
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2003

RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH

FAULTS AND THEIR DIAGNOSIS FAULTS AND THEIR DIAGNOSIS

Zhongdong Huang
University of Kentucky, zhdhuang@engr.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Huang, Zhongdong, "RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR
DIAGNOSIS" (2003). University of Kentucky Doctoral Dissertations. 340.
https://uknowledge.uky.edu/gradschool_diss/340

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Zhongdong Huang

The Graduate School

University of Kentucky

2003

RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS

AND THEIR DIAGNOSIS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering at the University of Kentucky

By

Zhongdong Huang

Department of Electrical and Computer Engineering

University of Kentucky, Lexington, Kentucky

Director: Dr. Ratnesh Kumar, Associate Professor

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa

2003

Copyright c© Zhongdong Huang 2003

ABSTRACT OF DISSERTATION

RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS

AND THEIR DIAGNOSIS

Failure diagnosis in large and complex systems is a critical task. In the realm of discrete

event systems, Sampath et al. proposed a language based failure diagnosis approach. They

introduced the diagnosability for discrete event systems and gave a method for testing the

diagnosability by first constructing a diagnoser for the system. The complexity of this

method of testing diagnosability is exponential in the number of states of the system and

doubly exponential in the number of failure types. In this thesis, we give an algorithm for

testing diagnosability that does not construct a diagnoser for the system, and its complexity

is of 4th order in the number of states of the system and linear in the number of the failure

types.

In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in

the rule-based modeling formalism introduced in [12] to model failure-prone systems. The

results have been represented in [43].

An attractive feature of rule-based model is it’s compactness (size is polynomial in number

of signals). A motivation for the work presented is to develop failure diagnosis techniques

that are able to exploit this compactness. In this regard, we develop symbolic techniques

for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be

an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnoser

synthesis is obtained by using predicates and predicate transformers.

We demonstrate our approach by applying it to modeling and diagnosis of a part of the

assembly-line. When the system is found to be not diagnosable, we use sensor refinement

and sensor augmentation to make the system diagnosable. In this dissertation, a controller

is also extracted from the maximally permissive supervisor for the purpose of implementing

the control by selecting, when possible, only one controllable event from among the ones

allowed by the supervisor for the assembly line in automaton models.

KEYWORDS: Discrete event system, Rules based model, Diagnosability, Diagnoser, First

order temporal logic, Model checking.

Zhongdong Huang

December 2, 2003

RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS

AND THEIR DIAGNOSIS

By

Zhongdong Huang

Ratnesh Kumar

Director of Dissertation

William T. Smith

Director of Graduate Studies

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but quotations
or summaries of parts may be published only with the permission of the author, and with
the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also the
consent of the Dean of The Graduate School of the University of Kentucky.

DISSERTATION

Zhongdong Huang

The Graduate School
University of Kentucky

2003

RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS
AND THEIR DIAGNOSIS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering at the University of Kentucky

By
Zhongdong Huang

Department of Electrical and Computer Engineering
University of Kentucky, Lexington, Kentucky

Director: Dr. Ratnesh Kumar, Associate Professor
Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa
2003

Copyright c© Zhongdong Huang2003

To

Chunfeng, Zijin and Jennifer

and

those whose presence brighten my life
and

in loving memory of days struggling for better life

Acknowledgments

I would like to express my gratitude to Dr Ratnesh Kumar whose help, encouragement,
patience have been instrumental in guiding this thesis. Without him, there would not be
this dissertation existing.

To my parents, Mr. Zhensheng Huang and Mrs. Donge Qin, who passed on their love by
educating me as much as they could.

To my Wife, Mrs. Chunfeng Yang, for her steady encouragement and confidence in me.
To my son, Zijin Huang and my daughter, Jennifer Huang, who brought tons of joy to

my life and also made my life a little bit hard.
I would like to thank my sisters: Guixiang, zhonghua, Qinghua and Xuehua for their

support. I would like to thank my parents-in-law, Mr. Chenglin Yang and Mrs. Yuqin
Wang for their understanging and support.

I would like to thank my colleagues - Dr. Vigyan Chandra and Dr. Shengbing Jiang, for
besides being wonderful friends, two teachers who really valued my learning experience, in
the research that I collaborated with them.

I would like to thank Dr. Larry Holloway, Dr. Yuming Zhang, Dr. Jon Yingling, Dr.
Joseph Sottile, and Dr. D. Manivannan for serving as my advisory committee. Also to Dr.
William Smith for helping smoothen out administrative matters.

I also would like to thank Mr. Kevin Pippen, President of Automation Authority Inc.,
who offered me an internship, which opened my career door and his great help during the
period when I worked in his company.

The research was supported in part by National Science Foundation under the grants
NSF-ECS-9709796, and NSF-ECS-0099851 a DoD-EPSCoR grant from the Office of Naval
Research under the grant N000140110621, a KY-EPSCoR grant, and a Kenucky Research
Challenge Trust Fund Grant.

iii

Contents

Acknowledgments iii

List of Figures vii

List of Files ix

Chapter 1 Modeling and Diagnosis of DESs 1
1.1 Introduction . 1
1.2 Failure diagnosis: Motivation and Approaches 2

1.2.1 Non-model based approaches . 3
1.2.2 Model based approaches . 6
1.2.3 Temporal logic based approach . 9

1.3 Focus of the Research . 10
1.3.1 Application of supervisory control to an assembly line 10
1.3.2 Polynomial test for diagnosis . 11
1.3.3 Modeling discrete event systems with faults using a rules based modeling

formalism . 11
1.3.4 Diagnosis of discrete event systems in rules based model using first-order

logic . 12
1.3.5 Rules based modeling of an assembly line and its diagnosis 12

1.4 Organization of the Dissertation . 12

Chapter 2 Automated Control Synthesis for an Assembly Line using Discrete Event
System Control Theory 14

2.1 Introduction . 14
2.2 Notation and Preliminaries . 18
2.3 Example: Control of a LEGO transporter . 20

2.3.1 Specification Models . 21
2.3.2 Supervisor Synthesis and Controller Extraction 22

2.4 Description of LEGO Assembly Line . 22
2.5 Plant Models . 25

2.5.1 Transporter (Fixture Slide) . 25
2.5.2 Chassis . 27

iv

2.5.3 Roof . 28
2.5.4 Press . 28
2.5.5 Unloading . 28

2.6 Safety Specification Models . 28
2.6.1 Global Safety Specifications . 31
2.6.2 Local Safety Specifications . 33

2.7 Progress Specification Models . 35
2.8 Supervisor Synthesis and Controller Extraction 37
2.9 Conclusion . 41

Chapter 3 Polynomial Time Diagnosis Algorithm for DESs 42
3.1 Introduction . 42
3.2 Diagnosability . 43

3.2.1 System model . 43
3.2.2 Diagnosability . 44

3.3 Algorithm . 44
3.4 Conclusion . 49

Chapter 4 Modeling Discrete Event Systems with Faults using a Rules Based Modeling
Formalism 51

4.1 Introduction . 51
4.2 Notation and Preliminaries . 53
4.3 Motivating Example: A Tank System . 58
4.4 Modeling failures in the rules based formalism 59

4.4.1 Signal and system faults . 59
4.4.2 Permanent and intermittent faults . 61
4.4.3 Rules for fault events . 61
4.4.4 Extension of non-fault event rules to include fault conditions 63
4.4.5 Fault signal automata models . 64

4.5 Application: modeling tank systems with faults 65
4.6 Incorporating delay faults in the modeling formalism 67

4.6.1 Rules for timely occurrence/delay faults 67
4.6.2 Timed automaton model for timely occurrence/delay faults 70

4.7 Conclusions . 72

Chapter 5 Diagnosis of Discrete Event Systems in Rules Based Model using First-order
Linear Temporal Logic 73

5.1 Introduction . 73
5.2 Notation and Preliminaries . 76

5.2.1 Predicates, their Transformers, and Rule-based Model 76
5.2.2 1st order LTL temporal logic & model checking 79

5.3 Diagnosability as 1st order LTL model-checking 83

v

5.4 On-line Diagnoser using Predicates & their Transformers 88
5.5 Conclusion . 91

Chapter 6 Rules based Modeling of an Assembly Line and its Diagnosis 94
6.1 Introduction . 94
6.2 Rule-based models for the Assembly-Line . 95
6.3 Diagnosis Technique Illustration for Rules-based Model 102

6.3.1 Diagnosability Test . 104
6.3.2 Diagnoser Synthesis . 105
6.3.3 Designing Diagnosable Systems . 108

6.4 Conclusion . 109

Chapter 7 Conclusions and Future Work 110
7.1 Conclusion . 110
7.2 Future work . 111

Appendix ANuSMV Programming For the Diagnosability Check of Maze Example 113

Bibliography 118

Vita 128

vi

List of Figures

Figure 2.1 Discrete event control theory based automated control synthesis . . . 15
Figure 2.2 Schematic of the transporter . 20
Figure 2.3 Overall FSM model of the transporter 21
Figure 2.4 Safety and Progress specification FSM models 21
Figure 2.5 Supervisor and Controller FSM models 22
Figure 2.6 Partially assembled car . 23
Figure 2.7 Schematic of the plant layout . 23
Figure 2.8 Legend of signal and event labels . 26
Figure 2.9 Transporter FSM model . 27
Figure 2.10 FSM models of the chassis and roof sections 29
Figure 2.11 FSM models of the press and unloading sections 30
Figure 2.12 Global safety specifications, K1−K6 32
Figure 2.13 Local safety specifications, K7−K16 34
Figure 2.14 Global progress specification, K17, and sub-tasks ST1− ST4 36
Figure 2.15 Controller for LEGO assembly line . 39

Figure 3.1 Diagram of the system G . 48
Figure 3.2 Diagram of Go . 49
Figure 3.3 Diagram of Gd . 49

Figure 4.1 Input-Output view of a discrete event system 54
Figure 4.2 Tank system schematic . 58
Figure 4.3 Rules based model of the tank system without faults 58
Figure 4.4 Automaton model of tank system without faults 59
Figure 4.5 Automata models for signal and system faults 64
Figure 4.6 Automaton model of the tank system with faults 65
Figure 4.7 Rules based model of the tank system with faults 66
Figure 4.8 Rules based model of the tank system with delay faults 70
Figure 4.9 Timed automaton model for timely occurrence/delay faults 71

Figure 5.1 Tank system schematic . 77
Figure 5.2 Rules based model of the tank system 78
Figure 5.3 Mouse in a maze . 86
Figure 5.4 Rules based model of mouse in a maze 86

vii

Figure 5.5 Augmented rules based model of mouse in a maze 87
Figure 5.6 Masked synchronous composition of two augmented mouse in a maze . 88
Figure 5.7 Diagnoser for mouse in a maze . 92
Figure 5.8 The reduced diagnoser for mouse in a maze 92

Figure 6.1 Legend of signal and event labels . 96
Figure 6.2 Rules-based model of the transporter section 97
Figure 6.3 Rules-based model of the chassis section 99
Figure 6.4 Rules-based model of the roof section 100
Figure 6.5 Rules-based model of the press section 101
Figure 6.6 Rules-based model of the unloading section 103
Figure 6.7 System layout . 103
Figure 6.8 Rules-based model of the transporter without faults 104
Figure 6.9 Rules-based model of the transporter with a TfsonF fault 105
Figure 6.10 Augmented Rules-based model of the transporter with a TfsonF fault 106
Figure 6.11 Masked synchronization of two augmented rules-based model of the

transporter . 107
Figure 6.12 Diagnoser of the transporter with TfsonF fault 107
Figure 6.13 Diagnoser of the transporter with TfsonF fault 108

viii

List of Files

huang.pdf 798KB

ix

Chapter 1

Modeling and Diagnosis of DESs

1.1 Introduction

“Systems diagnostics is a systems-oriented problem-solving-methodology able both to

identify the operational (health) status and to select or design the appropriate remedial

or corrective action (therapy) that would most efficiently restore the functioning of the

diagnosed dynamics system to the desired level. It includes a collection of diagnostic meth-

ods, models, concepts, principles and approaches that permit us to detect and identify the

functional, structural, organizational and behavioral malfunctions, breakdowns, disorders or

deficiencies in various dynamic systems.”[60]

“An on-going task in engineering is to increase the reliability, availability and safety of

technical processes.”[45]

These quotes point to the importance of failure diagnosis and recovery. This is the topic

we explore for discrete event systems.

Whether it refers to medicine, where human subjects are involved, or to engineering,

where technical systems are dealt with, diagnosis is the task of finding the cause of a mis-

behavior. According to Webster Dictionary the meaning of the term diagnosis is defined as

the act or process of deciding the nature of a diseased condition by examinations, as well

as a careful investigation of facts to determine the nature of a thing. This definition bears

semblance to the mathematical approaches to the study of diagnosis [60][90]. The term di-

agnosis has Greek origin: “dia gignoskein”, that means “knowing the difference”. That is,

diagnosis involves the act of distinguishing one case from another, of separating a relevant

item from the general context. In that sense, diagnosis is closely related to categorization,

1

to the act of labeling or classifying.

In literature there may be found several definitions for the term fault. The Webster

dictionary defines the term fault as a defect in quality or constitution. Within the engineering

community a fault is regarded as physical condition that causes a device, a component

or, an element to fail to perform in a required manner. The Reliability, Availability and

Maintainability (RAM) Dictionary defines the fault as an accidental condition that causes a

previously functional unit to fail to perform its required function. In the same source fault

is regarded as an immediate cause of a failure (often classified based on duration, extent,

value and whether the cause was physical or humane). In turn, a failure is defined as an

event that makes equipment deviate from specified limits of useful performance, or that

terminates the ability of a unit’s material or structure from performing its required function.

Due to failure, a malfunction occurs, which is defined to be the inability of a system or

system component to perform a required function within specified limits (inability to meet

or conform to a specified requirement). The discrepancy between a computed, observed or

measured value or condition/requirement, and true, specified or theoretically correct value

or condition/requirement is termed error.

In our work, “failure” and “fault” mean the same and are used interchangeably. They

refer to a non-permitted deviation in the behavior of the system (or a component of the

system) for a bounded or unbounded period of time. A stuck-close valve, decrease in the

efficiency of a heat exchanger, abnormal bias in the output of a sensor, and leakage in

pipelines are examples of failure. If after the occurrence of a failure, the system remains

in the faulty condition indefinitely, then the failure is called permanent. Otherwise, it is

non-permanent or transient. A broken shaft in a motor is an example of permanent failure,

and a loose wire could be the source of a transient failure in an electrical system.

A typical fault diagnosis system uses the outputs of the sensors of the system to detect

the failure and (if necessary) isolate (locate) the source of failure. Once a failure is detected,

a decision has to be made as to how it should be recovered from. It is necessary to detect

and further isolate the source of failure to be able to perform failure recovery effectively. So,

a failure recovery problem involves a failure-diagnosis problem.

1.2 Failure diagnosis: Motivation and Approaches

There are three major factors that motivate research on failure diagnosis:

2

1. failures are inevitable;

2. failure diagnosis is needed for recovery; and

3. failure diagnosis is a complex task.

Failures are inevitable in today’s complex industrial environment. Given the complex in-

teractions between components, sub-systems, and processes, a system failure can well be

considered to be a “normal” occurrence [85], or an inherent characteristic of most industrial

systems.

If a failure is detected late, it might “spread”, and cause unnecessary operational dis-

turbances, and even material and personal damage. Timely and accurate detection of these

failures may prevent the cascaded effect that simple failures produce, resulting in system-

wide breakdowns and major accidents.

Also, a failure may well be easy to fix, but hard to find. A skilled operator can often

quickly isolate the failure in systems (s)he is familiar with, but as systems grow more com-

plex, this manual diagnosis becomes more difficult, and specialists capable of performing it

are more expensive to train. It is therefore of interest to have, if not totally automated, so-

phisticated diagnosis tool for complex systems. In view of the above mentioned factors, one

can easily appreciate automated mechanisms for the timely and accurate diagnosis of fail-

ures. Indeed, this need is well understood and appreciated both in industry and in academia.

A great deal of research effort has been and is being spent in the design and development of

automated diagnostic systems; and a variety of schemes, differing both in their theoretical

framework and in their design and implementation philosophy, have been proposed.

A traditional approach to diagnosis used in many industrial systems is simple limit check-

ing of signal values and predefined threshold logic. For example, if a sensor value leaves its

normal range, an alarm is generated. Due to cascaded effect of failure propagation in the

system, often a number of alarms are set off and then the problem is to isolate the root

cause. Common methods used are fault trees and expert systems, although these methods

are not restricted only to alarm analysis.

1.2.1 Non-model based approaches

In this section we briefly describe some approaches with the common feature that they

explicitly associate a known failure with an observed misbehavior. The kind of pattern-

matching methods these approaches use are often called associative.

3

Fault trees

Fault tree analysis is a widely used technique in the process control industry for reliability

analysis, fault detection and isolation. The basic idea is that a failure can trigger other

failures or events in the system and this can be traced back to the root cause [35][109]. A

fault tree graphically represents a cause-effect relationship among the failures in the system.

The root of a fault tree, the so called TOP event, is a system failure. The leaves of the tree

are the possibly contributing atomic events or basic faults, and inner nodes are AND- and

OR- type. Sets of events that trigger the top event are computed using cut sets and minimal

cut sets. By assigning probabilities to the atomic events, a failure probability can be found.

Fault tree construction is laborious and error prone, and much work has been done on

computer assisted and automatic fault tree construction, see for instance [58][25][110].

Expert systems

A popular method for diagnosis and supervision of complex systems has been the use of

expert systems, often in conjunction with fault tree structures, see, e.g., [101][107]. Expert

systems are especially well suited for systems that are difficult to model, with complex

interactions between and within components. Domain experts have heuristic knowledge

of the system and of how symptoms relate to faults. In traditional expert systems, this

knowledge is represented in a rule-base and used in conjunction with an inference engine.

This heuristic approach has several drawbacks. Acquiring knowledge from experts is

difficult and time consuming, and for new systems a considerable amount of time might

elapse before enough knowledge has accumulated to make reliable diagnosis possible.

Chronicles

An expert system-like approach to diagnosis of dynamic systems using temporal infor-

mation, is the real-time situation recognition method described in [8][73]. For system under

consideration, a set of events, obtainable for instance by signal processing, is defined. A

number of situations, that are considered desirable to recognize, are characterized with these

events, and also the temporal constraints among the events. Such a characterization of a

situation is called a chronicle and can correspond both to correct operation and failures of

the system. A situation recognizer is then fed with observed and time-stamped events in

real-time and can notify an operator for example when a failure situation has occurred or is

4

under development. Of course only known situation can be recognized.

Fuzzy logic based approach

Tsukamoto and Terano used a set of fuzzy relational inequalities in order to describe the

intensity of the causal deterministic relationships existing between faults (as causes) and the

determined symptoms (as effects) [106]. Since then this idea has been successfully applied

for diagnosis of complex industrial processes, based on subjectively observed symptoms, see

[27][51]. Sanchez has built up a “symptoms-faults” fuzzy relational mapping by directly

encoding expert medical diagnostic knowledge [100]. As a result, A fuzzy rule based fault

detection and diagnosis system can be developed by combining fuzzy linguistic rules with

non-fuzzy numerical data [119]. The design of the fuzzy reference set, inference mechanism,

and signal coding and decoding policies are dependent on the problem background.

Bayesian networks based approach

Bayesian network has been referred to by different names in the literature: Bayes belief

net [83], causal probabilistic network [94], causal networks [61], probabilistic causal networks

[19], and influence diagrams [40]. At the qualitative level, it is a graph where the nodes

represent domain objects and the arcs between nodes represent causal relationships between

objects, which is then modeled by conditional probabilities, and processed via the Bayes-

Laplace formula [24]. Bayesian network can be used to study the diagnosis problem. It

computes the probabilistic evidence of the unobserved part of the domain given that a part

of the domain (the symptoms variables) has known or assumed values (in form of probability

distributions).

This approach has its own drawbacks. The priori necessary probabilistic information is

not always available and event independence does not always hold. Computation complexity

is almost intractable [29].

Neural network

A neural network being applied for fault detection and diagnosis is developed through

‘learning’, i.e. ‘learning from examples’, even if one does not know the ‘if-then’ kind of

linguistic rules or process principle in detail [53]. The design of neural network architectures

and learning algorithms depends on the forms of learning examples. The key task is to

5

establish a neural network with an associative memory which can classify the input space into

a number of fault related domains. The learning algorithm designed mainly depends on the

informative form and content in the training samples; generally, ‘BP-learning’, ‘reinforcement

learning’, or ‘self-organized learning’ can be used. The fault diagnosis or decision making for

control actions is a more complicated problem, particularly for a high dimensional, nonlinear,

and uncertain system.

1.2.2 Model based approaches

The basic idea of all model based diagnosis is to compare observations of the real system

with the predictions from a model. In the case of a fault, a discrepancy between the actual

observed behavior and the predicted behavior arises. This discrepancy can then be used

to detect, isolate and identify the fault depending on the type of model and methods used.

Several approaches to model based diagnosis with model paradigms ranging from differential

equations to qualitative behavior models have appeared in the literature and proven useful

in practice.

Analytical redundancy methods

In the control system community, the most common class of model based diagnosis

method proposed is the analytical redundancy method, see for instance [114][81][28][74]

[92] and references therein. These methods are based on the fact that observed signals from

the system, such as sensor measurement and control signals, contain information regarding

the system state. The desired state information can be extracted with the help of a good

differential equation model of the system, often obtained by physical modeling, or system

identification [70].

In general, these methods consist of two steps. First, residuals are generated by comparing

observed signals from the system with predicted values. These residuals are usually designed

to be zero if no fault is present. Second, a fault detection and isolation step is employed,

using these residuals as input. One of the main problems with this approach is the difficulty

in acquiring good enough models. The demands on the accuracy of the models are usually

higher than for control design, since the residual generator works open-loop. Robust methods

for residual generation has received considerable attention in recent years and is an active

research area, see, e.g., [81][82].

6

Recently, there have also been some efforts towards formally demonstrating the connec-

tions between the analytical redundancy methods and the model-based approaches in AI

briefly described in [74].

Model based approaches in AI

In artificial intelligence, model-based diagnosis from first principles, is pioneered by Re-

iter [91]. The basic idea is to predict the behavior of the system using behavioral and

structural models of the system and its components and compare it with observations of the

actual behavior of the real system. Two main characterizations of model based diagnosis

exists in the literature, consistency based diagnosis [91] and adductive diagnosis [87]. The

former needs a model of the correct behavior only, and a diagnosis is a set of components

that when assumed non-correct, makes the predicted behavior consistent with the observed.

The adductive approach must have models of the faulty behavior. A diagnosis is a set of

component faults that is not only consistent with, but also explicitly predicts the observed

behavior. A good introduction to model-based diagnosis is the Chapter 2 of [30], and for a

comprehensive collection of literature, see [34].

Model based diagnosis in AI is mainly aimed at static systems and especially at trou-

bleshooting combinatorial digital circuits. The extension of the methodology to dynamic

and time-varying systems remains an active research area, see., [30][17][18][113].

Template based approach

A method for fault monitoring of automated manufacturing systems using the timing

and sequencing of events has recently been developed by Holloway et al. [39][37][21][78]. So

called time templates or condition templates are used to specify the expected, correct timing

and sequencing of events. Templates are designed to be easily implemented on distributed

architectures and are used to detect deviations from the correct behavior. Specific faults can

not be diagnosed. The method is capable of monitoring event sequences corresponding to an

arbitrary number of concurrent timed automata, and a timed automata specification can be

automatically translated to templates [39][78]. The manual construction of templates is not

feasible when timed automata model is not known, and work has been done on identifying

templates from observations of sequences of events [21].

7

A state based DES approach to diagnosis failure

A discrete event system approach for diagnosis is proposed by Lin [67] and further treated

in [5]. The system is modeled as a finite state machine, where the states of the machine

describe conditions of the components. The only dynamics in the FSM is that the system can

transit from normal to faulty, and no normal behavior is modeled. The observations (sensor

readings) are included as a mapping from the fault states to certain observable events (tests).

Diagnosing a fault is equivalent to identifying which state or set of states the system belongs

to. Off-line and on-line diagnosis are treated separately.

In off-line diagnosis the system is thought to be in a test-bed, where the system does not

change stage unless it is forced to while under diagnosis. Test can be performed, and the

outcome of the tests are called observable events. The off-line diagnosability of the system is

analyzed with respect to a fault partition and the set of observable events (i.e., tests). Since

the system is in a test-bed, the order in which the tests are performed does not affect the

diagnosability.

In on-line diagnosis, the system is in normal operation, and hence it can change state

uncontrollably. The system is assumed to be partially observable via an output map. Given a

state (fault) partition, the system is defined to be on- line diagnosable if there exists sequence

of commands so that the state of the system, up to the fault partition, can be decided from

the output map. An algorithm for computing such a sequence is given in [67].

Formal language based DES approach

Sampath et al. has proposed a formal language framework for studying diagnosability

properties of un-timed discrete event systems [98][97][95]. The approach is closely related

to the Ramage-Wonham framework for supervisory control of DES [89]. The method has

been applied to HVAC- systems (heating, ventilation and air-condition), but is applicable to

all systems that at some level can be meaningfully modeled as discrete event systems. The

main features of the approach is methods for modeling the normal and faulty behavior of

systems as DES, implementation of online passive diagnosis, and analysis of diagnosability

properties.

Both the normal and faulty behavior of the system to be diagnosed is modeled with a

finite state machine. Components are modeled individually and faults in the components

are modeled as unobservable events. The system model is then put together with the usual

synchronous composition [89]. To include sensor information in the model, global sensor

8

maps from the states of the model to sensor readings are constructed and then included

in the event labels. The diagnostic problem is then to infer about past occurrences of

unobservable fault events from the observable events. A diagnoser that gives a state and

fault estimation of the system after occurrence of each observable event is constructed from

the model. The diagnoser hence is an extended observer.

One of the main features of this approach is the ability to analyze diagnosability prop-

erties. Diagnosability is, the ability to detect and isolate an occurred fault with finite delay

using the observable events. Isolation is performed with respect to a fault partition.

To demand that a fault should always be diagnosed with finite delay is rather strong, and

very few systems can fulfill it. Therefore the notion of I-diagnosability is introduced, which

means that a fault should be detected and, up to a given partition, isolated with finite delay

after a so called indicator event has occurred. Stated in other words, the system has to be

excited enough for the fault to be diagnosed.

If a model of a system is not diagnosable (I-diagnosable), the authors identify two means

of making it diagnosable: i) introduce more sensors and ii) design the controller so that

the faulty behavior is excited and can be detected. The theory is set in a formal language

framework. In [95] and [96], the authors present a method for designing controllers in the

RW-framework that make the system diagnosable. Chen and Provan have extended the

approach to timed discrete event systems [14].

1.2.3 Temporal logic based approach

Temporal logic was originally developed [42] for investigation the manner in which tem-

poral operators are used in natural language arguments. It provides a formal way of quali-

tatively describing and reasoning about how the truth values of assertions change over time.

In [86], first argued that temporal logic is appropriate for reasoning about nonterminating

concurrent programs such as operating systems and network communication protocols. Now

temporal logic is a widely active area of research. It has been used or proposed for use in

virtually all aspects of concurrent program design, including specification, verification, and

mechanical program synthesis.

For the supervisory control and failure diagnosis problem, temporal logic provides an

effective means of specification. In most cases, the translation of a simple natural language

specification into temporal logic one is quite straightforward.

In [47], linear time temporal logic (LTL) is used to express fault specifications for the

9

failure diagnosis of DESs. Diagnosability of DESs is defined in the temporal logic setting.

The problem of testing the diagnosability is reduced to that of model checking. Algorithms

for the test of diagnosability and the synthesis of a diagnoser are obtained. The problem of

the failure diagnosis of repeated faults is studied in [49].

This concludes our discussion on approaches to failure diagnosis that have appeared in

the literature. Each of the above methods possesses certain advantages and disadvantages,

and is best applicable under specific circumstances. Which of these approaches one selects

for a given system depends not only on the characteristics of the system and the knowledge

available about the system but also on the nature of the failures one wants to diagnose.

With this background on the importance of the failure diagnosis problem and the various

methodologies to solve this problem, we now proceed on to discussion related to our research.

1.3 Focus of the Research

1.3.1 Application of supervisory control to an assembly line

Modern machining and assembly facilities require a great deal of operational and struc-

tural flexibility owing to the rapidly changing manufacturing environments in which they

exist. The design of controllers for such systems is often an error prone task, since intuitive

methods rather than formal techniques continue to be used. Altering any existing control

code in order to accommodate for changes in the system or the control objective, necessitates

extensive verification to establish whether the control code actually implements the desired

specifications. The theory of supervisory control meets the need of designing the controllers

formally, guaranteeing that the behavior of the controlled system meets the desired control

specifications, while providing maximally permissible controlled behavior. No additional

testing is required to check the correctness of the code as the technique used is guaran-

teed to enforce the specifications. In order to demonstrate the usefulness of the supervisory

control theory (SCT) in manufacturing systems, an educational test-bed that simulates an

automated car assembly line has been built using LEGO blocks. Finite automata are used

for modeling operations of the assembly line, and for the specifications that accomplish the

task of successfully completing the assembly repeatedly. Using a set of desired safety and

progress specifications for assembly, we use supervisory control techniques for automatically

deriving a supervisor that enforces the specifications while offering the maximum flexibility

of assembly. Subsequently a controller is extracted from the maximally permissive super-

10

visor for the purpose of implementing the control by selecting, when possible, at most one

controllable event from among the ones allowed by the supervisor.

