
Towards E fficiently D iagnosing
Large Scale D iscrete-E ven t

S ystem s

Anika Schum ann

THE AUSTRALIAN NATIONAL UNIVERSITY

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

August 2007

Except where otherwise indicated, this thesis is my own original work.

(Vn ha
Anika Schumann

August 31, 2007

A cknow ledgem ents

I want to thank all people, who have supported this research work in Australia.
My special thanks are due to my supervisors, to Dr Thiebaux for her valuable
guidance throughout my thesis, to Dr Pencole for the many interesting discussions
about existing diagnosis approaches and new ideas and for the enumerative imple­
mentation of some diagnosis methods that also allowed me to compare my symbolic
approaches with existing work, and to Dr Huang for pointing me to the interesting
properties of jointrees and his numerous helpful comments on the presented work
with jointrees. My thanks belongs also to Dr Grastien for his valuable feedback on
my entire thesis.

I am also very thankful for the friendly working atmosphere at the Computer
Science Laboratory of the Australian National University and for all new friends,
with whom I share many nice memories.

iii

A b strac t

In this thesis we investigate the diagnosis of large discrete-event systems, where the
task is to determine, on-line, all failures and states that explain a given sequence
of observations. The main challenge here is to deal with the large number of
possible explanations which either results in a very slow diagnosis or, in case they
are compiled off-line, in huge space requirements for the diagnosis algorithms. We
tackle this problem from two angles: On the one hand we present a broad spectrum
of approaches differing in the amount of reasoning and compilation performed off­
line and therefore in the way they resolve the tradeoff between the space occupied
by the compiled information and the time taken to produce a diagnosis. This allows
the use of our approach to applications with diverse time and space requirements.
On the other hand we define a framework to assist a human system supervisor in
reducing the number of possible diagnosis explanations by identifying the causes
that make the system so poorly diagnosable and that require a respecification of the
system behaviour. This asks for an extended handling of the diagnosability problem
to not only verify whether accurate diagnostic reasoning can be performed on the
system but also to provide all possible reasons of why this might not be the case.

To increase efficiency, we have defined a symbolic framework for our spectrum
of diagnosis approaches based on binary decision diagrams. This allows for the
compact representation of the compiled diagnosis information, and for its handling
across many diagnosis explanations at once rather than for each explanation indi­
vidually. In contrast, the efficiency of solving the extended diagnosability problem
is increased by exploiting the system structure and organizing the system compo­
nents into a special tree structure, known as a jointree.

C on ten ts

A cknow ledgem ents iii

A b stract v

1 In trod u ction 1

1.1 Diagnosis - an Informal In tro d u c tio n ... 1

1.1.1 Why to D iagnose... 1

1.1.2 What to Diagnose... 2

1.1.3 How to D iagnose ... 3

1.2 Approaches to D iagnosis... 4

1.2.1 Fault-tree Based M e th o d s ... 4

1.2.2 Expert Systems M ethods.. 4

1.2.3 Model-based Methods .. 5

1.3 Frameworks for Diagnosing D E S... 6

1.3.1 Representation Formalisms for D E S 7

1.3.2 Classification of Diagnosis Algorithms..................................... 8

1.4 Diagnosability of D E S .. 12

1.5 Thesis Motivation & Contribution.. 13

1.5.1 Assisting in the Development of Diagnosable Systems 13

1.5.2 Diagnosis for Different Requirements of Applications 15

1.5.3 Increasing the On-line Diagnosis Efficiency................... 16

1.6 Thesis Organisation.. 17

2 A Sym bolic Fram ework for D iagn osin g D iscrete-E ven t S ystem s 19

2.1 Introduction.. 19

vii

Contentsviii

2.2 Background: Binary Decision Diagrams.. 21

2.2.1 Representation of B D D s ... 21

2.2.2 Variable Ordering of BDDs ... 22

2.2.3 Reduction of ordered B D D s ... 24

2.2.4 Application of B D D s... 25

2.3 Background: Diagnosis Problem and Direct Diagnosis Models . . . 28

2.3.1 Example Application... 28

2.3.2 Modelling of the S y s te m ... 29

2.3.3 Diagnosis Problem for Discrete-Event System s...................... 32

2.3.4 Spectrum of Direct Diagnosis M odels..................................... 33

2.4 The Symbolic Direct Diagnosis Approach... 37

2.4.1 Spectrum of Symbolic Direct Diagnosis Models 37

2.4.2 Comparison of Symbolic and Enumerative Diagnosers 53

2.4.3 Symbolic On-Line Diagnosis... 55

2.4.4 S u m m ary ... 59

2.5 The Symbolic Compiled Diagnosis A pproach..................................... 60

2.5.1 Spectrum of Compiled Diagnosis M o d els 60

2.5.2 Experimental Comparison of Model Sizes............................... 71

2.5.3 Correctness of Compiled Diagnosis Approach......................... 72

2.5.4 On-line Diagnosis Based on the Compiled Diagnosis Models 77

2.5.5 Experimental Comparison of On-Line Diagnosis Algorithms 79

2.6 Related W o rk ... 80

2.7 Summary .. 83

3 S ca lab le D ia g n o sa b ility C h eck in g 85

3.1 Introduction... 85

3.2 Background... 87

3.2.1 Diagnosability of a Fault in Discrete-Event System s............ 87

3.2.2 Twin Plant Approach for Diagnosability Checking............... 88

3.2.3 Jointrees.. 92

3.3 A Jointree Algorithm for Diagnosability 92

Contents ix

3.3.1 Establishing Consistency... 93

3.3.2 Message Passing ... 95

3.3.3 Propagation of Diagnosability Inform ation............................ 98

3.3.4 An Iterative Jointree A lgorithm ..104

3.3.5 Jointree Node Selection... 106

3.4 Further Enhancements and Modifications...106

3.4.1 Reduction of Message Sizes ..106

3.4.2 Reduction of Message Propagations... 113

3.4.3 Improvement of Scalability... 115

3.4.4 Diagnosability of a System ... 115

3.5 Relation to Previous W o rk ... 117

3.6 Assisting in the Design of Diagnosable Systems122

3.6.1 Computation of Critical P a th s ...122

3.6.2 Dependencies among Critical P a th s ..126

3.6.3 Optimal Removal of Nondiagnosability C auses.........................129

3.6.4 Cost-Driven Computation of Nondiagnosability Causes . . . 130

3.6.5 Extension to Multiple F au lts..130

3.6.6 S u m m ary ...131

4 C onclusion 133

4.1 Thesis C ontributions...133

4.2 Directions for Future W ork... 135

B ibliography 137

Contents

C hapter 1

Introduction

1.1 D iagnosis - an Informal Introduction

Diagnosis is commonly regarded as the task of explaining an abnormal behaviour
of a physical system. This is achieved by monitoring the system and interpreting
its behaviour. It is then the responsibility of the system’s supervisor to use this
interpretation in order to choose appropriate actions that remove the system’s
abnormalities. This concept is illustrated in Figure 1.1.

Diagnosis
Monitor Interpret

System Supervisor

Figure 1.1: Diagnosis concept

1.1.1 W h y to D iagnose

Fault detection and isolation are crucial for a wide range of applications. Several
of the significant industrial disasters in the past, such as the major blackout of
New York city, or the Appollo 13 incident could have well been prevented by a
timely and accurate detection of a failed relay, or a burnt-out switch [Perrow,
1984]. Thus safety and reliability are two main factors motivating the diagnosis
study. Moreover, avoiding undesirable effects of faults, improves the operational
goals of industries, such as increased quality of performance, product integrity, and
reduced cost of equipment maintenance and service.

1

2 Introduction

However, given the complex and often non-apparent interactions and coupling
between system components, manual fault detection is extremely difficult if not
impossible. Automated diagnosis mechanisms are therefore needed to monitor large
dynamic applications such as telecommunication networks, business processes, web
services, spatial systems, software components, and power supply networks. This
thesis presents several approaches that aim at increasing the efficiency of the on-line
diagnosis to allow for a more timely identification of faults.

1.1.2 W h at to D iagnose

In order to perform diagnosis it is necessary to know, how to use the information
obtained from the system to reason about the system’s behaviour and its abnor­
malities. It is also important to determine which abnormalities are to be diagnosed
and passed on to the supervisor. Diagnosis aims to disclose all possible faults. A
fault is any abnormality of a system that requires some actions by the system’s
supervisor. For instance, in the context of telecommunication networks a cut cable
is considered as fault while a wrongly dialled phone number is not.

Faults can be divided into primary and secondary faults. Primary faults, like
a cut cable, are independent from other faults. Instead, secondary faults occur
as consequence of another fault. For example, a blocked telephone might have its
origin in a cut cable.

Moreover, faults are partitioned into permanent and intermittent faults. For
instance, a cut cable is a permanent fault, since it cannot be repaired by the system.
In contrast, a telephone that is blocked due to a cut cable might be repairable.
Once the system recognises the problem it might use a reserve cable for the data
transmission. Then the previously blocked telephone is functioning normally again.

One can also distinguish between external and internal faults. External faults
(e.g. a cut cable) are the consequence of some event outside the system, while
internal faults (e.g. a blocked telephone) have their origin within the system.
Generally the system is able to detect the reason leading to an internal fault, while
it cannot reason about external faults. For example, it is important to detect that
a cable is cut, but not how the cable was cut.

The classification of external and internal faults relates to the distinction be­
tween a system and its environment. The system is composed of all those entities
that are relevant to the diagnostic reasoning. However, a system cannot be viewed
independently from its environment. For instance, the person that cuts or repairs

1.1 Diagnosis - an Informal Introduction 3

the cable is part of the system’s environment, since the consequences of his actions
have to be taken into account. However, he is not part of the system, since his
actual action, that is how he cut the cable, is irrelevant for the diagnostic reasoning.

Finally, different types of fault information can be distinguished: fault detection
which simply states whether the systems is faulty or not, fault localisation where the
faulty components are determined, fault identification where the exact faults that
have occurred are computed, and fault propagation where also the consequences of
faults and their dependencies are considered. Clearly, the richness of the diagnosis
result increases from fault detection to fault propagation. In the same way, the
time and space requirements of the diagnosis methods that compute these fault
types increase.

Summarising, diagnosis can be defined as the aim of detecting, localising, iden­
tifying, or propagating all primary and secondary, permanent and intermittent,
external and internal faults of a system, that have any importance to the system’s
supervisor. These relevant faults have to be specified beforehand by a human
supervisor.

1.1.3 H ow to D iagnose

Firstly, diagnosing faults of a system requires some understanding of the system’s
internal structure and its interdependencies. It is necessary to know the conse­
quences of the faults. If a fault occurs the system usually changes its behaviour,
since it is no longer able to perform all its designed functionality. Secondly, in order
to reason about state changes, the system needs to be monitored or observed. This
is done by equipping it with a set of sensors. The kind of sensors required depends
on the faults to be diagnosed. For example, a sensor placed at a cable might pro­
vide the information, whether the cable is cut or not. By observing this sensor it is
now possible to detect the fault ’cut cable’. In general, the diagnostic task can be
described as follows: Given a set or a sequence of observations (sensor readings),
what are the faults that have occurred? This task can be performed on-line or
off-line. In on-line diagnosis, the system is assumed to be in working operation and
the fault information is continuously updated with the events observed. In off-line
diagnosis, the system is not in working operation and can be thought of as being
in a testbed. Here the fault information is computed once and for all based on the
complete sequence of events observed.

4 Introduction

A system is said to be diagnosable if the occurrence of every fault can be de­
tected with certainty after a finite number of subsequent observations. In practice,
industrial systems are not diagnosable due to sensor costs and technological feasi­
bility. However, many systems are equipped with some kind of indicators such as
alarms or warning lights. By observing these indicators it is possible to determine
all faults that might have occurred without knowing whether they have indeed
occurred.

1.2 A pproaches to D iagnosis

Due to its dramatic importance in many application domains, automated diagno­
sis of large scale systems has received constant and considerable attention from
researchers in the fields of Artificial Intelligence and Control. The existing diag­
nosing methods can be classified as fault-tree based systems, expert systems and
other knowledge-based, and model-based ones.

1.2.1 F ault-tree B ased M eth od s

A fault tree [Viswanadham & Johnson, 1988] is a graphical representation of the
cause-effect relationship of faults in the system. Based on an observation that
indicates an abnormality of a system, the fault tree is used to reason backwards,
until the root cause of the fault is found. This method is typically applied to alarm
analysis in complex system. The main task here is to identify and localise the
source of a fault based on simple observations like alarms. However, a fault in one
component often causes a faulty behaviour in another component. This leads to a
number of different alarms being emitted which makes it difficult to identify the
initial fault. Moreover, the complex problem of constructing the fault tree limits
its applicability in practice.

1.2.2 E xp ert S ystem s M eth od s

For systems with subtle and complicated interactions a diagnosis based on expert
systems [Scherer & White, 1987] is often best suited. These systems are tradition­
ally rule based. The rules are retrieved from the heuristic knowledge of an expert
who relates observations to the faults that produce it. Many of these systems are
based on structures and techniques relating to fault trees [Poucet et al., 1987]. The
drawbacks of expert system approaches are: the effort to capture the expertise

1.2 Approaches to Diagnosis 5

required for the diagnosis, the difficulty of validating the systems and their domain
dependence.

1.2.3 M odel-based M eth od s

It is now widely recognised that building large-scale systems is best achieved by
means of model-based representation. That is, rather than relying on procedural
expert knowledge, the system exploits explicit models of individual components,
which it combines to automate the reasoning about system wide interactions.

In the classical theory of model-based diagnosis [de Kleer Sz Williams, 1987;
Reiter, 1987], a diagnosis problem consists of a system description, a set of system
components, and observations of the system. The system description specifies the
general rules that must be followed in order for the system to function normally.
Here, the system is considered to be static. This means that the observations are
given at a single time point. A diagnosis is defined to be a minimal set A of system
components such that the following two conditions are consistent with the events
observed:

• all components in A are faulty and

• all other components are normal.

Thus it is possible that more than one diagnosis exist where none of the diagnoses
is a subset of another one.

More recently, diagnostic tasks have been successfully developed for some classes
of dynamic systems [Struss, 1997], which allow spontaneous state changes, either
triggered by events in the environment, or resulting from the system’s internal
dynamics. A good deal of these research efforts has been devoted to model-based
diagnosis of systems modelled as discrete-event systems (DES). DES [Cassandras
h Lafortune, 1999] are dynamic systems with a discrete state space. Its behaviour
is governed by the occurrence of physical events that cause abrupt changes to the
state of the system. The majority of large complex systems can be modelled as
DES at some level of abstraction. This discrete-change abstraction is simpler than
a continuous-change one and it is still quite powerful, since for diagnostic purposes
many continuous systems can be modelled as discrete using qualitative reasoning
techniques [iwasaki, 1997].

Qualitative reasoning methods enable a program to reason about the behaviour
of physical systems without the kind of precise quantitative information needed

6 Introduction

VI

si O

52 O -

V I : {open, closed}
V2: {open, closed}
S I : {reached, not reached}
S2 : {reached, not reached}

Figure 1.2: Abstract representation of a tank

by conventional analysis techniques. Figure 1.2 illustrates this concept using the
example of a tank. The tank is equipped with two valves V\ and V2 that can be open
or closed and with two sensors S i and S2 that provide the information whether the
water has reached the specified level or not. The tank contains an arbitrary amount
of water and the flow speed of water passing through the open valve V2 varies with
the quantity of water in the tank. Thus this system is continuous. However, for
diagnostic purposes it might only be relevant to know, whether the water level is
between the two sensors or not, and whether the valves are open or not. In that
case the system can be modelled as discrete-event system. The state space consists
of the combination of the valve and sensor settings: V\ x V2 x Si x S2. Now it is
no longer possible to retrieve the exact amount of water in the tank, but from a
diagnostic point of view this is irrelevant. For instance, given a closed valve V2, a
leak can be diagnosed when the sensor S2 returns reached followed by not reached.

1.3 Fram ew orks for D ia g n o sin g D E S

In the last few years a number of approaches have been developed for the diagnosis
of DES. As stated in the previous section, these approaches are not only applicable
to systems that are typically discrete like communication networks or computer
systems, but also to systems that are traditionally continuous. This section first
describes the different ways DES can be represented to perform diagnosis tasks.
All these diagnosis approaches assume completeness. Then we give an overview of
the research carried out, and we provide several classifications of diagnosis algo­
rithms. The main challenge when dealing with large scale systems is the handling
of the space/time tradeoff of diagnosis methods. The section therefore closes by
presenting state of the art research aiming at solving this problem.

1.3 Frameworks for Diagnosing DES 7

1.3.1 R ep resen tation Form alism s for D E S

F in ite S ta te M achines

The first framework for diagnosing DES was defined in [Sampath et al., 1995]. Here,
the system can consists of several distinct physical components which might share
certain events. A component can be thought of as the smallest replaceable unit of a
system. The components are modelled as finite state machines (FSMs). The states
of the FSM correspond to the component’s internal state and the transitions refer to
its events. Each transition represents the change of states caused by the occurrence
of a single event. Events are divided into sets of observable and unobservable events.
Anything that can be observed by the component using its sensors is modelled as
observable event. All other events are considered unobservable. A subset of the
latter are the fault events. Recalling from section 1.1.2, only those abnormal events
that have any relevance to the system’s supervisor are regarded as faults. Faults
are assumed to be permanent. Thus a fault transition indicates only the beginning
of a fault. Note that this approach assumes that it is precisely known how the
system behaves if a fault occurs.

Finite state machines can also be used to model DES as set of communicating
automata [Roze & Cordier, 2002; Lamperti &: Zanella, 2006]. In this setting, every
component is equipped with input and output terminals to allow interaction among
the components. These connections are described in terms of a structural m.odel,
which is represented as a graph whose nodes are components and whose edges are
the connection links. In addition, a behavioural model, represented as FSM, is used
to describe how each component reacts to incoming messages.

P rocess A lgebra

The process algebra approach [Console, Picardi, & Ribaudo, 2002] is very similar to
the previous one in that it supports the same compositional method to modelling.
The DES is described with two models: One for the structure of the system,
namely the enumeration of the component instances and their connections, and
one for the behaviour of each component type. These models are defined by means
of Performance Evaluation Process Algebra (PEPA) [Hillston, 1996], an algebraic
description technique.

8 Introduction

P e tr i N ets

DES can also be modelled as Petri nets, which are especially suitable for repre­
senting concurrent systems. These nets are described by places, transitions and
directed links between them. Each place may contain several tokens. However, for
diagnostic purposes it is sufficient to consider only places with at most one token
[Aghasaryan et al., 1997]. A marking of a Petri net, that is, an assignment of tokens
to places corresponds to a system state. In order to diagnose a DES, transitions
are labelled as observations and certain places are labelled as faults. The system
is faulty if at least one fault place contains a token.

1.3.2 C lassification o f D iagnosis A lgorith m s

Generally, time efficiency is achieved at the expense of space efficiency and vice
versa. We now describe how different diagnosis approaches resolve this time/space
tradeoff. First we introduce two distinct classifications of diagnosis approaches:
simulation-based and diagnoser approaches on the one hand and centralised, de­
centralised and distributed approaches on the other hand. Then we present a
number of approaches achieving some level of both: time and space efficiency.

S im ulation-based and D iagnoser based A pproaches

Existing model-based methods can be classified into two categories: on-line simu­
lation-based approaches compute the diagnosis from the behavioural model of the
system while the latter is working: diagnoser approaches precompute all possible
diagnoses off-line, that is while the system is not working, and retrieve, on-line, the
candidate diagnosis explaining the current set of observations. Due to the size of the
supervised applications, existing approaches usually suffer either from poor time
performance or from space explosion. Given a system model as a set of individual
components and their interactions, that is, a decentralised model, simulation-based
approaches such as that of Baroni et al. (1999) track the possible system behaviours
on-line as observations become available; the reliance on a decentralised model
makes them space efficient, but the set of possible behaviours is so large that on­
line computation can be time inefficient. In contrast, diagnoser based approaches
such as that of Sampath et al. (1996) compile, off-line, a centralised system model
into another finite state machine (the diagnoser) which efficiently maps observations
to possible faults; here the space required by the centralised model, let alone that
required by the diagnoser, constitutes a major problem.

1.3 Frameworks for Diagnosing DES 9

D istributed, Decentralised, and Centralised Approaches

Diagnosis approaches can also be classified into distributed, decentralised and cen­
tralised methods1. For the latter, there is one global system model from which
the diagnosis result is computed directly or indirectly [Sampath et al., 1995]. In
decentralised approaches such as [Pencole k Cordier, 2005] there also exists such
a global model, but this is given only indirectly as a set of components. For each
of these components the local diagnosis information is computed and later com­
bined to obtain the global diagnosis result. Due to the underlying global system
model, all events emitted system wide are ordered, which allows the reasoning of
global dependencies among faults. On the other hand, this makes decentralised ap­
proaches less suitable for modelling concurrent systems. For the latter, distributed
methods like [Fabre, Benveniste, k Jard, 2002; Wang, Yoo, k Lafortune, 2004;
Su k Wonham, 2005; Qiu k Kumar, 200G] are commonly used. Here only the
observations from the same component or the same subsystem, also referred to
as site, are ordered. Mostly, each site has its own local diagnoser associated to
it. The global diagnosis, for instance, is computed by exchanging messages among
these diagnosers. This differs from the decentralised approach, in which there is
a centralised coordination of the local diagnosers. In comparison to centralised
approaches, decentralised and distributed ones require more diagnosis time while
requiring less space. In fact, due to the high space requirements of centralised
methods they can hardly be applied to large scale systems.

Diagnosis Approaches Tackling the T im e/Space Tradeoff

Clearly diagnosis methods considering the time/space tradeoff are needed. The
authors in [Roze k Cordier, 2002] approach it by presenting a single framework
using communicating automata which can handle simulation-based and diagnoser
approaches independently. However, most works in this direction aim at combining
these two diagnosis methods. In the following we give a brief overview about them.

In [Debouk, Lafortune, k Teneketzis, 2000] the authors have proposed a frame­
work consisting of a set of diagnosers, that each explain the observations from one
site. The states of these diagnosers are labelled by sets of global states and fault
labels, and the transitions by the events that can be observed by the site. When

1This is the classification adopted by the Artificial Intelligence community. In the field of
Automatic Control the only distinction made is mostly the one between centralised (what we
refer to as centralised and decentralised) and decentralised (what we refer to as distributed)
approaches.

10 Introduction

a site observes an event, transitions in the corresponding diagnoser are triggered.
The resulting states are labelled with the diagnosis information of this site. For
sites in which the event cannot be observed the local diagnosis information remains
unchanged. The global diagnosis information is computed from the local diagnosis
information of all sites using coordinated decentralised protocols.

The work [Garcia et al., 2005] presents another approach that computes the di­
agnosis information based on a set of diagnosers. Here the authors target systems
that are composed of subsystems that do not interact with each other and of a com­
plex global controller that interacts with several subsystems. The work shows how
the global controller, whose events are all observable, can be decomposed to derive
a set of minimum local controllers that each only interact with one subsystem.
A diagnoser model is computed for each subsystem and the corresponding local
controller. The global diagnosis information can straightforwardly be obtained as
the Cartesian product of the corresponding local diagnoser states, since no inter­
actions need to be considered. However, this approach is not applicable to systems
in which the behaviour of one subsystem has an impact on another subsystem.

The continuous diagnosis approach introduced in [Lamperti & Zanella, 2003a]
combines the classical diagnoser approach with the active systems approach. While
the latter can only be used off-line, the continuous diagnosis approach enables the
on-line computation of diagnosis information made of two parts. The first part
is the snapshot diagnostic set, which consists of the faults that are possible after
the last event has occurred. The second part is the historic diagnostic set that
contains the complete diagnosis information consistent with the entire sequence of
events observed. When a new event is observed, the new historic diagnostic set is
computed based on the former snapshot and historic sets.

In contrast to the previous approaches, Pencole and Cordier (2005) present a
decentralised diagnosis framework that computes the complete fault propagation
result and thus also returns all dependencies among faults. The diagnosis algo­
rithm retrieves a finite state machine containing all events observed and the faults
consistent with them, thereby allowing a deeper reasoning about the occurrence of
faults. The approach is based on a set of subsystems whose states are labelled with
a set of graphs each explaining the occurrence of one observation possible in that
state. The subsystem transitions are labelled with the observable events. Once an
event is observed, the on-line diagnosis approach proceeds by triggering the corre­
sponding transition in the subsystem that emitted the event. It also keeps track
of the subsystem states reached. The graphs labelling these states are synchro-

1.3 Frameworks for Diagnosing DES 11

nised to account for the interactions between different components and compute
the actual diagnosis information. This approach is very suitable for systems which
require the diagnosis of fault dependencies. Depending on the extent to which state
and transition independencies in the diagnosis result can be exploited, an efficient
representation of the latter is also possible [Cordier & Grastien, 2007].

All previous approaches described in this subsection have one thing in common:
they partially compile diagnosis knowledge off-line to allow for a faster on-line di­
agnosis. A complete compilation would require the consideration of every sequence
of events and the representation of this compiled knowledge which is infeasible for
large systems. The work of [Lamperti & Zanella, 2006] addresses this problem and
performs an additional compilation on-line based on the actual event sequence ob­
served. This special purpose knowledge can then be used to increase the efficiency
of similar diagnosis tasks.

For performing diagnosis based on Petri nets, the authors of [Benveniste et
al., 2003] introduce diagnosis nets as a way to encode all solutions of a diagnosis
problem. A solution is a marking of a Petri net, that is, the set of places with
a token. In contrast to the diagnoser approach, the computation of the diagnosis
nets is performed on-line by relying on Petri net structure only and thus is more
space efficient.

Note that the space problem of diagnosis approaches can not only be solved
at the expense of computation time, but also at the expense of adding inconsis­
tent explanations to the diagnosis result. Such an approach is presented in [Su &
Wonham, 2005] where the authors introduce the concepts of global and local con­
sistency. Only if the diagnosis result is globally consistent it contains exactly the
information that is consistent with the event sequence observed. Otherwise, when
the space efficient local consistency check is performed, it may contain additional
diagnosis candidates. Both consistency checks do not consider the computation
time as this approach is entirely off-line.

We conclude this section with a comparison of the main approaches presented
in this subsection. Figure 1.3 illustrates how these works relate to each other with
respect to the degree of compilation performed off-line and with respect to the
precision of the diagnosis result they compute (see page 3).

12 Introduction

high—

o
*4— 4—*o co
CD "5
CD Q_
O) E
CD O

T3 <->
CD
Q_

[Sampath etal., 1995]

[Debouk et al., 2000]
[Garcia et al., 2005]

[Baroni etal., 1999]
Q

0
O

[Roze & Cordier, 2002]

[Pencole & Cordier, 2005]
©

[Su & Wonham, 2005] [Lamperti &
[Fabre et al., 2002]
[Benveniste et al., 2003]

Zanella, 2003]

low
(fault detection)

preciseness of diagnosis result high
(fault propagation)

Figure 1.3: Comparison of diagnosis approaches

1.4 D iagnosability of DES

A system is diagnosable iff the occurrence of a fault guarantees that it can be
detected with certainty after a finite number of subsequent observations. The di­
agnosability problem for DES has been introduced in [Sampath et al., 1995] where
the authors solve it by detecting some transition cycles of ambiguous states in a di-
agnoser. The main drawback of this method results from the diagnoser computation
which is exponential in the number of states in the global model (determination)
and as a consequence is doubly exponential in the number of components in the
system. [Jiang et al., 2001; Yoo & Lafortune, 2002] then propose new algorithms
which are only polynomial in the number of states in G and which introduce the
twin plant method. This method is elegant but impractical for large systems as
the twin plant has a size quartic in the number of system states. Recent work
addresses this issue by building local twin plants for system components, and syn­
chronising them with each other until diagnosability is decided [Pencole, 2004].
Still, in the worst case, all local twin plants need to be synchronised, again produc­
ing the global twin plant. Moreover all these approaches see the diagnosability
problem as a test on a system and not as a deep analysis of the reasons why a
system is not diagnosable.

