν= (µ1ν1, . . . ,µdνd ) ∈Nd

0 , µ/ν=
(

µ1/ν1, . . . ,µd /νd

)

∈Qd .

Let z = (z1, . . . , zd ) ∈ (C\ {0})d and µ= (µ1, . . . ,µd ) ∈Zd . We define

zµ = z
µ1

1 · · ·z
µd

d
∈C.

2.3 UNILEVEL AND MULTILEVEL CIRCULANT AND TOEPLITZ MATRICES

In this section, in subsections 2.3.1 and 2.3.2, we shortly introduce circulant and Toeplitz matri-
ces, respectively. Then, in subsections 2.3.3 and 2.3.4, we briefly describe d-level circulant and
d-level Toeplitz matrices, respectively. Our interest is motivated by theoretical and numerical
needs. Indeed, in chapter 3 we define an algebraic multigrid method for circulant and d-level
circulant matrices. Circulant and d-level circulant matrices build a matrix algebra, and the
definition and the analysis of the algebraic multigrid exploit the matrix algebra structure. Even
if the theoretical analysis of multigrid is done in the case of circulant and d-level circulant
matrices, the resulting multigrid methods are applicable also for solving more general linear
systems of equations, in particular, those with Toeplitz and d-level Toeplitz system matrices
(see chapters 5 and 6). We recall that the discretization of ODEs and PDEs with constant
coefficients define Toeplitz and d-level Toeplitz matrices.

2.3.1 CIRCULANT MATRICES

Let n ∈N. We say that a matrix A ∈Cn×n is circulant if it satisfies

A =











b(0) b(n −1) · · · b(2) b(1)
b(1) b(0) b(n −1) b(2)

... b(1) b(0)
. . .

...

b(n −2)
. . .

. . . b(n −1)
b(n −1) b(n −2) · · · b(1) b(0)











, b(α) ∈C, α= 0, . . . ,n −1.
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Chapter 2. Notation and Background

A circulant matrix A is determined by a finite sequence of coefficients

b = {b(α) ∈C : α= 0, . . . ,n −1} ∈ ℓ0(Z).

More precisely, the entries of the matrix A satisfy

A =
(

b
(

(α−β)modn
))

α,β=0,...,n−1
.

Let f : [0,2π) →C be a trigonometric polynomial of degree c ∈N, namely

f (x) =
∑

α∈Z
|α|≤c

a(α)eiαx , x ∈ [0,2π).

The finite sequence a = {a(α) ∈C : α ∈Z, |α| ≤ c } ∈ ℓ0(Z) collects the Fourier coefficients of f

defined by

a(α) =
1

2π

∫2π

0
f (x)e−iαxdx, α ∈Z, |α| ≤ c.

From the finite sequence a of the Fourier coefficients of the trigonometric polynomial f , it is
possible to define a circulant matrix A =Cn( f ) ∈Cn×n by

Cn( f ) =
(

a
(

(α−β)modn
)

+a
((

(α−β)modn
)

−n
))

α,β=0,...,n−1
,

where we assume a(α) = 0, ∀α ∈ Z such that |α| > c. We say that the matrix Cn( f ) is the
circulant matrix of order n generated by f . For instance, let

f (x) = 5+2eix −ei3x +4e−i2x , x ∈ [0,2π), (2.1)

be a trigonometric polynomial of degree c = 3. The non-zero Fourier coefficients of f are

a(0) = 5, a(1) = 2, a(3) =−1, a(−2) = 4.

Thus, the matrices C5( f ), C6( f ) become

C5( f ) =










5 0 3 0 2
2 5 0 3 0
0 2 5 0 3
3 0 2 5 0
0 3 0 2 5










∈C5×5, C6( f ) =












5 0 4 −1 0 2
2 5 0 4 −1 0
0 2 5 0 4 −1
−1 0 2 5 0 4
4 −1 0 2 5 0
0 4 −1 0 2 5












∈C6×6.

We define the cycling permutation matrix Zn ∈Cn×n of order n by

Zn =











0 0 · · · 0 1
1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . . 1 0 0
0 · · · 0 1 0











. (2.2)
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2.3. Unilevel and multilevel circulant and Toeplitz matrices

Then, the circulant matrix Cn( f ) satisfies

Cn( f ) =
∑

α∈Z
|α|≤c

a(α)Zα
n , Zα

n = Zn · · ·Zn
︸ ︷︷ ︸

α times

.

Due to a(α) = a(−α), |α| ≤ c, the matrix Cn( f ) is Hermitian.
We denote by Fn ∈Cn×n the Fourier matrix of order n, i.e.

Fn =
1
p

n

(

e−i
2παβ

n

)

α,β=0,...,n−1
. (2.3)

The matrix Fn is symmetric and unitary. Any circulant matrix Cn( f ) satisfies ( [26])

Cn( f ) = Fn∆n( f )F∗
n , ∆n( f ) = diag

α=0,...,n−1
f
(

x(n)
α

)

∈Cn×n , x(n)
α =

2πα

n
. (2.4)

Thus, f (x(n)
α ), α= 0, . . . ,n −1, are the eigenvalues of Cn( f ).

Most of the properties of Cn( f ) are encoded in the trigonometric polynomial f . Due to (2.4),

⋆ if f is real, then Cn( f ) is symmetric,

⋆ if f is real and f ≥ 0, then Cn( f ) is positive semi-definite,

⋆ if f is real, f ≥ 0 and f (x(n)
α ) 6= 0, α= 0, . . . ,n −1, then Cn( f ) is non-singular.

2.3.2 TOEPLITZ MATRICES

Let n ∈N. We say that a matrix A ∈Cn×n is Toeplitz if it satisfies

A =











b(0) b(−1) · · · b(2−n) b(1−n)
b(1) b(0) b(−1) b(2−n)

... b(1) b(0)
. . .

...

b(n −2)
. . .

. . . b(−1)
b(n −1) b(n −2) · · · b(1) b(0)











, b(α) ∈C, α= 1−n, . . . ,0, . . . ,n−1.

A Toeplitz matrix A is determined by a finite sequence of coefficients

b = {b(α) ∈C : α= 1−n, . . . ,0, . . . ,n −1} ∈ ℓ0(Z).

More precisely, the entries of the matrix A satisfy

A =
(

b(α−β)
)

α,β=0,...,n−1
.

As for the circulant case, it is possible to establish a relationship between Toeplitz matrices
and trigonometric polynomials. More precisely, let f be a trigonometric polynomial of degree

11



Chapter 2. Notation and Background

c ∈N. Let a = {a(α) ∈C : α ∈Z, |α| ≤ c } ∈ ℓ0(Z) be the collection of the Fourier coefficients of f .
For n > c, it is possible to define the Toeplitz matrix A = Tn( f ) by

Tn( f ) =
(

a(α−β)
)

α,β=0,...,n−1
∈Cn×n ,

where we assume a(α) = 0, ∀α ∈Z such that |α| > c . We say that the matrix Tn( f ) is the Toeplitz
matrix of order n generated by f . For instance, let f be defined as in (2.1). Then, the matrix
T5( f ) becomes

T5( f ) =










5 0 4 0 0
2 5 0 4 0
0 2 5 0 4

−1 0 2 5 0
0 −1 0 2 5










∈C5×5.

For α ∈Z, |α| < n, we define the matrix J (α)
n ∈Zn×n by

J (α)
n (β,γ) =

{

1, β−γ=α,

0, otherwise,
β, γ= 0, . . . ,n −1. (2.5)

Then, the Toeplitz matrix Tn( f ) satisfies

Tn( f ) =
∑

α∈Z
|α|≤c

a(α)J (α)
n .

Similarly to circulant matrices, most of the properties of Tn( f ) are dictated by the behavior of
the trigonometric polynomial f . Indeed, the following properties are satisfied ( [72]):

⋆ if f is real, then Tn( f ) is Hermitian,

⋆ if f is real and even, then Tn( f ) is symmetric,

⋆ if f is real and f ≥ 0, then Tn( f ) is positive semi-definite,

⋆ if f is real, f ≥ 0 and f vanishes on a set of Lebesgue measure 0, then Tn( f ) is positive
definite.

2.3.3 d -LEVEL CIRCULANT MATRICES

Let d ∈N, d > 1. A d-level circulant matrix can be “recursively” defined as a circulant block
matrix with (d −1)-level circulant blocks. For instance, let d = 2 and n = (n1,n2) ∈ N2. The
bi-level circulant matrix An ∈Cn1n2×n1n2 is n1 ×n1 block circulant with circulant blocks of size
n2 ×n2, namely

A =











A0 An1−1 · · · A2 A1

A1 A0 An1−1 A2
... A1 A0

. . .
...

An1−2
. . .

. . . An1−1

An1−1 An1−2 · · · A1 A0











,
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2.3. Unilevel and multilevel circulant and Toeplitz matrices

where Aα ∈Cn2×n2 , α= 0, . . . ,n1 −1, are circulant matrices.

Let f : [0,2π)d →C be a d-variate trigonometric polynomial of total degree c ∈N, namely

f (x) =
∑

α∈Zd

|α|≤c

a(α)eiαT ·x, αT ·x =
d∑

i=i

αi xi , x ∈ [0,2π)d .

Let a = {a(α) ∈C : α ∈Zd , |α| ≤ c } ∈ ℓ0(Zd ) be the finite sequence of the Fourier coefficients of
f , namely

a(α) =
1

(2π)d

∫

[0,2π)d
f (x)e−iαT ·xdx, α ∈Zd , |α| ≤ c.

Then, the d-level circulant matrix of order n = (n1, . . . ,nd ) ∈Nd generated by f is defined by

Cn( f ) =
∑

α∈Zd

|α|≤c

a(α) Z (α)
n ∈CN×N , N = N (n) =

d∏

i=1

ni ,

where Z (α)
n = (Zn1 )α1 ⊗ . . .⊗ (Znd

)αd ∈CN×N and Zni
∈Cni×ni , i = 1, . . . ,d , is the cycling permu-

tation matrix of order ni defined by (2.2). Due to a(α) = a(−α), |α| ≤ c, the matrix Cn( f ) is
Hermitian.

Defining the d-dimensional Fourier matrix Fn of order n by

Fn = Fn1 ⊗ . . .⊗Fnd
∈CN×N , (2.6)

where Fni
∈ Cni×ni , i = 1, . . . ,d , is the unidimensional Fourier matrix of order ni defined by

(2.3), the matrix Cn( f ) satisfies

Cn( f ) = Fn∆n( f )F∗
n , ∆n( f ) = diag

0≤α≤n−1

f
(

x(n)
α

)

∈CN×N , (2.7)

where

x(n)
α =

(

x
(n1)
α1

, . . . , x
(nd )
αd

)

∈Cd , x
(ni )
αi

=
2παi

ni
, i = 1, . . . ,d

and 0 ≤α≤ n−1 means that 0 ≤αi ≤ ni −1 for i = 1, . . . ,d (assuming the standard lexicographic
ordering).

The properties of Cn( f ) are encoded in the trigonometric polynomial f . Especially, if f is real,

f ≥ 0, and f
(

x(n)
α

)

6= 0, 0 ≤α≤ n−1, then Cn( f ) is positive definite.

2.3.4 d -LEVEL TOEPLITZ MATRICES

Let d ∈N, d > 1. Similarly to the d-level circulant case, a d-level Toeplitz matrix is a Toeplitz
block matrix with (d −1)-level Toeplitz blocks. For instance, let d = 2 and n = (n1,n2) ∈N2. The
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Chapter 2. Notation and Background

bi-level Toeplitz matrix An ∈ Cn1n2×n1n2 is n1 ×n1 block Toeplitz with Toeplitz blocks of size
n2 ×n2, namely

A =











A0 A−1 · · · A2−n1 A1−n1

A1 A0 A−1 A2−n1
... A1 A0

. . .
...

An1−2
. . .

. . . A−1

An1−1 An1−2 · · · A1 A0











,

where Aα ∈Cn2×n2 , α= 1−n1, . . . ,0, . . . ,n1 −1, are Toeplitz matrices.

Let f be a d-variate trigonometric polynomial of total degree c ∈N, and let

a = {a(α) ∈C : α ∈Zd , |α| ≤ c } ∈ ℓ0(Zd ),

be the finite sequence of the Fourier coefficients of f . For n = (n1, . . . ,nd ) ∈Nd , min
i=1,...,d

ni > c,

the d-level Toeplitz matrix of order n generated by f is defined by

Tn( f ) =
∑

α∈Zd

|α|≤c

a(α) J (α)
n ∈CN×N , N = N (n) =

d∏

j=i

ni ,

where J (α)
n = J

(α1)
n1

⊗ . . .⊗ J
(αd )
nd

∈ CN×N and J
(αi )
ni

∈ Cni×ni , i = 1, . . . ,d , is the Toeplitz matrix of
order ni defined by (2.5).

The properties of Tn( f ) stated at the end of subsection 2.3.2 hold also for Tn( f ). Especially, if f

is real, f ≥ 0, and f vanishes on a set of Lebesgue measure 0, then Tn( f ) is positive definite.

2.4 ITERATIVE METHODS

In this section, we shortly explain the main idea behind the construction of iterative methods.
Then, in subsections 2.4.1, 2.4.2 and 2.4.3, we present Richardson, Jacobi and Gauss-Seidel
methods, respectively. These three methods are well-known stationary iterative methods from
literature.

Iterative methods are widely used for the solution of large systems of equations

Anx = bn , An ∈Cn×n , bn ∈Cn , n ∈N.

They generate a sequence of approximate solutions which, under appropriate hypothesis on
the system matrix An , converges to the exact solution x = A−1

n bn ∈Cn . We underline two critical
aspects of iterative methods:

⋆ they involve the system matrix An only in the context of matrix-vector multiplication,

⋆ their efficacy focuses on how quickly they converge to the exact solution.
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2.4. Iterative methods

A large class of iterative methods is based on the matrix splitting

An = Mn −Nn , Mn , Nn ∈Cn×n ,

where Mn is non-singular and “easily” invertible. Indeed, we have

Anx = bn ⇐⇒ (Mn −Nn)x = bn

⇐⇒ Mnx = Nnx+bn

⇐⇒ x = M−1
n Nnx+M−1

n bn .

(2.8)

Using (2.8), an iterative method generates a sequence of iterates {x(k) ∈Cn : k ∈N }, defined by

x(k+1) = M−1
n Nnx(k) +M−1

n bn =Vnx(k) +M−1
n bn , Vn = M−1

n Nn ∈Cn×n , x(0) ∈Cn . (2.9)

The convergence of an iterative method depends on the spectral properties of the iteration
matrix Vn . Indeed, for k ∈N, we define e(k) = x−x(k) ∈Cn the error at the k-th iterate. Then, we
have

e(k+1) = x−x(k+1)

=Vnx+M−1
n bn −

(

Vnx(k) +M−1
n bn

)

=Vn

(

x−x(k))

=Vne(k) = ·· · =V k+1
n e(0), e(0) = x−x(0).

Thus, ∀e(0) ∈Cn , we get

lim
k→∞

‖e(k)‖ = 0 ⇐⇒ ρ(Vn) < 1.

Next, we introduce the well-known iterative methods of Richardson, Jacobi and Gauss-
Seidel. We assume that the system matrix An is positive definite, thus 0 <λ1(An) ≤ ·· · ≤λn(An)
and ρ(An) =λn(An). We define

K (An) := ‖An‖‖A−1
n ‖ =

λn(An)

λ1(An)
,

where the last equality is due to An being positive definite. The value K (An) is called condition

number of the system matrix An and gives a bound on how inaccurate the solution will be after
approximation. If K (An) >> 1, that is λ1(An) << 1 or λn(An) >> 1, the linear system Anx = bn

is said to be bad conditioned. In this case, whenever the data An or bn are effected by errors, it
is impossible to find an accurate approximation of the solution x.

2.4.1 RICHARDSON

The Richardson method [61] is defined by the matrix splitting An = Mn −Nn , where Mn = In

is the identity matrix of order n and Nn = In − An . Given the starting guess x(0) ∈ Cn , the
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Richardson method defines

x(k+1) = M−1
n Nnx(k) +M−1

n bn

= (In − An)x(k) +bn

= x(k) +
(

bn − Anx(k))

= x(k) + r(k),

where we denote by r(k) = bn − Anx(k) the residual of the k-th iterate.

Introducing a relaxation parameter ω ∈R+, it is possible to define the weighted Richardson
method by the splitting An = Mω

n −Nω
n , where Mω

n = ω−1In and Nω
n = ω−1In − An . Thus, we

have

x(k+1) = (Mω
n )−1Nω

n x(k) + (Mω
n )−1bn

=ω(ω−1In − An)x(k) +ωbn

= x(k) +ω
(

bn − Anx(k))

= x(k) +ωr(k).

The relaxation parameter ω ∈R+ weights the contribution of the residual r(k) to the definition
of the iterate x(k+1). The iteration matrix becomes

V ω
n = (Mω

n )−1Nω
n = In −ωAn . (2.10)

The parameter ω should be chosen in order to guarantee the convergence of the method. More
precisely, ω should ensure that

ρ(V ω
n ) = ρ(In −ωAn) = |1−ωλ1(An)| < 1.

Taking ω=λn(An)−1 > 0, we get

1 > ρ(V ω
n ) = 1−

λ1(An)

λn(An)
= 1−K (An)−1.

Thus, the worse is the condition number of An , the slower is the Richardson method.

2.4.2 JACOBI

The Jacobi method [51] is defined by the matrix splitting An = Mn −Nn , where Mn = Dn is the
diagonal matrix with diagonal entries of An , namely

Dn =






a(1,1)
. . .

a(n,n)




 ∈Cn×n (2.11)
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and Nn = Dn − An =−(Ln +Un), where Ln and Un are the lower and upper triangular parts of
An respectively, namely

Ln =












0 0 · · · · · · 0

a(2,1) 0 · · ·
...

a(3,1) a(3,2)
. . . 0

... 0 0
a(n,1) a(n,2) · · · a(n,n −1) 0












∈Cn×n , (2.12)

Un =












0 a(1,2) · · · a(1,n −1) a(1,n)

0 0
...

0
. . . a(n −2,n −1) a(n −2,n)

... · · · 0 a(n −1,n)
0 · · · · · · 0 0












∈Cn×n . (2.13)

Notice that An = Dn +Ln +Un .
Let An be positive definite, thus the diagonal matrix Dn is invertible. Given the starting

guess x(0) ∈Cn , the Jacobi method defines

x(k+1) = M−1
n Nnx(k) +M−1

n bn

= D−1
n (Dn − An)x(k) +D−1

n bn

= (In −D−1
n An)x(k) +D−1

n bn .

Similarly to the Richardson method, introducing the relaxation parameter ω ∈ R+, it is
possible to define the weighted Jacobi method by the splitting An = Mω

n −Nω
n , where Mω

n =
ω−1Dn and Nω

n =ω−1Dn − An . Thus, we have

x(k+1) = (Mω
n )−1Nω

n x(k) + (Mω
n )−1bn

=ωD−1
n (ω−1Dn − An)x(k) +ωD−1

n bn

= (In −ωD−1
n An)x(k) +ωD−1

n bn

= (1−ω)x(k) +ω
(

(In −D−1
n An)x(k) +D−1

n bn

)

︸ ︷︷ ︸

y(k+1)

.

From the latter, we can interpreter the iterate x(k+1) as a mean with weight ω between the
previous iterate x(k) and the iterate y(k+1) defined by the standard Jacobi method. The iteration
matrix becomes

V ω
n = (Mω

n )−1Nω
n = In −ωD−1

n An . (2.14)

If the system matrix An is strictly diagonally dominant, i.e.

|a(α,α)| >
n∑

β=1
β 6=α

|a(α,β)|, α= 1, . . . ,n,
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and ω ∈ [0,1], then the weighted Jacobi method is convergent. Indeed, we have

ρ(V ω
n ) ≤ ‖V ω

n ‖∞ = ‖In −ωD−1
n An‖∞ = max

α=1,...,n

( n∑

β=1
β 6=α

ω

∣
∣
∣
∣

a(α,β)

a(α,α)

∣
∣
∣
∣+|1−ω|

)

<ω+1−ω= 1.

Let α ∈N. The α-th entry of the new iterate x(k+1) can be computed by

x(k+1)(α) =
1

a(α,α)

(

bn(α)−
α−1∑

β=1

a(α,β)x(k)(β)−
n∑

β=α+1

a(α,β)x(k)(β)

)

.

Notice that the computation of x(k+1)(α) does not use the most recently available information
x(k+1)(β), β= 1, . . . ,α−1. To overcome this issue, the Gauss-Seidel method has been introduced.

2.4.3 GAUSS-SEIDEL

The Gauss-Seidel method [45] is defined by the matrix splitting An = Mn −Nn , where Mn =
Dn+Ln and Nn = Dn+Ln−An =−Un , with Dn in (2.11) and Ln , Un in (2.12). Given the starting
guess x(0) ∈Cn , the Gauss-Seidel method defines

x(k+1) = M−1
n Nnx(k) +M−1

n bn

=−(Dn +Ln)−1Unx(k) + (Dn +Ln)−1bn .

The iteration matrix becomes

Vn = M−1
n Nn =−(Dn +Ln)−1Un . (2.15)

Let An be positive definite. Then, the Gauss-Seidel method is convergent. We omit the proof
and refer e.g. to [46].

Let α ∈N. The α-th entry of the new iterate x(k+1) can be computed by

x(k+1)(α) =
1

a(α,α)

(

bn(α)−
α−1∑

β=1

a(α,β)x(k+1)(β)−
n∑

β=α+1

a(α,β)x(k)(β)

)

.

Notice that the computation of x(k+1)(α) uses the most current estimation of x(k+1), namely
x(k+1)(β), β= 1, . . . ,α−1.

18



C
H

A
P

T
E

R

3
Algebraic multigrid

In this chapter, we define and analyze the algebraic multgrid for circulant and d-level circulant
matrices. First, in sections 3.1 and 3.2, we introduce the algebraic two-grid method and V-cycle
method, respectively, for the solution of linear systems of equations

Anx = bn , An ∈Cn×n , bn ∈Cn , (3.1)

where the system matrix An is positive definite. We give a proper description of the algebraic
multgrid methods and recall the well-known results about their convergence and optimality
following the theory in [63]. Then, in sections 3.3 and 3.4, we focus on algebraic multigrid
methods for circulant and d-level circulant matrices, respectively. The description we are going
to present is characterized by a downsampling/upsampling strategy with the factor m ∈ N,
m ≥ 2, for the circulant matrix algebra, and with the factor m ∈ Nd , mi ≥ 2, i = 1, . . . ,d , for
the d-level circulant matrix algebra. For the “standard” cases m = 2 and m = (2, . . . ,2) ∈Nd ,
the definition of the algebraic multgrid methods is well-understood and the corresponding
convergence theory has been fully investigated, see [2, 3, 69]. In our general setting, the
definition of the algebraic multgrid methods is extremely recent and the convergence analysis
is still incomplete. In [6, 34], the authors provide sufficient conditions for the convergence and
optimality of the two-grid method. In section 3.5, we slightly relax these conditions, see (ii) of
Theorem 3.7, as preparatory result for the analysis carried out in chapter 4. Then, we provide
sufficient conditions for the convergence of the V-cycle method, see Theorem 3.8. At the best
of our knowledge, Theorem 3.8 is the first result concerning the convergence of the V-cycle
method for circulant and d-level circulant matrices with general downsampling/upsampling
strategies. Finally, in subsection 3.5.4, we give a few examples from literature of grid transfer
operators which already hint at the possibility of a connection between algebraic multigrid
and stationary subdivision.
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Chapter 3. Algebraic multigrid

3.1 ALGEBRAIC TWO-GRID METHOD

A basic two-grid method (TGM) combines the action of a smoother and a coarse grid correction

operator: the smoother is often a simple iterative method such as Gauss-Seidel, weighted
Jacobi or weighted Richardson [3, 70]; the coarse grid correction operator amounts to solving
exactly the residual equation associated to the approximation computed by the smoother on a
coarser space where the smoother is ineffective.

Let n0 ∈N be a positive integer. To design two-grid methods for solving linear systems of
the form (3.1) with positive definite system matrices An0 , we define

⋆ n1 ∈N, n1 < n0 the dimension of the coarse space at which we project our problem,

⋆ the grid transfer operator Pn0 ∈Cn0×n1 , usually called prolongation, which is a full-rank
rectangular matrix, rank(Pn0 ) = n1, and

⋆ a class V(·) of iterative methods of the form (2.9).

In the following, we define the coarse grid correction operator by the Galerkin approach,
which is characterized by the following two conditions:

⋆ the restriction is the conjugate transpose of the prolongation, i.e., P∗
n0

,

⋆ the coarser matrix is defined by An1 = P∗
n0

An0 Pn0 .

Let Vn,pre, Vn,post be some iterative methods from V(·) and νpre,νpost ∈N0, be the numbers
of pre- and post-smoothing steps, respectively. The TGM method determines a sequence of
iterates

{x(k)
n0

∈Cn0 : k ∈N } , x(k+1)
n0

= TGM
(

V
νpre
n0,pre,V

νpost

n0,post,Pn0

)(

x(k)
n0

)

, x(0)
n0

∈Cn0 ,

where the mapping TGM : Cn0 →Cn0 is defined by

TGM
(

V
νpre
n0,pre,V

νpost

n0,post,Pn0

)(

x(k)
n0

)

1. Pre-smoother: x(k)
n0

=V
νpre
n0,pre

(

x(k)
n0

)

2. Residual on the fine grid: r(k)
n0

= bn0 − An0 x(k)
n0

3. Projection of residual on the coarse grid: r(k)
n1

= P∗
n0

r(k)
n0

4. Error equation: x(k+1)
n1

= A−1
n1

r(k)
n1

5. Correction of the previous smoothed iterate: x(k+1)
n0

= x(k)
n0

+Pn j
x(k+1)

n1

6. Post-smoother: x(k+1)
n0

=V
νpost

n0,post

(

x(k+1)
n0

)

For the sake of clarity, we depict the action of steps 2.−5. in the following diagram.
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3.1. Algebraic Two-grid method

Cn0 : r(k)
n0

= bn0 − An0 x(k)
n0

x(k+1)
n0

= x(k)
n0

+Pn0 xk+1
n1

Cn1 :

{

r(k)
n1

= P∗
n0

r(k)
n0

x(k+1)
n1

= A−1
n1

r(k)
n1

P∗
n0 Pn0

Steps 2.−5. in the above algorithm define the coarse grid correction (CGC) operator on Cn0 by

x(k+1)
n0

=CGCn0 x(k)
n0

, CGCn0 = In0 −Pn0 A−1
n1

P∗
n0

An0 = In0 −Pn0

(

P∗
n0

An0 Pn0

)−1
P∗

n0
An0 , k ∈N0.

Define Vn0,pre, Vn0,post the iteration matrices ofV
νpre
n0,pre, V

νpre

n0,post, respectively. The global iteration
matrix of the TGM is then given by

TGM =
(

Vn0,post
)νpost CGCn0

(

Vn0,pre
)νpre . (3.2)

Theorem 3.1 is a well-known result from [3, 63], which provides sufficient conditions for
convergence of TGM. To formulate Theorem 3.1, we define Dn0 ∈Cn0×n0 to be the diagonal
matrix with the diagonal entries of An0 .

Theorem 3.1. Let n0, n1 ∈ N, n0 > n1, An0 ∈ Cn0×n0 positive definite, Vn0,pre, Vn0,post ∈ V(·),

νpre, νpost ∈N0 and Pn0 ∈Cn0×n1 , rank(Pn0 ) = n1. If

(i) ∃αpre > 0 independent of n0 such that

‖
(

Vn0,pre

)νpre xn0‖
2
An0

≤ ‖xn0‖
2
An0

−αpre‖
(

Vn0,pre

)νpre xn0‖
2
A2

n0

, ∀xn0 ∈Cn0 , (3.3)

(ii) ∃αpost > 0 independent of n0 such that

‖
(

Vn0,post

)νpost xn0‖
2
An0

≤ ‖xn0‖
2
An0

−αpost‖xn0‖
2
A2

n0

, ∀xn0 ∈Cn0 , (3.4)

(iii) ∃γ> 0 independent of n0 such that

min
y∈Cn1

‖xn0 −Pn0 y‖2
Dn0

≤ γ‖xn0‖
2
An0

, ∀xn0 ∈Cn0 , (3.5)

defined

δpre =
αpre

γ
, δpost =

αpost

γ
,

then δpost ≤ 1 and

‖TGM‖An0
≤

√

1−δpost

1+δpre
< 1.

Conditions (3.3) and (3.4) are called pre-smoothing and post-smoothing properties, respec-
tively, while condition (3.5) is called approximation property.

Theorem 3.1 defines sufficient conditions for the convergence of the two-grid methods,
since the norm of the iteration matrix of the latter is less than 1. The beauty of Theorem 3.1
displays in the following two properties:
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Chapter 3. Algebraic multigrid

Optimality: due to αpre, αpost, γ being independent of n0, the number of iterations needed
to reach a given accuracy ǫ ∈R+ is bounded from above by a constant independent of n0

(but, possibly depending on ǫ).

Simplicity: pre-smoothing, post-smoothing and approximation properties depend exclu-
sively on the choice of pre-smoother, post-smoother and grid transfer operator, re-
spectively. The possibility to analyze smoothers and coarse grid correction separately
simplifies the convergence analysis of the two-grid method, whose iteration matrix (3.2)
is simultaneously defined by them.

3.2 ALGEBRAIC V-CYCLE METHOD

If n1 is large, then the numerical solution of the linear system at Step 4. in the TGM could
be computationally expensive. In this case, one usually applies a multigrid method based
on several, possibly different, grid transfer operators. A V-cycle multigrid method solves the
residual equation approximately within the recursive application of the two-grid method,
until the coarsest level is reached and there the resulting small system of equations is solved
exactly [8, 9, 48, 71].

Let ℓ ∈N be the depth of the multigrid method. We define a strictly decreasing sequence
n0 > n1 > ·· · > nℓ−1 > nℓ > 0 of integers n j ∈ N, j = 1, . . . ,ℓ. For each n j , j = 0, . . . ,ℓ− 1,
one chooses the grid transfer operator Pn j

∈ Cn j×n j+1 , rank(Pn j
) = n j+1. Using the Galerkin

approach, we define the projected matrix at level j of the multigrid method by

An j+1 = P∗
n j

An j
Pn j

, j = 0, . . . ,ℓ−1.

Let Vn j ,pre and Vn j ,post, j = 0, . . . ,ℓ−1, be some iterative methods from V(·) and νpre,νpost ∈N0,

be the numbers of pre- and post-smoothing steps, respectively. For a fixed s ∈N, the Multigrid
method (MGM) generates a sequence of iterates {x(k)

n0
∈Cn0 : k ∈N} defined by

x(k+1)
n0

= MGM
(

Pn0 , An0 ,bn , s,0
)(

x(k)
n0

)

, x(0)
n0

∈Cn0 ,
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3.2. Algebraic V-cycle method

where the mapping MGM : Rn0 →Rn0 is defined iteratively by

MGM
(

Pn j
, An j

,bn j
, s, j

)(

x(k)
n j

)

If j = ℓ then x(k+1)
nℓ

= A−1
nℓ

bnℓ

Else

1. Pre-smoother: x(k)
n j

=V
νpre
n j ,pre

(

x(k)
n j

)

2. Residual on the j -th grid: r(k)
n j

= bn j
− An j

x(k)
n j

3. Projection of residual on the ( j +1)-th grid: r(k)
n j+1

= P∗
n j

r(k)
n j

4. Recursion:

x(k+1)
n j+1

= 0

for r = 1 to s

x(k+1)
n j+1

= MGM
(

Pn j+1 , An j+1 ,r(k)
n j+1

, s, j +1
)(

x(k+1)
n j+1

)

5. Correction of the previous smoothed iterate: x(k+1)
n j

= x(k)
n j

+Pn j
x(k+1)

n j+1

6. Post-smoother: x(k+1)
n j

=V
νpost

n j ,post

(

x(k+1)
n j

)

(3.6)
The choice s = 1 corresponds to the well-known V-cycle method [71]. The iterative structure of
V-cycle is depicted in the following figure.

Cn0

P∗
n0 ""

Cn0

Cn1

P∗
n1 ""

Cn1

Pn0

<<

Cn2

P∗
nℓ−1 ""

Cn2

Pn1

<<

Cnℓ

Pnℓ−1

<<

If ℓ= 1, then the V-cycle reduces to the TGM, since the structure consists of one fine space
Cn0 and one coarse space Cn1 . Similarly to the TGM, at each level j = 0, . . . ,ℓ−1 of the V-cycle
method, one defines the corresponding coarse grid transfer operator on Cn j by

CGCn j
= In j

−Pn j
A−1

n j+1
P∗

n j
An j

= In j
−Pn j

(

P∗
n j

An j
Pn j

)−1
P∗

n j
An j

. (3.7)

For j = 0, . . . ,ℓ−1, define Vn j ,pre, Vn j ,post the iteration matrices of Vn j ,pre, Vn j ,post, respectively.

The global iteration matrix of the V-cycle method is MGM = MGM0, where

MGMℓ = 0 ∈Cnℓ×nℓ ,

MGM j =
(

Vn j ,post
)νpost

(

In j
−Pn j

(

In j+1 −MGM j+1
)

A−1
n j+1

P∗
n j

An j

) (

Vn j ,pre
)νpre , j = ℓ−1, . . . ,0.
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Chapter 3. Algebraic multigrid

The following result is the analogous of Theorem 3.1 for the V-cycle method. We refer to [63]
for more details.

Theorem 3.2. Let ℓ ∈ N, n0 > n1 > ·· · > nℓ−1 > nℓ > 0, n j ∈ N, j = 0, . . . ,ℓ, An0 ∈ Cn0×n0 posi-

tive definite and νpre, νpost ∈ N0. Let, for j = 0, . . . ,ℓ−1, Vn j ,pre, Vn j ,post ∈ V(·), Pn j
∈ Cn j×n j+1 ,

rank(Pn j
) = n j+1 and CGCn j

from (3.7). If, for j = 0, . . . ,ℓ−1,

(i) ∃α j ,pre > 0 independent of n j such that

‖
(

Vn j ,pre

)νpre xn j
‖2

An j
≤ ‖xn j

‖2
An j

−α j ,pre‖
(

Vn j ,pre

)νpre xn j
‖2

A2
n j

, ∀xn j
∈Cn j , (3.8)

(ii) ∃α j ,post > 0 independent of n j such that

‖
(

Vn j ,post

)νpost xn j
‖2

An j
≤ ‖xn j

‖2
An j

−αpost‖xn j
‖2

A2
n j

, ∀xn j
∈Cn j , (3.9)

(iii) ∃γ j > 0 independent of n j such that

‖CGCn j
xn j

‖2
An j

≤ γ j‖xn j
‖2

A2
n j

, ∀xn j
∈Cn j , (3.10)

defined

δpre = min
j=0,...,ℓ−1

α j ,pre

γ j
, δpost = min

j=0,...,ℓ−1

α j ,post

γ j
,

then δpost ≤ 1 and

‖MGM‖An0
≤

√

1−δpost

1+δpre
< 1.

Conditions (3.8) and (3.9) are called pre-smoothing and post-smoothing properties, respec-
tively, while condition (3.10) is called approximation property.

3.3 ALGEBRAIC MULTIGRID FOR CIRCULANT MATRIX ALGEBRA

In this section, we assume that the system matrix An ∈Cn×n in (3.1) is circulant. It is well-known
that the analysis of multigrid for circulant matrices depicts well the properties of multigrid
in the case of positive definite Toeplitz system matrices and allows to use the matrix algebra
structure.

Let n = mk with m ∈N, m ≥ 2 and k ∈N. Suppose that An =Cn( f ) is the circulant matrix of
order n defined using the Fourier coefficients

a(α) =
1

2π

∫2π

0
f (x)e−iαxdx, α ∈Z, |α| ≤ c,

of the trigonometric polynomial f : [0,2π) →C

f (x) =
∑

α∈Z
|α|≤c

a(α)eiαx , x ∈ [0,2π),
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3.3. Algebraic multigrid for circulant matrix algebra

of degree c < n (see chapter 2, subsection 2.3.1). Let us suppose that the trigonometric
polynomial f is real, f ≥ 0 and

f
(

x(n)
α

)

6= 0, x(n)
α =

2πα

n
, α= 0, . . . ,n −1.

