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A b strac t

In this thesis we investigate the diagnosis of large discrete-event systems, where the 
task is to determine, on-line, all failures and states that explain a given sequence 
of observations. The main challenge here is to deal with the large number of 
possible explanations which either results in a very slow diagnosis or, in case they 
are compiled off-line, in huge space requirements for the diagnosis algorithms. We 
tackle this problem from two angles: On the one hand we present a broad spectrum 
of approaches differing in the amount of reasoning and compilation performed off
line and therefore in the way they resolve the tradeoff between the space occupied 
by the compiled information and the time taken to produce a diagnosis. This allows 
the use of our approach to applications with diverse time and space requirements. 
On the other hand we define a framework to assist a human system supervisor in 
reducing the number of possible diagnosis explanations by identifying the causes 
that make the system so poorly diagnosable and that require a respecification of the 
system behaviour. This asks for an extended handling of the diagnosability problem 
to not only verify whether accurate diagnostic reasoning can be performed on the 
system but also to provide all possible reasons of why this might not be the case.

To increase efficiency, we have defined a symbolic framework for our spectrum 
of diagnosis approaches based on binary decision diagrams. This allows for the 
compact representation of the compiled diagnosis information, and for its handling 
across many diagnosis explanations at once rather than for each explanation indi
vidually. In contrast, the efficiency of solving the extended diagnosability problem 
is increased by exploiting the system structure and organizing the system compo
nents into a special tree structure, known as a jointree.
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C hapter 1

Introduction

1.1 D iagnosis - an Informal Introduction

Diagnosis is commonly regarded as the task of explaining an abnormal behaviour 
of a physical system. This is achieved by monitoring the system and interpreting 
its behaviour. It is then the responsibility of the system’s supervisor to use this 
interpretation in order to choose appropriate actions that remove the system’s 
abnormalities. This concept is illustrated in Figure 1.1.

Diagnosis
Monitor Interpret

System Supervisor

Figure 1.1: Diagnosis concept

1.1.1 W h y to  D iagnose

Fault detection and isolation are crucial for a wide range of applications. Several 
of the significant industrial disasters in the past, such as the major blackout of 
New York city, or the Appollo 13 incident could have well been prevented by a 
timely and accurate detection of a failed relay, or a burnt-out switch [Perrow, 
1984]. Thus safety and reliability are two main factors motivating the diagnosis 
study. Moreover, avoiding undesirable effects of faults, improves the operational 
goals of industries, such as increased quality of performance, product integrity, and 
reduced cost of equipment maintenance and service.
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2 Introduction

However, given the complex and often non-apparent interactions and coupling 
between system components, manual fault detection is extremely difficult if not 
impossible. Automated diagnosis mechanisms are therefore needed to monitor large 
dynamic applications such as telecommunication networks, business processes, web 
services, spatial systems, software components, and power supply networks. This 
thesis presents several approaches that aim at increasing the efficiency of the on-line 
diagnosis to allow for a more timely identification of faults.

1.1.2 W h at to  D iagnose

In order to perform diagnosis it is necessary to know, how to use the information 
obtained from the system to reason about the system’s behaviour and its abnor
malities. It is also important to determine which abnormalities are to be diagnosed 
and passed on to the supervisor. Diagnosis aims to disclose all possible faults. A 
fault is any abnormality of a system that requires some actions by the system’s 
supervisor. For instance, in the context of telecommunication networks a cut cable 
is considered as fault while a wrongly dialled phone number is not.

Faults can be divided into primary and secondary faults. Primary faults, like 
a cut cable, are independent from other faults. Instead, secondary faults occur 
as consequence of another fault. For example, a blocked telephone might have its 
origin in a cut cable.

Moreover, faults are partitioned into permanent and intermittent faults. For 
instance, a cut cable is a permanent fault, since it cannot be repaired by the system. 
In contrast, a telephone that is blocked due to a cut cable might be repairable. 
Once the system recognises the problem it might use a reserve cable for the data 
transmission. Then the previously blocked telephone is functioning normally again.

One can also distinguish between external and internal faults. External faults 
(e.g. a cut cable) are the consequence of some event outside the system, while 
internal faults (e.g. a blocked telephone) have their origin within the system. 
Generally the system is able to detect the reason leading to an internal fault, while 
it cannot reason about external faults. For example, it is important to detect that 
a cable is cut, but not how the cable was cut.

The classification of external and internal faults relates to the distinction be
tween a system and its environment. The system is composed of all those entities 
that are relevant to the diagnostic reasoning. However, a system cannot be viewed 
independently from its environment. For instance, the person that cuts or repairs



1.1 Diagnosis - an Informal Introduction 3

the cable is part of the system’s environment, since the consequences of his actions 
have to be taken into account. However, he is not part of the system, since his 
actual action, that is how he cut the cable, is irrelevant for the diagnostic reasoning.

Finally, different types of fault information can be distinguished: fault detection 
which simply states whether the systems is faulty or not, fault localisation where the 
faulty components are determined, fault identification where the exact faults that 
have occurred are computed, and fault propagation where also the consequences of 
faults and their dependencies are considered. Clearly, the richness of the diagnosis 
result increases from fault detection to fault propagation. In the same way, the 
time and space requirements of the diagnosis methods that compute these fault 
types increase.

Summarising, diagnosis can be defined as the aim of detecting, localising, iden
tifying, or propagating all primary and secondary, permanent and intermittent, 
external and internal faults of a system, that have any importance to the system’s 
supervisor. These relevant faults have to be specified beforehand by a human 
supervisor.

1.1.3 H ow  to  D iagnose

Firstly, diagnosing faults of a system requires some understanding of the system’s 
internal structure and its interdependencies. It is necessary to know the conse
quences of the faults. If a fault occurs the system usually changes its behaviour, 
since it is no longer able to perform all its designed functionality. Secondly, in order 
to reason about state changes, the system needs to be monitored or observed. This 
is done by equipping it with a set of sensors. The kind of sensors required depends 
on the faults to be diagnosed. For example, a sensor placed at a cable might pro
vide the information, whether the cable is cut or not. By observing this sensor it is 
now possible to detect the fault ’cut cable’. In general, the diagnostic task can be 
described as follows: Given a set or a sequence of observations (sensor readings), 
what are the faults that have occurred? This task can be performed on-line or 
off-line. In on-line diagnosis, the system is assumed to be in working operation and 
the fault information is continuously updated with the events observed. In off-line 
diagnosis, the system is not in working operation and can be thought of as being 
in a testbed. Here the fault information is computed once and for all based on the 
complete sequence of events observed.
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A system is said to be diagnosable if the occurrence of every fault can be de
tected with certainty after a finite number of subsequent observations. In practice, 
industrial systems are not diagnosable due to sensor costs and technological feasi
bility. However, many systems are equipped with some kind of indicators such as 
alarms or warning lights. By observing these indicators it is possible to determine 
all faults that might have occurred without knowing whether they have indeed 
occurred.

1.2 A pproaches to  D iagnosis

Due to its dramatic importance in many application domains, automated diagno
sis of large scale systems has received constant and considerable attention from 
researchers in the fields of Artificial Intelligence and Control. The existing diag
nosing methods can be classified as fault-tree based systems, expert systems and 
other knowledge-based, and model-based ones.

1.2.1 F ault-tree B ased  M eth od s

A fault tree [Viswanadham & Johnson, 1988] is a graphical representation of the 
cause-effect relationship of faults in the system. Based on an observation that 
indicates an abnormality of a system, the fault tree is used to reason backwards, 
until the root cause of the fault is found. This method is typically applied to alarm 
analysis in complex system. The main task here is to identify and localise the 
source of a fault based on simple observations like alarms. However, a fault in one 
component often causes a faulty behaviour in another component. This leads to a 
number of different alarms being emitted which makes it difficult to identify the 
initial fault. Moreover, the complex problem of constructing the fault tree limits 
its applicability in practice.

1.2.2 E xp ert S ystem s M eth od s

For systems with subtle and complicated interactions a diagnosis based on expert 
systems [Scherer & White, 1987] is often best suited. These systems are tradition
ally rule based. The rules are retrieved from the heuristic knowledge of an expert 
who relates observations to the faults that produce it. Many of these systems are 
based on structures and techniques relating to fault trees [Poucet et al., 1987]. The 
drawbacks of expert system approaches are: the effort to capture the expertise
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required for the diagnosis, the difficulty of validating the systems and their domain 
dependence.

1.2.3 M odel-based  M eth od s

It is now widely recognised that building large-scale systems is best achieved by 
means of model-based representation. That is, rather than relying on procedural 
expert knowledge, the system exploits explicit models of individual components, 
which it combines to automate the reasoning about system wide interactions.

In the classical theory of model-based diagnosis [de Kleer Sz Williams, 1987; 
Reiter, 1987], a diagnosis problem consists of a system description, a set of system 
components, and observations of the system. The system description specifies the 
general rules that must be followed in order for the system to function normally. 
Here, the system is considered to be static. This means that the observations are 
given at a single time point. A diagnosis is defined to be a minimal set A of system 
components such that the following two conditions are consistent with the events 
observed:

• all components in A are faulty and

• all other components are normal.

Thus it is possible that more than one diagnosis exist where none of the diagnoses 
is a subset of another one.

More recently, diagnostic tasks have been successfully developed for some classes 
of dynamic systems [Struss, 1997], which allow spontaneous state changes, either 
triggered by events in the environment, or resulting from the system’s internal 
dynamics. A good deal of these research efforts has been devoted to model-based 
diagnosis of systems modelled as discrete-event systems (DES). DES [Cassandras 
h  Lafortune, 1999] are dynamic systems with a discrete state space. Its behaviour 
is governed by the occurrence of physical events that cause abrupt changes to the 
state of the system. The majority of large complex systems can be modelled as 
DES at some level of abstraction. This discrete-change abstraction is simpler than 
a continuous-change one and it is still quite powerful, since for diagnostic purposes 
many continuous systems can be modelled as discrete using qualitative reasoning 
techniques [iwasaki, 1997].

Qualitative reasoning methods enable a program to reason about the behaviour 
of physical systems without the kind of precise quantitative information needed
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V I : {open, closed}
V2: {open, closed}
S I : {reached, not reached} 
S2 : {reached, not reached}

Figure 1.2: Abstract representation of a tank

by conventional analysis techniques. Figure 1.2 illustrates this concept using the 
example of a tank. The tank is equipped with two valves V\ and V2 that can be open 
or closed and with two sensors S i and S2 that provide the information whether the 
water has reached the specified level or not. The tank contains an arbitrary amount 
of water and the flow speed of water passing through the open valve V2 varies with 
the quantity of water in the tank. Thus this system is continuous. However, for 
diagnostic purposes it might only be relevant to know, whether the water level is 
between the two sensors or not, and whether the valves are open or not. In that 
case the system can be modelled as discrete-event system. The state space consists 
of the combination of the valve and sensor settings: V\ x V2 x Si x S2. Now it is 
no longer possible to retrieve the exact amount of water in the tank, but from a 
diagnostic point of view this is irrelevant. For instance, given a closed valve V2, a 
leak can be diagnosed when the sensor S2 returns reached followed by not reached.

1.3 Fram ew orks for D ia g n o sin g  D E S

In the last few years a number of approaches have been developed for the diagnosis 
of DES. As stated in the previous section, these approaches are not only applicable 
to systems that are typically discrete like communication networks or computer 
systems, but also to systems that are traditionally continuous. This section first 
describes the different ways DES can be represented to perform diagnosis tasks. 
All these diagnosis approaches assume completeness. Then we give an overview of 
the research carried out, and we provide several classifications of diagnosis algo
rithms. The main challenge when dealing with large scale systems is the handling 
of the space/time tradeoff of diagnosis methods. The section therefore closes by 
presenting state of the art research aiming at solving this problem.
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1.3.1 R ep resen tation  Form alism s for D E S

F in ite  S ta te  M achines

The first framework for diagnosing DES was defined in [Sampath et al., 1995]. Here, 
the system can consists of several distinct physical components which might share 
certain events. A component can be thought of as the smallest replaceable unit of a 
system. The components are modelled as finite state machines (FSMs). The states 
of the FSM correspond to the component’s internal state and the transitions refer to 
its events. Each transition represents the change of states caused by the occurrence 
of a single event. Events are divided into sets of observable and unobservable events. 
Anything that can be observed by the component using its sensors is modelled as 
observable event. All other events are considered unobservable. A subset of the 
latter are the fault events. Recalling from section 1.1.2, only those abnormal events 
that have any relevance to the system’s supervisor are regarded as faults. Faults 
are assumed to be permanent. Thus a fault transition indicates only the beginning 
of a fault. Note that this approach assumes that it is precisely known how the 
system behaves if a fault occurs.

Finite state machines can also be used to model DES as set of communicating 
automata [Roze & Cordier, 2002; Lamperti &: Zanella, 2006]. In this setting, every 
component is equipped with input and output terminals to allow interaction among 
the components. These connections are described in terms of a structural m.odel, 
which is represented as a graph whose nodes are components and whose edges are 
the connection links. In addition, a behavioural model, represented as FSM, is used 
to describe how each component reacts to incoming messages.

P rocess A lgebra

The process algebra approach [Console, Picardi, & Ribaudo, 2002] is very similar to 
the previous one in that it supports the same compositional method to modelling. 
The DES is described with two models: One for the structure of the system, 
namely the enumeration of the component instances and their connections, and 
one for the behaviour of each component type. These models are defined by means 
of Performance Evaluation Process Algebra (PEPA) [Hillston, 1996], an algebraic 
description technique.
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P e tr i N ets

DES can also be modelled as Petri nets, which are especially suitable for repre
senting concurrent systems. These nets are described by places, transitions and 
directed links between them. Each place may contain several tokens. However, for 
diagnostic purposes it is sufficient to consider only places with at most one token 
[Aghasaryan et al., 1997]. A marking of a Petri net, that is, an assignment of tokens 
to places corresponds to a system state. In order to diagnose a DES, transitions 
are labelled as observations and certain places are labelled as faults. The system 
is faulty if at least one fault place contains a token.

1.3.2 C lassification  o f D iagnosis A lgorith m s

Generally, time efficiency is achieved at the expense of space efficiency and vice 
versa. We now describe how different diagnosis approaches resolve this time/space 
tradeoff. First we introduce two distinct classifications of diagnosis approaches: 
simulation-based and diagnoser approaches on the one hand and centralised, de
centralised and distributed approaches on the other hand. Then we present a 
number of approaches achieving some level of both: time and space efficiency.

S im ulation-based  and  D iagnoser based A pproaches

Existing model-based methods can be classified into two categories: on-line simu
lation-based approaches compute the diagnosis from the behavioural model of the 
system while the latter is working: diagnoser approaches precompute all possible 
diagnoses off-line, that is while the system is not working, and retrieve, on-line, the 
candidate diagnosis explaining the current set of observations. Due to the size of the 
supervised applications, existing approaches usually suffer either from poor time 
performance or from space explosion. Given a system model as a set of individual 
components and their interactions, that is, a decentralised model, simulation-based 
approaches such as that of Baroni et al. (1999) track the possible system behaviours 
on-line as observations become available; the reliance on a decentralised model 
makes them space efficient, but the set of possible behaviours is so large that on
line computation can be time inefficient. In contrast, diagnoser based approaches 
such as that of Sampath et al. (1996) compile, off-line, a centralised system model 
into another finite state machine (the diagnoser) which efficiently maps observations 
to possible faults; here the space required by the centralised model, let alone that 
required by the diagnoser, constitutes a major problem.
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D istributed, Decentralised, and Centralised Approaches

Diagnosis approaches can also be classified into distributed, decentralised and cen
tralised methods1. For the latter, there is one global system model from which 
the diagnosis result is computed directly or indirectly [Sampath et al., 1995]. In 
decentralised approaches such as [Pencole k  Cordier, 2005] there also exists such 
a global model, but this is given only indirectly as a set of components. For each 
of these components the local diagnosis information is computed and later com
bined to obtain the global diagnosis result. Due to the underlying global system 
model, all events emitted system wide are ordered, which allows the reasoning of 
global dependencies among faults. On the other hand, this makes decentralised ap
proaches less suitable for modelling concurrent systems. For the latter, distributed 
methods like [Fabre, Benveniste, k  Jard, 2002; Wang, Yoo, k  Lafortune, 2004; 
Su k  Wonham, 2005; Qiu k  Kumar, 200G] are commonly used. Here only the 
observations from the same component or the same subsystem, also referred to 
as site, are ordered. Mostly, each site has its own local diagnoser associated to 
it. The global diagnosis, for instance, is computed by exchanging messages among 
these diagnosers. This differs from the decentralised approach, in which there is 
a centralised coordination of the local diagnosers. In comparison to centralised 
approaches, decentralised and distributed ones require more diagnosis time while 
requiring less space. In fact, due to the high space requirements of centralised 
methods they can hardly be applied to large scale systems.

Diagnosis Approaches Tackling the T im e/Space Tradeoff

Clearly diagnosis methods considering the time/space tradeoff are needed. The 
authors in [Roze k  Cordier, 2002] approach it by presenting a single framework 
using communicating automata which can handle simulation-based and diagnoser 
approaches independently. However, most works in this direction aim at combining 
these two diagnosis methods. In the following we give a brief overview about them.

In [Debouk, Lafortune, k  Teneketzis, 2000] the authors have proposed a frame
work consisting of a set of diagnosers, that each explain the observations from one 
site. The states of these diagnosers are labelled by sets of global states and fault 
labels, and the transitions by the events that can be observed by the site. When

1This is the classification adopted by the Artificial Intelligence community. In the field of 
Automatic Control the only distinction made is mostly the one between centralised (what we 
refer to as centralised and decentralised) and decentralised (what we refer to as distributed) 
approaches.
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a site observes an event, transitions in the corresponding diagnoser are triggered. 
The resulting states are labelled with the diagnosis information of this site. For 
sites in which the event cannot be observed the local diagnosis information remains 
unchanged. The global diagnosis information is computed from the local diagnosis 
information of all sites using coordinated decentralised protocols.

The work [Garcia et al., 2005] presents another approach that computes the di
agnosis information based on a set of diagnosers. Here the authors target systems 
that are composed of subsystems that do not interact with each other and of a com
plex global controller that interacts with several subsystems. The work shows how 
the global controller, whose events are all observable, can be decomposed to derive 
a set of minimum local controllers that each only interact with one subsystem. 
A diagnoser model is computed for each subsystem and the corresponding local 
controller. The global diagnosis information can straightforwardly be obtained as 
the Cartesian product of the corresponding local diagnoser states, since no inter
actions need to be considered. However, this approach is not applicable to systems 
in which the behaviour of one subsystem has an impact on another subsystem.

The continuous diagnosis approach introduced in [Lamperti & Zanella, 2003a] 
combines the classical diagnoser approach with the active systems approach. While 
the latter can only be used off-line, the continuous diagnosis approach enables the 
on-line computation of diagnosis information made of two parts. The first part 
is the snapshot diagnostic set, which consists of the faults that are possible after 
the last event has occurred. The second part is the historic diagnostic set that 
contains the complete diagnosis information consistent with the entire sequence of 
events observed. When a new event is observed, the new historic diagnostic set is 
computed based on the former snapshot and historic sets.

In contrast to the previous approaches, Pencole and Cordier (2005) present a 
decentralised diagnosis framework that computes the complete fault propagation 
result and thus also returns all dependencies among faults. The diagnosis algo
rithm retrieves a finite state machine containing all events observed and the faults 
consistent with them, thereby allowing a deeper reasoning about the occurrence of 
faults. The approach is based on a set of subsystems whose states are labelled with 
a set of graphs each explaining the occurrence of one observation possible in that 
state. The subsystem transitions are labelled with the observable events. Once an 
event is observed, the on-line diagnosis approach proceeds by triggering the corre
sponding transition in the subsystem that emitted the event. It also keeps track 
of the subsystem states reached. The graphs labelling these states are synchro-



1.3 Frameworks for Diagnosing DES 11

nised to account for the interactions between different components and compute 
the actual diagnosis information. This approach is very suitable for systems which 
require the diagnosis of fault dependencies. Depending on the extent to which state 
and transition independencies in the diagnosis result can be exploited, an efficient 
representation of the latter is also possible [Cordier & Grastien, 2007].

All previous approaches described in this subsection have one thing in common: 
they partially compile diagnosis knowledge off-line to allow for a faster on-line di
agnosis. A complete compilation would require the consideration of every sequence 
of events and the representation of this compiled knowledge which is infeasible for 
large systems. The work of [Lamperti & Zanella, 2006] addresses this problem and 
performs an additional compilation on-line based on the actual event sequence ob
served. This special purpose knowledge can then be used to increase the efficiency 
of similar diagnosis tasks.

For performing diagnosis based on Petri nets, the authors of [Benveniste et 
al., 2003] introduce diagnosis nets as a way to encode all solutions of a diagnosis 
problem. A solution is a marking of a Petri net, that is, the set of places with 
a token. In contrast to the diagnoser approach, the computation of the diagnosis 
nets is performed on-line by relying on Petri net structure only and thus is more 
space efficient.

Note that the space problem of diagnosis approaches can not only be solved 
at the expense of computation time, but also at the expense of adding inconsis
tent explanations to the diagnosis result. Such an approach is presented in [Su & 
Wonham, 2005] where the authors introduce the concepts of global and local con
sistency. Only if the diagnosis result is globally consistent it contains exactly the 
information that is consistent with the event sequence observed. Otherwise, when 
the space efficient local consistency check is performed, it may contain additional 
diagnosis candidates. Both consistency checks do not consider the computation 
time as this approach is entirely off-line.

We conclude this section with a comparison of the main approaches presented 
in this subsection. Figure 1.3 illustrates how these works relate to each other with 
respect to the degree of compilation performed off-line and with respect to the 
precision of the diagnosis result they compute (see page 3).
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Figure 1.3: Comparison of diagnosis approaches

1.4 D iagnosability of DES

A system is diagnosable iff the occurrence of a fault guarantees that it can be 
detected with certainty after a finite number of subsequent observations. The di
agnosability problem for DES has been introduced in [Sampath et al., 1995] where 
the authors solve it by detecting some transition cycles of ambiguous states in a di- 
agnoser. The main drawback of this method results from the diagnoser computation 
which is exponential in the number of states in the global model (determination) 
and as a consequence is doubly exponential in the number of components in the 
system. [Jiang et al., 2001; Yoo & Lafortune, 2002] then propose new algorithms 
which are only polynomial in the number of states in G and which introduce the 
twin plant method. This method is elegant but impractical for large systems as 
the twin plant has a size quartic in the number of system states. Recent work 
addresses this issue by building local twin plants for system components, and syn
chronising them with each other until diagnosability is decided [Pencole, 2004]. 
Still, in the worst case, all local twin plants need to be synchronised, again produc
ing the global twin plant. Moreover all these approaches see the diagnosability 
problem as a test on a system and not as a deep analysis of the reasons why a 
system is not diagnosable.
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1.5 T hesis M otivation  & C ontribution

Current model-based diagnosis approaches generally fail when confronted with large 
scale discrete-event systems. However, there is an increased need for automatically 
diagnosing such systems in many application domains. The work presented in this 
thesis aims at reducing the gap between existing and required diagnosis methods 
by tackling the efficiency problem at every step, that is

• at design time
by improving diagnosability in order to reduce the number of diagnosis ex
planations that need to be considered on-line

• at compilation time
by taking into account the requirements of the supervised system in order to 
choose the best algorithm among a spectrum of approaches and

• at monitoring time
by using symbolic algorithms that speed up the on-line computations and 
reduce the space requirements of the diagnosis approaches.

1.5.1 A ssistin g  in th e  D ev e lo p m en t o f D iagn osab le  S y stem s

The gap between existing and required diagnosis methods can be reduced by mak
ing changes to the system itself to reduce the number of diagnosis explanations 
consistent with a sequence of observations. This requires in the first place to iden
tify and analyse all causes that make the system not diagnosable. Until now the 
only work performed in this direction deals with the identification of a single nondi- 
agnosable cause. This is done in the context of solving the diagnosability problem. 
Now, in order to assist a systems supervisor in respecifying a large scale system we

1. present an efficient diagnosability approach which is

2. scalable and which

3. computes the minimum-cost solution for making the whole system diagnos
able.

1. Our diagnosability approach exploits the modularity of the system by organ
ising its components into a special tree structure, known as a jointree, where each 
node of the tree is assigned a subset of the local twin plants. Once the jointree is
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constructed we need only synchronise the twin plants in each jointree node, and 
all further computation takes the form of message passing along the edges of the 
jointree. The properties of the jointree guarantee that after two messages per edge, 
the FSMs at all nodes are collectively consistent. To further increase efficiency we 
also present additional techniques to reduce the number and size of the messages 
computed.

The question of efficiency is also raised in [Cimatti, Pecheur, & Cavada, 2003; 
Rintanen & Grastien, 2007; Pencole, 2004]. The first of these works makes use of 
symbolic model-checking tools to test a restrictive diagnosability property. Here 
the global twin plant is encoded by means of binary decision diagrams. Still, for 
large systems even the symbolic representation of the global twin plant might not 
be feasible. The second approach can verify the nondiagnosability of a system 
using SAT, but cannot verify diagnosability. Finally, the third work shows how di- 
agnosability can be decided without computing the global twin plant by iteratively 
synchronising local twin plants. This approach forms the basis of our work. How
ever, it is only applicable to systems satisfying a restrictive property. Section 3.5 
shows how this approach can be simulated with jointrees and gives a detailed com
parison to our work. Rather than passing messages with bounded event sets the 
work presented in [Pencole, 2004] requires the synchronisation of twin plants to 
check consistency, which is generally less efficient.

2. When dealing with large scale systems it is essential that our diagnosability 
algorithm is scalable in the sense that it is able to provide an approximate solution 
to the diagnosability problem whatever the computational resources are. The 
work presented in this thesis is the first one that considers scalability.

3. The number of problems can easily be too high to manually reason about 
them. We assist a human system designer by automatically deriving a characteri
sation of ” best” system modifications to restore diagnosability. Here, it is assumed 
that cost estimates are available that reflect important characteristics of proposed 
system modifications, such as accessibility of subsystems.

Improving the diagnosability of systems is also the key motivation of work 
in the area of optimal sensor placement. Existing sensor placement algorithms 
are based on the global representation of the system model, which may not be 
computable for large systems. In contrast, our approach permits to determine an 
optimal sensor placement based only on computations carried out over subsystems. 
Furthermore, we improve upon previous approaches to solving the diagnosability 
problem by exploiting cost estimation to prune models of subsystems in order to
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gain computational efficiency.

1.5.2 D iagn osis for D ifferent R eq u irem en ts o f  A p p lica tion s

We also consider the different needs of applications with respect to their space 
and time requirements. Our unified framework therefore consists of a spectrum of 
approaches which differ in the degree of reasoning performed off-line and by the 
nature and the size of the underlying compiled models. In particular, we developed 
on-line diagnosis approaches based on the following models (sorted by the amount 
of computations performed off-line starting with no compilation):

1. component model,

2. decentralised diagnosis model,

3. global model,

4. centralised diagnosis model,

5. abstracted model,

6. nondeterministic diagnosis model, and

7. diagnoser model.

The model spectrum closest to ours is the one in [Sampath et al., 1996]. It 
starts with a set of individual component models that are composed to obtain the 
global model from which the diagnoser is computed. Here models 1 and 3 are 
presented as computation steps. The work describes only one diagnosis approach, 
the one based on the diagnoser model.

Models 2 and 4-6 have not been introduced previously and all diagnosis ap
proaches based on them are novel. Figure 1.4 illustrates how our diagnosis ap
proaches relate to existing work. Note, that our methods cannot directly be com
pared to the ones presented in [Debouk, Lafortune, & Teneketzis, 2000; Garcia et 
al., 2005]. These authors follow a distributed approach and thus use different as
sumptions about the observable events and their order. In contrast our approaches 
are centralised (models 3-7) and decentralised (models 1-2).

Figure 1.4 shows that all our approaches compute the same diagnosis result. 
This allows us to conduct a fair comparison of how our different methods resolve 
the time/space tradeoff. The reason why we chose our diagnosis result to consist of
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Figure 1.4: Spectrum of our diagnosis approaches contrasted to existing work.

the fault identification information was motivated by the fact that we expected for 
such diagnosis approaches the impact of symbolic techniques (see next subsection) 
to be the highest.

1.5.3 Increasing th e  O n-line D iagn osis E fficiency

To increase efficiency, our diagnosis framework is implemented symbolically us
ing binary decision diagrams (BDDs) [Bryant, 1986]. BDDs enable the compact 
encoding and the implicit manipulation of sets of states and transitions. Firstly, 
they allow us to reduce the space requirements of models with a high degree of 
compilation. Secondly, they help reducing the diagnosis time of approaches with a 
low degree of compilation by avoiding the individual consideration of all possible 
diagnosis explanations. Therefore, in our approach

• all models are represented as symbolic finite-state machines, and

• all computations are implemented via symbolic operations.

The idea of exploiting symbolic representations in the context of discrete- 
event systems diagnosis is not new [Cimatti, Pecheur, & Cavada, 2003; Cordier & 
Largouet, 2001; Sztipanovits & Misra, 1996], but it has traditionally been applied 
to different problems, e.g. checking diagnosability or off-line diagnosis, using off- 
the-shelf model-checkers. An exception is the work by Marchand and Roze (2002) 
which recasts a form of diagnoser synthesis in terms of polynomial equations. In 
contrast to that work, we present the BDD-level encoding and computation of a
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spectrum of diagnosis models ranging from component models to diagnoser mod
els. For each of these models, we show how the diagnosis information (i.e. all 
faults and system states that explain a sequence of observations) can be derived 
on-line, by means of symbolic computations which maximise the benefits of BDDs 
for efficiently representing and manipulating large data sets.