1.3.2 Polynomial test for diagnosis

Failure diagnosis in large and complex systems is a critical task. In the realm of discrete

event systems, Sampath et al. proposed a language based failure diagnosis approach. They

introduced the diagnosability for discrete event systems and gave a method for testing the

diagnosability by first constructing a diagnoser for the system. The complexity of this method

of testing diagnosability is exponential in the number of states of the system and doubly

exponential in the number of failure types. In this dissertation, we give an algorithm for

testing diagnosability that does not construct a diagnoser for the system, and its complexity

is of 4th order in the number of states of the system, 2nd order when system model is

deterministic, and linear in the number of the failure types.

1.3.3 Modeling discrete event systems with faults using a rules

based modeling formalism

Obtaining accurate models of systems which are prone to failures and breakdowns is a

difficult task. We present a methodology which makes the task of modeling failure prone

discrete event systems (DESs) considerably less cumbersome, less error prone, and more

user-friendly. Diagnosis of failures in discrete event systems, as proposed by Sampath et

al. [98], makes use of a language based formulation and requires equivalent automata (state

machine) models of the system. The task of obtaining such a model for DESs is non-trivial

for most practical systems, owing to the fact that the number of states in the commonly used

automata models is exponential in the number of signals and faults. In contrast a model of

a discrete event system, in the rules based modeling formalism proposed in [12], is of size

polynomial in the number of signals and faults. In order to model failures, the signals set

consisting of actuators and sensors is enlarged to include binary valued fault signals, each

signal representing either a non-faulty or a faulty state of a certain type. Addition of new

fault signals requires introduction of new rules for the added fault signal events, and also

modification of the existing rules for non-fault events.

11

1.3.4 Diagnosis of discrete event systems in rules based model

using first-order logic

We study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling

formalism to model failure-prone systems. An attractive feature of rule-based model is it’s

compactness (size is polynomial in number of signals). A motivation for the work presented

is to develop failure diagnosis techniques that are able to exploit this compactness. In this

regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser.

Diagnosability test is shown to be an instance of 1st order temporal logic model-checking.

An on-line algorithm for diagnoser synthesis is obtained by using predicates and predicate

transformers.

1.3.5 Rules based modeling of an assembly line and its diagnosis

We study diagnosis of an assembly-line [11] that is modeled in the rules-based modeling

formalism. In order to demonstrate the usefulness of the rules-based model and of diagnosis

techniques based on such a model in manufacturing systems, an educational test-bed that

simulates an automated car assembly-line built using LEGO r© blocks is being employed. In

this dissertation we provide a rules-based model of the assembly-line. Next we demonstrate

the diagnosis technique for a rules-based model, that is based on 1st-order temporal logic

model checking [44], by applying it to a part of the assembly-line. When the system is found

to be not diagnosable, we use sensor refinement and sensor augmentation to make the system

diagnosable.

1.4 Organization of the Dissertation

In Chapter 2 the DESs notation used in the dissertation is explained. We used supervisory

control theory to obtain a supervisor for the miniature factory built out of LEGO blocks at

the University of Kentucky.

In Chapter 3 a polynomial time algorithm for diagnosability of Discrete Event Systems

is provided.

In Chapter 4 we modeled Discrete Event Systems with faults using a rules-based modeling

formalism.

12

In Chapter 5 we discussed diagnosis of Discrete Event Systems in rules based model

using First-order logic and present an on-line algorithm for diagnoser synthesis.

In Chapter 6 we model a failure prone assembly line in rules based formalism and discussed

its diagnosis.

Chapter 7 provides conclusions and points out possible directions for future work.

Appendix contains the NuSMV program for mouse-cat example. NuSMV is a software

tool for performing model-checking tests that we use to verify diagnosability.

13

Chapter 2

Automated Control Synthesis for an

Assembly Line using Discrete Event

System Control Theory

2.1 Introduction

A significant increase in the level of automation [33] and system complexity has, at the

turn of the century, necessitated the use of methods which do not rely on informal, intuitive

or heuristically designed control programs for real time computers and programmable con-

trollers [72]. Present day controller implementations, even those using specialized logic-based

control languages like Grafcet [1], remain largely based on the expertise and experience of

the designer, rather than on formal control design approaches that have been developed for

discrete event control in recent years. As a result there is no way of ensuring that control

specifications will be met every time in the controlled system. Supervisory control theory

(SCT) proposed by Ramadge-Wonham [88] is particularly well suited for the task of controller

design since the resulting supervisor is always guaranteed to meet the control specifications.

This theory is applicable to any system which evolves in response to events that are sponta-

neous, instantaneous, asynchronous and thus discrete in nature. Such systems are classified

as discrete event system (DES) and have been examined in detail [54, 88].

A DES to be controlled, also called a plant, is modeled by a finite state machine (FSM)

and can equivalently be described by a language model. The specifications which express the

constraints that one wishes to impose on the plant’s behavior are modeled as formal languages

14

as well. A supervisor exercises control over the plant by dynamically disallowing a minimal

set of controllable events so as to achieve the desired specifications. Thus the supervisor is

designed to be maximally permissive as in the supervisory control theory. A controller is

extracted out of the supervisor by selecting, when possible, at most one controllable event

from among the ones allowed by the supervisor. This is illustrated in Figure 2.1. The steps

(What system can do)

Plant Model
(What system should do)(What system shouldn’t do)

Safety Specification

Specification Model

Automated Control Synthesis

Synthesis
Automated Supervisor

Controller Extraction

Progress Specification

Control Code Generation

Figure 2.1: Discrete event control theory based automated control synthesis

to be followed for designing control programs using supervisory control theory are:

• FSM models of the system to be controlled.

• FSM models of the safety and progress control specifications of the system.

• Use of supervisory control theory to obtain the maximally permissive supervisor for

the system.

• Extraction of a controller from the supervisor, which permits at most one controllable

event to be enabled at each state.

• Translation of the controller into control code or PLC.

Some of the advantages of using SCT for automated control synthesis are as follows:

• Any change in the control specifications can be rapidly translated into executable

control code using the procedure shown in Figure 2.1. The new control specification is

modeled as an FSM and using SCT a new controller can be synthesized.

15

• No testing of the control code obtained using SCT is needed, since the method of

construction of these controllers guarantees their correctness. This eliminates the time

spent in checking the code for incorrect or incomplete operation sequences.

• Expensive mechanical safeguards which are installed in the system can be reduced

owing to the fact that unsafe behavior in the system will be avoided when the controllers

are designed using a FSM model based approach provided by SCT.

• The FSMs used for modeling the system and the specifications are intuitive and simple

to construct for moderate size systems.

• Since many manufacturing systems operate in similar configurations, the models de-

veloped for one system can be altered for use in another context. Hence development

time for the generation of control code in a new system can be reduced.

• The supervisor obtained from the automated control synthesis procedure shown in

Figure 2.1, provides the maximum permissible ways of achieving the control objective.

The designer of the system can choose which particular controller to extract out of the

supervisor based on different criteria, such as minimum operation time, cost, or on the

plant layout. At a later time a different controller can be chosen if the design criteria

changes.

• Since the control code can be generated automatically the system designer can work at

an abstracted level, not bothering about the manner or language in which the control

code implementation will be done.

In this dissertation we describe a simple educational test-bed built from LEGO blocks

that simulates an automated car assembly line. The objective is to demonstrate a formal

way of designing a controller for a discrete event plant by applying the theory of supervisory

control. This miniature assembly line performs a very simple assembly of the roof and the

chassis. The two parts are transported to the press section from their respective initial

sections, where a vertical press operation assembles the two parts, and finally the assembled

part exits the assembly line through the unloading section. A transporter links the chassis,

roof, press, and unloading sections.

We present FSM models of each of the individual sections, the composition of which is the

entire plant model. The number of states in transporter, chassis, roof, press, and unloading

sections is 21, 21, 30, 23, and 5 respectively, which implies a total of around 8 × 105 states

16

for the entire system. We also provide safety and progress specification models, where safety

specification is needed for the safe operation of the system whereas the progress specification

is needed to achieve the task of assembly. The safety specification is a conjunct of sixteen

sub-specifications, divided into a set of six “global” ones and a set of ten “local” ones. There

is a single progress specification which is obtained by combining four different sub-tasks.

The overall specification is the conjunct of the safety and progress.

The set of input events which control the motor actions forms the set of controllable

events, whereas the set of output events which are generated by the sensors forms the

uncontrollable events set. We do not model failures, and all events are considered to be

observable.

Using the supervisory control theory we obtain the maximally permissive supervisor for

the miniature assembly line that enforces the overall specification. This turns out to be the

automaton represented by the overall specification itself, since the overall specification is

found to be controllable [54, 88]. A controller is extracted out of the supervisor as described

above, and then the controller is translated into specific code understood by the LEGO

Dacta control software.

While setting up the miniature LEGO factory, the one built at the University of Mas-

sachusetts, [10] in 1995 served as a prototype. In another allied work, a train test bed

for controlling the movement of two trains which share three track loops, was built at the

University of Toronto [62], in 1996. An application from the semiconductor industry, for

controlling a Rapid Thermal Multiprocessor and addressing the reliable update of process-

ing recipes, using supervisory control theory (SCT) has been done in [3]. Application of SCT

to manufacturing is considered in [9] wherein movement of pallets carrying parts with dif-

ferent machining sequences required is controlled. Supervisory control has also been applied

for designing supervisors in automated highway systems’ vehicle communication protocols

[41, 108], in protocol conversion [57], in feature interaction in telephony [104], in failure

diagnosis of HVAC systems in [99].

This rest of the chaper is organized as follows: In section 2 the notations used for modeling

DESs are introduced. Section 3 outlines the working of the LEGO factory and FSM models

of the same are presented in section 4. Section 5 contains descriptions as well as the FSM

models of the safety specifications, and Section 6 does the same for progress specifications.

In section 7 a supervisor is synthesized from which a controller is extracted for the LEGO

factory, and finally in section 8 scope for future extensions as part of ongoing research is

17

outlined.

2.2 Notation and Preliminaries

We use Σ to denote the finite set of events over which a DES evolves. A concatenation

of finite number of events forms a string of events or a trace. A language is a collection of

traces. Let Σ∗ be the set of all strings (traces) of events of Σ including the empty string ε. A

language is thus a subset of Σ∗. For a language H, the notation H, called the prefix closure

of H, is the set of all prefixes of traces in H. H is said to be prefix closed if H = H.

Abstractly, a discrete event system can also be viewed as a 5-tuple state machine

G = (X,Σ, δ, x0, Xm),

where X is the set of states, Σ is the set of events, δ : X × Σ → X is the partial state

transition function, x0 ∈ Q is the initial state, and Xm ⊆ X is the set of marked or final

states. The generated behavior of the discrete event system modeled by G is described by

its generated language:

L(G) := {s ∈ Σ∗|δ(s, x0) is defined},

where by induction the transition function has been extended from events to traces δ :

X × Σ∗ → X. The generated language of G is the set of all traces that it can execute

starting from its initial state. The marked language of G contains those generated traces

which terminate in a final state and signify task completion:

Lm(G) := {s ∈ L(G) | δ(s, x0) ∈ Xm}.

Synchronous composition [36] of state machines is used to represent the concurrent be-

havior of two DESs. Given two deterministic state machines S1 := (X1,Σ1, δ1, x0,1, Xm,1) and

S2 := (X2,Σ2, δ2, x0,2, Xm,2), composition of S1 and S2 denoted S1‖S2 := (X,Σ, δ, x0, Xm),

is defined as: X := X1 × X2, Σ := Σ1 ∪ Σ2, x0 := (x0,1, x0,2), Xm := Xm,1 × Xm,2, and for

each x = (x1, x2) ∈ X and σ ∈ Σ:

δ(x, σ) :=

(δ1(x1, σ), δ2(x2, σ)) if δ1(x1, σ), δ2(x2, σ) defined, σ ∈ Σ1 ∩ Σ2

(δ1(x1, σ), x2) if δ1(x1, σ) defined, σ ∈ Σ1 − Σ2

(x1, δ2(x2, σ)) if δ2(x2, σ) defined, σ ∈ Σ2 − Σ1

undefined otherwise

18

So when S1 and S2 are composed, the common events occur synchronously, while the other

events occur asynchronously. Note that when Σ1 = Σ2 = Σ, then L(S1‖S2) = L(S1)∩L(S2)

and Lm(S1‖S2) = Lm(S1) ∩ Lm(S2) since all events must occur synchronously.

The set of plant events is partitioned into two disjoint sets Σc, the set of all controllable

events, and Σu, the set of all uncontrollable events. A controllable event is one which can

be allowed to occur or prevented from possibly occurring by an external agent, whereas no

such control is possible for an uncontrollable event.

In general, a supervisor determines the set of events to be disabled after each transition

based on the observed sequence of events. A supervisor, denoted S, is a map S : L(G) →

2Σ−Σu that determines the set of events S(s) ⊆ (Σ−Σu) to be disabled after the occurrence of

trace s ∈ L(G). Events not belonging to the set S(s) remain enabled at trace s. In particular,

the uncontrollable events remain enabled. A supervisor thus restricts the behavior of the

plant. Since synchronous composition also results in behavior restrictions, the action of

control may also be achieved by taking a synchronous composition of plant automaton G

and supervisor automaton S. This is represented by the automaton G‖S. Since S must

never prevent any feasible uncontrollable event from happening, the following should hold:

L(G‖S)Σu ∩ L(G) ⊆ L(G‖S), in which case S is said to be Σu-enabling [54]. Further, S is

said to be non-blocking if L(G‖S) ⊆ Lm(G‖S), i.e., if each generated trace of the controlled

plant can be extended to be a marked trace of the controlled plant.

It is known from supervisory control theory [88] that given a discrete event plant G

and a desired nonempty specification language K ⊆ Lm(G), there exists a Σu-enabling and

nonblocking supervisor S such that Lm(G‖S) = K if and only if K is controllable and

relative-closed with respect to G, i.e,

KΣu ∩ L(G) ⊆ K, and K ∩ Lm(G) ⊆ K.

Controllability means execution of an arbitrary prefix of K, say s, followed by an uncontrol-

lable event σ; such that sσ is possible in the plant; implies that sσ is also in the prefix of

K. This is because the occurrence of uncontrollable events cannot be prevented. Relative-

closure means that any prefix of K that is marked by the plant must itself be in K. This is

because the marking status of a trace is determined by the plant.

If K is controllable with respect to L(G) then the synchronous composition of the au-

tomata representing K and L(G) is the required supervisor, but if this is not the case. then

one computes the language K↑, the supremal controllable and relative-closed sublanguage of

K with respect to G [116, 55].

19

A controller we design, further restricts the behavior of the plant under maximally per-

missive supervision, with the property that it permits the execution of only one controllable

event following each trace, whenever at at least one such event is possible following that

trace. A controller is defined to be a mapping, C : K↑ → Σc ∪ {ε}:

∀s ∈ K↑ :

C(s) 6= {ε} if (K↑\s) ∩ Σc 6= Φ

C(s) = {ε} otherwise

As with a supervisor, the uncontrollable events remain enabled.

2.3 Example: Control of a LEGO transporter

For the sake of illustration of SCT, we first present a simpler example of a LEGO r© trans-

porter system. In subsequent sections, the FSM modeling and supervisory control of the

test-bed LEGO r© factory are provided. A transporter, shown in Figure 2.2, moves between

home and extended positions, crossing a number of intermediary positions. An angle sensor,

Home position

rack

Gearbox motor

Position 0 Position 1

pinion

angle sensor

Extended position

A1

M1

TRANSPORTERFIXTURE

Figure 2.2: Schematic of the transporter

A1, is used to determine when the transporter is either in the extended, f, intermediate, a,g,

or the home position, l. The forward and reverse direction motor commands are Ifon and

Iron respectively, while the corresponding stop commands are Ifof and Irof.

An automaton model of the system is constructed by considering all possible sequence of

events possible in the plant starting from the initial state. We assume that the initial state

of the system is when all the actuators are off (Irof, Ifof) and the transporter is in retracted

position (l). In the initial state the controllable events Ifon, and Iron, are possible. Ifon

will cause the transporter to leave the home position in the forward direction and enter the

intermediary position, a. On the other hand, the Iron command will not change the position

of the transporter as it already is in the home position. In this way the automaton model is

constructed by considering all possibile events, at all the possible states reachable from the

20

initial state. In the FSM models controllable transitions are indicated by a short line drawn

across the transitions. Filled circles in the FSM models represent marked or acceptable

behavior of the system. The FSM model of the transporter system is shown in Figure 2.3.

l

V4V3
V2

Ifon

Ifof

a

Ifof
Ifon

Ifof
Ifon

Iron

Irof
Iron

Irof
Iron

Irof

Home
position position

Extended

V6V7

V1

V8

V5V9

g

f

Figure 2.3: Overall FSM model of the transporter

2.3.1 Specification Models

Safety specifications are concerned with the safe operation of the plant and must be enforced

regardless of what task the plant is performing. The progress specification is used to spec-

ify the specific task the plant needs to perform. Since the prefixes of safe operations must

themselves be safe, safety specifications are prefix closed. In contrast, the progress specifi-

cations are non-prefix closed. The safety specifications for the model is shown in Figure 2.4,

which indicate that when the transporter reaches the extended position the forward motor

should no longer be kept on, and similarly when the transporter reaches the home position

the reverse motor should not be kept on. The progress specification is also shown in Fig-

c c c c

ccc

c

gfa l
c

P1 P2 P3 P4 P5

a f

gl S2S1 S3

−Ifon−Iron

Progress Specification

: Set of controllable events: Ifon, Ifof, Iron, Irof

Safety Specification

Σ Σ Σ Σ

ΣΣΣ

Σ

Σ

Figure 2.4: Safety and Progress specification FSM models

ure 2.4, wherein the transporter should commence movement from the home position, travel

21

until the extended position and return to home, whence all movement should be turned off

permanently, i.e., the cycle should not be repeated.

2.3.2 Supervisor Synthesis and Controller Extraction

l

Ifon

a

Ifof

Irof Irof

Home
position position

Extended

g

f

R1

R2
R3 R5

R6

R7R8R10

Irof

R11

l

Ifon

Ifof

a

IfofIfof
Ifon

Iron
Irof

Iron
Irof

Home
position position

Extended

g

f

R1

R2
R3 R5

R6

R7R8

R9

R4

R10

Irof

R11

Supervisor for Transporter System

Controller for Transporter System

Figure 2.5: Supervisor and Controller FSM models

An overall FSM model of the specifications is first obtained by taking a synchronous

composition of the safety and progress specifications, yielding a combined specification having

5 states. For computing a supervisor, we use the DES software toolkit, and this yields a

supervisor for the transporter system having 11 states. The supervisor and one of the possible

candidate controllers is shown in Figure 2.5. Note that at any stage of the assembly process

the controller enables at most one controllable event.

2.4 Description of LEGO Assembly Line

This miniature assembly line simulates the conditions under which actual automobile

assembly take place, and involves: motors which drive mechanisms which in turn cause the

assembly of the roof-chassis to take place; a transporter to move the semi-finished product

22

through various stages of the assembly; and sensors which bring back the status of the present

plant conditions to the LEGO DACTA controller.

The pieces to be assembled are shown in Figure 2.6. The miniature factory is made

ROOF

CHASSIS

After Pressing OperationBefore Pressing Operation

Figure 2.6: Partially assembled car

entirely out of LEGO blocks and contains 8 sensors and 9 motors, also provided by LEGO.

The factory layout required for implementing this, and to provide for material handling and

storage capabilities is given in Figure 2.7.

M5

T4

M7

M6

M8b

A5

M1

L8

M8a

L6L7

M2

M3

CONVEYOR

T2 T3

ROOF PRESS

PUSHER

WINDING

CHASSIS

LOADER

ROOF

PUSHER PUSHER

UNLOAD

PUSHER

ROOF CONVEYOR CHASSIS CONVEYOR

 SPOOL

PRESS

WINDER

PRESS

AREA

STAGING

FIXTURE

T1

ROOF

LOADER

M4

RACK

TRANSPORTER

CHASSIS

SECTION

ROOF
SECTION

PRESS

SECTION
CHASSIS

UNLOADING

SECTION

UNLOAD

Figure 2.7: Schematic of the plant layout

The factory is controlled by one personal computer, which is interfaced with the assembly-

line through a LEGO Control Lab Interface Box. This interface box has 8 sensor

inputs, four of which accommodate passive (binary) sensors viz. touch; while the other four

23

accommodate active (continuous valued) sensors viz. light or angle. Touch sensors return

a value of boolean value when depressed, indicating their logic status. Light sensors return

the light intensity reflected into the sensor’s detector, either as a percentage or as a raw

number. Angle sensors which are always connected to a rotating axle, report either the

angle in degrees or the number of revolutions turned.

In addition to sensor inputs, the interface box also provides eight motor outputs. The

power and directions of the motors, as well as the overall logic of the plant can be controlled

through the Control Lab Software which is written in a special version of the “Logo” pro-

gramming language, called Control lab. Complete control of the operations involved in

the assembly is done through this MS-WINDOWS based software. In our setting, control

of the plant is done using LEGO commands obtained from the controller designed using

supervisory control.

The capability of the system under investigation is quite extensive and we limit it by

imposing certain restrictions which are as follows:

• We do not change the speed of any of the motors without first stopping them, even

though this is possible through the software. Also if the direction of the motors have

to be changed then they are brought to a stop prior to being enabled for rotation in

the opposite direction.

• Owing to the limitations in the number of sensors available to us, for the purpose of

control of the model, we do not use the events which correspond to the operation of

either of the loaders, or to that of the unloading conveyor. Instead we work with the

information available to us, and assume the occurrence of events which imply other

events. For example, the departure of the unloading pusher from its retracted position

and its subsequent return imply that if a loaded fixture was present at the unloading

section then that part has been offloaded. Note that although such situation can be

handled by the SCT with partial observation [66], but that is beyond the scope of the

present study.

• We assume that the parts are loaded only when the conveyers are stationary.

• We do not consider the case of motor or sensor failures.

• The controllable events in the system are assumed to be disabled unless explicitly

enabled.

24

• We start our system assuming the transporter is referenced, i.e., A5 reads 0 rotations,

all the motors are off, touch sensors indicating the chassis T2, roof T3 & unloading L8

light sensor pushers are retracted, i.e., “On”, and that the roof press touch sensor T4

is raised. Refer to Figure 2.7.

2.5 Plant Models

The plant is modeled using deterministic FSM models. Instead of having a single incom-

prehensible model for the system, and to make FSM designing simpler, we develop smaller

sized sub-models of the system. The entire system is partitioned into different sections and

models are developed for each section separately. Thus the intricacies of having a large model

is avoided, and the time of development required for the smaller models is substantially less.

The plant model is composed of individual models for the transporter, chassis, roof, press

and unloading sections. Since it is the transporter that co-ordinates the entire assembly

process, the primary model of the system as a whole is developed around it. It is implicit

in all the models that those events that do not appear in the FSM of the particular section,

appear as self-loops on all the states. Self-loops are just a way of indicating that the current

state of this particular section is in no way affected by the occurrence of that event in some

other section. To obtain the overall behavior of the plant, a strict synchronous operation of

the different subsections is taken.

The actuator & sensor signals and their events used for modeling the plant are given in

Figure 6.1. Each state in the plant model can potentially be one of the final states, which

indicates completion of specific tasks. This fact is shown in the plant FSM models by using

filled circles to mark the states. In order to determine which of the states is a final state,

the progress specifications, described in Section 2.7, are used, as shown later in Section 2.8.

Progress specifications determine the markings on the plant model.

2.5.1 Transporter (Fixture Slide)

This forms the backbone of the entire assembly line. Parts are transported from one

assembly section to another via the transport mechanism, which essentially consists of a

fixture that is connected to one end of a rack that is moved by a pinion powered from a

gear box motor, M1. An angle sensor, A5, mounted on the same shaft as that of the

pinion, counts off the number of rotations of the axle through it, in order to determine the

25

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

 Corresponding to different angle positions

= { a, b, c, d, e, f, g, h, i, j, k, l }

Σ
(c)I

Corresponding to transporter forward/reverse on/off

 }= { Ifon, Ifof, Iron, Irof

Σ
c

Σ
c

: set of all eventsΣ

ICdn : − { f }

− { d, h }

− { l }

− { b, j }

IRdn :

IPdn :

IUdn :

(transporter not at the chassis section)

(transporter not at the roof section)

(transporter not at the press section)

(transporter not at unloading section)

Σ

I
: set of all events Σ in the transporter

: set of all controllable events {Ifon/of, Iron/of, cCon/of, cPon/of, rCon/of, rPon/of, pPfon/of, Pron/of, wPon/of, pcUon/of}

: set of all uncontrollable events = Σ −
uc

pCup/dn: chassis pusher retracted/not−retracted output events

pRup/dn: roof pusher retracted/not−retracted output events

dRdn/up: part present/absent at roof station dock output events

dCup/dn: part present/absent at chassis station dock output events

pcUon/of: unloading pusher and conveyor motor on/off input events

pUup/dn: unloading pusher retracted/not−retracted output events

No

No

No

No

M8

L6

T3

L7

L8

T2

cCon/of: chassis conveyor motor on/off input events

pCon/of: chassis pusher motor on/off input eventsM3

pPfon/of: press pusher motor on/off input events

pPron/of: press pusher motor on/off in reverse dirn. input events

wPon/of: press winding motor on/off input events

pPup/dn: press pusher retracted/not−retracted output events No
wPup/dn: press weight raised/lowered output eventsT4

pRon/of: roof pusher motor on/off input events Yes

cRon/of: roof conveyor motor on/off input eventsM4

M5

T1

M7

M6

M6

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Press

Roof

Chassis

Unloading

Ifon/of: indexing slide motor on/off forward dirn. input events

Iron/of: indexing slide motor on/off reverse dirn. input events

a : Indexing slide leaving home station during forward movement output event

c/k : Indexing slide leaving press station during forward/reverse movement o/p events

d/h : Indexing slide at roof station during forward/backward movement o/p events

b/j : Indexing slide at press station during forward/reverse movement output events

l : Indexing slide at home or unloading position during reverse movement o/p event

f : Indexing slide at chassis station during reverse movement optput event

g : Indexing slide leaving roof station during forward/reverse movement o/p event

No
No

No

No

No

No

No

M1

M1

A5

A5

A5

A5

A5

A5

A5

Signals Events Controllable

Yes

Yes

Transporter

No

M2

Section

Additional legends used in FSM models

Figure 2.8: Legend of signal and event labels

26

position of the fixture. The FSM model of the transporter is given in Figure 6.2. Initially the

a b c d e f

ghijkl

Ifon
Ifon Ifon Ifon Ifon Ifon

Ifof Ifof Ifof Ifof Ifof Ifof

Iron

Ifon

Ifof

Irof

Iron Iron Iron Iron Iron

Irof Irof Irof Irof Irof

V1

V4 V8
V2

Irof

V18 V17 V15 V14 V12 V11
V10

V5 V6 V7V3

Legend:

Iron/of:

Ifon/of:

Chassis
positionpositionpositionposition

Home
V16 V13 V9V20V21

RoofPress
V19

transporter motor forward dirn. on/off input events

transporter motor reverse dirn. on/off input events

a/l: output events for indiating transporter leaving/arriving at, the home-unloading section

{b, j}/{c, k}: output events for indicating transporter arriving at/leaving, the press section

{d, h}/{e, i}: output events for indicating transport arriving at/leaving, the roof section

f/g: output events for indicating transporter arriving at/leaving the chassis section

Figure 2.9: Transporter FSM model

transporter in the home position V1 (refer Figure 6.2). It can either be switched on in the

forward or reverse directions by the action of motor events Ifon and Iron respectively. Since

from the home position only forward movement is possible, the motor event Ifon results in

sensor event a indicating that the slide has left the home position. Proceeding in this fashion

we model the movement of the slide until it reaches the chassis section. This is denoted by

the sensor event f. At this state (V8), the forward movement can be switched off with the

motor event (Ifof) bringing the system to state V9. Other states in the transporter FSM can

be obtained by tracing out the actuator-sensor event flow for this section.

2.5.2 Chassis

The chassis conveyor conveys parts to its docking area. The chassis dock acts as a buffer

with a capacity of one part. Parts are pushed off the dock by a chassis pusher, onto the

empty fixture attached to the transporter. Sensors monitor the retracted position of the

pusher and presence of part on the dock. The FSM models of the chassis section operations

is given in Figure 2.10. It consists of two automata models. A 15 state automata shows the

behavior of the plant events in the chassis section. An additional 2 state automata is shown

to indicate that, owing to mechanical considerations, it is not possible for the chassis pusher

27

to advance unless the transporter slide with the fixture is stationed in front of the chassis

station’s loading dock.

2.5.3 Roof

The roof conveyor conveys parts that are loaded on it, onto the roof dock which also has

a buffer size of one. A part is pushed off the dock onto an waiting transporter by the roof

pusher. Sensors monitor the retracted position of the pusher and presence of part on the

dock. The FSM model of the roof section operations is given in Figure 2.10.

2.5.4 Press

The pressing of the roof and the chassis is done by releasing a weighted LEGO block onto

a properly positioned transporter carrying the roof-chassis combination. The mechanism is

controlled by a press pusher and Winding motor. Initially the pusher is advanced so that

the weighted block is suspended at a certain height. When the pusher retracts the weight

descends and presses the pieces together. After this the pusher is advanced again so as

to mesh with the winding motor gears, which when switched on raises the block up again.

The retracted position of the pusher and the raised position of the block are monitored by

sensors. The FSM model of the press section operations is given in Figure 2.11.

2.5.5 Unloading

The unloading conveyor conveys parts that are pushed onto it by the unloading pusher.

There is a sensor for monitoring the retracted position of the pusher. The FSM model of

the unloading section is given in Figure 2.11. consists of two automata. The behavior of the

unloading section is modeled by the four state automata. Owing to mechanical considerations

it is not possible for the unloading pusher to advance unless the transporter slide with the

fixture is stationed in front of the unloading station’s loading dock. This is indicated by the

2 state automata in Figure 2.11.