Hence, Cn( f ) is positive definite.

Remark 3.1. If f (x(n)
α ) = 0 for some x(n)

α , α ∈ {0, . . . ,n −1}, the matrix Cn( f ) is singular. In this
case, the matrix An can be defined as a sum of Cn( f ) and a rank-one correction such that An

is positive definite. Such correction, due to Strang, has been considered in the convergence
analysis in [3]. However, it leads only to unnecessary complication of the notation, since the
convergence results are not affected by such rank-one correction. Moreover, in applications,
An is usually positive definite due to incorporated boundary conditions. Therefore, similarly
to the analysis based on the LFA [31], the successive papers on the convergence analysis of
multigrid methods for circulant matrices have neglected such a correction (see e.g. [2]). We
follow this standard approach and refer the interested reader to [3] for more details on rank-one
corrections.

In the case of circulant system matrices An =Cn( f ), the grid transfer operators also have a
special structure. Let ℓ ∈N, 1 ≤ ℓ≤ k −1, be the depth of the V-cycle method. We define

Pn j
=Cn j

(p j )K T
n j ,m ∈Cn j×n j+1 , n j = mk− j , j = 0, . . . ,ℓ−1, (3.11)

where p j is a certain trigonometric polynomial and Kn j ,m ∈ Cn j+1×n j is the downsampling

matrix of factor m

Kn j ,m =








1 0m−1

1 0m−1
. . .

1 0m−1








, 0m−1 = (0, . . . ,0) ∈N1×m−1
0 . (3.12)

For j = 0, . . . ,ℓ−1, the operator Kn j ,m allows to express the Fourier matrix of order n j+1, i.e.
Fn j+1 in (2.3), in terms of the Fourier matrix of order n j , i.e. Fn j

in (2.3), see [34]. Indeed, Fn j

and Kn j ,m satisfy the following packaging property

Kn j ,m Fn j
=

1
p

m

(

Fn j+1 | . . . | Fn j+1
︸ ︷︷ ︸

m times

)

∈Cn j+1×n j . (3.13)

This simple relation is the key step in defining multigrid methods for circulant matrices, since
it allows us to obtain circulant matrices An j+1 at the lower levels. Indeed, we denote the set of
m-corners of x ∈ [0,2π) by

Ωm(x) =
{

x +
2πα

m
(mod 2π) : α= 0, . . . ,m −1

}

, #Ωm(x) = m.
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Chapter 3. Algebraic multigrid

The set Ωm(x), x ∈ [0,2π), is the set of frequencies on the fine grid which correspond to the
same frequency on the coarse grid. It has been proved in [34] that

An j+1 = P∗
n j

An j
Pn j

=Cn j+1 ( f j+1), f j+1(x) =
1

m

∑

y∈Ωm ( x
m )

f j (y)|p j (y)|2 x ∈ [0,2π), (3.14)

where f j are the trigonometric polynomials associated with the circulant matrices An j
=

Cn j
( f j ), j = 0, . . . ,ℓ, and f0 = f .

3.4 ALGEBRAIC MULTIGRID FOR d -LEVEL CIRCULANT MATRIX ALGEBRA

In this section, we define an algebraic multigrid for d-level circulant matrices generalizing, via
a Kronecker product argument, the definition of the algebraic multigrid for circulant matrices
in section 3.3.

Let n = mk with m = (m1, . . . ,md ) ∈Nd , mi ≥ 2, i = 1, . . . ,d , and k = (k1, . . . ,kd ) ∈Nd , ki > 0,
i = 1, . . . ,d . We recall that the multi-index operation is intended component-wise, namely

mk =
(

m
k1
1 , . . . ,m

kd

d

)

∈Nd .

We assume that the system matrix in (3.1) is the d-level circulant matrix

An =Cn( f ) ∈CN×N , N = N (n) =
d∏

i=1

ni ,

of order n generated by the d-variate trigonometric polynomial f : [0,2π)d →C of total degree
c < min

i=1,...,d
ni . See chapter 2, subsection 2.3.3, for all the details.

We assume that f is real, f ≥ 0 and

f
(

x(n)
α

)

6= 0, x(n)
α =

(

x
(n1)
α1

, . . . , x
(nd )
αd

)

, x
(ni )
αi

=
2παi

ni
, αi = 0, . . . ,ni −1, i = 1, . . . ,d .

Hence, Cn( f ) is positive definite. If the latter property is not satisfied for someαi ∈ {0, . . . ,ni −1},
i = 1, . . . ,d , we remand to the observations in Remark 3.1.

Similarly to the circulant case, when the system matrix in (3.1) is d-level circulant, the grid
transfer operators are defined accordingly. Let ℓ ∈N, 1 ≤ ℓ≤ min

i=1,...,d
ki −1, be the depth of the

multigrid procedure. We define the coarser spaces of V-cycle as

n j =
(

m
k1− j
1 , . . . ,m

kd− j

d

)

∈Nd , j = 0, . . . ,ℓ. (3.15)

We can interpreter the definition of the coarser spaces in (3.15) as follows: for j = 0, . . . ,ℓ−1,
the coarser space n j+1 is obtained from the finer space n j reducing the dimension in each
coordinate direction i by a factor mi , i = 1, . . . ,d . For j = 0, . . . ,ℓ−1, the grid transfer operator
Pn j

at the j -th level of V-cycle is defined by

Pn j
=Cn j

(p j )K T
n j ,m ∈CN j×N j+1 , N j = N (n j ) =

d∏

i=1

(n j )i , (3.16)
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π 2π

2
3π
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3π

2π

(x, y) (x +π, y)

(x, y + 2
3π) (x +π, y + 2

3π)

(x, y + 4
3π) (x +π, y + 4

3π)

Figure 3.1: Example of Ω(x) ⊂ [0,2π)2 with m = (2,3).

where p j is a certain trigonometric polynomial. The matrix Kn j ,m ∈ CN j+1×N j in (3.16) is the
d-level downsampling matrix of factor m

Kn j ,m = K(n j )1,m1 ⊗ . . .⊗K(n j )d ,md
, (3.17)

where K(n j )i ,mi
, i = 1, . . . ,d , is the “univariate” downsampling matrix of factor mi in (3.12).

Similarly to the circulant case, for j = 0, . . . ,ℓ−2, the d-level downsampling matrix Kn j ,m in
(3.17) satisfies the following packaging property (see [5])

Kn j ,m Fn j
=

1
√

∏d
i=1 mi

Fn j+1 Σn j+1,m, (3.18)

where Fn j
, Fn j+1 are the d-dimensional Fourier matrix of order n j , n j+1 defined in (2.6) and

Σn j+1,m =
(

I(n j+1)1 | . . . | I(n j+1)1
︸ ︷︷ ︸

m1 times

)

⊗ . . .⊗
(

I(n j+1)d
| . . . | I(n j+1)d

︸ ︷︷ ︸

md times

)

∈CN j+1×N j .

Property (3.18) links the space of frequencies at the coarser level j +1 and the space of fre-
quencies at the finer level j , j = 0, . . . ,ℓ−2. Moreover, it allows us to obtain multilevel circulant
matrices An j+1 at the lower levels. In order to properly explain the latter statement, we define

the set of m-corners of x ∈ [0,2π)d by

Ωm(x) =
{

y ∈ [0,2π)d : yi = xi +
2παi

mi
(mod 2π), αi = 0, . . . ,mi −1, i = 1, . . . ,d

}

. (3.19)

The set Ωm(x), x ∈ [0,2π)d , determines the frequencies on the finer grid which correspond to
the same frequency on the coarser grid. Notice that #Ωm(x) =

∏d
i=1 mi . Figure 3.1 illustrates a

bivariate example of Ωm(x) in (3.19).
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It is well-known [3, 6, 69] that

An j+1 = P∗
n j

An j
Pn j

=Cn j+1 ( f j+1), f j+1(x) =
1

∏d
i=1 mi

∑

y∈Ωm( x
m )

f j (y)|p j (y)|2, x ∈ [0,2π)d ,

(3.20)
where f j are the trigonometric polynomials associated with the d-level circulant matrices
An j

=Cn j
( f j ), j = 0, . . . ,ℓ−1, and f0 = f .

3.5 CONVERGENCE AND OPTIMALITY ANALYSIS

In this section, we provide a convergence analysis of the algebraic multigrid methods defined
for circulant and d-level circulant matrices with general downsampling/upsampling strategy.
Our aim is to translate pre-smoothing, post-smoothing and approximation properties in
Theorem s 3.1 and 3.2 in the circulant and d-level circulant matrix algebra context. We state
the results only in the case of d-level circulant matrix algebra. By slight abuse of notation, the
case d = 1 corresponds to the case of circulant matrix algebra.

The following analysis is structured as follows. In subsection 3.5.1, we recall the main results
about pre- and post-smoothing properties for both two-grid method and V-cycle method. In
subsections 3.5.2 and 3.5.3, we focus on the approximation property for two-grid method
and V-cycle method, respectively. We split the analysis between two-grid method and V-cycle
method since the approximation property (3.5) for the two-grid method and the approximation
property (3.10) for the V-cycle method are not equivalent. Indeed, condition (3.10) defines
grid transfer operators for the V-cycle method which are more powerful than those defined by
condition (3.5) for the two-grid method. Here and in the following, we adopt the notation of
section 3.4.

3.5.1 SMOOTHING PROPERTY

In this subsection, we focus on pre- and post-smoothing properties in Theorem 3.1 and
Theorem 3.2. We notice that if the smoothers Vn,pre, Vn,post ∈ V(·) satisfy (3.3) and (3.4) for

νpre, νpost ∈ N0 and An = Cn( f ) ∈ CN×N , then they satisfy also (3.8) and (3.9) for ν j ,pre = νpre,
ν j ,post = νpost and An j

=Cn j
( f j ) ∈CN j×N j , j = 0, . . . ,ℓ−1. This means that a “good” smoother

for the two-grid method is also a “good” smoother for the V-cycle method. Thus, we need to
focus only on the smoothing properties (3.3) and (3.4).

First, we focus on the weighted Richardson method in V(·), see chapter 2, subsection 2.4.1.
As the following result shows, using appropriate weights, weighted Richardson smoother fulfills
pre- and post-smoothing properties [2, 70].

Proposition 3.3. Let n0 ∈ Nd , f : [0,2π)d → C non-negative and not identically zero, An0 =
Cn0 ( f ) ∈CN0×N0 , ωpre, ωpost ∈R+, V

ωpre

N0,pre
, V

ωpost

N0,post
in (2.10), νpre, νpost ∈N0. If

0 <ωpre, ωpost <
2

‖ f ‖L∞
,
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then there exist αpre, αpost > 0 independent of N0 such that the pre-smoothing property (3.3) and

the post-smoothing property (3.4) are satisfied.

Now, we focus on the weighted Jacobi method in V(·), see chapter 2, subsection 2.4.2.
Let An0 = Cn0 ( f ) ∈ CN0×N0 be the d-level circulant matrix of order n0 ∈ Nd generated by the
d-variate trigonometric polynomial f : [0,2π)d →C. Let Dn0 ∈CN0×N0 be the diagonal matrix
with diagonal entries of An0 . Since An0 is d-level circulant, we have Dn0 = a(0)IN0 , where
a(0) ∈ C is the 0-th Fourier coefficient of f and IN0 is the identity matrix of order N0. If f is
non-negative and not identically zero, then a(0) > 0. Thus, the iteration matrix of the weighted
Jacobi method in (2.14) becomes

V ω
N0

= IN0 −ωD−1
n0

An0 = IN0 −
ω

a(0)
An0 .

Thus, weighted Jacobi method with weight ω ∈R+ is equivalent to weighted Richardson method
with weight ω

a(0) ∈R+. The following result is a direct consequence of Proposition 3.3.

Proposition 3.4. Let n0 ∈ Nd , f : [0,2π)d → C non-negative and not identically zero, An0 =
Cn0 ( f ) ∈CN0×N0 , ωpre, ωpost ∈R+, V

ωpre

N0,pre
, V

ωpost

N0,post
in (2.14), νpre, νpost ∈N0. If

0 <ωpre, ωpost <
2a(0)

‖ f ‖L∞
,

then there exist αpre, αpost > 0 independent of N0 such that the pre-smoothing property (3.3) and

the post-smoothing property (3.4) are satisfied.

Finally, we focus on the Gauss-Seidel method in V(·), see chapter 2, subsection 2.4.3.

Proposition 3.5 ( [63]). Let n0 ∈ Nd , f : [0,2π)d → C non-negative and not identically zero,

An0 =Cn0 ( f ) ∈CN0×N0 , VN0,pre, VN0,post in (2.15), νpre, νpost ∈N0. Then, there exist αpre, αpost > 0
independent of N0 such that the pre-smoothing property (3.3) and the post-smoothing property

(3.4) are satisfied.

3.5.2 APPROXIMATION PROPERTY FOR TWO-GRID METHOD

In this subsection, we focus on the approximation property (3.5) in Theorem 3.1 for the
two-grid method. In [5, 34, 69], the authors provide well-known sufficient conditions for the
convergence of the two-grid method for the solution of linear systems of equations (3.1) whose
system matrices are d-level circulant. We report those conditions in Theorem 3.6. To do so, for
x ∈ [0,2π)d , we define the set of m-mirror points of x by

Ω
′
m(x) :=Ωm(x) \ {x},

where Ω(x) is defined by (3.19).
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Theorem 3.6. Let f and p be real d-variate trigonometric polynomials such that f (x0) = 0 and

f (x) > 0, x ∈ [0,2π)d \ {x0}. If p satisfies

(i ) lim
x→x0

|p(y)|2

f (x)
<+∞ ∀y ∈Ω

′
m(x0),

(i i )
∑

y∈Ωm(x)

|p(y)|2 > 0, ∀x ∈ [0,2π)d ,

then Pn =Cn(p)K T
n,m satisfies the approximation property (3.5).

For the definition of the grid transfer operator Pn, condition (ii) in Theorem 3.6 appears
unnecessary if we admit that Pn is rank deficient. We slightly relax the assumptions of The-
orem 3.6 following the analysis in [6]. These conditions are easy to check for any given grid
transfer operator Pn. Our simplification in Theorem 3.7 replaces (ii) in Theorem 3.6 by an
even simpler condition, see (ii) in Theorem 3.7.

Theorem 3.7. Let f and p be real d-variate trigonometric polynomials such that f (x0) = 0 and

f (x) > 0, x ∈ [0,2π)d \ {x0}. If p satisfies

(i ) lim
x→x0

|p(y)|2

f (x)
<+∞ ∀y ∈Ω

′
m(x0),

(i i ) |p(x0)|2 > 0,

then Pn =Cn(p)K T
n,g satisfies the approximation property (3.5).

Proof. The proof consists of three steps. The first and second steps are borrowed from [69]
and [5], thus we only state them shortly. We present in detail the proof of the main step, Step 3.

Step 1: Let a(0) =
1

(2π)d

∫

[0,2π)d
f (x)dx > 0. By Theorem 3.4 in [5], (3.5) is equivalent to

∃γ> 0 independent of n = (n1, . . . ,nd ) such that IN −Pn(P∗
n Pn)−1P∗

n ¹
γ

a(0)
Cn( f ), (3.21)

with N = N (n) =
∏d

i=1 ni .

Step 2: Define m̃ =
∏d

i=1 mi . For x ∈ [0,2π)d , let yα = yα(x) ∈ [0,2π)d , α = 0, . . . ,m̃ −1, be the
elements of the m-corner set Ωm(x) in (3.19). Define the row vectors p[x], f [x] ∈C1×m̃ by

p[x] :=
(

p(yα)
)

0≤α≤m̃−1 and f [x] :=
(

f (yα)
)

0≤α≤m̃−1.

By Theorem 3.4 in [5], (3.21) is equivalent to

∃γ> 0 independent of n = (n1, . . . ,nd ) such that Im̃ −
p[x]∗ ·p[x]

∥
∥p[x]

∥
∥2

2

¹
γ

a(0)
diag

(

f [x]
)

,

(3.22)
for all x ∈ [0,2π)d .
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Step 3: We follow the approach of Bolten et alt. in [6]. To prove the claim, we show that
assumptions (i) and (ii) imply (3.22). To do so, we need to show that the m̃ ×m̃ matrix

R[x] :=
(

diag ( f [x])
)− 1

2

(

Im̃ −
p[x]∗ ·p[x]

∥
∥p[x]

∥
∥2

2

)

(

diag ( f [x])
)− 1

2

is well-defined, i.e. we can bound the modulus of its entries R[x](α,β) by

∣
∣R[x](α,β)

∣
∣≤

γ

a(0)
<∞ ∀x ∈ [0,2π)d , α, β= 0, . . . ,m̃ −1. (3.23)

Note that, for α, β= 0, . . . ,m̃ −1, the entries R[x](α, β) of R[x] are given by

R[x](α,β) =−
p(yα)p(yβ)

√

f (yα) f (yβ)
∑

y∈Ωm(x)

|p(y)|2
, α 6=β,

R[x](β,β) =

∑

y∈Ω′
m(yβ)

|p(y)|2

f (yβ)
∑

y∈Ωm(x)

|p(y)|2
, α=β.

(3.24)

In the following, we consider two cases: x ∈Ωm(x0) and x 6∈Ωm(x0).

Case 3.a: If x ∈ Ωm(x0), then by (3.19), Ωm(x0) = Ωm(x). Moreover, if x ∈ Ωm(x0), then ∃β ∈
{0, . . . ,m̃ −1} such that yβ = x0 and f (yβ) = 0. If α 6=β, then by (i) , the order of the zero of

√

f

at yβ matches the order of the zero of p at yα. If α=β, then again by (i) with

∑

y∈Ω′
m(yβ)

|p(y)|2 =
∑

y∈Ω′
m(x0)

|p(y)|2,

the order of the zero of f at yβ matches the order of the zero of
∑

y∈Ω′
m(yβ)

|p(y)|2. It is left to show

that
∑

x∈Ωm(x)

|p(y)|2 > 0. Then all the entries of R[x], x ∈Ωm(x0), are well-defined. The identity

Ωm(x0) =Ωm(x) and (i) imply that p(y) = 0 for all y ∈Ω
′
m(x0). Thus, by (ii) , we get

∑

y∈Ωm(x)

|p(y)|2 =
∑

y∈Ωm(x0)

|p(y)|2 = |p(x0)|2 > 0.

Case 3.b: We assume next that x ∉Ωm(x0). First, we notice that if x ∉Ωm(x0), then x0 ∉Ωm(x)
and f (yβ) 6= 0, β = 0, . . . ,m̃ −1, since f has a unique zero at x0 by hypothesis. Thus, we only
need to study the properties of

∑

y∈Ωm(x)

|p(y)|2.

If
∑

y∈Ωm(x)

|p(y)|2 > 0, then |R[x](α,β)| <∞ for any α,β= 0, . . . , g̃ −1.
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If
∑

y∈Ωm(x)

|p(y)|2 = 0, then we need to study the behavior of its zeros. To do that, we first

define, for a d-variate trigonometric polynomial h, the function θh : [0,2π)d → N such that
θh(x) = q , x ∈ [0,2π)d , q ∈N, if and only if

Dµh(x) = 0, µ ∈Nd , |µ| ≤ q −1, and ∃ν ∈Nd , |ν| = q, Dνh(x) 6= 0, (3.25)

i.e. q ∈N is the order of the zero of h at x. We rewrite the entries R[x](α,β) α,β= 0, . . . ,m̃−1, of
R[x] in (3.24) and get

R[x](α,β) =−
hα,β(x)

√

f (yα) f (yβ)h(x)
, α 6=β,

R[x](β,β) =
hβ(x)

f (xβ)h(x)
, α=β,

where

h(x) :=
∑

y∈Ωm(x)

|p(y)|2,

hβ(x) :=
∑

y∈Ω′
m(yβ)

|p(y)|2,

hα,β(x) := p(yα)p(yβ).

To prove the boundedness of R[x](α,β), α,β= 0, . . . ,m̃ −1, we show that

θhβ
(x) ≥ θh(x), and θhα,β

(x) ≥ θh(x).

Recall that we consider the case when h(x) = 0, then p(y) = 0 for all y ∈ Ωm(x). Thus, for
Θ := min

y∈Ωm(x)
θp (y), we have θh(x) = 2Θ. Due to Ω

′
m(yβ) ⊂Ωm(x) we get θhβ

(x) ≥ 2Θ. Similarly,

θhα,β
(x) ≥ 2Θ. And, thus, the claim follows. �

Theorem 3.7 deals with a d-level circulant matrix Cn( f ) whose generating function f has
a single zero at x0 ∈ [0,2π)d . If f has an additional zero at some point x1 ∉Ω

′
m(x0), then we

choose a trigonometric polynomial p which satisfies (i) of Theorem 3.7 for y ∈Ω
′
m(x0)∪Ω

′
m(x1)

and (ii) of Theorem 3.7 for x0 and x1. Then, the corresponding Pn =Cn(p)K T
n,m also satisfies

the approximation property (3.5). The proof of the latter is a straightforward generalization of
the proof of Theorem 3.7 and is omitted. If f has an additional zero at some point x1 ∈Ω

′
m(x0),

then we choose a different downsampling factor m ∈Nd , m 6= m, so that x1 ∉Ω
′
m

(x0).

3.5.3 APPROXIMATION PROPERTY FOR V-CYCLE METHOD

For the V-cycle, according to the convergence and optimality results in [3], the assumptions of
Theorem 3.7 should be strengthen to guarantee that the corresponding coarse grid correction
operators satisfy the approximation property (3.10). The appropriate modifications of the
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assumptions of Theorem 3.7 were given in [69] for the circulant case d = 1 with m = 2 and
in [2] for the multilevel circulant case with m = (2, . . . ,2) ∈Nd . The following Theorem 3.8 is
the generalization of Theorem 3.7 to the case of generic m ∈Nd .

Theorem 3.8. Let f0, p j , j = 0, . . . ,ℓ−1, be real d-variate trigonometric polynomials such that

f0(x0) = 0 and f0(x) > 0, x ∈ [0,2π)d \{x0}. Let f j , j = 1, . . . ,ℓ−1, be real trigonometric polynomials

defined as in (3.20) and such that f j (x j ) = 0, f j (x) > 0, x ∈ [0,2π)d \ {x j }. If, for j = 0, . . . ,ℓ−1, p j

satisfy

(i ) lim
x→x j

|p j (y)|
f j (x)

< +∞ ∀y ∈Ω
′
m(x j ),

(i i )
∑

y∈Ωm(x)

|p j (y)|2 > 0 ∀x ∈ [0,2π)d ,

then An j
in (3.20) and CGCn j

in (3.7) satisfy the approximation property (3.10).

Before proving Theorem 3.8, we would like to comment on its hypothesis. Let j ∈ {0, . . . ,ℓ−
1}. If f j (x j ) = 0, f j (x) > 0 for x ∈ [0,2π)d \ {x j } and p j satisfies (i) and (ii) of Theorem 3.8,
then [6, Remark 3.3] guarantees that f j+1(x) = 0 if and only if

x = x j+1 := mx j (mod2π) =
(

m1x1(mod2π), . . . ,md xd (mod2π)
)T

.

Moreover, the order of the zero of f j+1 at x j+1 coincides with the order of the zero of f j at x j

and f j+1(x) > 0 for x ∈ [0,2π)d \ {x j+1}.
Proof. The proof consists of two steps: the first one is borrowed from [3], the second one is

similar to Step 3 of the proof of Theorem 3.7. Let j ∈ {0, . . . ,ℓ−1}.

Step 1: By [3, Proposition 16], An j
in (3.20) and CGCn j

in (3.7) satisfy the approximation
property (3.10) if and only if ∃γ j > 0 independent of n j = ((n j )1, . . . , (n j )d ) such that

IN j
− P̂n j

(P̂∗
n j

P̂n j
)−1P̂∗

n j
¹ γ j Cn j

( f ), N j = N (n j ) =
d∏

i=1

(n j )i , (3.26)

where

P̂n j
:=Cn j

(p̂ j )K T
n j ,m ∈CN j×N j+1 , p̂ j (x) := p j (x)

√

f j (x), x ∈ [0,2π)d .

Step 2: To prove the claim, we show that (i) and (ii) imply (3.26). As shown in Step 3 of the
proof of Theorem 3.7, (3.26) holds true if and only if the entries of the matrix R[x] in (3.24) are
bounded in modulus, where, for yα,yβ ∈Ωm(x), x ∈ [0,2π)d , α,β= 0, . . . ,m̃ −1,

R[x](α,β) =−
p̂ j (yα)p̂ j (yβ)

√

f j (yα) f j (yβ)
∑

y∈Ωm(x)

|p̂ j (y)|2
, α 6=β,

R[x](β,β) =

∑

y∈Ω′
m(yβ)

|p̂ j (y)|2

f j (yβ)
∑

y∈Ωm(x)

|p̂ j (y)|2
, α=β.

(3.27)
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Substituting the definition of p̂ j into (3.27), we get

R[x](α,β) =−
p j (yα)p j (yβ)

∑

y∈Ωm(x)

|p j (y)|2 f j (y)
, α 6=β,

R[x](β,β) =

∑

y∈Ω′
m(yβ)

|p j (y)|2 f j (y)

f j (yβ)
∑

y∈Ωm(x)

|p j (y)|2 f j (y)
, α=β.

(3.28)

We split the analysis of quantities in (3.28) into two cases: x ∈Ωm(x j ) and x ∉Ωm(x j ).

Case 2.a: If x ∈Ωm(x j ), then by (3.19), Ωm(x j ) =Ωm(x). Thus, the hypothesis f j (x j ) = 0 and (i)

imply that
∑

y∈Ωm(x)

|p j (y)|2 f j (y) =
∑

y∈Ωm(x j )

|p j (y)|2 f j (y) = |p j (x j )|2 f j (x j )+
∑

y∈Ω′
m(x j )

|p j (y)|2 f j (y) = 0. (3.29)

We define
h(x) :=

∑

y∈Ωm(x)

|p j (y)|2 f j (y),

hβ(x) :=
∑

y∈Ω′
m(yβ)

|p j (y)|2 f j (y),

h f j ,β(x) := f j (yβ)
∑

y∈Ωm(x)

|p j (y)|2 f j (y),

hα,β(x) := p j (yα)p j (yβ).

Then, we can rewrite R[x](α,β), α,β= 0, . . . ,m̃ −1, as

R[x](α,β) =−
hα,β(x)

h(x)
, α 6=β, and R[x](β,β) =

hβ(x)

h f j ,β(x)
.

To prove the boundedness of R[x](α,β) α,β= 0, . . . ,m̃ −1, we show, for θ as in (3.25), that

θhα,β
(x) ≥ θh(x) and θhβ

(x) ≥ θh f j ,β
(x).

Note first that (i) and (3.29) guarantee that the order of the zero of h at x is the same as the
order of the zero of f j at x j . Namely, for Θ := θ f j

(x j ), we have θh(x) =Θ. Due to (i) , θhα,β
(x) ≥Θ.

Thus, θhα,β
(x) ≥ θh(x). Since x ∈Ωm(x j ), there exists β̄ ∈ {0, . . . ,m̃ −1} such that yβ̄ = x j . If β= β̄,

then, by (i) and (3.29), θhβ
(x) ≥ θh f j ,β

(x) = 2Θ. Otherwise, θhβ
(x) = θh f j ,β

(x) =Θ.

Case 2.b: We assume next that x ∉Ωm(x j ). First, we notice that, if x ∉Ωm(x j ), then x j ∉Ωm(x).
Since f j has a unique zero at x j by hypothesis, we have f j (yβ) 6= 0, β= 0, . . . ,m̃ −1. Thus, we
only need to study the properties of

∑

y∈Ωm(x)

|p j (y)|2 f j (y). Since f j has a unique zero at x j by

hypothesis, by (ii) , we obtain
∑

y∈Ωm(x)

|p j (y)|2 f j (y) > 0.

34



3.5. Convergence and optimality analysis

0 π

0

1

q=1

q=2

q=3

Figure 3.2: Plot of the univariate generating functions f (q)/‖ f (q)‖∞ in (3.31) with q = 1,2,3 in

the reference interval [0,π].

And, thus, the claim follows. �

3.5.4 EXAMPLES OF GRID TRANSFER OPERATORS

In this subsection, we present some well-known examples [3, 9, 31, 48, 71] of grid transfer
operators designed for the solution of linear systems of equations (3.1) derived from the
discretization of elliptic PDEs. More precisely, let d ∈N and q ∈N. Consider the 2q elliptic
d-variate problem







(−1)q
d∑

i=1

∂2q

∂x
2q

i

ψ(x) = g (x), x ∈Ω= (0,1)d ,

periodic boundary conditions on ∂Ω.

(3.30)

The system matrix in (3.1) is obtained via finite difference discretization of order 2q of (3.30)
on a grid on [0,1]d of ni subintervals of size hi in each coordinate direction i = 1, . . . ,d . It
is well-known [68], that in this case the system matrix in (3.1) is the d-level circulant matrix
Cn( f (q)), of order n = (n1, . . . ,nd ) ∈Nd , generated by the d-variate trigonometric polynomial

f (q)(x) =
d∑

i=1

(2−2cos(xi ))q , x = (x1, . . . , xd ) ∈ [0,2π)d . (3.31)

The generating function f (q) in (3.31) vanishes at x0 = 0 with order 2q and it is positive on
(0,2π)d . See Figures 3.2 (d = 1) and 3.3 (d = 2).

In the case d = 1 [9,48,71], the first univariate grid transfer operator defined for the solution
of the univariate Laplacian problem, i.e. q = 1 in (3.30), is the so-called linear interpolation.
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(a)Case q = 1.
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(b)Case q = 2.

Figure 3.3: Plot of the bivariate generating functions f (q)/‖ f (q)‖∞ in (3.31) with q = 1 (a) and

q = 2 (b) in the reference interval [0,π]2.

The linear interpolation grid transfer operator Pn j
in (3.11) with the downsampling factor

m = 2 is defined by the trigonometric polynomial

p(1)(x) = 1+cos(x), x ∈ [0,2π), (3.32)

or, equivalently, by its Fourier coefficients

p(1) =
{1

2 1 1
2

}

.

For j = 0, . . . ,ℓ− 1, given the coarser error en j+1 ∈ Cn j+1 , the components of the finer error
en j

= Pn j
en j+1 ∈Cn j are computed by

{
en j

(2α) = en j+1 (α),

en j
(2α+1) = 1

2

(

en j+1 (α)+en j+1 (α+1)
)

,
α ∈ {0, . . . ,n j+1 −1} ,

where we assume that en j+1 (n j+1) = 0. Thus, all the entries of the coarser error en j+1 are also
present in the finer error en j

. See Figure 3.4.

The trigonometric polynomial p(1) in (3.32) belongs to a family { p(J ) : J ∈N } of trigonomet-
ric polynomials

p(J )(x) = 2

(
1+cos(x)

2

)J

, x ∈ [0,2π), (3.33)

each of which defines the grid transfer operators Pn j
in (3.11) with the downsampling factor

m = 2.
The trigonometric polynomial p(J ) in (3.33) has a zero of order 2J at π = Ω

′
2(0) and it

is positive in [0,2π) \ {π }. See Figure 3.5. We highlight that, for J ≥ q , the trigonometric
polynomial p(J ) in (3.33) satisfies (i) and (ii) of Theorem 3.8 with d = 1 and with respect to
the generating function f0 = f (q) in (3.31). Indeed, since f (q)(0) = 0 and f (q)(x) > 0, x ∈ (0,2π),
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(a)Coarser error en j+1 ∈Cn j+1

(b)Finer error en j
∈Cn j

Figure 3.4: Action of the linear interpolation grid transfer operator on the coarser error en j+1

(black dots in (a)) for the definition of the finer error en j
(black and white dots in (b)).

0 π

0

1

J=1

J=2

J=3

Figure 3.5: Plot of the trigonometric polynomials p(J )/‖p(J )‖∞ in (3.33) with J = 1,2,3 in the

reference interval [0,π].
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0

0

π

π

1

0

(a)Case J = 1.

0

0

1

π
π

0

(b)Case J = 2.

Figure 3.6: Plot of the trigonometric polynomials p(J ,J )/‖p(J ,J )‖∞ in (3.34) with J = 1 (a) and

J = 2 (b) in the reference interval [0,π]2.

then [34, Proposition 4.1] guarantees that every f j , j = 1, . . . ,ℓ−1, in (3.14) vanishes only at 0
with the same order as the one of the zero of f0, i.e. 2q . Thus, we set p j = p(J ), j = 0, . . . ,ℓ−1.

In the bivariate setting (d = 2), a family of grid transfer operators Pn j
in (3.16) with the

downsampling factor m = (2,2) has been defined [3, 31]. The associated trigonometric polyno-
mial p(J ,J ) is the tensor product of the univariate trigonometric polynomial p(J ) in (3.33) with
itself, namely

p(J ,J )(x1, x2) = 4

(
(1+cos(x1))(1+cos(x2))

4

)J

, x = (x1, x2) ∈ [0,2π)2. (3.34)

The trigonometric polynomial p(J ,J ) in (3.34) vanishes at Ω′
(2,2)(0) = { (0,π), (π,0), (π,π) } with

order 2J and it is positive in [0,2π)2 \ { x1 =π, x2 =π }. See Figure 3.6. Notice that, for J ≥ q , the
trigonometric polynomial p(J ,J ) in (3.34) satisfies (i) and (ii) of Theorem 3.8 with respect to
the generating function f0 = f (q) in (3.31). Indeed, since f (q)(0) = 0 and f (q)(x) > 0, x ∈ (0,2π)2,
then [6, Lemma 3.2] guarantees that every f j , j = 1, . . . ,ℓ−1, in (3.20) vanishes only at 0 with
the same order as the one of the zero of f0, i.e. 2q . Thus, we set p j = p(J ,J ), j = 0, . . . ,ℓ−1.

The grid transfer operators defined in this subsection are actually well-known station-
ary subdivision schemes, see chapter 5. Indeed, Step 3. in (3.6) can be interpreted as the
lowpass branch of a wavelet decomposition. For j = 0, . . . ,ℓ−1, at the j -th level of V-cycle,
the convolution with the lowpass filter is the multiplication by the matrix Cn j

(p j )∗ and the
downsampling by m is done via multiplication by the matrix Kn j ,m. If the smoother works
well, then the residual is smooth and the highpass branches of the wavelet decomposition
contain no additional information and are omitted. The reconstruction is done as usual by
upsampling via multiplication by K T

n j ,m and by convolution via multiplication by Cn j
(p j ). It

is well-known that upsampling and convolution amount to one step of subdivision scheme
with the corresponding subdivision matrix Pn j

. It is then natural to study conditions on the
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corresponding subdivision symbols p j that will guarantee convergence and optimality of the
corresponding multigrid methods.
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4
Stationary subdivision and algebraic multigrid

In this chapter, we analyze the link between algebraic multigrid and stationary subdivision. As
already mentioned at the end of chapter 3 in subsection 3.5.4, it is possible to identify the d-
variate grid transfer operators which appear in the definition of the algebraic two-grid method
and V-cycle method with d-variate subdivision schemes. In section 4.1, we introduce d-variate
stationary subdivision and list the well-known results on their convergence, interpolation and
polynomial generation properties. The link between multigrid and subdivision is presented in
section 4.2. We highlight that the definition and analysis of subdivision based multigrid appear
for the first time in [14, 15].

