68 research outputs found

    Diagnosis of Intermittent Faults and its dynamics

    Get PDF

    Twin‐engined diagnosis of discrete‐event systems

    Get PDF
    Diagnosis of discrete-event systems (DESs) is computationally complex. This is why a variety of knowledge compilation techniques have been proposed, the most notable of them rely on a diagnoser. However, the construction of a diagnoser requires the generation of the whole system space, thereby making the approach impractical even for DESs of moderate size. To avoid total knowledge compilation while preserving efficiency, a twin-engined diagnosis technique is proposed in this paper, which is inspired by the two operational modes of the human mind. If the symptom of the DES is part of the knowledge or experience of the diagnosis engine, then Engine 1 allows for efficient diagnosis. If, instead, the symptom is unknown, then Engine 2 comes into play, which is far less efficient than Engine 1. Still, the experience acquired by Engine 2 is then integrated into the symptom dictionary of the DES. This way, if the same diagnosis problem arises anew, then it will be solved by Engine 1 in linear time. The symptom dic- tionary can also be extended by specialized knowledge coming from scenarios, which are the most critical/probable behavioral patterns of the DES, which need to be diagnosed quickly

    Systematic Process for Building a Fault Diagnoser Based on Petri Nets Applied to a Helicopter

    Get PDF
    This work presents a systematic process for building a Fault Diagnoser (FD), based on Petri Nets (PNs) which has been applied to a small helicopter. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the whole system into subsystems, which are the devices that have to be modeled by using PN, considering both the normal and fault operations. Subsequently, the models are integrated into a global Petri Net diagnoser (PND) that is able to monitor a whole helicopter and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been designed for collecting data during the flights and feeding PN diagnoser with them. Several real flights (nominal or under failure) have been carried out to perform the diagnoser setup and verify its performance. A summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. © 2015 Miguel A. Trigos et al.This work has been supported by the project RoboCity2030- III-CM (Robotica Aplicada a la Mejora de la Calidad de Vida Ž de los Ciudadanos; Fase III; S2013/MIT-2748), funded by the I+D program at Comunidad de Madrid and cofunded by Fondos Estructurales of European Union and by the project Proteccion Robotizada de Infraestructuras Críticas, DPI2014- 56985-R, by Ministerio de Economía y Competitividad of Spain.Peer Reviewe

    RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS

    Get PDF
    Failure diagnosis in large and complex systems is a critical task. In the realm of discrete event systems, Sampath et al. proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. In this thesis, we give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of 4th order in the number of states of the system and linear in the number of the failure types. In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling formalism introduced in [12] to model failure-prone systems. The results have been represented in [43]. An attractive feature of rule-based model is it\u27s compactness (size is polynomial in number of signals). A motivation for the work presented is to develop failure diagnosis techniques that are able to exploit this compactness. In this regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnosersynthesis is obtained by using predicates and predicate transformers. We demonstrate our approach by applying it to modeling and diagnosis of a part of the assembly-line. When the system is found to be not diagnosable, we use sensor refinement and sensor augmentation to make the system diagnosable. In this dissertation, a controller is also extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, only one controllable event from among the ones allowed by the supervisor for the assembly line in automaton models

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Sensor configuration selection for discrete-event systems under unreliable observations

    Full text link
    Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events

    Discrete Event Model-Based Approach for Fault Detection and Isolation of Manufacturing Systems

    Get PDF
    International audienceThis paper presents a discrete event model-based approach for Fault Detection and Isolation of manufacturing systems. This approach considers a system as a set of independent plant elements. Each plant element is composed of a set of interrelated Parts of Plant (PoPs) modeled by a Moore automaton. Each PoP model is only aware of its local behavior. The degraded and faulty behaviors are added to each PoP model in order to obtain extended PoP ones. An extrapolation of Gaussian learning is realized to obtain acceptable temporal intervals between the time occurrences of correlated events. Finally based on the PoP extended models and the links between them, a fault candidates' tree is established for each plant element. This candidates' tree corresponds to a local on-line fault event occurrence observer, called diagnoser. Thus, the diagnosis decision is distributed on each plant element. An application example is used to illustrate the approach
    • 

    corecore