research

Systematic Process for Building a Fault Diagnoser Based on Petri Nets Applied to a Helicopter

Abstract

This work presents a systematic process for building a Fault Diagnoser (FD), based on Petri Nets (PNs) which has been applied to a small helicopter. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the whole system into subsystems, which are the devices that have to be modeled by using PN, considering both the normal and fault operations. Subsequently, the models are integrated into a global Petri Net diagnoser (PND) that is able to monitor a whole helicopter and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been designed for collecting data during the flights and feeding PN diagnoser with them. Several real flights (nominal or under failure) have been carried out to perform the diagnoser setup and verify its performance. A summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. © 2015 Miguel A. Trigos et al.This work has been supported by the project RoboCity2030- III-CM (Robotica Aplicada a la Mejora de la Calidad de Vida ´ de los Ciudadanos; Fase III; S2013/MIT-2748), funded by the I+D program at Comunidad de Madrid and cofunded by Fondos Estructurales of European Union and by the project Proteccion Robotizada de Infraestructuras Críticas, DPI2014- 56985-R, by Ministerio de Economía y Competitividad of Spain.Peer Reviewe

    Similar works