1.5 Thesis Motivation Sz Contribution 13

1.5 T hesis M otivation & C ontribution

Current model-based diagnosis approaches generally fail when confronted with large
scale discrete-event systems. However, there is an increased need for automatically
diagnosing such systems in many application domains. The work presented in this
thesis aims at reducing the gap between existing and required diagnosis methods
by tackling the efficiency problem at every step, that is

• at design time
by improving diagnosability in order to reduce the number of diagnosis ex­
planations that need to be considered on-line

• at compilation time
by taking into account the requirements of the supervised system in order to
choose the best algorithm among a spectrum of approaches and

• at monitoring time
by using symbolic algorithms that speed up the on-line computations and
reduce the space requirements of the diagnosis approaches.

1.5.1 A ssistin g in th e D ev e lo p m en t o f D iagn osab le S y stem s

The gap between existing and required diagnosis methods can be reduced by mak­
ing changes to the system itself to reduce the number of diagnosis explanations
consistent with a sequence of observations. This requires in the first place to iden­
tify and analyse all causes that make the system not diagnosable. Until now the
only work performed in this direction deals with the identification of a single nondi-
agnosable cause. This is done in the context of solving the diagnosability problem.
Now, in order to assist a systems supervisor in respecifying a large scale system we

1. present an efficient diagnosability approach which is

2. scalable and which

3. computes the minimum-cost solution for making the whole system diagnos­
able.

1. Our diagnosability approach exploits the modularity of the system by organ­
ising its components into a special tree structure, known as a jointree, where each
node of the tree is assigned a subset of the local twin plants. Once the jointree is

14 Introduction

constructed we need only synchronise the twin plants in each jointree node, and
all further computation takes the form of message passing along the edges of the
jointree. The properties of the jointree guarantee that after two messages per edge,
the FSMs at all nodes are collectively consistent. To further increase efficiency we
also present additional techniques to reduce the number and size of the messages
computed.

The question of efficiency is also raised in [Cimatti, Pecheur, & Cavada, 2003;
Rintanen & Grastien, 2007; Pencole, 2004]. The first of these works makes use of
symbolic model-checking tools to test a restrictive diagnosability property. Here
the global twin plant is encoded by means of binary decision diagrams. Still, for
large systems even the symbolic representation of the global twin plant might not
be feasible. The second approach can verify the nondiagnosability of a system
using SAT, but cannot verify diagnosability. Finally, the third work shows how di-
agnosability can be decided without computing the global twin plant by iteratively
synchronising local twin plants. This approach forms the basis of our work. How­
ever, it is only applicable to systems satisfying a restrictive property. Section 3.5
shows how this approach can be simulated with jointrees and gives a detailed com­
parison to our work. Rather than passing messages with bounded event sets the
work presented in [Pencole, 2004] requires the synchronisation of twin plants to
check consistency, which is generally less efficient.

2. When dealing with large scale systems it is essential that our diagnosability
algorithm is scalable in the sense that it is able to provide an approximate solution
to the diagnosability problem whatever the computational resources are. The
work presented in this thesis is the first one that considers scalability.

3. The number of problems can easily be too high to manually reason about
them. We assist a human system designer by automatically deriving a characteri­
sation of ” best” system modifications to restore diagnosability. Here, it is assumed
that cost estimates are available that reflect important characteristics of proposed
system modifications, such as accessibility of subsystems.

Improving the diagnosability of systems is also the key motivation of work
in the area of optimal sensor placement. Existing sensor placement algorithms
are based on the global representation of the system model, which may not be
computable for large systems. In contrast, our approach permits to determine an
optimal sensor placement based only on computations carried out over subsystems.
Furthermore, we improve upon previous approaches to solving the diagnosability
problem by exploiting cost estimation to prune models of subsystems in order to

1.5 Thesis Motivation & Contribution 15

gain computational efficiency.

1.5.2 D iagn osis for D ifferent R eq u irem en ts o f A p p lica tion s

We also consider the different needs of applications with respect to their space
and time requirements. Our unified framework therefore consists of a spectrum of
approaches which differ in the degree of reasoning performed off-line and by the
nature and the size of the underlying compiled models. In particular, we developed
on-line diagnosis approaches based on the following models (sorted by the amount
of computations performed off-line starting with no compilation):

1. component model,

2. decentralised diagnosis model,

3. global model,

4. centralised diagnosis model,

5. abstracted model,

6. nondeterministic diagnosis model, and

7. diagnoser model.

The model spectrum closest to ours is the one in [Sampath et al., 1996]. It
starts with a set of individual component models that are composed to obtain the
global model from which the diagnoser is computed. Here models 1 and 3 are
presented as computation steps. The work describes only one diagnosis approach,
the one based on the diagnoser model.

Models 2 and 4-6 have not been introduced previously and all diagnosis ap­
proaches based on them are novel. Figure 1.4 illustrates how our diagnosis ap­
proaches relate to existing work. Note, that our methods cannot directly be com­
pared to the ones presented in [Debouk, Lafortune, & Teneketzis, 2000; Garcia et
al., 2005]. These authors follow a distributed approach and thus use different as­
sumptions about the observable events and their order. In contrast our approaches
are centralised (models 3-7) and decentralised (models 1-2).

Figure 1.4 shows that all our approaches compute the same diagnosis result.
This allows us to conduct a fair comparison of how our different methods resolve
the time/space tradeoff. The reason why we chose our diagnosis result to consist of

16 Introduction

h ig h -

.o
H— •
O CO
CD =3
CD Q .
O) E
CD O

"O oP
Q .

[Sampath etal., 1995]

[Debouk etal., 2000]
[Garcia etal., 2005]

[Baroni etal., 1999]

[Roze & Cordier, 2002]

O
Spectrum of our approaches

[Pencole & Cordier, 2005]

[Su & Wonham, 2005]
[Fabre et al, 2002]
[Benveniste et al., 2003]

[Lamperti &
Zanella, 2003]

low
(fault detection)

p rec isen ess of d iagnosis result high
(fault propagation)

Figure 1.4: Spectrum of our diagnosis approaches contrasted to existing work.

the fault identification information was motivated by the fact that we expected for
such diagnosis approaches the impact of symbolic techniques (see next subsection)
to be the highest.

1.5.3 Increasing th e O n-line D iagn osis E fficiency

To increase efficiency, our diagnosis framework is implemented symbolically us­
ing binary decision diagrams (BDDs) [Bryant, 1986]. BDDs enable the compact
encoding and the implicit manipulation of sets of states and transitions. Firstly,
they allow us to reduce the space requirements of models with a high degree of
compilation. Secondly, they help reducing the diagnosis time of approaches with a
low degree of compilation by avoiding the individual consideration of all possible
diagnosis explanations. Therefore, in our approach

• all models are represented as symbolic finite-state machines, and

• all computations are implemented via symbolic operations.

The idea of exploiting symbolic representations in the context of discrete-
event systems diagnosis is not new [Cimatti, Pecheur, & Cavada, 2003; Cordier &
Largouet, 2001; Sztipanovits & Misra, 1996], but it has traditionally been applied
to different problems, e.g. checking diagnosability or off-line diagnosis, using off-
the-shelf model-checkers. An exception is the work by Marchand and Roze (2002)
which recasts a form of diagnoser synthesis in terms of polynomial equations. In
contrast to that work, we present the BDD-level encoding and computation of a

1.6 Thesis Organisation 17

spectrum of diagnosis models ranging from component models to diagnoser mod­
els. For each of these models, we show how the diagnosis information (i.e. all
faults and system states that explain a sequence of observations) can be derived
on-line, by means of symbolic computations which maximise the benefits of BDDs
for efficiently representing and manipulating large data sets.

1.6 T hesis O rganisation

The thesis is organised as follows. Chapter 2 defines and evaluates our symbolic
diagnosis approaches. Chapter 3 then presents our approach to diagnosability and
shows how it can be used to assist a human system designer in respecifying the
system to make it diagnosable. Finally we conclude with a summary of the main
contributions of this thesis and remarks about future work in Chapter 4.

18 Introduction

C h ap te r 2

A Sym bolic F ram ew ork for
D iagnosing D iscre te-E ven t
System s

2.1 Introduction

For many years, automated fault diagnosis of dynamic event-driven systems has
received constant and considerable attention from researchers in the fields of Artifi­
cial Intelligence and Control. Given a monitor continuously receiving observations
from a system, automated diagnosis aims at identifying faults that explain the ob­
servations, and at providing an assistance to the operator in charge of the system’s
supervision.

In this chapter, we present a unified symbolic framework allowing for flexible
and efficient diagnosis in applications with different time and space requirements.
In this framework, we define and implement a spectrum of symbolic approaches
which resolve the space/time complexity tradeoff in various ways. Our symbolic
techniques are based on binary decision diagrams (BDDs) [Bryant, 1986] which
are compact representations of Boolean functions. They enable the encoding and
implicit manipulation of sets of states and transitions, without the need for explicit
enumeration.

The chapter consists of two parts. First, to demonstrate the advantages of sym­
bolic techniques for on-line diagnosis, we show how to directly compute a symbolic
representation of well-known models ranging from component models to Sampath
et al. diagnoser 1996, and how to retrieve the diagnosis information based on them.

19

20 A Symbolic Framework for Diagnosing Discrete-Event Systems

Furthermore we analyse the time/space tradeoff for the main computation steps
of the symbolic algorithms involved in this “direct" diagnosis approach. Our ex­
periments on test cases derived from a telecommunication application reveal the
superiority of our symbolic approaches in comparison to the enumerative ones. For
instance, we obtain a symbolic diagnoser significantly smaller than the enumerative
one, three orders of magnitude faster.

Based on our analysis of the direct approach, we define, in the second part,
a symbolic framework that more closely exploits the advantages of BDDs in such
a way that slow operations on models that hardly increase the model’s size are
computed off-line. In contrast to the direct approach, this “compiled” diagnosis
approach speeds-up on-line diagnosis by precomputing the diagnosis information
for each component individually. The resulting compiled diagnosis models are all
composed of two parts: (i) a decentralised representation of the diagnosis infor­
mation that is uniform across all models, and (ii) a representation of the system's
behaviour that ranges from a pure decentralised description (comparable to the
component models in the direct approach) to a deterministic centralised descrip­
tion (as e.g. the diagnoser model in the direct approach). Our experiments clearly
demonstrate the superiority of the compiled symbolic approach in comparison with
the direct one. For instance, the results reveal a significant speed-up of diagnosis
time using our decentralised diagnosis model in place of the component-based one.
They also show that one of our compiled models which is considerably smaller than
the diagnoser (20 times smaller for our examples), additionally returns a symbolic
diagnosis faster than the diagnoser.

This chapter is organised as follows. First we give an introduction to BDDs
in Section 2.2. Section 2.3 then defines the diagnosis problem for discrete-event
systems and introduces the models on which our direct diagnosis approach is based.
In Section 2.4, we show how these models can be represented by BDDs, describe
how we solve the diagnosis problem based on them, demonstrate their performance
and analyse their space/time tradeoff. Section 2.5 presents the compiled diagnosis
approach and its evaluation. Finally we review related work in Section 2.6 and
summarise our contribution in Section 2.7.

2.2 Background: Binary Decision Diagrams 21

2.2 B ackground: B in a ry D ecision D iag ram s

2.2.1 R ep resen tation o f B D D s

Binary decision diagrams (BDDs) [Bryant, 1986] are compact representations of
Boolean functions. They enable the encoding and implicit manipulation of sets of
states and transitions, without the need for explicit enumeration. In a range of
areas, such as static diagnosis, verification, controller synthesis, or AI planning,
BDD-based representations have given rise to algorithms capable of exploiting the
structure of the system, resulting in significant space and time gains.

BDDs are derived from Binary Decision Trees (BDTs). A BDT is a rooted,
directed tree with two types of nodes: terminal and variable nodes. The terminal
nodes are labelled 0 or 1 and have no outgoing edges. The variable nodes are
marked with a variable v and have two outgoing edges. Figure 2.1 illustrates an
example of a BDT.

Figure 2.1: Binary Decision Tree representing the function / = {a V b) A c.
Dashed lines indicate the low-successor of a node and solid lines refer to the nodes’
high-successor.

Every BDT represents a Boolean function / such that for every terminal node
labelled with 0 the function f (v i , . . . ,vn) returns 0 and respectively for every ter­
minal node labelled with 1 the function returns 1. The two outgoing edges of a
variable node labelled V{ point to the nodes low(vi) and high(vi): low(vi) is the
root of the subtree representing the function / where Vi has been assigned the value
0, while high(v{) refers to the function in which Vi has been assigned the value 1.
The BDT depicted in Figure 2.1 represents the function / = (a V b) A c.

A BDD is a rooted, directed acyclic graph with variable and terminal nodes
similar to a BDT. In contrast to the latter, a BDD has only one or two terminal
nodes. Figure 2.2 illustrates the BDD of the same function described already by

22 A Symbolic Framework for Diagnosing Discrete-Event Systems

the BDT in Figure 2.1.

o

Figure 2.2: Binary Decision Diagram representing the function / = (a V b) A c.

In order to express operations on Boolean functions in terms of efficient graph
algorithms, the BDD needs to be reduced and ordered. This is the case if

1. on all paths of the graph the variables respect a given linear order: V\ < V2 <
. . . < vn

2. no two distinct nodes V\ and v<i have the same variable name and the same
low- and high-successor-. \var{v\) = var{v2)\ A = low A

3. no variable node has identical low- and high-successor.

Henceforth the term OBDD is used to refer to a reduced and ordered BDD. The
graph depicted in Figure 2.2 is not an OBDD for three reasons: First, on the path at
the most left the variable ordering is a < c < b while the variables on the right most
path are ordered a < b < c. Second, the subtree c with low(c) = 0 and high(c) = 1
is displayed twice by the two right variable nodes c. Third, the two outgoing edges
of the left most variable node b point to the same node. To transform this BDD
into an OBDD. the variables need to be ordered, the duplicated variable nodes
removed and the nodes pointing to an identical node need to be deleted. The next
two subsections explain the transformation.

2.2.2 V a riab le O rd e rin g o f B D D s

The shape and size of an OBDD depends significantly on the variable ordering.
Figure 2.3 depicts an extreme case of how the ordering affects the size of the graph.
The same function (ai A b\) V (<22 A 62) V (a3 A 63) is illustrated twice: once with the

2.2 Background: Binary Decision Diagrams 23

variable ordering ai < b\ < ci2 < 62 < <23 < 3̂ (see left graph of Figure 2.3) and
once with the ordering <21 < a2 < 03 < 61 < 62 < 63 (see right graph of Figure 2.3).

Figure 2.3: Example of variable ordering dependency

In the first case, the variables are ordered according to their occurrence in
the function. From every second level in the graph only two branch destinations
are required: one to the terminal node 1 and one to the next level where every
disjunction up to this point yields 0. For the other case it is necessary to construct
the complete binary tree for the first three levels, since for each assignment to the
a variables, the function value depends in a unique way on the assignment to the
b variables.

More generally, the OBDD of the function (aq A 61) V . . . V (an A bn) contains
2n + 2 vertices if the variables follow the order a\ < b\ < a2 < 62 < • • • < <2n < bn
and 2n+1 vertices if the ordering is aq < 02 < . . . < an < b\ < 62 < • • • < bn. Thus
choosing an appropriate ordering can dramatically decrease the size of an OBDD.
In [Friedman & Supowit, 1990] the authors present an algorithm for an optimal
variable ordering based on a dynamic programming approach. The optimal variable
ordering for the simple BDD depicted in Figure 2.2 is: a < b < c. Figure 2.4
illustrates the ordered BDD1.

However, due to its exponential run time, this algorithm can only be applied

1At this point the two BDDs of Figures 2.2 and 2.4 still have the same size. The next subsection
shows, why the latter graph will lead to an optimal BDD.

24 A Symbolic Framework for Diagnosing Discrete-Event Systems

Figure 2.4: Ordered BDD representing the function / = (a V b) A c.

to functions with a small number of variables. In fact, as stated in [Bryant, 1986]
the problem of computing an ordering that minimises the size of the graph is itself
a coNP-Complete problem. In practice the ordering is chosen either manually by
a human with some understanding of the problem domain or automatically by a
program using some heuristics.

2.2 .3 R ed u ction o f ordered B D D s

The reduction of an ordered BDD requires on the one hand the removal of dupli­
cated variable nodes and on the other hand the deletion of nodes with identical
successors.

A duplicated variable node v\ is deleted following the merging rule. All arcs
leading to V\ are redirected to the identical node. The left graph of Figure 2.5
illustrates the BDD for the function / = [a V b) A c after all identical nodes have
been removed.

A node v2 for which both outgoing edges lead to the same node can be deleted by
applying the deletion rule. All incoming edges to v<i are redirected to the common
successor node. Figure 2.5 presents the OBDD of the function f = (a V b) A c.

The two reduction rules are sufficient to obtain the canonical representation
for each function and each variable ordering [Bryant, 1986]. Applying these rules
levelwise bottom-up, leads to an efficient reduction of BDDs. The authors in [Siel-
ing Sz Wegener, 1993] present a reduction algorithm with linear run time 0(|G |),
where |G| denotes the number of nodes in the BDD G. Note that it is possible if
not necessary to reduce a graph during its construction. Thus the computation of
large unreduced BDDs can be avoided.

Constructing OBDDs instead of BDDs leads to the canonical representation of

2.2 Background: Binary Decision Diagrams 25

Figure 2.5: Ordered BDD without duplicated variable nodes representing the func­
tion / = (a V b) Ac (left) and reduced and ordered BDD representing the function
/ = (a V b) A c (right).

a Boolean function. Since identical subexpressions in an OBDD are represented
only once, an OBDD can be exponentially more compact than its corresponding
truth table representation. For instance, the OBDD for the constants 0 and
1 respectively consists of exactly one terminal node. The uniqueness property
implies the possibility of testing in constant time whether an OBDD represents a
tautological function in which case the OBDD consists of the single terminal node 1
or whether the represented function is satisfiable in which case the OBDD consists
of any structure other than a single terminal node 0. In contrast, these problems
are NP-complete for Boolean expressions. In the remainder of this chapter we will
use BDDs to denote ordered BDDs.

2.2 .4 A p p lic a tio n o f B D D s

BDDs are useful in compactly representing finite state machines (FSMs). To en­
code state and event sets it is necessary to introduce Nr(Q) = [log2 |Q|"| Boolean
variables for each set Q. Thus the events labelling the transitions can be encoded
with the Boolean variables 6E = {bf , . . . , 6Er(̂ } and the states with the variables
bx = {bx , . . . , &)vr(x)}- A state of the FSM is then simply given by a Boolean
function (represented by a BDD) over these state variables. For instance, in a 6
state FSM, the state x 2 would be given by the conjunction ~>bx A bx A -*bx , and
the set of states {x2, x5} by the DNF (~>bx A bx A ~>bx) V (bx A ->bx A bx).

Transitions require the introduction of another set of state variables bx> =
{bx ' , . . . , bx 'r ̂y) }, called the primed variables, which are used to represent the tar­
get states of the transitions. Each transition can then be given as a conjunction
involving the state variables, event variables, and primed variables. For instance,

26 A Symbolic Framework for Diagnosing Discrete-Event Systems

BOOL IsDefibdd)
• Returns true if bdd does not represent false

BDD GetConj (bdd)
• Returns a single arbitrary disjunct (a conjunction of literals) of the

DNF represented by bdd. for example:

bdd (bi A 62) V (-'fri A -162)
GetConj(bdd) = (61 A 62)

BDD AbstractVar(bdd, {61,..., 6m})

• Deletes all occurrences of the Boolean variables {6l5. . . , 6 m} from
bdd, for example:

bdd «— (61 A 62 A 63) V (~ '&i A —162 A - >63)
AbstractVar(bdd, {63}) = (61 A 62) V (— A - i62)

BDD ExtractVar(bdd, { 6 1 , , 6m})

• Deletes all occurrences of the Boolean variables that are NOT
{61,..., bm} from bdd, for example:

bdd <— (b\ A 62 A 63) V (~ >6i A ~d>2 A ■“>63)

ExtractVar(bdd, {61,62}) = (61 A 62) V (—161 A - i62)

BDD SwapVar(bdd, {a1?. . . , an}, {6l5. . . , 6m})

• Swaps the Boolean variables (ai, 61), . . . , (an, 6m) in 6dd, for example:

bdd *— (61 A -162 A 63) V (—'61 A 62 A —163)

SwapVar(bdd, {61}, {62}) = (62 A —>61 A 63) V (-162 A 61 A ->63)

Table 2.1: Used BDD operations

2.2 Background: Binary Decision Diagrams 27

in a FSM consisting of 6 states and 3 events, the transition t = x 2 —L £5 can be
encoded as t = (->63 A bx A -<6*) A (->62 A b f) A (fof' A ->bx A 6*). The transition
relation, i.e, a set of transitions T, can be given as a DNF which the BDD data
structure will hopefully greatly reduce.

When using the compact representation and efficient manipulation of BDDs
in the context of our direct diagnosis methods, our representation of the com­
ponent models will essentially follow the usual symbolic FSM representation de­
scribed above, while all other models will be derived from these component models
via symbolic computations. This will be detailed in the next section. To in­
crease the readability of our symbolic algorithms, we introduce some basic BDD
operations shown in Table 2.1. Note that the table contains two similar func­
tions: AbstractVar and ExtractVar. Let bdd denote a BDD defined over the
set of variables B , and let V be a subset of B. The following equivalence holds:
AbstractVar (bdd ,V) = ExtractVar (bdd, B \ V).

Algorithm 1 illustrates the use of most of these BDD operations to compute all
states X reach that are reachable from a state set X via the transitions in T. Note
that we give identical names to sets and to the corresponding Boolean functions,
e.g. X. This should not cause confusion.

As described above, X is defined over the Boolean variables bx and T is defined
over the variables 6s U bx U bx ' . The reachable state set is computed using breadth
first search. Initially X reach is set to false and the set of states X new from which
transitions still need to be triggered is set to the start states X (lines 2-3).

Algorithm 1 C om pR each^,bx ,bx , X ,T)
1: INPUT: state set X, transition set T and the Boolean variables over which they are

defined
Initialise
2 . X reach * false
3- X new * X
4: while there are new states (that is as long as IsD e f (X new)) do
5: T i—-1 new X new A T
6: X ta r g * ExtractVar(Tnew, bx>)
7: X ta r g i SwapVar (Xtarg, bx , bx ')
8: X n e w i X ta r g A ““1X r each

9: X re a c h — X r e a c h V X new
10: end while
11: OUTPUT: all states X reach reachable from states in X by triggering transitions in T

28 A Symbolic Framework for Diagnosing Discrete-Event Systems

Until a fixed point is reached, all transitions Tnew starting in X new are triggered
(operator A) (line 5) and the targets states that have not yet been encountered
are added to X reach (operator V)(line 9). To obtain the target states X targ of
the transitions Tnew, we abstract the latter from its start states and events using
function ExtractVar (line 6). Originally the targets X targ are defined over the
variables bx>. In order to compute the transitions starting in states of X targ in
the next loop iteration, we swap the state variables to represent X targ over the
variables bx (line 7). Finally, to guarantee the termination of the algorithm, we
only consider those targets from which transitions have not yet been triggered.
Hence we subtract all previously encountered states X reach from X targ (operator
A-i)(line 8).

Note that all transitions starting from a set of states can be computed at once
(line 5). In fact, the whole procedure does not require the consideration of individ­
ual states or transitions. It is this property of BDDs that we aim to exploit in the
context of on-line diagnosis.

2.3 B ackground: D ia g n o sis P ro b lem and D irect

D ia g n o sis M o d els

This section describes how we model the systems to be diagnosed. Then we define
the diagnosis problem and a spectrum of models, the direct diagnosis models, that
can all be used to solve this problem. To illustrate our concepts we start by
introducing an example application which we will use throughout this chapter.

2.3.1 E xam ple A p p lica tion

Our example is derived from a telecommunication network [Roze & Cordier, 2002],
A supervision centre is in charge of continuously monitoring the system; it receives a
flow of alarms and analyses them on-line to identify possible faults (see Figure 2.6).
The supervised system is composed of two control stations (CS1 and CS2) and one
switch (SW). The switch is used to route data through the network. The purpose
of the control stations is to manage the switch by reconfiguring it or reinitialising
it. Only one control station manages the switch at a given time, the other is for
replacement in case the station in charge fails to work.

A fault SWfail can occur in the switch. In that case both control stations
are notified (event NotifySWfail) and the alarm SWobs is observed. If any of the

2.3 Background: Diagnosis Problem and Direct Diagnosis Models 29

CS1 CS2

Figure 2.6: Extract of a telecommunication network

control stations CSi becomes faulty (event CSifail), it emits the alarm CSiobs and
the other control station takes over (event Notify CSifail). However, in case the
switch becomes faulty while being managed by CSi, the control station cannot
emit CSiobs if it becomes faulty.

2.3 .2 M o d e llin g o f th e S y s tem

To encode a diagnosis problem symbolically and to be able to compare results
with previous work, we have chosen to start from the classical formalism for fault
diagnosis in discrete-event systems initially proposed by Sampath and colleagues
1995. In this formalism, the behavioural model is described as a set of finite state
machines (FSMs): a FSM represents the nominal, faulty, and observable behaviour
of each component. These FSMs are generally obtained following the modelling
of the diagnosis problem with a higher level description language which separates
the description of the system (i.e. system behaviour) from the description of the
diagnosis problem (what is observable, what is faulty) [Lamperti & Zanella, 2004].
The higher description language is out of the scope of this thesis.

Com ponent M odel

The component model is described using a FSM in which the transitions correspond
to events occurring on the component. Each component can react to fault events
by changing states and emitting observable events. Fault events are not observ­
able. They are a subset of the unobservable events. Without loss of generality we
assume that the shared events that are used to describe the interactions between
components are also unobservable. Finally, in order to model the component’s be-

30 A Symbolic Framework for Diagnosing Discrete-Event Systems

haviour completely, we introduce normal events that are unobservable and local to
the component.

Definition 1 (Model of a component) The model of a component is a finite
state machine Gi = (Xp Ep Xq̂ Tf), where

• Xi is the set of states (Xt — {xp, . . . , xmi});

• Ti is the set of events (X* = {dp, . . . , oVl});
Ei = E0i U EUi, where E0i are the observable and EUi are the unobservable
events;
ES; C EU| are the events that are shared among several components;
Ep C EUi are the fault events;
Eni — EUi \ (Ep U ESi) are the normal events;

• is the initial state;

• Ti is the transition set (Ti C X* x E* x Xi).