4.1 STATIONARY SUBDIVISION

Let M ∈Zd×d be a dilation matrix, namely all its eigenvalues are in the absolute value greater
than 1. Let p = {p(α) ∈R : α ∈Zd } ∈ ℓ0(Zd ) be a finite sequence of real numbers. The dilation

M and the mask p are used to define the subdivision operator Sp : ℓ(Zd ) → ℓ(Zd ), which is a
linear operator such that

(

Spc
)

(α) =
∑

β∈Zd

p(α−Mβ)c(β), α ∈Zd , c ∈ ℓ(Zd ). (4.1)

A subdivision scheme Sp with dilation M and mask p is the recursive application of the sub-
division operator Sp in (4.1) to some initial sequence c(0) = {c(0)(α) : α ∈ Zd } ∈ ℓ(Zd ) of real
numbers, namely

c(k+1) =Spc(k), k ∈N0. (4.2)

Notice that c(k+1) =Spc(k) = ·· · = (Sp)k+1c(0).
Since the subdivision scheme Sp generates sequences c(k) ∈ ℓ(Zd ), k ≥ 0, a natural way to

define a notion of its convergence is to attach the data c(k) = {c(k)(α) : α ∈Zd }, k ≥ 0, to the
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Chapter 4. Stationary subdivision and algebraic multigrid

(a)Starting sequence c(0) =δ (b)After one step of subdivision c(1) = Spδ

(c)Basic limit function φ= S∞
p δ

Figure 4.1: Basic limit function of the binary 4-point Dubuc-Deslauries subdivision scheme

parameter values t(k) = { M−kα : α ∈Zd }, k ≥ 0, and to require that there exists a continuous
function Fc(0) : Rd →R depending on the starting sequence c(0) such that, for sufficiently large
k, the values of Fc(0) at the parameter values t(k) are “close” enough to the data c(k).

Definition 4.1. A subdivision scheme Sp is convergent if for any initial data c ∈ ℓ∞(Zd ) there
exist a uniformly continuous function Fc ∈ C(Rd ) such that

lim
k→∞

sup
α∈Zd

∣
∣
∣Fc

(

M−kα
)

−
(

Sk
p c

)

(α)
∣
∣
∣= 0.

The particular choice of the initial data δ=
{

δα,0 : α ∈Zd
}

defines the so-called basic limit

function φ = Fδ. Figure 4.1 shows the basic limit function of the univariate binary 4-point
Dubuc-Deslauriers subdivision scheme [37] defined by

m = 2, p =
{
− 1

16 0 9
16 1 9

16 0 − 1
16

}

. (4.3)

Figure 4.2 shows the basic limit function of the bivariate anisotropic linear subdivision scheme
[14] defined by

M =
(
2 0
0 3

)

∈Z2×2, p =








1
6

1
3

1
2

1
3

1
6

1
3

2
3 1 2

3
1
3

1
6

1
3

1
2

1
3

1
6








. (4.4)

Since the mask p ∈ ℓ0(Zd ) is a finite sequence, φ is compactly supported [39]. It is well-
known [39] that the basic limit function φ satisfies the refinement equation

φ=
∑

α∈Zd

p(α)φ(M · −α). (4.5)

Thus, due to the linearity of Sp, for any initial data c ∈ ℓ∞(Zd ), c =
∑

α∈Zd

c(α)δ(·−α), we have

Fc = lim
k→∞

Sk
p c =

∑

α∈Zd

c(α) lim
k→∞

Sk
pδ(·−α) =

∑

α∈Zd

c(α)φ(·−α).
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(a)Starting sequence c(0) =δ
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(b)Basic limit function φ= S∞
p δ

Figure 4.2: Basic limit function of the anisotropic linear subdivision scheme

For more details on the properties of the basic limit function, see the seminal work of Cavaretta
et al. [11] and the survey by Dyn and Levin [39].

Most of the properties of the subdivision scheme Sp can be investigated studying the
Laurent polynomial

p(z) =
∑

α∈Zd

p(α)zα, zα = z
α1
1 · . . . · z

αd

d
, z = (z1, . . . , zd ) ∈ (C\ {0})d , (4.6)

called the symbol of the subdivision scheme. For instance, a well-known necessary condition
for the convergence of Sp is p(1) = |det M |. With respect to the previous examples, the symbol
of the univariate binary 4-point Dubuc-Deslauriers subdivision scheme defined by (4.3) is
given by

p(z) =−
1

16
z−3 +

9

16
z−1 +1+

9

16
z −

1

16
z3 =−

1

16z3
(1+ z)4(1−4z + z2), z ∈C\ {0} , (4.7)

and the symbol of the bivariate anisotropic linear subdivision scheme defined by (4.4) is given
by

p(z) =
1

6
z−1

1 z−2
2 +

1

3
z−1

1 z−1
2 +

1

2
z−1

1 +
1

3
z−1

1 z2 +
1

6
z−1

1 z2
2

+
1

3
z−2

2 +
2

3
z−1

2 +1+
2

3
z2 +

1

3
z2

2

+
1

6
z1z−2

2 +
1

3
z1z−1

2 +
1

2
z1 +

1

3
z1z2 +

1

6
z1z2

2

=
1

6z1z2
2

(1+ z1)2(1+ z2 + z2
2)2, z = (z1, z2) ∈ (C\ {0})2.

(4.8)
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Chapter 4. Stationary subdivision and algebraic multigrid

4.1.1 INTERPOLATORY SUBDIVISION

In this subsection, we shortly describe interpolatory subdivision. We say that a subdivision
scheme Sp with dilation M and mask p is interpolatory if, given any starting sequence c(0) ∈
ℓ(Zd ), all the entries of the k-th refined sequence c(k) ∈ ℓ(Zd ) are also entries of the (k +1)-th
refined sequence c(k+1) ∈ ℓ(Zd ), k ≥ 0. More precisely,

c(k+1)(Mα) =
(

Spc(k)
)

(Mα) = c(k)(α), ∀α ∈Zd .

The interpolation property can be interpreted in terms of the mask of the subdivision scheme
[39, 55]. A subdivision scheme Sp with dilation M and mask p is interpolatory if its mask p

satisfies
p(0) = 1 and p(Mα) = 0, ∀α ∈ (Z\ {0})d . (4.9)

In [19], in the case of dilation matrix 2Id , where Id is the identity matrix of order d , the
authors characterize the interpolation property of subdivision in terms of the corresponding
subdivision symbol. Their result can be easily extended to the case of diagonal anisotropic
dilation matrix

M =






m1
. . .

md




 ∈Zd×d , mi ≥ 2, i = 1, . . . ,d . (4.10)

We denote by Γ, #Γ= |det M |, the complete set of representatives of the distinct cosets of
Zd /MZd containing 0 = (0, . . . ,0) ∈Zd and we define the set

EM =
{

e−i2πM−T γ : γ is a coset representative of Zd /M TZd
}

, #EM = |det M |, (4.11)

containing 1 = (1, . . . ,1) ∈Zd . If the dilation M is diagonal (4.10), then the set Γ is defined by

Γ=
{

γ= (γ1, . . . ,γd ) ∈Zd : γi ∈ {0, . . . ,mi −1} , i = 1, . . . ,d
}

, (4.12)

and, due to M = M T , the set EM becomes

EM =
{

e−i2πM−1γ : γ ∈ Γ

}

,

=
{

ξ= (ξ1, . . . ,ξd ) ∈Rd : ξi = e
−i2π

γi
mi , γi ∈ {0, . . . ,mi −1} , i = 1, . . . ,d

}

.
(4.13)

The result of Theorem 4.1 is well-known in case of dilation matrix 2Id , see [19]. We include the
prove for dilation (4.10) for reader’s convenience.

Theorem 4.1. A convergent subdivision scheme Sp with dilation (4.10) is interpolatory if and

only if
∑

ξ∈EM

p
(

ξ× z
)

= |det M |, ξ× z = (ξ1z1, . . . ,ξd zd ), z ∈ (C\ {0})d .
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4.1. Stationary subdivision

Proof. Let Sp be a convergent subdivision scheme with dilation M and mask p. By [13], the
subdivision symbol p satisfies

p(z) =
∑

α∈Zd

p(α)zα =
∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)zMα+γ, z ∈ (C\ 0)d .

Thus, we get

∑

ξ∈EM

p
(

ξ× z
)

=
∑

ξ∈EM

∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)(ξ×z)Mα+γ,

=
∑

ξ∈EM

∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)(ξ1z1)(Mα+γ)1 · · · (ξd zd )(Mα+γ)d ,

=
∑

ξ∈EM

∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)

(

z
(Mα+γ)1

1 · · ·z
(Mα+γ)d

d

)(

ξ
(Mα+γ)1

1 · · ·ξ(Mα+γ)d

d

)

,

=
∑

ξ∈EM

∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)zMα+γξMα+γ,

=
∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)zMα+γ ∑

ξ∈EM

ξMα+γ,

=
∑

α∈Zd

∑

γ∈Γ
p(Mα+γ)zMα+γsEM ,γ, sEM ,γ =

∑

ξ∈EM

ξMα+γ, z ∈ (C\ 0)d .

(4.14)

We focus on sEM ,γ in (4.14). Let M be diagonal (4.10). By (4.13), ξ ∈ EM is of the form

ξ=
(

e
−i2π

β1
m1 , . . . ,e

−i2π
βd
md

)

, βi ∈ {0, . . . ,mi −1} , i = 1, . . . ,d .

Due to

ξMα+γ = ξ
m1α1+γ1

1 · · ·ξmdαd+γd

d
= ξ

γ1

1 · · ·ξγd

d
= ξγ,

we have sEM ,0 = #EM = |det M | and

sEM ,γ =
∑

ξ∈EM

ξγ =
m1−1∑

β1=0

(

e
−i2π

β1
m1

)γ1
· · ·

md−1∑

βd=0

(

e
−i2π

βd
md

)γd
= 0, γ= (γ1, . . . ,γd ) ∈ Γ\ {0 } , (4.15)

where the last equality holds true due to (4.12), γ 6= 0 and

mi−1∑

βi=0

(

e
−i2π

βi
mi

)γi

= 0, γi = 1, . . . ,mi −1, i = 1, . . . ,d .

Then, (4.14) becomes
∑

ξ∈EM

p
(

ξ · z
)

= |det M |
∑

α∈Zd

p(Mα)zMα.

The claim follows by the fact that a subdivision scheme Sp is interpolatory if and only if its
mask p satisfies the interpolation property (4.9).
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�

Let us consider the univariate binary 4-point Dubuc-Deslauriers subdivision scheme. Its
mask in (4.3) satisfies the interpolation property, namely

p(0) = 1, p(2α) = 0, α ∈Z\ {0} .

Moreover, its symbol (4.7) satisfies the identity in Theorem 4.1. Indeed, we have

Γ= {0, 1} , E2 = {1, −1} , p(z)+p(−z) = 2.

Let us consider the bivariate anisotropic interpolatory subdivision scheme. Its mask in (4.4)
satisfies the interpolation property, namely

p(0,0) = 1, p(Mα) = p(2α1,3α2) = 0, α= (α1,α2) ∈ (Z\ {0})2.

Its symbol (4.8) satisfies the identity in Theorem 4.1. Indeed, we have

Γ=
{(

0
0

)

,

(
0
1

)

,

(
0
2

)

,

(
1
0

)

,

(
1
1

)

,

(
1
2

)}

, #Γ= 6,

EM =
{(

1
1

)

,

(
1

e−i2/3π

)

,

(
1

e−i4/3π

)

,

(
−1
1

)

,

(
−1

e−i2/3π

)

,

(
−1

e−i4/3π

)}

, #EM = 6,

and

p
(

z1, z2
)

+p
(

z1,e−i2/3πz2
)

+p
(

z1,e−i4/3πz2
)

+p
(

−z1, z2
)

+p
(

−z1,e−i2/3πz2
)

+p
(

−z1,e−i4/3πz2
)

= 6.

4.1.2 GENERATION AND REPRODUCTION PROPERTIES

We now introduce the concepts of polynomial generation and reproduction. The property of
generation of polynomials of degree q is the capability of a subdivision scheme to generate the
full space of polynomials up to degree q , while the property of reproduction of polynomials
of degree q is the capability of a subdivision scheme to produce in the limit exactly the same
polynomial from which the initial data is sampled. It is easy to see that reproduction of
polynomials of degree q implies generation of polynomials of degree q .

Definition 4.2. Let q ∈N0. A convergent subdivision scheme Sp generates polynomials up to
degree q if

for any π ∈Πq , ∃c ∈ ℓ(Zd ) such that
∑

α∈Zd

c(α)φ(·−α) =π ∈Πq .

The property of polynomial generation has been studied e.g. by Cabrelli et al. in [10],
Cavaretta et al. in [11], Jetter and Plonka in [52], Jia in [53, 54], Levin in [59]. Definition 4.2 can
be interpreted as follows: a convergent subdivision scheme Sp generates polynomials up to
degree q if the space Πq is contained in the span of the integer shifts of its basic limit function
{φ(·−α) : α ∈Zd }.

Algebraic properties of the symbol p characterize the polynomial generation property of
subdivision.
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Theorem 4.2 ( [13]). Let q ∈N0. A convergent subdivision scheme Sp generates polynomials up

to degree q if and only if

Dµp(ε) = 0, ∀ε ∈ EM \ {1 } , µ ∈Nd
0 , |µ| ≤ q. (4.16)

Thus, the property of polynomial generation of a convergent subdivision scheme Sp is
strictly related to the behavior of the subdivision symbol p(z) and of its derivatives at the
“special” points EM \ {1 }. Conditions in (4.16) are also known as zero conditions of order q +1.
We say that a subdivision symbol p(z) satisfies the zero conditions of order q +1 if and only if
the associated mask p satisfies the sum rules of order q +1, namely

∑

α∈Zd

p(Mα)π(Mα) =
∑

α∈Zd

p(γ+Mα)π(γ+Mα), ∀γ ∈ Γ\ {0 } , π ∈Πq . (4.17)

In the univariate setting, Theorem 4.2 is equivalent to requiring that the symbol p(z) of the
subdivision scheme Sp of dilation m ∈N, m ≥ 2, has the following factorization

p(z) =
(

1+ z + z2 +·· ·+ zm−1)q+1
b(z), z ∈C\ {0} , (4.18)

for some Laurent polynomial b(z) such that b(1) = m−q , i.e. p(1) = m. For instance, the
univariate binary 4-point Dubuc-Deslauriers subdivision scheme defined by (4.3) generates
polynomials up to degree q = 3. Indeed, its symbol in (4.7) satisfies

p(z) = (1+ z)4 b(z), b(z) =−
1

16z3
(1−4z + z2), b(1) =

1

8
= 2−3, z ∈C\ {0} .

In addition, we consider the binary cubic Bspline subdivision scheme defined by

m = 2, p =
{ 1

8
1
2

3
4

1
2

1
8

}

. (4.19)

Its symbol satisfies

p(z) =
1

8
z−2 +

1

2
z−1 +

3

4
+

1

2
z +

1

8
z2 = (1+ z)4 b(z), b(z) =

1

8z2
, b(1) =

1

8
= 2−3, z ∈C\ {0} ,

(4.20)
thus it generates polynomials up to degree q = 3.

In the bivariate setting, we lose the factorization property (4.18). Nevertheless, in case of
diagonal dilation matrix M (4.10), Theorem 4.2 can be reformulated in terms of ideals [64],
leading to an equivalent decomposition property. Let q ∈N0 and define

Jq :=< (1− z
m1
1 )µ1 (1− z

m2
2 )µ2 : µ= (µ1,µ2) ∈N2

0, |µ| = q +1 > .

Jq is the ideal of all bivariate polynomials p(z1, z2) which satisfy

Dµp(ε) = 0, ∀ε ∈ EM , ∀µ ∈N2
0, |µ| ≤ q.

We recall that, given two ideals J , I of the commutative ring C[z1, z2], their quotient ideal is the
set J : I = { p ∈C[z1, z2] : p ·I ⊂J } and it is itself an ideal of C[z1, z2]. Moreover, if J =J (V )
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Chapter 4. Stationary subdivision and algebraic multigrid

and I = I(W ) are the ideal associated to two affine varieties V , W ⊂ C2, the quotient ideal
J : I is the ideal associated to the difference of varieties V \W ( [23]). Thus, the quotient ideal

Iq = Jq : < (1− z1)µ1 (1− z2)µ2 : µ= (µ1,µ2) ∈N2
0, |µ| = q +1 >

is the ideal of all bivariate polynomials p(z1, z2) which satisfy (4.16). Consequently, a con-
vergent subdivision scheme generates polynomials up to degree q if and only if its symbol
p ∈ Iq . For instance, the bivariate anisotropic interpolatory subdivision scheme defined by
(4.4) generates polynomials up to degree q = 1. Indeed, we have

J1 =<
(

1− z2
1

)µ1
(

1− z3
2

)µ2 : µ= (µ1,µ2) ∈N2
0, |µ| = 2 >

=<
(

(1− z1)(1+ z1)
)µ1

(

(1− z2)(1+ z2 + z2
2)

)µ2 : µ= (µ1,µ2) ∈N2
0, |µ| = 2 > .

Thus, the symbol (4.8) of the bivariate anisotropic interpolatory subdivision scheme belongs
to I1. Finally, if for q, r ∈N0, p1 ∈ Iq and p2 ∈ Ir , then p1 ·p2 ∈ Iq+r+1.

The definition of the polynomial reproduction property differs from the definition of
the polynomial generation property as the before mentioned property depends on the so-
called sequence of parameter values. Let τ = (τ1, . . . ,τd ) ∈ Rd . The parameter values t(k) =
{t(k)(α) ∈Rd : α ∈Zd }, k ≥ 0, are defined recursively by

t(k)(α) = t(k)(0)+M−kα, t(k)(0) = t(k−1)(0)−M−kτ, t(0)(0) = 0, α ∈Zd , k ≥ 0.
(4.21)

Definition 4.3. Let q ∈N0. A convergent subdivision scheme Sp reproduces polynomials up to
degree q with respect to the parameter values (4.21) if

for any π ∈Πq and c =
{

π
(

t(0)(α)
)

: α ∈Zd
}

∈ ℓ(Zd ),
∑

α∈Zd

c(α)φ(·−α) =π ∈Πq .

Definition 4.3 is more restrictive than Definition 4.2 since we require that the subdivision
limit is exactly the same polynomial π from which the initial data c is sampled. Conti and
Hormann [20] and Charina et al. [13] proved that the property of polynomial reproduction is
characterized in terms of the subdivision symbol.

Theorem 4.3. Let q ∈ N0. A convergent subdivision scheme Sp with parameter values (4.21)
reproduces polynomials up to degree q if and only if

Dµp(1) = |det M |
d∏

i=1

µi−1∏

ℓi=0

(τi −ℓi ) and Dµp(ε) = 0, ∀ε ∈ EM \ {1 } , µ ∈Nd
0 , |µ| ≤ q.

(4.22)

Theorem 4.3 implies that, in order to have the maximum degree of polynomial reproduction,
it is necessary to choose the parameter τ ∈Rd in (4.21) carefully.

In the univariate case, if the subdivision mask p is symmetric, i.e. p(α) = p(−α), or interpo-
latory, then τ= 0 is the optimal choice ( [20]). Thus, (4.22) becomes

p(1) = m,

Dµp(1) = 0, µ ∈N0, 1 ≤µ≤ q,

Dµp(ε) = 0, ∀ε ∈ EM \ {1} , µ ∈N0, 0 ≤µ≤ q.
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-3 -1 1 3

(a)4-point Dubuc-Deslauriers scheme

-3 -1 1 3

(b)Cubic Bspline scheme

Figure 4.3: Subdivision limits of the univariate binary 4-point Dubuc-Deslauriers subdivision

scheme (a) and of the univariate binary cubic Bspline subdivision scheme (b). The starting data

c(0) (blue) is sampled from the cubic polynomial π(α) =α3 +α2 −4α−8 ∈Π3, α ∈Z.

Therefore, in the univariate symmetric or interpolatory setting, Theorem 4.3 is equivalent to
requiring that the symbol p(z) of the subdivision scheme Sp of dilation m ∈Z, m ≥ 2, has the
following decomposition [20, 38]

p(z) = m + (1− z)q+1 c(z), z ∈C\ {0} , (4.23)

for a suitable Laurent polynomial c(z). For instance, the univariate binary 4-point Dubuc-
Deslauriers subdivision scheme defined by (4.3) reproduces polynomials up to degree q = 3.
Indeed, its mask is interpolatory and symmetric and its symbol (4.7) satisfies

p(z) = 2+ (1− z)4 c(z), c(z) =−
1+4z + z2

16z3
, z ∈C\ {0} ,

where the Laurent polynomial c(z) is not divisible by (1− z). The binary cubic B-spline sub-
division scheme defined by (4.19), instead, reproduces only polynomials up to degree q = 1.
Indeed, its mask is symmetric and its symbol (4.20) satisfies

p(z) = 2+ (1− z)2 c(z), c(z) =
1+6z + z2

8z2
, z ∈C\ {0} ,

where the Laurent polynomial c(z) is not divisible by (1− z). Figure 4.3 shows the subdivi-
sion limits of the univariate binary 4-point Dubuc-Deslauriers subdivision scheme and of
the univariate binary cubic B-spline subdivision scheme applied to a starting sequence c(0)

sampled from a cubic polynomial. Figure 4.3 illustrates that the univariate binary 4-point
Dubuc-Deslauriers subdivision scheme reproduces cubic polynomials, while the univariate
binary cubic Bspline subdivision scheme generates cubic polynomials.

49



Chapter 4. Stationary subdivision and algebraic multigrid

In the bivariate case, if the subdivision mask p is symmetric, i.e.

p(α1,α2) = p(α1,−α2) = p(−α1,α2) = p(−α1,−α2),

or interpolatory, then τ= 0 is the optimal choice ( [13]) and (4.22) becomes

p(1) = |det M |,
Dµp(1) = 0, µ ∈Nd

0 , 1 ≤ |µ| ≤ q,

Dµp(ε) = 0, ∀ε ∈ EM \ {1 } , µ ∈Nd
0 , 0 ≤ |µ| ≤ q.

Thus, in the bivariate symmetric or interpolatory setting, Theorem 4.3 is equivalent to requiring
that

p(z)−|det M | ∈ < (1− z1)µ1 (1− z2)µ2 : µ= (µ1,µ2) ∈N2
0, |µ| ≥ q +1 >,

or, equivalently, that the symbol p(z) of the subdivision scheme Sp with dilation M has the
following decomposition

p(z1, z2) = |det M |+
H∑

h=0

(1− z1)αh (1− z2)βh ch(z1, z2), (z1, z2) ∈ (C\ {0})2,

αh , βh ∈N0, αh +βh ≥ q +1, h = 0, . . . , H ,

(4.24)

for suitable Laurent polynomials ch , h = 0, . . . , H (we require in (4.24) that at least one pair
αh , βh ∈N0 satisfies αh +βh = q+1). Identity (4.24) is a natural generalization of the univariate
identity (4.23).

Remark 4.1. We are interested in symmetric subdivision schemes due to the use of vertex
centered discretization for our multigrid numerical examples in chapters 5 and 6.

4.2 SUBDIVISION BASED MULTIGRID

In this section, we analyze the connection between algebraic multigrid and subdivision. To
do so, we assume that the dilation matrix M ∈Zd×d is diagonal (4.10) and, for j = 0, . . . ,ℓ, we
define the coarser spaces n j of V-cycle in (3.15) accordingly. Let j ∈ {1, . . . ,ℓ } and c ∈ ℓ0(Zd ) be
a finite sequence with support contained in the d-dimensional “hypercube”

{

−
⌊

(n j )1 −1

2

⌋

, . . . ,

⌊
(n j )1

2

⌋}

︸ ︷︷ ︸

(n j )1 entries

×·· ·×
{

−
⌊

(n j )d −1

2

⌋

, . . . ,

⌊
(n j )d

2

⌋}

︸ ︷︷ ︸

(n j )d entries

.

Define the vector c ∈RN j , N j = N (n j ) =
d∏

i=1

(n j )i , by

c =
(

· · ·
((

c(α1, . . . ,αd )
)

αd=−
⌊ (n j )d−1

2

⌋

,...,
⌊ (n j )d

2

⌋

)

· · ·
)

α1=−
⌊ (n j )1−1

2

⌋

,...,
⌊ (n j )1

2

⌋.
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4.2. Subdivision based multigrid

The vector c contains all the entries of the finite sequence c. For instance, let d = 2, M =
(
2 0
0 3

)

and n j = (23,32) = (8,9). Let

c = { c(α1,α2) ∈R : α1 =−3, . . . ,4, α2 =−4, . . . ,4 } ∈ ℓ0(Z2), supp(c) = {−3, . . . ,4}× {−4, . . . ,4} .

Then, the vector c ∈R72 is defined by

c =
(
c(−3,−4) · · · c(−3,4) · · · · · · c(4,−4) · · · c(4,4)

)T
.

The action of a subdivision operator Sp in (4.1) with dilation M and mask p on the sequence
c is “equivalent” to the action of the grid transfer operator Pn j

in (3.16) on the vector c. The
corresponding Pn j

in (3.16) is defined by the d-variate trigonometric polynomial p whose
Fourier coefficients are the entries of the mask p. Indeed, the action of both Sp and Pn j

can be
interpreted as upsampling with the factor M and m, respectively, and convolution with the
mask p. The new refined sequence e =Spc ∈ ℓ0(Zd ) is a finite sequence with support contained
in the d-dimensional “hypercube”

{

−
⌊

(n j−1)1 −1

2

⌋

, . . . ,

⌊
(n j−1)1

2

⌋}

︸ ︷︷ ︸

(n j−1)1 entries

×·· ·×
{

−
⌊

(n j−1)d −1

2

⌋

, . . . ,

⌊
(n j−1)d

2

⌋}

︸ ︷︷ ︸

(n j−1)d entries

.

Then, the vector e ∈ RN j−1 , N j−1 = N (n j−1) =
d∏

i=1

(n j−1)i , which contains all the entries of

e, satisfies e = Pn j
c. Thus, it is natural to ask if and how the reproduction and regularity

properties of a stationary subdivision scheme, or equivalently the algebraic properties of
the associated symbol, define a convergent two-grid method and V-cycle method. Under
appropriate hypothesis, we answer these questions in subsections 4.2.1 and 4.2.2, respectively.

Here and in the following, we use the notation introduced so far for algebraic multigrid, see
chapter 3, sections 3.4 and 3.5, and for stationary subdivision, see section 4.1, with diagonal
dilation matrix M ∈Zd×d (4.10).

4.2.1 SUBDIVISION FOR ALGEBRAIC TWO-GRID METHOD

In this section, we relate the algebraic properties of the trigonometric polynomial f defining
the system matrix An , see chapter 3, section 3.4, with the algebraic properties of the subdivision
symbol p in (4.6). Under the assumption that the trigonometric polynomial f has a zero at
x0 = 0, Theorem 3.7 has an equivalent subdivision formulation, see Theorem 4.4. We, thus,
focus on the case x0 = 0, since it is of practical interest, see e.g. chapter 5. To state Theorem 4.4,
we use Laurent polynomial formalism and talk about the subdivision symbol p in (4.6).

Theorem 4.4. Let f be a real d-variate trigonometric polynomial such that f (x) > 0, x ∈ (0,2π)d ,

and

Dµ f (0) = 0, |µ| ≤ q −1, and ∃ν ∈Nd , |ν| = q, Dν f (0) 6= 0.

51



Chapter 4. Stationary subdivision and algebraic multigrid

Assume that the subdivision scheme Sp with dilation M and symbol p as in (4.6) is convergent.

If Sp generates polynomials up to degree
⌈q

2

⌉

−1, then the corresponding grid transfer operator

Pn satisfies the approximation property (3.5).

Proof. By Theorem 4.2 and due to convergence of Sp, the symbol p satisfies

(i ) Dµp(ε) = 0 |µ| ≤
⌈q

2

⌉

−1, ∀ε ∈ EM \ {1 } =
{

e−i2πM−1γ : γ ∈ Γ\ {0 }
}

,

(i i ) p(1) = |detM | =
d∏

i=1

mi .
(4.25)

To prove the claim, we show that (i) and (ii) in (4.25) imply conditions (i) and (ii) of
Theorem 3.7. Indeed, for

z = e−ix =
(

e−ix1 , . . . ,e−ixd
)

∈ (C\ {0})d , x = (x1, . . . , xd ) ∈Rd ,

the Laurent polynomial p is a 2π-periodic trigonometric polynomial. Thus, we write p(y) :=
p(e−iy), y ∈ [0,2π)d . From (4.11) and (3.19),

EM \ {1 } =
{

e−iy : y ∈Ω
′
m(0)

}

,

Ω
′
m(0) =Ωm(0) \ {0 } =

{

y ∈ [0,2π)d : yi =
2παi

mi
, αi = 1, . . . ,mi −1, i = 1, . . . ,d

}

,

conditions (i) and (ii) in (4.25) become

(i ) Dµp(y) = 0 |µ| ≤
⌈q

2

⌉

−1, ∀y ∈Ω
′
m(0),

(i i ) p(0) = |detM |,

which imply assumptions (i) and (ii) of Theorem 3.7. �

4.2.2 SUBDIVISION FOR ALGEBRAIC V-CYCLE METHOD

If f0(0) = 0 and f0(x) > 0, x ∈ (0,2π)d , then [5, Lemma 3.2] guarantees that every f j , j =
1, . . . ,ℓ−1, vanishes only at 0 with the same order as the one of the zero of f0. Thus, we use
p j = p, j = 0, . . . ,ℓ−1. If p satisfies

lim
x→0

|p(y)|
f0(x)

<+∞ ∀y ∈Ω
′
m(0),

then condition (i) of Theorem 3.8 is satisfied.

Recall, from (3.7), that one of the main ingredients in the definition of CGCn j
are the

grid transfer operators Pn j
= Cn j

(p)K T
n j ,m. We view again p as the symbol of a convergent

subdivision scheme Sp. Our goal is to identify subdivision schemes Sp whose symbols p satisfy
assumptions of Theorem 3.8 for x0 = 0.
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4.2. Subdivision based multigrid

Theorem 4.5. Let f be a real d-variate trigonometric polynomial such that f (x) > 0, x ∈ (0,2π)d ,

and

Dµ f (0) = 0, |µ| ≤ q −1, and ∃ν ∈Nd , |ν| = q, Dν f (0) 6= 0.

Assume that the subdivision scheme Sp with dilation M and symbol p as in (4.6) is convergent.

If

(i) Sp generates polynomials up to degree q −1,

(ii) the basic limit function φ of Sp is ℓ∞-stable, i.e. there exist constants 0 < A ≤ B <∞ such

that

A‖c‖∞ ≤

∥
∥
∥
∥
∥

∑

α∈Zd

c(α)φ(·−α)

∥
∥
∥
∥
∥

L∞(Rd )

≤ B‖c‖∞, ∀c ∈ ℓ∞(Zd ),

then the approximation property (3.10) is satisfied.

Proof. To prove the claim we show that condition (i) is equivalent to (i) of Theorem 3.8
and that property (ii) implies (ii) of Theorem 3.8. The equivalence of (i) follows by the same
argument as in the proof of Theorem 4.4. Next we show that, if the basic limit function φ is
ℓ∞-stable, then condition (ii) of Theorem 3.8 is satisfied. Define the Fourier transform of a
continuous, compactly supported function φ by

φ̂(x) =
∫

Rd
φ(t)e−itT ·xdt , tT ·x =

d∑

i=1

ti xi , x = (x1, . . . , xd ) ∈Rd .

Define also

Πφ(x) =
∑

α∈Zd

|φ̂(x+2πα)|2, x ∈Rd .

Note that, due to the Poisson summation formula, we have

Πφ(x) =
∑

α∈Zd

d(α)e−iαT ·x, d(α) =
∫

Rd
φ(t)φ(t−α)dt , αT ·x =

d∑

i=1

αi xi , x = (x1, . . . , xd ) ∈Rd .

The compact support of φ implies that Πφ is a trigonometric polynomial. Next, we take the
Fourier transforms of both sides of the refinement equation (4.5) and obtain

φ̂(x) =
1

|det M |
p

(

e−iM−1x
)

φ̂
(

M−1x
)

, x ∈Rd .
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Chapter 4. Stationary subdivision and algebraic multigrid

Then, by (4.12) and following the steps in [73], we write α=γ+Mβ, γ ∈ Γ, β ∈Zd , and get

Πφ(x) =
∑

α∈Zd

|φ̂(x+2πα)|2

=
∑

α∈Zd

1

|det M |2
∣
∣
∣p

(

e−iM−1(x+2πα)
)∣
∣
∣

2 ∣
∣φ̂

(

M−1(x+2πα)
)∣
∣
2

=
∑

γ∈Γ

1

|det M |2
∣
∣
∣p

(

e−iM−1(x+2πγ)
)∣
∣
∣

2 ∑

β∈Zd

∣
∣φ̂

(

M−1(x+2π(γ+Mβ))
)∣
∣
2

=
∑

γ∈Γ

1

|det M |2
∣
∣
∣p

(

e−iM−1(x+2πγ)
)∣
∣
∣

2 ∑

β∈Zd

∣
∣φ̂

(

M−1(x+2πγ)+2πβ
)∣
∣
2

=
∑

γ∈Γ

1

|det M |2
∣
∣
∣p

(

e−iM−1(x+2πγ)
)∣
∣
∣

2
Πφ

(

M−1(x+2πγ)
)

, x ∈Rd .

It was proved in [56] that a continuous, compactly supported function φ is ℓ∞-stable if and
only if

sup
α∈Zd

|φ̂(x+2πα)| > 0, ∀x ∈Rd . (4.26)

This is equivalent to Πφ(x) > 0, ∀x ∈Rd . Thus, we have

∑

γ∈Γ

∣
∣
∣p

(

e−iM−1(x+2πγ)
)∣
∣
∣

2
> 0, ∀x ∈Rd .

Since, for
z = e−ix =

(

e−ix1 , . . . ,e−ixd
)

∈ (C\ {0})d , x = (x1, . . . , xd ) ∈Rd ,

the Laurent polynomial p is a 2π-periodic trigonometric polynomial, we write

p(x) := p(e−ix), x ∈ [0,2π)d .

Thus, the claim follows by the definition of the set of m-corners Ωm (3.19),

∑

γ∈Γ

∣
∣p

(

M−1(x+2πγ)
)∣
∣=

∑

γ∈Γ

∣
∣p

(

M−1x+2πM−1γ
)∣
∣=

∑

y∈Ωm( x
m )

|p(y)|2 > 0, ∀x ∈Rd .

Therefore, (ii) of Theorem 3.8 is also satisfied. �

If φ is not given explicitly or (ii) of Theorem 4.5 is difficult to check, one can use an
alternative criterion which guarantees the validity of condition (ii) of Theorem 3.8.

Proposition 4.6. Let p be a d-variate trigonometric polynomial and M ∈Zd×d in (4.10). If

∣
∣p

(

e−ix)
∣
∣> 0, ∀x ∈ M−1[−π,π]d ,

then
∑

γ∈Γ

∣
∣
∣p

(

e−i(x+2πM−1γ)
)∣
∣
∣

2
> 0, ∀x ∈ [0,2π)d . (4.27)
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4.2. Subdivision based multigrid

Proof. To simplify the argument, we first rewrite (4.27) in an equivalent way. For x ∈ [0,2π)d ,
we have

∑

γ∈Γ

∣
∣
∣p

(

e−i(x+2πM−1γ)
)∣
∣
∣

2
=

m1−1∑

γ1=0
· · ·

md−1∑

γd=0

∑

α∈Zd

∣
∣
∣
∣p(α)e

−iα1

(

x1+
2πγ1
m1

)

· · · e
−iαd

(

xd+
2πγd
md

)∣
∣
∣
∣

2

> 0.

Using the substitution γ′
i
= γi +1, i = 1, . . . ,d , the latter inequality is equivalent to

m1∑

γ′1=1

· · ·
md∑

γ′
d
=1

∑

α∈Zd

∣
∣
∣
∣
∣
p(α)e

−iα1

(

x1+
2πγ′1
m1

)

· · · e
−iαd

(

xd+
2πγ′

d
md

)∣
∣
∣
∣
∣

2

> 0,

∀x ∈
[

−
2π

m1
,

(2m1 −2)π

m1

)

× . . .×
[

−
2π

md
,

(2md −2)π

md

)

.