1.6 T hesis O rganisation

The thesis is organised as follows. Chapter 2 defines and evaluates our symbolic 
diagnosis approaches. Chapter 3 then presents our approach to diagnosability and 
shows how it can be used to assist a human system designer in respecifying the 
system to make it diagnosable. Finally we conclude with a summary of the main 
contributions of this thesis and remarks about future work in Chapter 4.
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C h ap te r 2

A Sym bolic F ram ew ork for 
D iagnosing D iscre te-E ven t 
System s

2.1 Introduction

For many years, automated fault diagnosis of dynamic event-driven systems has 
received constant and considerable attention from researchers in the fields of Artifi
cial Intelligence and Control. Given a monitor continuously receiving observations 
from a system, automated diagnosis aims at identifying faults that explain the ob
servations, and at providing an assistance to the operator in charge of the system’s 
supervision.

In this chapter, we present a unified symbolic framework allowing for flexible 
and efficient diagnosis in applications with different time and space requirements. 
In this framework, we define and implement a spectrum of symbolic approaches 
which resolve the space/time complexity tradeoff in various ways. Our symbolic 
techniques are based on binary decision diagrams (BDDs) [Bryant, 1986] which 
are compact representations of Boolean functions. They enable the encoding and 
implicit manipulation of sets of states and transitions, without the need for explicit 
enumeration.

The chapter consists of two parts. First, to demonstrate the advantages of sym
bolic techniques for on-line diagnosis, we show how to directly compute a symbolic 
representation of well-known models ranging from component models to Sampath 
et al. diagnoser 1996, and how to retrieve the diagnosis information based on them.

19
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Furthermore we analyse the time/space tradeoff for the main computation steps 
of the symbolic algorithms involved in this “direct" diagnosis approach. Our ex
periments on test cases derived from a telecommunication application reveal the 
superiority of our symbolic approaches in comparison to the enumerative ones. For 
instance, we obtain a symbolic diagnoser significantly smaller than the enumerative 
one, three orders of magnitude faster.

Based on our analysis of the direct approach, we define, in the second part, 
a symbolic framework that more closely exploits the advantages of BDDs in such 
a way that slow operations on models that hardly increase the model’s size are 
computed off-line. In contrast to the direct approach, this “compiled” diagnosis 
approach speeds-up on-line diagnosis by precomputing the diagnosis information 
for each component individually. The resulting compiled diagnosis models are all 
composed of two parts: (i) a decentralised representation of the diagnosis infor
mation that is uniform across all models, and (ii) a representation of the system's 
behaviour that ranges from a pure decentralised description (comparable to the 
component models in the direct approach) to a deterministic centralised descrip
tion (as e.g. the diagnoser model in the direct approach). Our experiments clearly 
demonstrate the superiority of the compiled symbolic approach in comparison with 
the direct one. For instance, the results reveal a significant speed-up of diagnosis 
time using our decentralised diagnosis model in place of the component-based one. 
They also show that one of our compiled models which is considerably smaller than 
the diagnoser (20 times smaller for our examples), additionally returns a symbolic 
diagnosis faster than the diagnoser.

This chapter is organised as follows. First we give an introduction to BDDs 
in Section 2.2. Section 2.3 then defines the diagnosis problem for discrete-event 
systems and introduces the models on which our direct diagnosis approach is based. 
In Section 2.4, we show how these models can be represented by BDDs, describe 
how we solve the diagnosis problem based on them, demonstrate their performance 
and analyse their space/time tradeoff. Section 2.5 presents the compiled diagnosis 
approach and its evaluation. Finally we review related work in Section 2.6 and 
summarise our contribution in Section 2.7.
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2.2 B ackground: B in a ry  D ecision D iag ram s

2.2.1 R ep resen tation  o f B D D s

Binary decision diagrams (BDDs) [Bryant, 1986] are compact representations of 
Boolean functions. They enable the encoding and implicit manipulation of sets of 
states and transitions, without the need for explicit enumeration. In a range of 
areas, such as static diagnosis, verification, controller synthesis, or AI planning, 
BDD-based representations have given rise to algorithms capable of exploiting the 
structure of the system, resulting in significant space and time gains.

BDDs are derived from Binary Decision Trees (BDTs). A BDT is a rooted, 
directed tree with two types of nodes: terminal and variable nodes. The terminal 
nodes are labelled 0 or 1 and have no outgoing edges. The variable nodes are 
marked with a variable v and have two outgoing edges. Figure 2.1 illustrates an 
example of a BDT.

Figure 2.1: Binary Decision Tree representing the function /  =  {a V b) A c.
Dashed lines indicate the low-successor of a node and solid lines refer to the nodes’ 
high-successor.

Every BDT represents a Boolean function /  such that for every terminal node 
labelled with 0 the function f ( v i , . . .  ,vn) returns 0 and respectively for every ter
minal node labelled with 1 the function returns 1. The two outgoing edges of a 
variable node labelled V{ point to the nodes low(vi) and high(vi): low(vi) is the 
root of the subtree representing the function /  where Vi has been assigned the value 
0, while high(v{) refers to the function in which Vi has been assigned the value 1. 
The BDT depicted in Figure 2.1 represents the function /  = (a V b) A c.

A BDD is a rooted, directed acyclic graph with variable and terminal nodes 
similar to a BDT. In contrast to the latter, a BDD has only one or two terminal 
nodes. Figure 2.2 illustrates the BDD of the same function described already by
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the BDT in Figure 2.1.

o

Figure 2.2: Binary Decision Diagram representing the function /  =  (a V b) A c.

In order to express operations on Boolean functions in terms of efficient graph 
algorithms, the BDD needs to be reduced and ordered. This is the case if

1. on all paths of the graph the variables respect a given linear order: V\ < V2 < 
. . .  <  vn

2. no two distinct nodes V\ and v<i have the same variable name and the same
low- and high-successor-. \var{v\) =  var{v2 )\ A = low A

3. no variable node has identical low- and high-successor.

Henceforth the term OBDD is used to refer to a reduced and ordered BDD. The 
graph depicted in Figure 2.2 is not an OBDD for three reasons: First, on the path at 
the most left the variable ordering is a < c < b while the variables on the right most 
path are ordered a < b < c. Second, the subtree c with low(c) = 0 and high(c) = 1 
is displayed twice by the two right variable nodes c. Third, the two outgoing edges 
of the left most variable node b point to the same node. To transform this BDD 
into an OBDD. the variables need to be ordered, the duplicated variable nodes 
removed and the nodes pointing to an identical node need to be deleted. The next 
two subsections explain the transformation.

2.2.2 V a riab le  O rd e rin g  o f B D D s

The shape and size of an OBDD depends significantly on the variable ordering. 
Figure 2.3 depicts an extreme case of how the ordering affects the size of the graph. 
The same function (ai A b\) V (<22 A 62) V (a3 A 63) is illustrated twice: once with the



2.2 Background: Binary Decision Diagrams 23

variable ordering ai < b\ < ci2 < 62 < <23 < 3̂ (see left graph of Figure 2.3) and 
once with the ordering <21 < a2 < 03 < 61 < 62 < 63 (see right graph of Figure 2.3).

Figure 2.3: Example of variable ordering dependency

In the first case, the variables are ordered according to their occurrence in 
the function. From every second level in the graph only two branch destinations 
are required: one to the terminal node 1 and one to the next level where every 
disjunction up to this point yields 0. For the other case it is necessary to construct 
the complete binary tree for the first three levels, since for each assignment to the 
a variables, the function value depends in a unique way on the assignment to the 
b variables.

More generally, the OBDD of the function (aq A 61) V . . .  V (an A bn) contains 
2n + 2 vertices if the variables follow the order a\ < b\ < a2 < 62 < • • • < <2n < bn 
and 2n+1 vertices if the ordering is aq < 02 < . . .  < an < b\ < 62 < • • • < bn. Thus 
choosing an appropriate ordering can dramatically decrease the size of an OBDD. 
In [Friedman & Supowit, 1990] the authors present an algorithm for an optimal 
variable ordering based on a dynamic programming approach. The optimal variable 
ordering for the simple BDD depicted in Figure 2.2 is: a < b < c. Figure 2.4 
illustrates the ordered BDD1.

However, due to its exponential run time, this algorithm can only be applied

1At this point the two BDDs of Figures 2.2 and 2.4 still have the same size. The next subsection 
shows, why the latter graph will lead to an optimal BDD.
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Figure 2.4: Ordered BDD representing the function /  = (a V b) A c.

to functions with a small number of variables. In fact, as stated in [Bryant, 1986] 
the problem of computing an ordering that minimises the size of the graph is itself 
a coNP-Complete problem. In practice the ordering is chosen either manually by 
a human with some understanding of the problem domain or automatically by a 
program using some heuristics.

2.2 .3  R ed u ction  o f  ordered B D D s

The reduction of an ordered BDD requires on the one hand the removal of dupli
cated variable nodes and on the other hand the deletion of nodes with identical 
successors.

A duplicated variable node v\ is deleted following the merging rule. All arcs 
leading to V\ are redirected to the identical node. The left graph of Figure 2.5 
illustrates the BDD for the function /  =  [a V b) A c after all identical nodes have 
been removed.

A node v2 for which both outgoing edges lead to the same node can be deleted by 
applying the deletion rule. All incoming edges to v<i are redirected to the common 
successor node. Figure 2.5 presents the OBDD of the function f  = (a V b) A c.

The two reduction rules are sufficient to obtain the canonical representation 
for each function and each variable ordering [Bryant, 1986]. Applying these rules 
levelwise bottom-up, leads to an efficient reduction of BDDs. The authors in [Siel- 
ing Sz Wegener, 1993] present a reduction algorithm with linear run time 0(|G |), 
where |G| denotes the number of nodes in the BDD G. Note that it is possible if 
not necessary to reduce a graph during its construction. Thus the computation of 
large unreduced BDDs can be avoided.

Constructing OBDDs instead of BDDs leads to the canonical representation of
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Figure 2.5: Ordered BDD without duplicated variable nodes representing the func
tion /  =  (a V b) Ac (left) and reduced and ordered BDD representing the function 
/  = (a V b) A c (right).

a Boolean function. Since identical subexpressions in an OBDD are represented 
only once, an OBDD can be exponentially more compact than its corresponding 
truth table representation. For instance, the OBDD for the constants 0 and 
1 respectively consists of exactly one terminal node. The uniqueness property 
implies the possibility of testing in constant time whether an OBDD represents a 
tautological function in which case the OBDD consists of the single terminal node 1 
or whether the represented function is satisfiable in which case the OBDD consists 
of any structure other than a single terminal node 0. In contrast, these problems 
are NP-complete for Boolean expressions. In the remainder of this chapter we will 
use BDDs to denote ordered BDDs.

2.2 .4  A p p lic a tio n  o f B D D s

BDDs are useful in compactly representing finite state machines (FSMs). To en
code state and event sets it is necessary to introduce Nr(Q) = [log2 |Q|"| Boolean 
variables for each set Q. Thus the events labelling the transitions can be encoded 
with the Boolean variables 6E = {bf , . . . ,  6Er(̂ }  and the states with the variables 
bx  = {bx , . . . ,  &)vr(x)}- A state of the FSM is then simply given by a Boolean 
function (represented by a BDD) over these state variables. For instance, in a 6 
state FSM, the state x 2 would be given by the conjunction ~>bx  A bx  A -*bx , and 
the set of states {x2, x5} by the DNF (~>bx  A bx  A ~>bx ) V (bx  A ->bx  A bx ).

Transitions require the introduction of another set of state variables bx> = 
{bx ' , . . . ,  bx 'r  ̂y) }, called the primed variables, which are used to represent the tar
get states of the transitions. Each transition can then be given as a conjunction 
involving the state variables, event variables, and primed variables. For instance,
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BOOL IsDefibdd)
• Returns true if bdd does not represent false 

BDD GetConj (bdd)
• Returns a single arbitrary disjunct (a conjunction of literals) of the 

DNF represented by bdd. for example:

bdd (bi A 62) V (-'fri A -162)
GetConj(bdd) = (61 A 62)

BDD AbstractVar(bdd, {61,..., 6m})

• Deletes all occurrences of the Boolean variables {6l5. . . , 6 m} from 
bdd, for example:

bdd «— (61 A 62 A 63) V ( ~ '&i A —162 A - >63)
AbstractVar(bdd, {63}) =  (61 A 62) V (— A - i62)

BDD ExtractVar(bdd, { 6 1 , ,  6m})

• Deletes all occurrences of the Boolean variables that are NOT 
{61,..., bm} from bdd, for example:

bdd <—  (b\ A 62 A 63) V ( ~ >6i A ~d>2 A ■“>63)

ExtractVar(bdd, {61,62}) =  (61 A 62) V (—161 A - i62)

BDD SwapVar(bdd, {a1?. . . ,  an}, {6l5. . . ,  6m})

• Swaps the Boolean variables (ai, 61), . . . ,  (an, 6m) in 6dd, for example:

bdd *— (61 A -162 A 63) V ( —'61 A 62 A —163)

SwapVar(bdd, {61}, {62}) =  (62 A —>61 A 63) V (-162 A 61 A ->63)

Table 2.1: Used BDD operations
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in a FSM consisting of 6 states and 3 events, the transition t = x 2 —L £5 can be 
encoded as t = (->63 A bx  A -<6*) A (->62 A b f) A (fof' A ->bx A 6* ). The transition 
relation, i.e, a set of transitions T, can be given as a DNF which the BDD data 
structure will hopefully greatly reduce.

When using the compact representation and efficient manipulation of BDDs 
in the context of our direct diagnosis methods, our representation of the com
ponent models will essentially follow the usual symbolic FSM representation de
scribed above, while all other models will be derived from these component models 
via symbolic computations. This will be detailed in the next section. To in
crease the readability of our symbolic algorithms, we introduce some basic BDD 
operations shown in Table 2.1. Note that the table contains two similar func
tions: AbstractVar and ExtractVar. Let bdd denote a BDD defined over the 
set of variables B , and let V be a subset of B. The following equivalence holds: 
AbstractVar (bdd ,V ) = ExtractVar (bdd, B \  V).

Algorithm 1 illustrates the use of most of these BDD operations to compute all 
states X reach that are reachable from a state set X  via the transitions in T. Note 
that we give identical names to sets and to the corresponding Boolean functions, 
e.g. X.  This should not cause confusion.

As described above, X  is defined over the Boolean variables bx  and T  is defined 
over the variables 6s U bx  U bx ' . The reachable state set is computed using breadth 
first search. Initially X reach is set to false and the set of states X new from which 
transitions still need to be triggered is set to the start states X  (lines 2-3).

Algorithm 1 C om pR each^,bx  ,bx  , X ,T )
1: INPUT: state set X,  transition set T  and the Boolean variables over which they are 

defined
Initialise
2 . X reach * false
3- X new * X
4: while there are new states (that is as long as IsD e f (X new)) do
5: T  i—-1 new X new A T
6: X ta r g  * ExtractVar(Tnew, bx>)
7: X ta r g  i SwapVar (Xtarg, bx , bx ')
8: X n e w  i X ta r g  A ““1X r each

9: X re a c h — X r e a c h  V X new
10: end while
11: OUTPUT: all states X reach reachable from states in X  by triggering transitions in T
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Until a fixed point is reached, all transitions Tnew starting in X new are triggered 
(operator A) (line 5) and the targets states that have not yet been encountered 
are added to X reach (operator V)(line 9). To obtain the target states X targ of 
the transitions Tnew, we abstract the latter from its start states and events using 
function ExtractVar (line 6). Originally the targets X targ are defined over the 
variables bx>. In order to compute the transitions starting in states of X targ in 
the next loop iteration, we swap the state variables to represent X targ over the 
variables bx (line 7). Finally, to guarantee the termination of the algorithm, we 
only consider those targets from which transitions have not yet been triggered. 
Hence we subtract all previously encountered states X reach from X targ (operator 
A-i)(line 8).

Note that all transitions starting from a set of states can be computed at once 
(line 5). In fact, the whole procedure does not require the consideration of individ
ual states or transitions. It is this property of BDDs that we aim to exploit in the 
context of on-line diagnosis.

2.3 B ackground: D ia g n o sis  P ro b lem  and  D irect  

D ia g n o sis  M o d els

This section describes how we model the systems to be diagnosed. Then we define 
the diagnosis problem and a spectrum of models, the direct diagnosis models, that 
can all be used to solve this problem. To illustrate our concepts we start by 
introducing an example application which we will use throughout this chapter.

2.3.1 E xam ple A p p lica tion

Our example is derived from a telecommunication network [Roze & Cordier, 2002], 
A supervision centre is in charge of continuously monitoring the system; it receives a 
flow of alarms and analyses them on-line to identify possible faults (see Figure 2.6). 
The supervised system is composed of two control stations (CS1 and CS2) and one 
switch (SW). The switch is used to route data through the network. The purpose 
of the control stations is to manage the switch by reconfiguring it or reinitialising 
it. Only one control station manages the switch at a given time, the other is for 
replacement in case the station in charge fails to work.

A fault SWfail can occur in the switch. In that case both control stations 
are notified (event NotifySWfail) and the alarm SWobs is observed. If any of the
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CS1 CS2

Figure 2.6: Extract of a telecommunication network

control stations CSi becomes faulty (event CSifail), it emits the alarm CSiobs and 
the other control station takes over (event Notify CSifail). However, in case the 
switch becomes faulty while being managed by CSi, the control station cannot 
emit CSiobs if it becomes faulty.

2.3 .2  M o d e llin g  o f th e  S y s tem

To encode a diagnosis problem symbolically and to be able to compare results 
with previous work, we have chosen to start from the classical formalism for fault 
diagnosis in discrete-event systems initially proposed by Sampath and colleagues 
1995. In this formalism, the behavioural model is described as a set of finite state 
machines (FSMs): a FSM represents the nominal, faulty, and observable behaviour 
of each component. These FSMs are generally obtained following the modelling 
of the diagnosis problem with a higher level description language which separates 
the description of the system (i.e. system behaviour) from the description of the 
diagnosis problem (what is observable, what is faulty) [Lamperti & Zanella, 2004]. 
The higher description language is out of the scope of this thesis.

Com ponent M odel

The component model is described using a FSM in which the transitions correspond 
to events occurring on the component. Each component can react to fault events 
by changing states and emitting observable events. Fault events are not observ
able. They are a subset of the unobservable events. Without loss of generality we 
assume that the shared events that are used to describe the interactions between 
components are also unobservable. Finally, in order to model the component’s be-
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haviour completely, we introduce normal events that are unobservable and local to 
the component.

Definition 1 (Model of a component) The model of a component is a finite 
state machine Gi = (Xp Ep Xq̂  Tf), where

• Xi is the set of states (Xt — {xp, . . . ,  xmi});

• Ti is the set of events (X* = {dp, . . . ,  oVl});
Ei = E0i U EUi, where E0i are the observable and EUi are the unobservable 
events;
ES; C EU| are the events that are shared among several components;
Ep C EUi are the fault events;
Eni — EUi \  (Ep U ESi) are the normal events;

• is the initial state;

• Ti is the transition set (Ti C X* x E* x Xi).

Figure 2.7 illustrates the component models for our running example (a simpli
fied version thereof for the sake of readability). The components interact with each 
other via the event NotifySWfail. Furthermore the control stations interact with 
each other via the event NotifyCSifail. Initially the components are in states xo, 
yo, and zq respectively. In the modelled setting, CSl is initially managing S W. If a 
fault occurs in CSfi it emits the alarm CSlobs and the shared NotifyCSifail event 
is issued, that is, it is sent by CSl and received by CS2. CS2 then changes its state 
to z\ and manages the switch. Note that after the switch has become faulty and 
NotifySWfail has been received by the control station CSi in charge, this control 
station changes its state (to y2 or zfi) in such a way that the alarm CSiobs can not 
be emitted.

In our example, every component Gi can always receive events of the form 
Notifyjfail 6 ESi sent by component Gj 7̂  Gi. However, to simplify the figures, 
we depict only events that change the behaviour and hence the state of Gi. For 
instance, CSl can receive one event, namely NotifySWfail, and only changes its 
behaviour if this event is received in state y0. The transition loops
, N o t i f y S W f a i l  \ m  r n  /  i[ y i -------------- » yi) e l i  lor all states yi 7̂  y0 are not shown.
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NotifySWfail I I SVVobs I
x2 H  x3

4

sw

CS1

CS2

Figure 2.7: A simplified version of component models for the example depicted in 
Figure 2.6. Solid lines denote fault transitions and dotted lines observable transi
tions. Dashed lines refer to transitions labelled with shared events.

Global Model

While each component model represents the behaviour of a single part of the sys
tem, the global model describes the behaviour of the whole system.

Definition 2 (Global model) The global model of the system is the finite state 
machine G = It is defined as the synchronised product of the n
component models G* =  (Xi: such that

• X  is the set of system states (X  =  n"=i ^i)>

• S =  E„ U are the events with £ /  C £ u; En C £ u and £ s C £ u
£ 0; £ u; Tjf, £ n and £ s are the unions of the component’s observable, un
observable, fault, normal and shared event sets;

• xo is the initial state (xq = fllLi J ;

• T is the transition set
(T =  { (x i , . . . ,x n) A  (x[, . . . ,x'n) I

Vz G 1 ... n such that a € £*, Xi —»• x\ E T* and 
Vz G 1 ... n such that o (fc £j, Xi =  £■}).

The composition ensures that a transition labelled o is possible in a given 
global state (xi , . . .  , xn) iff it is possible in the respective individual states of all 
components in which a is defined [Sampath et al., 1996]. Recall that only shared 
events are defined for more than one component and hence can lead to a state 
change of several components. Figure 2.8 shows a part of the global model for the 
components shown in Figure 2.7.
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__ C S I f a i l^ ^
CSlobs (xl, y3. zO)

(xl. yO. zO) ____CS2fail (xl, yl, zO)
NolifySWfail 

\  C’S2fail
(x2. yl. zO)

('S lobs (x2. y3. zO)

CS2fail

NolifySWfail (^2. yl. z2)

f  SWfail r (xl.yO. z2)
CSlfail

(xl, y l. z2) CSlobs
CS2fail

(xO. yO. zO) (xO. yO. z2) T - "
CSlfail / CSlfail

CS2fail (x0.yl-z2)

Figure 2.8: (Part of) global model for the component models depicted in Figure 2.7.

2.3 .3  D iagnosis P rob lem  for D iscrete-E ven t S ystem s

The diagnosis problem for discrete-event systems consists in determining all system 
states and faults that are consistent with a sequence of observations. We formally 
define this diagnosis information using the concept of event paths.

Definition 3 (Event P a th s) Let FSM  — (X . E, xq, T ) denote a finite state 
machine. An event path P = x\ —+ X2  • • • xq with S' C E is a path in the 
FSM  such that <7i 6 E' Vi 6 {1,... q — 1} (note that the path may consist oj a 
single state only). The following functions are defined for every event path:

• Start : Pfi/ h-* x  returns the start state of a path

• Targ : Pjy i—> x returns the target state of a path

• EvSet : p£,> x E h E returns the set of events in E C E' of a path

• EvSeq : Pjy x E h E* returns the sequence of events in E C E'  of a path

For instance, from the unobservable event path
Not i fyCS l f a i l  N o t i f yS W fail  CS2fai l  r ,Pt.U c S 2  = zq ---------------» Zi -------------- ¥ Z3  --------¥ z\ ol the component L S I

depicted in Figure 2.7 we can retrieve the following:
EvSet(PEucs2, ESCS2) = {N o tifyC S lfa il, N o tifyS W  fa il}  and 
EvSeq(PEucs2, ESCS2) =  [N otifyC Slfa il, N o tifyS W  fail].

We can also describe path sets as a sequence of event paths and transitions. For 
instance, the above example path belongs to the path set: P  ̂ CS2 fai)  ̂ p 2  ̂ ^

2  C S 2  C S 2

where P y,SCS2 consists of the single state Z4 .

Now, to determine the diagnosis information <fis we need to look at every path 
P  in the global model from the initial state Xo to a state x  whose observable event 
sequence EvSeq(P. E0) corresponds to the event sequence S  actually observed. A
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tuple (x,l) is part of the diagnosis, if the fault label l corresponds to the faulty 
event set EvSet{P1'Ef) of path P.

D efinition  4 (D iagnosis in fo rm ation ) The diagnosis information <f>s £ 
2Xx2 f that is consistent with a global model G — (X, E,Xo,T ) and a sequence 
of observable events S  =  [oi,. . . ,  o*] is defined as follows:

0 5  =  {(x, l) I P^a —b P fu • • • - k 1 > P^u ^  x  is path in G with 
l = U;=i E vSet(P ^u,T,f) and S tart(P ^u) = Xo}

In the following we will refer to every entry (x, /) G 0s as diagnosis candidate. 
Only if the diagnosis information contains exactly one diagnosis candidate it is 
possible to determine exactly in which state the system is and which faults have 
occurred. Otherwise 0 contains the set of possibilities that explain the observation 
sequence. For instance, from the existence of the two following paths in the model 
depicted in Figure 2.8:

•  ( x 0 , y o , 2 o ) ---------- > ( z o , y i , 2 o )  --------- * ( z o , 2 / 3 , z o)
, s. C S l f a i l  , v S W  fa i l  , \ C  Slobs , >.

• (x0,2/o,z0) -------- > {x0,yiiZ0) ------- > {xuVuZo) ------- > (^i, 2/3, ^o),

we can conclude that the two following diagnosis candidates belong to 4>[csiobs}'-

• ((x0, 2/3,20), {CSl fai l})

• ((xi, y3, z0), {CSl fai l ,  S W  fail}).

The aim of on-line diagnosis approaches is to provide timely diagnosis informa
tion. The diagnosis information can directly be computed from the component 
model or from the global model (see Section 2.4.3). Alternatively, it (or part of it) 
can be precomputed off-line, and reused on-line for increased efficiency. Since the 
diagnosis information is usually composed of a high number of candidates, precom
putation often leads to larger diagnosis models and increased space requirements. 
The amount of precomputation performed should therefore depend on the partic
ular time and space efficiency requirements of an application. Hence we present a 
spectrum of approaches that differ in the amount of compilation performed off-line.

2.3 .4  Sp ectru m  o f D irect D iagn osis M odels

Our direct diagnosis approach is inspired from Sampath’s diagnoser approach 
(1996), in which the diagnosis is retrieved on-line from a single model that effi-
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ciently maps observations to faults, the diagnoses This diagnoser is derived from 
the global model which in turn is computed from the component models.

In contrast to above approach, we define a spectrum of models and describe 
the on-line computation of the diagnosis information from each of them. We have 
already introduced the component and global models; they allow the retrieval of 
diagnosis information on the basis of relatively small space requirements. We now 
present two additional models, the abstracted model and the classical diagnoser 
model, which are more space demanding but are suitable to efficiently diagnose 
systems on-line. Figure 2.9 illustrates the relationships between the different mod
els.

Component
Models

Component
Synchronization

Global
Model

Abstraction from 
irrelevant diagnosis

Abstracted
Model

Diagnoser
Computation

Diagnoser
Model

Figure 2.9: Spectrum of direct diagnosis models

In addition to the deterministic diagnoser model defined by Sampath, we choose 
to introduce a nondeterministic model, the abstracted model, as it allows a more 
intensive exploitation of the efficient symbolic triggering of transition sets con
ferred by BDDs. As we will show in section 2.4.3, the abstracted model provides a 
particularly interesting trade-off between model size and computation time.

A b strac te d  M odel

The abstracted model is derived from the global model by abstracting all unob
servable non-fault transitions and the order in which faults can occur, since they 
have no impact on the diagnosis information (see Definition 4). Hence, in this 
model, all sequences of unobservable transitions of the global model are replaced 
by a single transition labelled with the union of the faults in that sequence. In case 
the sequence consists only of normal and shared events this label is empty.
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CS 1 obs{CS 1 fail} (xO, y3, zO)

CS I obs{SWfail, CS 1 fail} (x l, y l ,  zO) (x l,y 3 , zO)

CS 1 obs{SWfail, CS 1 fail} (x2, y 1, zO) (x2, y3, zO)

(xO, yO, zO)
{CS 1 fail, CS2fail}

(xO, y l ,  z2) (xO, y3, z2)
{SWfail, CS 1 fail, CS2fail}

CS 1 obs
(x l, y l ,  z2) (x l, y3, z2)

{SWfail, CS 1 fail, CS2fail}

CS 1 obs
(x2, y 1, z2) (x2, y3, z2)

Figure 2.10: Abstracted model for the part of the global model shown in Figure 2.8.

Definition 5 (A bstracted  m odel) Let G — (X, £,xo,T) be the global model. 
The abstracted model is the finite state machine 
G = (X , £ 0, F ,x 0,To,f> ), where

• X  C X  is the set of states
X  = {xo} U {x € X  I 3a G £ 0, 3x' G X  s.t. x A  x' € T or x' A  x  G T}

• F  C 2Ef are the fault labels;

• T0 C X  x £ 0 x X  are the global observable transitions 
T0 = {x A  x' G T  I a G S 0};

• Tp Q X  x F x X  are the fault transitions defined as follows:

x' I 3 path x  —̂  X\  ’ • • — X k - i  —̂  x' in G with

x, x' G A, <7l5. . . ,  dk € and l =  {<7i,

Figure 2.10 represents the abstracted model for the part of the global model 
shown in Figure 2.8. Only the start and target states of observable transitions can 
be reached in the abstracted model. Thus, for instance, state (xo, 2/0 , 22) of the 
global model in Figure 2.8 does not appear in Figure 2.10.

The abstracted model enables a more efficient retrieval of diagnosis informa
tion than the global model, because we need to consider at most one abstracted 
fault transition per diagnosis candidate. For instance, to retrieve the diagnosis 
information 4>[cs\obs} that is consistent with observing CSlobs in the initial state, 
we trigger all fault transitions starting in Xq and leading to a start state x of a
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transition labelled CSlobs. For each transition sequence Xq x cslob'\ x' we ob
tain one diagnosis candidate (x', l) G 4>[cs\obs\- To obtain the diagnosis information 
consistent with S  = [CSlobs, CS2obs\, we need to consider all transition sequences 
of the form xq x c s l o b s > - U  x" C S2obs> x’" , each of which leads to the diagnosis 
candidate ix’", l U /') G <fs■ Recall that when using the global model, we have to 
consider unobservable paths of undetermined length for each diagnosis candidate.