Figure 2.7 illustrates the component models for our running example (a simpli­
fied version thereof for the sake of readability). The components interact with each
other via the event NotifySWfail. Furthermore the control stations interact with
each other via the event NotifyCSifail. Initially the components are in states xo,
yo, and zq respectively. In the modelled setting, CSl is initially managing S W. If a
fault occurs in CSfi it emits the alarm CSlobs and the shared NotifyCSifail event
is issued, that is, it is sent by CSl and received by CS2. CS2 then changes its state
to z\ and manages the switch. Note that after the switch has become faulty and
NotifySWfail has been received by the control station CSi in charge, this control
station changes its state (to y2 or zfi) in such a way that the alarm CSiobs can not
be emitted.

In our example, every component Gi can always receive events of the form
Notifyjfail 6 ESi sent by component Gj 7̂ Gi. However, to simplify the figures,
we depict only events that change the behaviour and hence the state of Gi. For
instance, CSl can receive one event, namely NotifySWfail, and only changes its
behaviour if this event is received in state y0. The transition loops
, N o t i f y S W f a i l \ m r n / i[y i -------------- » yi) e l i lor all states yi 7̂ y0 are not shown.

2.3 Background: Diagnosis Problem and Direct Diagnosis Models 31

NotifySWfail I I SVVobs I
x2 H x3

4

sw

CS1

CS2

Figure 2.7: A simplified version of component models for the example depicted in
Figure 2.6. Solid lines denote fault transitions and dotted lines observable transi­
tions. Dashed lines refer to transitions labelled with shared events.

Global Model

While each component model represents the behaviour of a single part of the sys­
tem, the global model describes the behaviour of the whole system.

Definition 2 (Global model) The global model of the system is the finite state
machine G = It is defined as the synchronised product of the n
component models G* = (Xi: such that

• X is the set of system states (X = n"=i ^i)>

• S = E„ U are the events with £ / C £ u; En C £ u and £ s C £ u
£ 0; £ u; Tjf, £ n and £ s are the unions of the component’s observable, un­
observable, fault, normal and shared event sets;

• xo is the initial state (xq = fllLi J ;

• T is the transition set
(T = { (x i , . . . ,x n) A (x[, . . . ,x'n) I

Vz G 1 ... n such that a € £*, Xi —»• x\ E T* and
Vz G 1 ... n such that o (fc £j, Xi = £■}).

The composition ensures that a transition labelled o is possible in a given
global state (xi , . . . , xn) iff it is possible in the respective individual states of all
components in which a is defined [Sampath et al., 1996]. Recall that only shared
events are defined for more than one component and hence can lead to a state
change of several components. Figure 2.8 shows a part of the global model for the
components shown in Figure 2.7.

32 A Symbolic Framework for Diagnosing Discrete-Event Systems

__ C S I f a i l^ ^
CSlobs (xl, y3. zO)

(xl. yO. zO) ____CS2fail (xl, yl, zO)
NolifySWfail

\ C’S2fail
(x2. yl. zO)

('S lobs (x2. y3. zO)

CS2fail

NolifySWfail (^2. yl. z2)

f SWfail r (xl.yO. z2)
CSlfail

(xl, y l. z2) CSlobs
CS2fail

(xO. yO. zO) (xO. yO. z2) T - "
CSlfail / CSlfail

CS2fail (x0.yl-z2)

Figure 2.8: (Part of) global model for the component models depicted in Figure 2.7.

2.3 .3 D iagnosis P rob lem for D iscrete-E ven t S ystem s

The diagnosis problem for discrete-event systems consists in determining all system
states and faults that are consistent with a sequence of observations. We formally
define this diagnosis information using the concept of event paths.

Definition 3 (Event P a th s) Let FSM — (X . E, xq, T) denote a finite state
machine. An event path P = x\ —+ X2 • • • xq with S' C E is a path in the
FSM such that <7i 6 E' Vi 6 {1,... q — 1} (note that the path may consist oj a
single state only). The following functions are defined for every event path:

• Start : Pfi/ h-* x returns the start state of a path

• Targ : Pjy i—> x returns the target state of a path

• EvSet : p£,> x E h E returns the set of events in E C E' of a path

• EvSeq : Pjy x E h E* returns the sequence of events in E C E' of a path

For instance, from the unobservable event path
Not i fyCS l f a i l N o t i f yS W fail CS2fai l r ,Pt.U c S 2 = zq ---------------» Zi -------------- ¥ Z3 --------¥ z\ ol the component L S I

depicted in Figure 2.7 we can retrieve the following:
EvSet(PEucs2, ESCS2) = {N o tifyC S lfa il, N o tifyS W fa il} and
EvSeq(PEucs2, ESCS2) = [N otifyC Slfa il, N o tifyS W fail].

We can also describe path sets as a sequence of event paths and transitions. For
instance, the above example path belongs to the path set: P ̂ CS2 fai) ̂ p 2 ̂ ^

2 C S 2 C S 2

where P y,SCS2 consists of the single state Z4 .

Now, to determine the diagnosis information <fis we need to look at every path
P in the global model from the initial state Xo to a state x whose observable event
sequence EvSeq(P. E0) corresponds to the event sequence S actually observed. A

2.3 Background: Diagnosis Problem and Direct Diagnosis Models 33

tuple (x,l) is part of the diagnosis, if the fault label l corresponds to the faulty
event set EvSet{P1'Ef) of path P.

D efinition 4 (D iagnosis in fo rm ation) The diagnosis information <f>s £
2Xx2 f that is consistent with a global model G — (X, E,Xo,T) and a sequence
of observable events S = [oi,. . . , o*] is defined as follows:

0 5 = {(x, l) I P^a —b P fu • • • - k 1 > P^u ^ x is path in G with
l = U;=i E vSet(P ^u,T,f) and S tart(P ^u) = Xo}

In the following we will refer to every entry (x, /) G 0s as diagnosis candidate.
Only if the diagnosis information contains exactly one diagnosis candidate it is
possible to determine exactly in which state the system is and which faults have
occurred. Otherwise 0 contains the set of possibilities that explain the observation
sequence. For instance, from the existence of the two following paths in the model
depicted in Figure 2.8:

• (x 0 , y o , 2 o) ---------- > (z o , y i , 2 o) --------- * (z o , 2 / 3 , z o)
, s. C S l f a i l , v S W fa i l , \ C Slobs , >.

• (x0,2/o,z0) -------- > {x0,yiiZ0) ------- > {xuVuZo) ------- > (^i, 2/3, ^o),

we can conclude that the two following diagnosis candidates belong to 4>[csiobs}'-

• ((x0, 2/3,20), {CSl fai l})

• ((xi, y3, z0), {CSl fai l , S W fail}).

The aim of on-line diagnosis approaches is to provide timely diagnosis informa­
tion. The diagnosis information can directly be computed from the component
model or from the global model (see Section 2.4.3). Alternatively, it (or part of it)
can be precomputed off-line, and reused on-line for increased efficiency. Since the
diagnosis information is usually composed of a high number of candidates, precom­
putation often leads to larger diagnosis models and increased space requirements.
The amount of precomputation performed should therefore depend on the partic­
ular time and space efficiency requirements of an application. Hence we present a
spectrum of approaches that differ in the amount of compilation performed off-line.

2.3 .4 Sp ectru m o f D irect D iagn osis M odels

Our direct diagnosis approach is inspired from Sampath’s diagnoser approach
(1996), in which the diagnosis is retrieved on-line from a single model that effi-

34 A Symbolic Framework for Diagnosing Discrete-Event Systems

ciently maps observations to faults, the diagnoses This diagnoser is derived from
the global model which in turn is computed from the component models.

In contrast to above approach, we define a spectrum of models and describe
the on-line computation of the diagnosis information from each of them. We have
already introduced the component and global models; they allow the retrieval of
diagnosis information on the basis of relatively small space requirements. We now
present two additional models, the abstracted model and the classical diagnoser
model, which are more space demanding but are suitable to efficiently diagnose
systems on-line. Figure 2.9 illustrates the relationships between the different mod­
els.

Component
Models

Component
Synchronization

Global
Model

Abstraction from
irrelevant diagnosis

Abstracted
Model

Diagnoser
Computation

Diagnoser
Model

Figure 2.9: Spectrum of direct diagnosis models

In addition to the deterministic diagnoser model defined by Sampath, we choose
to introduce a nondeterministic model, the abstracted model, as it allows a more
intensive exploitation of the efficient symbolic triggering of transition sets con­
ferred by BDDs. As we will show in section 2.4.3, the abstracted model provides a
particularly interesting trade-off between model size and computation time.

A b strac te d M odel

The abstracted model is derived from the global model by abstracting all unob­
servable non-fault transitions and the order in which faults can occur, since they
have no impact on the diagnosis information (see Definition 4). Hence, in this
model, all sequences of unobservable transitions of the global model are replaced
by a single transition labelled with the union of the faults in that sequence. In case
the sequence consists only of normal and shared events this label is empty.

2.3 Background: Diagnosis Problem and Direct Diagnosis Models 35

CS 1 obs{CS 1 fail} (xO, y3, zO)

CS I obs{SWfail, CS 1 fail} (x l, y l , zO) (x l,y 3 , zO)

CS 1 obs{SWfail, CS 1 fail} (x2, y 1, zO) (x2, y3, zO)

(xO, yO, zO)
{CS 1 fail, CS2fail}

(xO, y l , z2) (xO, y3, z2)
{SWfail, CS 1 fail, CS2fail}

CS 1 obs
(x l, y l , z2) (x l, y3, z2)

{SWfail, CS 1 fail, CS2fail}

CS 1 obs
(x2, y 1, z2) (x2, y3, z2)

Figure 2.10: Abstracted model for the part of the global model shown in Figure 2.8.

Definition 5 (A bstracted m odel) Let G — (X, £,xo,T) be the global model.
The abstracted model is the finite state machine
G = (X , £ 0, F ,x 0,To,f>), where

• X C X is the set of states
X = {xo} U {x € X I 3a G £ 0, 3x' G X s.t. x A x' € T or x' A x G T}

• F C 2Ef are the fault labels;

• T0 C X x £ 0 x X are the global observable transitions
T0 = {x A x' G T I a G S 0};

• Tp Q X x F x X are the fault transitions defined as follows:

x' I 3 path x —̂ X\ ’ • • — X k - i —̂ x' in G with

x, x' G A, <7l5. . . , dk € and l = {<7i,

Figure 2.10 represents the abstracted model for the part of the global model
shown in Figure 2.8. Only the start and target states of observable transitions can
be reached in the abstracted model. Thus, for instance, state (xo, 2/0 , 22) of the
global model in Figure 2.8 does not appear in Figure 2.10.

The abstracted model enables a more efficient retrieval of diagnosis informa­
tion than the global model, because we need to consider at most one abstracted
fault transition per diagnosis candidate. For instance, to retrieve the diagnosis
information 4>[cs\obs} that is consistent with observing CSlobs in the initial state,
we trigger all fault transitions starting in Xq and leading to a start state x of a

36 A Symbolic Framework for Diagnosing Discrete-Event Systems

transition labelled CSlobs. For each transition sequence Xq x cslob'\ x' we ob­
tain one diagnosis candidate (x', l) G 4>[cs\obs\- To obtain the diagnosis information
consistent with S = [CSlobs, CS2obs\, we need to consider all transition sequences
of the form xq x c s l o b s > - U x" C S2obs> x’" , each of which leads to the diagnosis
candidate ix’", l U /') G <fs■ Recall that when using the global model, we have to
consider unobservable paths of undetermined length for each diagnosis candidate.

D iagnoser M odel

While the abstracted model allows a more efficient diagnosis than the global model,
it still requires the on-line aggregation of fault labels based on the events observed.
In contrast, the diagnoser is a deterministic finite state machine whose transitions
are only labelled with observations and whose states are directly labelled by the di­
agnosis information that is consistent with the observations. On-line, the diagnoser
efficiently maps sequences of observations to the correct diagnosis information: it
suffices to follow the path labelled by the actual observations and look up the label
of the resulting diagnoser state.

Definition 6 (Diagnoser) Let G = (X , £ 0, F, Xo, T0, TF) denote the abstracted
model. The diagnoser model is the deterministic finite state machine
G — (X, 'F, £ 0, x0, R, T), where

• X is the set of diagnoser states (X = { f0, • • •, xq-\});

• Xq is the initial diagnoser state;

• 'F is the set of possible diagnosis candidates = X x F);

• R is the diagnoser state labelling function (R : X i—» 2^);

• T is the set of diagnoser transitions (T C X x £ 0 x X);

• R and T satisfy:
R(xo) — {(£o, 0)} and

x ^ x ' e f iff

R(x') = {{x',11) I 3 (x , /) G R(x) such that either
(x x') G T0 and l' — l , or
3(x —► x") G Tp and 3(x" ff) G T0 and V = l U /"}.

2.4 The Symbolic Direct Diagnosis Approach 37

Figure 2.11: Diagnoser model for the component models shown in Figure 2.7.

Figure 2.11 depicts the diagnoser for the component models shown in Fig­
ure 2.7. The diagnoser allows for efficient on-line diagnosis whereas the previous
models require the diagnosis information to be computed on-line. However, the
large diagnoser size constitutes a major problem, and this is exacerbated by the
fact that all states and their labels are represented explicitly. In the next section,
we will show how we can compactly represent them by means of binary decision
diagrams.

2.4 T h e Sym bolic D irec t D iagnosis A pproach

In this section, we show how to exploit binary decision diagrams both to efficiently
represent and compute each of the models introduced above and to efficiently re­
trieve the diagnosis information from them. Furthermore, we present experimental
results that demonstrate how the different diagnosis methods resolve the time/space
complexity tradeoff.

2.4.1 S p e c tru m o f S y m b o lic D ire c t D iag n o sis M o d e ls

We now explain how we represent and compute the models introduced in the pre­
vious sections using BDDs. Our presentation will emphasise the computation
steps that are made either very efficient by the use of symbolic representations (for

38 A Symbolic Framework for Diagnosing Discrete-Event Systems

instance the test of whether a diagnoser state has been computed already), or that
are made rather inefficient (such as the accumulation of fault labels).

Symbolic Com ponent M odels

The component model is the basic behavioural model that is used to define and
compute all other models of the spectrum. Its symbolic representation is inspired
from the classical symbolic FSM representation introduced in Section 2.2. In order
to facilitate diagnostic reasoning it is slightly more specific.

Definition 7 (Sym bolic m odel of a com ponent) The symbolic model Gi =
(b f , b f , b f , b f ,b f ,b f ,X i: Xot, T0i, TUi ,T ft, TSi) of a component is described via
six BDDs Xi, xoi} T0i, Tni, Tfx and TSi over the Boolean variables
b f , b f , b f , b f , b f , b f where

• b f (resp. bf ') are the state variables (resp. primed variables) used to
represent start states (resp. target states) of transitions

• bf are the shared event variables,

• bf are the observable event variables,

• b f are the normal event variables,

• b f are the fault event variables,

• Xi is the Boolean function over b f characterising the states,

• x 0i is the Boolean function over b f characterising the initial state, and

• T0i, Tn., Tfi and TSi are the Boolean functions over b f U b f and either
bf ,b f , b f , bf , characterising the observable, normal, fault or shared tran­
sition relation, respectively.

Instead of encoding every component event with the same set of Boolean vari­
ables as it is usually done, four different sets are introduced: one set of variables
is used to encode events with the same type (fault, normal, shared, observable).
In this way, event types are fully distinguishable and, moreover, depending on the
type of events, the encoding of events can be different (see below for details). The
transition set is also partitioned into four sets, and represented with four BDDs,
where each BDD represents the set of transitions labelled with events of the same
type. Hence, only one set of event variables is used in each BDD. which leads to a
more compact representation.

2.4 The Symbolic Direct Diagnosis Approach 39

The symbolic representation also includes the BDD Xi that characterises the
set of states of the component model. This BDD is not strictly necessary since it
is implicitly represented by the initial state x0i and the transition sets. However,
it is required to perform efficient computations on the states of the component.

Sym bolic E ven t E ncoding o f a S ystem

Definition 7 provides the generic definition of a symbolic component model, with­
out committing to a particular encoding of events. However, event types are
not similar: a normal event will mainly be involved in the triggering of transitions
whereas a fault event will additionally be part of the diagnosis information. Con­
sequently, the choice of a suitable encoding for the various event types is a key
point to obtain an efficient and generic symbolic framework. Another important
factor in choosing how to encode events is the fact that every event, even the ones
local to a component, need to be globally distinguishable from the others to obtain
a description of the whole system. This leads us to consider the following encodings
for each respective event type:

• Observable events: any observable event a belongs to a single component
G j . From a computational point of view, such an event is used to trigger a
transition from that component only. To encode <r, there are two solutions:

1. either a is encoded with a set of global variables that represent the entire
set of observable events of the system. In that case:

b° = 6°, Vi 6 {1 ,... ,n}

2. or a is encoded with a set of local variables b°OCi — {b°r ... ,b°Nr^ ri)(}
that are dedicated to the encoding of component G fs observable events,
together with an identifier of component Gi encoded by a set of global
variables bc — {b f, . . . , b^r^ } . This identifier is necessary to make the
event a globally distinguishable. In that case:

b? = bc Ub?OCi

Both solutions are possible: in practice, their implementation is efficient, al­
though the second solution requires more variables. The main drawback of
the first solution is that the encoding does not record that G i is the emitter
of er, which is a useful information especially for computing the diagnosis in­
formation directly from the component models. In the following, the second

40 A Symbolic Framework for Diagnosing Discrete-Event Systems

solution is chosen.

• Normal events: the encoding of a normal event is the same as that of an
observable event.

• Shared events: as opposed to the previous types of events, a shared event
does not belong to a single component. Such an event is mainly used to
trigger synchronised transitions (several simultaneous transitions in different
components). An efficient synchronisation operation requires an encoding of
the shared event via a global set of variables bs :

bf = bs . Vz 6 { 1 ,..., n)

• Fault events: fault events are used in two cases: they represent an event on
a transition like the other event types but they are also part of the diagnosis
information (set of faults). To represent faults with an unique encoding, this
encoding must allow a representation of any fault event (for the triggering
of transitions) and any sets of fault events (for the representation of the
diagnosis information (see Definition 4)). This requires the introduction of
one Boolean variable per fault event. There is a one to one correspondence
between fault events and these variables which ensures that the fault events
are globally distinguishable. For instance, let Ey; be the set of fault events
{ /1(, . . . , /fc.} that can occur in component Gi: the fact that either /i- and f 2i
or just f i x has occurred, is encoded by: {b{./\bf2. f \ j>2 ->&£) V (&f. Aj>i “'&£)•
Now let encoding[x, B) denote the encoding of x over the Boolean variables
B. The encoding of the GVs fault events E^ is then defined as follows:

bi = i bi I fj e E /J : V/j € E/n encoding^ , b f) = A f \ b[..

Sym bolic G lobal M odel

Given the set of symbolic component models
Gi = {b f, b f' , b f , b f , b f , 6f, , x0i, T0i, TUi, Tfi, TSi) , we can now define and com­
pute the symbolic global model which represents the global behaviour of the system
as stated in Definition 2.

2.4 The Symbolic Direct Diagnosis Approach 41

Definition 8 (Symbolic global model) The symbolic global model
G = (bx ,bx ',b ° ,b N,bF,bs , X,xo,T0,Tn,T f ,Ts) is described via six BDDs
X , Xo, T0, Tn, Tf and Ts over the Boolean variables bx ,bx ' ,b° ,bx ,bF and bs
where

• bx are the state variables (bx — U™=1bx);

• bx ' are the primed variables (bx ' = U™=lbx ');

• b° are the observable event variables (b° = U”=16f);

e bN are the normal event variables (bN = U™=1bx);

• bF are the fault event variables (bF = U”=16f);

• bs are the shared event variables (bs — U™=1bf);

• X is the Boolean function over bx characterising the global states (X C
^i= \Xi),

• Xq is the Boolean function over bx characterising the initial state (xq =
A”=1x0J , and

• T0, Tn, Ts and Tf are the Boolean functions over bx U bx ' and either b°,
bN , bs or bF characterising either the observable, normal, shared or fault
transition relation, respectively.

The computation of the global model is based on a synchronised product of
the component models (see Definition 2) in which, when a non-shared event oc­
curs in a component Gi, the state of the other components is steady (model of an
asynchronous system). However, if we are to exploit the BDD representation to
implement the synchronisation of the components efficiently, via the A operator,
a synchronous product is required. In a synchronous system, when a transition is
triggered in a component Gi, a transition is triggered in every other component.
In order to implement a synchronous product equivalent to the product defined in
Definition 2, we help ourselves to a well-known translation from an asynchronous
to a synchronous system (see [Arnold, 1987] for details). Using our symbolic com­
ponent models, this translation is performed as follows.

• For every state x of a component model Gi, a transition x —> x is added. The
event e is the empty event. Thus, if Gi is in state x and a non-shared event
is triggered in another component (which means that state x is steady), the
transition x A x is triggered at the same time. Symbolically, the transition

42 A Symbolic Framework for Diagnosing Discrete-Event Systems

x —> x is represented by the conjunction of the source state x and the target
state x: that is by encoding(x, bf) A encoding(x, bf) . In the algorithm below,
this set of empty transitions of component Gi is represented by the BDD
steady State (i).

• For every shared event cr, a transition x x is added for all states x that
belong to a component model in which the event a is not defined. Thus,
if such a component is in state x and a shared event o is triggered in an­
other component, the transition x A x is triggered at the same time. Sym­
bolically, the transition x —> x is represented in the usual way, that is by
encoding[x, bA) A encoding(cr, bs) A encoding(x, bf) . This set of transitions is
denoted extendedTransitions(i).

Algorithm 2 presents the computation of the symbolic global model. First the
initial state is retrieved as a conjunction of the local initial states (line 4) and we
perform the synchronous translation of the model (lines 5-7). Next, the global
transitions are retrieved for all new states X new at once using an A operator. For
example, in line 12, TSNew contains the set of transitions of the global model that
are labelled with shared events and that can be triggered from a state in X new.
Since the composition is synchronous, this set is obtained by simple A operations.
Lines 15 and 16 retrieve the observable and normal transitions of the global model
whose source state is in X new and that are labelled with an event from component
Gi. Line 17 retrieves the fault transitions. A fault event in Tf. is represented
over the Boolean variables bF = {bG f £ Eft } only (see section 2.4.1). Since Tf
represents the fault events with the set bF instead of the subset bf , it now also needs
to represent the fact that none of the faults in bF \ bF has occurred. Therefore the
conjunction AbfebF\bF is added to complete the global representation of a fault
event from Gi. After the global transitions originating at X new are computed,
we determine those of their target states that need to be considered in the next
iteration of the algorithm. We do this by first retrieving all target states (line 22)
and then identifying those among them that have not previously been computed
(line 23).

Note that the global model could be computed more efficiently if the computa­
tion of states was not restricted to those reachable from the initial state as it is the
case in Algorithm 2. Then only one loop iteration (lines 10-24) would be required
to obtain all transitions among states of the complete state set X = niLi How­
ever, since this computation is done off-line, it does not lead to an overhead for the
on-line diagnosis. The only point of concern is therefore whether the restriction to

2.4 The Symbolic Direct Diagnosis Approach 43

Algorithm 2 BuildGlob(Gi = (b? ,6f'.6,°.fe,iv,fef,6f.X i ,xo„r<,„ rn„ r /„ r 3,))
1: INPUT: symbolic component models Gp, i = 1 , . . . , n

Initialise
2: Xq <— true; A <— fa lse ;

T0 4— fa lse ; Tn fa lse ; Ty fa lse ; Ts fa lse ;
3: for all components i (1 < i < n) do
4: X0 <— X0 A
5: steady State (i) <— initialiseSteady States (A*)
6: extendedTransitions(i) initialiseExtendedTransitions(Xi, 65)
7: Textendi Tsi V extendedTransitions(i)
8: end for
9. X new < Xo

Com pute global transitions
10: while there are new states (that is as long as I sDe f (Xnew)) do
11: A <— A V Anetü
12: TsNew * X new A / \ {1 ,...,77.}- ^extendi
13: Ts <— Ts V Tsn€W
14: for all components i (1 < z < n) do
15: TQNew < X new A T0i A steadyState(j')
16: Tn7Veu> * X new A Tni A A y g p , steady State^j^)
17: TfNew «■ X new A Tfx A A bfebF\b[^ steadyState(j)
18: T0 <— T0 V ToNew
19: Tn <r— Tn V TnNew
20: Ty <— Ty V Tfwew
21: end for

Extract new states
22: Atar5 <— ExtractVar{T0 V Tn V Ty V Ts,bx ')
23: Aneu; <— SwapVar(Xtarg, fr**) A -iA
24: end while
25: OUTPUT: global states A, initial state x0 and transitions T0, Tn, Ty and Ts

44 A Symbolic Framework for Diagnosing Discrete-Event Systems

the reachable states leads to a larger or smaller symbolic representation. For the
examples we used (see page 53) this restriction reduced the number of states to
25% and the number of transitions to 24% which overall reduced the size of the
symbolic global model representation to 36%.

Note that there is not necessarily a connection between the size of the state set
and its symbolic representation (given that they are both encoded using the same
number of Boolean variables). We decided to apply the restriction to the reachable
state set already to the computation of the global model, since it becomes eventually
necessary (see Section 2.4.1).

Symbolic Abstracted Model

With the computation of the symbolic global model we have already defined two
BDDs, namely x0 and T0, that are used to represent the abstracted model symbol­
ically.

Definition 9 (Symbolic abstracted model) Given the global model
G = {bx , bx ' , b°, bN, bF, bs . X, x0, T0. Tn. Tf. Tf) , the abstracted model
G = (bx i bx ', b°, bF, X , Xq, T0, Tf) is described via four BDDs X ,X q,T0
and Tf over the Boolean variables bx ,bx ' ,b° and bF where

• X is the Boolean function overbx characterising the states of the abstracted
model, and

• Tf is the Boolean function over bx U bF U bx ' characterising the abstracted
fault transition relation.

To compute the abstracted fault transitions we need to determine, for each
state x £ X , (i) all target states X reach £ X reachable from x by triggering only
unobservable transitions, and (ii) all fault events that have occurred along a path
from x to xreach £ X reach. For this purpose, we start by combining all unobservable
transitions into a single transition set Tu. Each transition in Tu is labelled with the
fault information, that is either with the fault event that triggered the transition
(for transitions in Tf), or with the empty fault event F$ — f \ f j \ (for transitions
in Tn and Ts). Thus Tu is defined as follows: Tu = 2/ V (ExtractVar(Tn V Ts, bx U

bx ')A F 9l).

Then, using Tu, we compute F X reaCh (defined over variables bF U bx), that is,
all states xreach £ X reach and the faults that have occurred along a path from x to

2.4 The Symbolic Direct Diagnosis Approach 45

breach, by modifying the reachability algorithm (Algorithm 1) shown on page 27.
Now, at each iteration (lines 4-10), we compute not only the set of states X new
from which transitions still need to be triggered but also the set F X new which
additionally includes all faults F that have occurred along a path from x to a state
in X new. The modified reachability algorithm is given below:

CompReachModified(bE, bx , bx ',X , Tu)
X r e a c h ̂ f ö/se
X n e w * X

F X new <— X A F0

while there are new states (that is as long as I s De f (FXnew)) do
F X targ * A d d F a u l t (T newi F X new
F X *1 y'-new FXtarg A ~>FXreach
Y ,_s'-new T E x t r a c t V a r (F X new, bx)

F X reach 4 F X reach V F X new

end while

The procedure makes use of the function AddFault to add every fault / that
occurred in a state xnew € X new (i.e. the fault for which there is a transition
xnew xtarg with xtarg € X targ) to the set of faults F that have occurred on a
path from state x to xnew. This accumulation of faults performed by AddFault is
illustrated in Figure 2.12 and detailed below.