2.6 Safety Specification Models

Since the safe operation of the plant is mainly concerned with the safe enabling of con-

trollable events, many of the models are drawn considering a particular output being on or

28

cCof cCon

pCon

pCof

cCof
cCon

pCon

pCof

pCdn

pCup
pCof

pCdn

dCup

pCon
cCon

cCon

dCup

cCof

pCon

pCof

pCdn

pCdn

pCof

pCon

cCof

cCon

cCon

cCof

pCof
pCon

cCof
cCon

cCon

dCdn

cCof

cCon

C1

C2

C5

C6

C7C8

C9

C13

C14
C15

C12C3

C10

C4

C11

C10

cCon/of: chassis conveyor motor on/off input events
Legend: pCon/of: chassis pusher motor on/off input events

pCup/dn: chassis pusher retracted/not-retracted output events

f: output event indicating transporter arriving at chassis section during it’s forward movement
ICdn: set of events indicating transporter is not at the chassis section

dCup/dn: output event indicating part present at the chassis section’s dock

: Dashed circle indicating no events possible from this state

R1

R2

R8

R9

R7

R11

R15
R13

R14

R6

R5

pRon

pRof

cRoncRof

pRof

pRon

cRon
cRof

pRof
pRon

pRof

pRof

cRon
cRof

pRon

cRof

cRon

pRon
cRon

pRon

cRof

cRon

cRon

cRof

cRof

cRon

cRon

pRof

dRdn
dRdn

pRdn

pRdn
dRuppRdn

pRdn

pRup

R4

R10

R3 R12

Legend: pRon/of: roof pusher motor on/off input events
cRon/of: roof conveyor motor on/off input events

pRup/dn: roof pusher retracted/not-retracted output events

dRdn/up: output event indicating part present/not-present at the roof section’s dock
R10: dashed circle indicating no events possible from this state

f

Σ

ICdn
C20 C21

- {pCdn, f} Σ

Chassis FSM Model

Roof FSM Model

Figure 2.10: FSM models of the chassis and roof sections

29

Σ

l

IUdn

 - {pUdn, l} Σ - IUdn

pUdn

pUup pcUon

pcUofpcUon

pcUof

pUup/dn: output events for indicating pusher at the unloading section retracted/not-retracted

IUdn: set of output events indicting transporter not at the home/unloading section

P2 P1pPron

pProf

pPfon

pPfof

wPon
wPof

pPfon

pPfofpProf

pPron

wPofwPon

wPof
wPonpPup

pPup

wPon

wPof
pPfof

pPfonpPfon

pPfof

pPron
pProf

pPron

pProf
wPdn

pPron

pProf pPfon

wPdn

wPdn

wPon
pPfon

pPfof

wPdn

pProf

pPron
wPof

wPon

wPon

pPfof

pPfon

pPdn

wPdn

wPdn

wPof

wPup

wPup

wPup

wPof

wPon

pPron
pProf

wPon

wPof

pProf

pPron

P3

P4

P5

P6

P7

P8
P9

P10 P11

P12

P13

P14P15P16P17

P17

P18

P19

P20 P21 P22

P23

Legend: pPfon/of: press pusher motor forward on/off input events
pPron/of: pusher motor reverse on/off input events

wPon/of: press winding motor on/off input events

pPup/dn: press pusher retracted/not-retracted output events

wPup/dn: output event indicating press weight raised/not-raised at
P17: dotted circle indicating no events possible from this state

wPon
wPof

pPup

pPup

pPup

wPdn

Press FSM Model

Unloading FSM Model

Legend: pcUon/of: unloading pusher-conveyor motor on/off input event

Figure 2.11: FSM models of the press and unloading sections

30

off, and whether some other transition can be safely turned on under that condition. There

are a total of sixteen safety specifications for the entire plant model. Six of them are related

to multiple sections, and hence are called global specifications. The remaining ten are related

to the safety required for the operation of individual sections, and hence are called local.

2.6.1 Global Safety Specifications

Many of the specifications require interactions between the transporter and the different

sections of the assembly line. For the purpose of modeling it is convenient to group many of

the uncontrollable transporter events listed in Figure 2.12.

The 6 global safety specifications for the plant are enumerated next and their FSM models

are given in Figure 2.12:

1. Global safety specification 1, K1 (Figure 2.12)

This model pertains to the chassis section and to the transporter. The chassis pusher

M3 should not advance if the transporter is not at the chassis section i.e. A5 = 80.

2. Global safety specification 2, K2 (Figure 2.12)

This model pertains to the roof section and to the transporter. The roof pusher M5

should not advance if the transporter is not at the roof section i.e. A5 = 52.

3. Global safety specification 3, K3 (Figure 2.12)

This model pertains to the press section and to the transporter. The transporter M1

should not move if the press is lowered i.e. T4 off.

4. Global Safety specification 4, K4 (Figure 2.12)

This model pertains to the unloading section and to the transporter. The unloading

pusherM8 should not advance if the transporter is not in the home/unloading position

A5 = 0.

5. Global safety specification 5, K5 (Figure 2.12)

This model pertains to the press section and to the transporter. The press pusherM6

should not move back if the transporter is not under the press section A5 = 21.

6. Global safety specification 6, K6a,K6b (Figure 2.12)

This model pertains to the press section, the unloading section and to the transporter.

31

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

Σ
(uc)I

 Corresponding to different angle positions

= { a, b, c, d, e, f, g, h, i, j, k, l }

Σ
(c)I

Corresponding to transporter forward/reverse on/off

 }= { Ifon, Ifof, Iron, Irof
I

: set of all events Σ in the transporter

Legend: Σ : set of all events

Σ

f

ICdn
Σ −

Legend: f: output event indicating transporter at the chassis section

ICdn: set of output events indicating transporter

pCon: pusher motor at the chassis section on

not at the chassis section

Σ

d, h

IRdn
Σ − {pRon; d, h}

pRon: pusher motor at the roof section on

Legend: d, h: output events indicting transporter at the roof station

the roof section
IRdn: set of output event indicating transporter not at

K1

Σ
wPdn

wPup

Σ − {Ifon, Iron; wPup}- wPdn

Legend: wPup: output event indicating press weight raised

wPdn: output event indicating press weight lowered

K3

Legend: l: output event indicating transporter at the unloading section

Σ

b, j

IPdn
Σ − - IPdn

the press section

{pPron; b, j}

IPdn: set of output event indicating transporter not at

K5

Σ

l

IUdn
Σ −

pUon: unloading pusher-conveyor motor on input event

the unloading section
IUdn: set of output events indicating transporter not at

pCup

pCdn

pCup: signal for pusher at the chassis section retracted

Ifon: transporter motor forward dirn. on

Iron: transporter motor reverse dirn. on

Legend: pCdn: signal for pusher at the chassis section not retracted

Σ Σ − {Ifon, Iron; pCdn}- pCdn

- {ICdn, f } {pCon; f } - {IRdn, d, h }

- {IUdn, l } {pUon; l }

Legend: b, j: output events indicating transporter at the press

pPron: press pusher motor reverse dirn. on input event

Iron: transporter motor reverse dirn. on input event
Ifon: transporter motor forward dirn. on input event

K6a

K4

K2

Σ

pUup

pUdn
Σ − {Ifon, Iron; pUup}

Ifon: transporter motor on in forward dirn. input event

K6b

Legend: pUdn/up: unloading pusher not retracted/ret. o/p events

- pUdn

ICdn : - { f }

- { d, h }

- { l }

- { b, j }

IRdn :

IPdn :

IUdn :

(transporter not at the chassis section)

(transporter not at the roof section)

(transporter not at the press section)

Iron: transporter motor on in reverse dirn. input event

(transporter not at unloading section)

Figure 2.12: Global safety specifications, K1−K6

32

The transporter M1 should not move unless the retracted signals from the chassis

pusher T2 and the unload pusher L8 are received.

2.6.2 Local Safety Specifications

There are ten such specifications, 3 for the chassis and the roof each, and 2 for the press

and the transporter each. The FSM models for these specifications are given in Figure 2.13.

1. Local safety specification 1, K7 (Figure 2.13)

This model pertains to the chassis section. If the chassis pusher T2 is not retracted, the

chassis conveyorM2 cannot be switched on, and the chassis pusherM3 be prevented

from turning off.

2. Local safety specification 2, K8 (Figure 2.13)

This model pertains to the chassis section. If the chassis pusher motor M3 is on, the

chassis conveyor M2 may not be switched on and vice versa.

3. Local safety specification 3, K9 (Figure 2.13)

This model pertains to the chassis section. If there is a part on the chassis dock L6,

then the chassis conveyor M2 should be switched off. On the other hand when there

is no part on the dock then the chassis pusher M3 should not be switched on.

4. Local safety specification 4, K10 (Figure 2.13)

This model pertains to the roof section. If the roof pusher T3 is not retracted, the

chassis conveyor M4 cannot be switched on, and the roof pusher M5 be prevented

from turning off.

5. Local safety specification 5, K11 (Figure 2.13)

This model pertains to the roof section. If the roof pusher motor M5 is on, the roof

conveyor M4 may not be switched on and vice versa.

6. Local safety specification 6, K12 (Figure 2.13)

This model pertains to the roof section. If there is a part on the roof dock L7, then

the roof conveyorM4 should be switched off. On the other hand when there is no part

on the dock then the chassis pusher M5 should not be switched on.

33

pRup

Σ −
excluding these 4

{cRon, cRof, pRon, pRof}: set of eventsι :

Σ −
excluding these 4

{cCon, cCof, pCon, pCof}: set of events

Σ − ψ : {pPfon/of, pPron/of, wPon/of}: set of events

excluding these 6

pCup

pCdnΣ Σ − - {pCdn, pCup} {cCon, pCof; pCup, pCdn}

K7

pRdnΣ - {pRdn, pRup} Σ − {cRon, pRof; pRup,pRdn}

K9

pRon cRon

cRofpRof

ι
ι

ι

dRup

Σ - {pRon; dRdn, dRup} dRdn Σ − {cRon; dRup, dRdn}

Σ Σ −

IUdn

- {l, IUdn} l {Iron; l }

cCon: chassis conveyor motor on input event

pCof: chassis pusher motor at off input event

Σ −

dCdn

-Σ {pCon; dCup, dCdn} dCup {cCon; dCup, dCdn}

cCon: chassis conveyor motor on input event

pCon: chassis pusher motor on input event

pCon cCon

pCof cCof

π
ππ

π:
cCon/of: chassis conveyor motor on/off input events

cCon/of: roof conveyor motor on/off input event

pPfon

pPfof

pPron

pProf

wPof
wPon

ψ ψ

ψ

ψ

K13

pPron/of: press pusher reverse on/off input events

wPon/of: press winding motor at on/off input events Σ

ICdn

f
Σ − - {f, ICdn} {Ifon; f }

wPup

wPdnΣ - {wPon; wPup, wPdn} Σ - {wPup, wPdn}

wPup: output event for press raised

wPon: press winding motor on input event

Iron: transporter motor reverse dirn. on input event

Legend: f: o/p event for transporter at the chassis section

ICdn: set of o/p events for transporter not at chassis section

Ifon: transporter motor forward dirn. on input event

K11

pRdn: o/p event for pusher at the roof section not ret.

cRon: roof conveyor motor on input event

pRon: roof pusher motor on

dRup: o/p event for no part at the roof section’s dock

pRon: roof pusher motor on input event

cRon: roof conveyor motor on input event

pCdn: pusher at chassis section not retracted input event

dCdn: o/p event for no part at chassis station’s dock

K8

K10

K12

K14

K16

IUdn: set of o/p events for trans. not at unloading section

K15

Legend: pCup: pusher at chassis section retracted output event

Legend: dCup: o/p event for part present at chassis section’s dock

Legend: pCon/of: chassis pusher motor on/off input events

Legend: pRup: o/p event for pusher at the roof section retracted

Legend: dRdn: o/p event for part present at the roof section’s dock Legend: pRon/of: roof pusher motor on/off input event

Legend: wPdn: output event for press not raised

Legend: pPfon/of: press pusher forward on/off input events

Legend: l: o/p event for transporter at the unloading/home section

Figure 2.13: Local safety specifications, K7−K16

34

7. Local safety specification 7, K13 (Figure 2.13)

This model pertains to the press section. If the press pusher motorM6 is on in either

direction, the press winding motor M7 may not be switched on and vice versa.

8. Local safety specification 8, K14 (Figure 2.13)

This model pertains to the press section. The winding motor M7 should be stopped

if the press up signal T4 exists.

9. Local safety specification 9, K15 (Figure 2.13)

Backward motion of the referenced transporterM1 is not permitted if the angle sensor

readsA5 0 rotations, i.e., when it is in its initial state. This pertains to the transporter.

10. Local safety specification 10, K16 (Figure 2.13)

This model pertains to the transporter. Forward movement of of the referenced trans-

porter M1 is not permitted if the angle sensor reads A5 80 rotations, i.e., it is at the

chassis section.

2.7 Progress Specification Models

The progress specification is specific to a particular product being assembled, and es-

sentially requires a certain order of uncontrollable events to be followed. For the present

example this governs the way in which the assembly of the automobile is done in the plant.

It is represented by the specification language K17.

The overall task is broken down into the cyclic execution of the four subtasks:

• Move the transporter to the chassis section and start chassis operations (sub-task ST1).

• Move the transporter to the roof section and start roof operations (sub-task ST2).

• Move the transporter to the press section and start roof operations (sub-task ST3).

• Move the transporter to the unloading section and start unloading operations (sub-task

ST4).

Refer to Figure 2.14 for the procedure followed in the assembly line under this progress

specification.

The progress specification has only one state marked, the initial one, indicating that the

final and initial positions are the same and that the cycle can repeat indefinitely.

35

: set of events excluding these 3: {dRdn, pRup, h}ϕ: Σ −

Σ − δ: : set of events excluding these 3{pPup, wPup, j}

κ : set of events excluding those that do not appear as

α

dCup pCup

α α

f

α

: set of events excluding these 3: α: Σ − {dCup, pCup, f}

ϕ

pRupdRdn

ϕ ϕ

h

ϕ

ηδ

wPupj

δ δ δ

pPup

pCup: o/p event for hassis pusher retracted

f : o/p event for transporter at the chassis section

pRup: output event for rroof pusher retracted

h : o/p event for transporter at the roof section during its retraction

η

pUup

η

l

: set of events excluding these 2{pUup, l}Σ − η:
l : o/p event for transporter at the unloading position during retractionj : o/p event for transporter at the press station during retraction

Legend: wPup: output event for weight raised at the press section

pPup: output event for press pusher retracted

κκκ

κ

Legend:

K17

ST1 ST2

ST3 ST4

ST1 ST2

ST3

ST4

ST1 : sub-task related to chassis assembly line activity

ST2 : sub-task related to roof assembly line activity

ST3 : sub-task related to press assembly line activity

ST4 : sub-task related to unloading assembly line activity

self loops in the progress specification machines ST1-ST4

Legend: dCup: o/p event for part present on the chassis section’s dock Legend: dRdn: o/p event for part present on the roof station’s dock

Legend: pUup: output event for pusher retracted at the unloading section

Figure 2.14: Global progress specification, K17, and sub-tasks ST1− ST4

Next we present the individual sub-task specification models.

1. Sub-Task 1

Refer to Figure 2.14 for the progress specifications which is related to the chassis section

wherein the chassis conveyor starts causing a part to be delivered to the chassis dock.

The chassis pusher then comes on, delivering the part to the fixture attached to the

transporter. The chassis section needs to perform the following sequence of operations:

• Wait for the transporter to reach the chassis section (f).

• Wait until light sensor L6 turns on (dCup), indicating part on dock.

• Wait until when sensor T2 turns on (pCup), indicating chassis pusher back.

2. Sub-Task 2

Refer to Figures 2.14 for the progress specifications which is related to the roof section

wherein the roof conveyor starts causing a part to be delivered to the roof dock. The

roof pusher then comes on delivering the part to the waiting transporter’s fixture. The

roof section needs to perform the following sequence of operations:

36

• Wait for the transporter to reach the roof section (h).

• Wait until light sensor L7 turns off (dRdn), indicating part on dock.

• Wait until when sensor T3 turns on (pRup), indicating roof pusher back.

3. Sub-Task 3

Refer to Figures 2.14, for the progress specifications which is related to the press section

wherein the press pusher retracts causing the press to descend. Immediately after that

the press pusher advances, and engages with the winding motor. The winding motor

stars up and the press is raised the top position being sensed by a sensor. The press

section needs to perform the following sequence of operations:

• Wait for the transporter to reach the press section (j).

• Wait for sensor T1 to be turn on (pPup).

• Wait for T4 to turn on, indicating that the press is raised (wPup).

4. Sub-Task 4

Refer to Figure 2.14 for the progress specifications which is related to the unloading

section wherein the unloading conveyor starts causing a part delivered to be the staging

area. The unloading section needs to perform the following sequence of operations:

• Wait for the transporter to reach the unloading section (l).

• Wait until light sensor L8 turn on (pUup), indicating part on dock.

Remark 1 The progress specifications may vary for different possible objectives for which

the plant is being used (the desired flow of operations in different sections and for the system

as a whole will vary). Thus, for example, instead of making an automobile, we may instead

choose to do a simple transport activity. This would cause the progress specifications to be

altered, even though the previous safety specifications will still needed to be enforced.

2.8 Supervisor Synthesis and Controller Extraction

For the purpose of supervisor synthesis, each of the plant sub-models is first completed with

respect to the entire alphabet of the system. This is done by adding self-loops on those

transitions that do not exist is a particular sub-machine, but are present in the alphabet

37

of the plant. Next a synchronous composition of these sub-models is taken yielding a state

space for the plant models of size around 8×105. On proceeding in a similar fashion with the

specification models we obtain their size to be that of comparable order as that of the plant.

For computing a supervisor, we use the supervisory control toolkit available at the University

of Kentucky (www.engr.uky.edu/∼kumar). The overall safe and progress specification is

determined to be controllable, and relative-closed and hence the overall specification FSM

serves as the maximally permissive supervisor.

In order to manage the computational complexity, we use a modular approach to ver-

ify the controllability and relative-closure of the intersection of all safety (K1 − K16) and

progress (K17) specifications. First we verify the controllability of individual safety spec-

ifications against the relevant portions of the plant. For example, the first local safety

specification K7 concerns the operation of the chassis section. So we verify its controlla-

bility against the model of the chassis section only, which as shown in Figure 2.10 has 30

states. Since K7 has 2 states, the complexity of this verification is O(60). Proceeding in

a similar fashion the controllability of other local safety specifications is verified. Next, for

each global safety specification which involves more than one section, we use the synchronous

composition of the FSM models of the relevant sections as the plant model and reform the

controllability test. For example, the plant model for the sixth global safety specification K6

comprises of the synchronous composition of the FSM models of the chassis, the transporter,

and the unloading sections. Finally, since the individual safety specifications are controllable

and prefix closed we conclude that their intersection is also controllable and prefix closed.

It remains to verify the controllability and relative-closure of the progress specification

K17, and its non-conflictingness with respect to the intersection of all the safety specifications

K := ∩16i=1Ki. Since the plant marking is determined solely by the progress specification,

Lm(G) := K17 ∩ L(G). Then we have

K17 ∩ Lm(G) = K17 ∩K17 ∩ L(G) ⊆ K17,

i.e., K17 is relative-closed. We establish the controllability of K17 by viewing it as a cyclical

concatenation of the four sub-tasks. The first sub-task starts in the initial state of the

plant and upon completion sends the plant to a final state, which can be treated as the

initial state of the second sub-task. We verify the controllability of each of the subtasks

against the relevant portion of the plant which is appropriately initialized and terminated.

This let us perform the controllability test of the progress specification modularly, where

modularity stems from the sequential (as opposed to parallel) decomposition of the progress

38

specification.

Next we establish that the intersection of the safety specifications K and the progress

specification K17 is non-conflicting. We observe that the progress specification never vio-

lates any of the safety, i.e., K17 ⊆ K = K, which also implies K17 ⊆ K = K. These

automatically give us the non-conflictingness property since,

K17 ∩K = K17 = K17 ∩K.

Finally we are interested in obtaining a controller for the supervised plant. One particular

controller candidate, having 49 states, is shown in Figure 2.15. It is obtained by selecting at

most one controllable event, when possible, from among the ones allowed by the maximally

permissive supervisor. Note that at any stage of the assembly process the controller enables

at most one actuator (controllable) event to occur, and then waits for the response of the

system in the form of a sensor (uncontrollable) event. This procedure is repeated until the

task specified by the progress specification is completed while always following operating in

the safe region.

a b c d e f

gjl

Ifon

V1

V3 V4 V5 V6 V7 V8

V9

V10V11V14V15V17V18

V2

Iron

V12

Irof

h

pCof
pRof

R1

R2

R3

R4

R5

R6

R7R8

Iron

i

V13

R9

pPup

wPdn

pProf

pPfon

pPdn

pPfof

wPon

wPup

wPup

pPron

Irof

Iron

kIrof

pcUon

pUdnpUup

cRon

dRdn
cRof

cRof

pRon

pRdndRup

pRup

pRdn

V16
U1

U1U2

U3

U4

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

C3

cCof

pCon

C5

C4

cCon

pCof pCup

dCup

pCdn

C1

C2
C6

C7C8

dCdn

pCdn

Ifof

cCof
pcUof

Figure 2.15: Controller for LEGO assembly line

The controller chosen for implementation is translated into LEGO commands in a direct

way, as there exists a one-to-one correspondence between plant events and the actuator

commands to be executed or the sensor inputs to be monitored. A portion of the control

lab code corresponding to Figure 2.15, is provided as reference. Only in those places where

39

a controllable event needs to be enabled is the control lab code inserted. Those states in the

FSM where only uncontrollable events occur and have no controllable transitions leading out

of them need no additional action to be enabled by the controller. So, for example, when the

transporter is moving from the home/unloading section to the chassis section it monitors the

occurrence of events corresponding to its crossing the press and roof sections but does not

take any other action than monitor them. This is illustrated in the following Lego control

code fragment.

to main ; call the control program

tto "M1 ; reference M1, the transporter motor

setright ; set direction of movement ("Ifon")

on ; turn motor on

waituntil [A5=80] off ; monitor value of A5, the angle sensor at

; until it reaches 80 ("f") at chassis,

; section, then stop motor M1 ("Ifof")

.

.

.

launch[main] ; restart the control program for

; cyclic operation

end ; end of the control program

We choose a control scheme wherein for those states of the FSM where both a controllable

and uncontrollable event are permitted to occur, and if the controllable event is such that its

execution at this state will prohibit the occurrence of the uncontrollable event at any further

state we choose to execute the controllable one, rather than wait for the uncontrollable

one to occur. Such a case occurs in the Lego system while the transporter moves between

different section and we are able to control its movement its position precisely by switching

it off. Given the time constants in the system it is thus feasible to effectively pre-empt the

occurrence of uncontrollable events in some states.

The software has capability of switching outputs on and off; waiting until a variable has

reached certain boolean values prior to executing a command; certain amount of multitasking

for launching sub-processes that will run in the background; and repetitions of a desired task

sequences.

40

2.9 Conclusion

Implementation of the supervisory control theory for control of a miniature assembly line

built from LEGO blocks, has been carried out. The controller so derived is by its construction

guaranteed to be safe in operation, while also ensuring that the task for which it has been

constructed will be accomplished.

Any change in the system such as addition or removal of equipment and the expansion

of system operations to include new products types, can be easily incorporated by drawing

new FSM models of the specific components of the plant and changing the relevant safety,

progress specifications finite state machine models. Then, using supervisory control theory,

a new supervisor can be synthesized, and a controller extracted from it. This approach is a

generic one and can be applied to discrete event systems which are modeled as FSMs.

41

Chapter 3

Polynomial Time Diagnosis Algorithm

for DESs

3.1 Introduction

Failure diagnosis is a critical task in large and complex systems. This problem has

received considerable attention in the literature of various domains including the discrete

event systems [14, 39, 67, 98, 93, 111]. In [98], Sampath et al. proposed a failure diagnosis

approach for discrete event systems. They introduced the notion of diagnosability and gave

a necessary and sufficient condition for testing it. Their condition is expressed as a property

of the diagnoser of the system. In order to test the diagnosability, the diagnoser needs to be

constructed first. The complexity of constructing the diagnoser and testing the diagnosability

is exponential in the number of states of the system and doubly exponential in the number

of failure types.

It is clear that if we could test more efficiently whether or not a system is diagnosable

without having to construct a diagnoser, it would save us the time involved in constructing

a diagnoser for the system which may not be diagnosable. In this chapter, we give a method

for testing the diagnosability without having to construct a diagnoser. The complexity of

our method is polynomial in the number of states of the system and also in the number of

failure types.

In the rest of the chapter, we first introduce the notion of diagnosability of discrete

event systems, then present our algorithm for testing it. Finally, an illustrative example is

provided.

42

3.2 Diagnosability

We first give the system model and then define the diagnosability as introduced by [98].

3.2.1 System model

Let G = (X,Σ, δ, x0) be a finite state machine model of the system to be diagnosed,

where

• X is a finite set of states;

• Σ is a finite set of event labels;

• δ ⊆ X × Σ×X is a finite set of transitions;

• x0 ∈ X is the initial state.

We assume that all state machines are accessible (all states can be reached from the initial

state), and otherwise we consider only the accessible part of the state machine. We let Σ∗

denote the set of all finite length event sequences, including the zero length sequence denoted

ε. An element of Σ∗ is called a trace, and a subset of Σ∗ is called a language. For a trace s

and an event σ, we write σ ∈ s to imply that σ is an event contained in the trace s. A path

in G is a sequence of transitions (x1, σ1, x2, . . . , σn, xn) such that for each i ∈ {1, . . . , n− 1},

(xi, σi, xi+1) ∈ δ; this path is a cycle if xn = x1. We use L(G) ⊆ Σ∗ to denote the generated

language of G, i.e., the set of traces that can be executed in G starting from its initial state.

Then L(G) is prefix-closed, i.e., L(G) = pr(L(G)), where pr(L(G)) = {u|∃v ∈ Σ∗, uv ∈

L(G)} is the set of prefixes of traces in L(G). Let Σo ⊆ Σ denote the set of observable

events, Σuo = Σ−Σo be the set of unobservable events, M : Σ→ Σo∪{ε} be the observation

mask, F = {Fi, i = 1, 2, . . . ,m} be the set of failure types, ψ : Σ → F ∪ {∅} be the failure

assignment function for each event in Σ. The definition of M is extended from Σ to Σ∗

inductively as follows: M(ε) = ε and for each s ∈ Σ∗, σ ∈ Σ :M(sσ) =M(s)M(σ).

We make the following assumptions as in [98] for the system studied in this chapter.

A1 The language L(G) generated by G is live. This means that there is a transition defined

at each state x in X.

A2 There does not exist in G any cycle of unobservable events, i.e., (∃k ∈ N) (∀ust ∈

L(G), s ∈ Σ∗uo) ⇒ ||s|| ≤ k, where N denotes the set of natural numbers, and ||s||

denotes the length of trace s.

43

A3 Every failure event is unobservable, i.e., (∀σ ∈ Σ, ψ(σ) 6= ∅)⇒M(σ) = ε.

3.2.2 Diagnosability

The diagnosability for discrete event systems defined in [98] is described as follows:

Definition 1 A prefix-closed language L is said to be diagnosable with respect to the ob-

servation mask M and the failure assignment function ψ if the following holds:

(∀Fi ∈ F) (∃ni ∈ N) (∀s ∈ L, ψ(sf) = Fi) (∀v = st ∈ L, ||t|| ≥ ni)

⇒ (∀w ∈ L,M(w) =M(v)) (∃u ∈ pr({w}), ψ(uf) = Fi),

where sf and uf denote the last events in traces s and u respectively, pr({w}) is the set of

all prefixes of w. A system G is said to be diagnosable if its language L(G) is diagnosable.

The above definition states that if s is a trace in L ending with a Fi-type failure, and v

is a sufficient long (at least ni events longer) trace obtained by extending s in L, then every

trace w in L that is observation equivalent to v, i.e., M(w) = M(v), should contain in it a

Fi-type failure.

3.3 Algorithm

We now present the algorithm for testing the diagnosability.

Algorithm 1 For a given system G = (X,Σ, δ, x0) with an observation mask M and a

failure assignment function ψ, do the following:

1. Obtain a nondeterministic finite state machine Go = (Xo,Σo, δo, x
o
0) with language

L(Go) =M(L(G)) as follows:

• Xo = {(x, f) | x ∈ X1 ∪ {x0}, f ⊆ F} is the finite set of states, where X1 = {x ∈

X | ∃(x′, σ, x) ∈ δ with M(σ) 6= ε} is the set of states in G that can be reached

through an observable transition, and f is the set of failure types along certain

paths from x0 to x.

• Σo, the set of observable events, is the set of event labels for Go.

• δo ⊆ Xo × Σo × Xo is the set of transitions. ((x, f), σ, (x′, f ′)) ∈ δo if and only

if there exists a path (x, σ1, x1, . . . , σn, xn, σ, x
′) (n ≥ 0) in G such that ∀i ∈

{1, 2, . . . , n},M(σi) = ε, M(σ) = σ, and f ′ = {ψ(σi) | ψ(σi) 6= ∅, 1 ≤ i ≤ n} ∪ f .

44

• xo0 = (x0, ∅) ∈ Xo is the initial state.

2. Compute Gd = (Go||Go), the strict composition of Go with itself. Then

Gd = (Xd,Σo, δd, x
d
0), where

• Xd = {(x
o
1, x

o
2) | x

o
1, x

o
2 ∈ Xo} is the set of states.

• Σo is the set of event labels for Gd.

• δd ⊆ Xd × Σo ×Xd is the set of transitions. ((xo1, x
o
2), σ, (y

o
1, y

o
2)) ∈ δd if and only

if both (xo1, σ, y
o
1) and (xo2, σ, y

o
2) are in δo.