D iagnoser M odel

While the abstracted model allows a more efficient diagnosis than the global model, 
it still requires the on-line aggregation of fault labels based on the events observed. 
In contrast, the diagnoser is a deterministic finite state machine whose transitions 
are only labelled with observations and whose states are directly labelled by the di
agnosis information that is consistent with the observations. On-line, the diagnoser 
efficiently maps sequences of observations to the correct diagnosis information: it 
suffices to follow the path labelled by the actual observations and look up the label 
of the resulting diagnoser state.

Definition 6 (Diagnoser) Let G = (X , £ 0, F, Xo, T0, TF) denote the abstracted 
model. The diagnoser model is the deterministic finite state machine 
G — (X, 'F, £ 0, x0, R, T), where

• X  is the set of diagnoser states (X  = { f0, • • •, xq-\});

• Xq is the initial diagnoser state;

• 'F is the set of possible diagnosis candidates =  X  x F);

• R is the diagnoser state labelling function (R : X  i—» 2^);

• T is the set of diagnoser transitions (T C X  x £ 0 x X );

• R and T  satisfy:
R(xo) — {(£o, 0)} and

x ^ x '  e f  iff

R(x') = {{x',11) I 3 ( x , /) G R(x) such that either 
(x x') G T0 and l' — l , or
3(x —► x") G Tp and 3(x" ff) G T0 and V = l U /"}.
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Figure 2.11: Diagnoser model for the component models shown in Figure 2.7.

Figure 2.11 depicts the diagnoser for the component models shown in Fig
ure 2.7. The diagnoser allows for efficient on-line diagnosis whereas the previous 
models require the diagnosis information to be computed on-line. However, the 
large diagnoser size constitutes a major problem, and this is exacerbated by the 
fact that all states and their labels are represented explicitly. In the next section, 
we will show how we can compactly represent them by means of binary decision 
diagrams.

2.4 T h e  Sym bolic D irec t D iagnosis A pproach

In this section, we show how to exploit binary decision diagrams both to efficiently 
represent and compute each of the models introduced above and to efficiently re
trieve the diagnosis information from them. Furthermore, we present experimental 
results that demonstrate how the different diagnosis methods resolve the time/space 
complexity tradeoff.

2.4.1 S p e c tru m  o f S y m b o lic  D ire c t D iag n o sis  M o d e ls

We now explain how we represent and compute the models introduced in the pre
vious sections using BDDs. Our presentation will emphasise the computation 
steps that are made either very efficient by the use of symbolic representations (for
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instance the test of whether a diagnoser state has been computed already), or that 
are made rather inefficient (such as the accumulation of fault labels).

Symbolic Com ponent M odels

The component model is the basic behavioural model that is used to define and 
compute all other models of the spectrum. Its symbolic representation is inspired 
from the classical symbolic FSM representation introduced in Section 2.2. In order 
to facilitate diagnostic reasoning it is slightly more specific.

Definition 7 (Sym bolic m odel of a com ponent) The symbolic model Gi =  
(b f , b f  , b f , b f ,b f ,b f ,X i: Xot, T0i, TUi ,T ft, TSi) of a component is described via 
six BDDs Xi, xoi} T0i, Tni, Tfx and TSi over the Boolean variables 
b f , b f , b f , b f , b f , b f where

• b f (resp. bf ' ) are the state variables (resp. primed variables) used to 
represent start states (resp. target states) of transitions

• bf are the shared event variables,

• bf are the observable event variables,

• b f are the normal event variables,

• b f are the fault event variables,

• Xi is the Boolean function over b f characterising the states,

• x 0i is the Boolean function over b f characterising the initial state, and

• T0i, Tn., Tfi and TSi are the Boolean functions over b f  U b f and either 
bf ,b f  , b f , bf , characterising the observable, normal, fault or shared tran
sition relation, respectively.

Instead of encoding every component event with the same set of Boolean vari
ables as it is usually done, four different sets are introduced: one set of variables 
is used to encode events with the same type (fault, normal, shared, observable). 
In this way, event types are fully distinguishable and, moreover, depending on the 
type of events, the encoding of events can be different (see below for details). The 
transition set is also partitioned into four sets, and represented with four BDDs, 
where each BDD represents the set of transitions labelled with events of the same 
type. Hence, only one set of event variables is used in each BDD. which leads to a 
more compact representation.
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The symbolic representation also includes the BDD Xi that characterises the 
set of states of the component model. This BDD is not strictly necessary since it 
is implicitly represented by the initial state x0i and the transition sets. However, 
it is required to perform efficient computations on the states of the component.

Sym bolic E ven t E ncoding  o f a  S ystem

Definition 7 provides the generic definition of a symbolic component model, with
out committing to a particular encoding of events. However, event types are 
not similar: a normal event will mainly be involved in the triggering of transitions 
whereas a fault event will additionally be part of the diagnosis information. Con
sequently, the choice of a suitable encoding for the various event types is a key 
point to obtain an efficient and generic symbolic framework. Another important 
factor in choosing how to encode events is the fact that every event, even the ones 
local to a component, need to be globally distinguishable from the others to obtain 
a description of the whole system. This leads us to consider the following encodings 
for each respective event type:

• Observable events: any observable event a belongs to a single component 
G j .  From a computational point of view, such an event is used to trigger a 
transition from that component only. To encode <r, there are two solutions:

1. either a is encoded with a set of global variables that represent the entire 
set of observable events of the system. In that case:

b° = 6°, Vi 6 {1 ,... ,n}

2. or a is encoded with a set of local variables b°OCi — {b°r ... ,b°Nr^ ri )(} 
that are dedicated to the encoding of component G fs observable events, 
together with an identifier of component Gi encoded by a set of global 
variables bc — {b f, . . . ,  b^r^ } .  This identifier is necessary to make the 
event a globally distinguishable. In that case:

b? =  bc Ub?OCi

Both solutions are possible: in practice, their implementation is efficient, al
though the second solution requires more variables. The main drawback of 
the first solution is that the encoding does not record that G i  is the emitter 
of er, which is a useful information especially for computing the diagnosis in
formation directly from the component models. In the following, the second
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solution is chosen.

• Normal events: the encoding of a normal event is the same as that of an 
observable event.

• Shared events: as opposed to the previous types of events, a shared event 
does not belong to a single component. Such an event is mainly used to 
trigger synchronised transitions (several simultaneous transitions in different 
components). An efficient synchronisation operation requires an encoding of 
the shared event via a global set of variables bs :

bf = bs . Vz 6 { 1 ,..., n)

• Fault events: fault events are used in two cases: they represent an event on 
a transition like the other event types but they are also part of the diagnosis 
information (set of faults). To represent faults with an unique encoding, this 
encoding must allow a representation of any fault event (for the triggering 
of transitions) and any sets of fault events (for the representation of the 
diagnosis information (see Definition 4)). This requires the introduction of 
one Boolean variable per fault event. There is a one to one correspondence 
between fault events and these variables which ensures that the fault events 
are globally distinguishable. For instance, let Ey; be the set of fault events 
{ /1(, . . . , /fc.} that can occur in component Gi: the fact that either /i- and f 2i 
or just f i x has occurred, is encoded by: {b{./\bf2. f \ j>2 ->&£) V (&f. Aj>i “'&£)• 
Now let encoding[x, B) denote the encoding of x over the Boolean variables 
B. The encoding of the GVs fault events E^ is then defined as follows:

bi = i bi  I fj  e  E /J : V/j € E/n encoding^ , b f) = A f \  b[ ..

Sym bolic G lobal M odel

Given the set of symbolic component models
Gi = {b f, b f' , b f , b f , b f , 6f, , x0i, T0i, TUi, Tfi, TSi) , we can now define and com
pute the symbolic global model which represents the global behaviour of the system 
as stated in Definition 2.
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Definition 8 (Symbolic global model) The symbolic global model
G = (bx ,bx ',b ° ,b N,bF,bs , X,xo,T0,Tn,T f ,Ts) is described via six BDDs 
X , Xo, T0, Tn, Tf and Ts over the Boolean variables bx  ,bx ' ,b° ,bx ,bF and bs 
where

• bx  are the state variables (bx  — U™=1bx );

• bx ' are the primed variables (bx ' = U™=lbx ');

• b° are the observable event variables (b° =  U”=16f );

e bN are the normal event variables (bN = U™=1bx );

• bF are the fault event variables (bF =  U”=16f );

• bs are the shared event variables (bs — U™=1bf);

• X  is the Boolean function over bx  characterising the global states (X  C 
^i= \Xi),

• Xq is the Boolean function over bx characterising the initial state (xq = 
A”=1x0J ,  and

• T0, Tn, Ts and Tf are the Boolean functions over bx  U bx ' and either b°, 
bN , bs or bF characterising either the observable, normal, shared or fault 
transition relation, respectively.

The computation of the global model is based on a synchronised product of 
the component models (see Definition 2) in which, when a non-shared event oc
curs in a component Gi, the state of the other components is steady (model of an 
asynchronous system). However, if we are to exploit the BDD representation to 
implement the synchronisation of the components efficiently, via the A operator, 
a synchronous product is required. In a synchronous system, when a transition is 
triggered in a component Gi, a transition is triggered in every other component. 
In order to implement a synchronous product equivalent to the product defined in 
Definition 2, we help ourselves to a well-known translation from an asynchronous 
to a synchronous system (see [Arnold, 1987] for details). Using our symbolic com
ponent models, this translation is performed as follows.

• For every state x  of a component model Gi, a transition x —> x  is added. The 
event e is the empty event. Thus, if Gi is in state x  and a non-shared event 
is triggered in another component (which means that state x  is steady), the 
transition x  A  x  is triggered at the same time. Symbolically, the transition
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x —> x is represented by the conjunction of the source state x and the target 
state x: that is by encoding(x, bf) A encoding(x, bf ) .  In the algorithm below, 
this set of empty transitions of component Gi is represented by the BDD 
steady State (i).

• For every shared event cr, a transition x x is added for all states x that 
belong to a component model in which the event a is not defined. Thus, 
if such a component is in state x and a shared event o is triggered in an
other component, the transition x A  x is triggered at the same time. Sym
bolically, the transition x —> x is represented in the usual way, that is by 
encoding[x, bA) A encoding(cr, bs ) A encoding(x, bf ) .  This set of transitions is 
denoted extendedTransitions(i).

Algorithm 2 presents the computation of the symbolic global model. First the 
initial state is retrieved as a conjunction of the local initial states (line 4) and we 
perform the synchronous translation of the model (lines 5-7). Next, the global 
transitions are retrieved for all new states X new at once using an A operator. For 
example, in line 12, TSNew contains the set of transitions of the global model that 
are labelled with shared events and that can be triggered from a state in X new. 
Since the composition is synchronous, this set is obtained by simple A operations. 
Lines 15 and 16 retrieve the observable and normal transitions of the global model 
whose source state is in X new and that are labelled with an event from component 
Gi. Line 17 retrieves the fault transitions. A fault event in Tf. is represented 
over the Boolean variables bF = {bG f  £ Eft } only (see section 2.4.1). Since Tf 
represents the fault events with the set bF instead of the subset bf , it now also needs 
to represent the fact that none of the faults in bF \  bF has occurred. Therefore the 
conjunction AbfebF\bF is added to complete the global representation of a fault
event from Gi. After the global transitions originating at X new are computed, 
we determine those of their target states that need to be considered in the next 
iteration of the algorithm. We do this by first retrieving all target states (line 22) 
and then identifying those among them that have not previously been computed 
(line 23).

Note that the global model could be computed more efficiently if the computa
tion of states was not restricted to those reachable from the initial state as it is the 
case in Algorithm 2. Then only one loop iteration (lines 10-24) would be required 
to obtain all transitions among states of the complete state set X  = niLi How
ever, since this computation is done off-line, it does not lead to an overhead for the 
on-line diagnosis. The only point of concern is therefore whether the restriction to
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Algorithm  2 BuildGlob(Gi =  (b? ,6f'.6,°.fe,iv,fef,6f.X i ,xo„r<,„ rn„ r /„ r 3,))
1: INPUT: symbolic component models Gp, i = 1 , . . . ,  n

Initialise
2: Xq <— true; A <— fa lse ;

T0 4— fa lse ; Tn fa lse ; Ty fa lse ; Ts fa lse ;
3: for all components i (1 < i < n) do 
4: X0 <— X0 A
5: steady State (i) <— initialiseSteady States (A*)
6: extendedTransitions(i) initialiseExtendedTransitions(Xi, 65)
7: Textendi Tsi V extendedTransitions(i)
8: end for
9. X new < Xo

Com pute global transitions
10: while there are new states (that is as long as I sDe f ( Xnew)) do
11: A <— A V Anetü
12: TsNew * X new A / \ {1 ,...,77.}- ^extendi
13: Ts <— Ts V Tsn€W
14: for all components i (1 < z < n) do
15: TQNew < X new A T0i A steadyState(j')
16: Tn7Veu> * X new A Tni A A y g p , steady State^j^)
17: TfNew «■ X new A Tfx A A bfebF\b[ ^  steadyState(j)
18: T0 <— T0 V ToNew
19: Tn <r— Tn V TnNew
20: Ty <— Ty V Tfwew
21: end for

Extract new states
22: Atar5 <— ExtractVar{T0 V Tn V Ty V Ts,bx ')
23: Aneu; <— SwapVar(Xtarg, fr**) A -iA
24: end while
25: OUTPUT: global states A, initial state x0 and transitions T0, Tn, Ty and Ts
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the reachable states leads to a larger or smaller symbolic representation. For the 
examples we used (see page 53) this restriction reduced the number of states to 
25% and the number of transitions to 24% which overall reduced the size of the 
symbolic global model representation to 36%.

Note that there is not necessarily a connection between the size of the state set 
and its symbolic representation (given that they are both encoded using the same 
number of Boolean variables). We decided to apply the restriction to the reachable 
state set already to the computation of the global model, since it becomes eventually 
necessary (see Section 2.4.1).

Symbolic Abstracted Model

With the computation of the symbolic global model we have already defined two 
BDDs, namely x0 and T0, that are used to represent the abstracted model symbol
ically.

Definition 9 (Symbolic abstracted model) Given the global model 
G = {bx , bx ' , b°, bN, bF, bs . X, x0, T0. Tn. Tf. Tf ) , the abstracted model 
G = (bx i bx ', b°, bF, X , Xq, T0, Tf) is described via four BDDs X ,X q,T0 
and Tf over the Boolean variables bx  ,bx ' ,b° and bF where

• X  is the Boolean function overbx characterising the states of the abstracted 
model, and

• Tf is the Boolean function over bx  U bF U bx ' characterising the abstracted 
fault transition relation.

To compute the abstracted fault transitions we need to determine, for each 
state x £ X , (i) all target states X reach £ X  reachable from x by triggering only 
unobservable transitions, and (ii) all fault events that have occurred along a path 
from x to xreach £ X reach. For this purpose, we start by combining all unobservable 
transitions into a single transition set Tu. Each transition in Tu is labelled with the 
fault information, that is either with the fault event that triggered the transition 
(for transitions in Tf),  or with the empty fault event F$ — f \ f j \  (for transitions 
in Tn and Ts). Thus Tu is defined as follows: Tu = 2/ V (ExtractVar(Tn V Ts, bx  U 

bx ')A F 9l).

Then, using Tu, we compute F X reaCh (defined over variables bF U bx ), that is, 
all states xreach £ X reach and the faults that have occurred along a path from x  to
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breach, by modifying the reachability algorithm (Algorithm 1) shown on page 27. 
Now, at each iteration (lines 4-10), we compute not only the set of states X new 
from which transitions still need to be triggered but also the set F X new which 
additionally includes all faults F  that have occurred along a path from x to a state 
in X new. The modified reachability algorithm is given below:

CompReachModified(bE, bx , bx ',X , Tu)
X r e a c h   ̂ f  ö/se 
X n e w  * X  

F X new  <— X  A F0

while there are new states (that is as long as I s De f ( FXnew)) do
F X targ * A d d F a u l t ( T newi F X new
F X  *1 y'-new FXtarg A ~>FXreach
Y  ,_s'-new T E x t r a c t V  a r ( F X new, bx )

F X reach 4 F X reach V F X new

end while

The procedure makes use of the function AddFault to add every fault /  that 
occurred in a state xnew € X new (i.e. the fault for which there is a transition 
xnew xtarg with xtarg € X targ) to the set of faults F  that have occurred on a 
path from state x to xnew. This accumulation of faults performed by AddFault is 
illustrated in Figure 2.12 and detailed below.

Given Tnew and F X new i  AddFault first extracts all states X nt (origins and 
targets) of Tnew• Since the faults are then abstracted (i.e. X nt is not defined 
over variables in bF) we can associate the previous faults F  to this state set by 
applying the A operator to sets X nt and F X new resulting in FX \ (see top left of 
Figure 2.12). Next, we add the new faults (kept in Tnew) to FX \ using function 
Update Fault (old Fault, new Fault). To add a fault f  (encoded as b{, A ->bj)
to a BDD B  we need to change the sign of variable b{, in B. This is done by 
abstracting variable b{, from B  and conjoining it with b{\ (i.e., AbstractVar(B , b(,)A 
b{,). Now, a variable can only be abstracted from an entire BDD (not from part 
of it). Therefore, in order to add a new fault f  we first need to isolate all states 
X'nt C X nt that require this addition. This means that we have to compute all 
state pairs (x'new, x'targ) for which there is a transition x'new x!targ. The function 
UpdateFault(oldFault, new Fault) performs these computations for all the faults 
that need to be added.

The Figure shows an example in which the state X\ (encoded as bx  and bx ' resp.) 
is reached from state Xq (encoded as ->bx  and ~>bx  resp.) via a transition labelled
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Representing for instance: 

v(bfÂ bfÂ A ^ )

^ ^ Fault̂ y
4

/
fx2

Q
Representing for instance: 

(~'b^ a bf’A b f A - b p

V  (  t ^ A  “ ■ t ^ ‘ A  - ' t F  A  b£  )

A bs tract Var(FX2, if) Swap Var(XF}, M , b*)

FX3 FX«g

Encoding over the variables bF

Encoding over the variables bx

Encoding over the variables bx

Figure 2.12: Computation steps of function AddFault that determines the faults 
associated with states X targ by combining the faults F associated with their pre
decessor states Xnew and the new fault F' labelling Tnew.

fi (encoded as 6f A ) and state x0 is reached from state X\ via a transition 
labelled with the empty fault label (that is a shared or normal transition). Hence 
only the fault label of state xq is modified by changing the sign of variable 6 f.

Note that fault sets cannot be updated at once, since for each new fault we have 
to retrieve the corresponding previous fault sets first. Hence function Update Fault, 
that is the symbolic update of fault sets is not very efficient. However, the com
putation of the abstracted model is done off-line and therefore does not slow down 
the on-line diagnosis based on this model. Our experiments show that the off-line 
aggregation of successive faults reduces the diagnosis time (see Section 2.4.3).

Sym bolic D iagnoser M odel

We now define the symbolic diagnoser representation and describe its computation 
based on the abstracted model.

D ia g n o ser R ep resen ta tio n

Here, in contrast to the previous symbolic models, we do not only require an 
encoding for the model’s states and transitions but also an encoding <h for the state 
labelling function R of the diagnoser.
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Definition 10 (Symbolic diagnoser m odel) Given the symbolic abstracted 
model G = (bx , bx ' , b °, bF, X ,  xo, T0, Tf),  the symbolic model of a diagnoser 
G = (bx , bx ' , bx , b °, bf , X , xq, <3>,T) is described via four BDDs X , Xq, 4>, and 
T, involving the new Boolean variables bx  and bx> where

• bx  are the diagnoser state variables (bx  — {b{, . . . ,  ^  ^  });

• bx ' are the primed diagnoser state variables fbx ' =  { b f , . . . ,  6 ^ ^ } ,) ;

• X  is the Boolean function over bx  characterising the diagnoser states;

• To is the Boolean function over bx  characterising the initial diagnoser state,

• 4> is the Boolean function over bx  U bx  U bF characterising the diagnoser 
state labelling relation, and

• T  is the Boolean function over bx  U b° U bx ' characterising the transition 
relation.

The label R(x)  of a diagnoser state x  is computed by conjoining the BDDs repre
senting x  and and abstracting the state variables bx from the result. In the follow
ing we use function G e tln fo  to perform these operations. The function is defined as 
follows: G etInfo{bdd , bdd\ , {bi, . . . ,  bm}) =  AbstractVar{bdd A bddl, {b\ , . . . ,  bm}). 
Hence we get R(x) = Ge t In fo{$ , x , bx ).

D iagnoser Com putation

The encoding of a diagnoser state x  depends on the total number q of diagnoser 
states which is a priori unknown and even difficult to estimate. In the worst case 
q = 2^1 and therefore 2|X ||2E/| new variables are theoretically needed. However, 
in practice, q will be much smaller and introducing that many variables will lead to 
an unnecessarily costly representation. To avoid the introduction of all 2|A ||2Ê | 
variables, we start with one single variable to encode the initial diagnoser state, 
and continually increase the number of variables, as needed during the construc
tion. Every time a new variable is needed, we update each BDD bdd containing 
variables in bx  (respectively bx>) by conjoining them with -ib* (respectively ->bf).  
Each update can be performed in Q(\bdd\).

Algorithm 3 shows the symbolic diagnoser computation starting from the ab
stracted model. First, in step 3, the initial diagnoser state xo is computed using 
the function G etNew State  which returns the encoding of a new diagnoser state
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over the Boolean variables bx  and if needed, handles the introduction of new vari
ables as discussed above. The diagnosis information of Xo is the conjunction of the 
initial global state and the empty fault label Fq, and is added to the state labelling 
relation <f>. We also initialise the set of states X new from which transitions still 
need to be computed.

Algorithm 3 BuildDiag(G = (6X, bx \  6°, 6F, X , x0, T0< Tj))
1: INPUT: symbolic global model G 
2: Initialise

T  <— fa lse ; X  <— false
3: Compute initial state and its information

x0 <— GetNewState()
4> <— x o A x 0 A p 0

4: while there are new states, that is as long as IsD e f(X new) do 
5: Get new state and its information

Xnew * GetC071 j(Xnew')
Xnew * X new A 'Xnew 
Xnewlnfo * Get I n f  o(4>, Xnewi b )
X  <- X  V Xnew

6: Compute the diagnosis information of all states reachable from xnew and the cor
responding observation

Tnew <— Tf A ExtractVar(xnewinfo,bxy 
TeachUnobs * Xnewlnfo V AddFaultiTnewi Xnewlnfo)
reachObs <— SwapVar(AbstractVar(reachUnobs A T0, bx ), bx , bx  )

7: Determine all states reached and the corresponding observation
r e a c h T a r g G e t  States (reachObs, $)

8: Determine the new states reached and add them to X new
newTarg — ExtractVar(reachTarg, bx ) A -<X 
Xnew * X-new V newTarg 

9: Add new states and their labels to 4>
<f> <— 4> V AbstractVar(newTarg A reachTarg,b°)

10: Add new transitions to the transition set T
obsTarg <— ExtractV ar(SwapVar (reachTarg, bx  ,bx>), b° U bx>)
T *— T  V (dnew A obsTarg)

11: end while
12: OUTPUT: symbolic diagnoser states X  and x0, their labelling 4>, and 

diagnoser transitions T

Until a fixed point is reached, a new diagnoser state xnew is retrieved and 
removed from X new (step 5). The diagnosis information x newinfo of the new state 
is obtained from the labelling relation <h.

Next, the diagnosis information of all target states of xnew is computed (step 6).
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For this purpose we need to consider all global states X unobs in which the system 
could be before the next event is observed. These are retrieved by first trigger
ing all unobservable transition sequences of the global model starting in states 
of xnewinfo, that is, the set Tnew of abstracted fault transitions. The new faults 
that have occurred since the last observation are added using function Add Fault 
(see Figure 2.12). Second, we trigger all observable transitions starting in states 
of X unobs to obtain the diagnosis information of all target states of xnew and the 
observations that are consistent with it. The resulting BDD reachObs is defined 
over the variables b° U bx  U bF.

In step 7 of the algorithm, the target diagnoser states of xnew are obtained 
using function Get States, which for each observation o retrieves the diagnoser 
state labelled with GetInfo(reachObs,o,b°) as described below. The resulting 
BDD reachTarg is now defined over the variables b° U bx  U bx  U bF.

Next, we identify the new diagnoser states encoded in reachTarg (step 8), and 
add them together with their labels to the labelling relation 4> (step 9). Finally, 
we encode all target diagnoser states of x new returned by the function GetStates 
in step 7 over the variables bx ' in order to add all transitions starting in xnew to 
the transition set T  (step 10).

T erm in a tion  o f  D ia g n o ser C o m pu ta tion

To guarantee the termination of the algorithm, it is crucial to detect in function 
GetStates (step 7) whether a diagnoser state reached from xnew via a transition 
labelled o has already been computed, that is, to detect whether there exists a state 
x such that GetInfo(& , x , bx ) is the same as Xinf 0 — GetInfo(reachObs, o, b°). In 
an enumerative approach this requires the consideration of every existing diagnoser 
state to check whether its diagnosis information equals xinf 0. Symbolically we do 
not need to look at these states individually and instead compute the following 
diagnoser state sets:

• S\. set of diagnoser states whose labels are subsets of x inf0

• 52'• set of diagnoser states whose labels are supersets of x inf 0

The diagnoser state x labelled with x inf 0 can be obtained by intersecting these 
sets (x = Si n S2). Note that since no two diagnoser states have the same label, 
the intersection yields at most one state. In case the intersection is empty the 
diagnoser state set does not contain a state labelled Xinf Q.



50 A Symbolic Framework for Diagnosing Discrete-Event Systems

Since state labels of single diagnoser states are encoded as disjunctions it is 
symbolically not possible to directly determine whether the labels of a set of states 
Xi  are a subset of labels of another state set X 2. Hence we cannot directly retrieve 
Si and 52- Therefore, to compute Si n 5 2 we first compute X \ S i, that is all states 
in the diagnoser state set X  that do not belong to Si. Second, instead of retrieving 
X  \  S2 which would again require the consideration of the whole state set X . we 
compute Si \  S2 as shown on the top right of Figure 2.13. Now symbolically, the 
operation \  is equivalent to the operations A->. Hence we can obtain Si A S2 by 
computing first ->51 and second Si A ->S2 and by combining these results using two 
-i and one A operator as shown on the bottom right of Figure 2.13.

By means of set operations:
Si  n S2 =  ( X \  CX \ S i ) ) \ ( X \ S 2)

-  ( X \  ( X \ S i )  ) \  ( S i \ S 2)

By means of logical operations:
Si  A S2 — ( X A -i ( X  A ~>Si) ) A -I (S1A-1S2)

= ~ (_'5:i) A—1 (Si A ->S2)

Figure 2.13: Derivation of an efficient symbolic computation of the intersection of 
the state sets 5i and S2.

The two computation steps of retrieving ->S 1 and Si A ->S2 are illustrated in 
Figure 2.14. The top left BDD in the Figure represents the diagnoser labelling 
relation <f> for states £q,. . .  ,£5 where the state labels are shown as triangles. The 
base (bottom line) of these triangles represents the truth values of label entries. 
Hence we can illustrate the different ways in which state labels can relate to each 
other, namely:

• two states can share a set of label entries, which is the case if triangle bases 
overlap (see state pair (x i,x2));

• the label of one diagnoser state can be a subset of another state’s label, which 
is the case if one triangle base is completely covered by another (see state 
pairs (£3 , x2) and (x2 ,x4));

• two diagnoser states share no label entries, which is the case if the triangle 
bases do not overlap (see state pair (£2, £5)).

The figure illustrates all possible ways in which the label of a state (x2) can relate 
to the labels of other states (iq, £3,2:4, and £ 5 ) .

The top of Figure 2.14 describes the symbolic computation of ->S 1 and the 
bottom illustrates the computation of Si A ~'S2. In order to determine ->S 1 , that is
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Diagnoser state set and its labels Diagnoser states that contain diagnosis infor
mation other than the one represented in * i n f o

> J %info =  (Si V — 'Si) A $  A -1X i n f o

=  -1S1 A <f> A -1X i n f o

since S  i A $ A  “ > X i n f o  >s  false
(see definition of S i )

->Si =  ExtractVar(-iSi A $  A ~'Xinf0,bx )

Diagnoser states whose labels contain only Diagnoser states whose labels do not contain 
diagnosis information represented in i , „ / „  all diagnosis information represented inJ info

S\ A xinfo A -• (S\ A 4>) — Si A xinfo A
=  (Si A - 1S 2 ) A Xjn/ 0 A -i4>

since (5i A S2) A i i nf 0 A -'<f> is false 

(see definition of S i and S2)

S i  A - 1 S 2  =  ExtractVar((Si A - 1 S 2 )  A ahn/ 0 A ->4>, bx )

Figure 2.14: Computation of state set —>Si at the top and Si A - 1S2  at the bottom. 
All terms represent BDDs. Lines denote encodings over the state variables bx  and 
triangles encodings over the variables bx  U bF.
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all states whose labels are not a subset of x inf0, we subtract Xinf0 from the diagnoser 
state set (see top of Figure 2.14). The resulting BDD is depicted on the top right 
of the Figure. It shows that states X\,x±, and x§ do not belong to subset »Si and 
hence need not be considered further (see the middle BDD at the bottom).

To compute »Si A ->S2, we first label all states in S\ with x inf 0 (see graph at the 
bottom left). From this BDD we subtract the labels of the remaining diagnoser 
states. This yields all states that belong to »Si but not to S2 (x3 as depicted on the 
bottom right).

After retrieving the state sets ->S\ and »Si A~>S2, we can now efficiently compute 
S\ A S2 using only two -i and one A operation as shown in Figure 2.13. For the 
example illustrated in Figure 2.14 we obtain Xinf0 = GetIn fo($ ,x2,b*).