Given Tnew and F X new i AddFault first extracts all states X nt (origins and
targets) of Tnew• Since the faults are then abstracted (i.e. X nt is not defined
over variables in bF) we can associate the previous faults F to this state set by
applying the A operator to sets X nt and F X new resulting in FX \ (see top left of
Figure 2.12). Next, we add the new faults (kept in Tnew) to FX \ using function
Update Fault (old Fault, new Fault). To add a fault f (encoded as b{, A ->bj)
to a BDD B we need to change the sign of variable b{, in B. This is done by
abstracting variable b{, from B and conjoining it with b{\ (i.e., AbstractVar(B , b(,)A
b{,). Now, a variable can only be abstracted from an entire BDD (not from part
of it). Therefore, in order to add a new fault f we first need to isolate all states
X'nt C X nt that require this addition. This means that we have to compute all
state pairs (x'new, x'targ) for which there is a transition x'new x!targ. The function
UpdateFault(oldFault, new Fault) performs these computations for all the faults
that need to be added.

The Figure shows an example in which the state X\ (encoded as bx and bx ' resp.)
is reached from state Xq (encoded as ->bx and ~>bx resp.) via a transition labelled

46 A Symbolic Framework for Diagnosing Discrete-Event Systems

Representing for instance:

v(bfÂ bfÂ A ^)

^ ^ Fault̂ y
4

/
fx2

Q
Representing for instance:

(~'b^ a bf’A b f A - b p

V (t ^ A “ ■ t ^ ‘ A - ' t F A b£)

A bs tract Var(FX2, if) Swap Var(XF}, M , b*)

FX3 FX«g

Encoding over the variables bF

Encoding over the variables bx

Encoding over the variables bx

Figure 2.12: Computation steps of function AddFault that determines the faults
associated with states X targ by combining the faults F associated with their pre­
decessor states Xnew and the new fault F' labelling Tnew.

fi (encoded as 6f A) and state x0 is reached from state X\ via a transition
labelled with the empty fault label (that is a shared or normal transition). Hence
only the fault label of state xq is modified by changing the sign of variable 6 f.

Note that fault sets cannot be updated at once, since for each new fault we have
to retrieve the corresponding previous fault sets first. Hence function Update Fault,
that is the symbolic update of fault sets is not very efficient. However, the com­
putation of the abstracted model is done off-line and therefore does not slow down
the on-line diagnosis based on this model. Our experiments show that the off-line
aggregation of successive faults reduces the diagnosis time (see Section 2.4.3).

Sym bolic D iagnoser M odel

We now define the symbolic diagnoser representation and describe its computation
based on the abstracted model.

D ia g n o ser R ep resen ta tio n

Here, in contrast to the previous symbolic models, we do not only require an
encoding for the model’s states and transitions but also an encoding <h for the state
labelling function R of the diagnoser.

2.4 The Symbolic Direct Diagnosis Approach 47

Definition 10 (Symbolic diagnoser m odel) Given the symbolic abstracted
model G = (bx , bx ' , b °, bF, X , xo, T0, Tf), the symbolic model of a diagnoser
G = (bx , bx ' , bx , b °, bf , X , xq, <3>,T) is described via four BDDs X , Xq, 4>, and
T, involving the new Boolean variables bx and bx> where

• bx are the diagnoser state variables (bx — {b{, . . . , ^ ^ });

• bx ' are the primed diagnoser state variables fbx ' = { b f , . . . , 6 ^ ^ } ,) ;

• X is the Boolean function over bx characterising the diagnoser states;

• To is the Boolean function over bx characterising the initial diagnoser state,

• 4> is the Boolean function over bx U bx U bF characterising the diagnoser
state labelling relation, and

• T is the Boolean function over bx U b° U bx ' characterising the transition
relation.

The label R(x) of a diagnoser state x is computed by conjoining the BDDs repre­
senting x and and abstracting the state variables bx from the result. In the follow­
ing we use function G e tln fo to perform these operations. The function is defined as
follows: G etInfo{bdd , bdd\ , {bi, . . . , bm}) = AbstractVar{bdd A bddl, {b\ , . . . , bm}).
Hence we get R(x) = Ge t In fo{$, x , bx).

D iagnoser Com putation

The encoding of a diagnoser state x depends on the total number q of diagnoser
states which is a priori unknown and even difficult to estimate. In the worst case
q = 2^1 and therefore 2|X ||2E/| new variables are theoretically needed. However,
in practice, q will be much smaller and introducing that many variables will lead to
an unnecessarily costly representation. To avoid the introduction of all 2|A ||2Ê |
variables, we start with one single variable to encode the initial diagnoser state,
and continually increase the number of variables, as needed during the construc­
tion. Every time a new variable is needed, we update each BDD bdd containing
variables in bx (respectively bx>) by conjoining them with -ib* (respectively ->bf).
Each update can be performed in Q(\bdd\).

Algorithm 3 shows the symbolic diagnoser computation starting from the ab­
stracted model. First, in step 3, the initial diagnoser state xo is computed using
the function G etNew State which returns the encoding of a new diagnoser state

48 A Symbolic Framework for Diagnosing Discrete-Event Systems

over the Boolean variables bx and if needed, handles the introduction of new vari­
ables as discussed above. The diagnosis information of Xo is the conjunction of the
initial global state and the empty fault label Fq, and is added to the state labelling
relation <f>. We also initialise the set of states X new from which transitions still
need to be computed.

Algorithm 3 BuildDiag(G = (6X, bx \ 6°, 6F, X , x0, T0< Tj))
1: INPUT: symbolic global model G
2: Initialise

T <— fa lse ; X <— false
3: Compute initial state and its information

x0 <— GetNewState()
4> <— x o A x 0 A p 0

4: while there are new states, that is as long as IsD e f(X new) do
5: Get new state and its information

Xnew * GetC071 j(Xnew')
Xnew * X new A 'Xnew
Xnewlnfo * Get I n f o(4>, Xnewi b)
X <- X V Xnew

6: Compute the diagnosis information of all states reachable from xnew and the cor­
responding observation

Tnew <— Tf A ExtractVar(xnewinfo,bxy
TeachUnobs * Xnewlnfo V AddFaultiTnewi Xnewlnfo)
reachObs <— SwapVar(AbstractVar(reachUnobs A T0, bx), bx , bx)

7: Determine all states reached and the corresponding observation
r e a c h T a r g G e t States (reachObs, $)

8: Determine the new states reached and add them to X new
newTarg — ExtractVar(reachTarg, bx) A -<X
Xnew * X-new V newTarg

9: Add new states and their labels to 4>
<f> <— 4> V AbstractVar(newTarg A reachTarg,b°)

10: Add new transitions to the transition set T
obsTarg <— ExtractV ar(SwapVar (reachTarg, bx ,bx>), b° U bx>)
T *— T V (dnew A obsTarg)

11: end while
12: OUTPUT: symbolic diagnoser states X and x0, their labelling 4>, and

diagnoser transitions T

Until a fixed point is reached, a new diagnoser state xnew is retrieved and
removed from X new (step 5). The diagnosis information x newinfo of the new state
is obtained from the labelling relation <h.

Next, the diagnosis information of all target states of xnew is computed (step 6).

2.4 The Symbolic Direct Diagnosis Approach 49

For this purpose we need to consider all global states X unobs in which the system
could be before the next event is observed. These are retrieved by first trigger­
ing all unobservable transition sequences of the global model starting in states
of xnewinfo, that is, the set Tnew of abstracted fault transitions. The new faults
that have occurred since the last observation are added using function Add Fault
(see Figure 2.12). Second, we trigger all observable transitions starting in states
of X unobs to obtain the diagnosis information of all target states of xnew and the
observations that are consistent with it. The resulting BDD reachObs is defined
over the variables b° U bx U bF.

In step 7 of the algorithm, the target diagnoser states of xnew are obtained
using function Get States, which for each observation o retrieves the diagnoser
state labelled with GetInfo(reachObs,o,b°) as described below. The resulting
BDD reachTarg is now defined over the variables b° U bx U bx U bF.

Next, we identify the new diagnoser states encoded in reachTarg (step 8), and
add them together with their labels to the labelling relation 4> (step 9). Finally,
we encode all target diagnoser states of x new returned by the function GetStates
in step 7 over the variables bx ' in order to add all transitions starting in xnew to
the transition set T (step 10).

T erm in a tion o f D ia g n o ser C o m pu ta tion

To guarantee the termination of the algorithm, it is crucial to detect in function
GetStates (step 7) whether a diagnoser state reached from xnew via a transition
labelled o has already been computed, that is, to detect whether there exists a state
x such that GetInfo(& , x , bx) is the same as Xinf 0 — GetInfo(reachObs, o, b°). In
an enumerative approach this requires the consideration of every existing diagnoser
state to check whether its diagnosis information equals xinf 0. Symbolically we do
not need to look at these states individually and instead compute the following
diagnoser state sets:

• S\. set of diagnoser states whose labels are subsets of x inf0

• 52'• set of diagnoser states whose labels are supersets of x inf 0

The diagnoser state x labelled with x inf 0 can be obtained by intersecting these
sets (x = Si n S2). Note that since no two diagnoser states have the same label,
the intersection yields at most one state. In case the intersection is empty the
diagnoser state set does not contain a state labelled Xinf Q.

50 A Symbolic Framework for Diagnosing Discrete-Event Systems

Since state labels of single diagnoser states are encoded as disjunctions it is
symbolically not possible to directly determine whether the labels of a set of states
Xi are a subset of labels of another state set X 2. Hence we cannot directly retrieve
Si and 52- Therefore, to compute Si n 5 2 we first compute X \ S i, that is all states
in the diagnoser state set X that do not belong to Si. Second, instead of retrieving
X \ S2 which would again require the consideration of the whole state set X . we
compute Si \ S2 as shown on the top right of Figure 2.13. Now symbolically, the
operation \ is equivalent to the operations A->. Hence we can obtain Si A S2 by
computing first ->51 and second Si A ->S2 and by combining these results using two
-i and one A operator as shown on the bottom right of Figure 2.13.

By means of set operations:
Si n S2 = (X \ CX \ S i)) \ (X \ S 2)

- (X \ (X \ S i)) \ (S i \ S 2)

By means of logical operations:
Si A S2 — (X A -i (X A ~>Si)) A -I (S1A-1S2)

= ~ (_'5:i) A—1 (Si A ->S2)

Figure 2.13: Derivation of an efficient symbolic computation of the intersection of
the state sets 5i and S2.

The two computation steps of retrieving ->S 1 and Si A ->S2 are illustrated in
Figure 2.14. The top left BDD in the Figure represents the diagnoser labelling
relation <f> for states £q,. . . ,£5 where the state labels are shown as triangles. The
base (bottom line) of these triangles represents the truth values of label entries.
Hence we can illustrate the different ways in which state labels can relate to each
other, namely:

• two states can share a set of label entries, which is the case if triangle bases
overlap (see state pair (x i,x2));

• the label of one diagnoser state can be a subset of another state’s label, which
is the case if one triangle base is completely covered by another (see state
pairs (£3 , x2) and (x2 ,x4));

• two diagnoser states share no label entries, which is the case if the triangle
bases do not overlap (see state pair (£2, £5)).

The figure illustrates all possible ways in which the label of a state (x2) can relate
to the labels of other states (iq, £3,2:4, and £ 5) .

The top of Figure 2.14 describes the symbolic computation of ->S 1 and the
bottom illustrates the computation of Si A ~'S2. In order to determine ->S 1 , that is

2.4 The Symbolic Direct Diagnosis Approach 51

Diagnoser state set and its labels Diagnoser states that contain diagnosis infor­
mation other than the one represented in * i n f o

> J %info = (Si V — 'Si) A $ A -1X i n f o

= -1S1 A <f> A -1X i n f o

since S i A $ A “ > X i n f o >s false
(see definition of S i)

->Si = ExtractVar(-iSi A $ A ~'Xinf0,bx)

Diagnoser states whose labels contain only Diagnoser states whose labels do not contain
diagnosis information represented in i , „ / „ all diagnosis information represented inJ info

S\ A xinfo A -• (S\ A 4>) — Si A xinfo A
= (Si A - 1S 2) A Xjn/ 0 A -i4>

since (5i A S2) A i i nf 0 A -'<f> is false

(see definition of S i and S2)

S i A - 1 S 2 = ExtractVar((Si A - 1 S 2) A ahn/ 0 A ->4>, bx)

Figure 2.14: Computation of state set —>Si at the top and Si A - 1S2 at the bottom.
All terms represent BDDs. Lines denote encodings over the state variables bx and
triangles encodings over the variables bx U bF.

52 A Symbolic Framework for Diagnosing Discrete-Event Systems

all states whose labels are not a subset of x inf0, we subtract Xinf0 from the diagnoser
state set (see top of Figure 2.14). The resulting BDD is depicted on the top right
of the Figure. It shows that states X\,x±, and x§ do not belong to subset »Si and
hence need not be considered further (see the middle BDD at the bottom).

To compute »Si A ->S2, we first label all states in S\ with x inf 0 (see graph at the
bottom left). From this BDD we subtract the labels of the remaining diagnoser
states. This yields all states that belong to »Si but not to S2 (x3 as depicted on the
bottom right).

After retrieving the state sets ->S\ and »Si A~>S2, we can now efficiently compute
S\ A S2 using only two -i and one A operation as shown in Figure 2.13. For the
example illustrated in Figure 2.14 we obtain Xinf0 = GetIn fo($,x2,b*).

Note that these symbolic computations can not only be used to search for a
diagnoser state labelled with particular diagnosis information but for any problem
of the following form:

Given a set of elements E = {ei , . . . , en} and a set of containers C —
{Cd,. . . , CTO} such that C* contains the elements Ei C E for all i =
(1, m}. Further let the entire set C be encoded using a single BDD.
How can this representation be used (without computing the individual
Cj’s) to obtain all containers that have exactly the same elements as a
new container C'l

In our case, the set E is composed of the different diagnosis information and the
containers correspond to the diagnoser states. Alternatively, for instance, one could
regard the set E as a set of attributes and the set C as a set of products having
each some of the attributes. Our algorithm can then be used to search for all the
products that have a specific set of attributes, without the need of considering each
product individually.

B D D variable o rder fo r d ia g n o ser rep resen ta tio n

We close this section with a remark on the BDD variable ordering used for the
diagnoser representation. As shown in Section 2.2.2 this can significantly impact
the BDD size. However, for our purposes it is equally important to be able to
efficiently use the diagnoser for the on-line diagnosis. In fact, for our examples
we found that the variable ordering had a much higher impact on the diagnosis
time (factor of 80 between fastest and slowest diagnosis) than on the diagnoser size

2.4 The Symbolic Direct Diagnosis Approach 53

(factor of 1.5 between largest and smallest diagnoser representation). We therefore
decided not to use any of the BDD variable ordering heuristics aiming at reducing
the BDD size, but rather chosen the “fastest” of the encodings we considered (which
also was the almost “biggest” one).

The labelling function <f> is encoded using the following variable order (from
root to leaves): bx ,bx ,bF. The transition variables are ordered as follows: bc , 6°,
(bx ,bx '), where the state variables are interleaving. For instance the ordering for
a four state diagnoser with two different observations and composed of two com­
ponents is: ,b f ,b^' ,b§ ,b§ '. This strategy of first encoding the component
identifiers, then the event variables and finally the interleaving states is also used
for the symbolic representations of the remaining models.

2.4 .2 C om parison o f Sym bolic and E num erative D iagnosers

With the computation of the symbolic diagnoser, we have obtained a symbolic
model which compactly represents the entire diagnosis information. We now con­
sider the impact of the symbolic representation on model size and computation
time.

Our symbolic approach is implemented in C ++ on top of the CUDD BDD
package [Somenzi, 2005]. In order to measure the impact of symbolic techniques
on the diagnoser representation and computation, we have also implemented Sam-
path’s diagnoser approach in an enumerative way. In contrast to the original im­
plementation in the UMDES-LIB software library,2 our enumerative diagnoser
implementation reports the space requirements for the generated diagnoser transi­
tions and states. In the symbolic case, the size of the diagnoser was determined by
counting the nodes in the BDDs representing it and multiplying this number by the
space requirements to represent one BDD node. Our two implementations enable
us to present experimental evidence that the symbolic approach yields important
gains in synthesis time and space, considering a system derived from our example
application as a case study [Roze & Cordier, 2002].

In our study, there are 9 observable events, 11 fault types, and 8 other unobserv­
able events. The switch model has 12 states and 18 transitions, the primary control
station 13 states and 15 transitions and the backup control station 19 states and 28
transitions. This yields a global model of 1062 states and 2911 transitions. In order
to observe how the two approaches (symbolic/enumerative) scale, we also consid-

2http://www.eecs.umich.edu/umdes/toolboxes.html

http://www.eecs.umich.edu/umdes/toolboxes.html

54 A Symbolic Framework for Diagnosing Discrete-Event Systems

ered “lighter” versions of the example, where groups of fault types are fusioned.
This yields 5 different versions V \ . . . V5, with a number of fault types ranging from
3 to the original 11.

Experiments were run on a 1GHz Pentium III with 512 Mbytes of memory.
The left chart on Figure 2.15 compares the time taken by the symbolic and enu-
merative methods to produce the diagnoser. After 2 days of computation, neither
the UMDES demonstration tool nor our enumerative implementation was able to
compute a diagnoser for the two larger versions, while the symbolic approach re­
mained feasible. In fact, here the computation was performed at least three orders
of magnitude faster. In order to determine the space requirements for the enumer­
ative diagnoser representation for these examples, we retrieved this diagnoser on
the basis of the symbolic one. This was done by examining the paths of the BDDs
used to represent the diagnoser.

1 0 0 0 0 0 --------------------------- --------------------=j------ 1— h -

Symbolic Diagnoser
Enumerative Diagnoser

10000

2

Model V, V, V, V« V,

States 353 921 2500 4355 18474
Transit. 2183 5774 16530 31024 120698/

i— I Symbolic Diagnoser
Enumerative Diagnoser
Diagnoser Transitions

o>
CD
’■5
o 10

E -j
os.
«1

0.1
Model
States

.Transit.

0.43
I----1

0.12

6.74

1.49
0.86

i . 1
V, V, V,

353 921 2500
2183 5774 16530

V,
18474

120698,

Figure 2.15: Time and space performance comparison

The right chart in Figure 2.15 compares the space needed to store the resulting
diagnosers. The superiority of the symbolic method increases with the model size,
and exceeds an order of magnitude for the largest version. From the results, it
can be conjectured that the space requirements of the symbolic approach for large
models will often only represent a negligible portion of those of the enumerative
setting. The Figure also shows that, for both approaches, most of the space was
used to store labels (note the logarithmic scale). In particular, our symbolic encod­
ing only performs marginally better than the enumerative approach with respect
to storing diagnoser transitions. This is due to the fact that the Boolean variables
introduced to represent transition sets allow the representation of all transitions
that are theoretically possible, while in practice, the diagnoser is deterministic and
not all observations are possible in each given diagnoser state. For instance, the
diagnoser for version V5 only contains 0.004% of the theoretically possible transi-

2.4 The Symbolic Direct Diagnosis Approach 55

tions.

The superiority of the symbolic diagnoser representation results from the fact
that the set of diagnosis candidates, that is the set of possible faults and system
states that are consistent with a sequence of observations, is very large and can be
encoded with relatively few Boolean variables. Hence, here we are able to exploit
the advantages provided by BDDs to compactly represent large sets of data. In
general, we believe that symbolic methods are particularly suitable for diagnosis
approaches that require the representation of such large sets. This is the case for all
fault identification approaches which we target in this chapter. Note that this also
holds for representing the fault information of the failure identifiers we presented
in [Schumann & Pencole, 2006]. In contrast to the diagnoser these FSM are only
labelled by the faults (and not the corresponding system states) and hence have
fewer states than the latter.

2.4 .3 S ym bolic O n-L ine D iag n o sis

In the previous section, we have shown that the symbolic precomputation of the
complex diagnosis information, that is the computation of diagnoser state labels,
is significantly faster than the enumerative precomputation. In this section, we ex­
ploit the symbolic representation to efficiently compute the diagnosis information
on-line, given the events actually observed. We describe the procedure for comput­
ing this information using each of the models introduced. Finally, we present an
experimental analysis of the extent to which each of the symbolic on-line diagnosis
algorithms resolves the tradeoff between space and diagnosis time and compare
them to the corresponding enumerative diagnosis approaches.

O n-line D iagnosis A lgorithm s

On-line diagnosis aims to detect faults while the system is working. Each time an
event a is observed, the diagnosis information x'inf 0 is derived based on <j , one of the
models, and the previous diagnosis information i^n/ 0. In an enumerative approach,
this on-line computation of x'inj 0 is very slow since all diagnosis entries of xinf0 need
to be considered individually (except for the diagnoser). In this section we show
how we can avoid this individual consideration by symbolically retrieving x'inf 0.

For on-line diagnosis based on the diagnoser, this update requires the compu­
tation of the diagnoser state x' that is labelled with the new diagnosis information.
Given the diagnoser state x labelled with the previous diagnosis information and a

56 A Symbolic Framework for Diagnosing Discrete-Event Systems

new observation o, we can obtain x' using function G etInfo(T , xAo, bx Ub°). After
encoding x! over the variables bx we simply retrieve the new diagnosis information
x'inf 0 from the state labelling relation < F , that is, x ' n y 0 <— G etIn fo($,x ',bx).

With the remaining models, x'inj 0 is not precomputed and needs to be de­
termined on-line. However, its on-line computation is very similar to its off-line
computation. For the diagnosis based on the abstracted model, we first compute
the diagnosis information reachUnobs consistent with the previous events and the
fact that time has passed, as described in step 6 of Algorithm 3:
reachUnobs <— x*n/ 0VAddFault(Tf AExtractVar(xnewinf0:bx),Xinf 0). After trig­
gering all transitions labelled o from states in reachUnobs, we can extract the new
diagnosis information as follows: x'inf 0 <— SwapVar(ExtractVar (reachUnobs A

T0Ao,bx ' UbF),bx ,bx ').

On-line diagnosis based on the global model is analogous to that based on the
abstracted model. Only the computation of reachUnobs requires an additional
step, namely the computation of all abstracted fault transitions starting in states
of xinf 0, as described in Section 2.4.1.

To compute the diagnosis information on the basis of the component models, we
consider, for all of them, all unobservable event paths starting in states contained
in xinf 0. For the component in which o is defined, we also consider all transitions la­
belled o that start in one of the target states of the unobservable paths. Figure 2.16
shows the relevant component parts if x inf0 = {((xo, yo, Zo), 0)} and o = C Slobs
is observed in our working example. The new diagnosis information is retrieved
by computing, on-line, the diagnoser based on these component parts. Note that
this diagnoser consists of exactly one transition, which is labelled by the new event
observed.

NotifySWfail

NotifySWfail

NotifyCSlfail __ m 7\

Figure 2.16: Parts of the component models depicted in Figure 2.7 that are relevant
to the update of the initial diagnosis information given the new observation CSlobs.

In summary, while the diagnosis based on the diagnoser consists in triggering a
single transition labelled with the new event observed, the diagnosis based on the
other models consists in determining the label of the target diagnoser state on-line,
by exploring the part of the model that is relevant to the update of the diagno-

2.4 The Symbolic Direct Diagnosis Approach 57

sis information. These approaches only compute (but do not store) the relevant
diagnoser path — the path labelled by the events actually observed. Naturally,
this targeted computation has reduced space requirements compared to algorithms
based on the diagnoser. On the other hand, it also leads to an increase in diagnosis
time. The next section gives experimental evidence of this tradeoff.

E x p erim en ta l E valua tion of O n-line D iagnosis A pproaches

We describe the performance in diagnosis time and space of our on-line diagnosis
algorithms, using the same case study as in Section 2.4.2. For that purpose, we
generated by simulation 100 arbitrary scenarios (possible sequences of observations)
of 10000 observations each, and used them as input to all four symbolic models.
The experiments reported here were run on a 3.2 GHz Pentium IV with 1 Gbyte
of memory.

The left graph of Figure 2.17 compares the time performance of the various on­
line diagnosis methods. To start with, it is worth noting that symbolic diagnoser
methods are slower than enumerative ones. This is due to the fact that the retrieval
of the diagnosis information only requires the triggering of a single transition per
observation. While BDDs are well suited to efficiently trigger transition sets, the
enumerative triggering of a single transition is almost instantaneous and hence
faster. For the remaining diagnosis methods, the symbolic implementations are
faster than the enumerative ones, owing to the efficient symbolic triggering of
transition sets that allows the consideration of all diagnosis candidates at once.

time in s

4 5 ----------43S+

Component Global Abstracted Diagnoser

size in Mbyte

State Nr. 0 17.67 1063 965 18474
Trans. Nr. 0 34 2912 48968 120698

Figure 2.17: Average diagnosis times based on the different models of our example
application based on 100 scenarios each of a sequence of 10000 observations on the
left and their model sizes on the right.

58 A Symbolic Framework for Diagnosing Discrete-Event Systems

The differences in symbolic diagnosis times across the spectrum correlate with
the extent to which the accumulation of faults (function AddFault described on
page 46) is performed on-line (see also Figure 2.18). Even though a fault can be
simultaneously added to a set of fault labels, AddFault still requires the individual
consideration of faults since we need to compute for each fault /* the set of fault
labels Ffx to which /* has to be added (in general, Fft ^ Ffj for /* ^ fj). This
is the main bottleneck of the symbolic computation. The component and global
models yield similar diagnosis times because AddFault is applied the same number
of times in both cases and symbolic synchronisation is very fast. In contrast, the
abstracted model yields a faster diagnosis times because AddFault only needs to
be applied once per observation, although in that case fault sets rather than single
faults need to be added. With the diagnoser, AddFault is never called.

time in s
8 ----------- 7.79 -, _
6

5 ----
V)

I 4 7.35

3

2 - —

1

o Eoa
Component

6.69

6.31

Global

2.99

2.61

0.58

' 1 ' " 0 29 '

Abstracted Diagnoser

Precom putations consisting of:
• Synchronization
• Abstraction o f shared events
• Update o f failure labels

Triggering observable transition

Retrieval o f Diagnosis Information

Figure 2.18: Composition of the diagnosis times depicted in Figure 2.17.

Taken in conjunction with the diagnosis times, the corresponding model sizes
(see right graph of Figure 2.17) illustrate the time/space tradeoff of the methods
across the spectrum and the superiority of the symbolic approach. Comparing
the symbolic models (resp. the enumerative ones), we can state, that the faster
the on-line diagnosis based on a model, the larger the model size. For all models,
the symbolic representation is about the same or smaller than the enumerative
one; yet except for the diagnoser, the symbolic run-times are significantly better.
Importantly, the symbolic diagnoser is as small as A the size of the enumerative
one. Its size is rather comparable to that of the enumerative abstracted model, yet
it is an order of magnitude faster than the latter.