Straightforwardly, due to the 2π-periodicity of p, the previous inequality is equivalent to

m1∑

γ1=1
· · ·

md∑

γd=1

∑

α∈Zd

∣
∣
∣
∣p(α)e

−iα1

(

x1+
2πγ1
m1

)

· · · e
−iαd

(

xd+
2πγd
md

)∣
∣
∣
∣

2

> 0,

∀x ∈
[

−
π

m1
,

(2m1 −1)π

m1

)

× . . .×
[

−
π

md
,

(2md −1)π

md

)

.

Let

x ∈
[

−
π

m1
,

(2m1 −1)π

m1

)

× . . .×
[

−
π

md
,

(2md −1)π

md

)

.

There exists k = (k1, . . . ,kd ) ∈Zd , ki ∈ {0, . . . ,mi −1}, i = 1, . . . ,d , such that

x ∈
[

(2k1 −1)π

m1
,

(2k1 +1)π

m1

)

× . . .×
[

(2k1 −1)π

m1
,

(2k1 +1)π

m1

)

.

Define ℓ= m−k = (m1−k1, . . . ,md −kd ) ∈Zd . Then ℓi ∈ {1, . . . ,mi }, i = 1, . . . ,d , and xi + 2πℓi

mi
∈

[

− π
mi

, π
mi

)

, i = 1, . . . ,d , due to

(2ki −1)π

mi
≤xi <

(2ki +1)π

mi

(2mi −1)π

mi
=

(2ki −1)π

mi
+

2πℓi

mi
≤ xi +

2πℓi

mi
<

(2ki +1)π

mi
+

2πℓi

mi
=

(2mi +1)π

mi

−
π

mi
≤ xi +

2πℓi

mi
<

π

mi
(mod 2π).

Thus, x+2πM−1ℓ ∈ M−1[−π,π]d . By hypothesis, we get

∣
∣
∣p

(

e−i(x+2πM−1ℓ)
)∣
∣
∣

2
=

∑

α∈Zd

∣
∣
∣
∣p(α)e

−iα1

(

x1+
2πℓ1
m1

)

· · · e
−iαd

(

xd+
2πℓd
md

)∣
∣
∣
∣

2

> 0,

55



Chapter 4. Stationary subdivision and algebraic multigrid

which yields the claim

m1∑

γ1=1
· · ·

md∑

γd=1

∑

α∈Zd

∣
∣
∣
∣p(α)e

−iα1

(

x1+
2πγ1
m1

)

· · · e
−iαd

(

xd+
2πγd
md

)∣
∣
∣
∣

2

> 0, ∀x ∈ [0,2π)d .

�

Hypothesis of Proposition 4.6 is a simplified version of the so-called Cohen’s condition. This
condition was first introduced by Cohen in [18] and then it was analyzed in depth regarding
wavelets and orthonormality by Daubechies in [24].

Definition 4.4. Let M ∈ Zd×d be a dilation matrix. We say that a d-variate trigonometric
polynomial p satisfies the Cohen’s condition with respect to M if there exists a compact set
K ⊂Rd satisfying

(i) K contains a neighborhood of 0,

(ii)
⋃

α∈Zd

(K +2πα) =Rd ,

(iii) (K +2πα)∩K =; whenever α 6= 0,

and such that there exists k0 > 0 for which

∣
∣p

(

e−ix)
∣
∣> 0, ∀x ∈

k0⋃

j=1

(M T )− j K .

Remark 4.2. If a compact set K ⊂Rd satisfies conditions (ii) and (iii) in Definition 4.4, we say
that K is congruent to [−π,π]d modulo 2π. In Proposition 4.6, we require that the trigonometric
polynomial p satisfies Cohen’s condition with the special choices K = [−π,π]d , k0 = 1. Indeed,
the dilation M in (4.10) satisfies M = M T .

Finally, using the result of Proposition 4.6, we get the following Theorem .

Theorem 4.7. Let f be a real d-variate trigonometric polynomial such that f (x) > 0, x ∈ (0,2π)d ,

and

Dµ f (0) = 0, |µ| ≤ q −1, and ∃ν ∈Nd , |ν| = q, Dν f (0) 6= 0.

If the symbol p in (4.6) satisfies

(i) zero conditions of order q,

(ii)
∣
∣p

(

e−ix
)∣
∣> 0, ∀x ∈ M−1[−π,π]d ,

then the approximation property (3.10) is satisfied.

Proof. We have already shown in the proof of Theorem 4.5 that assumption (i) is equiv-
alent to condition (i) of Theorem 3.8. By Proposition 4.6, Cohen’s condition implies (4.27).
Note that (4.27) is equivalent to (ii) in Theorem 3.8. �
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5
Grid transfer operators from stationary subdivision

schemes

This chapter is dedicated to the construction of univariate and bivariate grid transfer operators
from stationary subdivision symbols.

In section 5.1, we define two classes of univariate grid transfer operators from the well-
known symbols of symmetric binary (m = 2) and ternary (m = 3) pseudo-splines, see subsec-
tions 5.1.1 and 5.1.2 respectively. We test the efficiency of our univariate pseudo-splines grid
transfer operators in section 5.2.

In section 5.3, we define bivariate grid transfer operators from the symbols of approxi-

mating and interpolatory subdivision schemes with dilation M =
(
2 0
0 2

)

and M =
(
3 0
0 3

)

. The

numerical examples in section 5.4 test the validity of our bivariate subdivision based grid trans-
fer operators. Especially, in subsection 5.4.3, we highlight a critical drawback of our bivariate
subdivision based grid transfer operators that we will overcome in chapter 6.

5.1 UNIVARIATE GRID TRANSFER OPERATORS FROM PRIMAL PSEUDO-SPLINES

In this section, we define grid transfer operators from well-known subdivision symbols of
pseudo-splines introduced in [25]. Recall that we only consider symmetric symbols, i.e. we
restrict our attention to primal pseudo-splines. This is due to the use of vertex centered
discretization in section 5.2.

5.1.1 BINARY PRIMAL PSEUDO-SPLINES

We start our discussion by introducing the family of binary primal pseudo-spline schemes.
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Chapter 5. Grid transfer operators from stationary subdivision schemes

Definition 5.1 ( [25]). Let J ∈N and L ∈ {0, . . . , J −1}. The binary primal pseudo-spline scheme

SpJ ,L of order (J ,L) is defined by its symbol

p J ,L(z) = 2σJ (z) q J ,L(z), q J ,L(z) =
L∑

k=0

(

J −1+k

k

)

δk (z), z ∈C\ {0} ,

where

σ(z) =
(1+ z)2

4z
and δ(z) =−

(1− z)2

4z
.

These pseudo-spline schemes range from B-splines to Dubuc-Deslauries schemes. When
L = 0, the symbol in Definition 5.1 is the symbol of the B-spline subdivision scheme of order
2J−1 and, when L = J−1, one gets the symbol of the (2J )-point Dubuc-Deslauries interpolatory
subdivision scheme. For more details on binary pseudo-splines see [25, 35, 36, 60].

Next, we give several examples of grid transfer operators derived from symbols of binary
primal pseudo-splines of order (J ,0), namely binary B-splines of order 2J −1. The symbols p1,0

and p2,0 have already been used in multigrid literature [31, 69] as well as the classical cubic
interpolation p2,1 (see [71]).

Example 5.1. Let J ∈N and L = 0. Then, we have q J ,0(z) ≡ 1. Thus, from Definition 5.1, we get

p J ,0(z) = 2

(
(1+ z)2

4z

)J

, z ∈C\ {0} .

Set z = e−ix , x ∈R. Then, the symbols p J ,0 become trigonometric polynomials

p J ,0(x) = 2

(
1+cos x

2

)J

, x ∈ [0,2π),

that are used to define the grid transfer operators in (3.11). Notice that the trigonometric
polynomial p J ,0 coincides with the trigonometric polynomial p(J ) defined in (3.33). For readers
convenience, we also present the corresponding masks. For J = 1,2,3, they are given by

p1,0 =
1

2

{
1 2 1

}

, p2,0 =
1

8

{
1 4 6 4 1

}

, p3,0 =
1

32

{
1 6 15 20 15 6 1

}

.

Note that we use the corresponding grid transfer operators for our numerical examples in
Tables 5.1 and 5.3. �

Less known are grid transfer operators which we derive from symbols in Definition 5.1 for
L 6= 0.

Example 5.2. Let J = 2, L = 1, and J = 3, L ∈ {1,2}. Then, from Definition 5.1, using standard
trigonometric identities, we get

p2,1(x) =
1

16

(

16+18cos x −2cos(3x)
)

,

p3,1(x) =
1

128

(

110+144cos x +24cos(2x)−16cos(3x)−6cos(4x)
)

,

p3,2(x) =
1

256

(

256+300cos x −50cos(3x)+6cos(5x)
)

, x ∈ [0,2π).
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Figure 5.1: Symbols of the grid transfer operators defined in (a) by primal binary pseudo-splines

and in (b) by primal ternary pseudo-splines in the reference interval [0,π].

The corresponding masks are

p2,1 =
1

16

{
−1 0 9 16 9 0 −1

}

,

p3,1 =
1

128

{
−3 −8 12 72 110 72 12 −8 −3

}

,

p3,2 =
1

256

{
3 0 −25 0 150 256 150 0 −25 0 3

}

.

Note that the corresponding grid transfer operators also appear in Tables 5.1 and 5.3. �

The symbols of the binary grid transfer operators proposed in Examples 5.1 and 5.2 are
plotted in Figure 5.1 (a) for the reference interval [0,π].

The justification that primal pseudo-spline symbols define good grid transfer operators
is given by Theorem 4.5. The convergence of the corresponding subdivision schemes has
been proved by Dong and Shen in [36]. The special structure of the symbols in Definition 5.1,
i.e. the presence of the factor (1+ z)2J , implies that the corresponding schemes of order (J ,L)
generate polynomials up to degree 2J −1 for every J ∈N, L = 0, . . . , J −1, see Theorem 4.2. Thus,
(i) of Theorem 4.5 is satisfied. Therefore, it is left to show that the corresponding basic limit
functions are ℓ∞-stable. In [35], the authors addressed this issue. We present an alternative
proof of ℓ∞-stability of primal pseudo splines for completeness. To do that, we first recall that
in [60], the author showed the following.

Lemma 5.1. Let Sp be a convergent binary subdivision scheme with associated symbol

p(z) = 2

(
1+ z

2

)r

z−⌊r /2⌋ q(z), r ≥ 1, z ∈C\ {0} .

If q(e−ix) > 0 for all x ∈R, then the basic limit function φ of Sp is ℓ∞-stable.

The result of Lemma 5.1 is used in the proof of Proposition 5.2.

Proposition 5.2. Let J ∈N and L ∈ {0, . . . , J −1}. The basic limit function φ of SpJ ,L is ℓ∞-stable.
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Chapter 5. Grid transfer operators from stationary subdivision schemes

Proof. By Definition 5.1, the symbol p J ,L of the primal pseudo-spline scheme SpJ ,L of order
(J ,L) is of the form required by Lemma 5.1, with

q(z) := q J ,L(z) =
L∑

k=0

(

J −1+k

k

) (

−
(1− z)2

4z

)k

, z ∈C\ {0} ,

i.e.

q(e−ix) =
L∑

k=0

(

J −1+k

k

)

sin2k
(x

2

)

= 1+
L∑

k=1

(

J −1+k

k

)

sin2k
(x

2

)

> 0, ∀x ∈R.

�

Thus, (ii) of Theorem 4.5 is also satisfied and it implies the following result.

Proposition 5.3. Let f be a real trigonometric polynomial such that f (x) > 0, x ∈ (0,2π), and

Dµ f (0) = 0, µ= 0, . . . , q −1, Dq f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol p⌈q/2⌉,L, L ∈ {0, . . . ,⌈q/2⌉−1}, satisfies the

approximation property (3.10).

5.1.2 TERNARY PRIMAL PSEUDO-SPLINES

In section 5.2, in the case of PDE discretizations via isogeometric approach with high order
B-splines, we show that the grid transfer operators derived from the binary primal pseudo-
spline schemes lead to computationally expensive multigrid methods. On the contrary, if we
use the ternary primal pseudo-spline schemes, the number of multigrid iterations decreases
drastically.

The recursive definition of ternary pseudo-splines was introduced in [20]. Their explicit
form can be found in [60].

Definition 5.2. Let J ∈ N and L ∈ N, L = 2L′+1, 1 ≤ L ≤ J . The ternary primal pseudo-spline

scheme Sp̃J ,L of order (J ,L) is defined by its symbol

p̃ J ,L(z) = 3 σ̃J+1(z) q̃ J ,L(z), q̃ J ,L(z) =
L′
∑

k=0

(

J +k

k

)

δ̃k (z), z ∈C\ {0} ,

where

σ̃(z) =
1+ z + z2

3z
and δ̃(z) =−

(1− z)2

3z
.

Similarly to the binary case, when L = 1, the Laurent polynomial p̃ J ,1 in Definition 5.2 is the
symbol of the ternary B-spline subdivision scheme of order J and, when L = J , J odd, one gets
the symbol of the ternary (J +1)-point Dubuc-Deslauries interpolatory subdivision scheme.

Next, we show how to derive grid transfer operators from symbols of some ternary primal
pseudo-spline schemes.
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5.1. Univariate grid transfer operators from primal pseudo-splines

Example 5.3. Let J ∈ N and L = 1. Then, we have q̃ J ,1(z) ≡ 1. Thus, from Definition 5.2, we
obtain the following symbols of primal pseudo-splines of order (J ,1), i.e symbols of the ternary
B-splines of order J ,

p̃ J ,1(z) = 3

(
1+ z + z2

3z

)J+1

, z ∈C\ {0} .

Set z = e−ix , x ∈R. Using simple trigonometric identities, we get the trigonometric polynomials

p̃ J ,1(x) = 3

(
1+2cos x

3

)J+1

, x ∈ [0,2π).

The corresponding masks for linear (J = 1), quadratic (J = 2) and cubic (J = 3) ternary B-splines
are

p̃1,1 =
1

3

{
1 2 3 2 1

}

, p̃2,1 =
1

9

{
1 3 6 7 6 3 1

}

,

p̃3,1 =
1

27

{
1 4 10 16 19 16 10 4 1

}

.

Note that we use the corresponding grid transfer operators to obtain results in Tables 5.2 and
5.4. �

Further examples are obtained for J ∈N, J odd, and L = J , in the following example. These
correspond to the ternary (J +1)-point Dubuc-Deslauries interpolatory subdivision schemes.

Example 5.4. Let J = 3,5 and L = J . From Definition 5.2, we derive the trigonometric polyno-
mials

p̃3,3(x) =
1

81

(

81+120cos x +60cos(2x)−10cos(4x)−8cos(5x)
)

,

p̃5,5(x) =
1

729

(

729+1120cos x +560cos(2x)−140cos(4x)−112cos(5x)+16cos(7x)+14cos(8x)
)

,

x ∈ [0,2π).

The corresponding masks are

p̃3,3 =
1

81

{
−4 −5 0 30 60 81 60 30 0 −5 −4

}

,

p̃5,5 =
1

729

{
7 8 0 −56 −70 0 280 560 729 560 280 0 −70 −56 0 8 7

}

.

Note that the corresponding grid transfer operators are also used in Tables 5.2 and 5.4. �

The symbols of the ternary grid transfer operators proposed in Examples 5.3 and 5.4 are
plotted in Figure 5.1 (b) for the reference interval [0,π]. We use Theorem 4.7 to show that
ternary pseudo-splines lead to appropriate grid transfer operators. Note that we could also
use Theorem 4.7 in subsection 5.1.1. To check the assumptions of Theorem 4.7, we need the
following auxiliary lemma.

61



Chapter 5. Grid transfer operators from stationary subdivision schemes

Lemma 5.4. Let J ∈N and L ∈N, L = 2L′+1, 1 ≤ L ≤ J . The symbol p̃ J ,L of the ternary primal

pseudo spline scheme of order (J ,L) in Definition 5.2 satisfies

∣
∣p̃ J ,L

(

e−ix)∣
∣> 0, ∀x ∈

[

−
π

3
,
π

3

]

. (5.1)

Proof. Consider

p̃ J ,L
(

e−ix)

= 3 σ̃J+1 (

e−ix)

q̃ J ,L
(

e−ix)

= 3 B̃ J+1(x)Q̃(x), x ∈ [0,2π],

where

B̃ J+1(x) := σ̃J+1 (

e−ix)

=
(

1+e−ix +e−2ix

3e−ix

)J+1

and

Q̃(x) := q̃ J ,L
(

e−ix)

=
L′
∑

k=0

(

J +k

k

) (
4

3
sin2

(x

2

))k

.

Note that B̃ J+1(x) vanishes only at −2π
3 and 2π

3 . Thus, to check condition (5.1), it suffices to
show that

∣
∣Q̃(x)

∣
∣> 0 for all x ∈

[

−π
3 , π3

]

. The latter holds due to

Q̃(x) =
L′
∑

k=0

(

J +k

k

) (
4

3
sin2

(x

2

))k

= 1+
L′
∑

k=1

(

J +k

k

) (
4

3

)k

sin2k
(x

2

)

> 0, ∀x ∈R.

�

By Definition 5.2, the presence of the factor (1+ z + z2)J+1 in the symbols p̃ J ,L shows that the
ternary pseudo spline-schemes of order (J ,L) generate polynomials up to degree J , for every
J ∈ N and L ∈ N, L = 2L′+1, 1 ≤ L ≤ J , see Theorem 4.2. This, together with p̃ J ,L(1) = 3 by
definition, implies that p̃ J ,L satisfies the zero conditions of order J +1. Thus, Theorem 4.7
implies the following proposition.

Proposition 5.5. Let f be a real trigonometric polynomial such that f (x) > 0, x ∈ (0,2π), and

Dµ f (0) = 0, µ= 0, . . . , q −1, Dq f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol p̃q−1,L, L = 2L′+1 ∈ {1, . . . , q −1}, satisfies

the approximation property (3.10).

5.2 UNIVARIATE NUMERICAL EXAMPLES

In this section, in subsections 5.2.1 and 5.2.2, we illustrate the univariate theoretical results of
Propositions 5.3 and 5.5 with numerical examples of the algebraic Galerkin approach applied to
certain Toeplitz matrices. On the other hand, in practical applications, the variable coefficient
case is often of interest and the algebraic Galerkin approach could be computationally expen-
sive. Indeed, using the algebraic Galerkin approach, the bandwidth of the coarser matrices An j

is approximately the double of the bandwidth of the grid transfer operator (see [2, Proposition
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5.2. Univariate numerical examples

2]). Thus, it can be large for high order grid transfer operators. Therefore, in subsection 5.2.3,
we present also an example of the geometric approach for PDEs with variable coefficients.

We consider sequence of starting linear systems Anx = bn for different n. In subsection 5.2.1,
we use a finite difference discretization of the biharmonic elliptic PDE problem. In subsection
5.2.2, we consider the isogeometric approach for the Laplacian problem. In both cases, we
have PDEs with constant coefficients with homogeneous Dirichlet boundary conditions, hence
the system matrices An are positive definite with a Toeplitz structure. According to [3, 34], we
have to change the definition of the grid transfer operators in (3.11). Namely, let n = mk −1,
k ∈N. For ℓ ∈N, 1 ≤ ℓ≤ k −1, define

n j = mk− j −1, j = 0, . . . ,ℓ. (5.2)

and
Pn j

(p) = Tn j
(p) Z

T

n j ,m ∈Cn j×n j+1 , j = 0, . . . ,ℓ−1, (5.3)

where Tn j
(p) ∈Cn j×n j is the Toeplitz matrix of order n j generated by the trigonometric polyno-

mial p (see chapter 2, subsection 2.3.2) and Z n j ,m ∈Cn j+1×n j is the downsampling matrix with
the factor m defined by

Z n j ,m =








0m−1 1 0m−1

1 0m−1
. . .

1 0m−1








, 0m−1 = (0, . . . ,0) ∈N1×m−1
0 . (5.4)

In the binary case, we solve the coarse grid system exactly when the dimension of the coarse
grid is nℓ = 22 −1 = 3 and, in the ternary case, when nℓ = 32 −1 = 8.

In subsection 5.2.3, we consider linear systems Anx = bn derived via finite difference
discretization from Laplacian with non-constant coefficients with homogeneous Dirichlet
boundary conditions. In this case, the corresponding system matrices An are tridiagonal
positive definite, but we lose the Toeplitz structure. Nevertheless, for ℓ ∈ N, 1 ≤ ℓ ≤ k − 1,
n = mk −1, the properties of An allow us to define the dimension n j and the grid transfer
operator Pn j

at level j as in (5.2) and (5.3), respectivelly. To solve the linear systems Anx = bn ,
we use geometric multigrid method, which we briefly describe in subsection 5.2.3. We solve
the coarse grid system exactly when the dimension of the coarse grid is nℓ = 23 −1 = 7 in the
binary case, and nℓ = 32 −1 = 8 in the ternary case.

In all examples, we use as pre- and post-smoother one step of Gauss-Seidel method. The
zero vector is used as the initial guess and the stopping criterion is ‖rs‖2/‖r0‖2 < 10−7, where
rs is the residual vector after s iterations and 10−7 is the given tolerance.

5.2.1 FINITE DIFFERENCE APPROXIMATION FOR THE BIHARMONIC OPERATOR

The first example we present arises from the discretization of the biharmonic elliptic PDE
problem with homogeneous Dirichlet boundary conditions, namely







d 4

d x4
ψ(x) = g (x), x ∈ (0,1),

ψ(0) =ψ(1) = 0.
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Chapter 5. Grid transfer operators from stationary subdivision schemes

Subdivision n = 210 −1 n = 211 −1 n = 212 −1 generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

p1,0 (Linear Bspline) 617 0.9742 744 0.9785 801 0.9800 1
p2,0 (Cubic Bspline) 40 0.6647 43 0.6846 45 0.6979 3
p2,1 (Interp. 4 point) 19 0.4275 23 0.4937 26 0.5351 3
p3,0 (Quintic Bspline) 30 0.5784 35 0.6285 41 0.6741 5
p3,1 19 0.4258 22 0.4748 24 0.5063 5
p3,2 (Interp. 6 point) 13 0.2798 13 0.2879 14 0.3080 5

Table 5.1: Binary subdivision schemes for biharmonic problem

Subdivision n = 36 −1 n = 37 −1 n = 38 −1 generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

p̃1,1 (Linear Bspline) 462 0.9656 864 0.9815 1057 0.9841 1
p̃2,1 (Quadratic Bspline) 72 0.7990 63 0.7742 50 0.7217 2
p̃3,1 (Cubic Bspline) 67 0.7858 80 0.8167 87 0.8308 3
p̃3,3 (Interp. 4-point) 46 0.7017 47 0.7090 53 0.7368 3
p̃5,3 30 0.5824 31 0.5878 30 0.5814 5
p̃5,5 (Interp. 6-point) 39 0.6594 39 0.6604 40 0.6644 5

Table 5.2: Ternary subdivision schemes for biharmonic problem

For the discretization, we use finite differences of order 4. It leads to the linear systems Anx = bn ,
where An = Tn( f ) is the Toeplitz matrix of order n generated by the trigonometric polynomial

f (x) = (2−2cos x)2, x ∈ [0,2π).

Note that f has a 4-fold zero at x = 0. Thus, by Propositions 5.3 and 5.5 with q = 4, the binary
pseudo-spline symbols from Example 5.1 (with J ≥ 2), the ternary pseudo-spline symbols from
Example 5.3 (with J = 3) and all symbols from Examples 5.2 and 5.4 can be used to define
the corresponding grid transfer operators. To define bn , we choose x = (x(1), . . . ,x(n)) ∈ Cn ,
x(α) =α/n, α= 1, . . . ,n and set bn := Anx ∈Cn .

Tables 5.1 and 5.2 show how the number of iterations and convergence rates for the V-cycle
change with increasing dimension n.

Tables 5.1 and 5.2 illustrate the importance of the polynomial generation property (zero
conditions) that, by Theorems 4.5 and 4.7, ensures the correct choice of the grid transfer
operator. The subdivision schemes with the symbols p1,0, p̃1,1 generate polynomials of degree
1. The lack of the appropriate degree of polynomial generation leads to dramatic increase of
the number of iterations. For ternary schemes, p̃2,1 generates polynomials of degree at most
2 and so it does not satisfy the assumptions of Theorem 4.7 for q = 4. Nevertheless, such
conditions are only sufficient and they could be further relaxed (see e.g. [69]). Moreover, the
quadratic B-splines are very effective as grid transfer operators for ternary methods as shown
also in the next example.

We observe that the number of iterations necessary for convergence of the V-cycle is larger
in the ternary case (see Table 5.2) than in the binary case (see Table 5.1). This happens, since,
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5.2. Univariate numerical examples

at each Coarse Grid Correction step, we downsample the data with the factor m and the larger
is m the more information we lose. Thus, the number of iterations required for convergence is
larger for m = 3. Nevertheless, in our tests, the CPU time is comparable in both cases, since the
length of the V-cycle iteration is shorter in the ternary case (m = 3).

5.2.2 ISOGEOMETRIC ANALYSIS FOR THE POISSON OPERATOR

In the second example, we consider the Laplacian problem with homogeneous Dirichlet
boundary conditions, namely







−
d 2

d x2
ψ(x) = g (x), x ∈ (0,1),

ψ(0) =ψ(1) = 0.

We consider the isogeometric approach with collocation by splines for the discretization of the
above problem, see [32]. We fix the integers ν, µ> 0 and define the spline space

W =
{

s ∈Cµ−1([0,1]) : s∣∣[
γ
ν ,

γ+1
ν

)
∈Πµ, γ= 0, . . . ,ν−1, s(0) = s(1) = 0

}

the finite dimensional approximation space of dimension n = dim W = ν+µ−2. As a basis for

W , one chooses the B-splines B
[µ]
γ : [0,1] →R, γ= 2, . . . ,ν+µ−1 of degree µ as explained in [7].

These are defined over the uniform knot sequence of length ν+2µ+1

t1 = ·· · = tµ+1 = 0 < tµ+2 < ·· · < tµ+ν < 1 = tν+µ+1 = ·· · = tν+2µ+1,

where
tµ+γ+1 =

γ

ν
, γ= 1, . . . ,ν−1,

and the extreme knots have multiplicity µ+1. We recall that the B-splines B
[µ]
γ : [0,1] →R are

defined recursively by

B [0]
γ (x) =

{

1 x ∈ [tγ, tγ+1),

0 otherwise,
γ= 1, . . . ,ν+2µ,

and

B [m]
γ (x) =

x − tγ

tγ+m − tγ
B [m−1]
γ (x)+

tγ+m+1 −x

tγ+m+1 − tγ+1
B [m−1]
γ+1 (x),

γ= 1, . . . , (ν+µ)+µ−m, m = 1, . . . ,µ,

where we set the fractions with zero denominators to be equal to zero. Next, one defines the
set of collocation points, the so-called Greville abscissae,

τγ =
tγ+1 + tγ+2 +·· ·+ tγ+µ

µ
, γ= 2, . . . ,ν+µ−1.
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Subdivision µ= 3 µ= 10 µ= 16 generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

p1,0 (Linear Bspline) 8 0.1111 16 0.3360 126 0.8798 1
p2,0 (Cubic Bspline) 8 0.1111 13 0.2757 126 0.8799 3
p2,1 (Interp. 4 point) 8 0.1111 13 0.2758 126 0.8799 3
p3,0 (Quintic Bspline) 8 0.1111 13 0.2758 126 0.8798 5
p3,1 8 0.1111 13 0.2759 126 0.8798 5
p3,2 (Interp. 6 point) 8 0.1111 13 0.2759 126 0.8798 5

Table 5.3: Binary subdivision schemes for isogeometric Laplacian problem

Subdivision µ= 3 µ= 10 µ= 16 generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

p̃1,1 (Linear Bspline) 31 0.5910 25 0.5247 48 0.7078 1
p̃2,1 (Quadratic Bspline) 30 0.5847 19 0.4271 49 0.7124 2
p̃3,1 (Cubic Bspline) 29 0.5739 16 0.3617 49 0.7120 3
p̃3,3 (Interp. 4-point) 30 0.5853 17 0.3731 49 0.7118 3
p̃5,3 28 0.643 16 0.358 49 0.7137 5
p̃5,5 (Interp. 6-point) 30 0.5831 16 0.3523 49 0.7120 5

Table 5.4: Ternary subdivision schemes for isogeometric Laplacian problem

This choice is crucial for the stability of the discrete problem, see [4] for more details. The
solution ψW ∈W of the interpolation problem

−ψ′′
W

(τγ) = g (τγ), γ= 2, . . . ,ν+µ−1,

written in the Bspline basis of W leads to

An =
(

−
(

B
[µ]
β+1

)′′
(τα+1)

)

α,β=1,...,n
∈Cn×n .

For µ≥ 2, it is possible to split the above matrix into An = Tn( f [µ])+R
[µ]
n , where Tn( f [µ]) is a

Toeplitz matrix with symbol

f [µ](x) = (2−2cos x)h[µ](x), h[µ](x) =
∑

α∈Z

(
2sin(x/2)+απ

x +2απ

)µ−1

, x ∈ [0,2π), (5.5)

and R
[µ]
n is a low rank correction term, see [33]. The symbols for the grid transfer operators are

chosen as in Example 5.2.1. To define bn , we choose the exact solution

x = (x(1), . . . ,x(n))T ∈Cn , x(α) = sin

(

5
π(α−1)

n −1

)

+ sin

(

n
π(α−1)

n −1

)

, α= 1, . . . ,n,

and set bn := Anx ∈Cn .
Tables 5.3 and 5.4 show how the number of iterations and convergence rates for the V-cycle

change with increasing µ and fixed n. The starting dimension of the linear systems are n = 29−1
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Figure 5.2: Symbols f [µ]/‖ f [µ]‖∞ for µ ∈ {3,10,16} in the reference interval [0,π].

and n = 36−1 in the binary and the ternary cases, respectively. For small µ, the results in Tables
5.3 and 5.4 mimic the ones from Example 5.2.1. Note that, in this case, even the grid transfer
operators defined from the subdivision symbols p1,0, p̃1,1 and p̃2,1 behave well, as the order of
f [µ] at zero is m = 2 in this case. Thus, Propositions 5.3 and 5.5 are also applicable for these
symbols. However, when µ increases, the results in the binary and ternary cases differ. This is
the case, since the symbol f [µ] in (5.5) has a numerical zero at π whose order increases when µ

increases, see Figure 5.2. In fact, by [33], h[µ](π) in (5.5) converges to 0 exponentially when µ

goes to infinity. The symbols p J ,L also vanish at π for J ≥ 1 and L ∈ {0, . . . , J −1}, which is the
source of further ill-conditioning. Note that the ternary symbols p̃ J ,L do not vanish at π and,
hence, lead to more stable methods for increasing µ. Figure 5.3 illustrates the symbols f [16]

j
,

j = 0, . . . ,3, defined by (3.14) of the Toeplitz matrices An j
= Tn j

( f [16]
j

) using the trigonometric

polynomial p associated to the 4-point interpolatory subdivision scheme p2,1 in the binary
case (m = 2) (a) and to the 4-point interpolatory subdivision scheme p̃3,3 in the ternary case
(m = 3) (b). We observe that the coarse symbols f [16]

j
, j = 1, . . . ,3, do not vanish at π. The grid

transfer operator defined from the ternary subdivision symbol p̃3,3 is more powerful than the
grid transfer operator defined from the binary subdivision symbol p2,1. Indeed, for the ternary
subdivision symbol p̃3,3, at level j = 1, the value f [16]

1 (π) is close to the maximum of the coarse

symbol f [16]
1 (x), x ∈ [0,π], and, at level j = 2, it holds f [16]

2 (π) = max
x∈[0,π]

f [16]
2 (x). For the binary

subdivision symbol p2,1, at levels j = 1,2, it holds f [16]
j

(π) < max
x∈[0,π]

f [16]
j

(x). On the contrary, for

small µ, the ternary symbols are not at all a good choice for the definition of a grid transfer
operator (compare Tables 3 and 4). Indeed, the grid transfer operators associated to binary
subdivision schemes reduce the ill-conditioning in the high frequencies of the error (where the
smoother is ineffective) already at level j = 1.
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(a)Binary case.
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(b)Ternary case.

Figure 5.3: Symbols f [16]
j

, j = 0, . . . ,3 defined by (3.14) using the binary 4-point scheme p2,1 (a)

and the ternary 4-point scheme p̃3,3 (b) in the reference interval [0,π].

5.2.3 FINITE DIFFERENCE APPROXIMATION OF THE NON-CONSTANT COEFFICIENTS POISSON

OPERATOR

In this example, we consider the Laplacian with non-constant coefficients with homogeneous
Dirichlet boundary conditions







−
d

d x

(

a(x)
d

d x
ψ(x)

)

= g (x), x ∈ (0,1),

ψ(0) =ψ(1) = 0.
(5.6)

The function a(x), x ∈ [0,1], is strictly positive and its behavior influences the conditioning
of the problem. The oscillatory behavior of a(x), x ∈ [0,1], affects the convergence rate of
geometric multigrid. We illustrate this phenomenon with multiple examples.

In order to solve the linear system Anx = bn derived from the discretization of problem (5.6),
we use the geometric multigrid method. Let n = mk −1, m ∈N, m ≥ 2, fix ℓ ∈N, 1 ≤ ℓ≤ k −1
and define n j ∈N, j = 0, . . . ,ℓ, as in (5.2). At the j -th recursion level of the V-cycle, we compute
the matrix An j

by discretizing problem (5.6) using finite differences of order 2 on a uniform grid
of [0,1] of size h j = 1/(n j +1). For the fixed prolongation operator Pn j

in (5.3), the restriction

operator is defined by 1
m

P∗
n j

in order to preserve the right scaling. For more details, we refer
to [71].

To define bn , we choose the exact solution

x = (x(1), . . . ,x(n))T ∈Cn , x(α) = sin

(

2
π(α−1)

n −1

)

+ sin

(

13
π(α−1)

n −1

)

, α= 1, . . . ,n,

and set bn := Anx ∈Cn .
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Subdivision a(x) = x2 +ε a(x) = ex a(x) = 1+ sin(5πx) · sin(7πx)+ε

scheme iter conv. rate iter conv. rate iter conv. rate

p1,0 (Linear Bspline) 9 0.1484 9 0.1533 44 0.6919
p2,0 (Cubic Bspline) 10 0.1731 10 0.1753 52 0.7331
p2,1 (Interp. 4 point) 8 0.1264 8 0.1239 40 0.6656
p3,0 (Quintic Bspline) 12 0.2473 12 0.2545 60 0.7643
p3,1 9 0.1454 9 0.1431 41 0.6719
p3,2 (Interp. 6 point) 8 0.1295 8 0.1273 40 0.6647

Table 5.5: Binary subdivision schemes for Laplacian with non-constant coefficients (ε= 10−5)

Subdivision a(x) = x2 +ε a(x) = ex a(x) = 1+ sin(5πx) · sin(7πx)+ε

scheme iter conv. rate iter conv. rate iter conv. rate

p̃1,1 (Linear Bspline) 11 0.2254 11 0.2279 19 0.4196
p̃2,1 (Quadratic Bspline) 12 0.2491 12 0.2476 26 0.5307
p̃3,1 (Cubic Bspline) 14 0.3007 14 0.2993 34 0.6197
p̃3,3 (Interp. 4-point) 10 0.1991 10 0.1995 13 0.2705
p̃5,3 12 0.2453 12 0.2427 18 0.3965
p̃5,5 (Interp. 6-point) 11 0.2107 11 0.2104 14 0.3053

Table 5.6: Ternary subdivision schemes for Laplacian with non-constant coefficients (ε= 10−5)

Tables 5.5 and 5.6 show how the number of iterations and convergence rates for the V-cycle
change for different a(x), x ∈ [0,1]. The starting dimension is fixed, n = 211 −1 and n = 37 −1
for binary and ternary pseudo splines, respectively. Parameter ε ∈ (0,1) guarantees the strict
positivity of function a(x), x ∈ [0,1]. In the numerical examples, ε= 10−5.