Note that these symbolic computations can not only be used to search for a 
diagnoser state labelled with particular diagnosis information but for any problem 
of the following form:

Given a set of elements E = {ei , . . . ,  en} and a set of containers C —
{Cd,. . . ,  CTO} such that C* contains the elements Ei C E  for all i =
(1, . . . .  m}. Further let the entire set C be encoded using a single BDD.
How can this representation be used (without computing the individual 
Cj’s) to obtain all containers that have exactly the same elements as a 
new container C'l

In our case, the set E  is composed of the different diagnosis information and the 
containers correspond to the diagnoser states. Alternatively, for instance, one could 
regard the set E  as a set of attributes and the set C as a set of products having 
each some of the attributes. Our algorithm can then be used to search for all the 
products that have a specific set of attributes, without the need of considering each 
product individually.

B D D  variable o rder fo r  d ia g n o ser rep resen ta tio n

We close this section with a remark on the BDD variable ordering used for the 
diagnoser representation. As shown in Section 2.2.2 this can significantly impact 
the BDD size. However, for our purposes it is equally important to be able to 
efficiently use the diagnoser for the on-line diagnosis. In fact, for our examples 
we found that the variable ordering had a much higher impact on the diagnosis 
time (factor of 80 between fastest and slowest diagnosis) than on the diagnoser size
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(factor of 1.5 between largest and smallest diagnoser representation). We therefore 
decided not to use any of the BDD variable ordering heuristics aiming at reducing 
the BDD size, but rather chosen the “fastest” of the encodings we considered (which 
also was the almost “biggest” one).

The labelling function <f> is encoded using the following variable order (from 
root to leaves): bx ,bx ,bF. The transition variables are ordered as follows: bc , 6°, 
(bx ,bx '), where the state variables are interleaving. For instance the ordering for 
a four state diagnoser with two different observations and composed of two com
ponents is: ,b f  ,b^' ,b§ ,b§ '. This strategy of first encoding the component
identifiers, then the event variables and finally the interleaving states is also used 
for the symbolic representations of the remaining models.

2.4 .2  C om parison o f Sym bolic  and E num erative D iagnosers

With the computation of the symbolic diagnoser, we have obtained a symbolic 
model which compactly represents the entire diagnosis information. We now con
sider the impact of the symbolic representation on model size and computation 
time.

Our symbolic approach is implemented in C ++ on top of the CUDD BDD 
package [Somenzi, 2005]. In order to measure the impact of symbolic techniques 
on the diagnoser representation and computation, we have also implemented Sam- 
path’s diagnoser approach in an enumerative way. In contrast to the original im
plementation in the UMDES-LIB software library,2 our enumerative diagnoser 
implementation reports the space requirements for the generated diagnoser transi
tions and states. In the symbolic case, the size of the diagnoser was determined by 
counting the nodes in the BDDs representing it and multiplying this number by the 
space requirements to represent one BDD node. Our two implementations enable 
us to present experimental evidence that the symbolic approach yields important 
gains in synthesis time and space, considering a system derived from our example 
application as a case study [Roze & Cordier, 2002].

In our study, there are 9 observable events, 11 fault types, and 8 other unobserv
able events. The switch model has 12 states and 18 transitions, the primary control 
station 13 states and 15 transitions and the backup control station 19 states and 28 
transitions. This yields a global model of 1062 states and 2911 transitions. In order 
to observe how the two approaches (symbolic/enumerative) scale, we also consid-

2http://www.eecs.umich.edu/umdes/toolboxes.html

http://www.eecs.umich.edu/umdes/toolboxes.html
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ered “lighter” versions of the example, where groups of fault types are fusioned. 
This yields 5 different versions V \ . . .  V5, with a number of fault types ranging from 
3 to the original 11.

Experiments were run on a 1GHz Pentium III with 512 Mbytes of memory. 
The left chart on Figure 2.15 compares the time taken by the symbolic and enu- 
merative methods to produce the diagnoser. After 2 days of computation, neither 
the UMDES demonstration tool nor our enumerative implementation was able to 
compute a diagnoser for the two larger versions, while the symbolic approach re
mained feasible. In fact, here the computation was performed at least three orders 
of magnitude faster. In order to determine the space requirements for the enumer
ative diagnoser representation for these examples, we retrieved this diagnoser on 
the basis of the symbolic one. This was done by examining the paths of the BDDs 
used to represent the diagnoser.

1 0 0 0 0 0 --------------------------- --------------------=j------ 1— h -

Symbolic Diagnoser 
Enumerative Diagnoser

10000

2

Model V, V, V, V« V,

States 353 921 2500 4355 18474
Transit. 2183 5774 16530 31024 120698/
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Figure 2.15: Time and space performance comparison

The right chart in Figure 2.15 compares the space needed to store the resulting 
diagnosers. The superiority of the symbolic method increases with the model size, 
and exceeds an order of magnitude for the largest version. From the results, it 
can be conjectured that the space requirements of the symbolic approach for large 
models will often only represent a negligible portion of those of the enumerative 
setting. The Figure also shows that, for both approaches, most of the space was 
used to store labels (note the logarithmic scale). In particular, our symbolic encod
ing only performs marginally better than the enumerative approach with respect 
to storing diagnoser transitions. This is due to the fact that the Boolean variables 
introduced to represent transition sets allow the representation of all transitions 
that are theoretically possible, while in practice, the diagnoser is deterministic and 
not all observations are possible in each given diagnoser state. For instance, the 
diagnoser for version V5 only contains 0.004% of the theoretically possible transi-
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tions.

The superiority of the symbolic diagnoser representation results from the fact 
that the set of diagnosis candidates, that is the set of possible faults and system 
states that are consistent with a sequence of observations, is very large and can be 
encoded with relatively few Boolean variables. Hence, here we are able to exploit 
the advantages provided by BDDs to compactly represent large sets of data. In 
general, we believe that symbolic methods are particularly suitable for diagnosis 
approaches that require the representation of such large sets. This is the case for all 
fault identification approaches which we target in this chapter. Note that this also 
holds for representing the fault information of the failure identifiers we presented 
in [Schumann & Pencole, 2006]. In contrast to the diagnoser these FSM are only 
labelled by the faults (and not the corresponding system states) and hence have 
fewer states than the latter.

2.4 .3  S ym bolic  O n-L ine  D iag n o sis

In the previous section, we have shown that the symbolic precomputation of the 
complex diagnosis information, that is the computation of diagnoser state labels, 
is significantly faster than the enumerative precomputation. In this section, we ex
ploit the symbolic representation to efficiently compute the diagnosis information 
on-line, given the events actually observed. We describe the procedure for comput
ing this information using each of the models introduced. Finally, we present an 
experimental analysis of the extent to which each of the symbolic on-line diagnosis 
algorithms resolves the tradeoff between space and diagnosis time and compare 
them to the corresponding enumerative diagnosis approaches.

O n-line D iagnosis A lgorithm s

On-line diagnosis aims to detect faults while the system is working. Each time an 
event a is observed, the diagnosis information x'inf 0 is derived based on <j , one of the 
models, and the previous diagnosis information i^n/ 0. In an enumerative approach, 
this on-line computation of x'inj 0 is very slow since all diagnosis entries of xinf0 need 
to be considered individually (except for the diagnoser). In this section we show 
how we can avoid this individual consideration by symbolically retrieving x'inf 0.

For on-line diagnosis based on the diagnoser, this update requires the compu
tation of the diagnoser state x' that is labelled with the new diagnosis information. 
Given the diagnoser state x labelled with the previous diagnosis information and a
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new observation o, we can obtain x' using function G etInfo(T , xAo, bx Ub°). After 
encoding x! over the variables bx we simply retrieve the new diagnosis information 
x'inf 0  from the state labelling relation < F , that is, x ' n y 0  <— G etIn fo($ ,x ',bx ).

With the remaining models, x'inj 0 is not precomputed and needs to be de
termined on-line. However, its on-line computation is very similar to its off-line 
computation. For the diagnosis based on the abstracted model, we first compute 
the diagnosis information reachUnobs consistent with the previous events and the 
fact that time has passed, as described in step 6 of Algorithm 3: 
reachUnobs <—  x*n/ 0VAddFault(Tf AExtractVar(xnewinf0:bx ),Xinf 0). After trig
gering all transitions labelled o from states in reachUnobs, we can extract the new 
diagnosis information as follows: x'inf 0 <— SwapVar(ExtractVar (reachUnobs A 

T0Ao,bx ' UbF),bx ,bx ').

On-line diagnosis based on the global model is analogous to that based on the 
abstracted model. Only the computation of reachUnobs requires an additional 
step, namely the computation of all abstracted fault transitions starting in states 
of xinf 0, as described in Section 2.4.1.

To compute the diagnosis information on the basis of the component models, we 
consider, for all of them, all unobservable event paths starting in states contained 
in xinf 0. For the component in which o is defined, we also consider all transitions la
belled o that start in one of the target states of the unobservable paths. Figure 2.16 
shows the relevant component parts if x inf0 =  {((xo, yo, Zo), 0)} and o = C Slobs 
is observed in our working example. The new diagnosis information is retrieved 
by computing, on-line, the diagnoser based on these component parts. Note that 
this diagnoser consists of exactly one transition, which is labelled by the new event 
observed.

NotifySWfail

NotifySWfail

NotifyCSlfail __ m 7\

Figure 2.16: Parts of the component models depicted in Figure 2.7 that are relevant 
to the update of the initial diagnosis information given the new observation CSlobs.

In summary, while the diagnosis based on the diagnoser consists in triggering a 
single transition labelled with the new event observed, the diagnosis based on the 
other models consists in determining the label of the target diagnoser state on-line, 
by exploring the part of the model that is relevant to the update of the diagno-
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sis information. These approaches only compute (but do not store) the relevant 
diagnoser path — the path labelled by the events actually observed. Naturally, 
this targeted computation has reduced space requirements compared to algorithms 
based on the diagnoser. On the other hand, it also leads to an increase in diagnosis 
time. The next section gives experimental evidence of this tradeoff.

E x p erim en ta l E valua tion  of O n-line D iagnosis A pproaches

We describe the performance in diagnosis time and space of our on-line diagnosis 
algorithms, using the same case study as in Section 2.4.2. For that purpose, we 
generated by simulation 100 arbitrary scenarios (possible sequences of observations) 
of 10000 observations each, and used them as input to all four symbolic models. 
The experiments reported here were run on a 3.2 GHz Pentium IV with 1 Gbyte 
of memory.

The left graph of Figure 2.17 compares the time performance of the various on
line diagnosis methods. To start with, it is worth noting that symbolic diagnoser 
methods are slower than enumerative ones. This is due to the fact that the retrieval 
of the diagnosis information only requires the triggering of a single transition per 
observation. While BDDs are well suited to efficiently trigger transition sets, the 
enumerative triggering of a single transition is almost instantaneous and hence 
faster. For the remaining diagnosis methods, the symbolic implementations are 
faster than the enumerative ones, owing to the efficient symbolic triggering of 
transition sets that allows the consideration of all diagnosis candidates at once.

time in s

4 5 ----------43S+

Component Global Abstracted Diagnoser

size in Mbyte

State Nr. 0  17.67 1063 965 18474
Trans. Nr. 0  34 2912 48968 120698

Figure 2.17: Average diagnosis times based on the different models of our example 
application based on 100 scenarios each of a sequence of 10000 observations on the 
left and their model sizes on the right.
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The differences in symbolic diagnosis times across the spectrum correlate with 
the extent to which the accumulation of faults (function AddFault described on 
page 46) is performed on-line (see also Figure 2.18). Even though a fault can be 
simultaneously added to a set of fault labels, AddFault still requires the individual 
consideration of faults since we need to compute for each fault /* the set of fault 
labels Ffx to which /* has to be added (in general, Fft ^  Ffj for /* ^  fj). This 
is the main bottleneck of the symbolic computation. The component and global 
models yield similar diagnosis times because AddFault is applied the same number 
of times in both cases and symbolic synchronisation is very fast. In contrast, the 
abstracted model yields a faster diagnosis times because AddFault only needs to 
be applied once per observation, although in that case fault sets rather than single 
faults need to be added. With the diagnoser, AddFault is never called.

time in s 
8 ----------- 7.79 -, _
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5 ----
V)

I  4 7.35
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2 - —

1

o Eoa
Component

6.69

6.31

Global

2.99

2.61

0.58

'  1 ' "  0 29 '

Abstracted Diagnoser

Precom putations consisting of:
• Synchronization
• Abstraction o f  shared events
• Update o f  failure labels

Triggering observable transition

Retrieval o f Diagnosis Information

Figure 2.18: Composition of the diagnosis times depicted in Figure 2.17.

Taken in conjunction with the diagnosis times, the corresponding model sizes 
(see right graph of Figure 2.17) illustrate the time/space tradeoff of the methods 
across the spectrum and the superiority of the symbolic approach. Comparing 
the symbolic models (resp. the enumerative ones), we can state, that the faster 
the on-line diagnosis based on a model, the larger the model size. For all models, 
the symbolic representation is about the same or smaller than the enumerative 
one; yet except for the diagnoser, the symbolic run-times are significantly better. 
Importantly, the symbolic diagnoser is as small as A the size of the enumerative 
one. Its size is rather comparable to that of the enumerative abstracted model, yet 
it is an order of magnitude faster than the latter.

Note that the representation of the symbolic abstracted model requires almost 
three times as munch memory than the global model. This results from the fact
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that here more BDD nodes are needed to represent the fault events. In fact, for 
the global model fault events can be encoded with only |  • |£ / + 1|2 BDD nodes, 
because only |£ /| different fault labels need to be represented (see Figure 2.19). In 
contrast, for the abstracted model up to 2 different fault labels might need to 
be represented which could require 2 — 1 BDD nodes.

Figure 2.19: Representation of fault events in the global model.

2.4 .4  Sum m ary

In this section, we have presented a symbolic direct diagnosis approach consisting 
of a spectrum of models that differ in the degree to which the global diagnosis infor
mation is precomputed. These models range from the small component models that 
do not incorporate any precomputations, to the diagnoser model in which the diag
nosis information for the entire observable behaviour of the system is precomputed. 
In comparison to an enumerative implementation, the symbolic precomputation of 
diagnosis information is not only significantly faster but also leads to a considerably 
smaller diagnoser model.

When used on-line to retrieve the diagnosis information, the symbolic diagnoser 
only incurs in a small time overhead compared to the enumerative one. Therefore, 
an enumerative approach is mainly useful for small applications for which the com
putation of the large diagnoser is feasible. In contrast, the symbolic diagnoser is 
also computable for larger systems and can be used to efficiently diagnose them.

The abstracted model constitutes an interesting alternative to the diagnoser. 
This nondeterministic model exploits the property of BDDs of efficiently triggering 
transition sets at once. The abstracted model is considerably smaller than the 
diagnoser and can be computed for a wider range of applications.

The component based on-line diagnosis algorithm is a method that requires only
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very small space and is applicable to large systems. However, the diagnosis time 
is significantly higher than when using the abstracted or diagnoser models. The 
slow diagnosis results from the low efficiency of symbolically updating fault labels. 
In the next section, we will show that the off-line computation of fault labels leads 
to dramatic improvements in the on-line performance of the component, global, 
and abstracted models. With such an approach we aim at diagnosing even larger 
systems efficiently.

We conclude this section with a note on diagnosing safety-critical applications. 
Here time and space efficiency of a diagnosis approach might be less important than 
the robustness of the method. Thus a more rugged enumerative approach might 
be preferred over one using a BDD package such as CUDD which has a larger size 
and complexity.

2.5 T he  Sym bolic C om piled  D iagnosis A pproach

In the previous section, we have shown that the efficiency of symbolic on-line 
diagnosis largely depends on the extent to which the fault information is already 
compiled and abstracted from the model. This suggests that we can increase the 
diagnosis efficiency by abstracting the entire fault information from all the models, 
and representing it independently of the nominal behaviour.

In this section, we define a spectrum of such compiled diagnosis models and 
determine the extent to which efficiency increases when the local diagnosis infor
mation is precomputed. We also describe how these compiled models can be used to 
retrieve the diagnosis information on-line and prove that this information is indeed 
correct. Finally we analyse the performance in time and space of this compiled 
diagnosis approach in comparison to the direct one.

2.5.1 Sp ectru m  o f C om piled  D iagnosis M odels

Our framework comprises four models. The main difference with the models de
fined before lies in the local precomputation of diagnosis information. While in the 
previous approach, we first synchronise the component models before we precom
pute any diagnosis information, we now swap the two computation steps and first 
retrieve, off-line, the diagnosis information for each component before we synchro
nise their behaviours (see Figure 2.20).
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Component Models

Component 1
Component 2

Precomputation' 
of Diagnosis 
information

Decentralised 
Diagnosis Models

DecDiag 1
DecDiag 2

....

Synchroni
sation

Deterministic
Diagnosis

Model

Figure 2.20: Symbolic model computation

The models involved in this approach are shown in Figure 2.21. The decen
tralised diagnosis models are obtained from the component models by precomput
ing the diagnosis information locally. The synchronisation of these models results 
in the centralised diagnosis model, which abstracted from the shared events leads to 
the nondeterministic diagnosis model. Finally we detenninise the latter to obtain 
the deterministic diagnosis model.

Figure 2.21: Compiled diagnosis models and their relationships.

All these models are best viewed as consisting of two parts: the local diagnosis 
information which is represented the same way for all the models, and a description 
of the system behaviour in which the models differ. The latter part determines 
how efficient the local diagnosis information can be accessed. It is related to the 
original direct diagnosis models and can be derived from them by abstracting the 
fault information (for the three models on the left of Figure 2.21) followed by a 
determinisation (for the two models on the left of the figure). The deterministic 
diagnosis model is equivalent to the diagnoser. We define it in order to prove that 
the compiled diagnosis approach is indeed correct (see Section 2.5.3).

Synchroni
sation

Centralised
Diagnosis

Model

Abstraction of events\ 
shared among several y  

components /

Nondeterministic
Diagnosis

Model

Decentralised 
Diagnosis Models

D ecen tra lised  D iagnosis M odel

In the component models of the direct approach introduced earlier, the nominal 
and fault behaviours of a component are represented as FSMs in an homogeneous 
way. We now define (Definition 11) a decentralised diagnosis model in which the 
fault behaviours are abstracted and accounted for in the state labels of a FSM. The 
latter is a sort of local diagnoser for the component, with a couple of important 
differences from the notion of diagnoser described earlier for the global model. 
These differences are motivated by the fact that we will ultimately need to retrieve 
the global diagnosis information on the basis of the local one:
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• We retain the shared events labelling the transitions of the FSM. This is 
necessary to identify the states of the FSM labelled with a local diagnosis 
information that is consistent with the global behaviour of the system.

• We use two state labelling functions, namely:

— the usual or “classical” labelling function R* which retrieves the diagnosis 
information that is consistent with any sequence of events Si observed 
by component Gi, and

— the quiet labelling function R' which retrieves the diagnosis information 
that is consistent with Si, followed by any sequence of unobservable 
nonshared events of Gi.

Hence, to determine which system states and faults are possible immediately 
after the last observation of Si, we use the classical function. In contrast, to deter
mine the diagnosis information that is consistent with Si and any future behaviour 
that does not involve other components and that cannot be observed, we use the 
quiet labelling function.

Definition 11 (D ecentralised diagnosis model) The decentralised diagno
sis model of a component Gi = (Xi: Ej,xo;, Tf) is the deterministic finite state 
machine Gi = (Xj,'Iq,£',Rj,R',x0i,Ti) where

• Xz is the set of states (X — {xo*, • • •, x9t},);

• Tj is the set of possible local diagnosis candidates (\Eq = Xi x 2SP );

• £ ' is the set of events (£' =  £ s< U £ 0J ;

• x0) is the initial state;

• h  C Xj x E. x Xj is the set of transitions;

• R* and R' are two state labelling functions that associate a state to its pos
sible local diagnosis information (X : X* ■—> 2^i and R- : Xz i—> 2^i);

• Rj, R' and Tz satisfy:
R*(x0l) = {(xOi,0)} and

Xj -X x' G Tz iff

Rj(x') = {(xi, li U /•) I 3(xi, U) <E Rj(xz) such that PE" -X x\
is path in Gi with S ta rt(P ^) = Xi
and l\ =  EvSet(Pb", S /J  and £" =  £* \  £ '}.

R'(xj) = Rj(xz) U {(xj , li U If) I Ps" is path in Gi with £■' =  £* \  £ ' and
S tart(P ^)  =  Xi, Targ(P^)  = xj,
I'i = EvSet(Px»,Zfi), (Xi,k) € R,(xz)};
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Figure 2.22 shows the decentralised diagnosis model for C S2. Again, abstract
ing fault information leads to an increase in model size (see the comparison to 
the component model of CS2 in Figure 2.7). In fact, the number of decentralised 
diagnosis states is exponential in the number of component states and local fault 
events. However, since the number of states of a single component is usually small, 
the computation of G* remains feasible.

Note that the size of the decentralised diagnosis model relates to the size of the 
component model in the same way as the size of the diagnoser relates to that of 
the global model. This results from the fact that the number of different states in 
Gj only depends on the number of different classical state labels. Two decentralised 
diagnosis states are identical iff their classical labels are identical (see definition of 
Tj). In that case, the quiet labels are necessarily identical (see definition of R'). 
However two different states can also have identical quiet labels (see for instance 
states zq and z3 in Figure 2.22).

Ri(zo) =  {(20,0)} R((zo) =  {(20,0), (22 , {CS2fa i l }) }  
Ri(zi) =  R '(z i)  =  | ( z 4, {CS2fai l }) }

Ri(z2) =  R'(z2) =  { (2 i ,0 ) ,  (z2, { C S 2f a i l } ) \

Ri(z3) =  R '(z 3) =  j(zo,0), (z2, { CS 2f a i l } ) j  

R,(z 4 ) =  R '(z4 ) =  j ( z 2, {CS2fa i l }) }

R2(z 5) =  R '(z 5) -  i ( z 3,0), (z2 , {CS2fail }) ,  (z4, {CS2fai l }) }  

Ri(zß) =  R'(26) =  | ( 2 2, {CS2fail }) ,  (z4, {CS2fai l})}

Notify SWfail Noli fyCSl fail _NoufyCSlfail_

NotifyCSlfail

Figure 2.22: Decentralised diagnosis model of C S2 depicted in Figure 2.7.

Now unsurprisingly, the definition of the symbolic decentralised diagnosis model 
is similar to that of the symbolic diagnoser.
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Definition 12 (Sym bolic decentralised diagnosis m odel) Given a compo
nent Gi = (b f ,b f ' ,b ° ,b f  , bf ,bf ,  X i ,x 0i,TOi,Tni,T fi ,T Si), the symbolic decen
tralised diagnosis model G* =  (bf, b f , b f , b f , b f , bs , *, <f> •, x0?, T0i, Ts.) is described 
via five BDDs <!>*, 4>', xo;, T0i and TSi involving the new Boolean variables bf and 
b f , where

• bf are the decentralised state variables (bf — {&*(, . . . ,  b*Nr(X,^ }),

• bf are the primed decentralised state variables (bf =  {bf. , . . . ,  }),

• and 4> • are two Boolean functions over 6* U b f  U b f encoding the state 
labelling functions R* and R' for all states,

• x0; is the Boolean function over b* characterising the initial state,

• T0j is the Boolean function over bf U bf U bf characterising the observable 
transition relation, and

• TSi is the Boolean function over bf U bs U bf characterising the shared 
transition relation.

Consequently, its computation is very similar to that of the diagnoser, as shown 
in Algorithm 3 on page 48. Only step 6 of that algorithm, namely the computation 
of the diagnosis information of all target states starting in xneWi and of the obser
vations labelling the transitions starting in xneWi, needs to be extended in order 
to

• compute the quiet state labels 4>' and to

• compute both, observable and shared transitions.

Thus, given a new state xneWi, we first compute all component states that can 
be reached by triggering local unobservable transitions. These states along with 
their corresponding fault labels, represented by the BDD reachUnobsi, comprise 
the quiet state label of xnewr To add this label to <f>' we add the conjunction of 
Xnewi and reachUnobsi as follows: 4>' <— 4>' V (xneWi A reachUnobSi).

Next we trigger all observable and shared transitions starting in states of reach— 
Unobsi. After abstracting the start variables b f and swapping the state variables 
we continue with the remaining computations similar to steps 7-10 of Algorithm 3.
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Centralised D iagnosis M odel

Computing the global diagnosis information on the basis of decentralised diagnosis 
models requires both: a synchronisation of the individual transition BDDs and a 
synchronisation of the BDDs representing the state labels. We now define these 
synchronisation rules.

Definition 13 (Centralised diagnosis m odel) The centralised diag
nosis model of the system is the deterministic finite state machine 
G =  (X, \h,E', R, x0, It is defined as the synchronous composition of
the decentralised diagnosis models Gj =  (X*, \Eq, E',Rj,R',xoi5 Tj)such that

• X is the set of system states (X =  J^Li %i)>

• 'I' is the set of possible global diagnosis information 'I'*);

• E' =  E0 U Es are the events f£0 = (J”=1 El0i and Es =  U"=1

• R is the diagnosis labelling function (R : S 0 x X h  2*). Let a denote an 
observation defined in component Gj and x =  f^x* o state in G. Then R 
satisfies:

R(cr,x) =  Rj(xj) x R'(xj)
MA?

• xo is the initial state (x0 =  ÜILi xoJ/

• ip0 is the initial global diagnosis information (ip0 = {(a:o,0)}j;

• T is the transition set (T =  { (x i , . . . ,  xn) A  (x'l5. . . ,  x'n) \
Vz G 1 . . .  n s.t. <7 G E-, x* A  x- G Tj and 
Vz G 1 . . .  n s.t. <7 ^ E', x* =  x'}).

Thus the global diagnosis information is derived as composition of the local 
diagnosis information. In general, it does not only depend on the global state itself 
but also on the observation leading to that state, or more precisely on the compo
nent Gj that observed the last event. Only for this decentralised diagnosis model 
Gj the information is obtained using the classical labelling function Rj. The local 
diagnosis information of the other components is retrieved via the quiet function

K
Figure 2.23 shows a part of the global diagnosis model for our example appli

cation. Consider for instance state (xo,y1,zo) that is only reached from the initial 
state via the transition labelled CSlobs. In case this event is observed the global
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diagnosis information is the following:

R(CSlobs,  (x0,y1}zo)) = R'sw(xo) x Rcsi(Yi) x Rc52(zo)
=  {(*0,0), (xu { S Wf a i l } ) }  x { ( y 3, { C S l f a i l } ) } x

{ 0*0,0), (z2, {CS2fa i l } ) }

= I x/3, ^o), {C’S'l/azZ}^),

f (*i, 2/3, 2o), {SW/azZ, CSl/azZ}),

U*o, 2 / 3 ,  2 2 ) ,  { C S l / a z Z ,  C 52/az/}),

( ( ^ 1 , 2 / 3 ,  ^ 2 ) ,  { S W fail,  C S l f a i l , CS'2/az/}^ j

Symbolically, we can very efficiently retrieve the global diagnosis information 
using simple A operations. Therefore, computing this information on-line hardly 
adds to the diagnosis time. Consequently, to decrease the storage space, we choose 
to only synchronise the transition BDDs and not the state labelling functions.

Definition 14 (Symbolic centralised diagnosis model)
Given a set of n symbolic decentralised diagnosis models 
Gj = (bx, b f , b f . b f , 65, 4b. x0i, T0i, TSt), the symbolic centralised
diagnosis model G = (6X, bx', bx , b°, bs . bF. 4>i,. . . ,  4>n, 4>i,. . . ,  <f>̂, x0, T0, Ts) is 
described using the 2n BDDs 4>i,. . . ,  4>n, . . . ,  4>'n; and the 3 BDDs x0, T0 and
Ts; involving the Boolean variables bx and bx' . where

• bx are the state variables (bx =  Uf=lbx);

• bx' are the primed state variables (br  = U™=lb f );

• x0 is the Boolean function over bx characterising the initial state (x0 =

A £ = i x o i ) ,

• T0 is the Boolean function over bx U b° U bx' characterising the observable 
transition relation, and

• Ts is the Boolean function over bx U bs U bx' characterising the transition 
relation of shared events.

The synchronisation of the transitions of the decentralised diagnosis models is 
analogous to the synchronisation of the component transitions. Hence the com
putation of the global diagnosis model is similar to that of the global model (see 
Algorithm 2 on page 43). The global diagnosis information can now be retrieved 
by triggering the transitions of a single symbolic model and synchronising the local 
diagnosis information (see Section 2.5.4).
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I I Not ifySWfail I I SWohs f
NotifyCSlfail_ (xO, y 3 , z2)  |— — — —  —  -| ( x l ,  y 3 , zS) |------------------  ----------H zS)

Figure 2.23: (Part of) centralised diagnosis model for the component models de
picted in Figure 2.7.

N ondeterm inistic Diagnosis M odel

The centralised diagnosis model still includes the shared events. However, after 
the synchronisation, these events are irrelevant and can therefore be abstracted to 
allow a more efficient computation of the global diagnosis information. This leads 
us to the nondeterministic diagnosis model.

Definition 15 (N ondeterm inistic diagnosis m odel) Given a centralised 
diagnosis model G = (X, T, S', R, xo, ipo, T), the nondeterministic diagnosis model 
is the finite state machine G =  (X, T, £ 0, R, xo, T), where:

• X C X is the set of states
(X =  {x0} U {x € X I x is a target state of an observable transition});

• T is the transition set (t  =  (x x | a 6 E„ and P^u x'
is a path in G with Start(P-£u) =  x}).

Figure 2.24 shows a part of the nondeterministic diagnosis model for our run
ning example. Since the model’s states are a subset of the centralised model’s 
states, we can retrieve the global diagnosis information using the same labelling 
function R as we defined for the centralised model. The symbolic definition of the 
nondeterministic diagnosis model is given below.