Note that the representation of the symbolic abstracted model requires almost
three times as munch memory than the global model. This results from the fact

2.4 The Symbolic Direct Diagnosis Approach 59

that here more BDD nodes are needed to represent the fault events. In fact, for
the global model fault events can be encoded with only | • |£ / + 1|2 BDD nodes,
because only |£ /| different fault labels need to be represented (see Figure 2.19). In
contrast, for the abstracted model up to 2 different fault labels might need to
be represented which could require 2 — 1 BDD nodes.

Figure 2.19: Representation of fault events in the global model.

2.4 .4 Sum m ary

In this section, we have presented a symbolic direct diagnosis approach consisting
of a spectrum of models that differ in the degree to which the global diagnosis infor­
mation is precomputed. These models range from the small component models that
do not incorporate any precomputations, to the diagnoser model in which the diag­
nosis information for the entire observable behaviour of the system is precomputed.
In comparison to an enumerative implementation, the symbolic precomputation of
diagnosis information is not only significantly faster but also leads to a considerably
smaller diagnoser model.

When used on-line to retrieve the diagnosis information, the symbolic diagnoser
only incurs in a small time overhead compared to the enumerative one. Therefore,
an enumerative approach is mainly useful for small applications for which the com­
putation of the large diagnoser is feasible. In contrast, the symbolic diagnoser is
also computable for larger systems and can be used to efficiently diagnose them.

The abstracted model constitutes an interesting alternative to the diagnoser.
This nondeterministic model exploits the property of BDDs of efficiently triggering
transition sets at once. The abstracted model is considerably smaller than the
diagnoser and can be computed for a wider range of applications.

The component based on-line diagnosis algorithm is a method that requires only

60 A Symbolic Framework for Diagnosing Discrete-Event Systems

very small space and is applicable to large systems. However, the diagnosis time
is significantly higher than when using the abstracted or diagnoser models. The
slow diagnosis results from the low efficiency of symbolically updating fault labels.
In the next section, we will show that the off-line computation of fault labels leads
to dramatic improvements in the on-line performance of the component, global,
and abstracted models. With such an approach we aim at diagnosing even larger
systems efficiently.

We conclude this section with a note on diagnosing safety-critical applications.
Here time and space efficiency of a diagnosis approach might be less important than
the robustness of the method. Thus a more rugged enumerative approach might
be preferred over one using a BDD package such as CUDD which has a larger size
and complexity.

2.5 T he Sym bolic C om piled D iagnosis A pproach

In the previous section, we have shown that the efficiency of symbolic on-line
diagnosis largely depends on the extent to which the fault information is already
compiled and abstracted from the model. This suggests that we can increase the
diagnosis efficiency by abstracting the entire fault information from all the models,
and representing it independently of the nominal behaviour.

In this section, we define a spectrum of such compiled diagnosis models and
determine the extent to which efficiency increases when the local diagnosis infor­
mation is precomputed. We also describe how these compiled models can be used to
retrieve the diagnosis information on-line and prove that this information is indeed
correct. Finally we analyse the performance in time and space of this compiled
diagnosis approach in comparison to the direct one.

2.5.1 Sp ectru m o f C om piled D iagnosis M odels

Our framework comprises four models. The main difference with the models de­
fined before lies in the local precomputation of diagnosis information. While in the
previous approach, we first synchronise the component models before we precom­
pute any diagnosis information, we now swap the two computation steps and first
retrieve, off-line, the diagnosis information for each component before we synchro­
nise their behaviours (see Figure 2.20).

2.5 The Symbolic Compiled Diagnosis Approach 61

Component Models

Component 1
Component 2

Precomputation'
of Diagnosis
information

Decentralised
Diagnosis Models

DecDiag 1
DecDiag 2

....

Synchroni­
sation

Deterministic
Diagnosis

Model

Figure 2.20: Symbolic model computation

The models involved in this approach are shown in Figure 2.21. The decen­
tralised diagnosis models are obtained from the component models by precomput­
ing the diagnosis information locally. The synchronisation of these models results
in the centralised diagnosis model, which abstracted from the shared events leads to
the nondeterministic diagnosis model. Finally we detenninise the latter to obtain
the deterministic diagnosis model.

Figure 2.21: Compiled diagnosis models and their relationships.

All these models are best viewed as consisting of two parts: the local diagnosis
information which is represented the same way for all the models, and a description
of the system behaviour in which the models differ. The latter part determines
how efficient the local diagnosis information can be accessed. It is related to the
original direct diagnosis models and can be derived from them by abstracting the
fault information (for the three models on the left of Figure 2.21) followed by a
determinisation (for the two models on the left of the figure). The deterministic
diagnosis model is equivalent to the diagnoser. We define it in order to prove that
the compiled diagnosis approach is indeed correct (see Section 2.5.3).

Synchroni­
sation

Centralised
Diagnosis

Model

Abstraction of events\
shared among several y

components /

Nondeterministic
Diagnosis

Model

Decentralised
Diagnosis Models

D ecen tra lised D iagnosis M odel

In the component models of the direct approach introduced earlier, the nominal
and fault behaviours of a component are represented as FSMs in an homogeneous
way. We now define (Definition 11) a decentralised diagnosis model in which the
fault behaviours are abstracted and accounted for in the state labels of a FSM. The
latter is a sort of local diagnoser for the component, with a couple of important
differences from the notion of diagnoser described earlier for the global model.
These differences are motivated by the fact that we will ultimately need to retrieve
the global diagnosis information on the basis of the local one:

62 A Symbolic Framework for Diagnosing Discrete-Event Systems

• We retain the shared events labelling the transitions of the FSM. This is
necessary to identify the states of the FSM labelled with a local diagnosis
information that is consistent with the global behaviour of the system.

• We use two state labelling functions, namely:

— the usual or “classical” labelling function R* which retrieves the diagnosis
information that is consistent with any sequence of events Si observed
by component Gi, and

— the quiet labelling function R' which retrieves the diagnosis information
that is consistent with Si, followed by any sequence of unobservable
nonshared events of Gi.

Hence, to determine which system states and faults are possible immediately
after the last observation of Si, we use the classical function. In contrast, to deter­
mine the diagnosis information that is consistent with Si and any future behaviour
that does not involve other components and that cannot be observed, we use the
quiet labelling function.

Definition 11 (D ecentralised diagnosis model) The decentralised diagno­
sis model of a component Gi = (Xi: Ej,xo;, Tf) is the deterministic finite state
machine Gi = (Xj,'Iq,£',Rj,R',x0i,Ti) where

• Xz is the set of states (X — {xo*, • • •, x9t},);

• Tj is the set of possible local diagnosis candidates (\Eq = Xi x 2SP);

• £ ' is the set of events (£' = £ s< U £ 0J ;

• x0) is the initial state;

• h C Xj x E. x Xj is the set of transitions;

• R* and R' are two state labelling functions that associate a state to its pos­
sible local diagnosis information (X : X* ■—> 2^i and R- : Xz i—> 2^i);

• Rj, R' and Tz satisfy:
R*(x0l) = {(xOi,0)} and

Xj -X x' G Tz iff

Rj(x') = {(xi, li U /•) I 3(xi, U) <E Rj(xz) such that PE" -X x\
is path in Gi with S ta rt(P ^) = Xi
and l\ = EvSet(Pb", S /J and £" = £* \ £ '}.

R'(xj) = Rj(xz) U {(xj , li U If) I Ps" is path in Gi with £■' = £* \ £ ' and
S tart(P ^) = Xi, Targ(P^) = xj,
I'i = EvSet(Px»,Zfi), (Xi,k) € R,(xz)};

2.5 The Symbolic Compiled Diagnosis Approach 63

Figure 2.22 shows the decentralised diagnosis model for C S2. Again, abstract­
ing fault information leads to an increase in model size (see the comparison to
the component model of CS2 in Figure 2.7). In fact, the number of decentralised
diagnosis states is exponential in the number of component states and local fault
events. However, since the number of states of a single component is usually small,
the computation of G* remains feasible.

Note that the size of the decentralised diagnosis model relates to the size of the
component model in the same way as the size of the diagnoser relates to that of
the global model. This results from the fact that the number of different states in
Gj only depends on the number of different classical state labels. Two decentralised
diagnosis states are identical iff their classical labels are identical (see definition of
Tj). In that case, the quiet labels are necessarily identical (see definition of R').
However two different states can also have identical quiet labels (see for instance
states zq and z3 in Figure 2.22).

Ri(zo) = {(20,0)} R((zo) = {(20,0), (22 , {CS2fa i l }) }
Ri(zi) = R '(z i) = | (z 4, {CS2fai l }) }

Ri(z2) = R'(z2) = { (2 i ,0) , (z2, { C S 2f a i l }) \

Ri(z3) = R '(z 3) = j(zo,0), (z2, { CS 2f a i l }) j

R,(z 4) = R '(z4) = j (z 2, {CS2fa i l }) }

R2(z 5) = R '(z 5) - i (z 3,0), (z2 , {CS2fail }) , (z4, {CS2fai l }) }

Ri(zß) = R'(26) = | (2 2, {CS2fail }) , (z4, {CS2fai l})}

Notify SWfail Noli fyCSl fail _NoufyCSlfail_

NotifyCSlfail

Figure 2.22: Decentralised diagnosis model of C S2 depicted in Figure 2.7.

Now unsurprisingly, the definition of the symbolic decentralised diagnosis model
is similar to that of the symbolic diagnoser.

64 A Symbolic Framework for Diagnosing Discrete-Event Systems

Definition 12 (Sym bolic decentralised diagnosis m odel) Given a compo­
nent Gi = (b f ,b f ' ,b ° ,b f , bf ,bf , X i ,x 0i,TOi,Tni,T fi ,T Si), the symbolic decen­
tralised diagnosis model G* = (bf, b f , b f , b f , b f , bs , *, <f> •, x0?, T0i, Ts.) is described
via five BDDs <!>*, 4>', xo;, T0i and TSi involving the new Boolean variables bf and
b f , where

• bf are the decentralised state variables (bf — {&*(, . . . , b*Nr(X,^ }),

• bf are the primed decentralised state variables (bf = {bf. , . . . , }),

• and 4> • are two Boolean functions over 6* U b f U b f encoding the state
labelling functions R* and R' for all states,

• x0; is the Boolean function over b* characterising the initial state,

• T0j is the Boolean function over bf U bf U bf characterising the observable
transition relation, and

• TSi is the Boolean function over bf U bs U bf characterising the shared
transition relation.

Consequently, its computation is very similar to that of the diagnoser, as shown
in Algorithm 3 on page 48. Only step 6 of that algorithm, namely the computation
of the diagnosis information of all target states starting in xneWi and of the obser­
vations labelling the transitions starting in xneWi, needs to be extended in order
to

• compute the quiet state labels 4>' and to

• compute both, observable and shared transitions.

Thus, given a new state xneWi, we first compute all component states that can
be reached by triggering local unobservable transitions. These states along with
their corresponding fault labels, represented by the BDD reachUnobsi, comprise
the quiet state label of xnewr To add this label to <f>' we add the conjunction of
Xnewi and reachUnobsi as follows: 4>' <— 4>' V (xneWi A reachUnobSi).

Next we trigger all observable and shared transitions starting in states of reach—
Unobsi. After abstracting the start variables b f and swapping the state variables
we continue with the remaining computations similar to steps 7-10 of Algorithm 3.

2.5 The Symbolic Compiled Diagnosis Approach 65

Centralised D iagnosis M odel

Computing the global diagnosis information on the basis of decentralised diagnosis
models requires both: a synchronisation of the individual transition BDDs and a
synchronisation of the BDDs representing the state labels. We now define these
synchronisation rules.

Definition 13 (Centralised diagnosis m odel) The centralised diag­
nosis model of the system is the deterministic finite state machine
G = (X, \h,E', R, x0, It is defined as the synchronous composition of
the decentralised diagnosis models Gj = (X*, \Eq, E',Rj,R',xoi5 Tj)such that

• X is the set of system states (X = J^Li %i)>

• 'I' is the set of possible global diagnosis information 'I'*);

• E' = E0 U Es are the events f£0 = (J”=1 El0i and Es = U"=1

• R is the diagnosis labelling function (R : S 0 x X h 2*). Let a denote an
observation defined in component Gj and x = f^x* o state in G. Then R
satisfies:

R(cr,x) = Rj(xj) x R'(xj)
MA?

• xo is the initial state (x0 = ÜILi xoJ/

• ip0 is the initial global diagnosis information (ip0 = {(a:o,0)}j;

• T is the transition set (T = { (x i , . . . , xn) A (x'l5. . . , x'n) \
Vz G 1 . . . n s.t. <7 G E-, x* A x- G Tj and
Vz G 1 . . . n s.t. <7 ^ E', x* = x'}).

Thus the global diagnosis information is derived as composition of the local
diagnosis information. In general, it does not only depend on the global state itself
but also on the observation leading to that state, or more precisely on the compo­
nent Gj that observed the last event. Only for this decentralised diagnosis model
Gj the information is obtained using the classical labelling function Rj. The local
diagnosis information of the other components is retrieved via the quiet function

K
Figure 2.23 shows a part of the global diagnosis model for our example appli­

cation. Consider for instance state (xo,y1,zo) that is only reached from the initial
state via the transition labelled CSlobs. In case this event is observed the global

66 A Symbolic Framework for Diagnosing Discrete-Event Systems

diagnosis information is the following:

R(CSlobs, (x0,y1}zo)) = R'sw(xo) x Rcsi(Yi) x Rc52(zo)
= {(*0,0), (xu { S Wf a i l }) } x { (y 3, { C S l f a i l }) } x

{ 0*0,0), (z2, {CS2fa i l }) }

= I x/3, ^o), {C’S'l/azZ}^),

f (*i, 2/3, 2o), {SW/azZ, CSl/azZ}),

U*o, 2 / 3 , 2 2) , { C S l / a z Z , C 52/az/}),

((^ 1 , 2 / 3 , ^ 2) , { S W fail, C S l f a i l , CS'2/az/}^ j

Symbolically, we can very efficiently retrieve the global diagnosis information
using simple A operations. Therefore, computing this information on-line hardly
adds to the diagnosis time. Consequently, to decrease the storage space, we choose
to only synchronise the transition BDDs and not the state labelling functions.

Definition 14 (Symbolic centralised diagnosis model)
Given a set of n symbolic decentralised diagnosis models
Gj = (bx, b f , b f . b f , 65, 4b. x0i, T0i, TSt), the symbolic centralised
diagnosis model G = (6X, bx', bx , b°, bs . bF. 4>i,. . . , 4>n, 4>i,. . . , <f>̂, x0, T0, Ts) is
described using the 2n BDDs 4>i,. . . , 4>n, . . . , 4>'n; and the 3 BDDs x0, T0 and
Ts; involving the Boolean variables bx and bx' . where

• bx are the state variables (bx = Uf=lbx);

• bx' are the primed state variables (br = U™=lb f);

• x0 is the Boolean function over bx characterising the initial state (x0 =

A £ = i x o i) ,

• T0 is the Boolean function over bx U b° U bx' characterising the observable
transition relation, and

• Ts is the Boolean function over bx U bs U bx' characterising the transition
relation of shared events.

The synchronisation of the transitions of the decentralised diagnosis models is
analogous to the synchronisation of the component transitions. Hence the com­
putation of the global diagnosis model is similar to that of the global model (see
Algorithm 2 on page 43). The global diagnosis information can now be retrieved
by triggering the transitions of a single symbolic model and synchronising the local
diagnosis information (see Section 2.5.4).

2.5 The Symbolic Compiled Diagnosis Approach 67

I I Not ifySWfail I I SWohs f
NotifyCSlfail_ (xO, y 3 , z2) |— — — — — -| (x l , y 3 , zS) |------------------ ----------H zS)

Figure 2.23: (Part of) centralised diagnosis model for the component models de­
picted in Figure 2.7.

N ondeterm inistic Diagnosis M odel

The centralised diagnosis model still includes the shared events. However, after
the synchronisation, these events are irrelevant and can therefore be abstracted to
allow a more efficient computation of the global diagnosis information. This leads
us to the nondeterministic diagnosis model.

Definition 15 (N ondeterm inistic diagnosis m odel) Given a centralised
diagnosis model G = (X, T, S', R, xo, ipo, T), the nondeterministic diagnosis model
is the finite state machine G = (X, T, £ 0, R, xo, T), where:

• X C X is the set of states
(X = {x0} U {x € X I x is a target state of an observable transition});

• T is the transition set (t = (x x | a 6 E„ and P^u x'
is a path in G with Start(P-£u) = x}).

Figure 2.24 shows a part of the nondeterministic diagnosis model for our run­
ning example. Since the model’s states are a subset of the centralised model’s
states, we can retrieve the global diagnosis information using the same labelling
function R as we defined for the centralised model. The symbolic definition of the
nondeterministic diagnosis model is given below.

Definition 16 (Symbolic nondeterm inistic diagnosis m odel) Given the
symbolic centralised model
G = (b\ br , bx , b°, 6s , bF, 4>,, . . . , 4>n, 4>1,. . . , x0, T0, T.),
the symbolic nondeterministic diagnosis model
G = (6X, 6X/, 6X, 5°, 6F, 4>i,. . . , <Pn, <F'1?. . . , 4>'n, x0, T) is described via 2n + 2
BDDs: <f>i,. . . , <f>n, «Fj,. . . , x0 and T where

• T is the Boolean function over b* U b° U b*' characterising the transition
relation.

68 A Symbolic Framework for Diagnosing Discrete-Event Systems

(xO, yO, zO)

Figure 2.24: (Part of) nondeterministic diagnosis model for the component models
depicted in Figure 2.7.

To compute the model’s transitions, we first retrieve the state set X by extracting
the targets of the observable centralised diagnosis transitions and adding the initial
state: X <— SwapVar(ExtractVar(T0, 6 X/) , 6X, b*') V x0.

Then we compute for each state x £ X the targets Xtar£, of all shared event paths
starting in x using function CompReach described on page 27. In contrast to
the abstracted model computation this function requires no modification since the
fault information is represented separately. The target states are thus obtained as:
X-targ CompReach(bs , b*. b*\x. Ts). To compute the transitions b C T starting
in x we need to look at all observable transitions T0 of the centralised diagnosis
model that start in one of the states in Xtarg. In the nondeterministic model they
now also start in x. Hence is obtained as: x A AbstractVar(T0 A X*ar£,, b*).

With the nondeterministic diagnosis model, we have provided an efficient basis
for computing the global states whose labels point to the diagnosis information.
The retrieval of these states requires only as many triggerings of transition sets as
there are observations in the sequence S.

D eterm inistic Diagnosis M odel

In order to show that the compiled diagnosis models can be used to retrieve the
correct diagnosis information (see Section 2.5.3), we now define the deterministic
diagnosis model, which is equivalent to the diagnoser. The model G is the deter-
minisation of the nondeterministic diagnosis model G. Therefore, each of its states
x corresponds to a set of states T(x) C X in the nondeterministic diagnosis model.

2.5 The Symbolic Compiled Diagnosis Approach 69

Definition 17 (Deterministic diagnosis model) Based on the nondeter-
ministic diagnosis model G = (X, T, E0, R, xo, T), the deterministic di­
agnosis model of the system is defined as the finite state machine
G = (X ,# ,£0,T,R,x0,^o,T), where:

• X is the set of states (X = {x0, . . . , x9});

• x0 is the initial state;

• T is the state labelling function fX : X i—> 2*);

• R is the diagnosis labelling function (R : E0 x X i—> 2*);

• T C X x S0 x X m the set of transitions;

• Y, R, and T satisfy:
T(x0) = {x0};
R(cr,x) = UxeT(x) R(^ x)/ and
x —> x 6 f iff T(x7) = {x/ I 3x 6 Y(x) such that (x x') G T}.

Figure 2.25 shows the deterministic diagnosis model for our example applica­
tion. In the graph, states are only labelled with the global states returned by
function Y. On the basis of these states, we can also retrieve the corresponding
diagnosis information. For instance, after the event CSlobs was observed in the
initial state the diagnosis information is computed as follows:

R(CSlobs, x2)) = R(C Slobs, (x0, y1,z0)) U R(CSlobs, (x1,y1,z 3))
= (Rsw (xo) x RCSl(yi) x RC'S'2(zo))0

(Rsw(Xl) X Rc Si (Yi) x RCS2(Z3))

= (j (x o,0), (xlt [S W f atl }) \ x ((j/3 ,{C Sl/ai;})}x

{(0 0 ,0), (z2,{CS2fai

(f (x 2, {SWfa i l }) } x { (y3, { CS l f a i l }) } x

{(^o,0), (z2, {CS2fai l })))

= {(xo,0), 0xu {SWfai l }) , (x2, { SWf a i l }) } x

j f e , { C S l f a i l j f x ((0O,0), (02, {CS2fml) f

The symbolic deterministic diagnosis model, which is defined below, does not
represent the labelling function R explicitly, since it can be efficiently retrieved
based on T and the state labels of the decentralised diagnosis models.

70 A Symbolic Framework for Diagnosing Discrete-Event Systems

D efin ition 18 (Sym b olic determ in istic d iagnosis m odel)
Given the nondeterministic diagnosis model
G = (6X, bx' , bx , 6°, bF <f>n, $'1?. . . . x0, T), the symbolic determin­
istic diagnosis model
G = (&*, 6X’, 5X, bx , 6°, bF. $ i ,__ $ n, $ 1 , . . . , T, x0,T) is described using the
2n BDDs <f>i,. . . , <f>n, <$>'n, and the 3 BDDs T, xo and T, involving the
Boolean variables b* and b* , where

• bx are the model’s state variables (tP = (6* ,...,

• 6X are the model’s primed state variables (b* = {b± , . . . ,

• T is the Boolean function overb*(Jbx characterising the model’s state labels;

• xo is the Boolean function over b* characterising the initial state; and

• f is the Boolean function over b* U b° U b* characterising the transition
relation.

The symbolic computation of this model is very similar to the classical diagnoser
computation shown in Algorithm 3 on page 48. However, the complexity of the
algorithm is significantly reduced. To retrieve the labels of all target states of a new
state, we only need to apply a single Boolean operation: reachObs *— xnewinf 0 A T.
Recall that in the original approach we first had to trigger unobservable transitions
and handle the aggregation of fault labels before observable transitions were con­
sidered (see step 6).

SWobis

SWobs

CS lobs

SWobs

CSIobs

(x l , y l , z 3)

(x l , y 2 , z l)

Figure 2.25: Deterministic diagnosis model for the component models in Figure 2.7.

2.5 The Symbolic Compiled Diagnosis Approach 71

2.5 .2 E xp erim enta l C om parison o f M odel Sizes

We have defined four symbolic models that each consist of two parts: the local
diagnosis information and a description of the system behaviour from which the
fault information is abstracted. Now, we experimentally compare the sizes of these
different compiled diagnosis models for our example application. We also analyse
the extent to which the abstraction of fault information and its decentralised rep­
resentation affects the size of the behavioural models, by comparing each compiled
model with its analogue in the direct approach (i.e., we compare the size of the
component models with that of the decentralised diagnosis models, the size of the
global model with that of the centralised diagnosis model, etc).

The right chart of Figure 2.26 shows the number of states and transitions of
the various compiled diagnosis models, together with the size required for their
symbolic representation. The smallest of them is the decentralised model whose
size is about 50 KB, 30 of which are used to store the transitions and 20 of which are
required to represent the state labels. Since the diagnosis information is represented
in a decentralised way in all compiled models, they all use 20 KB for storing this
information, which is negligible considering the total model sizes. Note that a
global representation of the labels R would require 0.32 MB for this example, that
is 16 times more.

In comparison to the direct system description as a set of components, which
requires less than 10 KB of memory (see chart on the left), the decentralised diag­
nosis model is larger. As mentioned earlier, its number of states is exponential in
the number of states and faults of the corresponding component. However, since
its size increases only linearly in the number of components, its computation is
feasible even for large scale systems.

Coaopooa* Models
Global Model

Abstracted Model

Diagnoser Model

size in Mbyte
10 7.34

s ta te Nr. 0 70 3322 2372 18474

T rans. Nr. 0 250 10436 60258 120698

Decentralised
Diagnosis Models

Centralised
Diagnosis Model

Nondeterministic
Diagnosis Model

Deterministic
Diagnosis Model

Figure 2.26: Sizes of the direct (on the left) and compiled (on the right) diagnosis
models for the example application

72 A Symbolic Framework for Diagnosing Discrete-Event Systems

Comparing the global model with the centralised one and the abstracted model
with the nondeterministic diagnosis model, we can state that, even though they
contain more states, the symbolic models of the compiled diagnosis approach are
smaller. Once again, we see that BDDs are very suitable to represent large sets of
data, where large corresponds to the set size in relation to the number of Boolean
variables needed to represent the sets. Recall that, in contrast to the direct diag­
nosis approach, the behavioural models of the compiled diagnosis approach do not
require any variables to represent faults. From an enumerative point of view, we
can state that the increase of the number of transitions from the centralised to the
nondeterministic diagnosis model is smaller than from the global to the abstracted
model. Again this results from the fact that the models of the compiled diagnosis
approach do not contain any fault transitions.

The deterministic diagnosis model has almost the same size as the diagnoser
model. Hence, the decentralised representation of diagnosis information did not
lead to a reduced size. This is due to the fact that the retrieval of the global
diagnosis information based on this model requires the additional representation
of the state labelling function T.

Finally, we observe that size varies significantly from one model to another.
Therefore, as in the direct approach, the space complexity of on-line diagnosis
algorithms will differ considerably depending on the model they are based on. In
Section 2.5.4, we will focus on the time complexity of these algorithms, to complete
our assessment of their overall efficiency. This will enable us to identify, based on
the time and space requirements of an application, the diagnosis approach that is
best suited.

2.5 .3 C orrectness o f C om piled D iagnosis A pproach

We have defined several diagnosis models that can all be used for the on-line di­
agnosis (see Section 2.5.4). Before we compare these diagnosis algorithms, it is
necessary to show that they compute indeed the correct diagnosis information.

We therefore prove the equivalence of diagnoser and deterministic diagnosis
model. Since all diagnoser states are labelled with the correct diagnosis informa­
tion, this will guarantee the correctness of the diagnosis information retrieved from
the deterministic diagnosis model. This also holds if this model is computed only
partially, and in particular, if it is only computed for the event sequence actually
observed as it is the case for the on-line diagnosis algorithms based on the remaining

2.5 The Symbolic Compiled Diagnosis Approach 73

three models of the compiled approach.

T heo rem 2.5.1 There exists a path p = Xo -%■ Xi X2 ' • • Xk in the diagnoser
model G = (X , T, E0, xq, R , T) iff there exists a path p = x0 xi x2 • • • xfc
m i/ie deterministic diagnosis model G = (X, T, S 0, T. R, x0, 'ifo. T) with R(xo) = ifo
and = R(oft, x/i) Wi = { 1 ,. . . , k}.

We prove the theorem by induction over the number of observations k.
Base case: k = 0:

R{x0) = { (x o,0)}

=

Induction hypothesis:
—1 a, ^ 0 \ a, 0 2 * O k ^dp = X0 —i► X\ —i► X2 • • • — !> Xk m G
dp = x0 —► xi —► x2 • • • —► xfc m G
with R(x0) = ifo and R(xh) = R(oh, xh) V/i = { 1 ,. . . , k}.