The results of Tables 5.5 and 5.6 also illustrate the impact of the function a(x), x ∈ [0,1].
When a(x) is strictly positive and non-oscillatory, such as a(x) = x2 + ε or a(x) = ex , our
numerical results are equivalent to the ones for a(x) ≡ 1. On the other hand, the case of strictly
positive and oscillatory a(x), such as a(x) = 1+ sin(5πx) · sin(7πx)+ε, can be better handled
by ternary primal pseudo-splines. Especially, ternary interpolatory pseudo-splines define the
grid transfer operators Pn j

as in (5.3), which lead to the best results. The most competitive
grid transfer operators Pn j

are the ones defined from the ternary pseudo-spline p̃3,3, which is
the ternary interpolatory 4-point subdivision scheme. These grid transfer operators not only
improve the convergence rate. They are also extremely competitive from the computational
point of view. In fact, the small number of non-zero coefficients in their stencil decreases the
computational cost of restriction and prolongation.

5.3 BIVARIATE GRID TRANSFER OPERATORS FROM SYMMETRIC SUBDIVISION

SCHEMES

In this section, we define bivariate grid transfer operators from symbols of bivariate sym-

metric subdivision schemes with dilation M =
(
2 0
0 2

)

(binary) and M =
(
3 0
0 3

)

(ternary). We
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distinguish between approximating and interpolatory subdivision schemes.

5.3.1 SYMMETRIC BINARY 2-DIRECTIONAL BOX SPLINES

The box splines were introduced in [28], while their several basic properties were given in [27].
Since then, many interesting and important results on box splines have been found. See [17]
for detailed summary and other references. We focus on the bivariate 2-directional symmetric
box splines. Indeed, in [3, 31], the authors proposed a family of grid transfer operators defined
from symmetric trigonometric polynomials satisfying properties (i) and (ii) of Theorem 3.8
for standard binary cutting m = (2,2). These grid transfer operators are equal to the ones
defined from the symbols of the bivariate 2-directional symmetric box splines. Thus, this
subsection highlights that our subdivision based multigrid analysis is consistent with the
algebraic multigrid analysis based on matrix algebra symbols and it shows that different
approaches lead to the definition of the same grid transfer operators.

Definition 5.3. Let J ∈N. The 2-directional symmetric box spline subdivision scheme SPJ of

order J with dilation M =
(
2 0
0 2

)

is defined by its symbol

P J (z) = 4

(
(1+ z1)2(1+ z2)2

16z1z2

)J

, z = (z1, z2) ∈ (C\ {0})2.

Let J ∈N. The symbol P J in Definition 5.3 is defined as the tensor product of the symbol
p J ,0 of the univariate binary B-spline subdivision scheme of order 2J −1 in Definition 5.1 with
itself. We set

z = e−ix =
(

e−ix1 ,e−ix2

)

, x = (x1, x2) ∈R2.

Then, the symbols P J become trigonometric polynomials

P J (x) = 4

(
(1+cos x1)(1+cos x2)

4

)J

, x = (x1, x2) ∈ [0,2π)2,

that are used to define the grid transfer operators in (3.16). Notice that, for J ∈N, the trigono-
metric polynomial P J coincides with the trigonometric polynomial p(J ,J ) defined in (3.34). For
readers convenience, we also present the corresponding masks. For J = 1,2, they are given by

P1 =
1

4





1 2 1
2 4 2
1 2 1



 ,

P2 =
1

64










1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1










.
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We use Theorem 4.7 to show that 2-directional symmetric box splines lead to appropriate
grid transfer operators. Let J ∈N. The 2-directional symmetric box spline subdivision scheme
SPJ in Definition 5.3 generates polynomials up to degree 2J − 1, see Theorem 4.2, and its
symbol satisfies by definition P (1) = 4. Thus, SPJ satisfies the zero conditions of order 2J and
condition (i) of Theorem 4.7 is satisfied. Moreover,

P j

(

e−ix
)

= 4

(
(1+cos x1)(1+cos x2)

4

)J

≥
(1

4

)J−1
> 0, ∀x = (x1, x2) ∈

[

−
π

2
,
π

2

]2
.

Thus, also condition (ii) of Theorem 4.7 is satisfied. We proved the following proposition.

Proposition 5.6. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol P J , J ≥ ⌈q/2⌉, satisfies the approximation

property (3.10).

5.3.2 BIVARIATE BINARY INTERPOLATORY SUBDIVISION SCHEMES

In this subsection, we define bivariate binary interpolatory grid transfer operators. We report a
couple of well-known bivariate interpolatory subdivision schemes and define a new bivariate
interpolatory subdivision scheme. The grid transfer operators defined from the symbols of the
interpolatory subdivision schemes presented in this subsection are of practical interest for our
numerical examples in section 5.4.

The first interpolatory subdivision scheme we present is Kobbelt’s subdivision scheme
[58], which is a tensor product scheme based on the univariate binary 4-point interpolatory
subdivision scheme with the symbol p2,1 in Example 5.2. The symbol of Kobbelt’s scheme is

K(z) =
4

z3
1 z3

2

·
(

(1+ z1)(1+ z2)

4

)4 (1−4z1 + z2
1)(1−4z2 + z2

2)

4
, z = (z1, z2) ∈ (C\ {0})2, (5.7)

and the corresponding mask is

K=
1

256














1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 144 81 0 −9
−16 0 144 256 144 0 −16
−9 0 81 144 81 0 −9
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1














. (5.8)

The second interpolatory subdivision scheme we present is the Butterfly subdivision
scheme [40]. The Butterfly subdivision scheme is one of the first interpolatory subdivision
schemes defined for surfaces and it is the generalization of the univariate 4-point interpolatory
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subdivision scheme with the symbol p2,1 in Example 5.2 to a bivariate 3-directional mesh. The
symbol of the butterfly scheme is

B(z) =
4

z3
1 z3

2

·
(

1+ z1

2

)(
1+ z2

2

)

·b(z), z = (z1, z2) ∈ (C\ {0})2, (5.9)

where

b(z) =
1

16

(

(−z4
2 z5

1 )+ (−z5
2 +2z4

2 + z3
2 − z2

2 )z4
1 + ( z4

2 +4z3
2 +4z2

2 − z2 )z3
1+

(−z4
2 +4z3

2 +4z2
2 + z2 )z2

1 + (−z3
2 + z2

2 +2z2 −1)z1 − z2
)

, b(1,1) = 1,

and the corresponding mask is

B =
1

16














0 −1 −1 0 0 0 0
−1 0 2 0 −1 0 0
−1 2 8 8 2 −1 0
0 0 8 16 8 0 0
0 −1 2 8 8 2 −1
0 0 −1 0 2 0 −1
0 0 0 0 −1 −1 0














. (5.10)

Finally, we construct a new bivariate interpolatory 3-directional subdivision scheme SP .
This scheme has not yet appeared in either subdivision or multigrid literature. The symbol of
our new subdivision scheme SP is

P(z) =
4

z3
1 z3

2

·
(

1+ z1

2

)(
1+ z2

2

)(
1+ z1z2

2

)

·b(z), z = (z1, z2) ∈ (C\ {0})2, (5.11)

where

b(z) =
1

1592

(

(−184z4
2 +184z3

2 −199z2
2 ) z4

1+

(184z4
2 +15z2

2 +199z2 ) z3
1+

(−199z4
2 +15z3

2 +1562z2
2 +15z2 −199) z2

1+
(199z3

2 +15z2
2 +184) z1+

(−199z2
2 +184z2 −184)

)

, b(1,1) = 1,

and the corresponding mask is

P =
1

3184














−184 0 −15 −199 0 0 0
0 0 0 0 0 0 0

−15 0 1776 1791 30 0 0
−199 0 1791 3184 1791 0 −199

0 0 30 1791 1776 0 −15
0 0 0 0 0 0 0
0 0 0 −199 −15 0 −184














. (5.12)

72



5.3. Bivariate grid transfer operators from symmetric subdivision schemes

Straightforward computation shows that the subdivision scheme associated with P is conver-
gent and generates polynomials up to degree 3.

We use Theorem 4.5 to show that Kobbelt’s subdivision scheme SK, Butterfly subdivision
scheme SB and our 3-directional subdivision scheme SP lead to appropriate grid transfer
operators. Indeed, SK, SB, SP subdivision schemes generate polynomials up to degree 3.
Moreover, they are interpolatory subdivision schemes and, thus, by [12, Proposition 1.3], their
basic limit functions are ℓ∞-stable. We proved the following proposition.

Proposition 5.7. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, 0 ≤ q ≤ 4.

The grid transfer operators derived from the symbols K in (5.7), B in (5.9) and P in (5.11) satisfy

the approximation property (3.10).

5.3.3 SYMMETRIC TERNARY 2-DIRECTIONAL BOX SPLINES

In this subsection, we present the symmetric ternary 2-directional box splines.

Definition 5.4. Let J ∈N. The ternary 2-directional symmetric box spline subdivision scheme

SP̃J
of order J with dilation M =

(
3 0
0 3

)

is defined by its symbol

P̃ J (z) = 9

(
(1+ z1 + z2

1)2(1+ z2 + z2
2)2

81z2
1 z2

2

)J

, z = (z1, z2) ∈ (C\ {0})2.

Let J ∈ N. Similarly to the binary case, the symbol P̃ J in Definition 5.4 is defined as the
tensor product of the symbol p̃2J−1,1 of the univariate ternary B-spline subdivision scheme of
order 2J −1 in Definition 5.2 with itself. We set

z = e−ix =
(

e−ix1 ,e−ix2

)

, x = (x1, x2) ∈R2.

Then, the symbols P̃ J become trigonometric polynomials

P̃ J (x) = 9

(
(1+2cos x1)(1+2cos x2)

9

)2J

, x = (x1, x2) ∈ [0,2π)2,

that are used to define the grid transfer operators in (3.16). For readers convenience, we also
present the corresponding masks. For J = 1,2, they are given by

P̃1 =
1

9










1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1










,
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P̃2 =
1

729


















1 4 10 16 19 16 10 4 1
4 16 40 64 76 64 40 16 4

10 40 100 160 190 160 100 40 10
16 64 160 256 304 256 160 64 16
19 76 190 304 361 304 190 76 19
16 64 160 256 304 256 160 64 16
10 40 100 160 190 160 100 40 10
4 16 40 64 76 64 40 16 4
1 4 10 16 19 16 10 4 1


















.

We use Theorem 4.7 to show that ternary 2-directional symmetric box splines lead to
appropriate grid transfer operators. Let J ∈ N. The ternary 2-directional symmetric box
spline subdivision scheme SP̃J

in Definition 5.4 generates polynomials up to degree 2J −1,

see Theorem 4.2, and its symbol satisfies by definition P̃ (1) = 9. Thus, SBJ satisfies the zero
conditions of order 2J and condition (i) of Theorem 4.7 is satisfied. Moreover,

P̃ j

(

e−ix
)

= 9

(
(1+2cos x1)(1+2cos x2)

9

)2J

≥ 9
(4

9

)2J
> 0, ∀x = (x1, x2) ∈

[

−
π

3
,
π

3

]2
.

Thus, also condition (ii) of Theorem 4.7 is satisfied. We proved the following proposition.

Proposition 5.8. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol P̃ J , J ≥ ⌈q/2⌉, satisfies the approximation

property (3.10).

5.3.4 BIVARIATE TERNARY INTERPOLATORY SUBDIVISION SCHEMES

In this subsection, we define bivariate ternary interpolatory grid transfer operators. We present
several ternary interpolatory subdivision schemes from subdivision literature which reproduce
polynomials up to degree 3. The grid transfer operators defined from their symbols are of
practical interest for our numerical examples in section 5.4.

The first ternary interpolatory subdivision scheme we present is the ternary Kobbelt’s

subdivision scheme SK3 . The subscript 3 refers to the dilation M =
(
3 0
0 3

)

and distinguish SK3

from the “standard” Kobbelt’s subdivision scheme SK with dilation M =
(
2 0
0 2

)

defined by its

subdivision symbol in (5.7). The ternary Kobbelt’s subdivision scheme SK3 is a tensor product
scheme based on the univariate ternary 4-point interpolatory subdivision scheme with the
symbol p̃3,3 in Example 5.4. The symbol of SK3 is

K3(z) =
9

z5
1 z5

2

·
(

(1+ z1 + z2
1)(1+ z2 + z2

2)

9

)4
(4−11z1 +4z2

1)(4−11z2 +4z2
2)

9
, z = (z1, z2) ∈ (C\{0})2,

(5.13)
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and the corresponding mask is

K3 =
1

6561























16 20 0 −120 −240 −324 −240 −120 0 20 16
20 25 0 −150 −300 −405 −300 −150 0 25 20
0 0 0 0 0 0 0 0 0 0 0

−120 −150 0 900 1800 2430 1800 900 0 −150 −120
−240 −300 0 1800 3600 4860 3600 1800 0 −300 −240
−324 −405 0 2430 4860 6561 4860 2430 0 −405 −324
−240 −300 0 1800 3600 4860 3600 1800 0 −300 −240
−120 −150 0 900 1800 2430 1800 900 0 −150 −120

0 0 0 0 0 0 0 0 0 0 0
20 25 0 −150 −300 −405 −300 −150 0 25 20
16 20 0 −120 −240 −324 −240 −120 0 20 16























. (5.14)

The second SH3 and the third SH4 ternary interpolatory subdivision schemes we present
are taken from [49]. The subscript j = 3,4 in SH j

refers to the topology of the bivariate mesh
underlying the subdivision scheme. More precisely, the interpolatory subdivision scheme SH j

is defined over a bivariate j -directional mesh, j = 3,4. The symbols of SH3 and SH4 are

H j (z) =
9

z5
1 z5

2

·
(1+ z1 + z2

1)(1+ z2 + z2
2)

9
·b j (z), j = 3, 4, z = (z1, z2) ∈ (C\ {0})2, (5.15)

where

b3(z) =
1

81

(

(−2z7
2 −2z6

2 )z8
1 + (−2z8

2 +3z7
2 − z6

2 + z5
2 −2z4

2 )z7
1+

(−2z8
2 − z7

2 +7z6
2 +3z5

2 +2z4
2 −4z3

2 )z6
1 + ( z7

2 +3z6
2 +10z5

2 +9z4
2 +7z3

2 −4z2
2 )z5

1+
(−2z7

2 +2z6
2 +9z5

2 +11z4
2 +9z3

2 +2z2
2 −2z2 )z4

1+
(−4z6

2 +7z5
2 +9z4

2 +10z3
2 +3z2

2 + z2 )z3
1 + (−4z5

2 +2z4
2 +3z3

2 +7z2
2 − z2 −2)z2

1+
(−2z4

2 + z3
2 − z2

2 +3z2 −2)z1 + (−2z2
2 −2z2)

)

, b(1,1) = 1,

and

b4(z) =
1

81

(

(−z5
2 −2z4

2 − z3
2 )z8

1 + (−z5
2 + z4

2 − z3
2 )z7

1+

(2z5
2 + z4

2 +2z3
2 )z6

1 + (−z8
2 − z7

2 +2z6
2 +7z5

2 +12z4
2 +7z3

2 +2z2
2 − z2 −1)z5

1+
(−2z8

2 + z7
2 + z6

2 +12z5
2 +5z4

2 +12z3
2 + z2

2 + z2 −2)z4
1+

(−z8
2 − z7

2 +2z6
2 +7z5

2 +12z4
2 +7z3

2 +2z2
2 − z2 −1)z3

1 + (2z5
2 + z4

2 +2z3
2 )z2

1+
(−z5

2 + z4
2 − z3

2 )z1 + (−z5
2 −2z4

2 − z3
2 )

)

, b(1,1) = 1.
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The corresponding masks are

H3 =
1

81























0 −2 −4 −4 −2 0 0 0 0 0 0
−2 −1 −4 −1 −4 −1 −2 0 0 0 0
−4 −4 0 8 8 0 −4 −4 0 0 0
−4 −1 8 26 32 26 8 −1 −4 0 0
−2 −4 8 32 56 56 32 8 −4 −2 0
0 −1 0 26 56 81 56 26 0 −1 0
0 −2 −4 8 32 56 56 32 8 −4 −2
0 0 −4 −1 8 26 32 26 8 −1 −4
0 0 0 −4 −4 0 8 8 0 −4 −4
0 0 0 0 −2 −1 −4 −1 −4 −1 −2
0 0 0 0 0 0 −2 −4 −4 −2 0























, (5.16)

and

H4 =
1

81























0 0 0 −1 −3 −4 −3 −1 0 0 0
0 0 0 −2 −3 −5 −3 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 9 24 30 24 9 0 −2 −1
−3 −3 0 24 42 60 42 24 0 −3 −3
−4 −5 0 30 60 81 60 30 0 −5 −4
−3 −3 0 24 42 60 42 24 0 −3 −3
−1 −2 0 9 24 30 24 9 0 −2 −1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 −3 −5 −3 −2 0 0 0
0 0 0 −1 −3 −4 −3 −1 0 0 0























. (5.17)

We use Theorem 4.5 to show that the subdivision symbols of SK3 , SH3 and SH4 lead to
appropriate grid transfer operators. Indeed, SK3 , SH3 and SH4 subdivision schemes generate
polynomials up to degree 3. Moreover, they are interpolatory subdivision schemes and, thus,
by [12, Proposition 1.3], their basic limit functions are ℓ∞-stable. We proved the following
proposition.

Proposition 5.9. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, 0 ≤ q ≤ 4.

The grid transfer operators derived from the symbols K3 in (5.13) and H j , j = 3,4, in (5.15)
satisfy the approximation property (3.10).

5.4 BIVARIATE NUMERICAL EXAMPLES

In this section, we illustrate the bivariate theoretical results of Propositions 5.6, 5.7, 5.8 and 5.9
with several numerical examples.
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In subsection 5.4.1, we use a finite difference discretization of the biharmonic elliptic PDE
problem with homogeneous Dirichlet boundary conditions. The system matrix An is positive
definite with a bi-level Toeplitz structure. According to [3, 5], similarly to section 5.2, we have
to change the definition of the grid transfer operators in (3.16). Let k = (k1,k2) ∈N2 and ℓ ∈N

such that ℓ≤ min{k1,k2 }−1. Define

n j =
(

m
k1− j
1 −1,m

k2− j
2 −1

)

, N j = N (n j ) = (n j )1(n j )2, j = 0, . . . ,ℓ, (5.18)

and
Pn j

(p) = Tn j
(p) Z

T

n j ,m ∈CN j×N j+1 , j = 0, . . . ,ℓ−1, (5.19)

where Tn j
(p) ∈ CN j×N j is the bi-level Toeplitz matrix of order n j generated by the bivariate

trigonometric polynomial p (see chapter 2, subsection 2.3.4) and

Z n j ,m = Z (n j )1,m1 ⊗Z (n j )2,m2 ∈CN j+1×N j ,

is the bi-level downsampling matrix with the factor m with Z (n j )i ,mi
∈ C(n j+1)i×(n j )i in (5.4),

i = 1,2.
On the other hand, in practical applications, the variable coefficient case is often of inter-

est and the algebraic Galerkin approach could be computationally expensive. Therefore, in
subsection 5.4.2, we present an example of the geometric approach for the bivariate Laplacian
problem with variable coefficients and homogeneous Dirichlet boundary conditions. The sys-
tem matrix An is derived via finite difference discretization of order 2 and minimal bandwidth.
Thus, it is symmetric block tridiagonal with symmetric tridiagonal blocks and positive definite,
but we lose the bi-level Toeplitz structure. Nevertheless, for j = 0, . . . ,ℓ−1, the properties of
An allow us to define the dimension n j and the grid transfer operator Pn j

at level j as in (5.18)
and (5.19), respectively.

Finally, in subsection 5.4.3, we present another example of the geometric approach for
the bivariate anisotropic Laplacian problem with anisotropy along one of the coordinate axis
and homogeneous Dirichlet boundary conditions. The system matrix An is derived via finite
difference discretization of order 2 and minimal bandwidth, thus it is positive definite with a
bi-level Toeplitz structure. For j = 0, . . . ,ℓ−1, we define the dimension n j and the grid transfer
operator Pn j

at level j as in (5.18) and (5.19), respectively. We use the geometric approach
shortly described at the beginning of subsection 5.4.2.

In all examples, we use binary m = (2,2) and ternary m = (3,3) coarsening, thus

n j = (mk− j −1,mk− j −1), m = 2, 3 N j = N (n j ) =
(

mk− j −1
)2

, j = 0, . . . ,ℓ.

For n = (mk −1,mk −1) = (n,n), to define bn, we choose the exact solution X ∈Cn×n as

X =










x(1,1) · · · x(1,n)

...
. . .

...

x(n,1) · · · x(n,n)










∈Cn×n ,
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x(α,β) = sin

(

5
π(α−1)

n −1

)

+ sin

(

5
π(β−1)

n −1

)

, α, β= 1, . . . ,n,

we compute

x =
(
x(1,1) · · · x(n,1) x(1,2) · · · x(n,2) · · · · · · x(1,n) · · · x(n,n)

)T ∈Cn2

and set bn := Anx ∈ Cn2
. We solve the coarse grid system exactly when the dimension of the

coarse grid is Nℓ = (23 −1)2 = 49 in the binary case and Nℓ = (33 −1)2 = 676 in the ternary
case. For the numerical examples, the zero vector is used as the initial guess and the stopping
criterion is ‖rs‖2/‖r0‖2 < 10−7, where rs is the residual vector after s iterations and 10−7 is the
given tolerance.

5.4.1 BIHARMONIC ELLIPTIC PDE

The first bivariate example we present arises from the discretization of the biharmonic elliptic
PDE problem with homogeneous Dirichlet boundary conditions, namely







∂4

∂x4
1

ψ(x)+
∂4

∂x4
2

ψ(x) = g (x), x = (x1, x2) ∈Ω= (0,1)2,

ψ(x) = 0 x ∈ ∂Ω.

For the discretization, we use finite differences of order 4. It leads to the linear systems
Anx = bn, where An = Tn( f ) is the bi-Toeplitz matrix of order n ∈N2 generated by the bivariate
trigonometric polynomial

f (x) = (2−2cos x1)2 + (2−2cos x2)2, x = (x1, x2) ∈ [0,2π)2.

Note that f has a 4-fold zero at x = 0. Thus, by Propositions 5.6, 5.7, 5.8 and 5.9 with q = 4,
the 2-directional binary and ternary symmetric box spline symbols in Definition 5.3 and 5.4,
respectively, with J ≥ 2 and the interpolatory symbols K in (5.7), B in (5.9), P in (5.11), K3 in
(5.13) and H j , j = 3,4, in (5.15) can be used to define the corresponding grid transfer operators.

Tables 5.7, 5.8 and 5.9 show how the number of iterations and convergence rates for the
two-grid and V-cycle change with increasing dimension n.

Similarly to subsection 5.2.1, Tables 5.8 and 5.9 illustrate the importance of the polynomial
generation property (zero conditions) that, by Theorems 4.5 and 4.7, ensures the correct choice
of the grid transfer operator. Indeed, the binary and ternary 2-directional symmetric box
splines with symbols P1 and P̃1, respectively, generate polynomials of degree 1. The lack of
the appropriate degree of polynomial generation leads to dramatic increase of the number
of iterations. The larger is the dimension of the system matrix, the larger is the number of
iterations needed to reach the required tolerance. The degree of polynomial generation which
ensures convergence and optimality is lower for the two-grid method than for the V-cycle,
see condition (i) of Theorem 3.7. Thus, for the two-grid method, the grid transfer operator
associated to the binary 2-directional symmetric box spline with symbol P1 performs as well as
the other grid transfer operators associated to binary subdivision schemes generating cubic
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Subdivision n = (26 −1,26 −1) n = (27 −1,27 −1) n = (28 −1,28 −1) generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

SP1 20 0.4331 19 0.4167 18 0.4076 1
SP2 13 0.2808 13 0.2782 13 0.2784 3
SK 13 0.2790 13 0.2778 13 0.2775 3
SB 16 0.3503 14 0.3077 13 0.2831 3
SP 26 0.5373 23 0.4937 20 0.4453 3

Table 5.7: Binary bivariate subdivision schemes for biharmonic problem with two-grid method.

Subdivision n = (26 −1,26 −1) n = (27 −1,27 −1) n = (28 −1,28 −1) generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

SP1 68 0.7873 117 0.8710 195 0.9205 1
SP2 18 0.4032 23 0.4910 27 0.5452 3
SK 15 0.329 15 0.3340 15 0.3402 3
SB 27 0.5427 31 0.5913 29 0.5698 3
SP 107 0.8602 135 0.8874 144 0.8939 3

Table 5.8: Binary bivariate subdivision schemes for biharmonic problem with V-cycle.

Subdivision n = (34 −1,34 −1) n = (35 −1,35 −1) n = (36 −1,36 −1) generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

SP̃1
47 0.7067 97 0.8459 221 0.9296 1

SP̃2
47 0.7058 48 0.7141 61 0.7677 3

SK3 45 0.6988 51 0.7267 52 0.7309 3
SH3 51 0.7282 70 0.7939 65 0.7791 3
SH4 45 0.6986 56 0.7496 57 0.7535 3

Table 5.9: Ternary bivariate subdivision schemes for biharmonic problem with V-cycle.

polynomials, see Table 5.7. The best performing grid transfer operators are the ones associated
to the symbols K in (5.7) and K3 in (5.13) of the binary and ternary Kobbelt’s subdivision
schemes SK and SK3 , respectively. Indeed, SK and SK3 are both interpolatory subdivision

schemes. After the smoothing steps, the error e(k)
n j

∈ CN j in the k-th iterate x(k)
n j

∈ CN j at the
j -th recursive step, k ≥ 0, j = 0, . . . ,ℓ, is smooth. Numerical evidence shows that interpolatory
grid transfer operators are more powerful than approximating grid transfer operators in the
decomposition step of a smooth error e(k)

n j
from the finer grid n j to the coarser one n j+1 and

in the reconstruction step of a smooth error e(k)
n j+1

from the coarser grid n j+1 to the finer one
n j . Tables 5.8 and 5.9 also illustrate that grid transfer operators associated to tensor product
subdivision schemes, such as the binary and ternary 2-directional symmetric box splines
SP j

and SP̃ j
, j = 1,2, and the binary and ternary Kobbelt’s subdivision schemes SK and SK3 ,

perform better than the other grid transfer operators. Indeed, tensor product subdivision
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Figure 5.4: Plot of P(e−ix)/‖P‖∞, x ∈ [0,π]2, with P in (5.11).

schemes are defined over a bivariate 2-directional mesh. The topology of a 2-directional mesh
is equivalent to the topology of the starting rectangular grid n0 on which the biharmonic
problem is discretized to obtain the starting linear system An0 x = bn0 . Finally, the grid transfer
operator associated to the symbol P in (5.11) defines an optimal V-cycle, meaning that the
number of iterations needed to reach a given accuracy is bounded from above by a constant
independent from the dimension of the starting linear system. Nevertheless, the convergence
rate is extremely high. This phenomena relates to the behavior of the trigonometric polynomial
P(e−ix), x ∈ [0,2π)2, see Figure 5.4. Indeed, P(e−ix) vanishes also on a whole curve contained
in (0,π)2. This fact leads to a further ill-conditioning of the problem on the coarser levels, as
it is evident in Figure 5.5, where we can observe the increasing of the ill-conditioning in the
high-frequencies going down on the coarser levels. We point out that, using the geometric
multigrid, the grid transfer operator associated to the subdivision scheme SP is extremely
competitive (see next subsection).

5.4.2 LAPLACIAN WITH NON-CONSTANT COEFFICIENTS

We consider the bivariate Laplacian with non-constant coefficients with homogeneous Dirich-
let boundary conditions

{

−∇
(

a∇ψ
)

(x) = g (x), x = (x1, x2) ∈Ω= (0,1)2,

ψ(x) = 0, x ∈ ∂Ω.
(5.20)

We briefly describe the 2-dimensional geometric multigrid method for the linear systems
Anx = bn, n ∈N2, derived via discretization of the problem (5.20). Let k ∈N and ℓ ∈N, 1 ≤ ℓ≤
k −1. For j = 0, . . . ,ℓ, we define

n j = (n j ,n j ) = (mk− j −1,mk− j −1), m = 2, 3, N j = N (n j ) = (mk− j −1)2,

and Ωn j
as a uniform grid on [0,1]2 of n j subintervals of size h j = 1/(n j +1) in each direction.

Then, at the j -th recursion level of the V-cycle, we compute the matrix An j
by discretizing
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(c)Coarser symbol f2 at level 2
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(d)Coarser symbol f3 at level 3

Figure 5.5: Symbols f j , j = 0, . . . ,3 defined by (3.20) using the trigonometric polynomial p(x) =
P(e−ix) with P in (5.11) in the reference interval [0,π]2.

the problem (5.20) using finite differences of order 2 on the grid Ωn j
. Thus, the matrices An j

,
j = 0, . . . ,ℓ, have dimension N j ×N j . The prolongation operators are defined as in (5.19) with
m = (2,2) in the binary case and m = (3,3) in the ternary case. The restriction operators are

1

m2
P∗

n j
, for j = 0, . . . ,ℓ−1.

By Propositions 5.6, 5.7, 5.8 and 5.9, the symbols of the bivariate subdivision schemes
introduced in section 5.3 define suitable grid transfer operators for our problem. Tables 5.10
and 5.11 show how the number of iterations and convergence rates for the V-cycle change for
different diffusion coefficients a(x1, x2), namely

a1(x1, x2) = x2
1 +ex2 ,

a2(x1, x2) = 1+ sin(3πx1) · sin(5πx2)+ε,

a3(x1, x2) = 1+ sin(7πx1)+ (x2 −0.5)4 +ε, (x1, x2) ∈ [0,1]2.
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Subdivision a1(x1, x2) a2(x1, x2) a3(x1, x2) generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

SP1 9 0.1400 10 0.1770 35 0.6295 1
SP2 13 0.2770 14 0.3159 52 0.7319 3
SK 8 0.1234 9 0.1430 29 0.5688 3
SB 8 0.1252 8 0.1244 29 0.5709 3
SP 9 0.1500 9 0.1533 29 0.5726 3

Table 5.10: Binary bivariate subdivision schemes for Laplacian with non-constant coefficients

Subdivision a1(x1, x2) a2(x1, x2) a3(x1, x2) generation
scheme iter conv. rate iter conv. rate iter conv. rate degree

SP̃1
16 0.3649 16 0.3611 29 0.4421 1

SP̃2
19 0.4130 18 0.4073 25 0.5120 3

SK3 17 0.3753 17 0.3718 19 0.4191 3
SH3 17 0.3759 17 0.3721 19 0.4193 3
SH4 17 0.3752 17 0.3718 19 0.4191 3

Table 5.11: Ternary bivariate subdivision schemes for Laplacian with non-constant coefficients

Parameter ε ∈ (0,1) guarantees the strict positivity of all these functions. In the numerical
examples, ε= 10−5. The starting grid is fixed to be n0 = (27 −1,27 −1) in the binary case and
n0 = (35 −1,35 −1) in the ternary case.

The results of Tables 5.10 and 5.11 also illustrate the influence of the functions a j , j = 1,2,3,
on the behavior of multigrid. In both binary and ternary case, when a(x1, x2) = a3(x1, x2),
(x1, x2) ∈ [0,1]2, the best performing grid transfer operators are the ones associated with the
interpolatory subdivision schemes, namely binary Kobbelt’s subdivision scheme SK, Butter-
fly subdivision scheme SB and our new subdivision scheme SP (binary case), and ternary
Kobbelt’s subdivision scheme SK3 and SH j

, j = 3,4, subdivision schemes (ternary case). In the
binary case, the advantage of using our new scheme is the computational efficiency of the
corresponding grid transfer operations. Indeed, due to the geometric approach, the matrices
An j

, j = 0, . . . ,ℓ, are independent of the grid transfer operators and the computational cost of
the restriction and prolongation depends only on the number of nonzero entries of the corre-
sponding operators. Therefore, since the mask P in (5.12) has 19 nonzero entries while the
masks K in (5.8) and B in (5.10) have 25 nonzero entries, each iteration of the V-cycle method
with the grid transfer operator associated to our new subdivision scheme SP is cheaper than
one V-cycle iteration with the grid transfer operators associated to Kobbelt’s and Butterfly
subdivision schemes. Similarly, in the ternary case, the mask K3 in (5.14) has 81 nonzero
entries, the mask H3 in (5.16) has 79 nonzero entries and the mask H4 in (5.17) has 65 nonzero
entries. Thus, each iteration of the V-cycle method with the grid transfer operator associated
to the subdivision scheme SH4 is cheaper than one V-cycle iteration with the grid transfer oper-
ators associated to the ternary Kobbelt’s SK3 and SH3 subdivision schemes. Finally, similarly
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5.4. Bivariate numerical examples

to the univariate case, the grid transfer operators associated to ternary subdivision schemes
are robuster than the grid transfer operators associated to binary subdivision schemes when
the function of the diffusion coefficients is highly oscillating (see the column for the function
a3(x1, x2) in Tables 5.10 and 5.11).

5.4.3 ANISOTROPIC LAPLACIAN

The last example we present arises from the discretization of the bivariate anisotropic Laplacian
problem with Dirichlet boundary conditions, namely







−ε
∂2

∂x2
1

ψ(x)−
∂2

∂x2
2

ψ(x) = g (x), x = (x1, x2) ∈Ω= (0,1)2,

ψ(x) = 0 x ∈ ∂Ω.

(5.21)

The parameter ε ∈ (0,1] in (5.21) is called anisotropy. If ε = 1, we get the bivariate isotropic
Laplacian problem. If ε << 1, the problem becomes strongly anisotropic. We focus our
attention on the latter case [71].

We use the geometric approach and the corresponding notation shortly introduced at the
beginning of subsection 5.4.2. Using finite difference discretization of order 2 and minimal
bandwidth, for j = 0, . . . ,ℓ, the system matrices An j

= Tn j
( f (ε)

j
) ∈CN j×N j are the bi-level Toeplitz

matrices of order n j generated by the bivariate trigonometric polynomials

f (ε)
j

(x) =
1

h2
j

(

ε(2−2cos x1)+ (2−2cos x2)
)

, x = (x1, x2) ∈ [0,2π)2. (5.22)

We use as pre- and post-smoother one step of Gauss-Seidel method for j = 1, . . . ,ℓ, and 2 steps
of Gauss-Seidel method for j = 0. In this example, we increase the tolerance in the stopping
criterion from 10−7 to 10−5.

Tables 5.12 and 5.13 show how the number of iterations and convergence rates for the
V-cycle change when the starting grid n0 becomes finer and the anisotropy ε in (5.21) decreases.
The number of iterations needed to reach the exact solution is large for ε= 10−2 and drastically
increases when the anisotropy decreases to 10−3. Indeed, if ε<< 1, the symbol f (ε)

j
in (5.22)

is numerically close to 0 on the entire line x2 = 0, for all j = 0, . . . ,ℓ (see Figure 5.6). Due to
this pathology, when the anisotropy ε goes to 0, the number of iterations necessary for the
convergence of the V-cycle method rises because the symbol vanishes on a whole curve and
hence conditions (i) and (ii) of Theorem 3.8 cannot be satisfied together [44].

In [44], in order to handle the anisotropy along the x1-axis, the authors propose to use semi-
coarsening in the direction perpendicular to the anisotropy, i.e. in the x2-axis direction. We
propose to use a multigrid method based on anisotropic subdivision schemes with dilation M =
(
2 0
0 m

)

, m ∈N, m ≥ 3 odd. In this case, the difference between the two coordinate directions is

encoded in the dilation matrices M . Indeed, the coarsening strategy of such multigrid method
cuts more in the x2-axis direction than in the x1-axis direction. Thus, it fights the anisotropy of
the problem with the anisotropy of the dilation, or - equivalently - with the anisotropy of the
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Anisotropy
Subdivision n0 = (27 −1,27 −1) n0 = (28 −1,28 −1) generation

scheme iter conv. rate iter conv. rate degree

ε= 10−2

SP1 75 0.8571 80 0.8658 1
SP2 82 0.8686 86 0.8744 3
SK 61 0.8273 76 0.8585 3
SB 62 0.8301 76 0.8586 3
SP 62 0.8300 76 0.8586 3

ε= 10−3

SP2 294 0.9616 284 0.9603 1
SP4 295 0.9617 281 0.9599 3
SK 253 0.9555 251 0.9551 3
SB 253 0.9555 251 0.9552 3
SP 253 0.9555 251 0.9552 3

Table 5.12: Binary bivariate subdivision schemes for the anisotropic Laplacian problem with

ε= 10−2, 10−3.