• xd0 = (xo0, x
o
0) ∈ Xd is the initial state.

3. Check whether there exists in Gd a cycle cl = (x1, σ1, x2, . . . , xn, σn, x1), n ≥ 1, xi =

((x1i , f
1
i), (x

2
i , f

2
i)), i = 1, 2, . . . , n, such that f 11 6= f 21 . If the answer is yes, then output

that the system is not diagnosable; otherwise output that the system is diagnosable.

This last step can be performed by first identifying states ((x1, f 1), (x2, f 2)) in Gd for

which f 1 6= f 2, and deleting all the other states and the associated transitions; and

next checking if the remainder graph contains a cycle.

In the following, we give two Lemmas showing some properties of the state machines Go

and Gd derived in Algorithm 1. The proofs are omitted here because they follow directly

from the definitions of Go and Gd.

Lemma 1 For the state machine Go the following holds:

1. L(Go) =M(L(G)).

2. For every path tr in Go ending with a cycle,

tr = ((x0, ∅), σ0, (x1, f1), . . . , (xk, fk), σk, . . . , (xn, fn), σn, (xk, fk)),

we have

• fi = fj for any i and j in {k, k + 1, . . . , n}.

• ∃uv∗ ∈ L(G) such that M(u) = σ0 . . . σk−1, M(v) = σk . . . σn, and

{ψ(σ) | σ ∈ u, ψ(σ) 6= ∅} = {ψ(σ) | σ ∈ uv, ψ(σ) 6= ∅} = fk.

45

Lemma 2 For every path tr in Gd ending with a cycle,

tr = (xd0, σ0, x1, . . . , xk, σk, . . . , xn, σn, xk),

xi = ((x1i , f
1
i), (x

2
i , f

2
i)), i = 1, 2, . . . , n, we have

1. there exist two paths tr1 and tr2 in Go ending with cycles, namely,

tr1 = ((x0, ∅), σ0, (x
1
1, f

1
1), . . . , (x

1
k, f

1
k), σk, . . . , (x

1
n, f

1
n), σn, (x

1
k, f

1
k)),

tr2 = ((x0, ∅), σ0, (x
2
1, f

2
1), . . . , (x

2
k, f

2
k), σk, . . . , (x

2
n, f

2
n), σn, (x

2
k, f

2
k)).

2. f 1i = f 1j and f 2i = f 2j for any i and j in {k, k + 1, . . . , n}.

Next we provide a theorem which guarantees the correctness of Algorithm 1.

Theorem 1 G is diagnosable if and only if for every cycle cl in Gd,

cl = (x1, σ1, x2, . . . , xn, σn, x1), n ≥ 1, xi = ((x1i , f
1), (x2i , f

2)), i = 1, 2, . . . , n,

we have f 1 = f 2.

Proof: For the necessity, suppose G is diagnosable, but there exists a cycle cl in Gd, cl =

(xk, σk, xk+1, . . . , xn, σn, xk), n ≥ k, xi = ((x1i , f
1), (x2i , f

2)), i = k, k + 1, . . . , n, such that

f 1 6= f 2. Since Gd is accessible, there exists a path tr in Gd ending with the cycle cl, i.e.,

tr = (xd0, σ0, x1, . . . , xk, σk, . . . , xn, σn, xk). Then from Lemma 2 we know that there exist

two paths tr1 and tr2 in Go with

tr1 = ((x0, ∅), σ0, (x
1
1, f

1
1), . . . , (x

1
k, f

1), σk, . . . , (x
1
n, f

1), σn, (x
1
k, f

1)),

tr2 = ((x0, ∅), σ0, (x
2
1, f

2
1), . . . , (x

2
k, f

2), σk, . . . , (x
2
n, f

2), σn, (x
2
k, f

2)).

Further from Lemma 1, we have ∃u1v
∗
1, u2v

∗
2 ∈ L(G) such thatM(u1) =M(u2) = σ0 . . . σk−1,

M(v1) = M(v2) = σk . . . σn, and {ψ(σ) | σ ∈ ui, ψ(σ) 6= ∅} = {ψ(σ) | σ ∈ uivi, ψ(σ) 6= ∅} =

f i, i = 1, 2. Since f 1 6= f 2, we suppose Fk ∈ f
1−f 2 6= ∅. Then ∃s ∈ L(G) such that ψ(sf) =

Fk and u1 = st for some t ∈ Σ∗. For any integer nk, we can choose another integer ` such

that ||tv`1|| > nk. Now we have M(u2v
`
2) = M(stv`1) and {ψ(σ) | σ ∈ u2v2, ψ(σ) 6= ∅} = f 2,

which means that no failure event of type Fk is contained in u2v
`
2. So from the definition

of diagnosability, G is not diagnosable. A contradiction to the hypothesis. So the necessity

holds.

46

For the sufficiency, suppose for every cycle cl in Gd, cl = (x1, σ1, x2, . . . , xn, σn, x1), n ≥ 1,

xi = ((x1i , f
1), (x2i , f

2)), i = 1, 2, . . . , n, we have f 1 = f 2. From the second clause of Lemma 2,

we know that the hypothesis implies that ∀x = ((x1, f 1), (x2, f 2)) ∈ Xd, if f
1 6= f 2 then x is

not contained in a loop. It further implies that for any state sequence (x1, x2, · · · , xk) in Gd

with xi = (x1i , f
1
i), (x

2
i , f

2
i)) for 1 ≤ i ≤ k, if f 1i 6= f 2i for all i ∈ {1, 2, · · · , k}, then the length

of the state sequence is bounded by the number of states in Gd, i.e., k ≤ |Xd|.

Now let s be a trace in L(G) ending with a Fk-type failure event, i.e., ψ(sf) = Fk, we

claim that ∀v = st ∈ L(G) with ||t|| > |Xd| × (|X| − 1), ∀w ∈ L(G) with M(w) = M(v),

there is a Fk-type failure event contained in w. From above, for any state x ∈ Xd that can

be reached from xd0 by executing M(s) in Gd, we have that for any state sequence starting

from x in Gd, a state y = ((y1, f 1), (y2, f 2)) ∈ Xd with f 1 = f 2 can be reached within

|Xd| − 1 steps. This implies that ∀v = st ∈ L(G) with ||M(t)|| > |Xd| − 1, ∀w ∈ L(G)

with M(w) = M(v), there is a Fk-type failure event contained in w. Further from the

assumption that no unobservable cycle exists in G, each “observed event” in M(t) can be

preceded/followed by at most |X|−1 unobserved events. It follows that for the trace t above,

||t|| ≤ (||M(t)|| + 1) × (|X| − 1), i.e., ||M(t)|| ≥ ||t||
|X|−1

− 1. So if ||t|| > |Xd| × (|X| − 1),

then ||M(t)|| ≥ ||t||
|X|−1

− 1 > |Xd|×(|X|−1)
|X|−1

− 1 = |Xd| − 1, establishing our claim. (Note that

we have assumed implicitly that |X| > 1; otherwise if |X| = 1, then from the assumption of

no unobservable loops, no transition labeled by a failure event exists, so that the system is

trivially diagnosable.) It follows from Definition 1 that G is diagnosable. So the sufficiency

also holds.

Remark 2 From Algorithm 1, we know that the number of states in Go is at most |X|×2|F|,

the number of transitions in Go is at most |X|2 × 22|F| × |Σo|. Since Gd = Go||Go, the

number of states in Gd is at most |X|2 × 22|F|, and the number of transitions in Gd is at

most |X|4 × 24|F| × |Σo|.

The complexity of performing step 1 of Algorithm 1, which construct Go, is thus O(|X|2×

22|F|×|Σo|), whereas that of step 2 of Algorithm 1, which constructGd, is thus O(|X|4×24|F|×

|Σo|). The complexity of performing step 3 of Algorithm 1, which detects the presence of a

certain “offending” cycle in an appropriately pruned subgraph of Gd (see the last sentence

of step 3 of Algorithm 1), is linear in the number of states and transitions of the subgraph,

i.e., it is O(|X|4 × 24|F|). Note that while detecting the presence of a “offending” cycle, the

transition labels are irrelevant.

So the complexity of Algorithm 1 is O(|X|4 × 24|F| × |Σo|) which is polynomial in the

47

number of states in G and exponential in the number of failure types in G.

In [98], another necessary and sufficient condition was given for diagnosability. The

condition was expressed as a property of a certain diagnoser of the system. So in order to

check the diagnosability we needed to first construct the diagnoser, then check the property

on the diagnoser. The complexity to construct the diagnoser as well as the complexity to

check the property on the diagnoser is exponential in the number of states of the system

and doubly exponential in the number of failure types of the system. In Algorithm 1, no

diagnoser is needed for checking the diagnosability.

Remark 3 The complexity of testing diagnosability can be made polynomial in the number

of fault types as well by noting that a system is diagnosable with respect to the fault types

F = {Fi, i = 1, 2, · · · ,m} if and only if it is diagnosable with respect to the each individual

fault type Fi, i = 1, 2, · · · ,m. In other words, one can apply Algorithm 1 m different times

for testing diagnosability with respect the individual failure type sets {F1}, · · · , {Fm}. Since

now each failure type set is a singleton, from Remark 2 it follows that the complexity of each

such test is O(|X|4 × 24|1| × |Σo|) = O(|X|4 × |Σo|). So, the overall complexity of testing

diagnosability is O(|X|4 × |Σo| × |F|).

Example 1 Consider the system G = (X,Σ, δ, x0):

• X = {x0, x1, x2, x3, x4}

• Σ = {σ1, σ2, σ3, σuo, σf1, σf2, σf3}

• δ = {(x0, σ1, x1), (x1, σf1, x2), (x1, σuo, x2), (x2, σf2, x3),

(x3, σ2, x3), (x2, σf1, x4), (x4, σ3, x4)}

with the observable event set Σo = {σ1, σ2, σ3}. The system is shown in Figure 3.1. Let

x 0

σ 1

σ 2

σ 3

σ uo

σ
f1

σ
f2

σ f1

x 1 x
x 3

x 4

2

Figure 3.1: Diagram of the system G

F = {F1, F2} be the set of failure types and ψ be the failure assignment function with

ψ(σuo) = ψ(σi) = ∅, i = 1, 2, 3, ψ(σf1) = F1, ψ(σf2) = F2. From the first step in Algorithm 1,

48

, φx 0 , φx 1 x 3 F 1 F 2, { , }

x 3 F 2, { }

x 4 F 1, { }

σ 1

σ 2

σ 2

σ 3

σ 3

σ 2

σ 2

Figure 3.2: Diagram of Go

we can derive Go from G, which is shown in Figure 3.2. The strict composition of Go with

itself, Gd = Go||Go, is derived from the second step in Algorithm 1, which is shown in

Figure 3.3. In Figure 3.3, there is a self loop at the state ((x3, {F2}), (x3, {F1, F2})). So from

, φx 0 , φx 0

x 3 F 2, { } x 3 F 2, { }

x 3 F 2, { } x 3 F 1 F 2, { , }

x 3 F 1 F 2, { , } x 3 F 1 F 2, { , }

x 4 F 1, { } x 4 F 1, { } x 3 F 1 F 2, { , } x 3 F 2, { }

, φx 1 , φx 1

σ 1

σ 3

σ 2

σ 2

σ 2

σ 2

σ 3
σ 2

σ 2

σ 2

σ 2

Figure 3.3: Diagram of Gd

the last step in Algorithm 1 we know the system G is not diagnosable.

Now suppose we need not distinguish the failure type F1 from the type F2. Then by letting

F2 = F1 in Figure 3.3 and deleting some redundant states, we can obtain the corresponding

Gd for the modified system. The resulting Gd is omitted here. In the modified Gd, there

does not exist any cycle as stated in step 3 of Algorithm 1. So we know the modified system

is diagnosable.

3.4 Conclusion

In this chapter, an algorithm is provided for testing the diagnosability of discrete event

systems. Compared to the existing testing method in [98], our algorithm does not require

49

the construction of a diagnoser for the system. The complexity of our algorithm is of 4th

order in the number of states of the system and linear in the number of failure types of the

system, whereas the complexity of the testing method in [98] is exponential in the number

of states of the system and doubly exponential in the number of failure types of the system.

50

Chapter 4

Modeling Discrete Event Systems

with Faults using a Rules Based

Modeling Formalism

4.1 Introduction

Failure refers to a deviation from a specified behavior of the system (or a component of

the system) for a bounded or unbounded period of time. A stuck-close valve, decrease in

the efficiency of a heat exchanger, abnormal bias in the output of a sensor, and leakage in

pipelines are examples of failures. A major factor that motivates research on failure diagnosis

arises from the fact that failures are inevitable in the existing industrial environment. Given

the complex interactions between components, sub-systems, and processes, a system failure

is considered to be a normal occurrence [85], or an inherent characteristic of systems. In

large and complex systems, failure diagnosis is a critical task. This problem has received a

great deal of attention in the literature of various domains including that of discrete event

systems (DESs) [88] in [14, 39, 64, 98, 93]. A state based DES approach to failure diagnosis

was proposed in [67], and further treated in [5]. Sampath et al. have proposed a formal

language framework for studying the diagnosability properties of untimed discrete event

systems [98, 97, 95].

In this chapter, an application of the rules based modeling formalism [12] to modeling

DESs with faults is presented. We adopt an input/output view of the system, wherein the

system receives inputs and generates outputs. The input signals of the system constitute

51

the independent variables, and output signals the dependent variables which are a function

of the independent variables and other dependent variables. All signals in the system are

assumed to be binary valued. Input signals change their values depending only on their own

present values; whereas output signals change their values based on their own values and the

values of other signals.

Faults in the system occur because of the malfunction of actuator or sensor signals in the

system, or because of the malfunctions in the system itself. Examples of the latter kind of

fault are those equipment failures which occur spontaneously, such as a tank beginning to

leak, the power supply of a PLC failing, and so on. These can occur without regard to the

value of any other signal in the system. Hence equipment failures are a type of input signals.

On the other hand, faults can occur in actuators which are the inputs applied to the system;

and they can occur in sensors which record the observable part of the system outputs. Such

faults usually depend on the state of other signals in the system, and hence are a type of

output signals. As an example consider the operation of actuators in a hydraulic system:

When an actuator is being turned on, it can get stuck in the off position not permitting the

flow of the fluid through it. This kind of fault is termed as a stuck closed fault. There is a

corresponding stuck open fault when the actuator, once open, cannot be mechanically shut

off. A similar type of fault can occur in the sensors: When a sensor is actuated it can get

stuck in this position, causing a stuck up position fault. A corresponding stuck down fault

can occur when the sensor, once it reaches the unactuated position, cannot change its value.

It can be seen that the occurrence of a stuck-signal fault depends on the present value of the

corresponding signal.

In order to obtain models of the system with faults, we apply the framework of [12],

which relies on establishing boolean enabling or guard conditions for each event of the DES.

An event is a transition of an input or an output signal from one binary value to another.

We start by establishing the initial conditions of the system signals. Next, for each of the

input and output events of the system, including the fault events, we obtain event occurrence

rules. For output events these are boolean constraints over values of all the signals of the

system, while for input events these are constraints only on the input signals themselves.

Weights are associated with signals which indicate the degree to which they influence the

occurrence of output events. In order to model failure prone systems, faults are incorporated

into the event occurrence rules [32, 2], and from a modeling standpoint they are treated just

the same as any other signal in the system. A binary value fault signals is introduced to

52

model presence or absence of a certain fault. Addition of new fault signals requires new

rules for the added fault events, and modification of rules of existing non-faulty events, by

appropriately weakening their guard conditions.

The representation of a system with faults, in the rules based modeling formalism, is

polynomial in the size of signals and faults. The compactness of this model, together with

its intuitive nature, makes it user-friendly, less error-prone, more flexible, easily scalable, and

provides canonicity of representation for models of systems with faults.

The rest of the chapter is organized as follows: In Section 2, the preliminaries related to

modeling DESs are discussed. This is followed by an example drawn from process control

in Section 3. In Section 4, the types of fault which can occur in a system along with their

representation in the modeling formalism is discussed. This is illustrated through the earlier

process control example in Section 5. Section 6 provides conclusions and directions for future

research.

4.2 Notation and Preliminaries

The possible sequencing of input and output events of a DES can be represented by a

set of interacting automata. An overview of the automata based model of DES follows. Let

Σ denote the finite set of events. A concatenation of events forms a trace. A language is a

collection of traces. Let Σ∗ be the set of all finite traces of events of Σ including the zero

length trace ε. A language is thus a subset of Σ∗.

A discrete event system is represented by a finite collection of extended automata (i.e.,

automata with enabling guard conditions on transitions) Gi indexed by i. An automaton

transitions from one state to another in response to the execution of an event provided a

certain guard condition is satisfied. Formally an extended automaton is a 5-tuple: Gi =

(Xi,Σi, Ei, x
0
i , X

m
i); where Xi is the finite set of states, Σi is the finite set of events, Ei is

the finite set of state transitions, x0i ∈ Xi is the initial state, and Xm
i ∈ Xi is the set of final

states. Each transition e ∈ Ei is a quadruple of the form, e := (xe, σe,Pe(ΠiXi), y
e), where

xe ∈ Xi is the state where the transition is executed, σe ∈ Σi is the event label of the state

transition, ye ∈ Xi is the state resulting from the execution of the transition, P e(ΠiXi) is

the guard condition–a predicate over the states of the interacting automata–which must be

satisfied for the transition to occur. A transition is enabled at a state when the associated

guard condition evaluates to true.

53

In order to obtain the overall model of the system, the synchronous composition of

automata, presented in [36], is extended to that for extended automata. Without loss

of generality, we define the synchronous composition of two extended automata, {Gi :=

(Xi,Σi, Ei, x
0
i , X

m
i)}i=1,2. The synchronous composition of G1 and G2, denoted G1‖G2, is

the automaton (X,Σ, E, x0, xm), where X := X1×X2, Σ := Σ1 ∪Σ2, x
0 := (x01, x

0
2), and the

set of transitions E = Eα ∪ Eβ ∪ Eγ, where:

Eα := {((xe1, x
e
2), σ

e,Pe, (ye1, y
e
2)) |

∃(xe1, σ
e,Pe

1 , y
e
1) ∈ E1, (x

e
2, σ

e,Pe
2 , y

e
2) ∈ E2 s.t. P

e
1 ∧ P

e
2 = P

e}

Eβ := {((xe1, x
e
2), σ

e,Pe, (ye1, x
e
2)) |

∃(xe1, σ
e,Pe, ye1) ∈ E1 s.t. σ

e ∈ Σ1 − Σ2}

Eγ := {((xe1, x
e
2), σ

e,Pe, (xe1, y
e
2)) |

∃(xe2, σ
e,Pe, ye2) ∈ E2 s.t. σ

e ∈ Σ2 − Σ1}.

Eα is the set of transitions which occur synchronously with the participation of both G1 and

G2, whereas Eβ and Eγ, respectively, are the set of transitions that occur asynchronously

with the participation of G1 and G2 only.

.

.

.

. . . .

o1

.

.

Signals in system (binary valued)

(on−>off; off−>on event transitions)

Controllable
(commands to:

Uncontrollable Uncontrollable

(down (or dn)−>up; up−>dn event transitions)

(disturbances:

actuators, motors, etc.) push−buttons, i/p faults, etc.)

Observable

(sensors, o/p faults)

Unobservable UnobservableObservable

Outputs − dependent variablesInputs − independent variables

1(i ... i)t .
.

o(q+1)

i
i

i

1

2

System

Discrete Event

t

i (t+2) ii i n
i(t+1)i

s (s+1) (s+2)

o2

oq

om

Unontrollable

(a) (b)

t+1 s

1 q(o ... o)

Inputs
Controllable

Uncontrollable inputs: 1. Disturbances (i ... i)

Outputs:

. output faults:

and

m(o ... o)

2. Input faults (i ... i)
ns+1

q+1

Figure 4.1: Input-Output view of a discrete event system

In the rules based modeling formalism of [12] the signals present in the system are parti-

tioned into two sets: input signals and output signals. A block diagram of a discrete event

system is shown in Figure 4.1(a), which has n input and m output signals. Input signals

constitute the independent variables of the system. Their transitions occur depending solely

on their own present value, i.e. their occurrence is not influenced by any other signal in

54

the system. The input signals are further divided into controllable and uncontrollable parts

depending on whether an external agent can disable them or not. Controllable input events

are the command signals sent to actuators, valves, motors of the system, in response to which

the system evolves. Uncontrollable input events are those input signals which can neither be

disabled nor enabled by any controller devised for the system. These can be operator push

buttons, switches, as well as those faults occurring in the system which are not determined

by the value of any other signal in the system. Output signals constitute the dependent

variables of the system. Their transitions occur depending on their own values and values

of other signals in the system. Output events are generated by sensors, as well as by those

faults occurring in the system which are dependent on the values of other signals of the

system.

There are t controllable inputs, s− t uncontrollable disturbance inputs, and n− s uncon-

trollable fault inputs. Output signals include q non-faulty output signals, and m − q fault

signals. All of the m output signals are considered to be uncontrollable. Only those output

signals which have corresponding sensors connected for monitoring their event transitions

can be observed. The rest are termed to be unobservable. All controllable events in the

system can be monitored, and are termed as observable events as well. In Figure 4.1(b), all

events in the system are further classified according to the properties of these events.

The rules based modeling formalism introduced in [12] is reviewed next. We model

systems involving non-discrete variables for which a discrete event system abstraction is

being sought, as is often the case in process control systems. Such systems possess signals

that take values in a continuum such as flow rates, temperatures. However, only their discrete

values are of interest for the purposes of modeling and analysis.

The rules based modeling formalism applies to systems for which the system inputs and

outputs are binary valued, and all the system states are determined by the current values of

the input and output signals of the system. A model in this formalism consists of:

1. Initial Conditions: The system starts out with certain initial values of all its signals

which is captured by the initial conditions in our modeling formalism corresponding to

the initial values of inputs and outputs of the system. This initial state is commonly

the state when parts in system are least and all the actuators are turned off.

2. Event occurrence rules: For the input events, it suffices to know just the present value

of the input signal to determine the next possible input event. This is because input

signals alternate between their off and on values regardless of the values of any other

55

signals in the system. The occurrence of output events, however, is initiated by prior

occurrence of other events. Also, in most physical systems, there is a relation between

the way sensors are arranged physically and the order in which their sensed values

change. Such signal dependencies are captured through event occurrence rules. There

is one such rule per event. The consequent of each rule is an event, whereas the

antecedent is a boolean formula over the signals present in the system.

For the p’th input signal ip, its event occurrence rule takes the following form:

Ruleonp : ip ⇒ ipon;

Ruleoffp : ip ⇒ ipoff ;

These rules are termed as default since they capture the default constraint that signals

alternate between their on and off values. For a system with n input signals, there will

be 2n such default rules corresponding to each of the 2n input events in the system.

The rules for output events take on the following form for a system with m output

signals, and n input ones:

Ruleup1 : fup1 (iw1

1 , ..., i
wn
n , o1, ..., oj , o

wj+1

j+1 , ..., o
wm
m)⇒ o1up,

Ruledn1 : fdn1 (iw1

1 , ..., i
wn
n , o1, ..., oj , o

wj+1

j+1 , ..., o
wm
m)⇒ o1dn,

...

Ruleupm : fupm (iw1

1 , ..., i
wn
n , o1, ..., oj , o

wj+1

j+1 , ..., o
wm
m)⇒ omup,

Rulednm : fdnm (iw1

1 , ..., i
wn
n , o1, ..., oj , o

wj+1

j+1 , ..., o
wm
m)⇒ omdn;

where f
up/dn
1 , . . . , fup/dnm are the boolean formulae, consisting of those combinations

of the input signals i1, . . . , in, and output signals o1,. . . , om, which when true can

result in the enablement of an output event. Note that each input signal and certain

output signals (oj+1, .., om) are superscripted with the weight with which they influence

the associated output event. Some other output signals o1, .., oj are not weighted, or

implicitly, their weights are simply the default value 1.

The antecedent of each rule is written in the disjunctive form, where each disjunct

itself is the conjunct of three terms. The three terms within each disjunct are of the

form:

(a) f el (i
w1

1 , ..., i
wn
n , o

wj+1

j+1 , ..., o
wm
m) := a weighted boolean formula over signals represent-

ing an enabling condition for the consequent output event.

56

(b) f dl (i
w1

1 , ..., i
wn
n , o

wj+1

j+1 , ..., o
wm
m) := a weighted boolean formula over signals represent-

ing a disabling condition for the consequent output event.

(c) f sl (i1, ..., in, o1, ..., om) := a boolean formula over unweighted input and output

signals representing an enabling condition for the consequent output event.

For Rule
up/dn
k , the antecedent of the rule then takes the following form:

N
up/dn
k∨

l=1

{[w(f el (i
w1

1 , ..., i
wn
n , o

wj+1

j+1 , ..., o
wm
m))

︸ ︷︷ ︸

enabling signals’ weight

> w(f dl (i
w1

1 , ..., i
wn
n , o

wj+1

j+1 , ..., o
wm
m))

︸ ︷︷ ︸

disabling signals’ weight

]

∧ [f ol (i1, ..., in, o1, ..., om)
︸ ︷︷ ︸

condition on unweighted signals

]}

For a system with m output signals, there are 2m event occurrence rules corresponding

to each of the 2m output events in the system.

In order to evaluate the weight of a weighted boolean formula, either a minimum or

a summation operation is used depending on whether the combination of the input

signals is an and or an or. When the composition is based upon minimum and

summation operations, the weight of a weighted boolean formula is defined inductively

as follows:

w(iw1

1 ∧i
w2

2) = min(w(i1), w(i2)) = min(w1, w2); w(iw1

1 ∨i
w2

2) = w(i1)+w(i2) = w1+w2.

Thus for example,

w((iw1

1 ∧ i
w2

2) ∨ iw3

3) = w(iw1

1 ∧ i
w2

2) + w(i3) = min(w(i1), w(i2)) + w(i3).

Note that the choice of minimum and summation based combination of weights is ap-

plication dependent, and its semantics may be changed from application to application

without changing the syntax of the modeling formalism.

Once the rules for all the output and input events of the system have been obtained,

the algorithm of [12] may be used for translating the rules based model into an equivalent

automata model of the system. For this, the system is first represented as a composition of

a set of interacting 2-state extended automata, one automata for each of the binary valued

signals of the system. The enabling conditions present in the event occurrence rules appear

as guards for the event transitions in the 2-state extended automata models. A composition

of the interacting extended automata yields the desired automaton model, in which the

transitions with guard conditions as false are simply deleted.

57

4.3 Motivating Example: A Tank System

Consider a tank filling system whose schematic is shown in Figure 5.1. It has one filling

nt2

nominal level sensor

t1

Figure 4.2: Tank system schematic

tap t1, one draining tap t2, and a nominal level sensor n. The signals in the system are t1,

t2, n, and the events that can occur in this system are t1on, t1off, t2on, t2off, nup, ndn.

Assume that the filling rate of tap t1 has the flow value of +10, while that of the draining

is +1.

The model in the rules based formalism, consisting of initial conditions and event occur-

rence rules, is given in Figure 5.2. Note that Ruleup1 simply states that for the event nup to

occur, the system should be in a state where the filling rate exceeds the draining rate, and

the level sensor is down. Ruledn1 is similar, and other rules are default ones.

1. Initial conditions: t1 = t2 = [off] ; n = [down].

2. Event occurrence rules: Since there is 1 sensor signal, n, it has 2 sensor events

associated with it, i.e. nup/ndn, and so there are 2 rules for these 2 events. In

addition there are 4 default ones for the 2 input signals t1, t2.

Ruleup1 : ([t1+10] > [t2+1]) ∧ [n]⇒ nup;

Ruledn1 : ([t2+1] > [t1+10]) ∧ [n]⇒ hup;

Ruleon2 : t1⇒ t1on; Ruleoff2 : t1⇒ t1off ;

Ruleon3 : t2⇒ t2on; Ruleoff3 : t2⇒ t2off.

Figure 4.3: Rules based model of the tank system without faults

58

An equivalent automata model, obtained using the algorithm presented in [12], is shown

in Figure 4.4. The automaton shown in Figure 4.4(d) is obtained by taking a synchronous

t1on

t1of t1on

t2ont2on

t1on

t1on

t2on t2on

nupndn

nup

t2off

t2off

t2off

t1off

t2off

t1off

t1off

Legend: nupn/ndn: level sensor signal values

P2

G

P1 P2 P3

t1on/t1off: tap 1 turned on/off
Legend: nup/ndn: level sensor signal values

t2on/t2off: tap 2 turned on/off

P3

nup

t1on

Legend: t2on/t2off: tap2 turned on/off

t2off t2on

Legend: t1on/t1off: tap1 turned on/off
(b)

(a)

(c) (d)

[t2: off]

1
dn

P1

ndn

1

[t1: off]

[n: down] [n: up]

up

t1off

2

[t2: off]

2
on

G

[t1: on]

G

on

off

3
off
3

G G

G

Figure 4.4: Automaton model of tank system without faults

composition of the extended 2-state automata models of the taps, t1 and t2, (Figure 4.4(a)

and (b) respectively), and that of the water level sensor, n, (Figure 4.4(c)). Note that

the antecedent of the rules appear as guards in the 2-state extended automata models. For

example, Gup
1 is the weighted boolean formula ([t1+10] > [t2+1])∧ [n], which is the antecedent

of Ruleup1 of Figure 5.2. Transitions of the composed automata, in which the guards evaluate

to false, have been omitted.

4.4 Modeling failures in the rules based formalism

In order to obtain event occurrence rules for a system with faults, we examine the

possible kinds of faults, and also the manner in which they are represented in the rules based

modeling formalism.

4.4.1 Signal and system faults

The kinds of faults which can occur in the type of discrete event systems we consider

include, the stuck-signal faults, and the system or equipment faults.