Induction proposition:
—1 A A 0 \ A 0 2 a Ofc A T 1 A • /0 <
d p = Xo — > X i — » X2 • • • — ► --------> £ fc + i 111 G 4=>
- 1 A A 0 \ A 0 2 A Ofc A 1 A » CLdp = x0 —* Xi —+ x2 • • • —■+ xfc ----- > xfc+i ill G

with R(xk+i) = R(ofc+1,x fc+1).

Induction proof:
We prove the proposition in two steps. First we show that each diagnosis entry
{x* ,V) G R(xk+i) is als° an element of R(ofc+1,Xfc+1) and second we show that each
diagnosis entry (x',lr) € R(ofc+1, xfc+1) is also an element of R(xk+1).

1. R{xk+i) Q R(ofe+i ,x fc+i)

Let x' = n r= i xi denote a global state and l' = (J''=1 /' a fault label such that
(x'iV) e R (x k+1)

=> There exists a diagnosis entry (x,l) 6 R(xk) such that
p = P^u °fc-1-> x' is a path in G (see Definition 6 on page 36) with (1)

- l' = l U EvSet(P^u,Y<f),
- x = n iL i xi = Start(Psu) and

l be composed of l = fllLi

74 A Symbolic Framework for Diagnosing Discrete-Event Systems

=> (x,l) G R(ofc,Xfe) (see induction hypothesis)

=> Since R (ok, x&) = U x e T (x fc) x), there exists a state
x = a xi ^ T(x/r) with (x,l) G R(ofc,x) (see Definition 17) (2)

There exists a component q such that ok G E0g and
R(ofc,x) = Kq{xq) x n^RiW (see Definition 13) (3)

=> (xq, lq) € Rg(x9) and (xi} U) G R'(x*) Mi ^ q

=> Since (x, l) G R(xk) and path p = P su — ► P is in G (see (1)) it follows
from Definition 2 that

— there exists a set of path Psa — {Pe01 , . . . , P söri } in the components
G i , . . . , Gn with Eöi = E* \ E0i such that

- r = i u u ; , i M d (A v E/t)

- Xi = Start(Pz5.) and

- Let x" = n t i x "i denote the target state of P su, then

x'' = Targ(Px0.) Vi = { l , . . . , n }
— there exists a component Gj such that

- ok + 1 G E0j. and

- (x'j ^ x ') € Tj

and x\ = x" Mi ^ j (4)

=> From the above and from Definition 11 it follows that Mi G {1, . . . , n}

— the path P^g, — P^„ -A P^„ • • • - 1—* P^,) in Gi with
E" = E01 \ Es. and s'1 G ESi Mh = {2 , . . . , r a j

corresponds to a path
s2 smi

Pes. = Xj -4 xL • • ——> x™‘ in G? such that

* Or'',Z')GR'(x"u) with (5)

l'i = li u u r= i E v S e t { P ^ E /J (since (3))
= h U EvSet(Pz0,, EyJ

— there exists a state x' G Xj such that
(xmj ^ x ') G Tj with (* ',/ ') G Rj(x') (6)

2.5 The Symbolic Compiled Diagnosis Approach 75

=> There exists a path p = P^s °k ~ x' in G corresponding to
path p = Py,u x ' in G (see (1)) with (see Definition 13)

- EvSeq{PEs, Ea) = EvSeq(Pzu,Z s)

- x = Start(PeJ = n* 5 'tart(PsSj.) (state x as defined in (2))

- Targ{?Y.s) = a n d

“ x' = x'. x n M ^ r a r ^(ps Sl) and hence

= (s ' , 0 C R(ofc+i,x') (see (4), (5) and (6))

=» x °fc+i----->x ' GT (see Definition 15)

=> From the above and since x G Y(x*.) (see (2)) it follows that
Xfc °-fc+1» xk+i G T and x' € Y(x*.+i) (see Definition 17)

=>• R(ofc+i,x ') C R(ofc+i,Xfc+i) (see Definition 17)

=> (x',Z') € R(ofc+i ,x fc+1)

=* R(xk+i) C R(ok+i ,x k+1) □

2. Ä(xfc+1) D R(ofc+i,xfc+i)

Let x' = n i l denote a state and l' = U i i ^ a fault label such that (x', l') €
^(O/j+i, Xfc-)-i)■

=> 3x' = n i l xi C T(x/j+1) such that (x' ,lf) € R(ofc+1,x') (see Definition 17)

=> 3x = n i l x* C T(xfc) such that (x °k+1> x') G T (see Definition 17) (7)

=> there exists a path p = Pss -°A~-h x' in G such that (see Definition 15)
x = Start(PSJ

Let further x" = n i l xi denote the target state of P^s

=> there exists

- a set of paths P = {PeSi , . . . , P^Sn } in Gi,..., Gn (see Definition 11)

- with Start(PeSj) = xi and

- Targ{P^Si) = x •' for a l ii = {1, . . . , n} and

76 A Symbolic Framework for Diagnosing Discrete-Event Systems

— a decentralised diagnosis model Gy with transition (x'j °k+1> x'j) G T;
and x'' = x- Vz 7̂ j

=> R(ofc+i,x') = Rj(x') x (see Definition 13)

=> (x'j, I'j) € Rj(x') and (x'} l') € R'(x') Vz ^ j

=> From the above and Definition 11 it follows that
s2 0 s mi

— \/i — {1, . . . , n} the path Pss. = xz -A x2 • • • ——> x" in G* with
sj G ESi V/z = {2,. . . , rrii} corresponds to a path

Py0/ — Py." Py." ' ' ‘ P?f such that

* Eöi = Ei \ E0i and E" = Eöt \ ESi,

* Xi = Start(PY0.)

* x'l = Targ(PEo.)
* there exists a fault label such that l\ — U U U/T=i EvSet(P^„, EyJ

— there exists a state x' such that (x" °fc+1> re') G Tj and a:' = x" Vz 7̂ j

=7 From the above it follows that

— (x , 0 G R(ofc, x) with x = n ”=i xi and / = II/Li ^
=> (xj) €R(xk,ok) (see (7))
=> (a:,/) G R(xk) (see induction hypothesis)

— there exists a path p = P^u °K"l> x' in G such that

* EvSeq(PYu^ s) = EvSeq(?Ys^ 3)
* x = Start(PYu) and

* l' = l U EvSet(PYu,Ef),

=> From the above it follows that
(xk -°—*-> Ffc+i) G f and (x',V) G i^ ^ + i) (see Definition 6)

=> #(£fc+i) D R(ofc+i, Xfc+i) □ ■

Thus, we have proved that function R of the deterministic diagnosis model
retrieves the same diagnosis information as the state labelling function R of the
diagnoser. By computing the relevant part of the deterministic diagnosis model,
that is the part that is consistent with the events observed, we are therefore able
to retrieve the correct global diagnosis information. This argumentation does not
depend 011 whether this relevant part is computed off-line as it is the case for the

2.5 The Symbolic Compiled Diagnosis Approach 77

deterministic diagnosis model, or on-line as it is the case for the diagnosis based on
the remaining compiled diagnosis models. Therefore, for all these models, we can
describe on-line diagnosis algorithms that are guaranteed to retrieve the correct
diagnosis information.

2.5 .4 O n -lin e D iagnosis B a se d o n th e C o m p ile d D iag n o sis

M o d e ls

We now show how to compute the diagnosis information that is consistent with
a sequence of observations. Similarly to the direct diagnosis approach (see Sec­
tion 2.4.3) we do this by retrieving, on-line, the label of the corresponding deter­
ministic diagnosis model state.

Algorithm 4 incrementally updates the diagnosis information following a new
observable event <r, based on any of the compiled diagnosis models DiagModel. The
input parameter D iaglnfoRef refers to the states whose labels contain the current
diagnosis information. Initially, it contains the initial state x0 or x0 depending on
the approach (in case the diagnosis is based on the decentralised model, state x0
needs to be computed first).

To obtain the global diagnosis information, we need to consider the classical
label $ c o m p iD of the decentralised diagnosis model GCOm p iD in which a is defined
and the quiet state labels <f>' of the remaining models. Hence we need to determine
the component in which o is defined. We do this using function GetCompID
(line 3) that returns the corresponding identifier of the component by considering
the bc variables used to encode a (see Section 2.4.1).

Now, to update the diagnosis information, we first consider all possible inter­
actions among components that could have taken place after the last event cq was
observed and before the new event a is observed (lines 4-6). In the nondeter-
ministic and deterministic diagnoser model, these interactions are already precom­
puted. For the other models, we need to trigger all shared transitions from states
in D iagln foR ef and compute their target states. For the decentralised diagno­
sis model, we additionally need to synchronise the shared event paths starting in
states of D iagln foR ef (as shown in Algorithm 2 on page 43). This is all done in
function ComputeSharedTarg (line 5).

In order to retrieve the states that refer to the diagnosis information that is
also consistent with observing <r, we trigger this transition from the previously
computed states (lines 7-13). Note that for the decentralised diagnosis model we

78 A Symbolic Framework for Diagnosing Discrete-Event Systems

A lgorithm 4 DiagOnline(DiagModel, D iaglnf oRef, a)
1: INPUT:

DiagModel : symbolic diagnosis model (either G*, G, G or G)
transObs are the model’s observable transitions (T0j, T0, T or T)
bStart ancj foTarg are variables encoding states in transObs

Diaglnf oRef : states whose labels contain the current global diagnosis
information

o : new observation

In itia lise
2: Xstart <— D iagln f oRef
3: compID GetCompID(cr)

T rigger shared events
4: if DiagModel = G* or G then
5: X start X-start V ComputeSharedTarg (DiagModel, D iag ln f oRef)
6 : end if

Trigger new observation a
7: if DiagModel = Gt then
8: XTarg SwapVar(c7 A X sta r t A ^ocomp7D , &LnP/D, t p / ö)
9: XT arg <- ExtractV ar(XTarg, b*carnpID)

10: else
11: XTar9 <— ExtractV ar (a A X5 tor* A transObs, b7ar9)
12: XT a r g SwapVar(XTarg,bstart,bIar9)
13: end if
14: new Diaglnf oRef <— XTars

Look up diagnosis in fo rm ation
15: if DiagModel = G then
16: XTarg ExtractVar(T A X^ar9, 6X)
17: end if
18: diaglnf o <— AbstractVar(XTarg A <f>comp/£>, b*C(ympID)
19: for all components j compID do
20: diaglnf o <— AbstractVar(diagInfof\^'j,bj)
21: end for
22: OUTPUT:

states new D iagln f oRef whose labels contain the new global diagnosis,
diagnosis information diaglnf o

2.5 The Symbolic Compiled Diagnosis Approach 79

need to consider only the local observable transition and swap local state variables
of the model compID in which a is defined (line 8).

Finally, the diagnosis information is obtained by combining the labels of the
states computed above (lines 18-21). For the deterministic diagnosis model, how­
ever, this first requires the computation of the global diagnosis states (line 16).

2.5 .5 E xp erim enta l C om parison o f O n-Line D iagnosis A l­

gorithm s

We have tested this algorithm on the same case study and scenarios we used to
evaluate the direct diagnosis algorithms (see Section 2.4.3). Figure 2.27 shows the
diagnosis times obtained with the various compiled models. The fastest approach
is the one based on the nondeterministic diagnosis model. Here, the diagnosis
time is only composed of the triggering of observable transitions and the retrieval
of diagnosis information. Compared to the deterministic model, the former takes
only half the time, because the states of the nondeterministic model from which
the diagnosis information is derived are obtained explicitly (without the need of
using T (see line 16 of Algorithm 4)). What the triggering of observable transitions
concerns (lines 7-14) , so this is not much slower than in the deterministic model.
This results from two facts: first the efficiency of triggering transitions depends
on the size of the BDDs representing them and T is much smaller than T, and
second triggering transition sets is symbolically very efficient. Overall the on-line
diagnosis based on the nondeterministic diagnosis model is therefore the fastest
diagnosis method.

To consider the time/space complexity tradeoff we now also look at the space
requirements of the compiled diagnosis approaches (see Figure 2.26 on page 71).
For instance, the decentralised diagnosis models are 8 times smaller than the non­
deterministic model, yet only 3.5 times slower. Compared to the component based
diagnosis the diagnosis times are five times faster, due to a significant decrease
in precomputation time. Indeed, the compiled approach avoids the costly update
of fault labels; the precomputation is limited to the on-line synchronisation and
abstraction of shared events. Furthermore, these operations are more efficient since
the BDDs that are manipulated are defined over fewer variables (6* instead of over
bf U 6 f). For similar reasons, the centralised and nondeterministic models also
outperform the corresponding direct models.

As far as the diagnoser and the deterministic diagnosis model are concerned,

80 A Symbolic Framework for Diagnosing Discrete-Event Systems

time in s

7.348

2.614

GlobalComponent Abstracted Diag noser

Direct diagnosis models

Precomputations

Retrieval of Diagnosis Information

time in s
2 — 1.37 ~

1 1 155
1.22
0.729 0.48

0 ®
Decentral.

■ ■ ■ ■ ■ ■ ■ ■

Centralised Nondetemn. Derterm.

Compiled diagnosis models

Figure 2.27: Average diagnosis times for the different symbolic computation steps
of all direct (on the left) and compiled (on the right) diagnosis methods, based on
100 scenarios consisting each of a sequence of 10000 observations.

we can state that they neither differ in their size nor in the time taken by the
corresponding diagnosis algorithms. However, these algorithms are not competitive
since they are neither as space efficient nor as time efficient as the diagnosis based
on the nondeterministic diagnosis model.

For the other three diagnosis models, the diagnosis time increases only linearly
in the number of observations (see Figure 2.28). This is essential, since the diagnosis
information has to be updated continuously with the flow of observations.

In conclusion, we can state that on-line diagnosis based on the decentralised,
centralised or nondeterministic models is significantly faster than based on the
corresponding direct models. Since the latter two compiled models additionally
require less memory than their counterpart in the direct approach, it follows that
the global and abstracted models are not competitive. Due to their very small size
the component models remain an alternative.

2.6 Related Work

In the past, off-the-shelf symbolic model-checkers have been used for fault diagnosis
[Cordier Largouet, 2001] and for checking diagnosability [Cimatti, Pecheur, &
Cavada, 2003]. In the work of Cordier and Largouet 2001, the model checker is
the diagnoser, so to speak. It checks whether traces of the system exist which
satisfy a temporal logic formula stating what the observations are and expressing
constraints between their time of occurrence. While this approach is very attractive

2.6 Related Work 81

time in s
1.8 ______________________._______________________________

Decentralised Diagnosis Models

Centralised Diagnosis Model

| Nondeterministic Diagnosis Model |

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of observations

Figure 2.28: Development of the diagnosis times for the decentralised, centralised
and nondeterministic diagnosis model.

for off-line diagnosis, it is much less suited to on-line diagnosis because symbolic
model-checkers do not provide facilities for incremental computation.

Static systems have previously been successfully diagnosed symbolically using
BDDs [Torta &; Torasso, 2004] and Decomposition Negation Normal Forms [Dar-
wiche, 1998]. The latter of which are not very suitable for diagnosing dynamic
systems since the main operation, namely the triggering of transitions, requires
here exponential time in the size of the representation rather than polynomial time
as for BDDs.

From a symbolic point of view, the work by Marchand and Roze 2002 is the
closest to ours. They present a theoretical framework for modelling a system in
terms of polynomial equations which are generalisations of Boolean formulae, and
define a form of nondeterministic diagnoser within this framework. The frame­
work is state-based, meaning that observations and faults are directly associated
to states (by means of polynomial equations). The nondeterministic diagnoser
is obtained by gathering the states of the global model into observational/fault
equivalence classes. This nondeterministic diagnoser is quite different from ours
and still requires computations of non-trivial complexity to be performed on-line.
Furthermore, our event-based framework lends itself to a straightforward exten­
sion to intermittent faults along the lines suggested by Contant et al. 2002, while
extending a state-based framework in this direction is more difficult. However,
it would be interesting to implement the approach by Marchand and Roze (their

82 A Symbolic Framework for Diagnosing Discrete-Event Systems

paper does not report any implementation), and compare the results to ours.

Very recently, Xue and colleagues 2005 have shown how BDDs can help to
diagnose distributed discrete-event systems modelled as Petri nets. In their ap­
proach, which is limited to two components whose interactions can be observed,
BDDs are used to encode the diagnosis information. However, the model itself is
represented in an nonsymbolic way and the computation of diagnosis information
is also nonsymbolic. Hence a continual conversion from nonsymbolic to symbolic
representation is required.

In the area of model-based planning the symbolic approaches introduced in
[Bertoli et al.: 2001], [Albore & Bertoli, 2006] and [Jensen &; Veloso, 2000] are
the closest to ours. In the first one the authors show how to efficiently construct
plans under partial observability. This requires the consideration of belief states
that are similar to the state information contained in the diagnoser states. The
second work then reasons over these symbolic belief states to compute assumption-
based plans. The plans are said to be safe if their execution guarantees that it
can always be observed whether the assumptions are met or not. Safe planning
can thus also be seen as enforcing a specific form of diagnosability by construction.
Finally, the third approach defines a planning domain description language for
non-deterministic multi-agent universal planning. The language is defined such
that it allows an efficient BDD encoding. Our work applies similar techniques
to a different problem, and, unlike these three approaches, focuses on using the
techniques in decentralised computations.

Several nonsymbolic decentralised methods for on-line diagnosis have been in­
troduced to deal with the space complexity of large scale systems like [Garcia et al.,
2005] or [Pencole & Cordier, 2005] described in Section 1.3.2. The closest to our
decentralised diagnosis approach is the work of Debouk and colleagues 2000 who
have proposed a framework consisting of a set of diagnosers, that each explain the
observations from one site as described on page 9. The authors present a general
protocol that computes the correct diagnosis information for any system, as well
as two more efficient protocols which are only correct under certain assumptions
on the system. In the general case, the diagnosis information is retrieved on the
basis of extended diagnoser state labels and of the unobservable reach of these diag­
noser states. The unobservable reach includes all states that can be reached from
states of the diagnoser state label by triggering only global transition sequences
that are unobservable for the particular site and whose last event is observable by
another site. Thus the unobservable reach is similar to our quiet state labels except

2.7 Summary 83

that we also consider transition sequences ending with a fault event. Furthermore,
since our quiet state labels are computed based on local models, we only consider
unobservable transition sequences that do not contain shared events. Note that
the approach of Debouk and colleagues does not require to consider interactions
between components on-line, since all site diagnosers are computed based on the
global model and all diagnoser states contain global diagnosis information. Hence
this approach does not scale to large systems for which the global model cannot be
computed.

The continuous diagnosis approach described on page 10 is similar to our di­
agnosis method based on the abstracted model. While the continuous method
computes the diagnosis information based on the snapshot and the historic diag­
nostic set, we retrieve the new diagnosis information by first triggering all fault
transitions starting in one of the system states consistent with the old diagnosis
information. The labels of these fault transitions contain the new faults, which are
exactly those included in the snapshot diagnostic set. In the continuous diagno­
sis approach, the base model, the monitor, is computed on-line directly from the
component model, which differs from the way we approach diagnosis based on our
abstracted model. Due to the large monitor size, old monitor states are removed
such that only the part of the monitor that was relevant to the computation of
the last q diagnosis information is kept in memory. The efficiency of this approach
depends on the extent to which the monitor part that is stored in memory can be
used to compute the new diagnosis information. However, since the approach does
not precompute any diagnosis information locally, we believe that even in the best
case, the diagnosis times will only be as good as those we achieve with our direct
abstracted model. Furthermore, the size of the relevant monitor part is likely to
be significantly bigger than the size of our decentralised diagnosis models, which
allow for a faster on-line diagnosis.

2.7 Sum m ary

In this chapter, we have shown that using symbolic techniques by means of BDDs
significantly improves the diagnosis of discrete-event systems. Our two approaches
indicate not only that the symbolic encoding of an existing diagnosis approach, the
well-know efficient diagnoser approach by Sampath, leads to a considerable decrease
in space complexity but also that the design of a compiled symbolic framework that
systematically exploits the advantages of BDDs can lead to a significant reduction

84 A Symbolic Framework for Diagnosing Discrete-Event Systems

in diagnosis time.

In order to determine which diagnosis approach is best suited for a given appli­
cation with specific time and space requirements we have presented eight symbolic
diagnosis methods and have analysed their time/space tradeoff. Our experiments
clearly indicate the superiority of four of these methods. For large applications
where space is critical the diagnosis is best based on the component or decen­
tralised models. On the other hand, smaller applications can be more efficiently
diagnosed using the centralised or nondeterministic model.

Although BDDs are very suitable to handle large sets of data, our experiments
have also shown that the set size impacts on the BDD size and thus on the effi­
ciency of all our symbolic on-line diagnosis approaches. This suggests that systems
allowing a more precise diagnosis, that is those for whom the diagnosis algorithm
returns fewer diagnosis candidates, can be faster diagnosed than those where the di­
agnosis result consists of large numbers of possible explanations. The next chapter
addresses this issue by computing a minimum-cost solution for making the whole
system diagnosable. This then assists a systems designer in reducing the number
of explanations.

C h ap te r 3

Scalable D iagnosab ility C hecking

3.1 Introduction

The on-line diagnosis approaches described in the previous chapter determine all
faults that could have occurred. However, for many applications one rather wishes
to know what faults have definitely occurred. Computing the latter in general
requires diagnosability of the system, that is, the guarantee that the occurrence of a
fault can be detected with certainty after a finite number of subsequent observations
[Sampath et al, 1995]. Consequently, diagnosability analyses should be performed
on the system before any diagnostic reasoning. The diagnosability results then help
in choosing the type of diagnostic algorithm that can be performed and provide
some information of how to change the system to make it more diagnosable.

In this chapter, we propose a formal framework for checking diagnosability
on event-driven systems which is mainly motivated by two facts. On the one
hand, checking diagnosability means determining the existence of two behaviours
in the system that are not distinguishable. However, in realistic systems, there is a
combinatorial explosion of the search space that does not permit the practical use
of classical and centralised diagnosability checking methods [Sampath et al., 1995]
like the twin plant method [Jiang et al., 2001; Yoo & Lafortune, 2002]. On the other
hand, in the case of a nondiagnosable system, verifying its nondiagnosability may
not be sufficient; the diagnosability analysis should also provide the reasons why
the system is not diagnosable. Then a systems designer can make the appropriate
changes to improve the diagnostic reasoning, for instance, by adding sensors.

Our proposal makes several contributions to the diagnosability problem. The
first one is the definition of a new theoretical framework where the classical diagnos-

85

86 Scalable Diagnosability Checking

ability problem is described as a distributed search problem. Instead of searching
for indistinguishable behaviours in a single FSM, often called the global twin plant,
we propose to distribute the search based on local twin plants. Specifically, we ex­
ploit the modularity of the system by organising the system components into a
special tree structure, known as a jointree, where each node of the tree is assigned
a subset of the local twin plants. Once the jointree is constructed we need only syn­
chronise the twin plants in each jointree node, and all further computation takes
the form of message passing along the edges of the jointree. Using the jointree
properties we show that after two messages per edge, the FSMs at all nodes are
collectively consistent. This allows us to decide diagnosability by considering these
FSMs in sequence instead of the large global twin plant.

We describe how messages, which are themselves FSMs, are computed and how
diagnosability information can be propagated along with the messages. Further­
more, we employ a systematic iterative procedure so that only a subset of the
jointree is considered at a time and the loop terminates as soon as the current sub­
set is sufficient for deciding diagnosability. Finally, we identify a condition under
which the size of the messages can be reduced.

We also consider the practical use of the algorithm. Since the diagnosabil­
ity analysis problem is complex, a complete analysis may not be possible due to
lack of computational resources. Our distributed search therefore ensures that the
computation is scalable in the sense that it is able to provide an approximate but
exhaustive solution to the diagnosability problem when it cannot run to completion
due to limited computational resources. Then we return the set of all problems
that could possibly cause the nondiagnosability of a fault.

Finally, we identify those system behaviours that require modification to re­
store diagnosability. Since a system may admit several possibilities to remove
nondiagnosable behaviour, a mechanism to rank the modifications is desirable.
Our approach employs a ranking approach based on cost estimation to isolate be­
haviours in easily accessible components whose modification removes not only the
diagnosability problem but can also be cheaply performed. Here, it is assumed
that cost estimates are available that reflect important characteristics of proposed
system modifications, such as accessibility of subsystems or number of affected
subsystems. Furthermore, we improve upon previous approaches to solving the di-
agnosability problem by exploiting cost estimation to prune models of subsystems
to gain computational efficiency.

This chapter is organised as follows. In Section 3.2 we define the diagnosability

3.2 Background 87

problem for discrete-event systems and present a modified version of the twin plant
method allowing its efficient use based on decentralised models, rather than on
centralised ones. Section 3.2.3 gives an introduction to jointrees which we use in
Section 3.3 to solve the diagnosability problem. Section 3.4 describes techniques
to further increase the efficiency of this approach and in Section 3.5 we compare
our work with related approaches. Finally, we extend our algorithm in Section 3.6
to compute the ’’best” system modifications that restore diagnosability.

3.2 B ackground

In this section we review the definition of diagnosability and the twin plant ap­
proach to diagnosability checking, and give a short introduction to jointrees. Given
the new concepts we present in this chapter we also use a different running example,
namely the one shown in Figure 3.1.

Figure 3.1: Three components of a system modelled as FSMs. Solid, dashed, and
dotted lines denote observable, shared, and fault transitions, respectively.

3.2 .1 D ia g n o sa b ility o f a Fault in D iscrete-E v en t S ystem s

A fault F G E / of the system is diagnosable iff its (unobservable) occurrence can
always be deduced after finite delay [Sampath et a/., 1995]. In other words, a
fault is not diagnosable if there exist two infinite paths from the initial state which
contain the same infinite sequence of observable events but exactly one of which
contains the fault.

More formally, let pp denote a path starting from the initial state of the system
and ending with the occurrence of a fault F in a state xp, let sp denote a finite
path starting from xp, and let obs(p) denote the sequence of observable events in

88 Scalable Diagnosability Checking

a path p. As in [Sampath et al., 1995], we assume that (i) the system is live (there
is a transition from every state), and (ii) the observable behaviour of the system is
live (obs(p) is infinite for any infinite path p of the system). We have:

Definition 19 (Diagnosability) F is diagnosable iff

3d € N,Vp^s ,̂ |o6s(sf)| > d =t>

(Vp, obs(p) = obs(pFSr) = > F occurs in p).

If a fault is diagnosable then a diagnostic algorithm can diagnose its occurrence
with certainty based on a finite sequence of observations. Diagnosability checking
thus requires the search for two infinite paths p and p', i.e. paths containing a
cycle, with obs(p) = obs(p') such that F is in p but not in p'. The pair (p, p') is
called a critical pair [Cimatti, Pecheur, & Cavada, 2003]. From here on we will
write path to mean a path that starts from the initial state of the system.

3.2 .2 T w in P la n t A p p ro a c h for D ia g n o sa b ility C h eck in g

The idea of the twin plant method is to build a FSM that compares every pair of
paths (p,p') in the system that are equivalent to the observer (obs(p) = obs(p')),
and apply Definition 19 to determine diagnosability [Jiang et al., 200l].