Anisotropy
Subdivision n0 = (34 −1,34 −1) n0 = (35 −1,35 −1) generation

scheme iter conv. rate iter conv. rate degree

ε= 10−2

SP̃1
105 0.8958 119 0.9077 1

SP̃2
101 0.8922 120 0.9083 3

SK3 98 0.8888 116 0.9053 3
SH3 98 0.8888 116 0.9053 3
SH4 98 0.8888 116 0.9053 3

ε= 10−3

SP̃1
343 0.9670 404 0.9719 1

SP̃2
332 0.9659 393 0.9711 3

SK3 312 0.9638 318 0.9644 3
SH3 312 0.9638 319 0.9645 3
SH4 312 0.9638 318 0.9644 3

Table 5.13: Ternary bivariate subdivision schemes for the anisotropic Laplacian problem with

ε= 10−2, 10−3.

84



5.4. Bivariate numerical examples
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(a)Isotropic Laplacian: ε= 1
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(b)Strongly anisotropic Laplacian: ε= 10−2

Figure 5.6: Plot of f (ε)
0 /‖ f (ε)

0 ‖∞ on the reference interval [0,π]2 for different values of ε ∈ (0,1].

cutting strategy. To the best of our knowledge, in subdivision literature, families of subdivision

schemes with dilation M =
(
2 0
0 m

)

, m ∈N, characterized by certain regularity properties have

not been defined yet. In the next chapter, we define two families of subdivision schemes
with such dilation matrix M . First, we study their regularity and generation properties. Then,
we construct anisotropic grid transfer operators from their symbols capable of defining a
convergent V-cycle method for isotropic and anisotropic Laplacian problems.
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6
Anisotropic stationary subdivision schemes and grid

transfer operators

In this chapter, motivated by the numerical experiments of chapter 5, subsection 5.4.3, we
explore the realm of bivariate anisotropic subdivision schemes with dilation

M =
(
2 0
0 m

)

, m ∈N, gcd (2,m) = 1. (6.1)

We propose two types of families of anisotropic subdivision schemes: approximating and
interpolating (see sections 6.1 and 6.2, respectively). Our results and numerical experiments
show that both families lead to efficient grid transfer operators. Nevertheless, the computa-
tional cost of the multigrid based on interpolatory grid transfer operators is minimal due to the
fewer non-zero coefficients in the corresponding subdivision rules. Indeed, our interpolatory
subdivision schemes are constructed to be optimal in terms of the size of the support versus

their polynomial generation properties. Similar constructions in the case of M =
(
2 0
0 2

)

are

done in [50], but they are not applicable for anisotropic multigrid. Cotronei et al. in [22]
and Sauer in [66] propose a general strategy to compute d-variate interpolatory subdivision
symbols with dilation M ∈ Zd×d based on the Smith factorization of M . In case of diagonal
dilation M in (6.1), this strategy defines the symbols of interpolatory bivariate subdivision
schemes as the tensor product of univariate subdivision symbols with dilation 2 and m. The
corresponding masks have more non-zero coefficients as the ones we propose and, thus, the
computational cost of the associated multigrid is higher. To study the dependence of the effi-
ciency of multigrid on the reproduction/generation properties of subdivision, we also define a
family of approximating schemes. Our construction resembles the one given in [21] for the

family of bi-variate pseudo-splines with dilation M =
(
2 0
0 2

)

. Our goal, for compatibility of

87



Chapter 6. Anisotropic stationary subdivision schemes and grid transfer operators

our numerical experiments with approximating and interpolating grid transfer operators, is
to define approximating schemes that have the same support as the interpolating ones and
matching polynomial generation properties. We do not claim to have constructed a new family
of anisotropic pseudo-splines.

6.1 ANISOTROPIC INTERPOLATORY SUBDIVISION

In subsection 6.1.1, we start by introducing the family of univariate interpolatory Dubuc-
Deslauriers subdivision schemes. These will be a basis for our bivariate construction in subsec-
tion 6.1.2.

6.1.1 UNIVARIATE CASE

In [29], Deslauriers and Dubuc proposed a general method for constructing symmetric in-
terpolatory subdivision schemes of dilations m ∈N, m ≥ 2. The smoothness analysis of their
schemes was conducted by Eirola et al. in [41]. Recently, Diaz Fuentes proposed in his master
thesis [30] a closed formula for computing the mask of the interpolatory Dubuc-Deslauriers
subdivision schemes for any dilation m ∈N, m ≥ 2.

Definition 6.1. Let m ∈ N, m ≥ 2, and J ∈ N. The univariate (2J)-point Dubuc-Deslauriers
interpolatory subdivision scheme Sam,J of dilation m is defined by its symbol

am,J (z) = 1+
m−1∑

ε=1

J∑

β=−J+1

(−1)β+J

(2J −1)!(ε/m −β)

(

2J −1

J −β

)(

−J +1−
ε

m

)

2J

z−mβ+ε, z ∈C\ {0} ,

where for any x ∈R, (x)ℓ is the Pochhammer symbol defined by

(x)0 := 1, and (x)ℓ := x (x +1) · · · (x +ℓ−1), ℓ ∈N.

For reader’s convenience (as [30] is in Spanish), we recall the main ideas in [29] behind the
construction of symmetric interpolatory subdivision schemes and repeat a few computations
from [30] conducted in order to obtain the symbols am,J in Definition 6.1. Without loss of
generality, we focus on the case m = 2ℓ+1, ℓ ∈N. The latter choice plays a role only in the
definition of the range of ε in (6.2). Indeed, if m = 2ℓ, ℓ ∈N, the range of ε is slightly different.
Nevertheless, a change of variable at the end of computation leads to the same formula in
Definition 6.1 for even and odd dilation m.

Let c = {c(γ) ∈R : γ ∈Z } ∈ ℓ(Z) and fix an integer α ∈Z. Let

cα = {c(γ) : α− J +1 ≤ γ≤α+ J } ∈ ℓ0(Z)
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be 2J consecutive elements of c centered in c(α). There exists a unique polynomial π ∈Π2J−1

of degree 2J −1 which interpolates cα at the integers {α− J +1, . . . ,α+ J }, namely

π(t ) =
α+J∑

β=α−J+1

cα(β)L(α−J+1,2J−1)
β

(t ) =
J∑

β=−J+1

cα(β+α)L(α−J+1,2J−1)
β+α (t ),

L
(α−J+1,2J−1)
β

(t ) =
α+J∏

γ=α−J+1
γ6=β

t −γ

β−γ
, t ∈R.

For β ∈ {α− J +1, . . . ,α+ J }, L(α−J+1,2J−1)
β

is the Lagrange polynomial of degree 2J −1, centered

in β, defined on the 2J nodes {α− J +1, . . . ,α+ J }, and satisfies

L
(α−J+1,2J−1)
β

(ε) = δβ,ε, ε ∈ {α− J +1, . . . ,α+ J } .

In order to define the subdivision operator Sam,J , we define its action on the finite sequence cα

by

(Sam,J cα)(mα+ε) :=π

(

α+
ε

m

)

=
J∑

β=−J+1

L
(α−J+1,2J−1)
β+α

(

α+
ε

m

)

cα(β+α) (by definition of π)

=
α+J∑

β=α−J+1

am,J
(

m(α−β)+ε
)

cα(β) (by definition of subdivision operator)

=
J∑

β=−J+1

am,J
(

−mβ+ε
)

cα(β+α), ε=−
m −1

2
, . . . ,

m −1

2
.

(6.2)
For ε= 0 in (6.2), (Sam,J cα)(mα) =π(α) = cα(α), thus am,J (mβ) = δβ,0.

For ε 6= 0 in (6.2), using simple properties of L(α−J+1,2J−1)
β

we get

am,J
(

−mβ+ε
)

=L
(α−J+1,2J−1)
β+α

(

α+
ε

m

)

,

=L
(−J+1,2J−1)
β

(
ε

m

)

,

=
(−1)β+J

(2J −1)!(ε/m −β)

(

2J −1

J −β

)(

−J +1−
ε

m

)

2J

.

Definition (6.1) follows from property

am,J (z) =
∑

α∈Z
am,J (α)zα =

m−1∑

ε=0

J∑

β=−J+1

am,J (−mβ+ε)z−mβ+ε, z ∈C\ {0} .

By construction, for any m ∈N, m ≥ 2, and J ∈N, the univariate (2J )-point Dubuc-Deslauriers
interpolatory subdivision schemes of dilation m generate and reproduce polynomials up to
degree 2J −1. We recall that Sam,J is the unique univariate subdivision scheme of dilation m

such that

89



Chapter 6. Anisotropic stationary subdivision schemes and grid transfer operators

⋆ it is interpolatory,

⋆ it generates polynomials up to degree 2J −1,

⋆ its mask am,J is symmetric and has support {1−m J , . . . ,m J −1}.

Example 6.1. Let m = 2 and J = 1,2,3. The masks a2,1, a2,2, a2,3 of the binary 2-, 4- and 6-point
Dubuc-Deslauriers interpolatory subdivision schemes are defined by

a2,1 =
{1

2 1 1
2

}

,

a2,2 =
{
− 1

16 0 9
16 1 9

16 0 − 1
16

}

,

a2,3 =
{ 3

256 0 − 25
256 0 75

128 1 75
128 0 − 25

256 0 3
256

}

.

�

Example 6.2. Let m = 3 and J = 1,2,3. The masks a3,1, a3,2, a3,3 of the ternary 2-, 4- and 6-point
Dubuc-Deslauriers interpolatory subdivision schemes are defined by

a3,1 =
{1

3
2
3 1 2

3
1
3

}

,

a3,2 =
{
− 4

81 − 5
81 0 10

27
20
27 1 20

27
10
27 0 − 5

81 − 4
81

}

,

a3,3 =
{ 7

729
8

729 0 − 56
729 − 70

729 0 280
729

560
729 1 560

729
280
729 0 − 70

729 − 56
729 0 8

729
7

729

}

.

�

6.1.2 BIVARIATE CASE

From the family of univariate interpolatory Dubuc-Deslauriers subdivision schemes we build
a family of bivariate interpolatory subdivision schemes with dilation matrix M in (6.1) using
the approach from [21].

Definition 6.2. Let J ∈N. The anisotropic interpolatory subdvision scheme SaM ,J of order J and
dilation matrix M in (6.1) is defined by its symbol

aM ,J (z) :=
J−1∑

k=0

a2,J−k (z1) am,k+1(z2)−
J−2∑

k=0

a2,J−k−1(z1) am,k+1(z2), z = (z1, z2) ∈ (C\ {0})2,

where a2,k , am,k are the symbols of the univariate (2k)-point Dubuc-Deslauriers interpolatory
subdivision schemes in Definition 6.1 of dilation 2 and m, respectively.

Definition 6.2 is justified by the following result.

Proposition 6.1. Let J ∈N and M in (6.1). The anisotropic subdvision scheme SaM ,J in Definition

6.2 is interpolatory.

Proof. Let J ∈N. By Theorem 4.1, in order to prove Proposition 6.1, we need to show that

s J (z) :=
m−1∑

j=0

aM ,J (z1, ξ j z2)+
m−1∑

j=0

aM ,J (−z1, ξ j z2) = |det M | = 2m, z = (z1, z2) ∈ (C\ {0})2,
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for ξ j = e−
2πi
m j , j = 0, . . . ,m −1. Since Sa2,J and Sam,J are univariate interpolatory subdivision

schemes of dilation 2 and m respectively, Theorem 4.1 guarantees that their symbols satisfy

a2,J (z1)+a2,J (−z1) = 2 and
m−1∑

j=0

am,J (ξ j z2) = m.

By Definition 6.2, we have

s J (z) =
J−1∑

k=0

a2,J−k (z1)
m−1∑

j=0

am,k+1(ξ j z2)−
J−2∑

k=0

a2,J−k−1(z1)
m−1∑

j=0

am,k+1(ξ j z2)

+
J−1∑

k=0

a2,J−k (−z1)
m−1∑

j=0

am,k+1(ξ j z2)−
J−2∑

k=0

a2,J−k−1(−z1)
m−1∑

j=0

am,k+1(ξ j z2)

=m
J−1∑

k=0

(a2,J−k (z1)+a2,J−k (−z1))−m
J−2∑

k=0

(a2,J−k−1(z1)+a2,J−k−1(−z1))

=2m J −2m(J −1) = 2m.

�

Further properties of the interpolatory subdivision schemes SaM ,J in Definition 6.2 are
analyzed in subsections 6.1.3 (reproduction), 6.1.4 (minimality of the support) and 6.1.5 (con-
vergence).

6.1.3 REPRODUCTION PROPERTY OF SaM ,J

In this section, we show that the anisotropic interpolatory subdivision schemes SaM ,J in Defini-
tion 6.2 reproduce polynomials up to degree 2J −1.

Proposition 6.2. Let J ∈N and M in (6.1). The anisotropic interpolatory subdivision scheme

SaM ,J in Definition 6.2 reproduces polynomials up to degree 2J −1.

Proof. By (4.24), in order to prove Proposition 6.2, we need to show that the symbol aM ,J

can be decomposed as

aM ,J (z) = 2m +
H∑

h=0

(1− z1)αh (1− z2)βh cM ,J ,h(z), z = (z1, z2) ∈ (C\ {0})2,

αh , βh ∈N0, αh +βh ≥ 2J , h = 0, . . . , H ,

(6.3)

for some H ∈N and some suitable Laurent polynomials cM ,J ,h , h = 0, . . . , H . We require that
at least one pair αh , βh ∈ N0 satisfies αh +βh = 2J , otherwise the subdivision scheme SaM ,J

reproduces polynomials of degree strictly higher than 2J − 1. We recall that for any k ∈ N,
the univariate (2k)-point Dubuc-Deslauriers interpolatory subdivision schemes Sa2,k , Sam,k in
Definition 6.1 with dilation 2 and m, respectively, both reproduce polynomials up to degree
2k −1. Thus, from (4.23), their symbols a2,k , am,k can be written as

a2,k (z) = 2+ (1− z)2k b2,k (z),

am,k (z) = m + (1− z)2k bm,k (z), z ∈C\ {0} ,
(6.4)
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for suitable Laurent polynomials b2,k , bm,k . By Definition 6.2, using factorization (6.4), there
exist Laurent polynomials b2,J−k , bm,k+1, k = 0, . . . , J −1, such that

aM ,J (z) =
J−1∑

k=0

a2,J−k (z1) am,k+1(z2)−
J−2∑

k=0

a2,J−k−1(z1) am,k+1(z2)

=
J−1∑

k=0

(

2+ (1− z1)2(J−k) b2,J−k (z1)
)(

m + (1− z2)2(k+1) bm,k+1(z2)
)

−
J−2∑

k=0

(

2+ (1− z1)2(J−k−1) b2,J−k−1(z1)
)(

m + (1− z2)2(k+1) bm,k+1(z2)
)

.

Rearranging the terms in the above expression, we obtain

aM ,J (z) =2m J +m
J−1∑

k=0

(1− z1)2(J−k) b2,J−k (z1)+2
J−1∑

k=0

(1− z2)2(k+1) bm,k+1(z2)

+
J−1∑

k=0

(1− z1)2(J−k)(1− z2)2(k+1) b2,J−k (z1)bm,k+1(z2)

−2m(J −1)−m
J−2∑

k=0

(1− z1)2(J−k−1) b2,J−k−1(z1)−2
J−2∑

k=0

(1− z2)2(k+1) bm,k+1(z2)

−
J−2∑

k=0

(1− z1)2(J−k−1)(1− z2)2(k+1) b2,J−k−1(z1)bm,k+1(z2)

=2m +m(1− z1)2J b2,J (z1)+2(1− z2)2J bm,J (z2)

+
J−1∑

k=0

(1− z1)2(J−k)(1− z2)2(k+1) b2,J−k (z1)bm,k+1(z2)

−
J−2∑

k=0

(1− z1)2(J−k−1)(1− z2)2(k+1) b2,J−k−1(z1)bm,k+1(z2)

=2m +
2J∑

h=0

(1− z1)αh (1− z2)βh cM ,J ,h(z)

where

αh =







2J h = 0,

0 h = 1,

2(J −h +2) h ∈ {2, . . . , J +1} ,

2(2J −h +1) h ∈ { J +2, . . . ,2J } ,

βh =







0 h = 0,

2J h = 1,

2(h −1) h ∈ {2, . . . , J +1} ,

2(h − J −1) h ∈ { J +2, . . . ,2J } ,

and

cM ,J ,h(z) =







m b2,J (z1) h = 0,

2bm,J (z2) h = 1,

b2,J−h+2(z1)bm,h−1(z2) h ∈ {2, . . . , J +1} ,

−b2,2J−h+1(z1)bm,h−J−1(z2) h ∈ { J +2, . . . ,2J } .
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Note that

αh +βh =
{

2J h ∈ {0,1, J +2, . . . ,2J } ,

2J +2 h ∈ {2, . . . , J +1} .

Thus, the claim follows. �

By Theorem 4.3, an equivalent way to check the reproduction property of the anisotropic
interpolatory subdivision scheme SaM ,J in Definition 6.2, J ∈N, is to compute the µ-th deriva-
tives of the subdivision symbol aM ,J with µ ∈N2

0, 1 ≤ |µ| ≤ 2J −1, and to verify that they vanish
at 1, namely

DµaM ,J (1) = 0, µ ∈N2
0, 1 ≤ |µ| ≤ 2J −1.

Let us illustrate this fact on an example with J = 3. The subdivision symbol aM ,3 of the
anisotropic interpolatory subdivision scheme SaM ,3 in Definition 6.2 is

aM ,3(z) =
2∑

k=0

a2,3−k (z1) am,k+1(z2)−
1∑

k=0

a2,3−k−1(z1) am,k+1(z2)

= a2,3(z1)am,1(z2)+a2,2(z1)am,2(z2)+a2,1(z1)am,3(z2)

−a2,2(z1)am,1(z2)−a2,1(z1)am,2(z2), z = (z1, z2) ∈ (C\ {0})2,

where a2,k , am,k are the symbols of the univariate (2k)-point Dubuc-Deslauriers interpolatory
subdivision schemes Sa2,k , Sam,k in Definition 6.1 with dilation 2 and m, respectively. In order
to show that the anisotropic interpolatory subdivision scheme SaM ,3 reproduces polynomials
up to degree 2J −1 = 5, we need to show that

DµaM ,3(1) = 0, µ ∈N2
0, 1 ≤ |µ| ≤ 5.

Let µ= (µ1,µ2) ∈N2
0 such that 1 ≤ |µ| ≤ 5. Then, we have

DµaM ,3(1) =
2∑

k=0

dµ1

d z
µ1

1

a2,3−k (1)
dµ2

d z
µ2

2

am,k+1(1)−
1∑

k=0

dµ1

d z
µ1

1

a2,3−k−1(1)
dµ2

d z
µ2

2

am,k+1(1)

=
dµ1

d z
µ1

1

a2,3(1)
dµ2

d z
µ2

2

am,1(1)+
dµ1

d z
µ1

1

a2,2(1)
dµ2

d z
µ2

2

am,2(1)+
dµ1

d z
µ1

1

a2,1(1)
dµ2

d z
µ2

2

am,3(1)

−
dµ1

d z
µ1

1

a2,2(1)
dµ2

d z
µ2

2

am,1(1)−
dµ1

d z
µ1

1

a2,1(1)
dµ2

d z
µ2

1

am,2(1).

If µi 6= 0, i = 1,2, due to the reproduction properties of the univariate (2k)-point Dubuc-
Deslauriers interpolatory subdivision schemes Sa2,k , Sam,k , k = 1,2,3, we have

dµ1

d z
µ1

1

a2,3−k (1)
dµ2

d z
µ2

2

am,k+1(1) = 0, k = 0,1,2

dµ1

d z
µ1

1

a2,3−k−1(1)
dµ2

d z
µ2

2

am,k+1(1) = 0, k = 0,1.
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If µ1 = 0 and µ2 ∈ {1, . . . ,5}, we get

DµaM ,3(1) = 2
2∑

k=0

dµ2

d z
µ2

2

am,k+1(1)−2
1∑

k=0

dµ2

d z
µ2

2

am,k+1(1)

= 2
dµ2

d z
µ2

2

am,3(1)

= 0,

(6.5)

where the last equality holds true due to the fact the 6-point Dubuc-Deslauriers interpola-
tory subdivision schemes Sam,3 reproduces polynomials up to degree 5. Similarly for µ2 = 0
and µ1 ∈ {1, . . . ,5}. Thus, the anisotropic interpolatory subdivision scheme SaM ,3 reproduces
polynomials up to degree 5.

Therefore, the combination of the univariate Dubuc-Deslauriers interpolatory schemes in
Definition 6.2 is chosen in a special way to guarantee the identity (6.5). This special structure
is also reflected in (6.3).

6.1.4 MINIMALITY PROPERTY OF SaM ,J

In [50], Ron and Jia constructed a family of interpolatory subdivision schemes with dilation

matrix M =
(
2 0
0 2

)

and minimal support. The first aim of this subsection (see Proposition

6.3) is to generalize the result of Ron and Jia to our setting with dilation matrix M in (6.1).
Then, in Theorem 6.4, using Proposition 6.3, we show that Definition 6.2 provides a closed
formula for the symbols of the minimally supported interpolatory subdivision schemes. Note
that the existence of such interpolatory schemes follows from the unique solvability of the
corresponding interpolation problem. We are interested in providing a closed formula for their
masks.

Proposition 6.3. Let J ∈N. There exists a unique interpolatory subdivision scheme with dilation

matrix M in (6.1) whose mask cM ,J satisfies

(i) cM ,J has support

{ (α1,α2) ∈Z2 : m|α1|+2|α2| ≤ 2m J −2+m } ⊂ {1−2J , . . . ,2J −1}× {1−m J , . . . ,m J −1} ,

(ii) cM ,J is symmetric,

(iii) ScM ,J reproduces polynomials up to degree 2J −1.

Before proving Proposition 6.3, we present a constructive example in order to clarify the
technical steps of the proof.

Example 6.3. Let J = 3 and M = diag(2,3) (i.e. m = 3). We construct a mask cM ,3 such that

cM ,3(α1,α2) = 0, ∀(α1,α2) ∉ { (α1,α2) ∈Z2 : 3|α1|+2|α2| ≤ 19} ⊂ {−5, . . . ,5}× {−8, . . . ,8} ,
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and the associated subdivision scheme ScM ,3 with dilation M is interpolatory, symmetric and
reproduces polynomials up to degree 2J −1 = 5. Notice that this size of the support is dictated
by the desired polynomial reproduction property of the scheme we want to construct.

Step 1. We fix the support of the mask cM ,3 (unknown entries are denoted by *)



















0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0



















.

Step 2. We impose the interpolatory conditions cM ,3(0,0) = 1, cM ,3(2α1,3α2) = 0, ∀α =
(α1,α2) ∈Z2 \ {0 }



















0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 ∗ ∗ 0 ∗ ∗ 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 1 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 ∗ ∗ 0 ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0



















.

Step 3. We define the remaining coefficients of cM ,3 symmetrically and such that they
guarantee the property of polynomial reproduction of polynomials up to degree 2J −1 = 5. The
latter condition leads to invertible systems of equations (one interpolation problem for each
submask). They yield
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0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7

1458
4

729 0 − 121
2916 − 605

11664 0 20809
93312

20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458

7
729

8
729 0 − 56

729 − 70
729 0 280

729
560
729 1 560

729
280
729 0 − 70

729 − 56
729 0 8

729
7

729

7
1458

4
729 0 − 121

2916 − 605
11664 0 20809

93312
20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0



































































Notice that the main column and row of cM ,3 are the univariate binary a2,3 and ternary a3,3

6-point Dubuc-Deslauriers masks defined in Examples 6.1 and 6.2, respectively. �

Proof. [of Proposition 6.3] Recall by (4.12) that

Γ= { (k, j ) ∈N2
0 : k ∈ {0,1} , j ∈ {0, . . . ,m −1}}

is a complete set of representatives of the distinct cosets of Z2/MZ2. Every interpolatory mask
a reproduces polynomials up to degree 2J −1 if and only if it satisfies the sum rules of order 2J ,
i.e. by (4.17)

∑

α∈Z2

a
(

k +2α1, j +mα2
)(

k +2α1
)µ1

(

j +mα2
)µ2 = δµ,0,

(k, j ) ∈ Γ\ {(0,0)} , µ=(µ1,µ2) ∈N2
0 : µ1 +µ2 ≤ 2J −1, α= (α1,α2) ∈Z2.

(6.6)

Notice that, for (k, j ) = (0,0),

∑

α∈Z2

a
(

2α1,mα2
)(

2α1
)µ1

(

mα2
)µ2 = δµ,0, µ= (µ1,µ2) ∈N2

0 : µ1 +µ2 ≤ 2J −1, (6.7)

is automatically satisfied if we assume the interpolatory property (4.9) of a.
The construction of the mask cM ,J satisfying (i) - (iii) is split in 3 Steps.

Step 1 (support size). We set cM ,J (α1,α2) = 0, ∀α= (α1,α2) ∈Z2 such that

|α1| > 2J −1, |α2| > m J −1, m|α1|+2|α2| > 2m J −2+m.

Thus, condition (i) is satisfied.
Step 2 (interpolation). We impose the interpolatory conditions

cM ,J (0,0) = 1, cM ,J (2α1,mα2) = 0, ∀α= (α1,α2) ∈Z2 \ {0 } .

Thus, (6.7) is satisfied.
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Step 3 (symmetry and polynomial reproduction). The system of equations in (6.6) naturally
splits into #Γ− 1 = 2m − 1 separate linear systems of equations, one for each (k, j ) ∈ Γ

′ =
Γ\{(0,0)}. Imposing the symmetry of cM ,J , the number of unknowns in the systems of equations
(6.6) for (k, j ) ∈ Γ

′ \ {(1,0)} can be reduced by a factor of 2. The corresponding J (J +1)× J (J +1)
system matrices are invertible, which we prove in Step 3.a. We treat the case (k, j ) = (1,0)
separately, due to the special symmetry of the corresponding submask. This case is analyzed

in Step 3.b and the corresponding
J (J +1)

2
×

J (J +1)

2
system matrix is also invertible.

Step 3.a. Let (k, j ) ∈ Γ
′ \ {(1,0)}.

Symmetry in α1: we only need to determine the coefficients cM ,J (k + 2α1, j +mα2) for
α= (α1,α2) ∈N0 ×Z and such that (ii) is satisfied, i.e.

0 ≤ k+2α1 ≤ 2J−1, 0 ≤ | j+mα2| ≤ m J−1, 0 ≤ m(k+2α1)+2| j+mα2| ≤ 2m J−2+m. (6.8)

We call A the set of the indices in (6.8). We first determine the geometric structure and the
cardinality of A. First, we consider the inequality 0 ≤ k +2α1 ≤ 2J −1 in (6.8). Since k ∈ {0,1},
we have

0 ≤ k +2α1 ≤ 2J −1 ⇐⇒ 0 ≤α1 ≤ J −
⌈1+k

2

⌉

⇐⇒ 0 ≤α1 ≤ J −1.

Next, we focus our attention on the inequality 0 ≤ | j +mα2| ≤ m J −1 in (6.8). We observe that
j +mα2 ≥ 0 ⇐⇒ α2 ≥ 0, thus for every j ∈ {1, . . . ,m −1} we have

⋆ for α2 ≥ 0:

0 ≤ j +mα2 ≤ m J −1 ⇐⇒ 0 ≤α2 ≤ J −
⌈1+ j

m

⌉

⇐⇒ 0 ≤α2 ≤ J −1,

⋆ for α2 < 0:

0 <− j −mα2 ≤ m J −1 ⇐⇒ 0 <−α2 ≤ J +
⌊ j −1

m

⌋

⇐⇒ 1 ≤−α2 ≤ J .

Finally, we analyze the last inequality 0 ≤ m(k +2α1)+2| j +mα2| ≤ 2m J −2+m in (6.8). Let
α1 ∈ {0, . . . , J −1}. Then, we have

⋆ for α2 ≥ 0:

0 ≤ m(k +2α1)+2( j +mα2) ≤ 2m J −2+m ⇐⇒ 0 ≤α2 ≤ J −α1 −
⌈

1+ j

m

⌉

+
⌊

1−k

2

⌋

,

⇐⇒ 0 ≤α2 ≤ J −α1 −1,

⋆ for α2 < 0:

0 < m(k +2α1)−2( j +mα2) ≤ 2m J −2+m ⇐⇒ 0 <−α2 ≤ J −α1 +
⌊

j −1

m

⌋

+
⌊

1−k

2

⌋

,

⇐⇒ 1 ≤−α2 ≤ J −α1.
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Chapter 6. Anisotropic stationary subdivision schemes and grid transfer operators

Combining the above observations, we get

A= {α= (α1,α2) ∈N0 ×Z : 0 ≤α1 ≤ J −1, α1 − J ≤α2 ≤ J −α1 −1 } .

Thus, the cardinality of the set A is

#A=
J−1∑

α1=0
2(J −α1) = J (J +1),

i.e. the number of unknowns in (6.6) for fixed (k, j ) ∈ Γ
′ \ {(1,0)} is J(J +1). Moreover, due to

the symmetry in α1, (6.6) is automatically satisfied for odd µ1. Therefore, we solve

∑

α∈A,
α1=0

a
(

0, j +mα2
)

δµ1,0
(

j +mα2
)µ2 +2

∑

α∈A,
α1 6=0

a
(

2α1, j +mα2
)(

2α1
)2µ1

(

j +mα2
)µ2 = δµ,0 k = 0

∑

α∈A
a
(

k +2α1, j +mα2
)(

k +2α1
)2µ1

(

j +mα2
)µ2 = 1

2δµ,0 k 6= 0,

(6.9)
with µ ∈M= { (µ1,µ2) ∈N2

0 : 0 ≤ 2µ1 +µ2 ≤ 2J −1}. We notice that #M= #A= J (J +1), i.e. the
corresponding system matrix is indeed a square matrix.

Symmetry in α2: it allows us to reduce the total number of linear systems in (6.9). Note that
the systems in (6.9) for j ∈ {1, . . . , m−1

2 } and m − j ∈ { m+1
2 , . . . ,m −1} are equivalent, indeed

∑

α∈A
a
(

k +2α1, m − j +mα2
)(

k +2α1
)2µ1

(

m − j +mα2
)µ2

=
∑

α∈A
a
(

k +2α1,− j +m(α2 +1)
)(

k +2α1
)2µ1

(

− j +m(α2 +1)
)µ2

=
∑

β∈B
a
(

k +2β1,−( j +mβ2)
)(

k +2β1
)2µ1

(

−( j +mβ2)
)µ2 , (β1,β2) = (α1,−α2 −1),

= (−1)µ2
∑

β∈B
a
(

k +2β1, j +mβ2
)(

k +2β1
)2µ1

(

j +mβ2
)µ2 ,

where

B =
{

β= (β1,β2) ∈N0 ×Z : 0 ≤β1 ≤ J −1, β1 − J ≤β2 ≤ J −β1 −1
}

.

Thus, we only need to consider the case j ∈ {1, . . . , m−1
2 }. The corresponding square matrix

(

(k +2α1
)2µ1 ( j +mα2

)µ2

)

(α1,α2)∈A, (µ1,µ2)∈M

is non-singular [65, Theorem 3.3]. Therefore, for any j ∈ {1, . . . , m−1
2 }, the linear system of

equations (6.9) is uniquely solvable and its solution is

(

cM ,J (k +2α1, j +mα2)
)

(α1,α2)∈A
.
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6.1. Anisotropic interpolatory subdivision

Step 3.b. Let (k, j ) = (1,0). Due to the symmetry in α1 and α2, (6.6) reduces to the following
system of equations

∑

α∈A′,
α2=0

a
(

1+2α1,0
)(

1+2α1
)2µ1 δµ2,0+2

∑

α∈A′,
α2 6=0

a
(

1+2α1,mα2
)(

1+2α1
)2µ1

(

mα2
)2µ2 =

1

2
δµ,0, µ ∈M′,

(6.10)
where

A′ = { (α1,α2) ∈N2
0 : 0 ≤α1 ≤ J −1, 0 ≤α2 ≤ J −α1 −1} ,

M′ = { (µ1,µ2) ∈N2
0 : 0 ≤ 2µ1 +2µ2 ≤ 2J −1} .

We notice that #A′ = #M′ = J (J +1)/2. By [50, Lemma 4.1], the square matrix
(

(1+2α1
)2µ1 (mα2

)2µ2

)

(α1,α2)∈A′, (µ1,µ2)∈M′

is non-singular. Therefore, the linear system of equations (6.10) is uniquely solvable and its
solution is (

cM ,J (1+2α1,mα2)
)

(α1,α2)∈A′
.

�

We notice another special property of the masks cM ,J in Proposition 6.3.

Remark 6.1. Let J ∈N. Since the mask a2,J of the univariate binary (2J )-point Dubuc-Deslauriers
interpolatory subdivision scheme Sa2,J in Definition 6.1 satisfies the sum rules of order 2J , the
solution of (6.10) is given by

cM ,J (1+2α1,mα2) =
{

a2,J (1+2α1), α2 = 0,

0, α2 6= 0,
α= (α1,α2) ∈A′.

Analogously, the solution of (6.9) for (0, j ) ∈ Γ
′, j ∈ {1, . . . ,m −1}, is given by

cM ,J (2α1, j +mα2) =
{

am,J ( j +mα2), α1 = 0,

0, α1 6= 0,
α= (α1,α2) ∈A,

where am,J is the mask of the univariate (2J)-point Dubuc-Deslauriers interpolatory subdivi-
sion scheme Sam,J with dilation m in Definition 6.1.

We now show that the masks in Definition 6.2 and the ones obtained in Proposition 6.3
actually coincide.

Theorem 6.4. Let J ∈N and M in (6.1). The mask aM ,J of the anisotropic interpolatory subdvi-

sion scheme SaM ,J in Definition 6.2 satisfies

(i) aM ,J has support

{ (α1,α2) ∈Z2 : m|α1|+2|α2| ≤ 2m J −2+m } ⊂ {1−2J , . . . ,2J −1}× {1−m J , . . . ,m J −1} ,
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Chapter 6. Anisotropic stationary subdivision schemes and grid transfer operators

(ii) aM ,J is symmetric,

(iii) SaM ,J reproduces polynomials up to degree 2J −1.

Proof. Step 1. Condition (ii) follows directly from Definition 6.2 and from the symmetry of
the univariate masks a2,h , am,h , h = 1, . . . , J , in Definition 6.1.
Step 2. Condition (iii) follows directly from Proposition 6.2.
Step 3. We focus our attention on condition (i) . The univariate masks a2,h , am,h , h ∈ {1, . . . , J },
in Definition 6.1 have supports {1−2h, . . . ,2h −1} and {1−mh, . . . ,mh −1}, respectively. Thus,
for k = 0, . . . , J −1, the masks associated to the symbol

a2,J−k (z1) am,k+1(z2), z = (z1, z2) ∈ (C\ {0})2,

in the first sum in Definition 6.2 have support

Sk = {1−2(J −k), . . . ,2(J −k)−1}× {1−m(k +1), . . . ,m(k +1)−1} .

Moreover, for k = 0, . . . , J −1, we have

m|α1|+2|α2| ≤ m
(

2(J −k)−1
)

+2
(

m(k +1)−1
)

= 2m J −2+m, (α1,α2) ∈ Sk .

Thus, the mask associated to the symbol

J−1∑

k=0

a2,J−k (z1) am,k+1(z2), z = (z1, z2) ∈ (C\ {0})2,

in Definition 6.2 has support

A= { (α1,α2) ∈Z2 : m|α1|+2|α2| ≤ 2m J −2+m } ⊂ {1−2J , . . . ,2J −1}× {1−m J , . . . ,m J −1} .