59

1. Stuck-signal faults: These faults occur when any of the actuators or sensors in the

system, owing to mechanical, electrical, or electromagnetic interference problems, gets

stuck in a particular position with its logic status becoming either true or false

permanently, until a recovery occurs through a repair or a replacement. When an

actuator gets stuck in the on/off position such fault signals are denoted by so(stuck

open)/sc(stuck closed) respectively; where the associated fault events are denoted by

soF/scF and the recovery events by soR/scR, respectively. In the tank system the

filling tap t1 may be prone to an stuck open fault signal denoted by t1so, with the

fault event denoted as t1soF and the recovery event denoted as t1soR. When the fault

event t1soF occurs, filling will continue to occur even after the command to switch off

the tap has been given, unless the fault recovery event occurs.

When a sensor gets stuck in the up/dn(down) position such fault signals are denoted

by sup(stuck up)/sdn(stuck dn) respectively; whereas the associated fault events are

denoted by supF/sdnF, and the recovery events by supR/sdnR, respectively. The tank

system in Figure 5.1 has a level sensor n which may be prone to a stuck up fault

signal, denoted by nsup. This signal has two events: the fault event nsupF, and the

corresponding recovery event nsupR.

It should be noted that stuck-signal faults are a type of output signals since they are

dependent on values of signals prone to stuck-signal faults. Referring to Figure 4.1(a),

it can be seen that of the m output signals, m− q are fault signals.

2. System/equipment faults: Apart from faults of the signals there are faults of sys-

tems and its components. Certain fault signals such as equipment failures, power

disruptions, system software crashes, etc., affect the entire system. These can occur

spontaneously in the system depending only on their own values, not those of any

other signal in the system. They are thus independent variables and form part of the

inputs to the system. In the tank system of Figure 5.1, a leakage fault signal, which

causes the fluid levels to drop in the tank, is an example of a system/equipment fault.

The events of the leakage fault are leakageF and leakageR, denoting leakage fault and

recovery from leakage events.

It should be noted that system faults are a type of input signals since they are inde-

pendent of values of other signals. Referring to Figure 4.1(a), it can be seen that of

the n input signals, n− s are fault signals.

60

4.4.2 Permanent and intermittent faults

Another categorization of faults arises from the manner in which faults are reset after they

occur.

1. Permanent faults: If the recovery event occurs only due to a repair/replacement of

the fault, then the fault is regarded as a permanent fault.

2. Intermittent faults: If the recovery event can occur either spontaneously or through

repair/replacement, then the fault is regarded as an intermittent fault. Example is a

loose wire that makes and breaks contact spontaneously.

It is important to distinguish between these two types of faults, since the intermittent fault

spontaneous recovery events, which tend to be uncontrollable and unobservable, may the

system to oscillate between non-faulty and fault states. Permanent faults, on the other

hand, are associated with recovery events (repair/replacement) which are controllable and

observable, and the system cannot spontaneously move from a fault state to a non-fault one.

4.4.3 Rules for fault events

1. Stuck-signal faults: Stuck-signal faults occur in both actuators and sensors when

the value of the signal gets stuck at a certain logic level. The rules for both these kinds

of signals are discussed next:

• Stuck actuator signal faults: If the r’th actuator, Ar, is prone to both the stuck

open fault which occurs only after the actuator is already in the on condition, and

the stuck closed fault which occurs only when the actuator is already in the off

condition, then the rule for the occurrence of these stuck actuator signal faults is

written as:

RuleonArso : Ar ∧ Arso⇒ ArsoIF ; RuleoffArso : ArsoIF ⇒ ArsoR;

RuleonArsc : Ar ∧ Arsc⇒ ArscIF ; RuleoffArsc : ArscIF ⇒ ArscR.

Here recovery from the fault is considered to spontaneously occur without regards

to the value of any other signals in the system. In case the recovery is initiated

by other signals in the system they will appear in the antecedent of the rule.

As an example consider the tank system of Figure 5.1 with a faulty inlet tap t1,

prone to a stuck open fault. Assuming that no recovery is possible from the stuck

61

open fault event, the rules for the fault events t1soF and t1soR are:

Ruleont1so : t1 ∧ t1so⇒ t1soF ; Ruleofft1so : false⇒ t1soR.

• Stuck sensor signal faults: If the r’th sensor in a system, Sr, is prone to both the

stuck up fault which occurs only after it has been actuated, and the stuck down

fault which occurs only when the sensor is not actuated, then the rule for the

occurrence of these stuck sensor signal faults is written as:

RuleupSrsup : Sr ∧ Srsup⇒ SrsupF ; RulednSrsup : Srsup⇒ SrsupR;

RuleupSrsdn
: Sr ∧ Srsdn⇒ SrsdnF ; RulednSrsdn : Srsdn⇒ SrsdnR.

Stuck-signal failures of signals may have a non-unity weight assigned to them.

2. System or equipment faults: The rules for the t’th equipment fault, Et, is expressed

in the rules based modeling formalism as:

RuleonEt
: Et ⇒ EtF ; RuleoffEt

: Et ⇒ EtR.

Here the recovery from the fault is considered to be occur independently of the values

of any other signals in the system. In case the recovery is initiated by other signals in

the system, they will appear in the antecedent of the rule.

In the process control system of Figure 5.1, a leakage fault, which causes the fluid level

to drop, is an example of a system fault. Now in addition to the existing rules shown in

Figure 4.7, an additional pair of rules Rule
on/off
6 , is defined to account for this newly

added fault signal:

Ruleon6 : leakage⇒ leakageF ; Ruleoff6 : leakage⇒ leakageR.

3. Intermittent faults: If the r’th signal/equipment, Ar, is prone to an intermittent

fault, recovery from such a fault can occur either spontaneouly (ArIR) or by re-

pair/replacement of the faulty device (ArR).

RuleonArso : Ar ∧ Arso⇒ ArsoIF ;

RuleoffArso : (Arso) ∧ (ArR ∨ ArIR)⇒ ArsoR;

RuleonArsc : Ar ∧ Arsc⇒ ArscIF ;

RuleoffArsc : (Arsc) ∧ (ArR ∨ ArIR)⇒ ArscR.

As an example consider the tank system of Figure 5.1 with a faulty inlet tap t1, prone

to a stuck open fault. The rules for the fault events t1soF and t1soR are:

Ruleont1so : t1 ∧ t1so⇒ t1soIF ; Ruleofft1so : (t1so) ∧ (t1R ∨ t1IR)⇒ t1soR.

62

4.4.4 Extension of non-fault event rules to include fault conditions

In the presence of faults the guard conditions of the non-fault event rules are weakened

by introducing additional disjunctive conditions under which the non-fault event can also

occur. The antecedent of each rule now contains the disjunct of a group of terms which

represent how the consequent event can occur under both non-faulty and faulty conditions.

Example of extension of rules under stuck-signal faults: Consider the tank system of

Figure 5.1 with a faulty inlet tap t1 having a filling rate of +10, prone to a stuck open fault,

whose occurrence does not alter the non-faulty filling rate through the tap. The rule for

the output level sensor event nup in the presence of the stuck open fault t1so is given in

Figure 4.7 as:

Ruleup1 : ([t1so+10 > t2+1] ∧ [n])
︸ ︷︷ ︸

fault conditions

∨

([t1+10 > t2+1] ∧ [n ∧ t1so])
︸ ︷︷ ︸

non-fault conditions

⇒ nup.

The antecedent of this rule is now a disjunct of two terms, the first one corresponds to

the level sensor going up under the t1so fault; whereas the second one corresponds to the

level sensor going up under the non-faulty condition, and is essentially the same as the

corresponding antecedent for the system model without faults.

Note that if the actuator t1 in the tank system of Figure 5.1 is subjected to a stuck open

fault, the rate of filling may change from the normal value to some other value under faulty

conditions. So, for example, if the filling rate changes from +10 to +7 in the presence of the

t1so fault, then the output event occurrence rule becomes:

Ruleup1 : ([t1so+7 > t2+1] ∧ [n])
︸ ︷︷ ︸

fault conditions

∨

([t1+10 > t2+1] ∧ [n ∧ t1so])
︸ ︷︷ ︸

non-fault conditions

⇒ nup.

Example of extension of rules under system/equipment faults: Owing to the modeling of

the leakage fault signal, the rule for the filling event (nup) and for the draining event (ndn)

are altered as well. For example, the new extended rule Ruleup1 , having a t1soF with a filling

rate of +10, and a draining tap t2 with a draining rate of +1, and the tank susceptible to a

leakage fault having a draining rate of +3, is given by:

Ruleup1 : ([t1so+10 > (t2+1 ∨ leakage+3)] ∧ [n])
︸ ︷︷ ︸

fault conditions

∨
(([t1+10 > [t2+1 ∨ leakage+3])] ∧ [n ∧ t1so])
︸ ︷︷ ︸

non-fault conditions
⇒ nup.

63

4.4.5 Fault signal automata models

In order to account for the faults in a system, additional 2-state extended automata

[nsup]
Guard

2
Guard

2
dn up

[t1so]

[leakage]

(b)

Equipment failure − leaking tank

(c)

Legend:

leakageFleakageR

(a)

Legend: Legend:

t1soR t1soF nsupFnsupR

Of input signal − actuator ‘t1’ stuck open Of output signal − sensor ‘n’ stuck open

[nsup]
[t1so]

GuardGuard
5 5
off on

[leakage]GuardGuard
dn up
6 6

Stuck signal faults

System/Equipment faults

t1soF: t1 stuck open fault event
t1soR: t1 stuck open recovery event

leakageR: tank leakage recovery event

nsupF: n stuck up fault
nsupR: n stuck up recovery event

leakageF: tank leakage fault event

Figure 4.5: Automata models for signal and system faults

models are drawn with their states representing the faulty and non-faulty conditions. These

extended automata are composed with the rest of the extended automata to obtain a single

automaton model of a DES that is subjected to failures. The two fault scenarios considered in

the rules based modeling formalism are stuck-signal value faults and the system/equipment

faults.

For the tank system of Figure 5.1, the corresponding automata models for the example

faults which can occur in the system are shown in Figure 4.5. The 2-state extended automata,

which model the stuck open fault which may occur in the actuator t1, and the stuck close

fault which may occur in the level sensor n, are shown in Figure 4.5(a), (b) respectively, along

with their corresponding recovery events. In Figure 4.5(c), a 2-state automata model is given

for a type of system fault, the leakage fault, having as its states no-leakage ([leakage]) and

leakage ([leakage]), with transitions between these states on events leakage-fault (leakageF)

and leakage-recovery (leakageR), respectively. The antecedent of the event occurrence rules

associated with the events appear as guard conditions in the 2-state extended automata

model. Refer to Figure 4.7 for the guards for the fault events t1soF, t1soR, nsupF , and

nsupR, and to Section 4.4 above for the guards for the fault events leakageF , and leakageR.

Only when the guard condition evaluates to true, is the corresponding event transition in

the automaton permitted to occur.

64

4.5 Application: modeling tank systems with faults

In order to illustrate the modeling of systems with faults in the rules based formalism, we

introduce certain fault conditions in the tank system of Figure 5.1, and obtain an automaton

and an rules based model for it. Assume that the filling actuator t1 can get stuck in the

open position, represented by an output fault signal, t1so, and the level sensor can get stuck

in the true state, represented by an output fault signal, nsup. The complete set of events

that can occur in this system are t1on, t1off, t2on, t2off, nup, ndn, t1soF, t1soR, nsupF,

nsupR. Here t1soR is the t1 stuck open recovery event and nsupR is the n stuck up recovery

event. Assume that the filling rate of tap t1 has the flow value of +10, even in the presence

of the t1so fault, while the draining rate of the tap t2 is +1.

We present an automaton model of the system and next present the rules based model

which contains as much information as the more complex automaton model, but is compact

and simpler to obtain and debug. The automaton model of the system is shown in Figure 4.6,

1

4

t1on

t2on

t1on

t1on
t2of

t1on

t2on t2on

ndn

nup

nup

t2on

t1on

t1on

2

t2on

3

8

t2on

t2on

5 6

7

Legend:

t1so: Filling tap stuck open (fault condition)

t1off

t2off

t1off

t1off

t1off

t1off

t1off

t2off

t2offt2off

t2off
t2off

t1on/t1off: Filling tap turned on/off, rate of filling 10

t2on/t1off: Draining tap turned on/off, rate of draining 1

t2on

t2on

nup

nup

t2off

t2off

t2on

t2on

nup

t2off

t1offt1on

t2off

t1on t1off

t1offt1on

t1offt1on

t1offt1on

t1on t1off

nup/ndn: Tank level sensor values
nsup/ndn: Tank level sensor stuck in ‘up’ position (fault condition)

nup

t1soF

t1soF

t1soF

t1soF

t1soF

t1soF

nsupF

nsupF nsupF nsupF nsupF

nsupF nsupF nsupF

Figure 4.6: Automaton model of the tank system with faults

and has a total of 24 states, of which the states marked 1 . . . 8 represent the non-faulty states

of the system. State 1 is the initial state in which the level sensor is low, and both the filling

and draining taps are turned off. When the filling tap t1 is turned on, t1on, then there is a

transition to State 2, where the level of fluid in the tank rises, until either the nup event of

65

the sensor occurs taking the system to State 6, or the event t1off occurs causing the system

to return to the initial state. Transitions to other states are drawn out in a similar fashion.

In all the states where the tap t1 is turned on, it can get stuck in this position, a t1so fault

signal, and is indicated by a transition on the event t1soF. Once that event occurs commands

of t1on/t1off have no effect on the system state, and the tap t1 continues to permit fluid flow

through it regardless of the control commands applied to it. A corresponding recovery event

t1soR is defined which returns the system to the non-faulty state of the tap t1. Also, in all

the states where the level sensor n is true, i.e, nup, the sensor can get stuck in this position,

indicated by the occurrence of a fault signal nsup event nsupF, after which the sensor event

ndn cannot occur even if the fluid level in the tank becomes low, until the recovery event

nsupR occurs. We assume for this example that recovery events are infeasible (by disallowing

any repair or replacement). So although recovery events t1soR and nsupR are defined, no

transitions are feasible on such events in this example.

The model of the tank system with faults in the rules based modeling formalism is shown

in Figure 4.7.

1. Initial conditions: t1 = t2 = t1so = nsup = [off];n = [down].

2. Event occurrence rules:

Ruleup1 : ([t1so+10 > t2+1] ∧ [n])
∨
([t1+10 > t2+1] ∧ [n ∧ t1so])⇒ nup

Ruledn1 : ([t2+1 > t1so+10] ∧ [n]) ∨ ([t2+1 > t1+10] ∧ [n ∧ t1so])⇒ ndn;

Ruleon2 : t1⇒ t1on; Ruleoff2 : t1⇒ t1off ;

Ruleon3 : t2⇒ t2on; Ruleoff3 : t2⇒ t2off ;

Ruleup4 : n ∧ nsup⇒ nsupF ; Ruledn4 : false⇒ nsupR;

Ruleon5 : t1 ∧ t1so⇒ t1soF ; Ruleoff5 : false⇒ t1soR.

Figure 4.7: Rules based model of the tank system with faults

Note that the initial condition now includes conditions on both non-fault and fault signals.

The rules are self-explanatory, and this rules based model contains the same amount of

information as the more complex automaton model shown in Figure 4.6. As might be

evident, attempting to obtain an automaton model for the tank system in the presence of

actuator and sensor faults is not an easy task. In contrast, modeling the tank system prone

66

to failures by applying the procedure outlined in Section 4.4, yields a compact rules based

model as is evidenced from Figure 4.7. If needed, this model can be automatically translated

into an equivalent automaton model, resulting in the automaton of Figure 4.6.

4.6 Incorporating delay faults in the modeling formal-

ism

In any real world system the timing of events occurring within it is of considerable

significance, and in many cases if an event occurs either too soon or too late the system

might not function properly. For example, in an assembly line if the interval between the

arrival of parts at a buffer feeding a workstation is too short, then the buffer may get filled

faster than the workstation can process parts, thereby forcing the operations of upstream

machines to slow down or even stop completely. Also, if the inter-arrival times at the buffer

are too large, then the workstation it feeds will get starved for parts, with machines further

downstream possibly being affected as well. A similar scenario can occur in process control

systems. For example, in the tank system shown in Figure 5.1, if the level of fluid in the

tank is initially low, and the filling tap t1 is turned on, with or without the draining tap t2

being on as well, then in either case time bounds can be associated within which the level

sensor signal should make a up-going transition. Hence, it is usually not sufficient to just

specify that the logical properties of the system are not violated. We can also model the

timing properties of signals which are of interest and report the occurrence of delay faults

when the time-bounds associated with any event are violated.

4.6.1 Rules for timely occurrence/delay faults

The rules based modeling formalism can be extended to model real-time systems by

including guard conditions that involve clock variables which monitor the time-bounds within

which events should occur. For this, we may include certain “timed guards” along with the

“untimed guards” in any rule.

Consider for example the “untimed rule” for an event σ with the untimed guard condition

Gσ:

Gσ ⇒ σ.

Here Gσ is a predicate defined over the values of the signals of the system. In order to model

67

real-time behavior of the system, the untimed guard is augmented by certain timed guards

defined over a certain set of clock variables C. Each clock in the set C is initialized to zero,

and evolves at rate 1 as time elapses. These clocks keep track of the time since they were last

reset due to the occurrence of a resetting event. The augmented rule specifies the condition

under which the event σ should occur and is given by:

∃i ∈ I : Gi
σ ∧ T

i
σ ⇒ σ,C i

σ.

So, the event σ occurs when a guard Gi
σ∧T

i
σ for some i in an index set I is satisfied. Here the

untimed guard Gσ has been partitioned into I sub-guards {Gi
σ, i ∈ I}, i.e.,

∨

i∈I G
i
σ = Gσ,

and for each i ∈ I, T i
σ is a timed guard defined over the set of clock variables. C i

σ ⊆ C is the

set of clocks that are reset when the event σ occurs due to the satisfaction of the condition

Gi
σ ∧ T

i
σ. If C i

σ is not specified explicitly it implies that none of the clocks associated with

the event σ are reset to their initial values.

Since the rule ∃i ∈ I : Gi
σ ∧ T

i
σ ⇒ σ,C i

σ, specifies the condition for timely occurrence

of the event σ, a delay fault is said to have occurred if σ occurs at an instance when the

condition ∃i ∈ I : Gi
σ ∧ T

i
σ is violated, or equivalently when the condition ∃i ∈ I : Gi

σ ∧ T
i
σ

holds. Thus implicit in the rule of timely occurrence of the event σ, is another rule that

captures a delay fault occurrence of σ, and is given by:

∃i ∈ I : Gi
σ ∧ T

i
σ ⇒ σ,C i

σ.

The timed guard T i
σ associated with the event σ is a predicate over the values of clocks,

which is defined as follows. A timed guard ϕ is defined by the grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2 | ¬ϕ,

where x is a clock in C and c is a rational constant. The set of all timed guards over the set

of clocks C is denoted by Φ(C).

In the system, the input signals can be forced to occur at any time, meaning their

timed guards are true. Also in the case of output signals, the stuck-signal and the sys-

tem/equipment fault can occur at any time, and their timed guards are true as well. It

is only the non-fault output signals such as the sensor signals that have non-trivial timeds

guard associated with their events.

As an example consider the tank system of Figure 5.1 in which the combination of the

inlet tap t1 and the outlet tap t2, fill the tank within 4 time units. this can be captured in

68

a rule for nup as follows:

Ruleupn : [(t110 > t21) ∧ n]
∧
[((t1 ∧ t2) ∧ [0 ≤ ct1.t2 ≤ 4]) ∨ (t1 ∧ t2)]⇒ nup.

Here ct1.t2 is the clock that monitors the time elapsed since both t1 and t2 were switched on,

and it is achieved by resetting ct1.t2 in the rules for t1on and t2on as follows:

Ruleon2 : t1⇒ t1on, {ct1.t2}; Ruleoff2 : t1⇒ t1off ;

Ruleon3 : t2⇒ t2on, {ct1.t2}; Ruleoff3 : t2⇒ t2off.

We next model a more detailed example with delay faults occurring at multiple locations

during a tank filling-draining process. Consider the tank system shown in Figure 5.1, with

the nup event subject to a delay fault when both the filling and draining taps are turned on.

For the purpose of illustrating the rules based framework under delay fault conditions only,

we assume that no stuck-signal or equipment faults occur in the system.

In the tank system the filling rate of tap t1 is larger than the draining rate of tap t2.

Hence, if initially the level of fluid in the tank is low, the level sensor nup event can occur

either when only the filling tap t1 is turned on, or when both the filling and draining taps

t2 are on. Assume that the time it takes to fill the tank when both the filling and draining

taps are on is a maximum of 4 time-units, and 3.6 time-units when only the filling tap is on.

On the other hand, it can be the case that the level sensor n is close to the switching level

for nup at an instant when t1 is turned one, in which case the event nup occurs immediately.

These scenarios set the bounds within with the event nup can occur. We associate a clock,

ct1.t2 for monitoring the time bound when both the taps are on, and ct1.t2 when tap t1 is on

and tap t2 is off. The timing guard for ct1.t2 is given by: {0 ≤ ct1.t2 ≤ 4}, and for ct1.t2 by

{0 ≤ ct1.t2 ≤ 3.6}. If the draining time is not of interest for delay fault monitoring, then no

clock needs to be associated with the draining event. Alternately, a clock monitoring the

ndn event can be associated with the time-bound (0,+∞).

The model of the tank system in the rules based modeling formalism is shown in Fig-

ure 4.8, where Ruleup1 captures the timely occurrence of event nup.

Note that the clock ct1.t2 is reset whenever there is a t1on or t2on event. The resets for

ct1.t2 are obtained in a similar way, i.e., whenever there is a t1on or a t2off event.

69

1. Initial conditions: t1 = t2 = t1so = nsup = [off];n = [down]; ct1.t2 = 0.

2. Event occurrence rules:

Ruleup1 : [(t1+10 > t2+1) ∧ n]
∧

[(t2 ∧ (0 ≤ ct1.t2 ≤ 4)) ∨ (t2 ∧ (0 ≤ ct1.t2 ≤ 3.6))]⇒ nup;

Ruledn1 : [t2+1 > t1+10] ∧ [n]⇒ ndn;

Ruleon2 : t1⇒ t1on, {ct1.t2, ct1.t2};

Ruleoff2 : t1⇒ t1off ;

Ruleon3 : t2⇒ t2on, {ct1.t2};

Ruleoff3 : t2⇒ t2off, {ct1.t2}.

Figure 4.8: Rules based model of the tank system with delay faults

4.6.2 Timed automaton model for timely occurrence/delay faults

The rules based model with timing guards can be represented using extended 2-state

timed automata. An extended timed automaton is a 6-tuple:

Gi = (Xi,Σi, Ei, x
0
i , X

m
i , C),

where Xi is the finite set of states, Σi is the finite set of events, Ei is the finite set of state

transitions, x0i ∈ Xi is the initial state, Xm
i ⊆ Xi is the set of final states, C is a finite set of

clocks. Each transition e ∈ Ei is a 5-tuple of the form, e := (xe, σe,Pe(ΠiXi) ∧ ϕ
e, Ce, ye),

where xe ∈ Xi is the state where the transition is executed, σe ∈ Σi is the event label

of the state transition, ye ∈ Xi is the state resulting from the execution of the transition,

Pe(ΠiXi) is the untimed guard condition and ϕe ∈ Φ(C) is the timed guard condition—they

must together be satisfied for the transition to occur, and Ce ⊆ C is the set of clocks that

get reset to zero when the transition occurs. A transition is enabled at a state when the

associated guard condition evaluates to true.

By associating timing with the guards of an event representing the timely occurrence of

the event, the delay fault information is included implicitly. Whenever the system is at a

state from where an event is possible, by examining the timed portion of the guard and the

occurrence time of event, the presence or absence of a delay fault can be identified.

The algorithm for automatically deriving an equivalent automaton model out of the

70

model in the proposed formalism is given next:

1. Obtain an untimed automaton, using the untimed portion of the rules as in [12].

2. For each transition on event σ, add the timing guard T i
σ at the states where Gi

σ holds,

and also incorporate the associated set of clocks C i
σ that need to be reset.

For the tank example under consideration, the automata models of the level sensor n,

containing the untimed guards are shown in Figure 4.9(a), and those for the events t1on/off,

and t2on/off are shown in Figure 4.9(b), (c). These extended automata are then composed

G ndn nupG

G t1off G t1on

P2
[t1: off]

t1ont1off
[t1: on]

(b)

P1 P2 P3

t1.t2c : clock for monitoring tap t1 and t2 on

t1.t2c : clock for monitoring tap t1 on and t2 off

G t1on/off : Untimed guard for event t1on/t1off

G t2on/off : Untimed guard for event t2on/t2off

t2on/t2off: tap2 turned on/off

t1on/t1off: tap1 turned on/off

[n: down] ndn nup [n: up]

P3
[t2: off]

t2off t2on
[t2: off]

G Gt2off t2on

Legend:

nup/ndn: non faulty level sensor signal values

G : Untimed guard for event ndn ndn
 nupG : Untimed guard for event nup

(d)

t1on

t1of t1on

t2on

t1on

t1on

t2on t2on

t2offt2off

t1off

t2off

t1off

t1off

ndn

t2on

nup

t2off

t1.t2

t1.t2
c := 0

 t1.t2

t1.t2

t1.t2
c := 0

c := 0

(c)

(a)

nup

c := 0

 t1.t20 < c < 4

0 < c < 3.6

Figure 4.9: Timed automaton model for timely occurrence/delay faults

using synchronous composition, and the transitions whose untimed guards evaluate to true

are retained in the final automaton. For the tank system this is shown in Figure 4.9(d).

Now, the appropriate timed guards are added on appropriate transitions. The timed guard

(0 ≤ ct1.t2 ≤ 4) appears in Figure 4.9(d) on the nup event transition at the state where

t1 and t2 are on; while the timed guard (0 ≤ ct1.t2 ≤ 3.6) on the nup event transition at

71

the state where t1 is on and t2 is off. The clocks ct1.t2 and ct1.t2 are reset when events t1on

or t2on, and t1on or t2off occur respectively. This is the overall timed automaton of the

system.

4.7 Conclusions

The rules based modeling formalism of [12] has been applied in order to obtain models

of discrete event systems prone to failures. Stuck-signal faults, system/equipment faults

and delay faults have been modeled in the rules based modeling formalism. This formalism

presents a scalable as well as flexible alternative to the modeling discrete event systems

prone to faults. Such models may be automatically converted to their equivalent automata

models, for further analysis such as verification, diagnosis, and control. The technique has

been demonstrated to work for a class of systems with discrete event system abstractions,

comprising of boolean valued input/output signals. The formalism can be easily extended

to include non-binary valued signals (more values means more states and transitions in the

extended automata representation, and so more rules per signal). The rules based formalism

being polynomial in the size of signals, provides a solution for the problem of state space

explosion associated with automata models. The compact rules based model greatly aids

rapid reconstruction and error-checking of the model, specially when elements are added,

removed, or configured differently within the system.

72

Chapter 5

Diagnosis of Discrete Event Systems

in Rules Based Model using

First-order Linear Temporal Logic

5.1 Introduction

Detection and isolation of failures in large, complex systems is a crucial and challenging

task. A failure is a deviation of a system from its normal or required behavior, such as

occurrence of a failure event, or visiting a failed state, or more generally, violating a design

specification. A stuck-close valve, decrease in the efficiency of a heat exchanger, abnormal

bias in the output of a sensor, and leakage in pipelines are examples of events that can lead

to failures. Failure diagnosis is the process of detecting and identifying such deviations in

a system using the information available through sensors. The problem of failure diagnosis

has received considerable attention in the literature of reliability engineering, control, and

computer science; and a wide variety of schemes have been proposed. Recently, it has also

been studied in the framework of discrete event systems (DESs) [5, 6, 7, 13, 79, 38, 22, 77,

46, 59, 64, 65, 98, 99, 96, 23, 112, 117, 118, 93, 71, 31].

A notion of failure diagnosis of qualitative behaviors of discrete event systems was first

proposed in [98]. The idea is that if the DES executes a faulty event, then it must be

diagnosed within a bounded number of state-transitions/events. A method for constructing

a diagnoser was developed, and a necessary and sufficient condition of diagnosability was

obtained in terms of certain properties of the constructed diagnoser. The above work was

73

further extended to timed systems in [13] and to decentralized diagnosis in [23]. In [46], an

algorithm of polynomial complexity for testing diagnosability without having to construct a

diagnoser was obtained. This later work enabled a quick test for diagnosability; by applying

this test a diagnoser is constructed only for those systems that are diagnosable. Note that

the off-line construction of a diagnoser is of exponential complexity [98].

In [64, 65], the authors proposed a state-based approach for diagnosis; they studied the

problems of off-line and on-line diagnosis where the basic idea was to “test and observe”.

Extensions of the above work can be found in [5] where the authors studied testability of

DESs. In [6, 7], the problem of failure detection in communication networks was studied,

where both the normal and faulty behaviors of the system were modeled by formal languages.

In [79], the authors also studied the problem of fault detection in communication networks

where faults are specified as change and addition of arcs in the finite state machine model

of the normal system, and a diagnosis method was provided. In [93], a state-based approach

for failure diagnosis of timed systems was proposed. In [38, 22, 77], the authors developed

a template based monitoring scheme using timing and sequencing relationships of events for

fault monitoring in manufacturing systems. In [112], the application of DESs techniques to

digital circuits was studied, and an algorithm for the delay fault testability modeling and

analysis was presented.

In most above works, the non-faulty behavior of the system, also called the specification,

is either specified by an automaton (containing no failure states) or by a language (event-

traces containing no failure events). Since in practical setting, a specification is generally

given in a natural language, we need to first transform a natural language specification

into a formal language specification before we apply the above failure diagnosis results.