For the sake of clarity in the rest of the chapter, we now present the twin plant
method in a new way, based on the decentralised model instead of the global model.
We start with the interactive diagnoser [Pencole, 2005], which gives the set of faults
that can possibly have occurred for each sequence of observable and shared events1.

Definition 20 The interactive diagnoser of a component Gi is the nondetermin-
istic finite state machine Gi = (A*, E*, x^i, Ti) where

• Xi is the set of states (Xi C Xi x T with T C 2L/*)}

• Ej is the set of events (E* = E0i U ESJ,

• Xoi = (#oi50) is the initial state, and

• Ti C Xi x Ej xX i is the transition set (x, T) (x', T ') such that there exists a
transition sequence x ^ X\ • • • xm —> x' in Gi with E' = {<ti, . . . , am} C
Ep U EUi and T ' = fF U (E • fl E/.).

xTo avoid complex notation we reuse several symbols of the previous chapter like ~ and *.
This shall not cause confusion.

3.2 Background 89

Thus the interactive diagnoser is very similar to our decentralised diagnosis
model (see Definition 11 on page 62). The main difference is that the former is
nondeterministic while the latter is deterministic. Figure 3.2 (top) depicts the
interactive diagnoser for component Gi shown in Figure 3.1. Following the transi­
tions s2, o 1 from the initial state of the diagnoser, for example, we arrive at state
(a4, { /l}), meaning that the system contains a path to state a4 on which the se­
quence of observable and shared events is exactly s2, ol and the set of faults is
exactly {/1}.

A local twin plant is obtained by synchronising two interactive diagnosers. The
synchronisation operation, denoted Sync(M i,. . . , Mn), is the classical synchroni­
sation operation on the n finite state machines based on their common events. The
result M of the synchronisation is obtained as the Cartesian product Mi x . . . x Mn
restricted with the following rule (see also the definition of the global model tran­
sitions on page 31):

From any state (x i , . . . , xn), the event e can occur if for all machines Mj
where e can occur, there exists in Mj a transition Xj A x'j.

The local twin plant is then constructed by synchronising two instances G\ (left)
and Grt (right) of the same interactive diagnoser based on the observable events
£ 0. = E* = ££.. Since only observable behaviours are compared, the shared
events must be distinguished between the two instances: in G[(resp. G[), any
shared event <r G £ Si from Gi is renamed her £ Y>ls. (resp. r:cr G Trs.).

Definition 21 (Local twin plant) The local twin plant of Gi is the finite state
machine

Gi = Sync(G‘,Gri).

Figure 3.2 (bottom) depicts part of the twin plant for component Gi in Fig­
ure 3.1. The top labels xO,. . . , xl3 of the states are their identifiers to which we will
refer in subsequent figures. State labels are composed of a state in the left inter­
active diagnoser (middle label) and one in the right interactive diagnoser (bottom
label). Each state of the twin plant is a pair x = ((xz, T l), (xr , F r)) that represents
two possible diagnoses given the same sequence of observable events. If some fault
F belongs to T l U T r but not to T l fl T T, then the occurrence of F cannot be de­
duced in this state. In this case, the state x is called F-nondiagnosable; otherwise
it is called F-diagnosable. In Figure 3.2 the oval nodes represent fl-nondiagnosable
states.

90 Scalable Diagnosability Checking

^ ^ r:sll:sl z'

xl2
a4.{fl}

a5, {}v. I:s2

x2
a2, {fl}

aO, {}

x7
a4,{fl}
a4, {}

xl3
- a5, {fl}

a5.{}
~ w a5.{fl}

a4, {}

05. {fl}a4. {fl}a2, {fl}

Figure 3.2: Interactive diagnoser (top) and part of a twin plant (bottom).

In the following, u represents any set of components = {GJ1, . . . ,G Ju>|}
of the system with |o;| > 1. The u-coupled twin plant is the twin plant of
Lj obtained by synchronisation of the local twin plants, that is by computing
Guj = Sync(Gjx, . . . , d j M).

Clearly, by extension, a state x = (xj1, . . . , X j M) is F-nondiagnosable if any state
Xjm is F-nondiagnosable in G j m . This results from the fact that a fault can only
occur in one component.

We now show the relation of cj-coupled twin plants and the global twin plant us­
ing the Sync operator. For the sake of clarity we explicitly state the common events
C that are shared by more than one FSM using the notation Sync({M i,. . . , Mn}, C).
Since the synchronisation operation Sync is commutative and associative, and
££ and £ 0i are disjoint sets by definition, it then follows:

3.2 Background 91

G u, — S2/nc({GJ1)...,G JM} ,U (E !S(U E ;))
i = j i

/

Sync {52/nc({G'1, . . . , G 'M} , U s i 4)1
V i = j i

j\u)\ J |w |

Sync({Grjl , . . . ,G riM}, U U °̂<)
i —j ii = j i

J'm
= Sync({G l,G l} , |J Et

i = j i

(3.1)

In other words, any cj-coupled twin plant can be also obtained by first syn­
chronising the interactive diagnosers over the set of shared events, to obtain two
instances of the diagnoser of u , followed by the synchronisation of the two diagnoser
instances over the set of observable events.

Consequently, uj = G = {G \,. . . ,G n} is the uncoupled twin plant that repre­
sents the global twin plant GTP of the system where all paths of G with the same
observable behaviour are compared. Hence the following fundamental result which
follows directly from a similar result presented in [Jiang et al., 2001] regarding the
GTP.

Theorem 3.2.1 F is diagnosable in G iff, in the G-coupled twin plant, there
is no path p with a cycle containing at least one observable event and one F-
nondiagnosable state.

Such a path p represents a critical pair (p\,p2), and is called a critical path. The
twin plant method searches for such a path in the GTP. In this chapter, we propose
a new algorithm that avoids building the global twin plant, which is impractical
for systems with a large number of states. Instead, local twin plants are built for
components G i of the system. Since the existence of a critical path in a local twin
plant does not imply nondiagnosability of the global system, we need to propagate
information between local twin plants, which we accomplish by message passing
on a jointree. This will then allow us to search local twin plants for a critical path
rather than the GTP.

92 Scalable Diagnosability Checking

3.2 .3 Jo in trees

Jointrees have been a classical tool in probabilistic reasoning and constraint process­
ing [Shenoy & Shafer, 1986; Dechter, 2003] and correspond to tree decompositions
[Robertson & Seymour, 1986]. For our purposes, a jointree is a tree whose nodes
are labelled with sets of events satisfying two special properties:

Definition 22 (Jointree) Given a set of FSMs Mi , . . . , Mn defined over events
£ i , . . . , £ n respectively, a jointree is a tree where each node is labelled with a subset
of T, — 1J2 such that

• every event of £* is contained in at least one node, and

• if an event is shared by two distinct nodes, then it also occurs in every node
on the path connecting the nodes.

Figure 3.3: Jointree (left) and assignment of local twin plants to jointree nodes
(right).

Figure 3.3 (left) depicts a jointree for the three local twin plants for the system
in Figure 3.1. The intersection of two neighbouring nodes, that is their common
event set, is called a separator, which is shown on every edge in Figure 3.3.

Once a jointree is constructed each FSM Gi is assigned to a node that contains
all of its events £*. Figure 3.3 (right) depicts such an assignment. Note that in
general each node can have multiple FSMs assigned to it.

3.3 A Jointree A lgorithm for D iagnosability

The synchronisation of all twin plants would allow us to solve the diagnosability
problem. However, for large systems this can easily be impractical. Therefore we

3.3 A Jointree Algorithm for Diagnosability 93

only synchronise the twin plants in each node and then pass messages to achieve
consistency. Afterwards a system is diagnosable iff no jointree node has a critical
path. We now show how we can achieve consistency among a set of FSMs organ­
ised in a jointree and how we can equip every jointree node with diagnosability
information such that we can decide whether a path is critical or not.

Jointrees admit a generic message passing method that achieves consistency
among the nodes [Dechter, 2003]. In our case this translates into a method that
achieves consistency of all FSMs labelling the jointree nodes. The messages passed
on will themselves be FSMs. In this section we describe how these messages can be
computed and passed and how the diagnosability information can be propagated
correctly as part of the messages. This will then also enable us to present an
iterative diagnosability algorithm at the end of this section.

3.3.1 Establishing Consistency

While FSMs assigned to the same tree node are synchronised directly to obtain
a local picture of the system behaviour, messages must be exchanged to achieve
consistency between nodes.

Definition 23 (Global Consistency; Completeness) A FSM with events
Hi is globally consistent with respect to FSMs M i, . . . , Mn iff for every path pi in Mi
there exists a path p in the synchronised product Sync{M \ , . . . , Mn) that has with
respect to £* the same event sequence as pi (i.e. EvSeq(p,Ei) = EvSeq(pi,Ei))2.
A FSM M^ is complete iff it contains all globally consistent paths of Mi.

Each edge in a jointree partitions the tree into two subtrees, and a message
sent over an edge represents a summary of the collective behaviour permitted by
one side of the partition. A major advantage of this method is that this summary
needs only to mention events given by the separator labelling the edge; the jointree
construction ensures that this equals the intersection of the two sets of events across
the partition.

A message can be computed by projecting a FSM onto a subset of its events.

Definition 24 (Projection) The projection IIjy(M) = (X \ xo, T 1) of a FSM
M on events E' C S is obtained from M by first contracting all transitions not
labelled by an event in S' and then removing all states (except the initial state

2See Definition of EvSeq on page 32.

94 Scalable Diagnosability Checking

Xq) that are not a target of any transition in the new set of transitions T '. More
formally, V is given as follows:

T' = I x x' I x, x' E X ' and o' E £ ' and

3 x X \ Xk
o '

in M such that cr* ^ Vz = 1 , . . . , A; j .

Figure 3.4 shows the result of projecting part of the twin plants Ö2 and G3

on events {l:s2, r:s2} and {l:sl, r:s l} respectively. As this example shows, com­
pared to the original FSM, its projection might only lead to a minor size decrease.
Section 3.4.1 shows how the message size can be further decreased.

G2 (part) n{ l:s2 , r : s 2 } (G y

Gs (part) n { l : s l , r:s31} (G3)

l : s l

o 4

r :s l n s j

~ v C ~1 i s l ' '

l : s l

l : s l

l : s l

' . Ö -
r :s l

r :s l

\ r : s l

\ r :s l
1 r :s l

! : s i

l : s l >---1

/ l : s l
/ ̂ " -

l : s l
1 zO L r:sl

\ t u - —

7 G } -
l : s l

^ h s l
l : s l \ y j r . ,

/
/

W r : s l \ r:sI
r :s l

l : s l /

Figure 3.4: Projection of twin plant parts G2 and Ö3 .

3.3 A Jointree Algorithm for Diagnosability 95

3.3 .2 M essage P assin g

We now describe the message passing assuming that the FSMs in every node have
been synchronised into a single FSM. To achieve consistency among the FSMs, each
node of the jointree will in principle require a summary of the behaviour permitted
by FSMs residing in the rest of the tree. Given the jointree properties, all these
summaries can be computed in only two passes over the jointree, one inward pass,
in which the root “pulls” messages toward it from the rest of the tree and one
outward pass, in which the root “pushes” messages away from it toward the leaves.
Once all these messages have been sent, every FSM is updated based on all the
messages it receives resulting in a globally consistent FSM.

The process starts by designating any node of the tree as root. Then, in the
first, inward pass, beginning with the leaves each node sends a message to its
(unique) neighbour in the direction of the root. To compute this message, its FSM
is synchronised with all messages it receives from its other neighbours (leaves do
not have “other neighbour” and hence skip this step). The message it sends is then
the projection of this FSM onto the separator between itself and the receiver of the
message.

In the second, outward pass, each node (except the root) receives a message
from its (unique) neighbour in the direction of the root. Again this message is
computed by synchronising its FSM with ah messages it received from its other
neighbours and by projecting the resulting FSM onto the separator between itself
and the receiver of the message.

<V=Sync(<S2,Mi2) <$3c=Sync(63,Mi3)

Figure 3.5: Inward (left) and outward (right) message propagation using jointrees,
where E = {/:s2, r:s2, hs3, r:s3} and E' — {/:sl, r:sl, Z:s3, r:s3}.

Finally, each node updates its own FSM by synchronising it with messages from
all its neighbours. Then every FSM Mf of a jointree node represents exactly the
behaviour that is complete and globally possible (see proof for Theorem 3.3.1).
Figure 3.5 illustrates the inward and outward propagation steps performed on the
jointree of Figure 3.3 (right), resulting in the FSMs GJ, G2 and G3 . Although these

96 Scalable Diagnosability Checking

FSMs no longer conform to our previous definition of twin plants, we will continue
to refer to them as such. We do this because they provide sufficient information to
decide diagnosability, if the diagnosability information is propagated correctly (see
next subsection).

To state the benefits of the jointree propagation we define the equivalence re­
lation for FSMs. Two FSMs M and M' are equivalent (written M ~ M') iff they
admit the same set of event sequences, or more formally:

3t = x0 xi • • • ^ xk in M
<-> 3r' = x'Q —L x[- • • -^4 x'k in M'

This gives us the following theorem:

Theorem 3.3.1 Every FSM Mf labelling a jointree node is complete and consis­
tent with respect to all other FSMs Mi , . . . , Mn of the tree once it is synchronised
with all messages it received, i.e. M f ~ U^i(Sync(Mi, . . . , Mn)) holds for all FSMs.

Proof: Let S i , . . . , En be the event sets of the n FSMs M i,. . . , Mn labelling
the jointree nodes. We now prove the theorem by induction showing (i) that the
synchronisation of a FSM Mi with all its inward messages results in a FSM that is
consistent with all descendants Mi , . . . , Mj_i of Mj, that is, it is equivalent to the
FSM M[~ Ti'zfSync^M i,. . . , Mj)). Next we show (ii) that every message is
equivalent to the FSM n^. j (Sync{M\, . . . , Mj)), where M \, . . . , Mj is the set of all
FSMs on the z-side of the jointree partition. This allows us then to show (iii) that
the synchronisation of a FSM Mj with all the messages it receives results in a FSM
that is consistent with all nodes Mi , . . . , Mn, that is, it is equivalent to the FSM
n Si(Sz/nc(M i,...,M n)).

We prove the inward case by induction on the depth of the tree rooted at Mj.
The base case is straightforward. A leaf is consistent with itself, has no descendants
and therefore does not receive any inward messages. In the induction step we show
that any given FSM Mj whose children all satisfy property (i) will also satisfy this
property.

Without loss of generality we assume that M1?. . . , M*_i are the descendants of
Mj which are all ordered and that M'n , , M'Jk {jk = i ~ 1) are its children. Further
let Fjui, . . . , Ejkii be the events labelling the edge of a child Mjh to its parent Mj.
Resulting from property (i) we have M'Jh ~ I I (Sync(Mjh_l+1 , . . . , Mjh)) for every
child Mjh where Mx = MJO+i. If Mi is synchronised with all the inward messages
it received it represents the FSM:

3.3 A Jointree Algorithm for Diagnosability 97

Sync(Mjui, . . . , Mjk,i, Mi)

- Sync(u^ji i(Sync(Mi , . . . , Mjx)) , . . . , UEjkti(Sync(Mjk_1+u . . . , Mjk)), Af*)

= Sync^nEi(Sync(Mi , . . . , Mh)) , . . . , n Si{Sync{Mjk_l , . . . , M,)

since the jointree properties guarantee that (Ejh_1+i U . . . U EJh) flSj C Ejh>t
for all edge labels Ejhfi and Ex = Ej0+i

- Sync(u^i(Sync(Mu . . . ,

since the jointree properties guarantee that no two children of Mi
share events not defined in E*

- IISi (Sync(Mu . . . , Mjk, M ^
since E* is the event set of Mi and therefore Mi = Yl î (Mi)

= UEi (Sync(Mu . . . , M ^ since Mjk = Afj_i

This concludes the proof of part (i). The proof of part (ii) follows directly from
property (i). The inward message sent from Mi to Mj is the FSM:

n Eitj{Sync{Mjui, . . . , Mjktii Mi))

~ n Ei -(IIs^Sj/ncfM i,. . . , Mi))) since property (i) holds for Mi

= U^itj(Sync(Mu . . . ,Mi))
since the jointree properties guarantee that Eij C E*

Since the jointree is symmetric, it follows that the outward message Mjj is
equivalent to the FSM Yl î j (Sync(Mi+i , . . . , Mn)). We now prove part (iii) by
induction on the distance of the node from the root Mn. As the base case we
consider the root Mn. Since all nodes other than Mn are descendants of Mn and
therefore all messages it receives are inward messages and since it satisfies property
(i) we have M'n ~ Ilzn{Sync(Mi , . . . , Mn)) = M„. Hence the root also satisfies
property (iii). We now show that this property also holds for any other node Mi
once it is synchronised with all inward messages . . . , Mjk and the outward
message M j it receives. The resulting FSM has the following form:

98 Scalable Diagnosability Checking

Sync(Mi, Mjlti, . . . , Mjk4, Mjti)

= Sync(UEi(Sync(Mi, Mjui, . . . , Mjkti), UE.(Mj4))
since the jointree properties guarantee that

Ej U Ejl5j . . . U U C Ej

~ 52/nc(risi(<S,2/nc(Mi,. . . , M*)), 11%. (Mj^)) since property (i) holds for Mi

- Sync(UEi(Sync(Mu . . . , Mi)), UEi(UEji(Sync(Mi+i , . . . , Mn)))
since property (ii) holds for Moi

= Sync(U^.(Sync{Mi,. . . , Mf)), n Si(Spnc(Mm , . . . , Mn))
since the jointree properties guarantee that Ejj C E*

- n Si(Sync(Sync(Mi , . . . , Mi), Sync{Mi+1, . . . , Mn)))

~ UE.(Sync{Mi, . . . , Mn)) □

Thus every jointree node is indeed consistent with all other nodes once it is
synchronised with all the messages it received. In particular this means that for

every path p in G\ = n s .(Gi, . . . , Gn) there is also an equivalent path pi in Gf, i.e.
Pi is defined over the same event sequence as p, and vice versa. Now, for deciding
diagnosability this simple equivalence is not sufficient. In addition we need to
ensure that for every critical path p in G\ there is also an equivalent critical path
Pi in Gq. This requires the propagation of diagnosability information.

3.3 .3 P rop agation o f D iagn osab ility In form ation

In the rest of the section we will assume that (i) the twin plants for components
have been assigned to appropriate jointree nodes and synchronised within each
node, (ii) Gp is the component defining the fault F whose diagnosability is to be
checked, and (iii) the node containing the twin plant Gp is chosen as root. For the
sake of readability we will use the notation G \ , .. . ,Gn (instead of GUl, . . . , GUn)
to refer to the n jointree nodes. Each of these nodes may be composed of a set of
local twin plants.

Now, the root can already be examined for critical paths after the inward prop­
agation phase for two reasons: first, the synchronisation of the root with all its
incoming messages results in a globally consistent twin plant, and second, since
the fault F appears in the root, the FSM already contains diagnosability informa-

3.3 A Jointree Algorithm for Diagnosability 99

tion, that is, the classification of states into diagnosable and nondiagnosable ones.
If the root does not contain a nondiagnosable state, F is known to be diagnos­
able. Otherwise, the outward propagation phase must be carried out to determine
whether another jointree node has a critical path.

Once propagation is complete, every state of a twin plant comprises a tuple
(xi , . . . , xn). In particular, each state contains a state (labelled diagnosable or
nondiagnosable) from Gp that has been received and synchronised with the local
FSM as part of the messages pushed from the root in the outward propagation
phase. To ensure diagnosability information is preserved, we must ensure that no
path to a nondiagnosable state is lost in this process.

Recall that the projection operation applied to compute the outward message
removes all states that are no longer a target of a transition labelled by a separator
event in E. This can lead to the removal of nondiagnosable states, resulting in
the incomplete propagation of diagnosability information. Consider for instance
the twin plant Gu shown in Figure 3.6 (left). When computing the message Vu
we remove the nondiagnosable state ul. This results in the consistent twin plant
G% which does not contain any critical paths although it should contain one as Gd
indicates.

Figure 3.6: Twin plants Gu, Vu — II{al}(Öu), Gv, Gcv = Sync(U{si}(Gu),Gv), and
Gd = Uxv(Sync(Gu,G v)) (from left to right).

We therefore need to ensure that every message A4 =M EseP passed on from G
g ------->G'

to G1 via the separator events Esep will lead to a consistent twin plant G,c that has
a critical path iff IIz sep(Sync(G G')) has one.

To achieve this it is necessary to annotate every diagnosable state x in a message
to capture whether it has a nondiagnosable local future, that is, whether there is
a transition sequence starting in x and leading to a nondiagnosable state Xk such
that none of the transition events is kept in the projection:

Definition 25 (Nondiagnosable Local Future) Let G and G' be two FSMs as­
sociated with adjacent nodes in a jointree connected by an edge labelled Tsep, and
let Xk denote a nondiagnosable state in G. Then, a diagnosable state x G G has a

100 Scalable Diagnosability Checking

nondiagnosable local future iff there exists a transition sequence

/■k (J \ ^ (J fa /N

T = X ------> £ ! • • • ------> Xk

in G such that none of the events o\ , . . . , are in Esep.

We capture this information by adding additional nondiagnosable subgraphs to
the FSM (G) obtained by projection of G: for every diagnosable state x G G
that has a nondiagnosable local future w.r.t. Esep, a nondiagnosable extended
terminal state ext(x) and a terminal transition x — > ext(x) are added to ensure
that a critical path is not lost in the projection.

Figure 3.7 illustrates the example of passing such a message from G\ (see Fig­
ure 3.2) to G3 (the part shown in Figure 3.4) to check the diagnosability of fault fl.
Here the projection V — Tl{i:Si,r:si}{Gi) has the two diagnosable states xO and x3.
which both satisfy the above condition (see paths xO ► x2 and x3 x5 in G 1

in Figure 3.2). Thus the message M . {i:si>r:si} „ contains two terminal transitions.
G \ ---------------— ----------->Gs

On the other hand the message sent from G\ to G2 does not contain any extended
states since there does not exist such a sequence r satisfying Definition 25 for the
only diagnosable state xO.

Note that there is no need to introduce artificial states for a nondiagnosable
state x'. This results from the fact that all states reachable from x' via transitions
labelled by events not kept in the projection can only be part of a nondiagnosable
cycle if there is also a nondiagnosable cycle with state x' (according to the syn­
chronisation operation). Hence nondiagnosability can be verified correctly based
only on the latter. This allows us to state the main result of this section:

Theorem 3.3.2 Fault F is diagnosable in G iff after both passes of jointree prop­
agation with diagnosability information, no FSM in a jointree node has a critical
path.

Proof: We prove the theorem by showing (i) that there exists a critical path in
G\ = H ^ S yn cfä i , . . . , Gn)) iff there exists a critical path in Gc{ and (ii) that there
exists a critical path in GTP = Sync(G\ , . . . , Gn) iff there exists a jointree node
Gi with a critical path.

To prove part (i) we first show that G\ and ns, (Gf) are guaranteed to be equiva­
lent. Since the only events projected out in nSi(Gf) are the ext events and since the
extended transitions are only added as terminal transitions the equivalence follows
directly from Theorem 3.3.1 on page 96. The fact that the extended transitions

3.3 A Jointree Algorithm for Diagnosability 101

A7 _ {I : s2 , r : s2}
G i - --------------- A g 2

C T l:s2
— x5

A G { i : s l , r : s l } A
G 1 Ĝ3 ______ _nsl

ext - ex t(xO) r U _ - —I x4 r - - I s- - H *8 I- - t Si ____ - r- Sl * j A j
'" l s l ~1 xl° f l:s l ✓

}ix- - --CFJ 1:5 - x ' - - ' ̂ - -"
I xO f r:s l ___ --Us i

v V s f ' " W ~ CXt "" r s l x , “ e x t(x 3)
\ v ^ n s l i;s l ksl_ " ,

" " - * " r sl x13 nsl ■***
" , x l 2 _____ _ _ - " ^

r:si - " ' 1:s 1
x5 — = - - ---------------------------

Gs made consistent with G\ via synchronisation with message M {;.sl r.sl}
G x ---------- :----------->G3

(ext(xO). zl)

' :s l __ - T lx l . z4) |— — —S^— — J (x4, z7) J — — — * — H (x8, z7) (—"
" o4 ^ 7

I (xl,z2) -*■ —S — — H (x4. z6) I ” ^ r:s_l_
. / l s l - ' ' /

l.sl , S ' r:sl — * (xl3.z7) — _
V . 1: S1

r:s l ----------^1
I (x3. z3) f

(ext(x3), z3) f ■ .

(x5.z3)

Figure 3.7: Message M {l.s2 r.s2> on the top left, message M {i.si rsu on
6 1 ---------1— — >g 2 ^ g i ----------:------------ >g 3

the top right and its synchronisation with G3 on the bottom. Grey states are
nondiagnosable and hexagon shaped ones are extended states.

are only added as terminal transitions also implies that there are no cycles with an
extended transition in G\. Hence, G- and n ^ G ^) are equivalent with respect to
their critical paths iff this holds also for G\ and G-\

Next we show that the equivalence of FSMs implies equivalence with respect
to cycles. For every path Xo x\ • • • -^4 x in G\ with the cycle state x and
k = i G {0, . . . , k — 1} it follows that there is also a path x'0 —̂ x[• • • ^ x'k in
GJ with the cycle state x'k = x\. This results from the fact that G' and Gf are
equivalent and that every path with a cycle can be extended arbitrarily often, i.e.
there is also a path p = x0 —► X\ • • • —» x ^ -----> x i+i • • • —> x ^ ---- > xi+i • • • —» Xk
in G'. Since the number of states in G? is finite it means that states along an
arbitrarily long path need to repeat themselves which means that for every path
with a cycle in G\ there must also be an equivalent path with a cycle in G?.

102 Scalable Diagnosability Checking

xO S ' - x l s2 - x2 01 - x3 ° 2 - x4

M « s l I—n s2 ~ extlvlxy x0 ► xl “ x2 ► ext(x2)

- t t s l j—n s2 o yo r ■ » y1 y2

M (xO,yO) *■ (x2,y2) ► (ext(x2),y2)

sl o3(xO.yO.zO)---- *• (xl.yl.zO)------* (x2,y2,zl)-------- *■ (x2,y2,z2) ------ ► (x3,y2,z2) — —► (x4,y2,z2)

o4 pF

p' (yO.zO) \ - - 1-A (yl.zO) f - - *1 (y2.zl) \~^~A (y2,z2) C*?} ~~ ~ “ x4

Pr

(yO.zO) L s2 j-----» (y2,zi) °3 t (y2,z2) (xO,yO,zO) s2----- ► (x2,y2,zl)
r O
(x4,y2,z2)

(xO,yO,zO)----- ► (x2,y2,zl)
ext '

(ext(x2),y2,zl) -------*■ (ext(x2),y2,z2)

Pf
ext

P"F
x O ----- ► x2 ► ext(x2) x O ----- ► x2

Figure 3.8: Example paths referred to in the proof.

In order for a path to be critical, there must also be a nondiagnosable state in
the cycle. We now show that G\ and G\ are also equivalent with respect to their
critical paths. The proof is based on the recursive implication that the existence of
one path leads to the existence of another path. To increase the readability we give
an example of the paths we introduce in Figure 3.8. On the top of that Figure the
jointree is depicted consisting of the three nodes Gx, Gy, and Gz The two outward
messages are also shown.