Using the same argument, the support of the mask associated to the symbol

J−2∑

k=0

a2,J−k−1(z1) am,k+1(z2), z = (z1, z2) ∈ (C\ {0})2,

in Definition 6.2 is contained in A, so that the support of the mask aM ,J satisfies (i) . �

6.1.5 CONVERGENCE OF CERTAIN SaM ,J

In this section, we only analyze convergence of the schemes used in section 6.4. In [16], Charina
and Protasov presented a detailed regularity analysis of d-variate anisotropic subdivision
schemes. Especially, their results allow us to use the algorithm in [47] for the exact computation
of the Hölder regularity of an anisotropic subdivision scheme.

Definition 6.3. A convergent subdivision scheme Sp with dilation M and mask p has Hölder
regularity αφ ∈ (0,1] if its basic limit function φ has Hölder exponent αφ, namely

αφ = sup
{

α ∈ (0,1] : ‖φ(·+h)−φ‖C (Rd ) ≤C‖h‖α, h ∈Rd
}

.

100



6.1. Anisotropic interpolatory subdivision

The main ingredient of the regularity analysis in [16] is the so-called joint spectral radius [62],
which is a generalization of the classical notion of spectral radius of one square matrix to a
finite (or compact) set of square matrices.

Definition 6.4. Let V = {V1, . . . ,Vd } ⊂RN×N , N ∈N, be a finite set of square matrices. The joint
spectral radius of V is defined by

ρ(V) = lim
k→∞

max
{

‖V j1 · · ·V jk
‖1/k : V ji

∈V , i = 1, . . . ,k
}

.

The limit in Definition 6.4 always exists and does not depend on the choice of the matrix
norm ( [62]). For practical interest (see Section 6.4), we check the continuity and compute the

Hölder regularity of some elements of the family SaM ,J with M =
(
2 0
0 m

)

, m = 3,5. To do so, we

first define the set V . The size of the elements of V depends on the support of the basic limit
function and the cardinality of the set Ω in (6.12).

Let J ∈N and φaM ,J be the basic limit function of the anisotropic interpolatory subdvision
schemes SaM ,J in Definition 6.2. By [10, Proposition 2.2 and (2.7)-(2.8)], we have

supp φaM ,J ⊆ K =
{

x ∈R2 : x =
∞∑

j=1

M− jαk j
, αk j

∈ supp aM ,J

}

⊂R2. (6.11)

Since φaM ,J is compactly supported, K is a compact set. Thus, due to [10, Lemma 2.3], there
exists a minimal set Ω⊂Z2 such that

K ⊂Ω+ [0,1]2 =
⋃

ω∈Ω
(ω+ [0,1]2). (6.12)

The minimality of Ω reads as follows: if there exists Ω̃⊂Z2 such that K ⊂ Ω̃+ [0,1]2, then Ω̃⊇Ω.
We refer to [10] for more details.

Let N = #Ω. By (4.12), Γ = { (k, j ) ∈N2
0 : k ∈ {0,1} , j ∈ {0, . . . ,m −1}} is a complete set of

representatives of the distinct cosets of Z2/MZ2. Notice that #Γ = 2m. For every γ ∈ Γ, we
define the transition matrix

Tγ =
(

aM ,J (Mα−β+γ)
)

α,β∈Ω
.

We denote T = {Tγ : γ ∈ Γ } the set of all the transition matrices. Notice that #T = 2m. For
every γ ∈ Γ, the rows and columns of Tγ are enumerated by the elements from the set Ω,
thus Tγ ∈ RN×N . By construction, the entries of any column of Tγ sum up to 1, thus Tγ has
eigenvalue 1 (i.e. there exist v0 6= 0 ∈ RN such that Tγv0 = v0). This property of T implies
( [10, 53]) the existence of certain invariant subspaces of T crucial for the definition of the set
V . To determine these invariant subspaces, we define the vector-valued function

v : [0,1]2 → RN ,

x 7→
(

φaM ,J (x+ω)
)

ω∈Ω
.

(6.13)
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Now we are able to define the following subspaces of RN

U = span
{

v(y)− v(x) : x,y ∈ [0,1]2 }

,

U1 = span
{

v(y)− v(x) : x,y ∈ [0,1]2, y−x = (α,0), α ∈R
}

,

U2 = span
{

v(y)− v(x) : x,y ∈ [0,1]2, y−x = (0,β), β ∈R
}

,

(6.14)

invariant under T . Notice that U1, U2 contain differences in the directions of the eigenvectors
of M . Finally, we define

V = T |U =
{

Tγ

∣
∣

U : γ ∈ Γ
}

, V1 =V |U1 and V2 =V |U2 .

The following statement is a direct consequence of Theorem 1 in [16].

Theorem 6.5. Let J ∈N. The basic limit function φaM ,J of the anisotropic interpolatory subdvi-

sion scheme SaM ,J in Definition 6.2 belongs to C (R2) if and only if ρ(V) < 1. In this case, φ has

the Hölder exponent

αφaM ,J
= min

{

log1/2 ρ(V1), log1/m ρ(V2)
}

.

In order to properly end this section, we would like to answer a few questions which naturally
arise after reading of the above analysis:

Q1. How to determine the spaces U , U1 and U2 (φaM ,J is not known analytically)?

Q2. How to determine the sets V ,V1 and V2?

The questions Q1. and Q2. will be answered in the following Example.

Example 6.4. Let J = 1 and M =
(
2 0
0 3

)

. The anisotropic interpolatory subdvision scheme SaM ,1

in Definition 6.2 has the mask

aM ,1 =
1

6





1 2 3 2 1
2 4 6 4 2
1 2 3 2 1



 .

Since the support of the basic limit function is a subset of [−1,1]2 (see Figure 6.1 and (6.11)),
we determine Ω= {−1,0}2, N = #Ω= 4. For

Γ=
{(

0
0

)

,

(
0
1

)

,

(
0
2

)

,

(
1
0

)

,

(
1
1

)

,

(
1
2

)}

, #Γ= 6,

the corresponding transition matrices are

T(0,0) =
1

6








1 0 0 0
2 3 0 0
1 0 2 0
2 3 4 6








, T(0,1) =
1

6








2 1 0 0
1 2 0 0
2 1 4 2
1 2 2 4








, T(0,2) =
1

6








3 2 0 0
0 1 0 0
3 2 6 4
0 1 0 2








,

T(1,0) =
1

6








2 0 1 0
4 6 2 3
0 0 1 0
0 0 2 3








, T(1,1) =
1

6








4 2 2 1
2 4 1 2
0 0 2 1
0 0 1 2








, T(1,2) =
1

6








6 4 3 2
0 2 0 1
0 0 3 2
0 0 0 1








.
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Figure 6.1: Basic limit function of the anisotropic interpolatory subdvision schemes SaM ,1 , M =
diag(2,3).

Let us compute the spaces U , U1 and U2.
Space U : the transition matrix T(0,0) has eigenvalue 1 with respect to the eigenvector v0 =
(0,0,0,1)T . To determine U , we proceed as follows using Algorithm 1 from [16].

Step 1. We define W (1) = span
{

Tγv0 −v0 : γ ∈ Γ\ {0 }
}

.

Step 2. We compute recursively

W (k+1) =W (k) ∪ span
{

Tγw(k) : w(k) ∈W (k), γ ∈ Γ

}

, 1 ≤ k < N −1

until dim (W (k)) < dim (W (k+1)).

Step 3. We define U =W (k).

Notice that the constraint 1 ≤ k < N −1 makes sense since

U ⊆W = {w = (w1, . . . , wN ) ∈RN :
N∑

i=1

wi = 0} = {w ∈RN : w ⊥ 1 } , dim W = N −1.

In our case,

U = span
{

T(0,1)v0 −v0,T(1,0)v0 −v0,T(1,1)v0 −v0
}

= span














1
0
0

−1








,








0
1
0

−1








,








0
0
1

−1














, dim U = 3.

Space U1: In order to determine U1, we use the algorithm above with a different starting
vector. By (6.14), we compute v0 = v((1,0))− v((0,0)), ‖v0‖1 = 1. By definition (6.13) and due to
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φaM ,1 (α) = δα,0, ∀α ∈Z2, we have

v((1,0)) =
(

φaM ,1

(

(1,0)+ω
))

ω∈Ω
=











φaM ,1

(

(1,0)+ (−1,−1)
)

φaM ,1

(

(1,0)+ (−1,0)
)

φaM ,1

(

(1,0)+ (0,−1)
)

φaM ,1

(

(1,0)+ (0,0)
)











=











0

1

0

0











∈R4,

v((0,0)) =
(

φaM ,1 (ω)
)

ω∈Ω
=








φaM ,1

(

(−1,−1)
)

φaM ,1

(

(−1,0)
)

φaM ,1

(

(0,−1)
)

φaM ,1

(

(0,0)
)







=








0
0
0
1







∈R4.

Similarly to the computation of U with v0 = (0,1/2,0,−1/2)T , we obtain

U1 = span
{

T(0,1)v0 −v0,T(0,2)v0 −v0
}

= span














1
0

−1
0








,








0
1
0

−1














, dim U1 = 2.

Space U2: In order to determine U2, by (6.14), we compute v0 = v((0,1))− v((0,0)), ‖v0‖1 = 1.
Following the procedure described for the construction of U1, we have v0 = (0,0,1/2,−1/2)T

and

U2 = span
{

T(0,1)v0 −v0,T(1,0)v0 −v0
}

= span














1
−1

0
0








,








0
0
1

−1














, dim U2 = 2.

Note that U =U1
⋃

U2.
Let us compute the set V .

Step 1. We extend U ⊂R4, dim U = 3, to R4 choosing

R4 = span














1
0
0

−1








,








0
1
0

−1








,








0
0
1

−1








,








1
0
0
0














.

Step 2. We define the matrix S

S =








1 0 0 1
0 1 0 0
0 0 1 0

−1 −1 −1 0







∈R4×4.
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By construction, the matrix S is invertible and, thus, we can compute the matrices

Bγ = S−1TγS ∈R4×4, γ ∈ Γ.

The matrices Bγ have a block structure. More precisely, the square upper-left block of Bγ of
size dim U ×dim U is the restriction of Tγ to U , namely

B(0,0) = 1
6








1 0 0 −5
2 3 0 2
1 0 2 1
0 0 0 6








, B(0,1) = 1
6








2 1 0 −4
1 2 0 1
0 −1 2 2
0 0 0 6








, B(0,2) = 1
6








3 2 0 −3
0 1 0 0

−1 −2 2 3
0 0 0 6








,

B(1,0) = 1
6








2 0 1 −4
1 3 −1 4
0 0 1 0
0 0 0 6








, B(1,1) = 1
6








3 1 1 −2
0 2 −1 2

−1 −1 1 0
0 0 0 6








, B(1,2) = 1
6








4 2 1 0
−1 1 −1 0
−2 −2 1 0

0 0 0 6








.

Finally, V is the set of the restrictions of Tγ, γ ∈ Γ, to U . In our case,

V =
{

1

6





1 0 0
2 3 0
1 0 2



 ,
1

6





2 1 0
1 2 0
0 −1 2



 ,
1

6





3 2 0
0 1 0

−1 −2 2



 ,

1

6





2 0 1
1 3 −1
0 0 1



 ,
1

6





3 1 1
0 2 −1

−1 −1 1



 ,
1

6





4 2 1
−1 1 −1
−2 −2 1





}

.

Now, let us focus on the construction of V1, V2. Since U1,U2 are invariant subspaces under V ,
we can directly compute the restrictions T |U1 and T |U2 , respectively. Thus, we can apply the
same algorithm used to determine V and we get

V1 =
{

1

6

(
1 0
2 3

)

,
1

6

(
2 1
1 2

)

,
1

6

(
3 2
0 1

)}

and V2 =
{

1

6

(
1 0
1 2

)

,
1

6

(
2 1
0 1

)}

.

Notice that #V1, #V2 < 6 since U1 ∩U2 6= ;. �

In Table 6.1, we check the continuity and compute the Hölder regularity of SaM ,J with
M ∈ {diag(2,3), diag(2,5)} and J ∈ {1,2} following the procedure presented in Example 6.4.
To compute the joint spectral radius, we use the software jsr-pathcomplete from the joint
spectral radius matlab toolbox [57] based on [1].

6.2 ANISOTROPIC APPROXIMATING SUBDIVISION SCHEMES

In this section, we consider only the dilation matrix M =
(
2 0
0 3

)

. The aim of this section

is to provide a family of approximating subdivision schemes as reference schemes for our
multigrid examples (see Propositions 6.11 and 6.13). Especially, in Section 6.4, we show that
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Dilation matrix Subdivision scheme ρ(V) ρ(V1) ρ(V2) αφ

M =
(
2 0
0 3

)
SaM ,1 0.50000 0.50000 0.33333 1
SaM ,2 0.50000 0.50000 0.33333 1

M =
(
2 0
0 5

)
SaM ,1 0.50000 0.50000 0.20000 1
SaM ,2 0.50000 0.50000 0.20000 1

Table 6.1: Continuity and Hölder regularity of SaM ,J (Theorem 6.5).

for M =
(
2 0
0 3

)

the interpolatory subdivision schemes in Definition 6.2 are computationally

superior to the approximating subdivision schemes that we define in this section. We first
introduce a family of symmetric four-directional box splines, see Definition 6.5, then we define
a new family of symmetric four-directional approximating subdivision schemes, see Definition
6.6.

Definition 6.5. Let J ∈N. The anisotropic symmetric four-directional box spline SBJ of order J

and dilation matrix M =
(
2 0
0 3

)

is defined by its symbol

B J (z) = 6

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

)⌈J/2⌉ (
(2+ z2 + z1z2 +2z1z2

2)(2z1 + z2 + z1z2 +2z2
2)

36z1z2
2

)⌊J/2⌋

,

for z = (z1, z2) ∈ (C\ {0})2.

In order to understand the definition of the symbols B J , J ∈N, in Definition 6.5, we need to look
closely at the “basic” Laurent polynomials B1 and B2. For J = 1, the symbol B1 in Definition 6.5
becomes

B1(z) = 6
(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

, z = (z1, z2) ∈ (C\ {0})2.

The factors (1+ z1)2/(4z1) and (1+ z2 + z2
2)2/(9z2

2) are called first and second direction and they
are the symbols of the univariate binary and ternary linear B-splines, respectively. Thus, the
subdivision scheme SB1 generates polynomials up to degree 1 (by a tensor product argument)
and its mask B1 is symmetric and minimally supported,

B1 =
1

6








1 2 3 2 1

2 4 6 4 2

1 2 3 2 1








.

For J = 2, the symbol B2 in Definition 6.5 becomes

B2(z) = 6
(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

(2+ z2 + z1z2 +2z1z2
2)(2z1 + z2 + z1z2 +2z2

2)

36z1z2
2

,

z = (z1, z2) ∈ (C\ {0})2.
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6.2. Anisotropic approximating subdivision schemes

The factor (2+ z2 + z1z2 +2z1z2
2)(2z1 + z2 + z1z2 +2z2

2)/(36z1z2
2) represents the product of the

so-called third and fourth directions. We computed such a symbol B2 in order to guarantee
that the subdivision scheme SB2 generates polynomials up to degree 3 (Proposition 6.7) and its
mask B2 is symmetric and minimally supported,

B2 =
1

216














0 2 9 18 23 18 9 2 0

4 16 40 64 76 64 40 16 4

8 28 62 92 106 92 62 28 8

4 16 40 64 76 64 40 16 4

0 2 9 18 23 18 9 2 0














.

Finally, the definition of such a symbol B J , J ∈N, in Definition 6.5, guarantees that the subdivi-
sion scheme SBJ generates polynomials up to degree 2J −1 (Proposition 6.7) and its mask BJ is
symmetric.

In order to prove Propositions 6.7 and 6.8, we need an auxiliary Lemma.

Lemma 6.6. Let J ∈N. The Laurent polynomial B J in Definition 6.5 satisfies

B J (z) = 6
⌊ J

2 ⌋∑

j=0

(⌊
J
2

⌋

j

)

(−1) j b(1)
J , j

(z1)b(2)
J , j

(z2),

b(1)
J , j

(z1) =
(

(1+ z1)2

4z1

)J− j (
(1− z1)2

4z1

) j

,

b(2)
J , j

(z2) =
(

(1+ z2 + z2
2)2

9z2
2

)J− j (

(1− z2
2)2

9z2
2

) j

, z = (z1, z2) ∈ (C\ {0})2.

Proof. We observe that the product of the third and the fourth directions can be written as

(2+ z2 + z1z2 +2z1z2
2)(2z1 + z2 + z1z2 +2z2

2)

36z1z2
2

=
(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

−
(1− z1)2(1− z2

2)2

36z1z2
2

.

Using this identity, for z = (z1, z2) ∈ (C \ {0})2, we can rewrite the Laurent polynomial B J in
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Definition 6.5 as

B J (z) = 6

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

)⌈ J
2 ⌉

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

−
(1− z1)2(1− z2

2)2

36z1z2
2

)⌊ J
2 ⌋

= 6

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

)⌈ J
2 ⌉ ⌊ J

2 ⌋∑

j=0

(

⌊ J
2⌋
j

)

(−1) j

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

)⌊ J
2 ⌋− j (

(1− z1)2(1− z2
2)2

36z1z2
2

) j

= 6

⌊
J
2

⌋

∑

j=0

(

⌊ J
2⌋
j

)

(−1) j

(

(1+ z1)2

4z1

(1+ z2 + z2
2)2

9z2
2

)J− j (

(1− z1)2(1− z2
2)2

36z1z2
2

) j

= 6

⌊
J
2

⌋

∑

j=0

(

⌊ J
2⌋
j

)

(−1) j

(
(1+ z1)2

4z1

)J− j (
(1− z1)2

4z1

) j
(

(1+ z2 + z2
2)2

9z2
2

)J− j (

(1− z2
2)2

9z2
2

) j

= 6

⌊
J
2

⌋

∑

j=0

(

⌊ J
2⌋
j

)

(−1) j b(1)
J , j

(z1)b(2)
J , j

(z2).

�

Proposition 6.7. Let J ∈N. The anisotropic symmetric four-directional box spline SBJ of order J

in Definition 6.5 generates polynomials up to degree 2J −1.

Proof. We proceed by induction.
Step 1. For J = 1, the base case is trivial due to a tensor product argument.
Step 2. Let us suppose that for any J ≥ 1, SBJ generates polynomials up to degree 2J −1. We
want to show that SBJ+1 generates polynomials up to degree 2(J +1)−1 = 2J +1. By definition,
the symbol of the anisotropic symmetric four-directional box spline SBJ+1 satisfies the recursive
formula

B J+1(z1, z2) =







B J (z1, z2) · 1
6 B1(z1, z2), J even,

B J (z1, z2) ·Q(z1, z2), J odd,

where

Q(z1, z2) =
(

2+ z2 + z1z2 +2z1z2
2

)(

2z1 + z2 + z1z2 +2z2
2

)

36z1z2
2

.

For J even, SBJ ∈ I2J−1 by induction and SB1 ∈ I1 by Step 1, thus, SBJ+1 ∈ I2J+1.
For J odd, we cannot apply the same argument as before since Q(z1, z2) does not vanish on
EM \ {(1,1)}. Let α ∈N2

0, |α| ≤ 2J +1. Applying the Leibniz formula to B J+1 we get

D (α1,α2)B J+1(z1, z2) =
α1∑

β1=0

α2∑

β2=0

(

α1

β1

)(

α2

β2

)

D (β1,β2)B J (z1, z2) ·D (α1−β1,α2−β2)Q(z1, z2). (6.15)

The following analysis is split in 2 steps: |α| = 2J and |α| = 2J +1.
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6.2. Anisotropic approximating subdivision schemes

Step 2.a. Let |α| ∈N2
0, |α| = 2J . From (6.15), by induction, we get

D (α1,α2)B J+1(z1, z2) = D (α1,α2)B J (z1, z2) ·Q(z1, z2).

By straightforward computation, we have

Q(ε) = 0, ε ∈
{ (

1,e2/3πi),
(

1,e4/3πi), (−1,1)
}

,

thus
D (α1,α2)B J+1(ε) = 0, ε ∈

{ (

1,e2/3πi),
(

1,e4/3πi), (−1,1)
}

.

Now we need to study the behavior of D (α1,α2)B J+1(ε), i.e. the behavior of D (α1,α2)B J (ε), for

ε ∈ EM \
{

(1,1),
(

1,e2/3πi),
(

1,e4/3πi), (−1,1)
}

=
{ (

−1,e2/3πi),
(

−1,e4/3πi) }

.

W.l.o.g., we focus our attention on ε=
(

−1,e2/3πi
)

. By Lemma 6.6, for odd J , we get

D (α1,α2)B J (z1, z2) = 6

J−1
2∑

j=0

(
J−1

2

j

)

(−1) j dα1

d z
α1
1

b(1)
J , j

(z1)
dα2

d z
α2
2

b(2)
J , j

(z2), (6.16)

thus, in order to compute D (α1,α2)B J (ε), we need to study separately the behavior of

dα1

d z
α1
1

b(1)
J , j

(z1)

∣
∣
∣
∣

z1=−1
=

α1∑

β1=0

(

α1

β1

)

dβ1

d z
β1

1

(1+ z1)2(J− j )

∣
∣
∣
∣

z1=−1
·

dα1−β1

d z
α1−β1

1

(4−J z−J
1 (1− z1)2 j )

∣
∣
∣
∣

z1=−1

and

dα2

d z
α2
2

b(2)
J , j

(z2)

∣
∣
∣
∣

z2=e2/3πi
=

α2∑

β2=0

(

α2

β2

)

dβ2

d z
β2

2

(1+z2+z2
2)2(J− j )

∣
∣
∣
∣

z2=e2/3πi
·

dα2−β2

d z
α2−β2

2

(9−J z−2J
2 (1−z2

2)2 j )

∣
∣
∣
∣

z2=e2/3πi
,

for j = 0, . . . , J−1
2 .

Notice that for any j ∈ {0, . . . , J−1
2 }, we have 2(J − j ) ∈ { J +1, . . . ,2J }.

Case 1: Let α1 ∈ {0, . . . , J }. For any β1 ∈ {0, . . . ,α1 } and for any j ∈ {0, . . . , J−1
2 }, we have β1 ≤α1 ≤

J < 2(J − j ). Thus,
dβ1

d z
β1

1

(1+ z1)2(J− j )

∣
∣
∣
∣

z1=−1
= 0,

and we get D (α1,α2)B J (ε) = 0.
Case 2: Let α1 ∈ { J +1, . . . ,2J }. Then α2 = 2J −α1 ∈ {0, . . . , J −1}. Using the same argument as
before, for any β2 ∈ {0, . . . ,α2 } and for any j ∈ {0, . . . , J−1

2 }, we get

dβ2

d z
β2

2

(1+ z2 + z2
2)2(J− j )

∣
∣
∣
∣

z2=e2/3πi
= 0.

Thus, from (6.16), we get D (α1,α2)B J (ε) = 0 for |α| = 2J .
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Step 2.b. Let |α| ∈N2
0, |α| = 2J +1. From (6.15) and Step 2.a., we get

D (α1,α2)B J+1(z1, z2) = D (α1,α2)B J (z1, z2) ·Q(z1, z2).

Thus, similarly to Step 2.a., we need to study the behavior of D (α1,α2)B J+1(ε), i.e. the behavior
of D (α1,α2)B J (ε), for

ε ∈ EM \
{

(1,1),
(

1,e2/3πi),
(

1,e4/3πi), (−1,1)
}

=
{ (

−1,e2/3πi),
(

−1,e4/3πi) }

.

We notice that

⋆ α1 ∈ {0, . . . , J }: for any β1 ∈ {0, . . . ,α1 } and for any j ∈ {0, . . . , J−1
2 }, we have β1 ≤α1 ≤ J <

2(J − j ),

⋆ α1 ∈ { J +1, . . . ,2J +1}: α2 = 2J +1−α1 ∈ {0, . . . , J }, thus for any β2 ∈ {0, . . . ,α2 } and for any
j ∈ {0, . . . , J−1

2 }, we have β2 ≤α2 ≤ J < 2(J − j ).

Thesis follows from the same argument of Step 2.a. �

Proposition 6.8. Let J ∈N. The anisotropic symmetric four-directional box spline SBJ of order J

in Definition 6.5 reproduces polynomials up to degree 1.

Proof. In order to prove Proposition 6.8, by Theorem 4.3 and Proposition 6.7, we need to
show that

(i ) B J (1,1) = |det M | = 6,
(i i ) DαB J (1,1) = 0, ∀α ∈N2

0 : |α| = 1,
(i i i ) DαB J (1,1) 6= 0 for some α ∈N2

0 : |α| = 2.

(i) By Definition 6.5, B J (1,1) = 6.
(ii) Let α= (1,0), |α| = 1. Using Lemma 6.6 and noticing that b(2)

J , j
(1) = 0 for j = 1, . . . ,⌊J/2⌋, the

(1,0)-th directional derivative of B J evaluated at (1,1) becomes

D (1,0)B J (1,1) = 6

⌊
J
2

⌋

∑

j=0

(

⌊ J
2⌋
j

)

(−1) j d

d z1
b(1)

J , j
(z1)

∣
∣

z1=1 b(2)
J , j

(1)

= 6
d

d z1

(
(1+ z1)2

4z1

)J ∣
∣
∣
∣

z1=1

= 6J

(
(1+ z1)2

4z1

)J−1 ∣
∣
∣
∣

z1=1

(

1+ z1

2z1
−

(1+ z1)2

4z2
1

)∣
∣
∣
∣

z1=1
︸ ︷︷ ︸

=0

= 0.

Analogously for α= (0,1), |α| = 1.
(iii) Let α= (2,0), |α| = 2. We show that D (2,0)B J (1,1) 6= 0. Using the previous argument, we get

D (2,0)B J (1,1) = 6
d 2

d z2
1

(
(1+ z1)2

4z1

)J ∣
∣
∣
∣

z1=1
= 3J .

�
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6.2. Anisotropic approximating subdivision schemes

Remark 6.2. Let J ∈ N. The convergence of the anisotropic symmetric four-directional box
spline SBJ in Definition 6.5 follows by standard argument involving the smoothing factors.

We are now ready to define the family of anisotropic symmetric four-directional approxi-
mating schemes.

Definition 6.6. Let J ∈N, L ∈ {0, . . . , J −1}. The anisotropic symmetric four-directional approxi-

mating scheme SBJ ,L of order (J ,L) and dilation matrix M =
(
2 0
0 3

)

is defined by its symbol

B J ,L(z) =
L∑

i=0

B J−i (z1, z2) ·
i∑

j=0

c
(i , j )
J

δ1(z1)i− jδ2(z2) j , z = (z1, z2) ∈ (C\ {0})2,

where

δ1(z1) =−
(

1− z2
1

)2

16z2
1

, δ2(z2) =−
(

1− z3
2

)2

27z3
2

,

and the coefficients c
(i , j )
J

are computed recursively as the solution of the system of equations

D (2(i− j ),2 j )B J ,L(1,1) = 6δi ,0, j = 0, . . . , i , i = 0, . . . ,L−1. (6.17)

Proposition 6.9. Let J ∈ N, L ∈ {0, . . . , J −1}. The anisotropic symmetric four-directional ap-

proximating scheme SBJ ,L of order (J ,L) in Definition 6.6 generates polynomials up to degree

2J −1.

Proof. By Proposition 6.7, for i = 0, . . . ,L, the symmetric four-directional box spline
SBJ−i

∈ I2J−2i−1. By definition,

δ1(z1)i− jδ2(z2) j =
(

−
(

1− z2
1

)2

16z2
1

)i− j (

−
(

1− z3
2

)2

27z3
2

) j

∈J2i−1 ⊂ I2i−1.

Since the ideal Ik , k ∈N0, is closed under addition, we have

i∑

j=0

c
(i , j )
J

δ1(z1)i− jδ2(z2) j ∈ I2i−1.

We recall that, if the subdivision symbols p1, p2 satisfy p1 ∈ Iq1 and p2 ∈ Iq2 , q1, q2 ∈N0, then
p1 ·p2 ∈ Iq1+q2+1. Thus,

B J−i (z) ·
i∑

j=0

c
(i , j )
J

δ1(z1)i− jδ2(z2) j ∈ I2J−1,

which implies

B J ,L(z) =
L∑

i=0

B J−i z ·
i∑

j=0

c
(i , j )
J

δ1(z1)i− jδ2(z2) j belongs to I2J−1,

i.e. SBJ ,L generates polynomials up to degree 2J −1. �
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Remark 6.3. Let J ∈N, L ∈ {0, . . . , J −1}. The convergence analysis of the anisotropic symmet-
ric four-directional approximating scheme SBJ ,L in Definition 6.6 can be done similarly to
subsection 6.1.5.

Finally, we conjecture that for any J ∈N, L ∈ {0, . . . , J −1}, the anisotropic symmetric four-
directional approximating scheme SBJ ,L in Definition 6.6 reproduces polynomials up to degree
2L+1, and we actually verified this fact for J ≤ 10. Notice that, if L = J −1, then SBJ ,J−1 generates
and reproduces polynomials up to the same degree 2J−1. Contrary to the univariate case, in the
bivariate case this property does not imply that the subdivision scheme SBJ ,J−1 is interpolatory.
Indeed, its mask BJ ,J−1 does not satisfy the interpolatory condition (4.9). See Examples 6.8 and
6.9, for the masks B2,1 and B3,2.

6.3 SUBDIVISION, MULTIGRID AND EXAMPLES

In this section, we provide grid transfer operators from the symbols of the anisotropic interpo-
latory and approximating subdivision schemes introduced in sections 6.1 and 6.2, respectively.
Especially, in subsection 6.3.1, we focus on the anisotropic interpolatory subdivision schemes

SaM ,J , J ∈N, in Definition 6.2, with dilation M =
(
2 0
0 m

)

, m = 3,5. We prove that the symbols

of SaM ,J define appropriate grid transfer operators for the correct choice of the order J (see
Proposition 6.10). In subsection 6.3.2, we focus on the anisotropic approximating subdivision
schemes SBJ , J ∈N, in Definition 6.5 and SBJ ,L , J ∈N, L ∈ {0, . . . , J −1}, in Definition 6.6, with

dilation M =
(
2 0
0 3

)

. First, we prove that the symbols of the anisotropic box splines SBJ define

appropriate grid transfer operators for the correct choice of the order J (see Proposition 6.11).
Then, we focus on the approximating schemes SBJ ,L . We explain how to determine the coeffi-

cients c
(i , j )
J

in Definition 6.6. Then, for practical interest (see section 6.4), we verify that the
symbols of SBJ ,L , J = 1,2,3, L ∈ {0, . . . , J −1}, satisfy conditions (i) and (ii) of Theorem 4.7 (see
Proposition 6.13).

6.3.1 INTERPOLATORY GRID TRANSFER OPERATORS

The following result is a direct consequence of Theorem 4.5.

Proposition 6.10. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol aM ,J , J ≥ ⌈q/2⌉, in Definition 6.2 satisfies the

approximation property (3.10).

Proof. Let J ≥ ⌈q/2⌉. By Proposition 6.2, the anisotropic interpolatory subdivision scheme
SaM ,J in Definition 6.2 generates polynomials up to degree 2J −1 ≥ q −1. Thus, by Theorem 4.2,
condition (i) of Theorem 4.5 is satisfied. Moreover, SaM ,J is an interpolatory subdivision
scheme and, thus, by [12, Proposition 1.3], its basic limit function is ℓ∞-stable. Thus, (ii) of
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Theorem 4.5 is also satisfied. �

In Examples 6.5 and 6.6, we give several examples of masks of the anisotropic interpolatory

subdvision schemes SaM ,J with M =
(
2 0
0 3

)

and M =
(
2 0
0 5

)

, respectively. The corresponding

grid transfer operators are used in our numerical experiments.

Example 6.5. We focus our attention on the case M =
(
2 0
0 3

)

. For J = 1,2,3, the masks of the

anisotropic interpolatory subdvision scheme SaM ,J in Definition 6.2 are

aM ,1 =








1
6

1
3

1
2

1
3

1
6

1
3

2
3 1 2

3
1
3

1
6

1
3

1
2

1
3

1
6








,

aM ,2 =



















0 0 0 − 1
48 − 1

24 − 1
16 − 1

24 − 1
48 0 0 0

0 0 0 0 0 0 0 0 0 0 0

− 2
81 − 5

162 0 89
432

89
216

9
16

89
216

89
432 0 − 5

162 − 2
81

− 4
81 − 5

81 0 10
27

20
27 1 20

27
10
27 0 − 5

81 − 4
81

− 2
81 − 5

162 0 89
432

89
216

9
16

89
216

89
432 0 − 5

162 − 2
81

0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 1
48 − 1

24 − 1
16 − 1

24 − 1
48 0 0 0



















,

aM ,3 =



























0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7
1458

4
729 0 − 121

2916 − 605
11664 0 20809

93312
20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458
7

729
8

729 0 − 56
729 − 70

729 0 280
729

560
729 1 560

729
280
729 0 − 70

729 − 56
729 0 8

729
7

729
7

1458
4

729 0 − 121
2916 − 605

11664 0 20809
93312

20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0



























.

�

Example 6.6. We focus our attention on the case M =
(
2 0
0 5

)

. For J = 1,2, the masks of the
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anisotropic interpolatory subdvision scheme SaM ,J in Definition 6.2 are

aM ,1 =








1
10

1
5

3
10

2
5

1
2

2
5

3
10

1
5

1
10

1
5

2
5

3
5

4
5 1 4

5
3
5

2
5

1
5

1
10

1
5

3
10

2
5

1
2

2
5

3
10

1
5

1
10








,

aM ,2 =
















0 0 0 0 0 − 1
80 − 1

40 − 3
80 − 1

20 − 1
16 − 1

20 − 3
80 − 1

40 − 1
80 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 2
125 − 7

250 − 4
125 − 3

125 0 241
2000

249
1000

747
2000

241
500

9
16

241
500

747
2000

249
1000

241
2000 0 − 3

125 − 4
125 − 7

250 − 2
125

− 4
125 − 7

125 − 8
125 − 6

125 0 27
125

56
125

84
125

108
125 1 108

125
84

125
56

125
27

125 0 − 6
125 − 8

125 − 7
125 − 4

125

− 2
125 − 7

250 − 4
125 − 3

125 0 241
2000

249
1000

747
2000

241
500

9
16

241
500

747
2000

249
1000

241
2000 0 − 3

125 − 4
125 − 7

250 − 2
125

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
80 − 1

40 − 3
80 − 1

20 − 1
16 − 1

20 − 3
80 − 1

40 − 1
80 0 0 0 0 0
















.

�

6.3.2 APPROXIMATING GRID TRANSFER OPERATORS

In this section, we focus our attention on the case M =
(
2 0
0 3

)

. First, we look at the anisotropic

symmetric four-directional box splines SBJ , J ∈N, from Definition 6.5.

Proposition 6.11. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, q ∈N.

The grid transfer operator derived from the symbol B J , J ≥ ⌈q/2⌉, in Definition 6.5 satisfies the

approximation property (3.10).

Proof. Let J ≥ ⌈q/2⌉. By Proposition 6.7, the anisotropic box spline SBJ from Definition
6.5 generates polynomials up to degree 2J −1 ≥ q −1. Thus, by Theorem 4.2, condition (i) of
Theorem 4.7 is satisfied.

Moreover, for x = (x1, x2) ∈ [0,2π)2, the symbol B J in Definition 6.5 satisfies

B J

(

e−ix
)

= 6B (1)
J

(x)B (2)
J

(x),

B (1)
J

(x) =
[

1+cos x1

2

(
1+2cos x2

3

)2]
⌈

J
2

⌉

,

B (2)
J

(x) =
[

1

9

(

cos
(x1

2

)

+2cos
(x1

2
−x2

))(

cos
(x1

2

)

+2cos
(x1

2
+x2

))]
⌊

J
2

⌋

.