Given a simple natural language specification, the process of finding a corresponding formal

language specification can be tedious, unintuitive, and error-prone, making it unaccessible

to non-specialists. So there exists a gap between the informal natural language specification

and the corresponding formal language specification. Temporal logic based specification was

proposed in [26] as an attempt to bridge such a gap. Temporal logic has been used in the

analysis and control of DESs [48, 103, 102, 115, 80, 4, 52, 75, 76, 68, 105, 63, 69]; and it has

also been used as a formalism for diagnosing DESs in [84, 47, 20].

In this chapter, we study the failure diagnosis problem for systems modeled in a rules

based model [12], extended to include faults [43]. State variables and rules for modify-

ing their values are used to compactly model a DES. The representation of a system with

74

faults, in the rules based modeling formalism, is polynomial in the size of signals and faults.

The compactness of this model, together with its intuitive nature, makes it user-friendly,

less error-prone, more flexible, easily scalable, and provides canonicity of representation for

models of systems with faults. The motivation of the work presented here is to develop

techniques for failure diagnosis that are able to exploit the compactness of the model. In

this regard, we develop techniques based on 1st-order temporal logic model-checking and

predicates and predicate transformers.

The rules based modeling formalism is based on an input/output view of the system. The

input signals of the system are the independent variables, and output signals the dependent

variables which are a function of the independent variables and of other dependent variables.

For simplicity, all signals in the system are assumed to be binary valued (extension to non-

binary valued signals has been considered in rule-based formalism [12]), and it is also assumed

that the state of the system can be specified by the current values of the signals (extension to

the case when the state depends on also the past values of the signals has also been considered

in [12]). In order to model failure prone systems, a binary valued fault signal is introduced to

model presence or absence of each fault. From a modeling standpoint, the fault signals are

treated just the same as any other signal in the system. Addition of fault signals to capture

the faulty behavior requires new rules for the added fault events, and modification of rules

of existing non-faulty events, by appropriately weakening their enabling guard conditions.

In the rule-based model, initial conditions are used to specify the initial values of the

system signals. An event is a transition of an input or an output signal from one binary

value to another. For each of the input and output events of the system (which includes the

fault events), we obtain event occurrence rules. The antecedent of such a rule is a predicate

over the signal values that serves as an enabling condition.

In this chapter we use 1st order model checking for testing diagnosability of DESs, and

predicates and predicate transformers for building an online diagnoser. We illustrate through

various examples how the diagnosability of DESs modeled using a rules based formalism

[12] prone to faults can be checked, and how an online diagnoser for the system can be

constructed.

The rest of the chapter is organized as follows. In Section 2, the definitions of predicates

and predicate transformers, rules based model, diagnosability, and 1st order LTL temporal

logic are introduced. In Section 3, diagnosability as a 1st order LTL temporal logic model-

checking is studied, and illustrated via an example. An algorithm for on-line diagnoser is

75

provided in Section 4 and illustrated using an example. Conclusions is provided in Section

5.

5.2 Notation and Preliminaries

5.2.1 Predicates, their Transformers, and Rule-based Model

A discrete event system, denoted G, is a 4-tuple G := (X,Σ,;, X0), where X denotes

the state set, Σ is the finite event set, ; ⊆ X × Σ ×X is the set of state transitions, and

X0 ⊆ X is the set of initial states. We use state variables to represent the states and a finite

set of conditional assignment statements, called rules, to represent the state transitions.

The notation ~v is used to denote the vector of state variables of G. If ~v is n-dimensional,

then ~v = [v1, . . . , vi, . . . , vn], where vi is the ith state variable. The state space X of G equals

the Cartesian product of domains of all state variables, i.e., X :=
∏n
i=1D(vi), where D(vi) is

the domain of vi. By definition D(vi) is a countable set and can be identified with the set of

natural numbers N .

We use predicates for describing various subsets of the state space. Let P(~v) denote the

collection of predicates defined using the state variable vector ~v, i.e., if P (~v) ∈ P(~v), then it

is a boolean valued map P (~v) : X → {0, 1}. Consider for example a two dimensional state

space X = Z2. Then the predicate P (~v) = [v1 ≥ v2] refers to all the states in which the

value of variable v1 is at least as large as the value of variable v2. The symbols true and

false are used for denoting predicates that hold on all and none of the states respectively.

With every predicate P (~v) ∈ P(~v), we associate a set XP ⊆ X on which P (~v) takes the

value one. Thus the collection of predicates P(~v) has a one-to-one correspondence with the

power set 2X , and the names predicates and state-sets can be used interchangeably. We say

that the predicate P (~v) holds on X̂ ⊆ X if X̂ ⊆ XP .

State transitions map a state to another state. Such mappings are extended to set of

states or predicates in a natural way, and are known as predicate transformers. We use F

to denote the collection of all predicate transformers, i.e., if f ∈ F , then f : P(~v) → P(~v).

The conjunctive closure of f , denoted f∗, and disjunctive closure of f denoted f ∗ is defined

to be
∧

i≥0 f
i and

∨

i≥0 f
i respectively, where f 0 is the identity predicate transformer and

f i+1 := f(f i). Given f : X → X, the substitution predicate transformer“~v ; f(~v)” maps a

76

predicate P (~v) to P (f(~v)). Consider for example the f given by

(v1, v2) ; (v1 + v2, v1 − v2).

Then the corresponding substitution predicate transformer maps the predicate [v1 < v2] to

[v1 + v2 < v1 − v2] = [v2 < 0].

Next we review the rule-based model [12] (which is a specific assignment program model

[56]) for representing a DES G described above. The initial state set of G is specified as

an initial predicate, denoted I(~v), which implies X0 = XI . The state transitions “;” of G

is specified using a finite set of rules, also called conditional assignment statements, of the

form:

σ : [Cσ(~v)]⇒ [~v ; fσ(~v)],

where σ ∈ Σ is an event, Cσ(~v) is a predicate, called the enabling condition or the guard,

and fσ : X → X is a map defined on the state space. If no guard is present, then true is

treated as the guard. A conditional assignment statement of the above type is enabled if

the condition Cσ(~v) holds. An enabled assignment statement may execute. Upon execution,

new values are assigned to the state variables according to the map fσ and a state transition

on the event σ occurs. For simplicity, we assume that if multiple assignment statements are

simultaneously enabled, only one of them is nondeterministically executed. This assumption

may be relaxed to allow concurrency of execution.

The following example illustrates the representation of a DES using the rules based

modeling formalism.

Example 2 Consider a tank filling system whose schematic is shown in Figure 5.1. It has

nt2

nominal level sensor

t1

Figure 5.1: Tank system schematic

one filling tap t1, one draining tap t2, and a nominal level sensor n. The signals in the

system are t1, t2, n, and the events that can occur in this system are t1on, t1off, t2on, t2off,

77

nup, ndn. Assume that the filling rate of tap t1 has the flow value of +10, while that of the

draining is +1.

The model in the rules based formalism, consisting of initial conditions and event occur-

rence rules, is given in Figure 5.2. Note that the rule for nup simply states that for the event

nup to occur, the system should be in a state where the filling rate exceeds the draining rate,

and the level sensor is down. The rule for ndn is similar, and other rules are default ones.

1. Initial conditions: t1, t2, n = [off, off, down].

2. Event occurrence rules:

nup : [(t1+10 > t2+1) ∧ n]⇒ [n ; n]

ndn : [(t2+1 > t1+10) ∧ n]⇒ [n ; n]

t1on : [t1]⇒ [t1 ; t1]; t1off : [t1]⇒ [t1 ; t1]

t2on : [t2]⇒ [t2 ; [t2]; t2off : [t2]⇒ [t2 ; t2]

Figure 5.2: Rules based model of the tank system

The substitution predicate transformer can be used to define the forward one-step reach-

able, fr, and backward one-step reachable, br, predicate transformers for G. fr determines

the “postcondition” after the occurrence of a state transition for a given “precondition”,

whereas br determines the “precondition” prior to the occurrence of a state transition for a

given postcondition.

For the assignment statement σ : [Cσ(~v)]⇒ [~v ; fσ(~v)] and a condition P (~v), these are

formally defined as follows:

fr(P (~v), σ) := Cσ(f
−1
σ (~v)) ∧ P (f−1σ (~v)); br(P (~v), σ) := Cσ(~v) ∧ P (fσ(~v)).

Note that the computation of br is easier as compared to that of fr, since its computation

does not require the extra computation of f−1.

For Σ̂ ⊆ Σ, we define fr(P (~v), Σ̂) :=
∨

σ∈Σ̂ fr(P (~v), σ), and similarly, br(P (~v), Σ̂) :=
∨

σ∈Σ̂ br(P (~v), σ). Finally, note that fr∗(P (~v), Σ̂) denotes the set of states which are reach-

able from a state in P (~v) by execution of zero or more transitions of events in Σ̂. Similarly,

br∗(P (~v), Σ̂) denotes the set of states from where a state in P (~v) can be reached by execution

78

of zero or more transitions of events in Σ̂. Clearly, fr∗ is useful in characterizing the forward

reachability, whereas br∗ is useful in characterizing the backward reachability.

Given f ∈ F and P (~v) ∈ P(~v), the restriction of f to P (~v), denoted f | P (~v), is the

predicate transformer defined as:

f | P (~v)(Q(~v)) := f(P (~v)
∧

Q(~v))
∧

P (~v),∀Q(~v) ∈ P(~v).

5.2.2 1st order LTL temporal logic & model checking

Propositional linear temporal logic (PLTL) [26] is an extension of propositional logic (PL) by

the temporal logic quantifiers/operator {X,U, F,G,B}, called next time, until, eventually,

always, and before, respectively. The temporal operators describe properties of a state-trace

in a computation:

• X (“next time”): it requires that a property hold in the next state of the state-trace.

• U (“until”): it is used to combine two properties. The combined property holds if there

is a state in the state-trace where the second property holds, and at every preceding

state in the trace, the first property holds.

• F (“eventually” or “in the future”): it is used to assert that a property will hold at

some future state in the state-trace. It is a special case of “until”.

• G (“always” or “globally”): it specifies that a property holds at every state in the

state-trace.

• B (“before”): it also combines two properties. It requires that if there is a state in the

state-trace where the second property holds, then there exists a preceding state in the

trace where the first property holds.

We have following relations among the above operators, where f denotes a temporal logic

formula:

• Ff ≡ TrueUf

• Gf ≡ ¬F¬f

• fBg ≡ ¬(¬fUg)

79

So X and U can be used to express the other temporal operators. These are the only

temporal operators that appear in the definition of linear temporal logic.

The following examples show that PLTL temporal logic formulae can be used to easily

express properties such as invariance, recurrence, stability, etc.

Gp means that “along a given state-trace, globally (G) at every state of the trace, p is true”.

It is an invariance (a type of safety) property.

G(p1 ⇒ Fp2) means that “along a given state-trace, globally (G) for every state s of the

trace, if p1 is true at the state s, then p2 will be true at some future (F) state”. It is a

recurrence (a type of liveness) property.

FGp means that “along a given state-trace, eventually (F) p will hold globally (G)”. It

is a property of stability (a type of liveness) which requires that the system should

eventually reach a set of states where p holds and stay there forever.

First-order linear temporal logic (FOLTL) [26] is obtained by taking propositional linear

temporal logic and adding to it a First order language L. That is, in addition to atomic

propositions, truth-function connectives, and temporal operators we now also have predi-

cates, functions, individual constants, and individual variables, each interpreted over appro-

priate domain.

A first order language L consists of variable symbols, function symbols and a set of

predicate symbols. The zero-ary function symbols comprise the subset of constant symbols.

Similarly, the zero-ary predicate symbols are known as the proposition symbols. We also

have the predicate equality symbol ≈, and the quantifier symbols ∀ and ∃, which are applied

to individual variable symbols, using the usual rules regarding scope of quantifiers, and free

and bound variables.

The term of L are defined inductively by the following rules:

T1 Each constant c is a term.

T2 Each variable y is a term.

T3 If t1, · · · , tn are terms and f is an n-ary function symbol then f(t1, · · · , tn) is a term.

The atomic formulae of L are defined by the following rules:

AF1 Each 0-ary predicate symbol (i.e. atomic proposition) is an atomic formula.

80

AF2 If t1, · · · , tn are terms and ψ is an n-ary predicate then ψ(t1, · · · , tn) is an atomic

formula.

AF3 If t1, t2 are terms then t1 ≈ t2 is also an atomic formula.

Finally, the compound formulae of L are defined inductively as follows:

F1 Each atomic formula is a formula.

F2 If p, q are formulae then (p ∧ q), ¬p are formulae.

F3 If p is a formula and y is a free variable in p then ∃y p is a formula.

The semantics of L is provided by an interpretation I over some domain D. The interpre-

tation I assigns an appropriate meaning over D to the (non-logic) symbols of L: Essentially,

the n-ary predicate symbols are interpreted as concrete, n-ary relations over D, while the

n-ary function symbols are interpreted as concrete, n-ary functions on D.

For defining FOLTL, we assume that the set of symbols is divided into two classes, the

class of global symbols and the class of local symbols. Intuitively, each global symbol has the

same interpretation over all states; the interpretation of local symbol may vary, depending

on the state at which it is evaluated. We now define the language of FOLTL obtained by

adding L to PLTL. First, the terms of FOLTL are those generated by rules T1 − 3 for L

plus the rule:

T4 If t is a term, then Xt is a term (intuitively, denoting the immediate future value of

term t).

Finally, the compound formulae of FOLTL are defined inductively using the following rules:

FOLTL1 Each atomic formula is a formula.

FOLTL2 If p, q are formulae, then so are p ∧ q, ¬p.

FOLTL3 If p, q are formulae, then so are PUq, Xp.

FOLTL4 If p is a formula and y is a free variable in p, then ∃y p is a formula.

The semantics of FOLTL is provided by a first order linear time structure M = (S, x, L),

where S is state set, x : N → S is an infinite state sequence, and L associates with each

81

state s an interpretation L(s) of all symbols at s over a domain D such that, for each global

symbol w, L(s)(w) = L(s′)(w), for all s, s′ ∈ S.

Since the terms of FOLTL are generated by rules T1 − 3 for L plus the rule T4 above,

we extend the meaning function - denoted by a pair (M,x) – for terms:

(M,x)(c) = L(·)(c), since all constants are global.

(M,x)(y) = L(·)(y), where y is a global variable.

(M,x)(y) = L(s0)(y), where y is a local variable and x = (s0, s1, s2, · · ·).

(M,x)(f(t1, · · · , tn)) = (M,x)(f)((M,x)(t1), · · · , (M,x)(tn)).

(M,x)(Xt) = (M,x1)(t).

Now the extension of |= is routine. For atomic formulae we have:

M,x |= P iff L(·)(P) = true, where P is a global proposition.

M,x |= P iff L(s0)(P) = true, where P is a local proposition and x = (s0, s1, s2, · · ·).

M,x |= ψ(t1, · · · , tn) iff (M,x)(ψ)((M,x)(t1), · · · , (M,x)(tn)) = true.

M,x |= t1 ≈ t2 iff (M,x)(t1) = (M,x)(t2).

We finish off the semantics of FOLTL with-the inductive definition of |= for compound

formulae:

M,x |= p ∧ q iff M,x |= p and M,x |= q.

M,x |= ¬p iff it is not the case that M,x |= p.

M,x |= (pUq) iff ∃j(M,xj |= q and ∀k < j(M,xk |= p)).

M,x |= Xp iff M,x1 |= p.

M,x |= ∃y p, where y is global variable free in p, iff there exists some d ∈ D for

which M [y ← d], x |= p, where M [y ← d] is the structure having global interpretation

I[y ← d] identical to I except y is assigned the value d.

A formula p of FOLTL is valid iff for every first order linear time structure M = (S, x, L)

we have M,x |= p. The formula p is satisfiable iff there exists M = (S, x, L) such that

M,x |= p.

82

5.3 Diagnosability as 1
st order LTL model-checking

In order to test the diagnosability in the rule-based model, we adopt the test for diagnos-

ability in the automaton setting presented in our past work [46]. The test in the automaton

setting consisted of the following steps:

• Refine the state set X of G by augmenting each state by a binary value label such that

for each x ∈ X, (x, 1) (resp., (x, 0)) represents the traces in L(G) that lead to x and

contain a (resp., no) failure event.

• Take synchronous composition of two copies of the refined G, by first replacing each

event label σ by M(σ). This is called masked synchronous composition.

• Check if the synchronous composition contains a cycle of state-pairs where the two

components carry non-identical labels. (G is diagnosable if and only if no such cycles

are found.)

As in the automaton setting, we introduce a binary valued variable F to indicate whether

or not a fault happened in past. with this the new state variable set becomes,

~x := (~v, F).

We next need to extend the rule-based model to include this new state-variable. Assuming

that the system starts in a non-faulty state, the initial state is given by the predicate,

I(~x) := I(~v) ∧ [F = 0].

The rule for each event σ ∈ Σ, [Cσ(~v)]⇒ [~v ; fσ(~v)] is extended as follows. For a non-faulty

event,

[Cσ(~v)]⇒ [(~v, F) ; (fσ(~v), F)

(non-faulty event retains the value of F as unchanged), and for a faulty event,

[Cσ(~v)]⇒ [(~v, F) ; (fσ(~v), 1)

(faulty event makes the value of F equal to 1).

To facilitate diagnosis, we define a faulty-state predicate,

B(~x) = B((~v, F)) := [F = 1].

83

Using this predicate and the extended rule-base model (which includes the new boolean

variable F , new initial condition, and new assignment statements), we perform the diagnosis

test as follows.

Algorithm 2 Consider G with state variables ~v, event set Σ, and model given by:

Initial condition: I(~v) ∈ P(~v), and

Event occurrence rules: ∀σ ∈ Σ : [Cσ(~v)]⇒ [~v ; fσ(~v)].

The set of fault events is denoted by ΣF ⊆ Σ, and the events are partially observed through

a event observation mask M : Σ ∪ {ε} → ∆ ∪ {ε} with M(ε) = ε, and M(σ) = ε for each

σ ∈ ΣF .

• Augment the state variables by a boolean variable, F , to identify whether or not a

fault happened in past. The augmented state variable is given by, ~x = (~v, F). The

augmented system model is given by,

Initial condition: I(~x) = I(~v) ∧ [F = 0]

Event occurrence rules:

∀σ ∈ ΣF : [Cσ(~v)]⇒ [~x ; (fσ(~v), 1)]

∀σ 6∈ ΣF : [Cσ(~v)]⇒ [~x ; (fσ(~v), F)]

Denote the set of states that are visited after a fault has happened in past by the

predicate, B(~x) = B((~v, F)) := [F = 1].

• Perform a “masked synchronous composition” of augmented G with itself to obtain

the system Gd (here ~x and ~y are used to denote the state-variables of the two copies

of the augmented G):

Initial condition: I(~x)
∧
I(~y).

Event occurrence rule: ∀(σ, σ′) ∈ [(Σ ∪ {ε})2 − {ε, ε}] s.t. M(σ) =M(σ′):

[CM(σ)(~x)
∧
CM(σ′)(~y)] ⇒ [(~x, ~y) ; (fM(σ)(~x), fM(σ′)(~y))] if σ, σ′ 6= ε

[CM(σ)(~x)] ⇒ [(~x, ~y) ; (fM(σ)(~x), ~y)] if σ 6= ε, σ′ = ε

[CM(σ′)(~y)] ⇒ [(~x, ~y) ; (~x, fM(σ′)(~y))] if σ = ε, σ′ 6= ε

84

• Using 1st order linear-time temporal logic model checking check whether there exists

an “ambiguous” cycle by model-checking the following formula in Gd:

∃ ~x0, ~y0[EGF (~x = ~x0
∧

~y = ~y0
∧

B(~x0)
∧

¬B(~y0))]

≡ ∃ ~x0, ~y0[EGAF (~x = ~x0
∧

~y = ~y0
∧

B(~x0)
∧

¬B(~y0))].

Then G is diagnosable if and only if the above formula does not hold in Gd.

The formula to be model-checked checks the for existence of a state pair (~x0, ~y0) ∈

(X × {0, 1})2 with the property that

• ~x0 is a “faulty” state: B(~x0) holds,

• ~y0 is a “non-faulty” state: ¬B(~y0) holds,

• (~x0, ~y0) is visited infinitely often along some state trajectory starting from the initial

condition I(~x) ∧ I(~y): EGF~x = ~x0 ∧ ~y = ~y0, i.e., exists a path (E) such that globally

(G) along each state of the path, in future (F) it holds that ~x = ~x0 and ~y = ~y0.

Whenever the above formula is satisfiable, there exists a pair of faulty and non-faulty

traces in G of arbitrary long length that are indistinguishable, and the system is not di-

agnosable. The model-checking software tools such NuSMV [15] can be used to check the

satisfiability of the above formula in Gd.

Example 3 In order to illustrate our result, we give a simple example which consists of a

traffic monitoring problem of a mouse in a maze. The maze, shown in Figure 5.3, consists

of four rooms connected by various one-way passages, where some of them have sensors

installed to detect the passing of the mouse. There is also a cat which alway stays in room

1. The mouse is initially in room 0, and it can visit other rooms by using one way passages,

and it never stays at one room forever. A failure occurs when the mouse visits the room

occupied by the cat. Our task is to monitor the behavior of the mouse by observing the

sensor signals to detect whether or not a failure occurred.

The above problem can be formulated as a failure diagnosis problem in the rules based

model setting. The system to be diagnosed, G, has a single state variable v denoting the

location of the mouse in the maze, and it can take the values in the set {0, 1, 2, 3}; the initial

state is I(v) = [v = 0]; the event set is Σ = {o1, o2, o3, u1, u2, u3}; the event observation mask

M is given as M(ui) = ε and M(oi) = oi for 1 ≤ i ≤ 3. The rules based model of mouse in a

85

: observable

cat 1

food

2

3
mouse

0

: unobservable

Figure 5.3: Mouse in a maze

1. Initial condition: I(v) = [v = 0].

2. Event occurrence rules:

o1 : [v = 0]⇒ [v ; 3]

o2 : [v = 3]⇒ [v ; 0]

o3 : [v = 2]⇒ [v ; 3]

u1 : [v = 0]⇒ [v ; 1]

u2 : [v = 1]⇒ [v ; 2]

u3 : [v = 3]⇒ [v ; 2]

Figure 5.4: Rules based model of mouse in a maze

86

maze is shown in Figure 5.4. Since a fault occurs when room 1 is visited, ΣF = {u1}, where

note that u1 is an unobservable event.

In order to verify diagnosability, we augment the state variable v by the binary valued

variable F to obtain ~x := (v, F). The augmented system model is shown in Figure 5.5.

1. Refined initial condition: I(~x) = (I(v), 0) = [0, 0].

2. Event occurrence rules:

o1 : [v = 0]⇒ [~x ; (3, F)]

o2 : [v = 3]⇒ [~x ; (0, F)]

o3 : [v = 2]⇒ [~x ; (3, F)]

u1 : [v = 0]⇒ [~x ; (1, 1)]

u2 : [v = 1]⇒ [~x ; (2, F)]

u3 : [v = 3]⇒ [~x ; (2, F)]

Figure 5.5: Augmented rules based model of mouse in a maze

Next using the state variable ~y = (u,E) for the second copy of G, we compute the masked

composition of augmented G with itself to obtain Gd as shown in Figure 5.6. Note that the

observable events o1, o2, o3 execute synchronously, whereas the unobservable events u1, u2, u3

occur asynchronously.

We used the NuSMV tool [15] for model-checking the diagnosability condition:

∃ ~x0, ~y0[EGAF (~x = ~x0
∧

~y = ~y0
∧

B(~x0)
∧

¬B(~y0))].

This NuSMV tool allows computation of masked synchronous composition. We verified that

the mouse in a maze is diagnosable (as expected from our automaton based computation).

Since a rules based model provides a compact model (in contrast, an automaton model

enumerates all the states), we hope that the symbolic techniques developed in this chapter

will allow for the diagnosability verification of industrial size problems.

Further, we can use the diagnosability algorithm developed above together with the

optimal sensor selection algorithm given in [50] to obtain an optimal observation mask while

preserving the system diagnosability. Using this approach, we determined that the event o3

need not be observable for the system to remain diagnosable.

87

1. Initial condition: I(~x, ~y) = (I(v), 0, I(u), 0) = [0, 0, 0, 0].

2. Event occurrence rules:

(o1, o1) : [v = 0] ∧ [u = 0]⇒ [(~x, ~y) ; (3, F, 3, F)]

(o2, o2) : [v = 3] ∧ [u = 3]⇒ [(~x, ~y) ; (0, F, 0, F)]

(o3, o3) : [v = 2] ∧ [u = 2]⇒ [(~x, ~y) ; (3, F, 3, F)]

(u1, ε) : [v = 0]⇒ [(~x, ~y) ; (1, 1, ~y)]

(ε, u1) : [u = 0]⇒ [(~x, ~y) ; (~x, 1, 1)]

(u2, ε) : [v = 1]⇒ [(~x, ~y) ; (2, F, ~y)]

(ε, u2) : [u = 1]⇒ [(~x, ~y) ; (~x, 2, F)]

(u3, ε) : [v = 3]⇒ [(~x, ~y) ; (2, F, ~y)]

(ε, u3) : [u = 3]⇒ [(~x, ~y) ; (~x, 2, F)]

Figure 5.6: Masked synchronous composition of two augmented mouse in a maze

5.4 On-line Diagnoser using Predicates & their Trans-

formers

We embark upon the on-line computation of a diagnoser once the system has been de-

termined to be diagnosable. Again as with the test for diagnosability, we develop symbolic

methods for the on-line computation of the diagnoser.

The diagnoser maintains two predicates: one, denoted Ek(~x) ∈ P(~x), is an estimate of

the possible states following the occurrence of kth observable event, and the other denoted

Nk(~x) ∈ P(~x) is a subset of Ek(~x) that is reached along trajectories that never visit a state

in B(~x), i.e., along those non-faulty trajectories where ¬B(~x) holds invariantly.

Initially, when no observation has occurred, i.e., when k = 0,

E0(~x) = I(~x), N0(~x) = I(~x) ∧ ¬B(~x).

Upon the occurrence of the (k + 1)th observable event (k ≥ 0), the pair (Ek(~x), Nk(~x))

is updated to obtain the pair (Ek+1(~x), Nk+1(~x)). Whenever Nk(~x) is a strict subset of

Ek(~x), and Nk(~x) 6= false, it means that the system could have executed some trajectories

that visited a faulty state in past (since Ek(~x) 6= false), and also some other trajectories

88

(that are indistinguishable to the former) that never visited a faulty state in past (since

Nk(~x) 6= false). In other words, in such a case, there exists an ambiguity as to whether or

not a fault occurred in past. Such an ambiguity does not exist if

[Ek(~x) 6= false] ∧ [Nk(~x) = false],

which means that along all trajectories the system could have executed, a faulty state was

visited in past. A fault is reported by the diagnoser at such a point.

Algorithm 3

• Initiation step:

E0(~x) = I(~x)

N0(~x) = I(~x)
∧
¬B(~x)

• Iteration step: Upon (k + 1)th observation δ ∈M(Σ)− {ε}:

Ek+1(~x) = frM−1(δ)[fr
∗
M−1(ε)∩Σ(Ek(~x))]

Nk+1(~x) = (fr|¬B(~x))M−1(δ)[(fr|¬B(~x))
∗
M−1(ε)∩Σ(Nk(~x))]

Declare a fault if:

[Ek+1(~x) 6= false] ∧ [Nk+1(~x) = false].

In the iteration step, Ek+1(~x) is computed using a reachability computation starting from

Ek(~x) on sequences of unobservable events in M−1(ε) ∩Σ followed a single event in M−1(δ)

(since the (k+1)th observation of δ results from the execution of a sequence of unobservable

events inM−1(ε)∩Σ followed by the execution of an event inM−1(δ)). Nk+1(~x) is computed

in a similar way except the forward reachability predicate transformer fr is replaced by it’s

restriction to ¬B(~x), i.e., by (fr|¬B(~x)).

We illustrate the above algorithm for on-line computation of the diagnoser using the

example of mouse in a maze given earlier.

Example 4 Refer to the example of Section 5.3. We can compute the diagnoser as follows:

• k = 0: Since I(~x) = [v = F = 0] and B(~x) = [F = 1], we set

E0(~x) = [v = F = 0], N0(~x) = [v = F = 0].

89

• k = 1: There are three observable events o1, o2, o3 ∈ Σ. If the first observation is o1,

then

E1(~x) = [v = 3, F = 0], N1(~x) = [v = 3, F = 0].

If the first observation is o2, then

E1(~x) = false, N1(~x) = false.

(This means o1 as first observation is not possible.) If the first observation is o3, then

E1(~x) = [v = 3, F = 1], N1(~x) = false.

This means that a fault has occurred sometimes in past.

• k = 2: Suppose the first observation (k = 1) is o1. If the next observation is o1, then

E2(~x) = false, N2(~x) = false.

(This means the observation sequence o1o1 is not possible.) If the next observation is

o2, then

E2(~x) = [v = 0, F = 0] = E0(~x), N2(~x) = [v = 0, F = 0] = N0(~x).

If the next observation is o3, then

E2(~x) = [v = 3, F = 0], N2(~x) = [v = 3, F = 0].

Next suppose the first observation (k = 1) is o2. Then since E1(~x) = N1(~x) = false,

it follows that E2(~x) = N2(~x) = false.

Finally suppose the first observation (k = 1) is o3. If the next observation is o1, then

E2(~x) = false, N2(~x) = false.

(This means the observation sequence o3o1 is not possible.) If the next observation is

o2, then

E2(~x) = [v = 0, F = 1], N2(~x) = false.

If the next observation is o3, then

E2(~x) = [v = 3, F = 1], N2(~x) = false.

In both the above cases, we know that a fault has occurred in past.