Definition 16 (Symbolic nondeterm inistic  diagnosis m odel) Given the 
symbolic centralised model
G = (b\ br , bx , b°, 6s , bF, 4>,, . . . ,  4>n, 4>1,. . . ,  x0, T0, T.),
the symbolic nondeterministic diagnosis model
G = (6X, 6X/, 6X, 5°, 6F, 4>i,. . . ,  <Pn, <F'1?. . . ,  4>'n, x0, T) is described via 2n +  2 
BDDs: <f>i,. . . ,  <f>n, «Fj,. . . ,  x0 and T where

• T is the Boolean function over b* U b° U b*' characterising the transition 
relation.
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(xO, yO, zO)

Figure 2.24: (Part of) nondeterministic diagnosis model for the component models 
depicted in Figure 2.7.

To compute the model’s transitions, we first retrieve the state set X by extracting 
the targets of the observable centralised diagnosis transitions and adding the initial 
state: X <— SwapVar(ExtractVar(T0, 6 X/) ,  6X, b*') V x0.

Then we compute for each state x £ X the targets Xtar£, of all shared event paths 
starting in x using function CompReach described on page 27. In contrast to 
the abstracted model computation this function requires no modification since the 
fault information is represented separately. The target states are thus obtained as: 
X-targ CompReach(bs , b*. b*\x. Ts). To compute the transitions b  C T starting
in x we need to look at all observable transitions T0 of the centralised diagnosis 
model that start in one of the states in Xtarg. In the nondeterministic model they 
now also start in x. Hence is obtained as: x A AbstractVar(T0 A X*ar£,, b*).

With the nondeterministic diagnosis model, we have provided an efficient basis 
for computing the global states whose labels point to the diagnosis information. 
The retrieval of these states requires only as many triggerings of transition sets as 
there are observations in the sequence S.

D eterm inistic Diagnosis M odel

In order to show that the compiled diagnosis models can be used to retrieve the 
correct diagnosis information (see Section 2.5.3), we now define the deterministic 
diagnosis model, which is equivalent to the diagnoser. The model G is the deter- 
minisation of the nondeterministic diagnosis model G. Therefore, each of its states 
x corresponds to a set of states T(x) C X in the nondeterministic diagnosis model.



2.5 The Symbolic Compiled Diagnosis Approach 69

Definition 17 (Deterministic diagnosis model) Based on the nondeter- 
ministic diagnosis model G = (X, T, E0, R, xo, T), the deterministic di
agnosis model of the system is defined as the finite state machine 
G = (X ,# ,£0,T,R,x0,^o,T), where:

• X is the set of states (X = {x0, . . . ,  x9});

• x0 is the initial state;

• T is the state labelling function fX : X i—> 2*);

• R is the diagnosis labelling function (R : E0 x X i—> 2* );

• T C X x S0 x X m the set of transitions;

• Y, R, and T satisfy:
T(x0) = {x0};
R(cr,x) =  UxeT(x) R( ^ x)/ and
x —> x 6 f  iff T(x7) = {x/ I 3x 6 Y(x) such that (x x') G T}.

Figure 2.25 shows the deterministic diagnosis model for our example applica
tion. In the graph, states are only labelled with the global states returned by 
function Y. On the basis of these states, we can also retrieve the corresponding 
diagnosis information. For instance, after the event CSlobs was observed in the 
initial state the diagnosis information is computed as follows:

R(CSlobs, x2)) = R(C Slobs, (x0, y1,z0)) U R(CSlobs, (x1,y1,z 3))
= (Rsw (xo) x RCSl(yi) x RC'S'2(zo))0  

(Rsw(Xl) X Rc Si (Yi ) x RCS2(Z3))

= ( j ( x o,0), (xlt [ S W f atl }) \  x ((j/3 ,{C Sl/ai;})}x

{(0 0 ,0), (z2,{CS2fai

( f (x 2, {SWfa i l } ) }  x { (y3, { CS l f a i l } ) } x  

{(^o,0), (z2, {CS2fai l } ) ) )

= {(xo,0), 0xu {SWfai l } ) , (x2, { SWf a i l } ) } x  

j f e ,  { C S l f a i l j f  x ((0O,0), (02, {CS2fml)  f

The symbolic deterministic diagnosis model, which is defined below, does not 
represent the labelling function R explicitly, since it can be efficiently retrieved 
based on T and the state labels of the decentralised diagnosis models.
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D efin ition  18 (Sym b olic  determ in istic  d iagnosis m odel)
Given the nondeterministic diagnosis model
G = (6X, bx' , bx , 6°, bF <f>n, $'1?. . . .  x0, T), the symbolic determin
istic diagnosis model
G = (&*, 6X’, 5X, bx , 6°, bF. $ i ,__ $ n, $ 1 , . . . ,  T, x0,T) is described using the
2n BDDs <f>i,. . . ,  <f>n, <$>'n, and the 3 BDDs T, xo and T, involving the
Boolean variables b* and b* , where

• bx are the model’s state variables (tP = (6* ,...,

• 6X are the model’s primed state variables (b* = {b± , . . . ,

• T is the Boolean function overb*(Jbx characterising the model’s state labels;

• xo is the Boolean function over b* characterising the initial state; and

• f  is the Boolean function over b* U b° U b* characterising the transition 
relation.

The symbolic computation of this model is very similar to the classical diagnoser 
computation shown in Algorithm 3 on page 48. However, the complexity of the 
algorithm is significantly reduced. To retrieve the labels of all target states of a new 
state, we only need to apply a single Boolean operation: reachObs *— xnewinf 0 A T. 
Recall that in the original approach we first had to trigger unobservable transitions 
and handle the aggregation of fault labels before observable transitions were con
sidered (see step 6).

SWobis

SWobs

CS lobs

SWobs

CSIobs

( x l ,  y l ,  z 3 )

( x l ,  y 2 , z l )

Figure 2.25: Deterministic diagnosis model for the component models in Figure 2.7.
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2.5 .2  E xp erim enta l C om parison  o f M odel Sizes

We have defined four symbolic models that each consist of two parts: the local 
diagnosis information and a description of the system behaviour from which the 
fault information is abstracted. Now, we experimentally compare the sizes of these 
different compiled diagnosis models for our example application. We also analyse 
the extent to which the abstraction of fault information and its decentralised rep
resentation affects the size of the behavioural models, by comparing each compiled 
model with its analogue in the direct approach (i.e., we compare the size of the 
component models with that of the decentralised diagnosis models, the size of the 
global model with that of the centralised diagnosis model, etc).

The right chart of Figure 2.26 shows the number of states and transitions of 
the various compiled diagnosis models, together with the size required for their 
symbolic representation. The smallest of them is the decentralised model whose 
size is about 50 KB, 30 of which are used to store the transitions and 20 of which are 
required to represent the state labels. Since the diagnosis information is represented 
in a decentralised way in all compiled models, they all use 20 KB for storing this 
information, which is negligible considering the total model sizes. Note that a 
global representation of the labels R would require 0.32 MB for this example, that 
is 16 times more.

In comparison to the direct system description as a set of components, which 
requires less than 10 KB of memory (see chart on the left), the decentralised diag
nosis model is larger. As mentioned earlier, its number of states is exponential in 
the number of states and faults of the corresponding component. However, since 
its size increases only linearly in the number of components, its computation is 
feasible even for large scale systems.

Coaopooa* Models
Global Model

Abstracted Model 

Diagnoser Model

size in Mbyte
10 7.34

s ta te  Nr. 0 70 3322 2372 18474

T rans. Nr. 0 250 10436 60258 120698

Decentralised 
Diagnosis Models

Centralised 
Diagnosis Model

Nondeterministic 
Diagnosis Model

Deterministic 
Diagnosis Model

Figure 2.26: Sizes of the direct (on the left) and compiled (on the right) diagnosis 
models for the example application
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Comparing the global model with the centralised one and the abstracted model 
with the nondeterministic diagnosis model, we can state that, even though they 
contain more states, the symbolic models of the compiled diagnosis approach are 
smaller. Once again, we see that BDDs are very suitable to represent large sets of 
data, where large corresponds to the set size in relation to the number of Boolean 
variables needed to represent the sets. Recall that, in contrast to the direct diag
nosis approach, the behavioural models of the compiled diagnosis approach do not 
require any variables to represent faults. From an enumerative point of view, we 
can state that the increase of the number of transitions from the centralised to the 
nondeterministic diagnosis model is smaller than from the global to the abstracted 
model. Again this results from the fact that the models of the compiled diagnosis 
approach do not contain any fault transitions.

The deterministic diagnosis model has almost the same size as the diagnoser 
model. Hence, the decentralised representation of diagnosis information did not 
lead to a reduced size. This is due to the fact that the retrieval of the global 
diagnosis information based on this model requires the additional representation 
of the state labelling function T.

Finally, we observe that size varies significantly from one model to another. 
Therefore, as in the direct approach, the space complexity of on-line diagnosis 
algorithms will differ considerably depending on the model they are based on. In 
Section 2.5.4, we will focus on the time complexity of these algorithms, to complete 
our assessment of their overall efficiency. This will enable us to identify, based on 
the time and space requirements of an application, the diagnosis approach that is 
best suited.

2.5 .3  C orrectness o f C om piled  D iagnosis A pproach

We have defined several diagnosis models that can all be used for the on-line di
agnosis (see Section 2.5.4). Before we compare these diagnosis algorithms, it is 
necessary to show that they compute indeed the correct diagnosis information.

We therefore prove the equivalence of diagnoser and deterministic diagnosis 
model. Since all diagnoser states are labelled with the correct diagnosis informa
tion, this will guarantee the correctness of the diagnosis information retrieved from 
the deterministic diagnosis model. This also holds if this model is computed only 
partially, and in particular, if it is only computed for the event sequence actually 
observed as it is the case for the on-line diagnosis algorithms based on the remaining
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three models of the compiled approach.

T heo rem  2.5.1 There exists a path p =  Xo -%■ Xi X2 ' • • Xk in the diagnoser
model G =  (X , T, E0, xq, R , T) iff there exists a path p =  x0 xi x2 • • • xfc
m i/ie deterministic diagnosis model G =  (X, T, S 0, T. R, x0, 'ifo. T) with R(xo) =  ifo 
and =  R(oft, x/i) Wi =  { 1 ,. . . ,  k}.

We prove the theorem by induction over the number of observations k. 
Base case: k =  0:

R{x0) = { (x o,0)}

=

Induction hypothesis:
—1 a, ^ 0 \  a, 0 2  *  O k  ^dp =  X0 —i► X\ —i► X2 • • • — !> Xk m G
dp =  x0 —► xi —► x2 • • • —► xfc m G
with R(x0) =  ifo and R(xh) =  R(oh, xh) V/i =  { 1 ,. . . ,  k}.

Induction proposition:
—1 A A 0 \  A 0 2  a Ofc A T 1 A • /0 <
d p  =  Xo — > X i  — » X2  • • • — ► --------> £ fc + i 111 G  4=>
- 1  A A 0 \  A 0 2  A Ofc A 1 A » CLdp =  x0 —* Xi —+ x2 • • • —■+ xfc ----- > xfc+i ill G

with R(xk+i) =  R(ofc+1,x fc+1).

Induction proof:
We prove the proposition in two steps. First we show that each diagnosis entry 
{x* ,V) G R(xk+i ) is als° an element of R(ofc+1,Xfc+1) and second we show that each 
diagnosis entry (x',lr) € R(ofc+1, xfc+1) is also an element of R(xk+1).

1. R{xk+i ) Q R(ofe+i ,x fc+i)

Let x' =  n r= i xi denote a global state and l' =  (J''=1 /' a fault label such that 
(x'iV ) e R ( x k+1)

=> There exists a diagnosis entry (x,l) 6 R(xk) such that
p =  P^u °fc-1-> x' is a path in G (see Definition 6 on page 36) with (1)

-  l' =  l U EvSet(P^u,Y<f),
-  x =  n iL i xi =  Start(Psu) and 

l be composed of l =  fllLi
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=> (x,l) G R(ofc,Xfe) (see induction hypothesis)

=> Since R (ok, x&) =  U x e T ( x fc) x), there exists a state
x =  a  xi ^  T(x/r) with (x,l) G R(ofc,x) (see Definition 17) (2)

There exists a component q such that ok G E0g and
R(ofc,x) =  Kq{xq) x n^RiW  (see Definition 13) (3)

=> (xq, lq) € Rg(x9) and (xi} U) G R'(x*) Mi ^  q

=> Since (x, l) G R(xk) and path p =  P su — ► P  is in G (see (1)) it follows 
from Definition 2 that

— there exists a set of path Psa — {Pe01 , . . . ,  P söri } in the components 
G i , . . . ,  Gn with Eöi =  E* \  E0i such that

- r  =  i u u ; , i M d ( A v E/t)

- Xi = Start(Pz5.) and

- Let x" =  n t i  x "i denote the target state of P su, then

x'' = Targ(Px0.) Vi =  { l , . . . , n }
— there exists a component Gj such that

- ok + 1 G E0j. and

- (x'j ^  x ')  € Tj

and x\ =  x" Mi ^  j  (4)

=> From the above and from Definition 11 it follows that Mi G {1, . . . ,  n}

— the path P^g, — P^„ -A P^„ • • • - 1—* P^,) in Gi with
E" =  E01 \  Es. and s'1 G ESi Mh = {2 , . . . ,  r a j  

corresponds to a path
s2 smi

Pes. =  Xj -4  xL • • ——> x™‘ in G? such that

* Or'',Z')GR'(x"u) with (5)

l'i = li u  u r= i E v S e t { P ^ E /J  (since (3))
=  h U EvSet(Pz0,, EyJ

— there exists a state x' G Xj such that
(xmj ^  x ') G Tj with (* ',/ ')  G Rj(x') (6)
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=> There exists a path p =  P^s °k ~ x' in G corresponding to 
path p = Py,u x ' in G (see (1)) with (see Definition 13)

-  EvSeq{PEs, Ea) =  EvSeq(Pzu,Z s)

-  x =  Start(PeJ  =  n* 5 'tart(PsSj.) (state x as defined in (2))

-  Targ{?Y.s) =  a n d

“  x' =  x'. x n M ^ r a r ^(ps Sl) and hence

=  ( s ' , 0  C R(ofc+i,x') (see (4), (5) and (6))

=» x °fc+i----->x ' GT (see Definition 15)

=> From the above and since x G Y(x*.) (see (2)) it follows that
Xfc °-fc+1» xk+i G T and x' € Y(x*.+i) (see Definition 17)

=>• R(ofc+i,x ') C R(ofc+i,Xfc+i) (see Definition 17)

=> (x',Z') € R(ofc+i ,x fc+1)

=* R(xk+i) C  R(ok+i ,x k+1) □

2. Ä(xfc+1) D R(ofc+i,xfc+i)

Let x' =  n i l  denote a state and l' = U i i  ^ a fault label such that (x', l') €
^(O/j+i, Xfc-)-i)■

=> 3x' =  n i l  xi C T(x/j+1) such that (x' ,lf) € R(ofc+1,x') (see Definition 17)

=> 3x =  n i l  x* C T(xfc) such that (x °k+1> x') G T (see Definition 17) (7)

=> there exists a path p =  Pss -°A~-h x' in G such that (see Definition 15)
x =  Start( PSJ

Let further x" =  n i l  xi denote the target state of P^s 

=> there exists

-  a set of paths P =  {PeSi , . . . ,  P^Sn } in Gi,..., Gn (see Definition 11)

- with Start(PeSj) =  xi and

- Targ{P^Si) =  x •' for a l ii  =  {1, . . .  , n} and
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— a decentralised diagnosis model Gy with transition (x'j °k+1> x'j) G T; 
and x'' = x- Vz 7̂  j

=> R(ofc+i,x') =  Rj(x') x (see Definition 13)

=> (x'j, I'j) € Rj(x' ) and (x'} l') € R'(x') Vz ^  j

=> From the above and Definition 11 it follows that
s2 0 s mi

— \/i — {1, . . . ,  n} the path Pss. =  xz -A x2 • • • ——> x" in G* with 
sj  G ESi V/z =  {2,. . . ,  rrii} corresponds to a path

Py0/ — Py." Py." ' '  ‘ P?f such that

* Eöi =  Ei \  E0i and E" =  Eöt \  ESi,

* Xi =  Start(PY0.)

* x'l =  Targ(PEo.)
* there exists a fault label such that l\ — U U U/T=i EvSet(P^„, EyJ

— there exists a state x' such that (x" °fc+1> re') G Tj and a:' = x" Vz 7̂  j

=7 From the above it follows that

— (x , 0 G R(ofc, x) with x =  n ”=i xi and / =  II/Li ^
=> (xj )  €R(xk,ok) (see (7))
=> (a:,/) G R(xk) (see induction hypothesis)

— there exists a path p =  P^u °K"l> x' in G such that

*  EvSeq(PYu^ s )  =  EvSeq(?Ys^ 3)
* x =  Start(PYu) and

* l' =  l U EvSet(PYu,Ef ),

=> From the above it follows that
(xk -°—*-> Ffc+i) G f  and (x',V) G i^ ^ + i)  (see Definition 6)

=> #(£fc+i) D R(ofc+i, Xfc+i) □  ■

Thus, we have proved that function R of the deterministic diagnosis model 
retrieves the same diagnosis information as the state labelling function R of the 
diagnoser. By computing the relevant part of the deterministic diagnosis model, 
that is the part that is consistent with the events observed, we are therefore able 
to retrieve the correct global diagnosis information. This argumentation does not 
depend 011 whether this relevant part is computed off-line as it is the case for the



2.5 The Symbolic Compiled Diagnosis Approach 77

deterministic diagnosis model, or on-line as it is the case for the diagnosis based on 
the remaining compiled diagnosis models. Therefore, for all these models, we can 
describe on-line diagnosis algorithms that are guaranteed to retrieve the correct 
diagnosis information.

2.5 .4  O n -lin e  D iagnosis  B a se d  o n  th e  C o m p ile d  D iag n o sis  

M o d e ls

We now show how to compute the diagnosis information that is consistent with 
a sequence of observations. Similarly to the direct diagnosis approach (see Sec
tion 2.4.3) we do this by retrieving, on-line, the label of the corresponding deter
ministic diagnosis model state.

Algorithm 4 incrementally updates the diagnosis information following a new 
observable event <r, based on any of the compiled diagnosis models DiagModel. The 
input parameter D iaglnfoRef  refers to the states whose labels contain the current 
diagnosis information. Initially, it contains the initial state x0 or x0 depending on 
the approach (in case the diagnosis is based on the decentralised model, state x0 
needs to be computed first).

To obtain the global diagnosis information, we need to consider the classical 
label $ c o m p iD  of the decentralised diagnosis model GCOm p iD  in which a  is defined 
and the quiet state labels <f>' of the remaining models. Hence we need to determine 
the component in which o is defined. We do this using function GetCompID 
(line 3) that returns the corresponding identifier of the component by considering 
the bc variables used to encode a (see Section 2.4.1).

Now, to update the diagnosis information, we first consider all possible inter
actions among components that could have taken place after the last event cq was 
observed and before the new event a is observed (lines 4-6). In the nondeter- 
ministic and deterministic diagnoser model, these interactions are already precom
puted. For the other models, we need to trigger all shared transitions from states 
in D iagln foR ef  and compute their target states. For the decentralised diagno
sis model, we additionally need to synchronise the shared event paths starting in 
states of D iagln foR ef  (as shown in Algorithm 2 on page 43). This is all done in 
function ComputeSharedTarg (line 5).

In order to retrieve the states that refer to the diagnosis information that is 
also consistent with observing <r, we trigger this transition from the previously 
computed states (lines 7-13). Note that for the decentralised diagnosis model we
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A lgorithm  4 DiagOnline(DiagModel, D iaglnf oRef, a)
1: INPUT:

DiagModel : symbolic diagnosis model (either G*, G, G or G)
transObs are the model’s observable transitions (T0j, T0, T or T) 
bStart ancj foTarg are variables encoding states in transObs 

Diaglnf oRef : states whose labels contain the current global diagnosis 
information 

o : new observation

In itia lise
2: Xstart <— D iagln f oRef 
3: compID GetCompID(cr)

T rigger shared  events 
4: if DiagModel = G* or G then
5: X start X-start V ComputeSharedTarg (DiagModel, D iag ln f oRef)
6 : end if

Trigger new  observation  a
7: if DiagModel = Gt then
8: XTarg SwapVar(c7 A X sta r t  A ^ocomp7D , &LnP/D, t p / ö )
9: XT arg <- ExtractV ar(XTarg, b*carnpID)

10: else
11: XTar9 <— ExtractV ar (a A X5 tor* A transObs, b7ar9)
12: XT a r g SwapVar(XTarg,bstart,bIar9)
13: end if
14: new Diaglnf oRef  <— XTars

Look up  diagnosis in fo rm ation
15: if DiagModel = G then
16: XTarg ExtractVar(T A X^ar9, 6X)
17: end if
18: diaglnf o <— AbstractVar(XTarg A <f>comp/£>, b*C(ympID)
19: for all components j  compID do
20: diaglnf o <— AbstractVar(diagInfof\^'j,bj)
21: end for
22: OUTPUT:

states new D iagln f oRef whose labels contain the new global diagnosis, 
diagnosis information diaglnf o
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need to consider only the local observable transition and swap local state variables 
of the model compID in which a is defined (line 8).

Finally, the diagnosis information is obtained by combining the labels of the 
states computed above (lines 18-21). For the deterministic diagnosis model, how
ever, this first requires the computation of the global diagnosis states (line 16).

2.5 .5  E xp erim enta l C om parison  o f O n-Line D iagnosis A l

gorithm s

We have tested this algorithm on the same case study and scenarios we used to 
evaluate the direct diagnosis algorithms (see Section 2.4.3). Figure 2.27 shows the 
diagnosis times obtained with the various compiled models. The fastest approach 
is the one based on the nondeterministic diagnosis model. Here, the diagnosis 
time is only composed of the triggering of observable transitions and the retrieval 
of diagnosis information. Compared to the deterministic model, the former takes 
only half the time, because the states of the nondeterministic model from which 
the diagnosis information is derived are obtained explicitly (without the need of 
using T (see line 16 of Algorithm 4)). What the triggering of observable transitions 
concerns (lines 7-14) , so this is not much slower than in the deterministic model. 
This results from two facts: first the efficiency of triggering transitions depends 
on the size of the BDDs representing them and T is much smaller than T, and 
second triggering transition sets is symbolically very efficient. Overall the on-line 
diagnosis based on the nondeterministic diagnosis model is therefore the fastest 
diagnosis method.

To consider the time/space complexity tradeoff we now also look at the space 
requirements of the compiled diagnosis approaches (see Figure 2.26 on page 71). 
For instance, the decentralised diagnosis models are 8 times smaller than the non
deterministic model, yet only 3.5 times slower. Compared to the component based 
diagnosis the diagnosis times are five times faster, due to a significant decrease 
in precomputation time. Indeed, the compiled approach avoids the costly update 
of fault labels; the precomputation is limited to the on-line synchronisation and 
abstraction of shared events. Furthermore, these operations are more efficient since 
the BDDs that are manipulated are defined over fewer variables (6* instead of over 
bf  U 6 f). For similar reasons, the centralised and nondeterministic models also 
outperform the corresponding direct models.

As far as the diagnoser and the deterministic diagnosis model are concerned,
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Figure 2.27: Average diagnosis times for the different symbolic computation steps 
of all direct (on the left) and compiled (on the right) diagnosis methods, based on 
100 scenarios consisting each of a sequence of 10000 observations.

we can state that they neither differ in their size nor in the time taken by the 
corresponding diagnosis algorithms. However, these algorithms are not competitive 
since they are neither as space efficient nor as time efficient as the diagnosis based 
on the nondeterministic diagnosis model.

For the other three diagnosis models, the diagnosis time increases only linearly 
in the number of observations (see Figure 2.28). This is essential, since the diagnosis 
information has to be updated continuously with the flow of observations.

In conclusion, we can state that on-line diagnosis based on the decentralised, 
centralised or nondeterministic models is significantly faster than based on the 
corresponding direct models. Since the latter two compiled models additionally 
require less memory than their counterpart in the direct approach, it follows that 
the global and abstracted models are not competitive. Due to their very small size 
the component models remain an alternative.

2.6 Related Work

In the past, off-the-shelf symbolic model-checkers have been used for fault diagnosis 
[Cordier Largouet, 2001] and for checking diagnosability [Cimatti, Pecheur, & 
Cavada, 2003]. In the work of Cordier and Largouet 2001, the model checker is 
the diagnoser, so to speak. It checks whether traces of the system exist which 
satisfy a temporal logic formula stating what the observations are and expressing 
constraints between their time of occurrence. While this approach is very attractive
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Figure 2.28: Development of the diagnosis times for the decentralised, centralised 
and nondeterministic diagnosis model.

for off-line diagnosis, it is much less suited to on-line diagnosis because symbolic 
model-checkers do not provide facilities for incremental computation.

Static systems have previously been successfully diagnosed symbolically using 
BDDs [Torta &; Torasso, 2004] and Decomposition Negation Normal Forms [Dar- 
wiche, 1998]. The latter of which are not very suitable for diagnosing dynamic 
systems since the main operation, namely the triggering of transitions, requires 
here exponential time in the size of the representation rather than polynomial time 
as for BDDs.

From a symbolic point of view, the work by Marchand and Roze 2002 is the 
closest to ours. They present a theoretical framework for modelling a system in 
terms of polynomial equations which are generalisations of Boolean formulae, and 
define a form of nondeterministic diagnoser within this framework. The frame
work is state-based, meaning that observations and faults are directly associated 
to states (by means of polynomial equations). The nondeterministic diagnoser 
is obtained by gathering the states of the global model into observational/fault 
equivalence classes. This nondeterministic diagnoser is quite different from ours 
and still requires computations of non-trivial complexity to be performed on-line. 
Furthermore, our event-based framework lends itself to a straightforward exten
sion to intermittent faults along the lines suggested by Contant et al. 2002, while 
extending a state-based framework in this direction is more difficult. However, 
it would be interesting to implement the approach by Marchand and Roze (their



82 A Symbolic Framework for Diagnosing Discrete-Event Systems

paper does not report any implementation), and compare the results to ours.

Very recently, Xue and colleagues 2005 have shown how BDDs can help to 
diagnose distributed discrete-event systems modelled as Petri nets. In their ap
proach, which is limited to two components whose interactions can be observed, 
BDDs are used to encode the diagnosis information. However, the model itself is 
represented in an nonsymbolic way and the computation of diagnosis information 
is also nonsymbolic. Hence a continual conversion from nonsymbolic to symbolic 
representation is required.

In the area of model-based planning the symbolic approaches introduced in 
[Bertoli et al.: 2001], [Albore & Bertoli, 2006] and [Jensen &; Veloso, 2000] are 
the closest to ours. In the first one the authors show how to efficiently construct 
plans under partial observability. This requires the consideration of belief states 
that are similar to the state information contained in the diagnoser states. The 
second work then reasons over these symbolic belief states to compute assumption- 
based plans. The plans are said to be safe if their execution guarantees that it 
can always be observed whether the assumptions are met or not. Safe planning 
can thus also be seen as enforcing a specific form of diagnosability by construction. 
Finally, the third approach defines a planning domain description language for 
non-deterministic multi-agent universal planning. The language is defined such 
that it allows an efficient BDD encoding. Our work applies similar techniques 
to a different problem, and, unlike these three approaches, focuses on using the 
techniques in decentralised computations.

Several nonsymbolic decentralised methods for on-line diagnosis have been in
troduced to deal with the space complexity of large scale systems like [Garcia et al., 
2005] or [Pencole & Cordier, 2005] described in Section 1.3.2. The closest to our 
decentralised diagnosis approach is the work of Debouk and colleagues 2000 who 
have proposed a framework consisting of a set of diagnosers, that each explain the 
observations from one site as described on page 9. The authors present a general 
protocol that computes the correct diagnosis information for any system, as well 
as two more efficient protocols which are only correct under certain assumptions 
on the system. In the general case, the diagnosis information is retrieved on the 
basis of extended diagnoser state labels and of the unobservable reach of these diag
noser states. The unobservable reach includes all states that can be reached from 
states of the diagnoser state label by triggering only global transition sequences 
that are unobservable for the particular site and whose last event is observable by 
another site. Thus the unobservable reach is similar to our quiet state labels except
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that we also consider transition sequences ending with a fault event. Furthermore, 
since our quiet state labels are computed based on local models, we only consider 
unobservable transition sequences that do not contain shared events. Note that 
the approach of Debouk and colleagues does not require to consider interactions 
between components on-line, since all site diagnosers are computed based on the 
global model and all diagnoser states contain global diagnosis information. Hence 
this approach does not scale to large systems for which the global model cannot be 
computed.

The continuous diagnosis approach described on page 10 is similar to our di
agnosis method based on the abstracted model. While the continuous method 
computes the diagnosis information based on the snapshot and the historic diag
nostic set, we retrieve the new diagnosis information by first triggering all fault 
transitions starting in one of the system states consistent with the old diagnosis 
information. The labels of these fault transitions contain the new faults, which are 
exactly those included in the snapshot diagnostic set. In the continuous diagno
sis approach, the base model, the monitor, is computed on-line directly from the 
component model, which differs from the way we approach diagnosis based on our 
abstracted model. Due to the large monitor size, old monitor states are removed 
such that only the part of the monitor that was relevant to the computation of 
the last q diagnosis information is kept in memory. The efficiency of this approach 
depends on the extent to which the monitor part that is stored in memory can be 
used to compute the new diagnosis information. However, since the approach does 
not precompute any diagnosis information locally, we believe that even in the best 
case, the diagnosis times will only be as good as those we achieve with our direct 
abstracted model. Furthermore, the size of the relevant monitor part is likely to 
be significantly bigger than the size of our decentralised diagnosis models, which 
allow for a faster on-line diagnosis.

2.7 Sum m ary

In this chapter, we have shown that using symbolic techniques by means of BDDs 
significantly improves the diagnosis of discrete-event systems. Our two approaches 
indicate not only that the symbolic encoding of an existing diagnosis approach, the 
well-know efficient diagnoser approach by Sampath, leads to a considerable decrease 
in space complexity but also that the design of a compiled symbolic framework that 
systematically exploits the advantages of BDDs can lead to a significant reduction
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in diagnosis time.