First, we notice that

B (1)
J

(x) ≥
(

1

2

(
2

3

)2)
⌈

J
2

⌉

=
(

2

9

)
⌈

J
2

⌉

> 0, ∀x = (x1, x2) ∈
[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

. (6.18)
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Then, using trigonometric identities, we observe that

B (2)
J

(x) =
( 1

18

(

cos x1(4cos x2 +5)+4cos x2 +4cos(2x2)+1
))

⌊
J
2

⌋

≥
( 1

18
(0+4 ·

1

2
−4 ·

1

2
+1)

)
⌊

J
2

⌋

=
( 1

18

)
⌊

J
2

⌋

, ∀x ∈
[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

.

(6.19)

By (6.18) and (6.19), we get

B J

(

e−ix
)

≥ 6
(2

9

)
⌈

J
2

⌉
( 1

18

)
⌊

J
2

⌋

> 0, ∀x ∈
[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

, (6.20)

and (ii) of Theorem 4.7 is also satisfied. �

Example 6.7. Let J = 1,2,3. The masks of the anisotropic box splines SBJ in Definition 6.5 are

B1 =








1
6

1
3

1
2

1
3

1
6

1
3

2
3 1 2

3
1
3

1
6

1
3

1
2

1
3

1
6








,

B2 =














0 1
108

1
24

1
12

23
216

1
12

1
24

1
108 0

1
54

2
27

5
27

8
27

19
54

8
27

5
27

2
27

1
54

1
27

7
54

31
108

23
54

53
108

23
54

31
108

7
54

1
27

1
54

2
27

5
27

8
27

19
54

8
27

5
27

2
27

1
54

0 1
108

1
24

1
12

23
216

1
12

1
24

1
108 0














and

B3 =



















0 1
3888

13
7776

7
1296

5
432

23
1296

53
2592

23
1296

5
432

7
1296

13
7776

1
3888 0

1
1944

7
1944

55
3888

71
1944

5
72

65
648

49
432

65
648

5
72

71
1944

55
3888

7
1944

1
1944

1
486

47
3888

323
7776

379
3888

25
144

313
1296

233
864

313
1296

25
144

379
3888

323
7776

47
3888

1
486

1
324

17
972

113
1944

43
324

25
108

103
324

229
648

103
324

25
108

43
324

113
1944

17
972

1
324

1
486

47
3888

323
7776

379
3888

25
144

313
1296

233
864

313
1296

25
144

379
3888

323
7776

47
3888

1
486

1
1944

7
1944

55
3888

71
1944

5
72

65
648

49
432

65
648

5
72

71
1944

55
3888

7
1944

1
1944

0 1
3888

13
7776

7
1296

5
432

23
1296

53
2592

23
1296

5
432

7
1296

13
7776

1
3888 0



















.

�

Now, we look at the anisotropic approximating subdivision schemes SBJ ,L , J ∈ N, L ∈
{0, . . . , J −1}, in Definition 6.6.

Lemma 6.12. Let J ∈N. The symbols B J ,L of the anisotropic approximating subdivision schemes

SBJ ,L , L ∈ {0, . . . , J −1}, in Definition 6.6 satisfy for z = (z1, z2) ∈ (C\ {0})2
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(i) for J ≥ 1: B J ,0(z) = B J (z),

(ii) for J ≥ 2: B J ,1(z) = B J (z)+B J−1(z)
(

Jδ1(z1)+2Jδ2(z2)
)

,

(iii) for J ≥ 3:

B J ,2(z) =B J (z)+B J−1(z)
(

Jδ1(z1)+2Jδ2(z2)
)

+B J−2(z)

(
J (J +1)

2
δ1(z1)2 +

(

2J (J −2)+
4

3

⌊ J

2

⌋)

δ1(z1)δ2(z2)+ J (2J +1)δ2(z2)2
)

,

where Bk , k ∈N0, is the symbol of the 2-directional box spline SBk
in Definition 6.5.

Proof. (i) Let J ∈N and L = 0. The symbol of the anisotropic approximating subdivision
scheme SBJ ,0 , in Definition 6.6 becomes

B J ,0(z) = c(0,0)
J

B J (z), z ∈ (C\ {0})2,

where B J is the symbol of the anisotropic symmetric four-directional box spline SBJ in Def-

inition 6.5. By (6.17), the coefficient c(0,0)
J

∈ R is computed as the solution of B J ,0(1) = 6. By

definition, B J (1) = 6 and, thus, we get c(0,0)
J

= 1. We recall that SBJ ,0 = SBJ reproduces polynomi-
als up to degree 1.

(ii) Let J ∈N, J ≥ 2, and L = 1. The symbol of the anisotropic approximating subdivision
scheme SBJ ,1 , in Definition 6.6 becomes

B J ,1(z) = c(0,0)
J

B J (z)+B J−1(z)
(

c(1,0)
J

δ1(z1)+c(1,1)
J

δ2(z2)
)

,

= B J ,0(z)+B J−1(z)

(

−c(1,0)
J

(

1− z2
1

)2

16z2
1

−c(1,1)
J

(

1− z3
2

)2

27z3
2

)

, z = (z1, z2) ∈ (C\ {0})2.

Since SBJ ,0 reproduces polynomials up to degree 1 and δ1(z1), δ2(z2) ∈J1, then SBJ ,1 reproduces

at least polynomials up to degree 1. By (6.17), the coefficients c(1,0)
J

, c(1,1)
J

∈R are computed as

the solution of D (2,0)B J ,1(1) = 0 and D (0,2)B J ,1(1) = 0, respectively. Due to

D (2,0)B J ,1(1) =−3(c(1,0)
J

− J ), and D (0,2)B J ,1(1) =−4(c(1,1)
J

−2J ),

we get
c(1,0)

J
= J , c(1,1)

J
= 2J .

By straightforward computations, SBJ ,1 reproduces polynomials up to degree 3.
(iii) Let J ∈N, J ≥ 3, and L = 2. For z = (z1, z2) ∈ (C \ {0})2, the symbol of the anisotropic

approximating subdivision scheme SBJ ,2 , in Definition 6.6 becomes

B J ,2(z) = c(0,0)
J

B J (z)+B J−1(z)
(

c(1,0)
J

δ1(z1)+c(1,1)
J

δ2(z2)
)

+B J−2(z)
(

c(2,0)
J

δ1(z1)2 +c(2,1)
J

δ1(z1)δ2(z2)+c(2,2)
J

δ2(z2)2),

= B J ,1(z)+B J−2(z)

(

c(2,0)
J

(

1− z2
1

)4

256z4
1

+c(2,1)
J

(

1− z2
1

)2(
1− z3

2

)2

432z2
1 z3

2

+c(2,2)
J

(

1− z3
2

)4

729z6
2

)

.
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Since SBJ ,1 reproduces polynomials up to degree 3 and δ1(z1)2, δ1(z1)δ2(z2), δ2(z2)2 ∈J3, then

SBJ ,2 reproduces at least polynomials up to degree 3. By (6.17), the coefficients c(2,0)
J

, c(2,1)
J

, c(2,2)
J

∈
R are computed as the solution of D (4,0)B J ,2(1) = 0, D (2,2)B J ,2(1) = 0 and D (0,4)B J ,2(1) = 0, re-
spectively. Due to

D (4,0)B J ,2(1) =
9

2

(

2c(2,0)
J

− J (J +1)
)

,

D (2,2)B J ,2(1) = 2c(2,1)
J

−4J (J −2)−
8

3

⌊ J

2

⌋

,

D (0,4)B J ,2(1) = 16
(

c(2,0)
J

− J (2J +1)
)

,

we get

c(2,0)
J

=
J (J +1)

2
, c(2,1)

J
= 2J (J −2)+

4

3

⌊ J

2

⌋

, c(2,2)
J

= J (2J +1).

By straightforward computations, SBJ ,2 reproduces polynomials up to degree 3. �

In general, for every J ∈N, L ∈ {0, . . . , N −1}, we use the procedure described in the proof of

Lemma 6.12 to compute the coefficients c
(i , j )
J

in Definition 6.6. In Examples 6.8 and 6.9, we
give several examples of masks of the anisotropic symmetric four-directional approximating
schemes SB J ,L in Definition 6.6 with J = 2,3, L ∈ {1, . . . , J −1}. We recall that the anisotropic sym-
metric four-directional approximating scheme SBJ ,0 in Definition 6.6 is equal to the anisotropic
symmetric box spline SBJ in Definition 6.5. Thus, the masks of SBJ ,0 , J = 1,2,3, are equal to the
masks of SBJ , J = 1,2,3, in Example 6.7.

Example 6.8. Let J = 2 and L = 1. By (ii) of Lemma 6.12, for

z = e−ix =
(

e−ix1 ,e−ix2

)

∈ (C\ {0})2, x = (x1, x2) ∈ [0,2π)2,

the symbol B2,1 in Definition 6.6 becomes a trigonometric polynomial

B2,1

(

e−ix
)

= B2

(

e−ix
)

+B1

(

e−ix
)

b2,1(x),

b2,1(x) = 2δ1

(

e−ix1

)

+4δ2

(

e−ix2

)

=
1

2
sin2 x1 +

16

27
sin2

(3

2
x2

)

,

that is used to define the grid transfer operator in (3.16). We notice that the symbol B2,1 satisfies
(ii) of Theorem 4.7. Indeed, by (6.20), we have

B2,1

(

e−ix
)

≥ 6 ·
2

9
·

1

18
+6 ·

2

9
·0 =

2

27
> 0, ∀x = (x1, x2) ∈

[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

.
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The corresponding mask is

B2,1 =



















0 0 0 − 1
48 − 1

24 − 1
16 − 1

24 − 1
48 0 0 0

0 0 1
108 0 0 − 1

54 0 0 1
108 0 0

− 2
81 − 5

162 0 89
432

89
216

9
16

89
216

89
432 0 − 5

162 − 2
81

− 4
81 − 5

81 − 1
54

10
27

20
27

28
27

20
27

10
27 − 1

54 − 5
81 − 4

81

− 2
81 − 5

162 0 89
432

89
216

9
16

89
216

89
432 0 − 5

162 − 2
81

0 0 1
108 0 0 − 1

54 0 0 1
108 0 0

0 0 0 − 1
48 − 1

24 − 1
16 − 1

24 − 1
48 0 0 0



















.

�

Example 6.9. Let J = 3 and L = 1. By (ii) of Lemma 6.12, for

z = e−ix =
(

e−ix1 ,e−ix2

)

∈ (C\ {0})2, x = (x1, x2) ∈ [0,2π)2,

the symbol B3,1 in Definition 6.6 becomes a trigonometric polynomial

B3,1

(

e−ix
)

= B3

(

e−ix
)

+B2

(

e−ix
)

b3,1(x),

b3,1(x) = 3δ1

(

e−ix1

)

+6δ2

(

e−ix2

)

=
3

4
sin2 x1 +

8

9
sin2

(3

2
x2

)

,

that is used to define the grid transfer operator in (3.16). We notice that the symbol B3,1 satisfies
(ii) of Theorem 4.7. Indeed, by (6.20), we have

B3,1

(

e−ix
)

≥ 6 ·
(2

9

)2
·

1

18
+6 ·

2

9
·

1

18
·0 =

4

243
> 0, ∀x = (x1, x2) ∈

[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

. (6.21)

Let J = 3 and L = 2. By (iii) of Lemma 6.12, for

z = e−ix =
(

e−ix1 ,e−ix2

)

∈ (C\ {0})2, x = (x1, x2) ∈ [0,2π)2,

the symbol B3,2 in Definition 6.6 becomes a trigonometric polynomial

B3,2

(

e−ix
)

= B3,1

(

e−ix
)

+B1

(

e−ix
)

b3,2(x),

b3,2(x) = 6δ2
1

(

e−ix1

)

+
22

3
δ1

(

e−ix1

)

δ2

(

e−ix2

)

+21δ2
2

(

e−ix2

)

=
3

8
sin4 x1 +

22

81
sin2 x1 sin2

(3

2
x2

)

+
112

243
sin4

(3

2
x2

)

,

that is used to define the grid transfer operator in (3.16). We notice that the symbol B3,2 satisfies
(ii) of Theorem 4.7. Indeed, by (6.20) and (6.21), we have

B3,2

(

e−ix
)

≥
4

243
+6 ·

2

9
·0 =

4

243
> 0, ∀x = (x1, x2) ∈

[

−
π

2
,
π

2

]

×
[

−
π

3
,
π

3

]

.

The corresponding masks are
�
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6
.3

.S
u

b
d

iv
isio

n
,m

u
ltig

rid
a

n
d

e
xa

m
p

le
s

B3,1 =

























0 0 0 0 − 1
576 − 1

128 − 1
64 − 23

1152 − 1
64 − 1

128 − 1
576 0 0 0 0

0 0 1
3888 − 7

3888 − 11
1296 − 5

216 − 49
1296 − 59

1296 − 49
1296 − 5

216 − 11
1296 − 7

3888
1

3888 0 0

0 − 1
648 − 11

1944 − 11
972 − 5

1296
1

32
103

1296
271

2592
103

1296
1

32 − 5
1296 − 11

972 − 11
1944 − 1

648 0

− 1
243 − 7

486 − 113
3888 − 49

3888
257

3888
437

1944
497

1296
595

1296
497

1296
437

1944
257

3888 − 49
3888 − 113

3888 − 7
486 − 1

243

− 2
243 − 25

972 − 5
108 − 1

162
983

7776
5543

15552
487
864

379
576

487
864

5543
15552

983
7776 − 1

162 − 5
108 − 25

972 − 2
243

− 1
243 − 7

486 − 113
3888 − 49

3888
257

3888
437

1944
497

1296
595

1296
497

1296
437

1944
257

3888 − 49
3888 − 113

3888 − 7
486 − 1

243

0 − 1
648 − 11

1944 − 11
972 − 5

1296
1

32
103

1296
271

2592
103

1296
1

32 − 5
1296 − 11

972 − 11
1944 − 1

648 0

0 0 1
3888 − 7

3888 − 11
1296 − 5

216 − 49
1296 − 59

1296 − 49
1296 − 5

216 − 11
1296 − 7

3888
1

3888 0 0

0 0 0 0 − 1
576 − 1

128 − 1
64 − 23

1152 − 1
64 − 1

128 − 1
576 0 0 0 0

























,

B3,2 =






























0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0

0 0 0 0 0 − 1
576 0 0 1

288 0 0 − 1
576 0 0 0 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 − 1
648 0 0 17

1296 0 0 − 5
216 0 0 17

1296 0 0 − 1
648 0 0

7
1458

4
729 0 − 121

2916 − 605
11664 0 20809

93312
20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458

7
729

8
729

1
324 − 56

729 − 70
729 − 59

2592
280
729

560
729

449
432

560
729

280
729 − 59

2592 − 70
729 − 56

729
1

324
8

729
7

729

7
1458

4
729 0 − 121

2916 − 605
11664 0 20809

93312
20809
46656

75
128

20809
46656

20809
93312 0 − 605

11664 − 121
2916 0 4

729
7

1458

0 0 − 1
648 0 0 17

1296 0 0 − 5
216 0 0 17

1296 0 0 − 1
648 0 0

0 0 0 1
324

5
1296 0 − 241

6912 − 241
3456 − 25

256 − 241
3456 − 241

6912 0 5
1296

1
324 0 0 0

0 0 0 0 0 − 1
576 0 0 1

288 0 0 − 1
576 0 0 0 0 0

0 0 0 0 0 0 1
256

1
128

3
256

1
128

1
256 0 0 0 0 0 0






























.
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Let q ∈N, q ≤ 4. By Proposition 6.9, for J = 2,3, L ∈ {1, . . . , J −1}, the anisotropic symmetric
four-directional approximating schemes SB J ,L in Examples 6.8 and 6.9 generate polynomials
up to degree 2J −1 ≥ q −1 = 3. Thus, (i) of Theorem 4.7 is satisfied. Moreover, their symbols
satisfy (ii) of Theorem 4.7. We proved the following result.

Proposition 6.13. Let f be a real bivariate trigonometric polynomial such that f (x) > 0, x ∈
(0,2π)2, and

Dµ f (0) = 0, µ ∈N2
0, |µ| ≤ q −1, and ∃ν ∈N2

0, |ν| = q, Dν f (0) 6= 0, 0 ≤ q ≤ 4.

The grid transfer operator derived from the symbols B2,1,B3,1,B3,2 in Definition 6.6 satisfy the

approximation property (3.10).

6.4 NUMERICAL RESULTS

In this section, we illustrate the theoretical results of Propositions 6.10, 6.11 and 6.13 with two
bivariate numerical examples of the geometric multigrid method applied to certain multilevel
Toeplitz matrices. In both examples, using the notation introduced in chapter 5, section 5.4,
we have

m = (2,m) ∈N2, m ≥ 2, k = (k1,k2) ∈N2, ℓ= min{k1,k2 }−1 ∈N.

The choice ℓ= min{k1,k2 }−1 implies that the V-cycle has full length. For j = 0, . . . ,ℓ, we define

n j = (2k1− j −1,mk2− j −1), N j = N (n j ) = (2k1− j −1)(mk2− j −1),

and Ωn j
as a grid of [0,1]2 of 2k1− j , mk2− j subintervals of size (h j )1 = 2 j−k1 , (h j )2 = m j−k2 in the

coordinate directions x1, x2, respectively. For j = 0, . . . ,ℓ, the j -th matrix An j
is computed by

discretizing a given continuous problem on the j -th grid Ωn j
using always the same discretiza-

tion formula. Notice that matrices An j
, j = 0, . . . ,ℓ, have dimension N j ×N j . The prolongation

operators are defined as in (5.19) with m = (2,m). The restriction operators are
1

2m
P∗

n j
, for

j = 0, . . . ,ℓ−1.
Let n = n0. To define bn ∈ CN , N = n1n2, we choose the exact solution X ∈ Cn2×n1 on the
starting grid n as

X =










x(1,1) · · · x(1,n1)

...
. . .

...

x(n2,1) · · · x(n2,n1)










,

x(α,β) = sin

(

5
π(α−1)

n2 −1

)

+ sin

(

5
π(β−1)

n1 −1

)

, α= 1, . . . ,n2, β= 1, . . . ,n1,

we compute

x =
(
x(1,1) · · · x(n2,1) x(1,2) · · · x(n2,2) · · · · · · x(1,n1) · · · x(n2,n1)

)T ∈CN

and set bn := Anx ∈CN .
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6.4. Numerical results

6.4.1 BIVARIATE LAPLACIAN PROBLEM

The first example we present arises from the discretization of the bivariate Laplacian problem
with Dirichlet boundary conditions, namely







−
∂2

∂x2
1

ψ(x)−
∂2

∂x2
2

ψ(x) = g (x), x = (x1, x2) ∈Ω= (0,1)2,

ψ|∂Ω = 0.

(6.22)

Using finite difference discretization of order 2, for j = 0, . . . ,ℓ, the system matrices An j
=

Tn j
( f j ) ∈ RN j×N j are the bi-level Toeplitz matrices of order n j generated by the bivariate

trigonometric polynomials

f j (x) =
1

(h j )2
1

(2−2cos x1)+
1

(h j )2
2

(2−2cos x2), x = (x1, x2) ∈ [0,2π)2.

Notice that f j vanishes at 0 with order 2, thus by Propositions 6.10, 6.11and 6.13, the masks
defined in Examples 6.5, 6.6, 6.7, 6.8 and 6.9 can be used to define the corresponding grid
transfer operators. For an appropriate comparison, we use also Kobbelt’s subdivision scheme
SK, the Butterfly subdivision scheme SB and our new subdivision scheme SP introduced in
chapter 5, subsection 5.3.2.
For the numerical experiments, we use as pre- and post-smoother one step of Gauss-Seidel
method. The zero vector is used as the initial guess and the stopping criterion is ‖rs‖2/‖r0‖2 <
10−7, where rs is the residual vector after s iterations and 10−7 is the given tolerance.
We define the starting grid n0 in agreement with the dilation matrix M , namely

- for M =
(
2 0
0 2

)

:

{

n0 = (27 −1,27 −1), Case 1,

n0 = (28 −1,28 −1), Case 2,

- for M =
(
2 0
0 3

)

:

{

n0 = (27 −1,34 −1), Case 1,

n0 = (28 −1,35 −1), Case 2,

- for M =
(
2 0
0 5

)

:

{

n0 = (27 −1,53 −1), Case 1,

n0 = (29 −1,54 −1), Case 2,

Table 6.2 shows how the number of iterations and convergence rates for the V-cycle change
when the starting grid n0 becomes finer. The results in Table 6.2 support our theoretical analysis,
as they show that subdivision schemes with different dilation matrices and appropriate degree
of polynomials generation define grid transfer operators capable of guaranteeing convergence
and optimality of the corresponding V-cycle method. The grid transfer operators defined

from the subdivision schemes with dilation M =
(
2 0
0 2

)

perform better than the grid transfer

operators defined from the anisotropic subdivision schemes. This happens since the bivariate
Laplacian problem in (6.22) is symmetric with respect to the two coordinate directions. If
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Dilation Subdivision Case 1 Case 2 Generation
matrix scheme iter conv. rate iter conv. rate degree

M =
(
2 0
0 2

) SK 6 0.0661 7 0.0746 3
SB 7 0.0760 7 0.0807 3
SP 7 0.0831 7 0.0810 3

M =
(
2 0
0 3

)

SaM ,1 28 0.5573 23 0.4958 1
SaM ,2 26 0.5297 22 0.4777 3
SaM ,3 26 0.5347 23 0.4893 5
SB2,0 33 0.6082 26 0.5298 3
SB2,1 26 0.5298 22 0.4477 3
SB3,0 41 0.6718 35 0.6272 5
SB3,1 24 0.5096 22 0.4787 5
SB3,2 26 0.5347 23 0.4893 5

M =
(
2 0
0 5

)
SaM ,1 38 0.6529 45 0.6969 1
SaM ,2 38 0.6532 40 0.6774 3

Table 6.2: Bivariate subdivision schemes for the Laplacian problem.

we use grid transfer operators derived from subdivision schemes with dilation M =
(
2 0
0 2

)

or,

equivalently, grid transfer operators defined from the downsampling matrix with the factor
m = (2,2), we preserve the symmetry of the problem at each j -th step of the V-cycle, j = 0, . . . ,ℓ.
Moreover, in case of grid transfer operators derived from subdivision schemes with dilation

M =
(
2 0
0 m

)

, at each Coarse Grid Correction step, we downsample the data with the factor

m = (2,m) and the larger is m the more information we lose. Thus, the number of iterations
required for convergence is larger for m > 2. Finally, we notice that there is no crucial difference
between polynomial generation and reproduction properties for convergence and optimality
of the V-cycle method.

6.4.2 BIVARIATE ANISOTROPIC LAPLACIAN PROBLEM

The second example we present arises from the discretization of the bivariate anisotropic
Laplacian problem with Dirichlet boundary conditions (5.21).

Using finite difference discretization of order 2, for j = 0, . . . ,ℓ, the system matrices An j
=

Tn j
( f j ) ∈ CN j×N j are the bi-level Toeplitz matrices of order n j generated by the bivariate

trigonometric polynomials

f (ε)
j

(x) =
ε

(h j )2
1

(2−2cos x1)+
1

(h j )2
2

(2−2cos x2), x = (x1, x2) ∈ [0,2π)2.

Let m = (2,2) ∈N2, k = (k,k) ∈N2 and ℓ= k −1. For j = 0, . . . ,ℓ, the j -th grid of the V-cycle
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is symmetric, namely

n j = (2k− j −1,2k− j −1), (h j )1 = (h j )2 = 2−(k− j ).

Thus, we can rewrite the trigonometric polynomials f (ε)
j

, j = 0, . . . ,ℓ, as

f (ε)
j

(x) = 22(k− j )
(

ε (2−2cos x1)+ (2−2cos x2)
)

, x = (x1, x2) ∈ [0,2π)2.

If ε<< 1, the symbol f (ε)
j

is numerically close to 0 on the entire line x2 = 0, for all j = 0, . . . ,ℓ

(see chapter 5, subsection 5.4.3)
Let m = (2,m) ∈N2, m > 2, and define k = (k1,k2) ∈N2 such that

k2 = max{k ∈N : mk −1 ≤ 2k1 −1} .

We can rewrite the polynomials f (ε)
j

, j = 0, . . . ,ℓ, as

f (ε)
j

(x) =
ε

(h j )2
1

(2−2cos x1)+
1

(h j )2
2

(2−2cos x2),

=
1

(h j )2
2

(
ε(h j )2

2

(h j )2
1

(2−2cos x1)+ (2−2cos x2)

)

,

= m2(k2− j )
(

ε
22(k1− j )

m2(k2− j )
(2−2cos x1)+ (2−2cos x2)

)

,

= m2(k2− j )
(

ε j (2−2cos x1)+ (2−2cos x2)

)

, ε j = ε
22(k1− j )

m2(k2− j )
, x = (x1, x2) ∈ [0,2π)2.

The value ε j represents the anisotropy of the discretized problem (5.21) on the j -th grid Ωn j
of

the V-cycle, j = 0, . . . ,ℓ. Especially, we have

ε j = ε
22(k1− j )

m2(k2− j )
=

m2

4

(

ε
22(k1−( j−1))

m2(k2−( j−1))

)

=
m2

4
ε j−1 > ε j−1, j = 1, . . . ,ℓ. (6.23)

This means that the matrix An j
= Tn j

( f j ) at the j -th level of the V-cycle is less anisotropic than
the matrix An j−1 = Tn j−1 ( f j−1) at the ( j −1)-th level of the V-cycle, j = 1, . . . ,ℓ. Motivated by
this property and the observations related to the standard Laplacian problem in subsection
6.4.1, we propose a multigrid strategy which combines both anisotropic and symmetric cutting
strategies. More precisely, we define the starting grid n0 by

n0 = (2k1 −1,mh ·2k2 −1), h ∈N, (6.24)

and we choose k = (k1,k2) ∈N2 such that

k2 = max{k ∈N : mh ·2k −1 ≤ 2k1 −1} .
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We fix ℓ= min{k1,h +k2 }−1, in order to guarantee a V-cycle method with full length. Then,
we define the j -th order of the V-cycle by

n j =
{

(2k1− j −1,mh− j ·2k2 −1), j = 0, . . . ,h,

(2k1− j −1,2k2−( j−h) −1), j = h +1, . . . ,ℓ.

Finally, we construct the grid transfer operators Pn j
from the symbols of subdivision schemes

with dilation M =
(
2 0
0 m

)

for j = 0, . . . ,h, and from the symbols of subdivision schemes with

dilation M =
(
2 0
0 2

)

for j = h +1, . . . ,ℓ. Especially, for our numerical experiments, we use the

bi-linear interpolation grid transfer operator defined from the symbol P1 in Definition 5.3 for
j = h +1, . . . ,ℓ. If we choose h ∈ N properly, due to (6.23), we can handle the anisotropy of
the problem in h steps of the V-cycle. Thus, for j = h +1, . . . ,ℓ, a symmetric cutting strategy
performs better than an anisotropic cutting strategy.
For the numerical experiments, we use as pre- and post-smoother one step of Gauss-Seidel
method for j = 1, . . . ,ℓ, and 2 steps of Gauss-Seidel method for j = 0. The zero vector is used as
the initial guess and the stopping criterion is ‖rs‖2/‖r0‖2 < 10−5, where rs is the residual vector
after s iterations and 10−5 is the given tolerance.
We define the starting grid n0 by (6.24), namely

- for M =
(
2 0
0 2

)

:

{

n0 = (27 −1,27 −1), Case 1,

n0 = (28 −1,28 −1), Case 2,

- for M =
(
2 0
0 3

)

:

{

n0 = (27 −1,32 ·23 −1), Case 1,

n0 = (28 −1,32 ·24 −1), Case 2,

- for M =
(
2 0
0 5

)

:

{

n0 = (28 −1,5 ·25 −1), Case 1,

n0 = (28 −1,52 ·23 −1), Case 2,

Tables 6.3 and 6.4 show how the number of iterations and convergence rates for the V-cycle
change when the starting grid n0 becomes finer and the anisotropy ε in (5.21) decreases. The
results support our theoretical analysis. Especially, the grid transfer operators defined from the

anisotropic subdivision schemes with dilation M =
(
2 0
0 3

)

perform better than all the other

grid transfer operators. Indeed, after 2 steps of downsampling with the factor m = (2,3), the
anisotropy of the problem increases by a factor 81

16 ≈ 5. Moreover, when we downsample the
data with the factor m = (2,3), we lose less information than when we sample the data with the
factor m = (2,5). Among the grid transfer operators defined from the anisotropic subdivision

schemes with dilation M =
(
2 0
0 3

)

, we pay special attention to the interpolatory ones. The

advantage of using the anisotropic interpolatory subdivision schemes is the computational
efficiency of the corresponding grid transfer operations. Indeed, the matrices An j

, j = 0, . . . ,ℓ,
are independent of the grid transfer operators and the computational cost of the restriction and
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Dilation Subdivision Case 1 Case 2 Generation
matrix scheme iter conv. rate iter conv. rate degree

M =
(
2 0
0 2

) SK 61 0.8273 76 0.8585 3
SB 61 0.8274 76 0.8586 3
SP 61 0.8274 76 0.8586 3

M =
(
2 0
0 3

)

SaM ,1 14 0.4315 16 0.4807 1
SaM ,2 14 0.4307 16 0.48 3
SaM ,3 14 0.4312 16 0.4806 5
SB2,0 13 0.5145 16 0.4780 3
SB2,1 14 0.4307 16 0.48 3
SB3,0 14 0.4363 17 0.5003 5
SB3,1 13 0.4112 15 0.4633 5
SB3,2 14 0.4312 16 0.4806 5

M =
(
2 0
0 5

)
SaM ,1 20 0.5623 25 0.6307 1
SaM ,2 21 0.5719 26 0.6385 3

Table 6.3: Bivariate subdivision schemes for the anisotropic Laplacian problem with ε= 10−2.

prolongation depends only on the number of nonzero entries of the corresponding operators.
Therefore, since for a fixed J ∈ N, the mask aM ,J of the interpolatory subdivision schemes
SaM ,J in Definition 6.2 has less nonzero entries than the masks BJ ,L, L = 0, . . . , J − 1, of the
approximating subdivision schemes SBJ ,L in Definition 6.6, each iteration of the V-cycle method
with the interpolatory grid transfer operator associated to SaM ,J is cheaper than one V-cycle
iteration with the approximating grid transfer operators associated to SBJ ,L . Finally, we notice
that there is no crucial difference between polynomial generation and reproduction properties
for convergence and optimality of the V-cycle method.

Tables 6.3 and 6.4 justify the use of the dilation matrix M =
(
2 0
0 3

)

in our analysis. Note that

the schemes with M =
(
2 0
0 5

)

have a slower convergence rate, which is influenced by the larger

support sizes of their masks and by the less efficient approximation caused by inappropriate
coarsening of the mesh in the y direction.
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Dilation Subdivision Case 1 Case 2 Generation
matrix scheme iter conv. rate iter conv. rate degree

M =
(
2 0
0 2

) SK 253 0.9555 251 0.9551 3
SB 253 0.9558 251 0.9551 3
SP 253 0.9556 251 0.9551 3

M =
(
2 0
0 3

)

SaM ,1 33 0.7051 44 0.7694 1
SaM ,2 33 0.7050 44 0.7695 3
SaM ,3 33 0.7050 44 0.7697 5
SB2,0 30 0.6813 42 0.7592 3
SB2,1 33 0.7050 44 0.7695 3
SB3,0 30 0.6807 41 0.7540 5
SB3,1 31 0.6893 43 0.7641 5
SB3,2 33 0.7050 44 0.7697 5

M =
(
2 0
0 5

)
SaM ,1 62 0.8301 69 0.8462 1
SaM ,2 62 0.8304 70 0.8479 3

Table 6.4: Bivariate subdivision schemes for the anisotropic Laplacian problem with ε= 10−3.
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Conclusion

Multigrid and subdivision appeared on the mathematical horizon in the second half of the
XX century and they immediately gained popularity due to their attractive features. Multigrid
methods are fast iterative solvers for sparse large ill-conditioned linear systems of equations
derived, for instance, via discretization of PDEs in fluid dynamics, electrostatics and continuum
mechanics problems. Subdivision schemes are simple iterative algorithms for generation of
smooth curves and surfaces with applications in 3D computer graphics and animation industry.
Both multigrid methods and subdivision schemes are very attractive due to their efficiency to
users and researchers, who analyze in depth their properties and several applications.

This thesis presents the first definition and analysis of subdivision based multigrid methods.
First, we focus on algebraic multigrid methods for circulant and d-level circulant matrix
algebra with general downsampling/upsampling strategy m ∈N, m ≥ 2, in the circulant case
and m = (m1, . . . ,md ) ∈ Nd , mi ≥ 2, i = 1, . . . ,d , in the d-level circulant case. In chapter 3,
using the symbol approach and the formalism of trigonometric polynomials, we define new
sufficient conditions for the convergence and optimality of two-grid and V-cycle methods, see
Theorem 3.7 and Theorem 3.8. We highlight that Theorem 3.8 is the first result concerning the
convergence of the V-cycle method for circulant and d-level circulant matrices with general
downsampling/upsampling strategies.

To establish the link between multigrid and subdivision, we consider stationary primal
univariate and d-variate subdivision schemes with dilation m ∈N, m ≥ 2, in the univariate
case and

M =






m1
. . .

md




 ∈Zd×d , mi ≥ 2, i = 1, . . . ,d ,

in the d-variate case. In chapter 4, we construct grid transfer operators in the multigrid
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procedure from the symbols of certain subdivision schemes and we analyze the subdivision
properties which guarantee the convergence and optimality of the corresponding multigrid
method. We highlight that polynomial generation property plays a fundamental role in our
analysis, see Theorem 4.4, together with the stability of the basic limit function, see Theo-
rem 4.5, and zero conditions of the subdivision symbol, see Theorem 4.7. Such a catalog of
the grid transfer operators based on subdivision schemes with well-known properties allows to
simply choose the appropriate grid transfer operator for solving a specific problem.

The theoretical analysis carried out in chapter 4 is supported by univariate and bivariate
numerical experiments in chapter 5 for both algebraic and geometric multigrid. The numerical
tests show that, if the degree of polynomial generation is high enough, then the degree of
polynomial reproduction does not affect the convergence of the corresponding multigrid.
Indeed, if the grid transfer operators are defined from subdivision schemes with the same
degree of polynomial generation but with different degrees of polynomial reproduction, the
convergence rates of the corresponding V-cycle methods are the same. In the geometric
multigrid tests, the grid transfer operators defined from interpolatory subdivision schemes are
more competitive than the grid transfer operators defined from approximating subdivision
schemes. The advantage of using interpolatory schemes is the computational efficiency of the
corresponding grid transfer operations. Indeed, due to the geometric approach, the coarser
matrices An j

, j = 1, . . . ,ℓ, are independent of the grid transfer operators and the computational
cost of the restriction and prolongation depends only on the number of nonzero entries of
the corresponding operators. For schemes with the same degree of polynomial generation,
the mask of an approximating subdivision scheme has more nonzero entries than the mask
of an interpolatory subdivision scheme. Moreover, if a subdivision scheme is interpolatory,
then the corresponding basic limit function is stable and the hypotheses of Theorem 4.5 are
automatically satisfied.

The numerical tests concerning the bivariate anisotropic Laplacian at the end of chapter 5

lead to the need of bivariate anisotropic subdivision schemes with dilation M =
(
2 0
0 m

)

, m > 2.

In chapter 6, using the formalism of Lauren polynomials, we construct a family of interpolatory
subdivision schemes with such dilation M which are optimal in terms of the size of the support
versus their polynomial generation properties, see Proposition 6.4. As reference schemes
for our numerical tests, we propose two families of approximating subdivision schemes char-
acterized by certain polynomial generation and reproduction properties, see Definition 6.5
and Definition 6.6. The numerical tests at the end of chapter 5 confirm the validity of our
theoretical analysis in chapter 4.

Several research directions for future research involve dual and primal non-stationary mul-
tivariate subdivision based multigrid. The fascinating connection between such subdivision
schemes and multigrid has not been explored and guarantees to enhance multigrid methods
with new, efficient, subdivision based procedures.
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