90

• k = 3: After two observations the only predicate pair that is not “re-visited” is the

one following the observation sequence o3o2:

E2(~x) = [v = 0, F = 1], N2(~x) = false.

So we examine this predicate pair. If the next observation is o1, then

E3(~x) = [v = 3, F = 1], N3(~x) = false.

If the next observation is o2, then

E3(~x) = false, N3(~x) = false.

(This means the observation sequence o3o2o2 is not possible.) If the next observation

is o3, then

E3(~x) = [v = 3, F = 1], N3(~x) = false.

Thus the third iteration step does not introduce a predicate pair that has never been

“visited” before, and so there is no need to iterate further. (Said another way, further

iterations will yield a predicate pair that has already been computed above.)

In this case, the on-line computation of the three steps considered above yields a off-line

diagnoser that can be represented as an automaton as shown in Figure 5.7. In Figure 5.7,

when there is a transition from a predicate pair [E(~x) 6= false] ∧ [N(~x) 6= false] to the

predicate pair [E(~x) 6= false]∧ [N(~x) = false], a fault is reported by the diagnoser. Further

since the predicate pair [E(~x) = false] ∧ [N(~x) = false] represents an impossibility, the

diagnoser can be reduced by restricting it to those predicate pairs that are of the type

[E(~x) 6= false] ∧ [N(~x) 6= false]. This restricted diagnoser is shown in Figure 5.8. Any

observation sequence that leads to being outside the restricted diagnoser automaton indicates

that a fault must have occurred in past.

5.5 Conclusion

The rules based modeling formalism of [12] has been used to models discrete event systems

prone to failures. Stuck-signal faults, and system/equipment faults can be easily modeled in

the rules based modeling formalism. Symbolic computation based algorithms for checking

the diagnosability of DESs using 1st order model-checking and for online diagnoser synthesis

91

o1

o2

o3

o2

o3

o2 o1 o3

o1

o2

o1 o2 o3

o3

o1

, ,

N1(x)=false

N2(x)=false

E2(x)=[v=0,F=1]

N1(x)=false

E1(x)=false

E0(x)=[v=F=0]
N0(x)=[v=F=0]

E1(x)=[v=3,F=0]
N1(x)=[v=3,F=0]

E1(x)=[v=3,F=1]

Figure 5.7: Diagnoser for mouse in a maze

o2

o3

o1

E1(x)=[v=3,F=0]
N1(x)=[v=3,F=0]

E1(x)=[v=F=0]

N1(x)=[v=F=0]

Figure 5.8: The reduced diagnoser for mouse in a maze

92

using predicates and predicate transformers have been developed. The advantage of using

rule-based model is it’s compactness since it uses state-variables to represent states. The

number of rules in the rule-based model is polynomial in number of state variables. Symbolic

methods allow for failure analysis without exhaustively performing a reachability of the

entire state space. Plus, software tools such as NuSMV exist for performing 1st-order model-

checking for systems with finite/bounded state-space.

93

Chapter 6

Rules based Modeling of an Assembly

Line and its Diagnosis

6.1 Introduction

In this chapter, we study the modeling and failure diagnosis of a miniature assembly

line [11] in the rules-based model developed in [12], and later extended in [43] to also model

faults. The present chapter demonstrates the applicability of the rules-based modeling and

diagnosis techniques to practical manufacturing systems. The demonstration system is a

simple educational test-bed built using LEGO r© blocks that simulates an automated car

assembly-line. This miniature assembly-line shown in Figure 2.7 performs the assembly of

the roof and the chassis. These two parts are transported to the press section from their

respective loading sections, where a vertical press operation presses the two parts together,

and finally the assembled part exits the assembly-line through the unloading section. A

transporter links the chassis, roof, press, and unloading sections. While setting up the

miniature LEGO r© assembly-line, the one built at the University of Massachusetts [10]

served as a prototype.

We present the rules-based models of each of the individual sections, the composition of

which is the entire plant model. The number of rules in transporter, chassis, roof, press,

and unloading sections is 18, 12, 12, 10, and 6, respectively (compare this to a total of

about 1.7 × 106 states for the entire assembly-line if they were to be modeled as an au-

tomaton). For demonstrating the 1st-order temporal logic model-checking based diagnosis

technique developed in [44], we consider a simplified model of the transporter section, and

94

analyze it’s diagnosability properties. When the system under examination is not diagnos-

able, sensor refinement/augmentation can be used to make the system diagnosable. We

illustrate through various examples drawn from the LEGO r© assembly-line how sensor re-

finement/augmentation methods can be used to make the system diagnosable.

The rest of the chapter is organized as follows. A description and rules-based model of

the LEGO r© assembly-line is given in Section 2. Section 3 illustrates diagnosis in rules-based

model using a simplified model of one section of the assembly-line, and also studies how to

design diagnosable systems, again using examples from the LEGO r© assembly-line. Finally

conclusions are provided in Section 4.

6.2 Rule-based models for the Assembly-Line

Instead of having a single large model for the system, and for making modeling simpler,

we develop smaller sized “sub-models” by partitioning the entire system into five sections,

namely, transporter, chassis, roof, press, and unloading. Their description is preceded by a

list of all the events possible in the LEGO r© assembly-line which is given in Figure 6.1.

1. Transporter: Parts are transported from one assembly section to another via the

transporter, which consists of a fixture that is connected to one end of a rack that

is moved by a pinion powered from a gear box motor. An angle sensor mounted on

the same shaft as that of the pinion, counts off the number of rotations of the axle

through it, in order to determine the position of the fixture. The rules-based model of

the transporter is given in Figure 6.2. The initial conditions of this section consist of

the forward and reverse motor turned off (Tf, Tr), and the transporter positioned at

the initial home/unloading position (g, h, i, j, k, l). When the forward motor is turned

on, and the reverse motor is off, the transporter will leave (a) the home position, move

to the press position (b), then leave (c) the press position and reach the roof position

(d). It will then leave (e) the roof position and finally reach the chassis position (f).

If we model the stuck-on fault for the forward motor (Tf), then the following two rules

for the stuck-on fault (TfsonF) and stuck-on recovery (TfsonR) events will be added:

TfsonF : [Tf ∧ Tfson]⇒ [Tfson ; Tfson];

TfsoR : [Tfson]⇒ [Tfson ; Tfson].

95

pCup/dn: chassis pusher retracted/not−retracted output events

pRup/dn: roof pusher retracted/not−retracted output events

dRdn/up: part present/absent at roof station dock output events

dCup/dn: part present/absent at chassis station dock output events

pcUon/of: unloading pusher and conveyor motor on/off input events

pUup/dn: unloading pusher retracted/not−retracted output events

No

No

No

No

M8

L6

T3

L7

L8

T2

cCon/of: chassis conveyor motor on/off input events

pCon/of: chassis pusher motor on/off input eventsM3

pPfon/of: press pusher motor on/off input events

pPron/of: press pusher motor on/off in reverse dirn. input events

wPon/of: press winding motor on/off input events

pPup/dn: press pusher retracted/not−retracted output events No
wPup/dn: press weight raised/lowered output eventsT4

pRon/of: roof pusher motor on/off input events Yes

cRon/of: roof conveyor motor on/off input eventsM4

M5

T1

M7

M6

M6

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Press

Roof

Chassis

Unloading

Ifon/of: indexing slide motor on/off forward dirn. input events

Iron/of: indexing slide motor on/off reverse dirn. input events

a : Indexing slide leaving home station during forward movement output event

c/k : Indexing slide leaving press station during forward/reverse movement o/p events

d/h : Indexing slide at roof station during forward/backward movement o/p events

b/j : Indexing slide at press station during forward/reverse movement output events

l : Indexing slide at home or unloading position during reverse movement o/p event

f : Indexing slide at chassis station during reverse movement optput event

g : Indexing slide leaving roof station during forward/reverse movement o/p event

No
No

No

No

No

No

No

M1

M1

A5

A5

A5

A5

A5

A5

A5

Signals Events Controllable

Yes

Yes

Transporter

No

M2

Section

Figure 6.1: Legend of signal and event labels

96

Also, the guard for the event a will be weakened as follows:

a : [(Tf ∨ Tfson) ∧ (l ∧ k ∧ j ∧ i ∧ h ∧ g)]⇒ [l ; a].

The rules for the other events b, c, d, e and f will also be altered in a similar way.

• Initial conditions: Tf , Tr, Tfson, a, b, c, d, e, f = [off, off, off,

0, 0, 0, 0, 0, 0].

• Event occurrence rules:

a : [Tf ∧ (l ∧ k ∧ j ∧ i ∧ h ∧ g)]⇒ [l ; a];

l : [Tr ∧ (a ∧ k ∧ j ∧ i ∧ h ∧ g)]⇒ [a ; l];

b : [Tf ∧ (a ∧ k ∧ j ∧ i ∧ h ∧ g)]⇒ [k ; b];

k : [Tr ∧ (a ∧ b ∧ j ∧ i ∧ h ∧ g)]⇒ [b ; k]

c : [Tf ∧ (a ∧ b ∧ j ∧ i ∧ h ∧ g)]⇒ [j ; c];

j : [Tr ∧ (a ∧ b ∧ c ∧ i ∧ h ∧ g)]⇒ [c ; j];

d : [Tf ∧ (a ∧ b ∧ c ∧ i ∧ h ∧ g)]⇒ [i ; d];

i : [Tr ∧ (a ∧ b ∧ c ∧ d ∧ h ∧ g)]⇒ [d ; i];

e : [Tf ∧ (a ∧ b ∧ c ∧ d ∧ h ∧ g)]⇒ [h ; e];

h : [Tr ∧ (a ∧ b ∧ c ∧ d ∧ e ∧ g)]⇒ [e ; h];

f : [Tf ∧ (a ∧ b ∧ c ∧ d ∧ e ∧ g)]⇒ [g ; f];

g : [Tr ∧ (a ∧ b ∧ c ∧ d ∧ e ∧ f)]⇒ [f ; g];

Tfon : [Tf ∧ Tr]⇒ [Tf ; Tf];

Tfoff : [Tf ∧ Tr]⇒ [Tf ; Tf];

Tron : [Tf ∧ Tr]⇒ [Tr ; Tr];

Troff : [Tf ∧ Tr]⇒ [Tr ; Tr].

Figure 6.2: Rules-based model of the transporter section

2. Chassis: The chassis conveyor conveys parts to its docking area. The chassis dock acts

as a buffer with a capacity of one part. Parts are pushed off the dock onto an empty

waiting transporter by the chassis pusher. Sensors monitor the retracted position of

the pusher and presence of part on the dock.

97

The initial conditions of the chassis section require that the chassis conveyor motor

(cC) and pusher motor (pC) be off, the pusher should be retracted (puC), there should

be a part loaded on the conveyor (ld), and no part on the chassis dock (dC). Also there

should be no jamming in the chassis section (x). The operation of the chassis section

begins when the conveyor is turned on (cCon), the part rolls off the conveyor and is

delivered to the chassis dock (dCup). Next, the pusher motor is turned on (pCon),

which causes the pusher to operate (puCdn and it pushes the part off the dock (dCoff)

onto the transporter. The pusher returns to its original retracted position (puCup).

The rules-based model of the chassis is given in Figure 6.3.

3. Roof: The rules-based model of the roof is given in Figure 6.4. The roof conveyor

(cR) conveys parts that are loaded on it onto the roof dock which also has a buffer size

of one. The part is pushed off the dock onto a waiting transporter by the roof pusher

(pR). Sensors monitor the retracted position of the pusher (puR) and presence of part

on the dock (dR). The operation of the roof is similar to that of the chassis section,

with the exception that the presence of a part on the roof dock is indicated by dRdn.

This is due to the fact that the roof is black in color and when positioned under a light

sensor causes the dRdn event. The chassis on the other hand is yellow in color and

causes the dCup event to occur when on the chassis dock.

The actuators and sensors in various sections are subject to stuck open/close and stuck

up/down faults respectively. In addition the sections could also encounter various

system faults, such as power failure, software malfunctions, etc.

4. Press: The rules-based model of the press is given in Figure 6.5. The pressing of the

roof and the chassis is done by releasing a heavy LEGO r© block onto a properly posi-

tioned transporter carrying the roof-chassis combination. The mechanism is controlled

by a press pusher and winding motor. Initially the pusher is advanced (pP) so that

the weighted block is suspended at a certain

98

• Initial conditions: pC, cC, dC, x, ld, puC=[off, off, dn, dn, up, up].

• Event occurrence rules:

puCup : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)]⇒ [puC ; puC];

puCdn : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)]⇒ [puC ; puC];

dCup : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)]⇒ [dC ; dC];

dCdn : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)]⇒ [dC ; dC];

ldup : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld)]⇒ [ld ; ld];

lddn : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld ∧ f)]⇒ [ld ; ld];

x : [(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld)

∨(cC ∧ pC) ∧ (puC ∧ dC ∧ x ∧ ld)]⇒ [x ; x];

x : [false]⇒ [x ; x];

pCon : [pC]⇒ [pC ; pC]; pCoff : [pC]⇒ [pC ; pC];

cCon : [cC]⇒ [cC ; cC]; cCoff : [cC]⇒ [cC ; cC].

Figure 6.3: Rules-based model of the chassis section

99

• Initial conditions: pR, cR, dR, ld, x, puR = [off, off, up, up, dn, up].

• Event occurrence rules:

puRup : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cC ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [puR ; puR];

puRdn : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [puR ; puR];

dRup : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld ∧ f)]⇒ [dR ; dR];

dRdn : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [dR ; dR];

ldup : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [ld ; ld];

lddn : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [ld ; ld];

x : [(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)

∨(cR ∧ pR) ∧ (puR ∧ dR ∧ x ∧ ld)]⇒ [x ; x];

x : [false]⇒ [x ; x];

pRon : [pR]⇒ [pR ; pR]; pRoff : [pR]⇒ [pR ; pR];

cRon : [cR]⇒ [cR ; cR]; cRoff : [cR]⇒ [cR ; cR].

Figure 6.4: Rules-based model of the roof section

100

• Initial conditions: pPr, pPf , wP , wtP , pP , x = [off, off, off, up, dn,

dn].

• Event occurrence rules:

wtPup : [(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)]⇒ [wtP ; wtP];

wtPdn : [(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)]⇒ [wtP ; wtP];

pPup : [(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)]⇒ [pP ; pP];

pPdn : [(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)]⇒ [pP ; pP];

x : [(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)

∨(pPf ∧ pPr ∧ wP) ∧ (pP ∧ wtP ∧ x)]⇒ [x ; x];

x : [false]⇒ [x ; x];

pPfon : [pPr ∧ pPf]⇒ [pPf ; pPf];

pPfoff : [pPf ∧ pPr]⇒ [pPf ; pPf];

pPron : [pPr ∧ pPf]⇒ [pPr ; pPr];

wProff : [pPr ∧ pPf]⇒ [pPr ; pPr];

wPon : [wP]⇒ [wP ; wP];wPoff : [wP]⇒ [wP ; wP].

Figure 6.5: Rules-based model of the press section

height (wtP). When the pusher motor is reversed (pPr) retracts the weight descends

(wtPdn) and presses the pieces together. After this the pusher is advanced again so as

to mesh with the winding motor (wP) gears, which when switched on raises the block

up again. The retracted position of the pusher (pPup) and the raised position of the

block (wtPup) are monitored by sensors.

The press section is the most complex section of the system and requires precise align-

ment of the pushing, lifting, and positioning mechanisms.

101

5. Unloading: The unloading conveyor (pcU) conveys parts that are pushed onto it by

the unloading pusher (also pcU). There is a sensor for monitoring the retracted position

of the pusher (pU). When a part has to be removed from the transporter positioned at

the unloading section, the conveyor and pusher are turned on simultaneously (pcUon),

and cause the pusher to advance (pUdn). After pushing the assembled roof-chassis the

pusher returns to its retracted position (pUup) and the unloading pusher-conveyor is

turned off (pcUof). The rules-based model of the transporter is given in Figure 6.6.

As with any other motor in the system, the unloading conveyor-pusher motor can get

stuck in the on or off positions. Also the sensors can be stuck in either their up or

dn position. The rules-based model of the system can be altered accordingly to reflect

these faults. For example, in the presence of pcUsoF fault, the altered rule for the

unloading pusher advancing (pUdn) is given as:

pUdn : [(pcU ∨ pcUsoF) ∧ (pU ∧ l)]⇒ [pU ; pU].

Similarly, in the unloading section, a motor power fault signal, could cause the motor

to stop. The events of the power fault are powerF and powerR, denoting the power

fault, and recovery from power fault events. Owing to the modeling of the power fault

signal, the rules for the unloading motor event(pcUon) and for the retracted/advanced

positions of the pusher (pUdn, pUup respectively are altered. For example, the altered

rule for pUdn, having a pcUsoF fault, and susceptible to a motor power fault, is given

by:

pUdn : [(pcU ∨ pcUsoF) ∧ power ∧ (pU ∧ l)]⇒ [pU ; pU].

We input the rules of each sub-system in NuSMV software tool, followed by a syn-

chronous composition of the models and model checking. The diagnosability test does not

hold for this system, which means that this system are not diagnosable.

6.3 Diagnosis Technique Illustration for Rules-based

Model

The following observation can be made about the detection of a fault: A fault is detected

when a non-faulty guard condition is false, but the consequent event occurs. For this, all

102

• Initial conditions: pcU , pcUsoF , pU = [off, off, dn].

• Event occurrence rules:

pUdn : [(pcU ∨ pcUsoF) ∧ (pU ∧ l)]⇒ [pU ; pU];

pUup : [(pcU ∨ pcUsoF) ∧ (pU ∧ l)]⇒ [pU ; pU];

pcUon : [pcU]⇒ [pcU ; pcU];

pcUof : [pcU ∨ pcUsoF]⇒ [pcU ; pcU].

Figure 6.6: Rules-based model of the unloading section

traces indistinguishable to a sufficiently long extension of a trace containing the fault should

themselves be faulty. This can be verified through a diagnosability test. For a diagnosable

system, a diagnoser can be constructed to monitor observation sequence and report the

occurrence of a fault.

For the purpose of illustrating the diagnosis technique, we use a simplified model of the

transporter section of the LEGO r© assembly-line (see Figure 6.7). This transporter moves

between home and extended positions, crossing a number of intermediary positions. The

events that can occur in transport system are: Tfon, Tfoff, Tron, Troff, iup, idn, eup, edn.

Tfon/Tfoff refers to the gear-box motor being turned on/off in the forward direction, while

Tron/Troff is for the reverse direction. When the transporter leaves the home position it

enters an intermediary position, i, which is a collection of all those positions whose values

are unimportant from the positioning point of view. The events iup/idn corresponds to

the transporter arriving/leaving the intermediary position from/to the home position; and

eup/edn corresponds to its arriving/leaving the extended position from/to the intermediate

one.

pinionrack

angle sensor

Intermediate
positionsHome position Extended position

Gearbox motor

(Angle sensor records intermediate, iup/idn, and extended, eup/edn, positions)

(Issued commands Ifon/Ifoff; Iron/Iroff − for forward/reverse movement)

FIXTURE TRANSPORTER

A1

M1

Figure 6.7: System layout

103

We assume that the initial state for the present system is when all the actuators are

off (Troff, Tfoff) and the transporter is in home position (idn, edn). The model of the

transporter in the rules-based formalism is given in Figure 6.8.

• Initial conditions: Tf , Tr, i, e = [off, off, down, down].

• Event occurrence rules:

iup : [Tf ∧ Tr ∧ (i ∧ e)]⇒ [i ; i];

idn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [i ; i];

eup : [Tf ∧ Tr ∧ (i ∧ e)]⇒ [e ; e];

edn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [e ; e];

Tfon : [Tf]⇒ [Tf ; Tf]; Tfoff : [Tf]⇒ [Tf ; Tf];

Tron : [Tr]⇒ [Tr ; Tr]; Troff : [Tr]⇒ [Tr ; Tr].

Figure 6.8: Rules-based model of the transporter without faults

Next, we extend the transporter model to include a fault. Suppose the transport is

prone to the forward motor Tf stuck open fault (TfsonF), whose occurrence does not alter

the transport speed. The rules-based model of the transporter with this fault is given in

Figure 6.9.

6.3.1 Diagnosability Test

For the transporter of Figure 6.7, we let ~v = (Tf, Tr, Tfson, i, e) denote the state vari-

ables of the transporter, and augment it with the boolean valued variable F to obtain the

augmented state variable ~x = (~v, F). The augmented rules-based model of the transporter

with TfsonF fault is given in Figure 6.10.

Next using the state variable ~x′ = (~v′, F ′) for the second copy of the augmented model,

where ~v′ = (Tf ′, T r′, T fson′, i′, e′), we compute the masked composition of the two aug-

mented models. The resulting rules-based model is shown in Figure 6.11, where we have

used σ to denote any of the following variables: iup, idn, eup, edn, Tfon, Tfoff , Tron and

Troff .

104

• Initial conditions: Tf , Tr, Tfson, i, e = [off, off, off, down, down].

• Event occurrence rules:

iup : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [i ; i];

idn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [i ; i];

eup : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [e ; e];

edn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [e ; e];

Tfon : [Tf]⇒ [Tf ; Tf];

Tfoff : [Tf ∨ Tfson]⇒ [Tf ; Tf];

Tron : [Tr]⇒ [Tr ; Tr];

Troff : [Tr]⇒ [Tf ; Tr];

TfsonF : [Tf ∧ Tfson]⇒ [Tfson ; Tfson];

TfsonR : [Tfson]⇒ [Tfson ; Tfson].

Figure 6.9: Rules-based model of the transporter with a TfsonF fault

6.3.2 Diagnoser Synthesis

When the system is diagnosable, we can synthesize its on-line diagnoser. Otherwise,

the system can be made diagnosable by sensor refinement using the technique developed in

[50]. For example the transporter of Figure 6.7 prone to the forward motor stuck on fault,

TfsonF , is not diagnosable. If we install a smart sensor that can sense the motor speed,

then the occurrence of the TfsonF can be declared when Tfoff holds, but the motor speed

is non-zero.

For a diagnosable system, we can compute a diagnoser using the method given in [44].

For this, we first obtain a rules-based model of the fault-free system by omitting the rules

for the fault events (such as TfsonF and TfsonR for the transporter system). For each

k ≥ 0, the diagnoser maintains a predicate Nk(~v) ∈ P(~v) that estimates the set of possible

non-faulty states of the system following the occurrence of the kth observable event. Nk(~v)

is computed iteratively as follows:

N0(~v) = fr∗M−1(ε)∩ΣI(~v); Nk+1(~v) = frM−1(δk)[fr
∗
M−1(ε)∩Σ(Nk(~v))],

where δk ∈ M(Σ) − {ε} denotes the kth observation. A fault is said to have been detected

105

• Refined initial conditions: I(~x) = I(Tf, Tr, Tfson, i, e, F) = [off,

off, off, down, down, 0].

• Event occurrence rules:

iup : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [i, F ; i, F];

idn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [i, F ; i, F];

eup : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [e, F ; e, F];

edn : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [e, F ; e, F];

Tfon : [Tf]⇒ [Tf, F ; Tf, F];

Tfoff : [Tf ∨ Tfson]⇒ [Tf, F ; Tf, F];

Tron : [Tr]⇒ [Tr, F ; Tr, F];

Troff : [Tr]⇒ [Tr, F ; Tr, F];

TfsonF : [Tf ∧ Tfson]⇒ [Tfson, F ; Tfson, 1];

TfsonR : [Tfson]⇒ [Tfson, F ; Tfson, 0].

Figure 6.10: Augmented Rules-based model of the transporter with a TfsonF fault

106

• Initial conditions: I(~x, (~x′) = (I(~v), 0, I(~v′), 0).

• Event occurrence rules:

(iup, iup) : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [i, F, i′, F ′ ; i, F, i′, F ′];

(idn, idn) : [Tr ∧ Tf ∧ (i ∧ e)]⇒ [i, F, i′, F ′ ; i, F, i′, F ′];

(eup, eup) : [(Tf ∨ Tfson) ∧ Tr ∧ (i ∧ e)]⇒ [e, F, e′, F ′ ; e, F, e′, F ′];

(edn, edn) : [Tr ∧ Tf) ∧ (i ∧ e)]⇒ [e, F, e′, F ′,; e, Fe′, F ′];

(Tfon, Tfon) : [Tf]⇒ [Tf, F, Tf ′, F ′ ; Tf, F, Tf ′, F ′];

(Tfoff, Tfoff) : [Tf ∨ Tfson]⇒ [Tf, F, Tf ′, F ′ ; Tf, F, Tf ′, F ′];

(Tron, Tron) : [Tr]⇒ [Tr, F, Tr′, F ′ ; Tr, F, Tr′, F ′];

(Troff, Troff) : [Tr]⇒ [Tr, F, Tr′, F ′ ; Tr, F, Tr′, F ′];

(σ, TfsonF) : [Tf ∧ Tfson]⇒ [σ, F, σ′, F ′ ; σ, F, σ′, 1];

(TfsonF, σ′) : [Tf ∧ Tfson]⇒ [σ, F, σ′, F ′ ; σ, 1, σ′, F ′].

Figure 6.11: Masked synchronization of two augmented rules-based model of the transporter

when Nk(~v) = False.

By computing different possible diagnoser states following all different possible observa-

tion sequences we can obtain the entire diagnoser. The result of such a computation for the

transporter system is shown as an automaton in Figure 6.13. Any observation sequence that

is not accepted by this diagnoser automaton indicates the occurrence of the TfsonF fault.

eup/edn: Extended angle sensor High/Low
iup/idn: Intermediate angle sensor High/Low

Legend:

1

Tfon Tfon

Tron

Tron

2 3

4

Tfon Tfon

Tron

Tron

5

Tron
67

8

edn

Tron

TfonTfon
9

1011

12

iup

idn

edn

eup

Tfon/off: Transporter forward command on/off
Tron/off: Transporter reverse command on/off

Tfoff Tfoff

Troff

Troff

Tfoff Tfoff

Troff

Troff

Troff

TfoffTfoff

Troff

Figure 6.12: Diagnoser of the transporter with TfsonF fault

107

6.3.3 Designing Diagnosable Systems

When the system is diagnosable, we can synthesize its on-line diagnoser. Otherwise, we

can make it diagnosable by sensor refinement or sensor augmentation. For sensor refinement

we can apply the technique of [50]. Also, smart sensors can be installed in the system which

can make the observation of a fault possible. Consider, for example, the transporter of

Figure 6.7 prone to a stuck-on fault in the transporter motor, denoted by TfsonF . We know

from earlier analysis that the system is not diagnosable, when TfsonF is an unobservable

event. Now, if we install a sensor that can sense the motor speed, then the occurrence of the

TfsonF can be declared when Tfoff holds, but the motor speed is non-zero.

In such a situation, we can compute a diagnoser for the transporter system using the

method given in [44]. The result of such a computation is shown as an automaton in

Figure 6.13. Any observation sequence that is not accepted by this diagnoser automaton

indicates the occurrence of the TfsonF fault.

Using NuSMV software tool for model-checking the condition for the diagnosability, we

found that the transporter with TfsonF fault is not diagnosable. The above example demon-

strates that the symbolic technique for diagnosis developed in [44] allows for the diagnos-

ability verification of practical systems.

eup/edn: Extended angle sensor High/Low
iup/idn: Intermediate angle sensor High/Low

Legend:

1

Tfon Tfon

Tron

Tron

2 3

4

Tfon Tfon

Tron

Tron

5

Tron
67

8

edn

Tron

TfonTfon
9

1011

12

iup

idn

edn

eup

Tfon/off: Transporter forward command on/off
Tron/off: Transporter reverse command on/off

Tfoff Tfoff

Troff

Troff

Tfoff Tfoff

Troff

Troff

Troff

TfoffTfoff

Troff

Figure 6.13: Diagnoser of the transporter with TfsonF fault

In the absence of fault sensing devices, additional sensors may also be added to make the

system diagnosable. Consider, for example, the transporter system, susceptible to a TfsonF

fault. If the transporter is at the initial position (i, e), and is switched on, and then switched

off prior to the occurrence of the iup event, then the iup event should not occur, unless there

is a TfsonF in the system. Further, we can also examine the status of another sensor, e,

which under precisely the same set of controllable events or faults, as those which cause the

event iup to occur, will also cause the eup event to occur. However, neither iup, nor eup event

108

should occur, since the motor Tf has already been switched off when it was at the initial

state). Thus, we monitor the extended position sensor, to ensure that it does not switch on,

under these conditions as well. Having the additional e sensor will ensure that while it may

be possible to have the iup event occur in an untimed model as part of its normal behavior,

getting the eup event would indicate a TfsonF fault to the diagnoser. If it does, then we

can declare a TfsonF . Retaining, or adding the e sensor if one were not already present,

thus makes the TfsonF diagnosable, even without adding a smart fault sensor. Hence, the

presence of the Tfson fault can be deduced, even though

∃ ~x0, ~y0[EGF (~x = ~x0
∧

~y = ~y0
∧

[(B(~x0)
∧

¬B(~y0))])];

remains true and the system is not diagnosable.

Further, in some situations involving faults, in which we are looking for a signal to occur

which never can (since the monitored sensor may be faulty), additional sensors should be

inserted, which would be triggered by precisely the same controllable and uncontrollable

faults events conditions. The presence of such, possibly redundant, sensors can be used for

identifying certain faults.

6.4 Conclusion

The rules-based modeling formalism of [12] has been used to model and study diagnosis

of a simple assembly-line built using LEGO r© blocks. The advantage of using rules-based

model is its compactness since it uses variables to represent states. The number of rules

in the rules-based model is polynomial in number of system signals and faults. Symbolic

technique for failure analysis, based on 1st-order temporal logic model-checking, has been

employed successfully. Existing software tools such as NuSMV software tool aid the analysis

for systems with bounded state-space. If the given system is not diagnosable, refining the

observation mask [50] makes the system diagnosable, and subsequently an on-line diagnoser

for the system can be constructed. This was demonstrated using several examples drawn

from the LEGO r© assembly-line.