In order to determine which diagnosis approach is best suited for a given appli
cation with specific time and space requirements we have presented eight symbolic 
diagnosis methods and have analysed their time/space tradeoff. Our experiments 
clearly indicate the superiority of four of these methods. For large applications 
where space is critical the diagnosis is best based on the component or decen
tralised models. On the other hand, smaller applications can be more efficiently 
diagnosed using the centralised or nondeterministic model.

Although BDDs are very suitable to handle large sets of data, our experiments 
have also shown that the set size impacts on the BDD size and thus on the effi
ciency of all our symbolic on-line diagnosis approaches. This suggests that systems 
allowing a more precise diagnosis, that is those for whom the diagnosis algorithm 
returns fewer diagnosis candidates, can be faster diagnosed than those where the di
agnosis result consists of large numbers of possible explanations. The next chapter 
addresses this issue by computing a minimum-cost solution for making the whole 
system diagnosable. This then assists a systems designer in reducing the number 
of explanations.



C h ap te r  3

Scalable D iagnosab ility  C hecking

3.1 Introduction

The on-line diagnosis approaches described in the previous chapter determine all 
faults that could have occurred. However, for many applications one rather wishes 
to know what faults have definitely occurred. Computing the latter in general 
requires diagnosability of the system, that is, the guarantee that the occurrence of a 
fault can be detected with certainty after a finite number of subsequent observations 
[Sampath et al, 1995]. Consequently, diagnosability analyses should be performed 
on the system before any diagnostic reasoning. The diagnosability results then help 
in choosing the type of diagnostic algorithm that can be performed and provide 
some information of how to change the system to make it more diagnosable.

In this chapter, we propose a formal framework for checking diagnosability 
on event-driven systems which is mainly motivated by two facts. On the one 
hand, checking diagnosability means determining the existence of two behaviours 
in the system that are not distinguishable. However, in realistic systems, there is a 
combinatorial explosion of the search space that does not permit the practical use 
of classical and centralised diagnosability checking methods [Sampath et al., 1995] 
like the twin plant method [Jiang et al., 2001; Yoo & Lafortune, 2002]. On the other 
hand, in the case of a nondiagnosable system, verifying its nondiagnosability may 
not be sufficient; the diagnosability analysis should also provide the reasons why 
the system is not diagnosable. Then a systems designer can make the appropriate 
changes to improve the diagnostic reasoning, for instance, by adding sensors.

Our proposal makes several contributions to the diagnosability problem. The 
first one is the definition of a new theoretical framework where the classical diagnos-

85
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ability problem is described as a distributed search problem. Instead of searching 
for indistinguishable behaviours in a single FSM, often called the global twin plant, 
we propose to distribute the search based on local twin plants. Specifically, we ex
ploit the modularity of the system by organising the system components into a 
special tree structure, known as a jointree, where each node of the tree is assigned 
a subset of the local twin plants. Once the jointree is constructed we need only syn
chronise the twin plants in each jointree node, and all further computation takes 
the form of message passing along the edges of the jointree. Using the jointree 
properties we show that after two messages per edge, the FSMs at all nodes are 
collectively consistent. This allows us to decide diagnosability by considering these 
FSMs in sequence instead of the large global twin plant.

We describe how messages, which are themselves FSMs, are computed and how 
diagnosability information can be propagated along with the messages. Further
more, we employ a systematic iterative procedure so that only a subset of the 
jointree is considered at a time and the loop terminates as soon as the current sub
set is sufficient for deciding diagnosability. Finally, we identify a condition under 
which the size of the messages can be reduced.

We also consider the practical use of the algorithm. Since the diagnosabil
ity analysis problem is complex, a complete analysis may not be possible due to 
lack of computational resources. Our distributed search therefore ensures that the 
computation is scalable in the sense that it is able to provide an approximate but 
exhaustive solution to the diagnosability problem when it cannot run to completion 
due to limited computational resources. Then we return the set of all problems 
that could possibly cause the nondiagnosability of a fault.

Finally, we identify those system behaviours that require modification to re
store diagnosability. Since a system may admit several possibilities to remove 
nondiagnosable behaviour, a mechanism to rank the modifications is desirable. 
Our approach employs a ranking approach based on cost estimation to isolate be
haviours in easily accessible components whose modification removes not only the 
diagnosability problem but can also be cheaply performed. Here, it is assumed 
that cost estimates are available that reflect important characteristics of proposed 
system modifications, such as accessibility of subsystems or number of affected 
subsystems. Furthermore, we improve upon previous approaches to solving the di- 
agnosability problem by exploiting cost estimation to prune models of subsystems 
to gain computational efficiency.

This chapter is organised as follows. In Section 3.2 we define the diagnosability
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problem for discrete-event systems and present a modified version of the twin plant 
method allowing its efficient use based on decentralised models, rather than on 
centralised ones. Section 3.2.3 gives an introduction to jointrees which we use in 
Section 3.3 to solve the diagnosability problem. Section 3.4 describes techniques 
to further increase the efficiency of this approach and in Section 3.5 we compare 
our work with related approaches. Finally, we extend our algorithm in Section 3.6 
to compute the ’’best” system modifications that restore diagnosability.

3.2 B ackground

In this section we review the definition of diagnosability and the twin plant ap
proach to diagnosability checking, and give a short introduction to jointrees. Given 
the new concepts we present in this chapter we also use a different running example, 
namely the one shown in Figure 3.1.

Figure 3.1: Three components of a system modelled as FSMs. Solid, dashed, and 
dotted lines denote observable, shared, and fault transitions, respectively.

3.2 .1  D ia g n o sa b ility  o f a Fault in D iscrete-E v en t S ystem s

A fault F  G E / of the system is diagnosable iff its (unobservable) occurrence can 
always be deduced after finite delay [Sampath et a/., 1995]. In other words, a 
fault is not diagnosable if there exist two infinite paths from the initial state which 
contain the same infinite sequence of observable events but exactly one of which 
contains the fault.

More formally, let pp denote a path starting from the initial state of the system 
and ending with the occurrence of a fault F  in a state xp, let sp denote a finite 
path starting from xp, and let obs(p) denote the sequence of observable events in
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a path p. As in [Sampath et al., 1995], we assume that (i) the system is live (there 
is a transition from every state), and (ii) the observable behaviour of the system is 
live (obs(p) is infinite for any infinite path p of the system). We have:

Definition 19 (Diagnosability) F is diagnosable iff

3d € N,Vp^s ,̂ |o6s(sf)| > d =t>

(Vp, obs(p) =  obs(pFSr) = >  F occurs in p).

If a fault is diagnosable then a diagnostic algorithm can diagnose its occurrence 
with certainty based on a finite sequence of observations. Diagnosability checking 
thus requires the search for two infinite paths p and p', i.e. paths containing a 
cycle, with obs(p) =  obs(p') such that F  is in p but not in p'. The pair (p, p') is 
called a critical pair [Cimatti, Pecheur, & Cavada, 2003]. From here on we will 
write path to mean a path that starts from the initial state of the system.

3.2 .2  T w in  P la n t  A p p ro a c h  for D ia g n o sa b ility  C h eck in g

The idea of the twin plant method is to build a FSM that compares every pair of 
paths (p,p') in the system that are equivalent to the observer (obs(p) =  obs(p')), 
and apply Definition 19 to determine diagnosability [Jiang et al., 200l].

For the sake of clarity in the rest of the chapter, we now present the twin plant 
method in a new way, based on the decentralised model instead of the global model. 
We start with the interactive diagnoser [Pencole, 2005], which gives the set of faults 
that can possibly have occurred for each sequence of observable and shared events1.

Definition 20 The interactive diagnoser of a component Gi is the nondetermin- 
istic finite state machine Gi =  (A*, E*, x^i, Ti) where

• Xi is the set of states (Xi C Xi x T  with T  C 2L/*)}

• Ej is the set of events (E* = E0i U ESJ,

• Xoi = (#oi50) is the initial state, and

• Ti C Xi x Ej xX i is the transition set (x, T ) (x', T ') such that there exists a 
transition sequence x ^  X\ • • • xm —> x' in Gi with E' =  {<ti, . . . ,  am} C 
Ep U EUi and T ' = fF U (E • fl E/.).

xTo avoid complex notation we reuse several symbols of the previous chapter like ~ and *. 
This shall not cause confusion.
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Thus the interactive diagnoser is very similar to our decentralised diagnosis 
model (see Definition 11 on page 62). The main difference is that the former is 
nondeterministic while the latter is deterministic. Figure 3.2 (top) depicts the 
interactive diagnoser for component Gi shown in Figure 3.1. Following the transi
tions s2, o 1 from the initial state of the diagnoser, for example, we arrive at state 
(a4, { /l} ), meaning that the system contains a path to state a4 on which the se
quence of observable and shared events is exactly s2, ol and the set of faults is 
exactly {/1}.

A local twin plant is obtained by synchronising two interactive diagnosers. The 
synchronisation operation, denoted Sync(M i,. . . ,  Mn), is the classical synchroni
sation operation on the n finite state machines based on their common events. The 
result M  of the synchronisation is obtained as the Cartesian product Mi x . . .  x Mn 
restricted with the following rule (see also the definition of the global model tran
sitions on page 31):

From any state ( x i , . . . , xn), the event e can occur if for all machines Mj 
where e can occur, there exists in Mj a transition Xj A  x'j.

The local twin plant is then constructed by synchronising two instances G\ (left) 
and Grt (right) of the same interactive diagnoser based on the observable events 
£ 0. =  E* =  ££.. Since only observable behaviours are compared, the shared 
events must be distinguished between the two instances: in G[ (resp. G[), any 
shared event <r G £ Si from Gi is renamed her £ Y>ls. (resp. r:cr G Trs.).

Definition 21 (Local twin plant) The local twin plant of Gi is the finite state 
machine

Gi = Sync(G‘,Gri ).

Figure 3.2 (bottom) depicts part of the twin plant for component Gi in Fig
ure 3.1. The top labels xO,. . . ,  xl3 of the states are their identifiers to which we will 
refer in subsequent figures. State labels are composed of a state in the left inter
active diagnoser (middle label) and one in the right interactive diagnoser (bottom 
label). Each state of the twin plant is a pair x =  ((xz, T l), (xr , F r)) that represents 
two possible diagnoses given the same sequence of observable events. If some fault 
F  belongs to T l U T r but not to T l fl T T, then the occurrence of F  cannot be de
duced in this state. In this case, the state x is called F-nondiagnosable; otherwise 
it is called F-diagnosable. In Figure 3.2 the oval nodes represent fl-nondiagnosable
states.
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^ ^  r:sll:sl z'

xl2
a4.{fl} 

a5, {}v. I:s2

x2
a2, {fl} 

aO, {}

x7
a4,{fl} 
a4, {}

xl3
-  a5, {fl}

a5.{}
~  w a5.{fl} 

a4, {}

05. {fl}a4. {fl}a2, {fl}

Figure 3.2: Interactive diagnoser (top) and part of a twin plant (bottom).

In the following, u  represents any set of components = {GJ1, . . . ,G Ju>|} 
of the system with |o;| > 1. The u-coupled twin plant is the twin plant of 
Lj obtained by synchronisation of the local twin plants, that is by computing 
Guj =  Sync(Gjx, . . . ,  d j M).

Clearly, by extension, a state x = (xj1, . . .  , X j M ) is F-nondiagnosable if any state 
Xjm is F-nondiagnosable in G j m . This results from the fact that a fault can only 
occur in one component.

We now show the relation of cj-coupled twin plants and the global twin plant us
ing the Sync operator. For the sake of clarity we explicitly state the common events 
C that are shared by more than one FSM using the notation Sync({M i,. . . ,  Mn}, C). 
Since the synchronisation operation Sync is commutative and associative, and 
££ and £ 0i are disjoint sets by definition, it then follows:
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G u, — S2/nc({GJ1)...,G JM} ,U (E !S(U E ;))
i = j i

/

Sync {52/nc({G'1, . . . , G 'M} , U s i 4)1
V  i = j i

j\u)\ J |w |

Sync({Grjl , . . . ,G riM}, U  U  °̂<)
i —j ii = j  i

J'm
= Sync({G l,G l} , |J  Et

i = j i

(3.1)

In other words, any cj-coupled twin plant can be also obtained by first syn
chronising the interactive diagnosers over the set of shared events, to obtain two 
instances of the diagnoser of u ,  followed by the synchronisation of the two diagnoser 
instances over the set of observable events.

Consequently, uj =  G =  {G \,. . .  ,G n} is the uncoupled twin plant that repre
sents the global twin plant GTP of the system where all paths of G with the same 
observable behaviour are compared. Hence the following fundamental result which 
follows directly from a similar result presented in [Jiang et al., 2001] regarding the 
GTP.

Theorem 3.2.1 F is diagnosable in G iff, in the G-coupled twin plant, there 
is no path p with a cycle containing at least one observable event and one F- 
nondiagnosable state.

Such a path p represents a critical pair (p\,p2 ), and is called a critical path. The 
twin plant method searches for such a path in the GTP. In this chapter, we propose 
a new algorithm that avoids building the global twin plant, which is impractical 
for systems with a large number of states. Instead, local twin plants are built for 
components G i of the system. Since the existence of a critical path in a local twin 
plant does not imply nondiagnosability of the global system, we need to propagate 
information between local twin plants, which we accomplish by message passing 
on a jointree. This will then allow us to search local twin plants for a critical path 
rather than the GTP.
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3.2 .3  Jo in trees

Jointrees have been a classical tool in probabilistic reasoning and constraint process
ing [Shenoy & Shafer, 1986; Dechter, 2003] and correspond to tree decompositions 
[Robertson & Seymour, 1986]. For our purposes, a jointree is a tree whose nodes 
are labelled with sets of events satisfying two special properties:

Definition 22 (Jointree) Given a set of FSMs Mi , . . . ,  Mn defined over events 
£ i , . . . ,  £ n respectively, a jointree is a tree where each node is labelled with a subset 
of T, — 1J2 such that

• every event of £* is contained in at least one node, and

• if an event is shared by two distinct nodes, then it also occurs in every node 
on the path connecting the nodes.

Figure 3.3: Jointree (left) and assignment of local twin plants to jointree nodes 
(right).

Figure 3.3 (left) depicts a jointree for the three local twin plants for the system 
in Figure 3.1. The intersection of two neighbouring nodes, that is their common 
event set, is called a separator, which is shown on every edge in Figure 3.3.

Once a jointree is constructed each FSM Gi is assigned to a node that contains 
all of its events £*. Figure 3.3 (right) depicts such an assignment. Note that in 
general each node can have multiple FSMs assigned to it.

3.3 A Jointree A lgorithm  for D iagnosability

The synchronisation of all twin plants would allow us to solve the diagnosability 
problem. However, for large systems this can easily be impractical. Therefore we
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only synchronise the twin plants in each node and then pass messages to achieve 
consistency. Afterwards a system is diagnosable iff no jointree node has a critical 
path. We now show how we can achieve consistency among a set of FSMs organ
ised in a jointree and how we can equip every jointree node with diagnosability 
information such that we can decide whether a path is critical or not.

Jointrees admit a generic message passing method that achieves consistency 
among the nodes [Dechter, 2003]. In our case this translates into a method that 
achieves consistency of all FSMs labelling the jointree nodes. The messages passed 
on will themselves be FSMs. In this section we describe how these messages can be 
computed and passed and how the diagnosability information can be propagated 
correctly as part of the messages. This will then also enable us to present an 
iterative diagnosability algorithm at the end of this section.

3.3.1 Establishing Consistency

While FSMs assigned to the same tree node are synchronised directly to obtain 
a local picture of the system behaviour, messages must be exchanged to achieve 
consistency between nodes.

Definition 23 (Global Consistency; Completeness) A FSM with events 
Hi is globally consistent with respect to FSMs M i, . . . ,  Mn iff for every path pi in Mi 
there exists a path p in the synchronised product Sync{M \ , . . . ,  Mn) that has with 
respect to £* the same event sequence as pi (i.e. EvSeq(p,Ei) = EvSeq(pi,Ei))2. 
A FSM M^ is complete iff it contains all globally consistent paths of Mi.

Each edge in a jointree partitions the tree into two subtrees, and a message 
sent over an edge represents a summary of the collective behaviour permitted by 
one side of the partition. A major advantage of this method is that this summary 
needs only to mention events given by the separator labelling the edge; the jointree 
construction ensures that this equals the intersection of the two sets of events across 
the partition.

A message can be computed by projecting a FSM onto a subset of its events.

Definition 24 (Projection) The projection IIjy(M) =  (X \  xo, T 1) of a FSM 
M on events E' C S is obtained from M by first contracting all transitions not 
labelled by an event in S' and then removing all states (except the initial state

2See Definition of EvSeq on page 32.
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Xq) that are not a target of any transition in the new set of transitions T '. More 
formally, V  is given as follows:

T' = I  x x' I x, x' E X ' and o' E £ ' and

3 x X \ Xk
o '

in M  such that cr* ^ Vz =  1 , . . . ,  A; j .

Figure 3.4 shows the result of projecting part of the twin plants Ö2 and G3 

on events {l:s2, r:s2} and {l:sl, r:s l} respectively. As this example shows, com
pared to the original FSM, its projection might only lead to a minor size decrease. 
Section 3.4.1 shows how the message size can be further decreased.

G2 (part) n{ l:s2 , r : s 2 } ( G y

Gs (part) n { l : s l ,  r:s31} (G3 )

l : s l

o 4

r :s l n s j  

~ v C ~1 i s l  ' '

l : s l

l : s l

l : s l

' . Ö -
r :s l

r :s l

\ r : s l

\  r :s l
1 r :s l

! : s i

l : s l  >---1

/  l : s l
/  ̂ " -

l : s l
1 zO L r:sl

\  t u - —

7 G } -
l : s l

^  h s l  
l : s l \ y j r .  ,

/
/

W r : s l \ r:sI
r :s l

l : s l  /

Figure 3.4: Projection of twin plant parts G2 and Ö3 .
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3.3 .2  M essage P assin g

We now describe the message passing assuming that the FSMs in every node have 
been synchronised into a single FSM. To achieve consistency among the FSMs, each 
node of the jointree will in principle require a summary of the behaviour permitted 
by FSMs residing in the rest of the tree. Given the jointree properties, all these 
summaries can be computed in only two passes over the jointree, one inward pass, 
in which the root “pulls” messages toward it from the rest of the tree and one 
outward pass, in which the root “pushes” messages away from it toward the leaves. 
Once all these messages have been sent, every FSM is updated based on all the 
messages it receives resulting in a globally consistent FSM.

The process starts by designating any node of the tree as root. Then, in the 
first, inward pass, beginning with the leaves each node sends a message to its 
(unique) neighbour in the direction of the root. To compute this message, its FSM 
is synchronised with all messages it receives from its other neighbours (leaves do 
not have “other neighbour” and hence skip this step). The message it sends is then 
the projection of this FSM onto the separator between itself and the receiver of the 
message.

In the second, outward pass, each node (except the root) receives a message 
from its (unique) neighbour in the direction of the root. Again this message is 
computed by synchronising its FSM with ah messages it received from its other 
neighbours and by projecting the resulting FSM onto the separator between itself 
and the receiver of the message.

<V=Sync(<S2,Mi2) <$3c=Sync(63,Mi3)

Figure 3.5: Inward (left) and outward (right) message propagation using jointrees, 
where E =  {/:s2, r:s2, hs3, r:s3} and E' — {/:sl, r:sl, Z:s3, r:s3}.

Finally, each node updates its own FSM by synchronising it with messages from 
all its neighbours. Then every FSM Mf of a jointree node represents exactly the 
behaviour that is complete and globally possible (see proof for Theorem 3.3.1). 
Figure 3.5 illustrates the inward and outward propagation steps performed on the 
jointree of Figure 3.3 (right), resulting in the FSMs GJ, G2 and G3 . Although these
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FSMs no longer conform to our previous definition of twin plants, we will continue 
to refer to them as such. We do this because they provide sufficient information to 
decide diagnosability, if the diagnosability information is propagated correctly (see 
next subsection).

To state the benefits of the jointree propagation we define the equivalence re
lation for FSMs. Two FSMs M and M' are equivalent (written M ~  M') iff they 
admit the same set of event sequences, or more formally:

3t = x0 xi • • • ^  xk in M 
<-> 3r' = x'Q —L x[ - • • -^4 x'k in M'

This gives us the following theorem:

Theorem  3.3.1 Every FSM Mf labelling a jointree node is complete and consis
tent with respect to all other FSMs Mi , . . . ,  Mn of the tree once it is synchronised 
with all messages it received, i.e. M f ~  U^i(Sync(Mi, . . . ,  Mn)) holds for all FSMs.

Proof: Let S i , . . . ,  En be the event sets of the n FSMs M i,. . . ,  Mn labelling
the jointree nodes. We now prove the theorem by induction showing (i) that the 
synchronisation of a FSM Mi with all its inward messages results in a FSM that is 
consistent with all descendants Mi , . . . ,  Mj_i of Mj, that is, it is equivalent to the 
FSM M[ ~  Ti'zfSync^M i,. . . ,  Mj)). Next we show (ii) that every message is 
equivalent to the FSM n^. j (Sync{M\, . . . ,  Mj)), where M \, . . . ,  Mj is the set of all 
FSMs on the z-side of the jointree partition. This allows us then to show (iii) that 
the synchronisation of a FSM Mj with all the messages it receives results in a FSM 
that is consistent with all nodes Mi , . . . ,  Mn, that is, it is equivalent to the FSM 
n Si(Sz/nc(M i,...,M n)).

We prove the inward case by induction on the depth of the tree rooted at Mj. 
The base case is straightforward. A leaf is consistent with itself, has no descendants 
and therefore does not receive any inward messages. In the induction step we show 
that any given FSM Mj whose children all satisfy property (i) will also satisfy this 
property.

Without loss of generality we assume that M1?. . . ,  M*_i are the descendants of 
Mj which are all ordered and that M'n , ,  M'Jk {jk = i ~  1) are its children. Further 
let Fjui, . . . ,  Ejkii be the events labelling the edge of a child Mjh to its parent Mj. 
Resulting from property (i) we have M'Jh ~  I I (Sync(Mjh_l+1 , . . . ,  Mjh)) for every 
child Mjh where Mx =  MJO+i. If Mi is synchronised with all the inward messages 
it received it represents the FSM:
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Sync(Mjui, . . . ,  Mjk,i, Mi)

-  Sync(u^ji i(Sync(Mi , . . . ,  Mjx)) , . . . ,  UEjkti(Sync(Mjk_1+u . . . ,  Mjk)), Af*)

=  Sync^nEi(Sync(Mi , . . . ,  Mh )) , . . . ,  n Si{Sync{Mjk_l , . . . ,  M,)

since the jointree properties guarantee that (Ejh_1+i U . . .  U EJh) flSj  C Ejh>t
for all edge labels Ejhfi and Ex =  Ej0+i

-  Sync(u^i(Sync(Mu . . . ,

since the jointree properties guarantee that no two children of Mi
share events not defined in E*

-  IISi (Sync(Mu . . . ,  Mjk, M ^
since E* is the event set of Mi and therefore Mi = Yl î (Mi)

= UEi (Sync(Mu . . . ,  M ^  since Mjk =  Afj_i

This concludes the proof of part (i). The proof of part (ii) follows directly from 
property (i). The inward message sent from Mi to Mj is the FSM:

n Eitj{Sync{Mjui, . . . ,  Mjktii Mi))

~  n Ei -(IIs^Sj/ncfM i,. . . ,  Mi))) since property (i) holds for Mi

= U^itj(Sync(Mu . . . ,Mi))
since the jointree properties guarantee that Eij  C E*

Since the jointree is symmetric, it follows that the outward message Mjj  is 
equivalent to the FSM Yl î j (Sync(Mi+i , . . . ,  Mn)). We now prove part (iii) by 
induction on the distance of the node from the root Mn. As the base case we 
consider the root Mn. Since all nodes other than Mn are descendants of Mn and 
therefore all messages it receives are inward messages and since it satisfies property 
(i) we have M'n ~  Ilzn{Sync(Mi , . . . ,  Mn)) = M„. Hence the root also satisfies 
property (iii). We now show that this property also holds for any other node Mi 
once it is synchronised with all inward messages . . . ,  Mjk and the outward
message M j it receives. The resulting FSM has the following form:



98 Scalable Diagnosability Checking

Sync(Mi, Mjlti, . . . ,  Mjk4, Mjti)

= Sync(UEi(Sync(Mi, Mjui, . . . ,  Mjkti), UE.(Mj4))
since the jointree properties guarantee that 

Ej U Ejl5j . . .  U U C Ej

~  52/nc(risi(<S,2/nc(Mi,. . . ,  M*)), 11%. (Mj^)) since property (i) holds for Mi

-  Sync(UEi(Sync(Mu . . . ,  Mi)), UEi(UEji(Sync(Mi+i , . . . ,  Mn)))
since property (ii) holds for Moi

= Sync(U^.(Sync{Mi,. . . ,  Mf)), n Si(Spnc(Mm , . . . ,  Mn))
since the jointree properties guarantee that Ejj  C E*

-  n Si(Sync(Sync(Mi , . . . ,  Mi), Sync{Mi+1, . . . ,  Mn)))

~  UE.(Sync{Mi, . . . ,  Mn)) □

Thus every jointree node is indeed consistent with all other nodes once it is 
synchronised with all the messages it received. In particular this means that for

every path p in G\ = n s .(Gi, . . . ,  Gn) there is also an equivalent path pi in Gf, i.e. 
Pi is defined over the same event sequence as p, and vice versa. Now, for deciding 
diagnosability this simple equivalence is not sufficient. In addition we need to 
ensure that for every critical path p in G\ there is also an equivalent critical path 
Pi in Gq. This requires the propagation of diagnosability information.

3.3 .3  P rop agation  o f D iagn osab ility  In form ation

In the rest of the section we will assume that (i) the twin plants for components 
have been assigned to appropriate jointree nodes and synchronised within each 
node, (ii) Gp is the component defining the fault F whose diagnosability is to be 
checked, and (iii) the node containing the twin plant Gp is chosen as root. For the 
sake of readability we will use the notation G \ , .. .  ,Gn (instead of GUl, . . . ,  GUn) 
to refer to the n jointree nodes. Each of these nodes may be composed of a set of 
local twin plants.

Now, the root can already be examined for critical paths after the inward prop
agation phase for two reasons: first, the synchronisation of the root with all its 
incoming messages results in a globally consistent twin plant, and second, since 
the fault F  appears in the root, the FSM already contains diagnosability informa-
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tion, that is, the classification of states into diagnosable and nondiagnosable ones. 
If the root does not contain a nondiagnosable state, F  is known to be diagnos
able. Otherwise, the outward propagation phase must be carried out to determine 
whether another jointree node has a critical path.

Once propagation is complete, every state of a twin plant comprises a tuple 
(xi , . . . ,  xn). In particular, each state contains a state (labelled diagnosable or 
nondiagnosable) from Gp that has been received and synchronised with the local 
FSM as part of the messages pushed from the root in the outward propagation 
phase. To ensure diagnosability information is preserved, we must ensure that no 
path to a nondiagnosable state is lost in this process.

Recall that the projection operation applied to compute the outward message 
removes all states that are no longer a target of a transition labelled by a separator 
event in E. This can lead to the removal of nondiagnosable states, resulting in 
the incomplete propagation of diagnosability information. Consider for instance 
the twin plant Gu shown in Figure 3.6 (left). When computing the message Vu 
we remove the nondiagnosable state ul. This results in the consistent twin plant 
G% which does not contain any critical paths although it should contain one as Gd 
indicates.

Figure 3.6: Twin plants Gu, Vu — II{al}(Öu), Gv, Gcv = Sync(U{si}(Gu),Gv), and 
Gd = Uxv(Sync(Gu,G v)) (from left to right).

We therefore need to ensure that every message A4 =M  EseP passed on from G
g ------->G'

to G1 via the separator events Esep will lead to a consistent twin plant G,c that has 
a critical path iff IIz sep(Sync(G G')) has one.

To achieve this it is necessary to annotate every diagnosable state x in a message 
to capture whether it has a nondiagnosable local future, that is, whether there is 
a transition sequence starting in x and leading to a nondiagnosable state Xk such 
that none of the transition events is kept in the projection:

Definition 25 (Nondiagnosable Local Future) Let G and G' be two FSMs as
sociated with adjacent nodes in a jointree connected by an edge labelled Tsep, and 
let Xk denote a nondiagnosable state in G. Then, a diagnosable state x G G has a
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nondiagnosable local future iff there exists a transition sequence

/■k ( J  \  ^  ( J  fa /N

T =  X  ------> £ ! • • •  ------> Xk

in G such that none of the events o\ , . . . ,  are in Esep.

We capture this information by adding additional nondiagnosable subgraphs to 
the FSM (G) obtained by projection of G: for every diagnosable state x G G 
that has a nondiagnosable local future w.r.t. Esep, a nondiagnosable extended 
terminal state ext(x) and a terminal transition x — > ext(x) are added to ensure 
that a critical path is not lost in the projection.

Figure 3.7 illustrates the example of passing such a message from G\ (see Fig
ure 3.2) to G3  (the part shown in Figure 3.4) to check the diagnosability of fault fl. 
Here the projection V — Tl{i:Si,r:si}{Gi) has the two diagnosable states xO and x3. 
which both satisfy the above condition (see paths xO ► x2 and x3 x5 in G 1 

in Figure 3.2). Thus the message M . {i:si>r:si} „ contains two terminal transitions.
G \ ---------------— ----------->Gs

On the other hand the message sent from G\ to G2 does not contain any extended 
states since there does not exist such a sequence r  satisfying Definition 25 for the 
only diagnosable state xO.

