251 research outputs found

    Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage Regulator

    Get PDF
    abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required. The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking. The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Space-vector-modulated three-level inverters with a single Z-source network

    Get PDF
    The Z-source inverter is a relatively recent converter topology that exhibits both voltage-buck and voltage-boost capability. The Z-source concept can be applied to all dc-to-ac, ac-to-dc, ac-to-ac, and dc-to-dc power conversion whether two-level or multilevel. However, multilevel converters offer many benefits for higher power applications. Previous publications have shown the control of a Z-source neutral point clamped inverter using the carrier based modulation technique. This paper presents the control of a Z-source neutral point clamped inverter using the space vector modulation technique. This gives a number of benefits, both in terms of implementation and harmonic performance. The adopted approach enables the operation of the Z-source arrangement to be optimised and implemented digitally without introducing any extra commutations. The proposed techniques are demonstrated both in simulation and through experimental results from a prototype converter

    Design of dual-input two phase dc/dc converter with modified pulse width modulation (mpwm)

    Get PDF
    Recently, hybrid energy source/renewable energy has attracted interest as the next-generation energy system capable of solving the problems of global warming and energy exhaustion caused by increasing energy consumption. Energy sources such as wind turbines and photovoltaic (PV) systems are intermittent, unpredictable and unregulated. For such systems, the use of multiple-input converter (MIC) has the advantage of regulating and controlling multiple-input sources. With multiple Pulsating Voltage-Source Cells (PVSC) configurations, the proposed converter can deliver power to the load individually and simultaneously. Also, it has the capability of operating either in buck, boost or buck–boost mode of operation. In addition, by proposing the enhanced Modified PWM (MPWM) switching scheme, it is able to solve the issues of the overlapping unregulated input sources. Furthermore, with the proposed multiphase configuration, the input current stresses in the switching devices are reduced and it has the benefit of a reduction in conduction losses. In addition, Zero-Voltage Switching (ZVS) technique is also employed in the proposed converter to reduce the switching loss. The proposed converter circuit is simulated by using MATLAB/Simulink and PSpice software programs. The duty cycle employed to regulate output voltage is reached from Altera DE2-70 board through dSPACE DS1103 board using by Proportional-Integral (PI) controller. The dual-input converter circuit model specification with output power at 200 W, input voltages that range from 10 to 60 V, and operating with dual switching frequencies of 50 kHz and 100 kHz is simulated to validate the designed parameters. Design guidelines, simulation and experimental results are presented. The results show that the proposed two-phase DC/DC converter with ZVS technique achieves 94% efficiency for all ranges of loads compared with the multiphase hard-switching. The total power losses across the power switches are reduced by approximately 37% in the proposed converter. Thus, the proposed converter circuit model offers advantages on input current stress and switching loss reductions. The proposed circuit configuration can be used in a standalone hybrid energy system under unregulated DC input voltages. However the major disadvantages of resonant circuit are increased peak current and voltage stress and not suitable for variable frequency operation

    Power conversion and signal transmission integration method based on dual modulation of DC-DC converters

    Get PDF
    For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    High Performance Power Management Integrated Circuits for Portable Devices

    Get PDF
    abstract: Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency. The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Data Center Power System Emulation and GaN-Based High-Efficiency Rectifier with Reactive Power Regulation

    Get PDF
    Data centers are indispensable for today\u27s computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost. In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost. First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center\u27s dynamic performance. Also, a converter-based data center power emulator serving as an all-in-one load is developed. The power emulator has been verified experimentally in a regional network in the HTB. Dynamic performances during voltage sag events and server load variations are emulated and discussed. Then, a gallium nitride (GaN) based critical conduction mode (CRM) totem-pole power factor correction (PFC) rectifier is designed as the single-phase front-end rectifier to improve the data center power distribution efficiency. Zero voltage switching (ZVS) modulation with ZVS time margin is developed, and a digital variable ON-time control is employed. A hardware prototype of the PFC rectifier is built and demonstrated with high efficiency. To achieve low input current total harmonic distortion (iTHD), current distortion mechanisms are analyzed, and effective solutions for mitigating current distortion are proposed and validated with experiments. The idea of providing reactive power compensation with the rack-level GaN-based front-end rectifiers is proposed for data centers to reduce data center\u27s power loss and system cost. Full-range ZVS modulation is extended into non-unity PF condition and a GaN-based T-type totem-pole rectifier with reactive power control is proposed. A hardware prototype of the proposed rectifier is built and demonstrated experimentally with high power efficiency and flexible reactive power regulation. Experimental emulation of the whole data center system also validates the capability of reactive power compensation by the front-end rectifiers, which can also generate or consume more reactive power to achieve flexible PF regulation and help support the power system
    • …
    corecore