109

Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this dissertation, Finite state machines (FSMs) are used for modeling operations of

the assembly line built using LEGO r© blocks , and for the specifications that accomplish the

task of successfully completing the assembly repeatedly. Using the technique of Supervisory

control theory (SCT), we derive a supervisor that enforces the specifications while offering the

maximum flexibility of assembly. Subsequently a controller is extracted from the maximally

permissive supervisor for the purpose of implementing the control by selecting, when possible,

only one controllable event from among the ones allowed by the supervisor. Testing to check

the correctness of the control code is reduced, since the controller is guaranteed to enforce

the specifications.

Rules-based model has been employed in order to aid the rapid development of an accu-

rate system model with faults which can subsequently be used for fault diagnosis. It relies

on establishing rules for all the events in the system. This intuitive way of modeling systems

using a set of rules can be implemented very easily. Any changes in the structure of the

system, such as when actuators or sensors in the system are added or removed can easily

be incorporated in the rules as well. Any added or removed faults can be incorporated in

the rules easily. Once the rules for the DESs have been developed it can be used for fault

diagnosis and diagnoser construction. The rules-based modeling formalism can be applied

to a wide variety of discrete event systems, both timed and untimed, with or without faults,

and having multi-valued signals, and ones possessing DESs abstractions. The main feature of

the rules based modeling formalism is its size, which is polynomial in the number of system

110

signals.

In this dissertation we also study diagnosis of DESs. We gave a method for testing the

diagnosability in automaton setting. We developed symbolic techniques for testing diagnos-

ability and computing a diagnoser in rules based modeling formalism. Diagnosability test is

shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm

for diagnoser synthesis is obtained by using predicates and predicate transformers. We mod-

eled an automated car assembly-line in rules-based modeling formalism with faults and used

symbolic technique for failure analysis based on 1st order temporal logic model-checking.

7.2 Future work

Some of the possible extensions to the modeling formalism are:

• Implementation of the supervisory control theory has been demonstrated by way of

the control of a miniature assembly line built from LEGO r© blocks. The main issue of

complexity may be dealt with using modularity as we have demonstrated. A controller

may be extracted from a maximally permissive supervisor either ad-hocly, or if need

be, more systematically using optimal control.

• The derivation of plant models has been at the physical level, with signals and events.

When working at a higher level of abstraction, the top level events are the macro events

with regards to the lower, i.e., physical, level ones. A scheme for such a hierarchical

rules based modeling could be developed for further reducing the complexity involved

in DESs modeling.

• In the rules based modeling formalism the plant is modeled using rules, whereas in

supervisory control algorithms both the plant and the control specification are modeled

as automata. This forces the rules based model to be converted into an equivalent

automata model before any supervisory control algorithms can be used. Modeling

the control specifications as rules is in many cases not practical. Efficient ways of

representing the specification such that the compact form of the rules based model can

be used for directly computing the supervisor for the plant, is an area of for future

investigation.

• A system with failure is not necessarily stable with respect to non-failure states since

once the system enters the failure region it may stay there forever. However, a system

111

may be stabilizable in the sense when recovery to legal states may be possible. So,

we need to diagnose the failure when it occurs and enable the corresponding recovery

event so as to return to the normal region. This is called failure diagnosis and recovery

and is an area for the future investigation.

• Extension of 1st-order model-checking method to diagnosis of repeated, intermittent

failures, real-time, and probabilistic systems is a possible future research direction.

• Further applications and software tool development.

112

Appendix A

NuSMV Programming For the

Diagnosability Check of Maze

Example

The NuSMV system is a tool for checking finite state systems against specifications in

the temporal logic CTL and LTL. The input language of NuSMV is designed to allow the

description of finite state systems that range from completely synchronous to asynchronous,

and from the detailed to the abstract. The language provides for modular hierarchical

descriptions, and for the definition of reusable components.

The following is the NuSMV programme for the diagnosability check of maze example.

MODULE main

VAR

mainInState:nodeZero;

stateOut: node;

rule1:ruleOrignal(mainInState);

ruleA:rule(rule1.stateOut,rule1.o1,rule1.o2,rule1.o3);

ruleB:rule(rule1.stateOut,rule1.o1,rule1.o2,rule1.o3);

LTLSPEC F(G((ruleA.states.label)=(ruleB.states.label)))

MODULE node

113

VAR

state:{0,1,2,3};

label:boolean;

MODULE nodeZero

VAR

state:{0,1,2,3};

label:boolean;

ASSIGN

init(state):=0;

init(label):=0;

MODULE ruleOrignal(stateIn)

VAR

states: node;

stateOut:node;

o1:boolean;

o2:boolean;

o3:boolean;

ASSIGN

init(states.state):=stateIn.state;

init(states.label):=stateIn.label;

next(states.state):=

case

(states.state=0):case

((o1=1)&(o2=0)&(o3=0)):3;

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=3):case

114

((o1=0)&(o2=1)&(o3=0)):0;

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=2):case

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=1):case

1:2;

esac;

esac;

next(states.label):=

case

((states.state=0)&(states.label=0)):case

((o1=1)&(o2=0)&(o3=0)):0;

((o1=0)&(o2=0)&(o3=1)):1;

esac;

((states.state=3)&(states.label=0)):case

((o1=0)&(o2=1)&(o3=0)):0;

((o1=0)&(o2=0)&(o3=1)):0;

esac;

(states.state=1):1;

(states.label=1): 1;

esac;

stateOut.state:=states.state;

stateOut.label:=states.label;

MODULE rule(stateIn,o1,o2,o3)

115

VAR

states: node;

stateOut:node;

ASSIGN

init(states.state):=stateIn.state;

init(states.label):=stateIn.label;

next(states.state):=

case

(states.state=0):case

((o1=1)&(o2=0)&(o3=0)):3;

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=3):case

((o1=0)&(o2=1)&(o3=0)):0;

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=2):case

((o1=0)&(o2=0)&(o3=1)):3;

esac;

(states.state=1):case

1:2;

esac;

esac;

next(states.label):=

case

((states.state=0)&(states.label=0)):case

((o1=1)&(o2=0)&(o3=0)):0;

116

((o1=0)&(o2=0)&(o3=1)):1;

esac;

((states.state=3)&(states.label=0)):case

((o1=0)&(o2=1)&(o3=0)):0;

((o1=0)&(o2=0)&(o3=1)):0;

esac;

(states.state=1):1;

(states.label=1): 1;

esac;

stateOut.state:=states.state;

stateOut.label:=states.label;

The result after executing the program is:

$nusmv catMourseRules.smv

*** This is NuSMV2.1.2 (compiled 2002-11-22 12:00:00)

*** For more information of NuSMV see http://nusmv.irst.itc.it

*** or email to nusmv-users@irst.itc.it.

*** Please report bugs to <nusmv-users@irst.itc.it>.

-- specification A F G ruleA.states.label=ruleB.states.label is true

which means that the maze system is diagnosable.

117

Bibliography

[1] K. E. Arzen. Grafcet for intelligent supervisory control. Automatica, 30(10):1513–25,
1994.

[2] R. L. Aveyard. A boolean model for a class of discrete event systems. IEEE Transac-
tions on Systems, Man, and Cybernetics, 4:249–258, 1974.

[3] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin. Supervisory
control of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control,
38(7):1040–1059, July 1993.

[4] M. Barbeau, F. Kabaza, and R. St.-Denis. A method for the synthesis of controllers
to handel safety, liveness, and real-time constraints. IEEE Transactions on Automatic
Control, 43(11):1543–1559, 1998.

[5] S. Bavishi and E. Chong. Automated fault diagnosis using a discrete event systems
framework. In Proceedings of 1994 IEEE International Symposium on Intelligent Con-
trol, pages 213–218, 1994.

[6] A. Bouloutas, G. W. Hart, and M. Schwartz. On the design of observers for fault
detection in communication networks. In A. Kershenbaum and et al., editors, Network
Management and Control, pages 319–338. Plenum Press, 1990.

[7] A. Bouloutas, G. W. Hart, and M. Schwartz. Simple finite-state fault detectors for
communication networks. IEEE Trans. on Communications, 40(3):477–479, March
1992.

[8] C. Bousson, P. Gaborit, and M. Ghallab. Situation recognition: Representation and
algorithms. In Proceedings of the 13th IJCAI, 1993.

[9] B. A. Brandin. The real-time supervisory control of an experimental manufacturing
cell. IEEE Transactions on Robotics and Automation, 12(1):1–14, February 1996.

[10] C. G. Cassandras, J. Bergendahl, D. Esterman, and M. Sullivan. Computer controlled
lego factory. Technical report, University of Massachusetts, Boston, MA, 1995.

118

[11] V. Chandra, Z. Huang, and R. Kumar. Discrete event modeling and control of an
assembly line built using LEGO blocks. IEEE Transactions on Systems, Man, and
Cybernetics: Part C, 2003. Accepted.

[12] V. Chandra and R. Kumar. A event occurrence rules based compact modeling for-
malism for a class of discrete event systems. Mathematical and Computer Modeling of
Dynamical Systems, 8(1):49–73, 2002.

[13] Y. L. Chen and G. Provan. Fault diagnosis in timed discrete-event systems. In Proceed-
ings of the 38th IEEE Conference on Decision and Control, pages 1756–1761, Pheonix,
AZ, 1999.

[14] Yi-Liang Chen and G.Provan. Modeling and diagnosis of timed discrete event systems
- a factory automation example. In Proceedings of the American Control Conference
ACC97, pages 31–36, Albuquerque, New Mexcio, June 1997.

[15] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In Proceeding of International Conference on Computer-Aided Verification, Copen-
hagen, Denmark, July 2002.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

[17] L. Console, L. Portinale, D. Dupre, and P. Torasso. Diagnostic reasoning across differ-
ent time points. In Proceedings of 10th European conference On Artificial Intelligence
ECAI 92, volume 3, 1992.

[18] L. Console, L. Portinale, D. Dupre, and P. Torasso. Diagnosing time - varying mis-
behavior: an approach based on model decomposition. Annals-of-Mathematics-and-
Artificial-Intelligence, 11, 1994.

[19] C. F. Cooper. Nestor: a computer based medical diagnostic aid that integrates causal
and probabilistic knowledge. Technical Report HHP-84-48, Stanford University, CA,
1984.

[20] A. Darwiche and G. Provan. Exploiting system structure in model-based diagnosis
of discrete event systems. In Proceedings of the Seventh International Workshop on
Principles of Diagnosis, Val Morin Canada, 1996.

[21] S. R. Das and L. E. Holloway. Learning of time templates from system observation. In
Proceedings of the American Control Conference (ACC), volume 4, pages 2626–2630,
Seattle, Washington, 1995.

119

[22] S. R. Das and L. E. Holloway. Characterizing a confidence space for discrete event tim-
ings for fault monitoring using discrete sensing and actuation signals. IEEE Transac-
tions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30(1):52–66,
2000.

[23] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete Event Dynamical Systems: Theory
and Applications, 10:33–79, 2000.

[24] J. S. Breese E. J. Horwitz and M. Henrion. Decision theory in expert systems and
artificial intelligence. International Journal of Approximate Reasoning, 1988.

[25] M. S. Elliott. Computer-assisted fault tree construction using a knowledge-based ap-
proach. IEEE transactions On Reliability, 43(1), 1994.

[26] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. Elsevier Science Publishers, 1990.

[27] A. et. al. Asse. Diagnosis based on subjective information in a solar energy plant. In
E. Sanchez and L. A. Zadeh, editors, Approximate reasoning in intelligent systems,
decision and control. Pergmon Press, 1988.

[28] P. M. Frank. Advances in observer-based fault diagnosis. In Survey Paper Tooldiagnosis
’93 (International Conference on Fault Diagnosis), Toulouse, France, 1993.

[29] B. Freyermuth. Knowledge based incipienct fault diagnosis of industrial robots. In Pro-
ceedings of SAFEPROCESS’ 91 International Conference on Fault Detection, Supervi-
sion and Safety for Technical Processes, volume 2, Baden-Baden, Germany, September
1991.

[30] Johann Gamper. A Temporal Reasoning and Abstraction Framwork for Model-Based
Diagnosis Systems. PhD thesis, RWTH, Aachen, Germany, 1996.

[31] D. N. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A. E. Lindsey. Communication
protcols for a fault-tolerant automated highway system. IEEE Transactions on Control
Systems Technology, 8(5):787–800, September 2000.

[32] É. Grégoire and D. Ansart. Detection of the main failure in complex critical systems.
In DISCRETE EVENT SYSTEMS Analysis and Control, pages 363–370. Kluwer Aca-
demic Publishers, Boston, MA, 2000.

[33] W. A. Gruver and J. C. Boudreaux, editors. Intelligent Manufacturing: Programming
environments for CIM. Advanced manufacturing Series. Springer-Verlag, New York,
1993.

120

[34] Walter Hamscher, Luca Console, and Johan De Kleer, editors. Readings in Model-
Based Diagnosis. Morgan Kaufmann Publishers, 1992.

[35] D. M. Himmelblau. Fault detection and diagnosis in chemical and petrochemical pro-
cess. Chemical Engnieering, 8, 1978.

[36] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1985.

[37] L. E. Holloway. On-line fault monitoring of a class of hybrid systems using templates
with dynamic time scaling. In Hybrid Systems III. Springer-Verlag, Berlin, Germany,
New Brunswick, NJ, USA, 1995.

[38] L. E. Holloway and S. Chand. Distributed fault monitoring in manufacturing systems
using concurrent discrete-event observations. Integrated Computer-Aided Engineering,
3(4):244–254, 1996.

[39] L.E. Holloway and S. Chand. Time templates for discrete event fault monitoring in
manufacturing systems. In Proceedings of the American Cotrol Control Conference
(ACC), volume 1, Baltimore, Maryland, 1994.

[40] R. A. Howard and J. E. Matherson. Influence diagrams. In Howard and Matherson,
editors, Readings in Decision Analysis. Menlo Park, CA, 1981.

[41] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. Protocol design for an automated highway
system. Discrete Event Dynamical Systems: Theory and Application, 2(3/4):183–206,
1993.

[42] G. E. Hugghes and M. J. Creswell. Introduction to Modal Logic. Methuen, London,
1977.

[43] Z. Hunag, V. Chandra, S. Jiang, and R. Kumar. Modeling discrete event systems with
faults using a rules-based modeling formalism. In Proceedings of 2002 Conference on
Decision and Control, pages 4012–4017, Las Vegas, NV, December 2002.

[44] Z. Hunag, V. Chandra, S. Jiang, and R. Kumar. Diagnosis of discrete event systems
in rules-based model using first order logic. In Proceedings of 2003 Conference on
Decision and Control, Maui, HA, December 2003.

[45] R. Isermann. Fault diagnosis of machines via parameter estimation and knowledge
processing. Automatic, 29(4), 1993.

[46] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial time algorithm for
diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
46(8):1318–1321, 2001.

121

[47] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with linear-time
temporal logic fault specifications. IEEE Transactions on Automatic Control, 2001.
Submitted.

[48] S. Jiang and R. Kumar. Supervisory control of discrete event systems with CTL∗

temporal logic specification. In 2001 IEEE Conference on Decision and Control, pages
4122–4127, FL, December 2001.

[49] S. Jiang and R. Kumar. Diagnosis of repeated failures for discrete event systems with
linear-time temporal logic specifications. IEEE Transactions on Systems, Man, and
Cybernetics: Part B, 2002. Submitted.

[50] S. Jiang, R. Kumar, and H. E. Garcia. Optimal sensor selection for discrete event sys-
tems under partial observation. IEEE Transactions on Automatic Control, 48(3):369–
381, March 2003.

[51] J. Kitowski and M. Bargiel. Diagnostics of faulty states in complex physical systems
using fuzzy relational equaltions. In E. Sanchez and L. A. Zadeh, editors, Approximate
reasoning in intelligent systems, decision and control. Pergmon Press, 1988.

[52] J. F. Knight and K. M. Passino. Decidability for a temporal logic used in discrete-event
system analysis. International Journal of Control, 52(6):1489–1506, 1990.

[53] B. Kosko. Neural networks: a dynamic systems approach to machine learning.
Preentice-Hall, Engelwood cliffs, NJ, 1992.

[54] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems.
Kluwer Academic Publishers, Boston, MA, 1995.

[55] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157–168, 1991.

[56] R. Kumar, V. K. Garg, and S. I. Marcus. Predicates and predicate transformers
for supervisory control of discrete event systems. IEEE Transactions on Automatic
Control, 38(2):232–247, February 1993.

[57] R. Kumar, S. Nelvagal, and S. I. Marcus. A discrete event systems approach for
protocol conversion. Discrete Event Dynamical Systems: Theory and Applications,
7(3):295–315, 1997.

[58] S. Lapp and G. Powers. Computer aided synthesis of fault trees. IEEE transactions
On Reliability, 26(1), 1977.

[59] M. Larsson. Behavioral and structural model based approaches to discrete diagnosis.
PhD thesis, Linkoping University, Linkoping, Sweden, 1999.

122

[60] G. E. Lasker. Systems diagnostics: basic concepts and methodology. In Proceedings of
the SGSR Detroit Conference on World Problems and Systems Learning, pages 749–
769, 1983.

[61] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J. R. Statistical Society, 50:157–224,
1988.

[62] Ryan J. Leduc. PLC implementation of a DES supervisor for a manufacturing testbed
: An implementation perspective. Master’s thesis, Department of Computer and Elec-
trical Engineering, University of Toronto, Toronto, Canada, 1996.

[63] F. Lin. Analysis and synthesis of discrete event systems using temporal logic. Control
Theory and Advanced Technologies, 9(1):341–350, 1993.

[64] F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event
Dynamic Systems: Theory and Applications, 4(1):197–212, 1994.

[65] F. Lin, J. Markee, and B. Rado. Design and test of mixed signal circuits: a discrete
event approach. In Proceedings of the 32nd IEEE Conference on Decision and Control,
pages 246–251, 1993.

[66] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(3):173–198, 1988.

[67] Feng Lin. Diagnosability of discrete-event systems and its applications. Discrete Event
Dynamic systems, 4, 1994.

[68] J.-Y. Lin and D. Ionescu. Verifying a class of nondeterministic discrete event systems
in a generalized temporal logic. IEEE Transactions on Systems, Man and Cybernetics,
22(6):1461–1469, 1992.

[69] J.-Y. Lin and D. Ionescu. Reachability synthesis procedure for discrete event systems
in a temporal logic. IEEE Transactions on Systems, Man and Cybernetics, 24(9):1397–
1406, 1994.

[70] L. Ljung, editor. System Identification: Theory for the User. Prentice-Hall, 1999.

[71] J. Lygeros, D. N. Godbole, and M. Broucke. A fault tolerant control architecture
for automated highway system. IEEE Transactions on Control Systems Technology,
8(2):205–219, March 2000.

[72] G. Michel. Programmable Logic controllers, Architecture and Applications. Wiley, NY,
1990.

123

[73] R. Milne, C. Nicol, M. Ghallab, L. Trave-massuyes, C.Bousson, J.Quevedo, C.Dousson,
J. Aguilar, and A. Guasch. tiger: real-time situation assessment of dynamic systems.
Intelligent Systems Engineering, 1994.

[74] M. Nybeg. Model Based Fault Diagnosis: Methods, Theory and Automotive Engine
Applications. PhD thesis, Linkoping University, Linkonping, sweden, 1999.

[75] J .S. Ostroff. Synthesis of controllers for real-time discrete event systems. In Proceedings
of 28th IEEE Conference on Decision and Control, Tampa, FL, 1989.

[76] J. S. Ostroff and W. M. Wonham. A framework for real-time discrete event control.
IEEE Transactions on Automatic Control, 35(4):386–397, 1990.

[77] D. Pandalai and L. Holloway. Template languages for fault monitoring of timed discrete
event processes. IEEE Transactions on Automatic Control, 45(5):868–882, May 2000.

[78] D.N. Pandalai and L.E. Holloway. Condition templates: Improved distributed mod-
els for automated fault monitoring of manufacturing systems. In Proceedings of the
International conference on Robotics and Automation, pages 515–520, Minneapolis,
Minnesota, 1996.

[79] Y. Park and E. K. P. Chong. Distributed inversion in timed discrete event systems.
Discrete Event Dynamic Systems: Theory and Applications, 5(2-3):219–241, 1995.

[80] K. M. Passino and P. J. Antsaklis. Branching time temporal logic for discrete event sys-
tem analysis. In Proceedings of 1988 Allerton Conference, pages 1160–1169, Allerton,
IL, 1988.

[81] R. J. Patton. Robust model-based fault diagnosis: The state of the art. In Proceedings
of the IFAC Symposium of Fault Detection, Supervision and Safety for Technical Pro-
cesses SAFEPROCESS94, IFAC Fault Detection, Supervision and Safety for Technical
Processes, Espoo, Finland, 1994.

[82] R. J. Patton, editor. Robust Model-Based Fault Diagnosis for Dynamic System. Kluwer
Academic Publisher, 1999.

[83] J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelligence,
29:241–288, 1986.

[84] C. Pecheur and A. Cimatti. Formal verification of diagnosability via symbolic model
checking. In Workshop on Model Checking and Artificial Intelligence, Lyon, France,
2002.

[85] C. Perrow, editor. Normal Accidents Living with High Risk Technologies. Basic Books
Inc., New York, 1984.

124

[86] A. Pnueli. The temporal logic of programs. In Proceedings of 18th Annual Symposium
on Foundations of Computer Science, pages 46–57, Providence, RI, November 1977.

[87] David Poole. Explanation and prediction: An architecture for default and abductive
reasoning. Computation Intelligence, 5(2), 1989.

[88] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings
of IEEE: Special Issue on Discrete Event Systems, 77:81–98, 1989.

[90] J. Rasmussen. Diagnostic reasoning in action. IEEE transactions On System, Man
and Cybernetics, 23(4):981–991, 1993.

[91] R. Reiter. A theory of diagnosis from first principles. Artifical Intelligence, 32(1), 1987.

[92] T. Ruokonen, editor. IFAC Symposium of Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS 94). Espoo, Helsinki, Finland, 1994.

[93] R. H. Kwong S. H. Zad and W. M. Wonham. Fault diagnosis in timed discrete-event
systems. In Proceedings of the 38th IEEE Conference on Decision and Control, pages
1756–1761, Pheonix, AZ, 1999.

[94] F. V. Jensen S. K. Andersen, G. k. Olesen and F. Jensen. Hugin - a shell for building
belief universes for expert systems. In Proceedings 11th International Joint Conference
on Artificial Intelligence, Detroit, 1989.

[95] M. Sampath. A Discrete Event Systems Approach to Failure Diagnosis. PhD thesis,
Departement of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, 1995.

[96] M. Sampath and S. Lafortune. Active diagnosis of discrete event systems. IEEE
Transactions on Automatic Control, 43(7):908–929, 1998.

[97] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Failure
diagnosis using discrete event models. Technical report, Department of Electrical
Engineerig and Computer Science, The University of Michigan, Ann Arbor, USA,
May 1994.

[98] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Di-
agonsability of discrete event systems. IEEE Transactions on Automatic Control,
40(9):1555–1575, September 1995.

125

[99] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Fail-
ure diagnosis using discrete event models. IEEE Transactions on Control Systems
Technology, 4(2):105–124, March 1996.

[100] E. Sanchez. Medical diagnostics applications in a linguistic approach using fuzzy logic.
In Proceedings of the Int. Workshop on Fuzzy System Applications, pages 38–50, Iizuka,
Japan, 1988.

[101] W. T. Scherer and C. C. White. a survey of expert systems for equipment maintenance
and diagnostics. In Knowledge-based system diagnosis, supervision and control, pages
285–300. Plenum, New York, 1989.

[102] K. T. Seow and R. Devanathan. Temporal framework for assembly sequence represen-
tation and analysis. IEEE Transactions on Robotics and Automation, 10(2):220–229,
April 1994.

[103] K. T. Seow and R. Devanathan. A temporal logic approach to discrete event control
for the safety cannonical class. Systems and Control Letters, 28:205–217, 1996.

[104] J. G. Thistle, R. P. Malhame, H.-H. Hoang, and S. Lafortune. Supervisory control of
distributed systems part I: modeling, specification, and synthesis. Technical Report
EPM/RT-97/08, Ecole Polytechnique de Montreal, 1997.

[105] J. G. Thistle and W. M. Wonham. Control problems in temporal logic framework.
International Journal of Control, 44(4):943–976, 1986.

[106] Y. Tsukamoto and T. Terano. Failure diagnosis by using fuzzy logic. In Proceedings of
IEEE Conference on Decision Making and Control, volume 4, pages 1390–1395, New
Orlean, 1977.

[107] S. Tzafestas and K. Watanabe. Modern approaches to system/sensor fault detection
and diagnosis. Journal A, 31(4), 1990.

[108] P. Varaiya. Smart cars on smart roads: problems of control. IEEE Transactions on
Automatic Control, 38(2):195–207, 1993.

[109] N. Viswanadham and T. L. Johnson. Fault detection and diagnosis of automated
manufacturing systems. In In proceedings of the 27th IEEE Conference on Decision
and Control (CDC), volume 3, pages 2301–2306, 1988.

[110] R. D. Vries. An automated methodology for generating a fault tree. IEEE transactions
On Reliability, 39(1), 1990.

[111] G. Westerman, R. Kumar, C. Stroud, and J. R. Heath. Discrete event systems approach
for delay fault analysis in digital circuits. In Proceedings of 1998 American Control
Conference, Philadelphia, PA, 1998.

126

[112] G. Westerman, R. Kumar, C. Stroud, and J. R. Heath. Discrete event systems approach
for delay fault analysis in digital circuits. In Proceedings of 1998 American Control
Conference, Philadelphia, PA, 1998.

[113] B. Williams and P. Nayak. A model-based approach to reactive self-configuring sys-
tems. In Proceedings of the 13th National conference On Artificial Intelligence (AAAI-
96) Building construction, 1996.

[114] Alan S. Willsky. A survey of design methods for failure detection in dynamic system.
Automatica, 12, 1976.

[115] H. Wong-Toi and D. L. Dill. Synthesizing processes and schedulers from temporal spec-
ifications. In Proceedings of the 1991 Computer-Aided Verification Workshop, (Lecture
Notes in Computer Science), volume 531. Springer-Verlag, 1991.

[116] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM Journal of Control and Optimization, 25(3):637–659, 1987.

[117] S. Young and V. K. Garg. Model uncertainty in discrete event systems. SIAM Journal
of Control and Optimization, 33(1):208–226, 1995.

[118] S. H. Zad. Fault diagnosis in discrete-event and hybrid systems. PhD thesis, University
of Toronto, Toronto, Canada, 1999.

[119] H. J. Zimmermann. Fuzzy set theory and its applications. Kluwer Academic Publishers,
Boston, 1991.

127

Vita

Zhongdong Huang was born October 26, 1971, in Guangchang, P. R. China. He
received the B.S. degree in electrical engineering from the Southern Institute of Metallurgy,
Ganzhou, China, the M.S. degree in electrical engineering from Northeastern University,
Shenyang, China, in 1992, 1995, respectively. He then worked with Electric Power Research
Institute (EPRI), Beijing, China. He joined the graduate program in Electrical Engineering
at the University of Kentucky, Lexington, USA in the summer, 1999, where he received a M.S.
degree in Electrical and Computer Engineering in 2002 and is concurrent with Computer
Science master degree.

He is the recipient of the Research Challenge Trust Fund (RCTF) fellowship and teaching
assistantship at the University of Kentucky. His research interests include system modeling,
discrete event simulation, temporal logic, formal verification, supervisory control, failure
diagnosis, and applications of discrete-event systems.

Professional Publications

Journal

“Rules-based modeling of an Assembly Line and its Diagnosis”, with V. Chandra and R.
Kumar. Asian Journal of Control. Accepted 2003.

“Prioritized Composition with Exclusion and Generation for the Interaction and Control
of Discrete Event Systems”, with V. Chandra, W. Qiu and R. Kumar. Mathematical
and Computer Modeling of Dynamical Systems. Accepted 2003.

“Modeling Discrete Event Systems with Faults using a Rules Based Modeling Formalism”,
with V. Chandra, S. Jiang and R. Kumar. Mathematical and Computer Modeling of
Dynamical Systems. Accepted 2003.

“Automated Control Synthesis for an Assembly Line using Discrete Event System Control
Theory”, with V. Chandra and R. Kumar. IEEE Transactions on Systems, Man, and
Cybernetics, Part C. May 2003, pp 33(2): 284-289.

128

“A polynomial algorithm for testing diagnosability of discrete event systems”, with S. Jiang,
Z. Huang and R. Kumar. IEEE Transactions on Automatic Control, August 2001, pp
46(8): 1318-1321.

Conference

“Modeling Discrete Event Systems with Faults using a Rules Based Modeling Formalism”,
with V. Chandra, S. Jiang and R. Kumar. Proceedings of the 41th IEEE Conference
on decision and control, pages 4012-4017, Las Vega, NV, Dec 2002.

“Concurrent, asynchronous and generative interactions for the modeling and control of dis-
crete event systems”, With V. Chandra and R. Kumar, Proceedings of 2003 American
Control Conference, pages 4010-4015, Denver, Colorado, June 2003.

“Diagnosis of Discrete Event Systems in Rule-based Model using symbolic analysis”, With
V. Chandra, S. Jiang and R. Kumar, accepted in Workshop on Model Checking and
Artificial Intelligence (MoChArt-03), 2003.

Professional Affiliations

Student member, Institute of Electrical and Electronics Engineers (IEEE)

Zhongdong Huang

December 2, 2003

129

	RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS
	Recommended Citation

	root.dvi