Note that there is no need to introduce artificial states for a nondiagnosable 
state x'. This results from the fact that all states reachable from x' via transitions 
labelled by events not kept in the projection can only be part of a nondiagnosable 
cycle if there is also a nondiagnosable cycle with state x' (according to the syn
chronisation operation). Hence nondiagnosability can be verified correctly based 
only on the latter. This allows us to state the main result of this section:

Theorem 3.3.2 Fault F is diagnosable in G iff after both passes of jointree prop
agation with diagnosability information, no FSM in a jointree node has a critical 
path.

Proof: We prove the theorem by showing (i) that there exists a critical path in
G\ = H ^ S yn cfä i , . . . ,  Gn)) iff there exists a critical path in Gc{ and (ii) that there 
exists a critical path in GTP = Sync(G\ , . . . ,  Gn) iff there exists a jointree node 
Gi with a critical path.

To prove part (i) we first show that G\ and ns, (Gf) are guaranteed to be equiva
lent. Since the only events projected out in nSi(Gf) are the ext events and since the 
extended transitions are only added as terminal transitions the equivalence follows 
directly from Theorem 3.3.1 on page 96. The fact that the extended transitions
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Figure 3.7: Message M {l.s2 r.s2> on the top left, message M  {i.si rsu on
6 1 ---------1— — >g 2 ^  g  i ----------:------------ >g 3

the top right and its synchronisation with G3 on the bottom. Grey states are
nondiagnosable and hexagon shaped ones are extended states.

are only added as terminal transitions also implies that there are no cycles with an 
extended transition in G\. Hence, G- and n ^ G ^ )  are equivalent with respect to 
their critical paths iff this holds also for G\ and G-\

Next we show that the equivalence of FSMs implies equivalence with respect 
to cycles. For every path Xo x\ • • • -^4 x in G\ with the cycle state x and 
k = i G {0, . . . ,  k — 1} it follows that there is also a path x'0 —̂  x[ • • • ^  x'k in 
GJ with the cycle state x'k = x\. This results from the fact that G' and Gf are 
equivalent and that every path with a cycle can be extended arbitrarily often, i.e.
there is also a path p = x0 —► X\ • • • —» x ^ -----> x i+i • • • —> x ^ ---- > xi+i • • • —» Xk
in G'. Since the number of states in G? is finite it means that states along an 
arbitrarily long path need to repeat themselves which means that for every path 
with a cycle in G\ there must also be an equivalent path with a cycle in G?.
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xO S ' - x l  s2 - x2 01 - x3 ° 2 - x4

M « s l  I—n  s2 ~ extlvlxy x0 ► xl “ x2 ► ext(x2)
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o4 pF

p' (yO.zO) \ - - 1-A  (yl.zO) f  - -  *1 (y2.zl) \~^~A  (y2,z2) C*?} ~~ ~ “ x4

Pr

(yO.zO) L s2 j-----» (y2,zi) °3 t (y2,z2) (xO,yO,zO) s2----- ► (x2,y2,zl)
r  O
(x4,y2,z2)

(xO,yO,zO)----- ► (x2,y2,zl)
ext '

(ext(x2),y2,zl) -------*■ (ext(x2),y2,z2)

Pf
ext

P"F
x O ----- ► x2 ► ext(x2) x O ----- ► x2

Figure 3.8: Example paths referred to in the proof.

In order for a path to be critical, there must also be a nondiagnosable state in 
the cycle. We now show that G\ and G\ are also equivalent with respect to their 
critical paths. The proof is based on the recursive implication that the existence of 
one path leads to the existence of another path. To increase the readability we give 
an example of the paths we introduce in Figure 3.8. On the top of that Figure the 
jointree is depicted consisting of the three nodes Gx, Gy, and Gz The two outward 
messages are also shown.

(=>) We now show that given the critical path p\ in G\ there must also be an 
equivalent critical path pi in GF Let p be a corresponding critical path in
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the GTP= Sync(Gi , . . . ,  Gn), i.e. p\ = n ^ p ) 3, that is composed of a path 
p' in Sync(G\ , . . . ,  Gn_i) and a path pp in Gp = Gn such that p is a path 
in Sync(p',pf) (see Figure 3.8). This means that p" — U^ip') is also a path 
in G' equivalent to p', since all events of p' are also in p'. This path p" is 
diagnosable since none of its states is composed of a state in Gp. Therefore 
there is a critical path pf in Gf, if the outward message Mjfi has a path that 
is composed of a path p'F whose target state is nondiagnosable and such that 
p'p =  IIs^Pf ) — n Si (p'p)- Let £ Pf C £ { denote the set of events of pF. 
Since From the jointree properties it then follows that every node along the 
path from Gf to G* is labelled by an event set that contains £ Pf. Therefore 
Mjj  has a path composed of p'F, if all the other outward messages along the 
jointree path from Gp to Gj are composed of such a path. This holds since pp 
is a path in Gf ending in a nondiagnosable state and defined over the same 
event sequence as p'F with respect to £*. Therefore the outward message sent 
by Gp is guaranteed to have such a path p'F leading to a (possibly extended) 
nondiagnosable state. Hence Gf has a critical path.

(<t=) We now show that if there is a critical path pf in Gf, there is also one in 
G\. Let pf be composed of the paths p'F and p" in U^i(Sync(Gi^. . . ,  Gn_i)) 
such that p" ~  pf and p'F is defined over events in £ Pf U {ext} where {ext} ^ 
£ Pf. Resulting from the computation of outward messages this implies that 
there is a path pF in Gp leading to a nondiagnosable state and such that 
n£in£PF(PF) =  n ^ n x ^  (Pf )- This means that there is a critical path in 
Sync(p",pf) and therefore in U^i(Sync(Sync(G\ , . . . ,  Gn_i), Gn)) and hence 
in G'.

This concludes the proof of part (i). To prove part (ii) we need to show that 
the projection operation does not remove cycles, if at least one event a G E of 
the cycle is kept in the projection. This results from the fact that the target state 
x of this event is kept in the projection. Hence, if the cycle is extended twice, i.e. 
as in the path xo —L X\ • • • x • • • x • • • —* x, its projection contains the state 
x twice and hence has a cycle. This state x is the same as in the original cycle 
and hence has the same diagnosability label. It implies that if there is a critical 
path in the GTP= Sync(Gi , . . . ,  Gn) with the observable event a G E* in the 
nondiagnosable cycle, then there is also a critical path in n ^ S p n ^ G i , . . . ,  Gn)) 
and since part (i) holds there is also a critical path in the jointree node Gf.

Now, from the existence of a critical path in a jointree node Gf it follows that

3The projection of paths is analogue to the one of FSMs (see page 94).
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there is one in U^i(Sync(Gi: . . . ,  Gn)) (see part (i)). Since the projection operation 
does not add states and can only add a transition x x' if there has previously been 
a transition sequence starting in x and leading to x' it means that the projection 
operation does not add cycles. Therefore it follows that there is also a critical path 
in Sync(G i , . . . ,  Gn) and hence in the GTP.

□

3 .3 .4  A n Itera tive  Jo in tree A lgorith m

Rather than propagating messages over the entire jointree, we now describe how 
we can improve efficiency and scalability by searching for a subset of it that is 
sufficient to decide diagnosability.

The basic idea is that any critical path p in the global twin plant can be detected 
by looking only at those twin plants that define events appearing on p, since every 
other twin plant has no impact on the behaviour represented by p. Our aim is to 
find a critical path defined over as few events as possible. The search for such a path 
will be done by iteratively increasing the set of jointree nodes (twin plants) G under 
consideration, and looking for a critical path defined over only events Eint that are 
internal to G (i.e., events that do not appear in the rest of the jointree). The 
detection of such a path establishes nondiagnosability and terminates the search.

Algorithm 5 gives the pseudo-code for this procedure. Our set of jointree nodes 
G starts out containing just the root (PickNode on line 4 always returns the root 
the first time it is called), as the root is the only initial source of diagnosability 
information, without which no critical path can be detected in the other twin 
plants. At each iteration we select a new node that has a neighbour in G (line 4), 
and add it to G as well as update the set of internal events Ein* (line 5). (We will 
discuss the node selection heuristic in the next subsection.)

Jointree propagation is then run twice:

1. On G (line 6) to remove inconsistent paths. This can lead to the removal of 
nondiagnosable states which in turn may cause the root to become diagnos- 
able (HasNondiagStateiroot) is false) and thus verify diagnosability;

2. On Gsin( (line 8) which is obtained by removing from all twin plants in G 
the transitions labelled by events not in T.int (line 7). This allows to detect 
if a twin plant G € G has a critical path whose global consistency can be 
verified by considering only the twin plants in G, since it does not contain
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A lgorith m  5 CheckDiagnosabilityQointree: J)
1: G ^-0 nodes in J being considered
2: Tint i  0 events internal to G
3: while G 7  ̂ J  and HasNondiagState(root) and S u f ficientMemory(G) do
4: v <— PickNode(J, G)
5: UpdateSets(v, G, Tint)
6: Propagate(G)
7: Gsint <— GetAllPathsOverT,int(G)
8: Propagate^ Gs<nt)
9: if ExistsTwinPlantWithCritPath(G sint) then

10: return GetCritPathiG^int)
11: end if
12: end while
13: if Su f ficient Memory (G) then
14: return “F is diagnosable”
15: else
16: u j  <r—  set of components included in G
17: if ExistsTwinPlantWithCritPath(G) then
18: return “a; has a critical path”
19: else
20: return “ u j  has no critical path”
21: end if
22: end if

any event that appears in the rest of the tree. In this case, Algorithm 5 stops 
and returns the critical path that implies nondiagnosability (line 10).

The algorithm continues until one of the following conditions is satisfied:

• The root node (and hence the entire system) has been shown diagnosable. 
Note that it is indeed sufficient to check only the root node, since if the root 
has no nondiagnosable states, none of the messages it propagates and hence 
no twin plant includes a nondiagnosable state.

• The entire jointree is considered (and hence J = G =  Gsint), but none of the 
twin plants contains a critical path. This verifies the diagnosability of the 
system.

• The available resources have been exhausted (lines 16-21). In this case the 
maximal subsystem u  for which the existence of critical paths has been de
cided (but not yet verified against the rest of the system) is returned.

Any critical path in u  can be interpreted as hint indicating nondiagnosability 
(of at least the isolated subsystem considered so far). In case critical paths 
exist in u, then the larger this subsystem is, naturally, the more likely the
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whole system is not diagnosable; otherwise the reverse is true. Such an 
approximate solution is also useful in that it implies that on-line monitoring 
of this particular subsystem will not be sufficient to reliably detect faults.

3.3 .5  Jo in tree N o d e  S election

The heuristic used to select a jointree node to explore next can have a considerable 
impact on the number of nodes necessary to decide diagnosability. Instead of 
directly choosing a node, we first consider choosing an event which the new node 
might bring into Eint.

Let Ep denote the set of shared events appearing on a critical path p in some 
twin plant G € G. A reasonable heuristic is to expand E*nt with some new event in 
Ep \  Eint in the hope that p may at some point evolve into a new critical path that 
contains only internal events. To further focus the search, we will only consider 
events in Ep \  E*nt for paths p for which |EP \  Eint| is minimal.

Among these “eligible” events, we then select one that appears in the fewest 
nodes outside G. The idea here is to minimise the number of nodes that need to be 
included in G for that event to be internal. After choosing an event, we iteratively 
add to G the neighbouring nodes containing that event.

3.4 Further E nhancem ents and M odifications

The efficiency of the algorithm largely depends on the number and size of the mes
sages propagated between jointree nodes. We now show how we can reduce both. 
The former is done by avoiding the exchange of messages that have already been 
passed on during a previous iteration and the latter by applying and modifying 
well-known techniques for the reduction of FSMs. Moreover we show how we can 
improve scalability by determining critical paths without requiring the synchroni
sation of all twin plants labelling a single jointree node. Finally we describe how 
our approach can be extended to decide the diagnosability of multiple faults at 
once.

3.4 .1  R ed u ction  o f M essage Sizes

The reduction of message sizes requires the distinction of two cases, namely the 
inward case in wdiich the messages do not contain any diagnosability information
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and the outward case where diagnosability information needs to be propagated 
correctly. While for the inward case we can apply well known reduction procedures 
for FSMs, we need to define new reduction rules for the outward case.

T he Inward Case

There are efficient methods that compute a smaller equivalent FSM (see Condi
tion 3.2 on page 96) from a given one based on merging indistinguishable states, 
that is, states that have the same past Past or future Fut  behaviour [Champarnaud 
& Coulon, 2004].

Past(x) = Past(x') :
3r = xo -^4 X\ • • • -^4 x in G (3.3)
3t ' = x'0 —4 x[ • • • -^4 x! in G

Fut(x) = Fut(x') :
3t =  x -%< x\ * • • -^4 xk in G (3.4)

<-► 3 x'k in G

Any pair of states (£, x') satisfying one of these two conditions can be merged 
by deleting x', redirecting all incoming transitions of x' to x, and repositioning 
the outgoing transitions of x1 so that they originate from x. For example, in the 
message sent from G3 to Gi shown on the top left of Figure 3.9 states yO and yb 
have the same future behaviour and furthermore we have Pastry 1) =  Past(y6) and 
Past(y3) = Past(y7). The merge of these three indistinguishable state pairs leads 
to the FSM shown on the top right of that Figure. In the message sent from Ö3 to 
G\ (see bottom left) all states have the same future behaviour and can therefore 
be merged.

Note that the reduction of messages is also a key operation in order to obtain 
small consistent twin plants. For example passing on the two inward messages 
shown on the left of Figure 3.9 to the original twin plant G\ we obtain a FSM with 
26 states, whereas passing on the reduced messages to G\ we obtain a FSM with 
only 8 states.

The reduction of a FSM by merging indistinguishable states may not lead to a 
unique FSM in general. Fortunately there are good merging heuristics available, 
as well as efficient methods to identify mergeable states. For example, the method 
of [Champarnaud & Coulon, 2004] runs in 0 ( |X | x |T|). Note that the reduction 
to the smallest equivalent FSM is PSPACE-complete [Meyer & Stockmeyer, 1972],
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Figure 3.9: Reduced inward messages for our example.

unless the FSM is deterministic, in which case it can be minimised in 0(m  log m) 
where m  = \X\ x |E| [Hopcroft & Ullman, 1979]. This lower complexity is due to 
that all states in a deterministic FSM have different pasts, and hence only Fut- 
indistinguishable states are merged. Since this condition is transitive, the resulting 
FSM is independent of the order in which states are merged, leading to efficient 
minimisation.

The merge of states is an essential operation to obtain reduced FSMs. 

Definition 26 A FSM G is reduced if it satisfies the following conditions:

• G has no two states satisfying condition 3.3, and

• G has no two states satisfying condition 3.fi

In the following we will denote with M(G) a reduced FSM obtained from G by 
iteratively merging all states that satisfy Condition 3.3 or 3.4 until no more states 
can be merged.

The Outward Case

On the one hand, the outward case requires a more restrictive merging condition 
since we also need to deal with the correct propagation of diagnosability informa-
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tion. On the other hand, the removal of diagnosable states is less restrictive if they 
are not part of a transition sequence containing nondiagnosable states.

When reducing the size of a FSM in this case we need to ensure that the critical 
paths are preserved. This is the case if we prune only irrelevant states from the 
twin plants and if the states we merge satisfy certain conditions.

Relevant Twin P lant States

A state in a twin plant is relevant if it can possibly be on a critical path. This is 
the case if it is on a path whose target state is nondiagnosable. For the purpose of 
deciding diagnosability all other states are irrelevant and can therefore be removed 
(see proof of Theorem 3.4.1 on page 112), resulting in the relevant part rel(G) of a 
twin plant G. The relevant twin plant part for our example is shown in Figure 3.10.

xl2
a4. {fl}

Figure 3.10: Relevant part of the twin plant shown in Figure 3.2 that contains only 
relevant states.

Condition fo r  sta te  merging

To ensure that state merges in twin plants do not remove all critical paths we define 
the two merging criteria Pasto and F utv  as follows:

Pasto{x) = Pastc(x') :
—i *  *  e hd r  =  Xq —> X \  • • • — x in G (3.5)
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Futo(x) = Futo{x')  :
/ —I /V ( J 1 ~  <J fc /v .  / £ y(dr = x —> X \  • • • —> Xk m G

<-► 3t’ = x1 x[ ■ ■ ■ ^  x’kin GA 3̂ '6^

(5(x) <- D(x')) A (5 (x 0  <-> £>(£;)) . . .  A (£>(£*) <-> £ > (^ ) )

Thus the condition for merging states with the same past behaviour is identical 
to the one in Section 3.4.1. Also the merge of two states is the same as described 
before with two additional rules:

• When merging two Past-indistinguishable states with different diagnosability 
label, the state to be deleted is the diagnosable one.

• When merging two diagnosable Past-indistinguishable states of which only 
one has an extended state, the state to be deleted is the one that does not 
have an extended state.

The first rule originates from the fact that we need to ensure that the critical paths 
are kept which all have a nondiagnosable state. The second rule is added so that 
extended states for messages computed based on D-reduced twin plants (see below) 
can be correctly obtained.

In contrast, Put^-indistinguishable states are required to have the same diag- 
nosability label. Suppose x is diagnosable, x' is nondiagnosable and we would label 
mgr(x , x') nondiagnosable. This would result in a path leading to a nondiagnos
able state that was not previously in G. On the other hand, if mgr(x, x') would be 
labelled diagnosable it could lead to the removal of a previously existing path with 
a nondiagnosable state and thus possibly to the removal of a critical path resulting 
in the wrong diagnosability verification.

The merging strategies for the outward case are the same as described earlier. 
Again such a reduction may not lead to a unique FSM. Consider for example the 
projection Q shown at the top left of Figure 3.11. Here we have Futo(x5) =  
Futc>(x 13) whose merging leads to the reduced FSM shown to its right. On the 
other hand we also have Past^(x3) = Pastn(x5) in Q whose merging leads to 
the FSM shown at the bottom left. This FSM is not yet reduced since we have 
Futc>(x5) = Futo{x 13). Merging these states we arrive at the smallest FSM 
equivalent to Q shown at the bottom right of that same Figure. Note, as in the 
inward case, there is no guarantee that the iterative merge of states will lead to
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the smallest FSM. The problem of computing the smallest one is again PSPACE- 
complete.

Q n 0 :sl, r:sl} 1) G'
csi

r:sl

I xO I* r:s 1 r:sl xl2 _ _ I  P.___];si xll
' ' ---------  t : : ; "  l:sl

i r : s l  ~  r : s lr:sl J x3 I-----------* xl2 -
r:sl s l:sl '  '  r:sl*5 _ ___ -

Figure 3.11: A FSM Q and three smaller equivalent representations.

D-reduced FSMs

The merge of states is an essential operation to obtain D-reduced twin plants. 

Definition 27 A FSM G is D-reduced if it satisfies the following conditions:

• G contains only relevant states,

• G has no two states satisfying condition 3.5, and

• G has no two states satisfying condition 3.6.

In the following we will denote with Wd (G) a D-reduced twin plant obtained 
from G by executing below steps in sequence:

1. Removal of all states from G that are not relevant;

2. Computation of V — 11^(0); and

3. Computation of Rd (G) obtained from iteratively merging all states in V  that 
satisfy Condition 3.5 or 3.6 until no more states can be merged.

Figure 3.12 illustrates the reduction of the twin plant G. Here V  contains 
only two indistinguishable states namely (ml, ^3) and (ext(ml),q3) which have 
the same past. To show that the reduction operation is indeed valid we prove the 
following theorem:
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G)

ext(ml)
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Figure 3.12: Reduction of G

Theorem 3.4.1 A twin plant G has a critical path iff every twin plant Rd{G) has 
a critical path.

Proof: We prove this Theorem by showing that none of the three steps to compute 
Rß(ö) (see page 111) can lead to the removal or introduction of a critical path.

(1) We show the correctness of removing irrelevant states by contradiction.

Without loss of generality, let p = x0 x\ • • • ik be a critical path in 
G where Xk G {xcb • • •, 1} is a nondiagnosable state in a cycle. Suppose
now that there is no critical path in rel(G), the relevant part of G. Since 
state Xk is nondiagnosable, all states of p are on a path whose target state is 
nondiagnosable and are therefore relevant. Thus p cannot be removed by the 
removal of irrelevant states.

Since rel(G) is obtained from G by removing states and transitions every
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path in rel(G) must be in G. Hence in particular any critical path in rel(G) 
must be in G.

(2) Computing the projection V = n ^ (0 ) cannot lead to the introduction of a 
critical path since projection does not introduce states or cycles. Further
more, the projection operation cannot lead to the removal of a critical path, 
since the only event that is abstracted is ext and since extended transitions 
are added as terminal transitions and are therefore never part of a cycle.

(3) Suppose the merge of a state x* G {xo,. . . ,  x k} on the critical path p (see (1)) 
with a state x\ led to the removal of all critical paths in the resulting twin 
plant mgr(G). Therefore the path p' = x0 —4 x\ • • • Xi-i ^  i • • • ■ -^4 
x k in mgr(G) is not critical (p' is in mgr(G) since all incoming and outgoing 
transitions of x* were redirected to x' in the process of the state merge). 
This means that the cycle of p' no longer has a nondiagnosable state, which 
implies that state x' is diagnosable. Thus the merge of a diagnosable and a 
nondiagnosable state led to the removal of the nondiagnosable state. This 
contradicts all merging conditions (see Section 3.4.1).

Suppose now that there is no critical path in G but one in mgr(G). The 
merging conditions ensure that for every path p = x o —b X\ • • • -^4 xk re
sulting from a merge of states, there exists a corresponding path p1 = Xq —> 
x[ ■ • • -^4 x'k in G such that the pairwise corresponding states have the same 
diagnosability label (i.e. D(xi) <-> Z)(xJ) for all x* G {xi , . . . ,  xk}). Thus, if 
G has no critical path there cannot be one in Rd(G). □

Hence we can indeed reduce the size of FSMs while still being able to decide diag
nosability. In order to ensure the correct propagation of diagnosability information 
it is again necessary to add the extended states and transitions after the reduction 
(see page 99).

3.4.2 Reduction of M essage Propagations

We now describe the conditions under which we can reduce the number of messages 
being propagated. As described in our core algorithm on page 105 the propagation 
is repeated every time a new node v is added to set G. The question we now consider 
is to what extend the results of the previous propagation on set G^ = G \  {x} can 
be utilised.
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Due to the jointree node selection heuristic (see Section 3.3.5) v is always a 
leaf of the subtree G and hence the inward propagation starts here. Now if the 
parent Par(v) of u, which is already guaranteed to be consistent with Gö, is also 
consistent with v, we need not change its behaviour. This implies that the messages 
now exchanged within nodes of G  ̂ are exactly the same as the ones exchanged in 
the previous propagation. Hence in that case G is guaranteed to be consistent once 
v has received the outward message from its parent.

This reasoning can be generalised and adopted also to the outward propagation 
as shown in Algorithms 6 and 7. The first one describes the inward propagation 
that is repeated until either a node v' is reached that was already consistent with v 
(i.e. v' ~  Ilt  '(Synciv^v'))) or until the root is reached (line 5). This means that 
the number of inward messages propagated cannot exceed the depth of v, that is, 
the number of edges on the path from the root to v. Hence, even in the worst case, 
the number can be exponentially smaller than the number of messages generally 
exchanged during the inward propagation.

Algorithm 6 Propagation(jointree: J, set of consistent nodes: G^, node v £ Gy)
1: G <— Gy U {u} nodes in J being considered
2: Gc/j •*— 0 nodes changed during inward propagation
3: v' <— par(v) par(v) returns the parent of v
4: v' <— InProp{v, v')
5: while v' and v' are not equivalent and are not the root do
6: Gch Gch U {A}
7: v' par{v')
8: v' InProp(v', v')
9: end while

10: OutPropProc(J,v'\G ch)
Function InProp(j, j') returns the twin plant for j' once it has received the message 
from its child j.

In order to also reduce the number of the messages exchanged during the out
ward propagation we memorise all nodes Gĉ  that have changed during the inward 
propagation. Now starting with the last node v' considered during the inward 
propagation we perform the outward propagation recursively as described in Algo
rithm 7. Here we only propagate messages outwardly from those nodes that have 
either changed during the inward or outward propagation (line 4) which again 
reduces the number of messages that need to be exchanged.
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Algorithm 7 OutPropProc(jointree: J, jointree node v \  Gch)
1: if p is not a leaf of J  then 
2: for all successors v's of v' do
3: v's OutProp(v' ,v's)
4: if v's G Gch or v's is not equivalent to v's then
5: OutPropProc(J,v's,G ch)
6: end if
7: end for
8 : end if

Function OutProp(j, j') returns the twin plant for j ' once it has received the mes
sage from its parent j.

3.4.3 Im provem ent of Scalability

So far all our jointree algorithms are based on the assumption that all twin plants 
associated to a single jointree node have been synchronised (see first assumption on 
page 98). Even if this is feasible, the space required to represent all these synchro
nised twin plants can limit our ability to perform the iterative jointree algorithm. 
We therefore drop this assumption and consider now a jointree in which each node 
is labelled with a set of twin plants each referring to exactly one component.

After a node v is added to the set of considered nodes G and the internal 
events Hint are updated (see lines 4-5 in Algorithm 5 on page 105) we synchronise 
only those twin plants of v that have an event in Eint. While this approach is 
not sufficient to guarantee the consistency of all twin plants labelling nodes in G 
(the propagation on line 6 can no longer be performed), it is sufficient for checking 
the consistency of a path entirely composed of events in and for achieving 
consistency of twin plants in Gsint. Thus, the partial synchronisation of twin 
plants labelling a single jointree node allows faster detection of a critical path and 
thus faster verification of nondiagnosability.

Note that for the stepwise synchronisation of twin plants we can also adopt the 
same heuristics for selecting a jointree node as described in Section 3.3.5. Instead 
of considering the critical paths of the synchronised twin plants, we now look at 
the whole set of twin plants labelling a node.

3.4.4 D iagnosability  of a System

So far we have shown how we can verify the diagnosability of a single fault. Now 
we consider the diagnosability verification for a whole system.
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Definition 28 A system G is diagnosable iff all its faults F  G £ /  are diagnosable.

We can modify our algorithm to consider all faults at once. For the jointree this 
means that diagnosability information can be found in more than one node, which 
has the following implications:

• We need to decide which of these nodes we should select as root of the jointree.

This can again be done using the heuristics described in Section 3.3.5.

• We can only merge states satisfying equations 3.3-3.6.

Equivalence is now also required, since the diagnosable behaviour that 
is irrelevant for the diagnosability test of the faults occurring in the 
considered twin plant can be essential to detecting the consistency of 
critical paths in other twin plants.

• We need to perform an inward and outward propagation without propagating 
diagnosability information, i.e. without introducing extended states.

This results from the fact that diagnosability information can only be 
propagated based on consistent twin plants and after the inward prop
agation only the root is guaranteed to be consistent.

• Afterwards we need to perform another inward and outward propagation, 
this time with the purpose of propagating diagnosability information.

Now we require a double propagation, since diagnosability information 
is exchanged among all the jointree nodes rather than propagated from 
a single node.

Compared to the single-fault approach we have the overhead of additional prop
agations (now 4 instead of 2), as well as an increase in complexity due to an increase 
in the size of the twin plants. The space complexity of the interactive diagnoser 
is 0(|X j| x 2 and hence that of the twin plant is Q(|Xj|2 x 22*s^ )  [Jiang et 
al., 2001]. Clearly, if the number of faults is high we now face a significant in
crease in space complexity. Thus it is generally better to check the diagnosability 
individually for each fault by running our one fault algorithm |£ /| times.
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3.5 R e la tio n  to  P re v io u s  W o rk

In this section we show in detail how the approach of [Pencole, 2004], the closest to 
ours, can be simulated with jointrees, and how it relates to our algorithm. Specifi
cally we show that it amounts to a restricted way of jointree construction, together 
with a particular way of achieving consistency, which does not take advantage of 
the propagation of messages with bounded event sets. Towards the end of the 
section we also discuss other related work.

The ClassDecent approach of [Pencole, 2004] also solves the diagnosability prob
lem in a decentralised way. The approach is based on the assumption that the ob
servable behaviour of every component is live, that is, that there is no component 
with a cycle containing only unobservable events. This is more restrictive than the 
assumption in [Sampath et al., 1995] which we adopted namely that the observable 
behaviour of the system (but not necessarily that of individual components) is re
quired to be live (see page 88). The more restrictive assumption of the ClassDecent 
approach implies that it is sufficient to only search for a critical path in the twin 
plant Gf containing the fault. To compare the efficiency of our approach to this 
one we also restrict the search for a critical path to Gf. This means that we only 
need to compute consistent paths of the jointree root which can be done by the 
straightforward inward propagation.

Starting with the twin plant G = Gp the approach ClassDecent proceeds it
eratively by selecting a twin plant Gi from the not yet considered ones in Gout 
(line 2 of the pseudocode below), synchronising it with G (line 4) and removing 
from it (by projection) the shared events Hint internal to G (line 5). This process 
is repeated until either a critical path defined only over the observable events is 
found4 in which case nondiagnosability is established or until G has no critical path 
or Gout has no connected twin plant (see below) which both verifies diagnosability 
(line 1).

1: while HasCritPath(G) and H asN oCritP athOverY,0(G) and HasGconsTP(Gout)
do

2: Gi <— PickTwinPlant(Gout)
3: UpdateSet(Goutl T>int)
4: G < -  Sync{G , Gi)

5: G  < -  n fixEiJ G )

6: end while

4 Since the internal events have been removed from G such a path corresponds to a critical 
path in the global twin plant defined only over observable and internal events.



118 Scalable Diagnosability Checking

Thus, the approach requires essentially two operations during each iteration: 
projection and synchronisation. Recall that these are exactly the same steps we 
need to perform during the inward propagation. Indeed the ClassDecent approach 
can be thought of as a special way of using jointrees. Such a jointree J  can be 
constructed based on the connectivity of twin plants with respect to Gp-

Definition 29 (a-connectivity Con (a , 7)) The set of twin plants connected 
to the twin plant 7 by distance a is recursively defined as follows.

Con(0, 7) = {7}
Con(a, 7) = {71 I 3y2 E Con(a — 1, 7) such that

7i and 72 share at least one event and 
71 ^ Con(ß, 7) for all ß < a}.

Twin plants 71 and 72 are connected if 7! E Con{ 1, 72). The set transCon(7) 
denotes the set of twin plants whose behaviour can possibly influence that of 7 
(transConß)) = IJaZo Con(a: 7)) where n is the number of components in the 
system. Now the approach only proceeds as long as there is a twin plant in Gout 
that is connected to G. Therefore G is at most composed of the synchronisation 
of all k elements in transCon(7). This is similar to our approach where we also 
do not need to consider any further twin plants to check the global consistency of 
critical paths in the root twin plant.

To create the jointree J  with k nodes, one for each twin plant in transCon(7), 
we can use the same twin plant selection heuristics as function PickTwinPlant. 
Let the order in which the latter picks the twin plants be G i,. . . ,  G^, that is, in the 
ith loop iteration G is synchronised with G*. In the same order we now also add 
the corresponding nodes to J . Initially J  consists only of the root Gp = G\. Now 
in the ith step node G* is added by linking it to an existing node Gj E Con( 1, Gß 
with minimal distance to Gp-

Figure 3.13 shows the resulting tree for an example in which the four nodes 
Con( 1, Gf ) = {G3, G4, Gg, G7} are connected to Gf - Further we have Con(2, Gf ) = 
{G3, G5, Gg, Gg} and Con{3, Gp) = {Gio? Gn, G12}. Now, for instance, if the node 
for G5 is added it could either be linked to G2 or G3 to which it is both connected 
via event k. Since the distance of G2 to Gf is smaller (1 instead of 2 for G3), the 
new node is linked to G2.

However, this tree does not yet satisfy the jointree properties (see Definition 22 
on page 92): we need to ensure that every path between two nodes containing 
the same event a is only composed of nodes that also contain a. In our example 
twin plants Gg and Gg are labelled with event r  but none of the nodes on their



3.5 Relation to Previous Work 119

a,b,c,d

Figure 3.13: Tree in which the top labels of each node 1 , . . . ,  12 correspond to the 
twin plants G i , . . . , G i2 and the bottom labels of each node refer to the events 
defined in it.

connecting path G 3  — G2 — Gi — G 4  — Gg. We therefore have to add event r to 
nodes G2, G\ and G4, after which above property is satisfied. Now we can also add 
the separator events to every edge between two nodes. These events are simply the 
intersection of the event sets of these two nodes. Figure 3.14 illustrates the jointree 
for our example.

The ClassDecent approach now amounts to a particular way of achieving con
sistency on the constructed jointree J . Instead of verifying the consistency among 
jointree nodes via message propagation, this approach synchronises all considered 
twin plants G, which corresponds to a merge of jointree nodes. To merge two 
jointree nodes G* and Gj, their event sets E* and Ej are added and all internal 
events E*nt removed (i.e. the projection n (siUsj)\sint(<S?/nc(Gi, Gj)) is computed as 
in line 5 of the Algorithm shown on page 117). The set Ein* is composed of those 
events that were only labelling the former edges between the now merged nodes. For 
instance, after the merging in the first iteration of nodes G1 and G2 of the jointree 
shown in Figure 3.14 the event set of the new root is composed of 5, c, d, k, r. Since 
event a did not appear anywhere else on the jointree it was removed. Figure 3.15 
depicts the jointree after the fourth iteration of the ClassDecent algorithm, i.e. 
after the twin plants Gi, G2, G3 and G4 have been synchronised and their internal 
events removed (by projection).
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a,b,c,d,r

a,d,k,r

Figure 3.14: Jointree for the tree shown in Figure 3.13.

Recall that our approach does not change the jointree structure during the 
diagnosability verification. In particular this means that the size of the event sets 
of the considered twin plants G = G\: .. .  ,Gq is bounded. Thus also when using 
the same jointree as the Class Decent procedure, in which every jointree node is 
labelled by exactly one twin plant, we are guaranteed that every twin plant Gi has 
at most w + 1 events, where w corresponds to the width of the jointree. In contrast, 
the Class Decent procedure always considers a twin plant with |£ 0l U S02.. .  U E0J  
observable and |£ 5epiUEsep2.. .U£sePm| shared events, where Esep. are the separator 
events connecting a twin plant in G  with one in {Gj1, . . . ,  Gjm} C (Goui.

It is exactly this bound on event size that likely allows our approach to per
form the synchronisation and projection operations more efficiently in general, even 
without considering the additional features such as the reduction of message size. 
This results from the complexity of searching for a critical path in a twin plant 
which depends on the number of transitions and thus on the number of events and 
states 0 ( |£ | x |X |2). Note that due to the projection operation that is performed 
in both approaches the number of events has also a direct impact on the number 
of states, since only those states are retained in the resulting twin plant that are a 
target state of a transition labelled by an event in the projection.
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r,u,v

Figure 3.15: Jointree of Figure 3.14 after the merge of nodes 1 — 4.

We now discuss other related work. The diagnosability problem of discrete- 
event systems was introduced in [Sampath et al., 1995] where the authors solved 
it by considering a deterministic diagnoser for the global system and a part of 
the global model. The main drawback of this method is its exponential space 
complexity in the number of system states resulting from the diagnoser whose size 
is exponential in the number of states in the global model (determination) and 
therefore doubly exponential in the number of system components.

Jiang et al. (2001) and Yoo & Lafortune (2002) then propose new algorithms 
which are only polynomial in the number of states in G and which introduce the 
twin plant method. The question of efficiency is raised in [Cimatti, Pecheur. & 
Cavada, 2003] where the authors propose to use symbolic model-checking to test a 
restrictive diagnosability property by taking advantages of efficient model-checking 
tools. But, still the diagnosability problem is seen as a test on a system whose 
size is exponential in the number of components, even when encoded by means 
of binary decision diagrams as in [Cimatti, Pecheur, & Cavada, 2003]. Some of 
the most recent works decide either diagnosability or nondiagnosability but not 
both. The work by [Rintanen & Grastien, 2007] shows how to search for critical 
paths using SAT thus verifying nondiagnosability. On the other hand, our previous 
decentralised approach can only verify diagnosability [Schumann & Pencole, 2007].
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3.6 A ssis tin g  in  th e  D esign  o f D iag n o sab le  Sys

tem s

We have shown how we can efficiently decide diagnosability based on a jointree and 
how we retrieve a critical path in case the system is nondiagnosable. However the 
ultimate aim is not just to decide diagnosability, but rather to develop diagnosable 
systems. If the system is not diagnosable additional sensors are required to distin
guish the ambiguous system behaviours. Several approaches deal with the problem 
of selecting sensor placements to ensure the diagnosability of a system. However, 
the problem of computing an optimal sensor set with minimal size has a complexity 
exponential in the number of possible sensor placements [Yoo & Lafortune, 2001]. 
Existing sensor placement algorithms are based on the global representation of the 
system model, which may not be computable for large systems.

In this section we describe how our distributed approach can be extended to 
identify those system behaviours that require modification to restore diagnosability. 
Since a system may admit several possibilities to remove nondiagnosable behaviour 
we use a ranking approach based on cost estimation to isolate behaviours in eas
ily accessible components whose modification removes not only the diagnosability 
problem but can also be cheaply performed. Our approach thus aims at assisting 
a human system designer to restore diagnosability. Note that we do not consider 
how to modify the system.

3.6 .1  C om p u ta tion  o f C ritica l P a th s

The prerequisite of any such analysis is that we can compute indeed the whole 
set of nondiagnosability causes, that is, all critical paths. Currently our approach 
terminates as soon as a critical path is found (line 10 of Algorithm 5 on page 105). 
Now the question is when can we be certain that we have found all critical paths, 
not only among those in twin plants G already considered, but indeed among all 
the twin plants of the entire jointree.

Surely, if we consider the whole jointree and perform the inward propagation 
starting in all the leaves followed by the complete outward propagation we obtain 
all critical paths. The problem with such an approach, however, is that it is not 
scalable. Thus in case the memory resources are not sufficient to perform the entire 
propagation we would not even be able to estimate to what extend we have covered 
the nondiagnosability causes.
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In a first step it is therefore crucial to detect which paths could possibly be 
critical in order to focus our computational resources on the identification of which 
of these paths are indeed critical. Recall that our aim is to detect all critical paths 
which is a subset of all possibly critical ones. The latter need to be determined in 
all twin plants of the entire jointree. An efficient approach to detect such paths 
is the one based on possibly nondiagnosable states. All other states are certainly 
diagnosable.

Definition 30 (Possibly nondiagnosable states) The set of possibly nondi- 
agnosable states P(Gj) of a local twin plant Gi is determined as follows.

1. P (Gi) = {x e Xi \ x is nondiagnosable} if Gi G Con(0, Gp) ft.e. Gi = Gp)

2. P(Gi) =  Yi if Gi G Con(a, Gp) with a G and for all states y G Yi and 
all connected twin plants Gj G Con(a— 1, Gp) there exists a state {y^xf) in 
the twin plant Sync(Gi,Gj) such that Xj is possibly nondiagnosable.

3. P(Gj) = Xi if Gi transCon(Gp) (see page 118)

Possibly nondiagnosable states PNS(Gj) for a twin plant Gi G transCon(Gp) 
are computed on the basis of the connected twin plants whose distance to Gp is 
smaller by 1. For the example of computing these states for G5 shown in Figure 3.16 
it means that they are obtained by considering twin plants Gb and G3  in sequence. 
For each Gi G {G^Gb} of them we compute G^s =  Sync(Gs, Gi) to obtain all 
possibly nondiagnosable states x G PNS(Gs) for which there exists a state (x, y) in 
G j 5 where y G PNS(Gj). A state x in G5 is only possibly nondiagnosable, iff there 
exists a corresponding possibly nondiagnosable state in G2 and in G3  (i.e. there 
are two states y G PN S(G 2) and z G PNS(G3 ) such that (x, y) is a state in Gb,5 

and (x, z) is one in G3)5).

The “propagation” of possibly nondiagnosable states among connected twin 
plants has some similarity with the propagation of nondiagnosable states during 
the outward pass of the jointree propagation (see Section 3.3.3). However, since 
now the propagation is neither performed on globally consistent twin plants, nor 
on all connected twin plants at once (i.e. there is usually more than one twin plant 
from which information about possibly nondiagnosable states is received), we do 
not have the guarantee that these states are indeed nondiagnosable.

Due to the differences of propagating possibly nondiagnosable and nondiagnos
able states a state x = (xq,. . . ,  x^i) in a uncoupled twin plant Gw is only possibly 
nondiagnosable iff Vi G {1, . . . ,  |<x>|} we have Xj G P(Gj). This is in contrast to
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PNS(Gs ) = P NS ( g | g ) AND 

P NS( g | g )

Connectivity 
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Figure 3.16: Scheme for computing nondiagnosable states. PNS(Gd|Gj) denotes 
the states of G i  that are possibly nondiagnosable with respect to G j .  PNS(Gs) are 
the possibly nondiagnosable states in G5.

the definition of nondiagnosable states that only need to be composed of a single 
nondiagnosable state (see page 90).

Any observable cycle with a possibly nondiagnosable state we will henceforth 
refer to as possibly nondiagnosable cycle and any path with such a cycle we call a 
possibly critical path. Then in order to show that all critical paths belong indeed 
to the set of possibly critical ones we prove that the following Theorem holds:

Theorem  3.6.1 A state x in the GTP is nondiagnosable iff it is possibly nondi
agnosable.

Proof:

(=>) Suppose there exists a state x = (x i,. . . ,  xn) in the GTP such that x is non
diagnosable and a state x* such that x* ^ P(Gd)- Condition 3 of Definition 30 
verifies that all states x^ from (x i,. . . ,  xn) such that Gh ^ transCon(Gp) are 
possibly nondiagnosable. It follows that Gi is in transCon(Gp). State x is 
nondiagnosable therefore the state Xp from Gp also contained in the n-tuple 
(x i,. . .  , xn) is nondiagnosable. It follows that Xp G P(Gf ) (see condition 1 
of def. 30), so Gi is in transCon(Gf ) \  {Gf }- Therefore, there exists an a > 1 
such that Gi G Con(a, Gp).

Condition 2 of Definition 30 ensures that there is a twin plant Gj G Con(a — 
1, Gp) in which all states x ', for which (x',x*) is a state in Sync({Gj, G^}), 
do not belong to P(Gj). Since GTP results from the synchronisation of Gj 
and Gi, it means that £i ^ P(G;) implies that Xj ^ P(Gj) where Xj denotes 
the state from Gj contained in x.
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The previous reasoning led from the existence of a state x,{ =  ya in a twin 
plant Gi — Ha E Con(a, Gp) with ya ^ P (Ha) to the existence of a state 
Xj = ya-i  in a twin plant Gj = Ha - 1 £ Con(a — 1, Gf ) with ^Q_x ^ P(Gq_i ). 
By recursively applying a — 1 times the same reasoning, it follows that there 
exists a twin plant H0 belonging to Con(0, Gp) and a state yo from Ho 
belonging to the n-tuple (xi , . . . ,  xn) such that yo ^ P(Äo)- Since Gp is the 
only element in Con(0, Gp) (see def. 29) it means that H0 is actually Gp 
and yo = xp. It finally follows that i p  £ P(Gf ), which is a contradiction.

(<=) Suppose there exists a possibly nondiagnosable state x containing the local 
state Xp £ Gf such that x is diagnosable. This implies that xp £ P(Gf )- 
Therefore x £ P (GTP) (see def. 30) which contradicts the assumption. □

Given the set of all possibly critical paths we now describe how we can use 
the available computational resources to identify those that are indeed critical. 
Algorithm 8 presents this procedure. In contrast to our original Algorithm on 
page 105 we now continue the computation (line 3) as long as there is sufficient 
memory and

• there exists either a possibly critical path in a twin plant that has not yet 
been considered, or

• there exists a critical path p in G that is not yet guaranteed to be globally 
consistent (i.e. p belongs to the set CritPath(G) but not to the set T ^ ”5).

During each iteration we perform almost the same operations as before except 
that we now only check for critical paths defined over events in if the first 
termination criteria is not satisfied. Otherwise the detection of critical paths is 
useless, since it can neither lead to a termination of the algorithm nor to a more 
efficient performance of future operations.

Upon termination the algorithm returns all critical paths P^ in G and all pos
sibly critical paths PqouI in Gout- In case the procedure did not stop due to a lack 
of computational resources the latter set will be empty and the former contains 
only those paths that are consistent with the whole system and indeed critical. Re
call that Theorem 3.6.1 guarantees that P ^ s C P^ U Pfeout- Hence the algorithm 
returns all critical paths.
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Algorithm 8 ComputeAllCritPath(jointree: J)

0
J  \  G

0

nodes in J  being considered 
remaining nodes 

events internal to G 
globally consistent critical paths

3: while (ExistPosCritPath(Gout) or Pccr̂ s C CritPath(G)) and 
SufficientMemory(G) do 

4: v <- PickNode(J,G)
5: UpdateSets(v,G,Gout,E int)
6: Propagate^ G)
7: if ExistPosCritPath(Gout) is false then
8 : GetAllPathsOverTiint(G)
9: Propagate(GEint)

10: P ^ s <—  GetCritPath(G-£int)
11: end if
12: end while
13: return CritPath(G) U PossCritPath(Gout)

3.6 .2  D ep en d en cies  am ong C ritica l P a th s

Clearly, if we would consider all critical paths in all twin plants independently and 
remove them by making the required changes to the system behaviour we would 
obtain a diagnosable system. However, in general, the latter can be achieved with 
fewer modifications due to the dependencies among critical paths. These result 
from the fact that a single change to the component behaviour can remove more 
than one critical path.

We now show how we can detect dependencies among critical paths by labelling 
each transition such that the contribution of individual system behaviours to the 
synchronised twin plants can be obtained. Every twin plant transition is labelled 
with the set of component transition identifiers T  that is composed of all those 
transitions whose removal would lead to the removal of the twin plant transition. 
This approach requires the following steps:

1. assign to every component transition (except the fault transitions) a unique 
identifier label,

2. propagate the identifier label to the corresponding interactive diagnoser Gj,

3. propagate the identifier label to the corresponding twin plant G*,

4. propagate the identifier label to the messages sent by G*, and
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5. propagate the identifier label to any twin plant Gj ^  Gi receiving above 
message.

1. Fault transitions do not have a transition identifier, since they describe the 
component behaviour in case of the occurrence of a fault. An example for the 
assignment of transition identifiers is given in the top graph Gli b of Figure 3.17.

2. Every transition t of the interactive diagnoser is an abstraction of one or more 
component transitions T[ C Tj. It is labelled with the union of all identifiers in 
T[. This results from the fact that changes to any of these component transitions 
would remove t. Formally there is a transition (x, J7) T- a> (x \J r') in G[ab iff
there is a transition sequence x ------ > X\ • • • --------> xm -------- > x m G* with
T  = Ti UT2 • • •UTm+i,{<7i,. . .  ,crm} C E /.U E ^, and T ' =  T G  . . . ,  am} DE/). 
Diagnoser Gl“b in Figure 3.17 shows an example with this labelling.

3. In the twin plant every shared transition corresponds to exactly one tran
sition in the interactive diagnoser, and every observable transition refers to two 
transitions (one from the left and one from the right diagnoser). For shared 
transitions, the labelling is kept. For observable transitions the identifier labels 
are obtained from the union of the two corresponding diagnoser transition labels. 
Figure 3.17 shows the labelled twin plant Glf b. Formally, there is a transition 
(.xl,x r ) T {xv ,x r>) in G[ab iff there is

• either a transition x l —— x l> in G\ lab and a transition xr —— xr' in lab 
with T  = T l U T r and a 6 E0,

• or a transition x — x' in G\ab with o € Es.

4. Every transition t in a message corresponds to a set of transition sequences
Tse<7 =  {Tf69, . . . ,  X£e<7} in a twin plant G (see transition definition for projections 
on page 94 and Definition 25 on page 99). Now, since we require that the removal 
of any component transition is sufficient to remove the twin plant transition t, the 
identifier of t can only include those component transitions whose removal would 
remove every transition sequence in Tseq. Let Lj denote the set of transition iden
tifiers labelling the transition sequence T-eq. Then t is labelled by the intersection 
of all these labels (label(t) =  L\ Pi L2 . . .  Pi L*.). Figure 3.17 depicts an example 
of a labelled message. For instance, here the transition x3 — xl l  corresponds 
to the single transition sequence T^eq =  x3 ^  Ls2> x5 °1> T61_ ^ ^ ^^1.
Therefore it is labelled with L\ = {t2, t3, t5, £6}, the union of all transition labels 
of T sxeq.
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5. Since a message M  is received by a twin plant G' via synchronisation, 
the label propagation is similar to case (3). Thus every transition in Sync(M , G') 
corresponds to the union of the labels referring to the set of transitions it represents. 
The bottom graph of Figure 3.17 shows a part of such a synchronised twin plant 
where for simplicity reasons the labelling of G-$ is not taken into account.

HH3 (HI
S j t 4 | - s i  ( i5 ) -o l_
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{t7} -o 1(t3)-ol

{t5) -o 1
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Figure 3.17: Illustration of the propagation of the component’s transition identifiers 
(top) to a neighbouring twin plant (bottom).

Based on these transition labellings we can now decide whether two critical 
paths are dependent.
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Theorem 3.6.2 Two paths p and p' are dependent, iff there is a component tran
sition labelling at least one transition in both p and p'.

For instance, the critical paths in Glf b and G' shown in Figure 3.17 are depen
dent. They all include either transition xl3 ———*• x7 or transition 
(xl2, z7) (xl3,z7). Both of these are only possible, if the behaviour
represented by component transition t l  is not modified.

3.6.3 O ptim al Rem oval of N ondiagnosability  C auses

The dependencies among critical paths can now be exploited to obtain a diagnos
able system by requiring fewer modifications to the behaviour of the components. 
Indeed this can be achieved by removing any transition path cover.

Definition 31 (Transition path cover T(Pcrit )) A transition identifier set T is 
a path cover, denoted T(Pcrj*), for a set of critical paths ¥crit iff every path in Pcrit 
is labelled by at least one transition identifier in T.

An interesting problem here is to find a transition cover for a path set P with 
minimal size. This problem is similar to the NP-hard Hitting Set optimisation 
problem, which is defined as follows: Given a set of subsets A = A i , . . . ,  Am of the 
universal set U = 1 , . . . ,  z, the goal is to determine the smallest set A' C U such 
that VAj : A' Pi A* ^  0. This problem is dual to the Set Cover problem which can 
only be solved by an O (log ^-approximation algorithm [Arora & Lund, 1997].

In our case, the universal set is composed of all component transition identifiers 
and each subset A* corresponds to the set of all transition identifiers labelling a 
single critical path. Thus, even if the modification costs for all transitions are the 
same it is very difficult to find a path cover with minimal size.

However, in practice the modification costs me can vary greatly depending on 
the transitions to change. The aim is therefore not to find a transition-minimal 
path cover, but one that requires the least costs. To determine such a path cover 
we require a priori information on the costs associated with the modification of 
each component behaviour, in particular with each component transition. In the 
following, cost estimates are represented as numeric value me > 0 G MU {oc}. For 
transitions that can not be changed, for example, those in inaccessible components 
or behaviours determined by factors outside the scope of the system, the me is set
to oo.



130 Scalable Diagnosability Checking

Definition 32 (Optimal transition cover Topt) L etT  denote the set of all tran
sition covers for Fcrit. A transition cover Topt G T  is called optimal iff for all 
T 7̂  Topt in T  the following holds: mc(Topt) < mc(T) where mc(T) denotes the 
costs required to modify all transitions in T.

The costs for modifying a set of transitions T is obtained as the accumulated 
costs of modifying all individual transitions in T. Therefore, the problem of com
puting the optimal transition set is analogous to the Weighted Minimal Hitting 
Set optimisation problem, which can be solved efficiently by the approximation 
algorithm presented in [Cincotti, Cutello, & Pappalardo, 2003]. Here, weights cor
respond to the modification costs. Using such an algorithm we can determine the 
best transition cover based on any path set returned by Algorithm 8.

3.6.4 C ost-D riven C om pu ta tion  of N ondiagnosability  C auses

In addition to suggest possible behavioural modifications, the transition path covers 
may also be used to further increase the efficiency of Algorithm 8. Now it is no 
longer necessary to check whether all possibly critical paths are indeed consistent 
and hence critical. Rather we determine in each iteration i the critical paths Pff£s 
whose consistency can be verified based on the twin plants G considered so far (lines 
8-10). For them we compute a transition cover Tl = GetTransCover(Pfffts). Now 
a new node v is only added if in the outward message passed on from an element 
in G to v there is at least one path to a nondiagnosable state that is not labelled 
by a transition in T*. This results from the fact that otherwise every critical 
path in v or one of its children would necessarily be covered by TP and hence the 
consistency check for these paths is not required. Therefore we can also terminate 
the search for critical paths if we cannot add a new node to G that would still 
require the verification of critical paths. In general, the cost-driven computation of 
nondiagnosability causes is therefore faster because the consideration of all jointree 
nodes with a possibly critical path can be avoided.

3.6.5 E xtension  to  M ultip le  Faults

As stated in Section 3.4.4 a system is only diagnosable if all its faults are diagnos- 
able. Therefore we need to find a transition cover for all critical paths of not just 
one fault, but all the faults. Again there are two possibilities to determine them. 
We can either consider all faults individually or compute the larger twin plants that
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allow the consideration of these faults at once. The advantages and disadvantages 
of these methods are the same as stated in Section 3.4.4.

3.6 .6  Sum m ary

We have shown how we can extend the diagnosability approach to compute a 
subset of the nondiagnosability causes whose modification would be sufficient to 
obtain a diagnosable system. This method can also be used when the costs of the 
modifications need to be considered and those nondiagnosability causes need to 
be returned whose modification requires the lowest costs. The extension became 
only possible due to our novel scalable diagnosability approach presented in this 
chapter.
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C h a p te r  4

C onclusion

We now summarise the main contributions of this thesis and outline some directions 
for future work. For a comparison to related work we refer the reader to sections 2.6 
and 3.5.

4.1 T hesis C ontributions

Diagnosing discrete-event systems poses the problem of determining the set of all 
possible faults that are consistent with a sequence of observations. When applied to 
large scale working systems this task has to be done on-line in a timely manner. In 
this case the diagnosis result is updated continuously when new events are observed. 
Its efficiency depends on the number of diagnosis candidates and/or on the extent 
to which the system description has been compiled off-line.

In this thesis we have described several contributions to increase the efficiency 
of the on-line diagnosis while taking into account the different time and space 
requirements of applications. The latter led us to present a spectrum of diagnosis 
approaches which differ in the amount of model compilation performed off-line. The 
underlying models range from the small component models that do not incorporate 
any compilation, to the diagnoser model in which the diagnosis information is 
compiled for the entire observable behaviour of the system.

In order to determine which diagnosis approach is best suited for a given ap
plication with specific time and space requirements we analysed the time/space 
tradeoff for all our diagnosis methods. For large applications where space is critical 
the diagnosis is best based on the decentralised models. On the other hand, smaller 
applications can be more efficiently diagnosed using our nondeterministic model.

133
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To handle the generally large number of diagnosis candidates all our approaches 
are implemented symbolically using BDDs. This allows us to perform the diagnostic 
reasoning at once for the whole set of diagnosis candidates rather than considering 
each consistent system state and fault individually as required in an enumerative 
approach. To determine the advantage of the symbolic implementation over an 
enumerative one we have implemented four of our diagnosis methods across our 
spectrum also in an enumerative way.

Here only the on-line use of the symbolic diagnoser incurs a small time overhead. 
In all other cases the run-time of the symbolic approach is significantly better, and 
so are the space requirements of the larger models. Therefore, an enumerative 
approach is mainly useful for very small applications for which the computation 
and storage of the large diagnoser is feasible.

We have not only shown how we can exploit the advantages of BDDs for effi
ciently implementing diagnosis algorithms but also how we can use their properties 
for determining which computations are better performed off-line (those that are 
slow and hardly increase the model size) and which ones should be performed on
line (those that are fast and increase the model size). These considerations led us 
to define four models of our spectrum where the local fault information is compiled 
off-line. This decision is derived from the fact that the symbolic update of faults 
is very slow but its synchronisation, to obtain the fault information for the whole 
system, is very fast. Our experimental results have shown that these diagnosis 
approaches led to much faster diagnosis while requiring less space (except for the 
decentralised model that was larger than the component model).

Although BDDs can efficiently handle large sets of diagnosis candidates their 
size still has a significant impact on the diagnosis time. This motivated us to 
study how we can assist a system designer in designing systems where the diag
nosis information can be determined (more) precisely, that is, systems that are 
(more) diagnosable. We have therefore presented a new algorithm to solve the 
diagnosability problem and have shown how we can extend it to assist a system 
designer.

Our algorithm addresses the fundamental bottleneck of the classical diagnos- 
ability approach, which requires the computation of the global twin plant method. 
Instead we consider local twin plants for subsystems which we make globally con
sistent by message passing on a jointree. We have presented a complete framework 
for computing and propagating such messages based on finite state machines, and 
presented new conditions for reducing message size without losing diagnosability
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information. Our approach is scalable in the sense that if the problem is too com
plex to be solved with available computational resources, it can still provide an 
approximate analysis of the diagnosability of the system. We have also shown how 
we can extend our framework to identify all nondiagnosability causes regardless of 
the available computational resources. However, in general, with more computa
tional resources, one can detect more inconsistencies in critical paths, avoiding the 
return of paths that are diagnosable. Finally we have shown how to identify com
ponent behaviours and transitions that, if modified, render a system diagnosable, 
while requiring minimal costs. This information can then be used by a systems 
designer to perform the according changes and restore diagnosability.

4.2 D irections for Future W ork

The perspectives of this thesis are numerous. We now plan to extend our decen
tralised diagnosis approach by representing subsystems not only as decentralised 
diagnosis models but also as centralised and nondeterministic diagnosis models. 
By defining the latter models also at the subsystem level, we aim at increasing the 
on-line efficiency of diagnosis algorithms for large discrete-event systems.

It would then be very interesting to conduct an exhaustive experimental analysis 
to determine the best diagnosis approach for a given application. Such a decision 
might not only be based on the available computational resources but also on 
the number of observations, faults, components and their interactions, since these 
parameters might impact the efficiency of the diagnosis approach and thus the 
computational resources required to perform it.

Importantly, our work is largely orthogonal to the state of the art, and likely to 
benefit other approaches as well. It would be interesting, for example, to extend 
our framework to stochastic systems and compute probability distributions on di
agnoses, using for instance algebraic decision diagrams which are generalisation of 
BDDs to real-valued functions over the booleans.

Finally, integrating diagnosis and planning for repair or reconfiguration actions 
is one of the most significant challenges faced by the field of model-based diagnosis 
[Console & Dressier, 1999]. Given the recent success of planning techniques based 
on symbolic model-checking, we believe that our framework will prove a good basis 
for addressing this challenge.

Concerning the diagnosability part, we aim at extending our framework to 
provide optimal design recommendations not only based on the modification costs
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but also based on its gain in diagnosis time. To achieve this purpose we propose 
to implement this approach using BDDs and to incorporate it directly into our 
symbolic diagnosis framework. Then we could automatically determine the impact 
of possible modifications on the diagnosis time via simulation. A systems supervisor 
can then decide for each generated modification suggestion whether he wants to 
follow it given the expected gain for the on-line diagnosis. Alternatively we can also 
imagine automating this process based on a formal description of the supervisor 
specifying the exact conditions under which a modification is to be made. With 
such a framework we aim at providing design recommendations for improving the 
diagnosability of health monitoring system for aircraft maintenance [Ghelam et al., 
2006] or to provide an assistance to the design of composite Web Services [Yan et 
a/., 2005].
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