(=>) We now show that given the critical path p\ in G\ there must also be an
equivalent critical path pi in GF Let p be a corresponding critical path in

3.3 A Jointree Algorithm for Diagnosability 103

the GTP= Sync(Gi , . . . , Gn), i.e. p\ = n ^ p) 3, that is composed of a path
p' in Sync(G\ , . . . , Gn_i) and a path pp in Gp = Gn such that p is a path
in Sync(p',pf) (see Figure 3.8). This means that p" — U^ip') is also a path
in G' equivalent to p', since all events of p' are also in p'. This path p" is
diagnosable since none of its states is composed of a state in Gp. Therefore
there is a critical path pf in Gf, if the outward message Mjfi has a path that
is composed of a path p'F whose target state is nondiagnosable and such that
p'p = IIs^Pf) — n Si (p'p)- Let £ Pf C £ { denote the set of events of pF.
Since From the jointree properties it then follows that every node along the
path from Gf to G* is labelled by an event set that contains £ Pf. Therefore
Mjj has a path composed of p'F, if all the other outward messages along the
jointree path from Gp to Gj are composed of such a path. This holds since pp
is a path in Gf ending in a nondiagnosable state and defined over the same
event sequence as p'F with respect to £*. Therefore the outward message sent
by Gp is guaranteed to have such a path p'F leading to a (possibly extended)
nondiagnosable state. Hence Gf has a critical path.

(<t=) We now show that if there is a critical path pf in Gf, there is also one in
G\. Let pf be composed of the paths p'F and p" in U^i(Sync(Gi^. . . , Gn_i))
such that p" ~ pf and p'F is defined over events in £ Pf U {ext} where {ext} ^
£ Pf. Resulting from the computation of outward messages this implies that
there is a path pF in Gp leading to a nondiagnosable state and such that
n£in£PF(PF) = n ^ n x ^ (Pf)- This means that there is a critical path in
Sync(p",pf) and therefore in U^i(Sync(Sync(G\ , . . . , Gn_i), Gn)) and hence
in G'.

This concludes the proof of part (i). To prove part (ii) we need to show that
the projection operation does not remove cycles, if at least one event a G E of
the cycle is kept in the projection. This results from the fact that the target state
x of this event is kept in the projection. Hence, if the cycle is extended twice, i.e.
as in the path xo —L X\ • • • x • • • x • • • —* x, its projection contains the state
x twice and hence has a cycle. This state x is the same as in the original cycle
and hence has the same diagnosability label. It implies that if there is a critical
path in the GTP= Sync(Gi , . . . , Gn) with the observable event a G E* in the
nondiagnosable cycle, then there is also a critical path in n ^ S p n ^ G i , . . . , Gn))
and since part (i) holds there is also a critical path in the jointree node Gf.

Now, from the existence of a critical path in a jointree node Gf it follows that

3The projection of paths is analogue to the one of FSMs (see page 94).

104 Scalable Diagnosability Checking

there is one in U^i(Sync(Gi: . . . , Gn)) (see part (i)). Since the projection operation
does not add states and can only add a transition x x' if there has previously been
a transition sequence starting in x and leading to x' it means that the projection
operation does not add cycles. Therefore it follows that there is also a critical path
in Sync(G i , . . . , Gn) and hence in the GTP.

□

3 .3 .4 A n Itera tive Jo in tree A lgorith m

Rather than propagating messages over the entire jointree, we now describe how
we can improve efficiency and scalability by searching for a subset of it that is
sufficient to decide diagnosability.

The basic idea is that any critical path p in the global twin plant can be detected
by looking only at those twin plants that define events appearing on p, since every
other twin plant has no impact on the behaviour represented by p. Our aim is to
find a critical path defined over as few events as possible. The search for such a path
will be done by iteratively increasing the set of jointree nodes (twin plants) G under
consideration, and looking for a critical path defined over only events Eint that are
internal to G (i.e., events that do not appear in the rest of the jointree). The
detection of such a path establishes nondiagnosability and terminates the search.

Algorithm 5 gives the pseudo-code for this procedure. Our set of jointree nodes
G starts out containing just the root (PickNode on line 4 always returns the root
the first time it is called), as the root is the only initial source of diagnosability
information, without which no critical path can be detected in the other twin
plants. At each iteration we select a new node that has a neighbour in G (line 4),
and add it to G as well as update the set of internal events Ein* (line 5). (We will
discuss the node selection heuristic in the next subsection.)

Jointree propagation is then run twice:

1. On G (line 6) to remove inconsistent paths. This can lead to the removal of
nondiagnosable states which in turn may cause the root to become diagnos-
able (HasNondiagStateiroot) is false) and thus verify diagnosability;

2. On Gsin((line 8) which is obtained by removing from all twin plants in G
the transitions labelled by events not in T.int (line 7). This allows to detect
if a twin plant G € G has a critical path whose global consistency can be
verified by considering only the twin plants in G, since it does not contain

3.3 A Jointree Algorithm for Diagnosability 105

A lgorith m 5 CheckDiagnosabilityQointree: J)
1: G ^-0 nodes in J being considered
2: Tint i 0 events internal to G
3: while G 7 ̂ J and HasNondiagState(root) and S u f ficientMemory(G) do
4: v <— PickNode(J, G)
5: UpdateSets(v, G, Tint)
6: Propagate(G)
7: Gsint <— GetAllPathsOverT,int(G)
8: Propagate^ Gs<nt)
9: if ExistsTwinPlantWithCritPath(G sint) then

10: return GetCritPathiG^int)
11: end if
12: end while
13: if Su f ficient Memory (G) then
14: return “F is diagnosable”
15: else
16: u j <r— set of components included in G
17: if ExistsTwinPlantWithCritPath(G) then
18: return “a; has a critical path”
19: else
20: return “ u j has no critical path”
21: end if
22: end if

any event that appears in the rest of the tree. In this case, Algorithm 5 stops
and returns the critical path that implies nondiagnosability (line 10).

The algorithm continues until one of the following conditions is satisfied:

• The root node (and hence the entire system) has been shown diagnosable.
Note that it is indeed sufficient to check only the root node, since if the root
has no nondiagnosable states, none of the messages it propagates and hence
no twin plant includes a nondiagnosable state.

• The entire jointree is considered (and hence J = G = Gsint), but none of the
twin plants contains a critical path. This verifies the diagnosability of the
system.

• The available resources have been exhausted (lines 16-21). In this case the
maximal subsystem u for which the existence of critical paths has been de­
cided (but not yet verified against the rest of the system) is returned.

Any critical path in u can be interpreted as hint indicating nondiagnosability
(of at least the isolated subsystem considered so far). In case critical paths
exist in u, then the larger this subsystem is, naturally, the more likely the

106 Scalable Diagnosability Checking

whole system is not diagnosable; otherwise the reverse is true. Such an
approximate solution is also useful in that it implies that on-line monitoring
of this particular subsystem will not be sufficient to reliably detect faults.

3.3 .5 Jo in tree N o d e S election

The heuristic used to select a jointree node to explore next can have a considerable
impact on the number of nodes necessary to decide diagnosability. Instead of
directly choosing a node, we first consider choosing an event which the new node
might bring into Eint.

Let Ep denote the set of shared events appearing on a critical path p in some
twin plant G € G. A reasonable heuristic is to expand E*nt with some new event in
Ep \ Eint in the hope that p may at some point evolve into a new critical path that
contains only internal events. To further focus the search, we will only consider
events in Ep \ E*nt for paths p for which |EP \ Eint| is minimal.

Among these “eligible” events, we then select one that appears in the fewest
nodes outside G. The idea here is to minimise the number of nodes that need to be
included in G for that event to be internal. After choosing an event, we iteratively
add to G the neighbouring nodes containing that event.

3.4 Further E nhancem ents and M odifications

The efficiency of the algorithm largely depends on the number and size of the mes­
sages propagated between jointree nodes. We now show how we can reduce both.
The former is done by avoiding the exchange of messages that have already been
passed on during a previous iteration and the latter by applying and modifying
well-known techniques for the reduction of FSMs. Moreover we show how we can
improve scalability by determining critical paths without requiring the synchroni­
sation of all twin plants labelling a single jointree node. Finally we describe how
our approach can be extended to decide the diagnosability of multiple faults at
once.

3.4 .1 R ed u ction o f M essage Sizes

The reduction of message sizes requires the distinction of two cases, namely the
inward case in wdiich the messages do not contain any diagnosability information

3.4 Further Enhancements and Modifications 107

and the outward case where diagnosability information needs to be propagated
correctly. While for the inward case we can apply well known reduction procedures
for FSMs, we need to define new reduction rules for the outward case.

T he Inward Case

There are efficient methods that compute a smaller equivalent FSM (see Condi­
tion 3.2 on page 96) from a given one based on merging indistinguishable states,
that is, states that have the same past Past or future Fut behaviour [Champarnaud
& Coulon, 2004].

Past(x) = Past(x') :
3r = xo -^4 X\ • • • -^4 x in G (3.3)
3t ' = x'0 —4 x[• • • -^4 x! in G

Fut(x) = Fut(x') :
3t = x -%< x\ * • • -^4 xk in G (3.4)

<-► 3 x'k in G

Any pair of states (£, x') satisfying one of these two conditions can be merged
by deleting x', redirecting all incoming transitions of x' to x, and repositioning
the outgoing transitions of x1 so that they originate from x. For example, in the
message sent from G3 to Gi shown on the top left of Figure 3.9 states yO and yb
have the same future behaviour and furthermore we have Pastry 1) = Past(y6) and
Past(y3) = Past(y7). The merge of these three indistinguishable state pairs leads
to the FSM shown on the top right of that Figure. In the message sent from Ö3 to
G\ (see bottom left) all states have the same future behaviour and can therefore
be merged.

Note that the reduction of messages is also a key operation in order to obtain
small consistent twin plants. For example passing on the two inward messages
shown on the left of Figure 3.9 to the original twin plant G\ we obtain a FSM with
26 states, whereas passing on the reduced messages to G\ we obtain a FSM with
only 8 states.

The reduction of a FSM by merging indistinguishable states may not lead to a
unique FSM in general. Fortunately there are good merging heuristics available,
as well as efficient methods to identify mergeable states. For example, the method
of [Champarnaud & Coulon, 2004] runs in 0 (|X | x |T|). Note that the reduction
to the smallest equivalent FSM is PSPACE-complete [Meyer & Stockmeyer, 1972],

108 Scalable Diagnosability Checking

l:s2 i;s 2 ^ r a / ' ; ' s2' t z]

—2--'l^n \ J : s2.TZ]

l:sl r:sl
fcsl

jL in
' ' ' l:sl _ J ^ k r:sl

Figure 3.9: Reduced inward messages for our example.

unless the FSM is deterministic, in which case it can be minimised in 0(m log m)
where m = \X\ x |E| [Hopcroft & Ullman, 1979]. This lower complexity is due to
that all states in a deterministic FSM have different pasts, and hence only Fut-
indistinguishable states are merged. Since this condition is transitive, the resulting
FSM is independent of the order in which states are merged, leading to efficient
minimisation.

The merge of states is an essential operation to obtain reduced FSMs.

Definition 26 A FSM G is reduced if it satisfies the following conditions:

• G has no two states satisfying condition 3.3, and

• G has no two states satisfying condition 3.fi

In the following we will denote with M(G) a reduced FSM obtained from G by
iteratively merging all states that satisfy Condition 3.3 or 3.4 until no more states
can be merged.

The Outward Case

On the one hand, the outward case requires a more restrictive merging condition
since we also need to deal with the correct propagation of diagnosability informa-

3.4 Further Enhancements and Modifications 109

tion. On the other hand, the removal of diagnosable states is less restrictive if they
are not part of a transition sequence containing nondiagnosable states.

When reducing the size of a FSM in this case we need to ensure that the critical
paths are preserved. This is the case if we prune only irrelevant states from the
twin plants and if the states we merge satisfy certain conditions.

Relevant Twin P lant States

A state in a twin plant is relevant if it can possibly be on a critical path. This is
the case if it is on a path whose target state is nondiagnosable. For the purpose of
deciding diagnosability all other states are irrelevant and can therefore be removed
(see proof of Theorem 3.4.1 on page 112), resulting in the relevant part rel(G) of a
twin plant G. The relevant twin plant part for our example is shown in Figure 3.10.

xl2
a4. {fl}

Figure 3.10: Relevant part of the twin plant shown in Figure 3.2 that contains only
relevant states.

Condition fo r sta te merging

To ensure that state merges in twin plants do not remove all critical paths we define
the two merging criteria Pasto and F utv as follows:

Pasto{x) = Pastc(x') :
—i * * e hd r = Xq —> X \ • • • — x in G (3.5)

no Scalable Diagnosability Checking

Futo(x) = Futo{x') :
/ —I /V (J 1 ~ <J fc /v . / £ y(dr = x —> X \ • • • —> Xk m G

<-► 3t’ = x1 x[■ ■ ■ ^ x’kin GA 3̂ '6^

(5(x) <- D(x')) A (5 (x 0 <-> £>(£;)) . . . A (£>(£*) <-> £ > (^))

Thus the condition for merging states with the same past behaviour is identical
to the one in Section 3.4.1. Also the merge of two states is the same as described
before with two additional rules:

• When merging two Past-indistinguishable states with different diagnosability
label, the state to be deleted is the diagnosable one.

• When merging two diagnosable Past-indistinguishable states of which only
one has an extended state, the state to be deleted is the one that does not
have an extended state.

The first rule originates from the fact that we need to ensure that the critical paths
are kept which all have a nondiagnosable state. The second rule is added so that
extended states for messages computed based on D-reduced twin plants (see below)
can be correctly obtained.

In contrast, Put^-indistinguishable states are required to have the same diag-
nosability label. Suppose x is diagnosable, x' is nondiagnosable and we would label
mgr(x , x') nondiagnosable. This would result in a path leading to a nondiagnos­
able state that was not previously in G. On the other hand, if mgr(x, x') would be
labelled diagnosable it could lead to the removal of a previously existing path with
a nondiagnosable state and thus possibly to the removal of a critical path resulting
in the wrong diagnosability verification.

The merging strategies for the outward case are the same as described earlier.
Again such a reduction may not lead to a unique FSM. Consider for example the
projection Q shown at the top left of Figure 3.11. Here we have Futo(x5) =
Futc>(x 13) whose merging leads to the reduced FSM shown to its right. On the
other hand we also have Past^(x3) = Pastn(x5) in Q whose merging leads to
the FSM shown at the bottom left. This FSM is not yet reduced since we have
Futc>(x5) = Futo{x 13). Merging these states we arrive at the smallest FSM
equivalent to Q shown at the bottom right of that same Figure. Note, as in the
inward case, there is no guarantee that the iterative merge of states will lead to

3.4 Further Enhancements and Modifications 111

the smallest FSM. The problem of computing the smallest one is again PSPACE-
complete.

Q n 0 :sl, r:sl} 1) G'
csi

r:sl

I xO I* r:s 1 r:sl xl2 _ _ I P.___];si xll
' ' --------- t : : ; " l:sl

i r : s l ~ r : s lr:sl J x3 I-----------* xl2 -
r:sl s l:sl ' ' r:sl*5 _ ___ -

Figure 3.11: A FSM Q and three smaller equivalent representations.

D-reduced FSMs

The merge of states is an essential operation to obtain D-reduced twin plants.

Definition 27 A FSM G is D-reduced if it satisfies the following conditions:

• G contains only relevant states,

• G has no two states satisfying condition 3.5, and

• G has no two states satisfying condition 3.6.

In the following we will denote with Wd (G) a D-reduced twin plant obtained
from G by executing below steps in sequence:

1. Removal of all states from G that are not relevant;

2. Computation of V — 11^(0); and

3. Computation of Rd (G) obtained from iteratively merging all states in V that
satisfy Condition 3.5 or 3.6 until no more states can be merged.

Figure 3.12 illustrates the reduction of the twin plant G. Here V contains
only two indistinguishable states namely (ml, ^3) and (ext(ml),q3) which have
the same past. To show that the reduction operation is indeed valid we prove the
following theorem:

112 Scalable Diagnosability Checking

G)

ext(ml)

exl(m2)

GQ

G = Sync(GM, Gq)

► (m2', q4)

V

(mO, qO) -

_ - (m2, q4)

(ext(ml), q3)

(ext(ml), q2)
(ml, q3)

(ml, q2)

* • (m l,q l)

R d (G)

(mO, qO) _ Ü

s2_ - w '-

Figure 3.12: Reduction of G

Theorem 3.4.1 A twin plant G has a critical path iff every twin plant Rd{G) has
a critical path.

Proof: We prove this Theorem by showing that none of the three steps to compute
Rß(ö) (see page 111) can lead to the removal or introduction of a critical path.

(1) We show the correctness of removing irrelevant states by contradiction.

Without loss of generality, let p = x0 x\ • • • ik be a critical path in
G where Xk G {xcb • • •, 1} is a nondiagnosable state in a cycle. Suppose
now that there is no critical path in rel(G), the relevant part of G. Since
state Xk is nondiagnosable, all states of p are on a path whose target state is
nondiagnosable and are therefore relevant. Thus p cannot be removed by the
removal of irrelevant states.

Since rel(G) is obtained from G by removing states and transitions every

3.4 Further Enhancements and Modifications 113

path in rel(G) must be in G. Hence in particular any critical path in rel(G)
must be in G.

(2) Computing the projection V = n ^ (0) cannot lead to the introduction of a
critical path since projection does not introduce states or cycles. Further­
more, the projection operation cannot lead to the removal of a critical path,
since the only event that is abstracted is ext and since extended transitions
are added as terminal transitions and are therefore never part of a cycle.

(3) Suppose the merge of a state x* G {xo,. . . , x k} on the critical path p (see (1))
with a state x\ led to the removal of all critical paths in the resulting twin
plant mgr(G). Therefore the path p' = x0 —4 x\ • • • Xi-i ^ i • • • ■ -^4
x k in mgr(G) is not critical (p' is in mgr(G) since all incoming and outgoing
transitions of x* were redirected to x' in the process of the state merge).
This means that the cycle of p' no longer has a nondiagnosable state, which
implies that state x' is diagnosable. Thus the merge of a diagnosable and a
nondiagnosable state led to the removal of the nondiagnosable state. This
contradicts all merging conditions (see Section 3.4.1).

Suppose now that there is no critical path in G but one in mgr(G). The
merging conditions ensure that for every path p = x o —b X\ • • • -^4 xk re­
sulting from a merge of states, there exists a corresponding path p1 = Xq —>
x[■ • • -^4 x'k in G such that the pairwise corresponding states have the same
diagnosability label (i.e. D(xi) <-> Z)(xJ) for all x* G {xi , . . . , xk}). Thus, if
G has no critical path there cannot be one in Rd(G). □

Hence we can indeed reduce the size of FSMs while still being able to decide diag­
nosability. In order to ensure the correct propagation of diagnosability information
it is again necessary to add the extended states and transitions after the reduction
(see page 99).

3.4.2 Reduction of M essage Propagations

We now describe the conditions under which we can reduce the number of messages
being propagated. As described in our core algorithm on page 105 the propagation
is repeated every time a new node v is added to set G. The question we now consider
is to what extend the results of the previous propagation on set G^ = G \ {x} can
be utilised.

114 Scalable Diagnosability Checking

Due to the jointree node selection heuristic (see Section 3.3.5) v is always a
leaf of the subtree G and hence the inward propagation starts here. Now if the
parent Par(v) of u, which is already guaranteed to be consistent with Gö, is also
consistent with v, we need not change its behaviour. This implies that the messages
now exchanged within nodes of G ̂ are exactly the same as the ones exchanged in
the previous propagation. Hence in that case G is guaranteed to be consistent once
v has received the outward message from its parent.

This reasoning can be generalised and adopted also to the outward propagation
as shown in Algorithms 6 and 7. The first one describes the inward propagation
that is repeated until either a node v' is reached that was already consistent with v
(i.e. v' ~ Ilt '(Synciv^v'))) or until the root is reached (line 5). This means that
the number of inward messages propagated cannot exceed the depth of v, that is,
the number of edges on the path from the root to v. Hence, even in the worst case,
the number can be exponentially smaller than the number of messages generally
exchanged during the inward propagation.

Algorithm 6 Propagation(jointree: J, set of consistent nodes: G^, node v £ Gy)
1: G <— Gy U {u} nodes in J being considered
2: Gc/j •*— 0 nodes changed during inward propagation
3: v' <— par(v) par(v) returns the parent of v
4: v' <— InProp{v, v')
5: while v' and v' are not equivalent and are not the root do
6: Gch Gch U {A}
7: v' par{v')
8: v' InProp(v', v')
9: end while

10: OutPropProc(J,v'\G ch)
Function InProp(j, j') returns the twin plant for j' once it has received the message
from its child j.

In order to also reduce the number of the messages exchanged during the out­
ward propagation we memorise all nodes Gĉ that have changed during the inward
propagation. Now starting with the last node v' considered during the inward
propagation we perform the outward propagation recursively as described in Algo­
rithm 7. Here we only propagate messages outwardly from those nodes that have
either changed during the inward or outward propagation (line 4) which again
reduces the number of messages that need to be exchanged.

3.4 Further Enhancements and Modifications 115

Algorithm 7 OutPropProc(jointree: J, jointree node v \ Gch)
1: if p is not a leaf of J then
2: for all successors v's of v' do
3: v's OutProp(v' ,v's)
4: if v's G Gch or v's is not equivalent to v's then
5: OutPropProc(J,v's,G ch)
6: end if
7: end for
8 : end if

Function OutProp(j, j') returns the twin plant for j ' once it has received the mes­
sage from its parent j.

3.4.3 Im provem ent of Scalability

So far all our jointree algorithms are based on the assumption that all twin plants
associated to a single jointree node have been synchronised (see first assumption on
page 98). Even if this is feasible, the space required to represent all these synchro­
nised twin plants can limit our ability to perform the iterative jointree algorithm.
We therefore drop this assumption and consider now a jointree in which each node
is labelled with a set of twin plants each referring to exactly one component.

After a node v is added to the set of considered nodes G and the internal
events Hint are updated (see lines 4-5 in Algorithm 5 on page 105) we synchronise
only those twin plants of v that have an event in Eint. While this approach is
not sufficient to guarantee the consistency of all twin plants labelling nodes in G
(the propagation on line 6 can no longer be performed), it is sufficient for checking
the consistency of a path entirely composed of events in and for achieving
consistency of twin plants in Gsint. Thus, the partial synchronisation of twin
plants labelling a single jointree node allows faster detection of a critical path and
thus faster verification of nondiagnosability.

Note that for the stepwise synchronisation of twin plants we can also adopt the
same heuristics for selecting a jointree node as described in Section 3.3.5. Instead
of considering the critical paths of the synchronised twin plants, we now look at
the whole set of twin plants labelling a node.

3.4.4 D iagnosability of a System

So far we have shown how we can verify the diagnosability of a single fault. Now
we consider the diagnosability verification for a whole system.

116 Scalable Diagnosability Checking

Definition 28 A system G is diagnosable iff all its faults F G £ / are diagnosable.

We can modify our algorithm to consider all faults at once. For the jointree this
means that diagnosability information can be found in more than one node, which
has the following implications:

• We need to decide which of these nodes we should select as root of the jointree.

This can again be done using the heuristics described in Section 3.3.5.

• We can only merge states satisfying equations 3.3-3.6.

Equivalence is now also required, since the diagnosable behaviour that
is irrelevant for the diagnosability test of the faults occurring in the
considered twin plant can be essential to detecting the consistency of
critical paths in other twin plants.

• We need to perform an inward and outward propagation without propagating
diagnosability information, i.e. without introducing extended states.

This results from the fact that diagnosability information can only be
propagated based on consistent twin plants and after the inward prop­
agation only the root is guaranteed to be consistent.

• Afterwards we need to perform another inward and outward propagation,
this time with the purpose of propagating diagnosability information.

Now we require a double propagation, since diagnosability information
is exchanged among all the jointree nodes rather than propagated from
a single node.

Compared to the single-fault approach we have the overhead of additional prop­
agations (now 4 instead of 2), as well as an increase in complexity due to an increase
in the size of the twin plants. The space complexity of the interactive diagnoser
is 0(|X j| x 2 and hence that of the twin plant is Q(|Xj|2 x 22*s^) [Jiang et
al., 2001]. Clearly, if the number of faults is high we now face a significant in­
crease in space complexity. Thus it is generally better to check the diagnosability
individually for each fault by running our one fault algorithm |£ /| times.

3.5 Relation to Previous Work 117

3.5 R e la tio n to P re v io u s W o rk

In this section we show in detail how the approach of [Pencole, 2004], the closest to
ours, can be simulated with jointrees, and how it relates to our algorithm. Specifi­
cally we show that it amounts to a restricted way of jointree construction, together
with a particular way of achieving consistency, which does not take advantage of
the propagation of messages with bounded event sets. Towards the end of the
section we also discuss other related work.

The ClassDecent approach of [Pencole, 2004] also solves the diagnosability prob­
lem in a decentralised way. The approach is based on the assumption that the ob­
servable behaviour of every component is live, that is, that there is no component
with a cycle containing only unobservable events. This is more restrictive than the
assumption in [Sampath et al., 1995] which we adopted namely that the observable
behaviour of the system (but not necessarily that of individual components) is re­
quired to be live (see page 88). The more restrictive assumption of the ClassDecent
approach implies that it is sufficient to only search for a critical path in the twin
plant Gf containing the fault. To compare the efficiency of our approach to this
one we also restrict the search for a critical path to Gf. This means that we only
need to compute consistent paths of the jointree root which can be done by the
straightforward inward propagation.

Starting with the twin plant G = Gp the approach ClassDecent proceeds it­
eratively by selecting a twin plant Gi from the not yet considered ones in Gout
(line 2 of the pseudocode below), synchronising it with G (line 4) and removing
from it (by projection) the shared events Hint internal to G (line 5). This process
is repeated until either a critical path defined only over the observable events is
found4 in which case nondiagnosability is established or until G has no critical path
or Gout has no connected twin plant (see below) which both verifies diagnosability
(line 1).

1: while HasCritPath(G) and H asN oCritP athOverY,0(G) and HasGconsTP(Gout)
do

2: Gi <— PickTwinPlant(Gout)
3: UpdateSet(Goutl T>int)
4: G < - Sync{G , Gi)

5: G < - n fixEiJ G)

6: end while

4 Since the internal events have been removed from G such a path corresponds to a critical
path in the global twin plant defined only over observable and internal events.

118 Scalable Diagnosability Checking

Thus, the approach requires essentially two operations during each iteration:
projection and synchronisation. Recall that these are exactly the same steps we
need to perform during the inward propagation. Indeed the ClassDecent approach
can be thought of as a special way of using jointrees. Such a jointree J can be
constructed based on the connectivity of twin plants with respect to Gp-

Definition 29 (a-connectivity Con (a , 7)) The set of twin plants connected
to the twin plant 7 by distance a is recursively defined as follows.

Con(0, 7) = {7}
Con(a, 7) = {71 I 3y2 E Con(a — 1, 7) such that

7i and 72 share at least one event and
71 ^ Con(ß, 7) for all ß < a}.

Twin plants 71 and 72 are connected if 7! E Con{ 1, 72). The set transCon(7)
denotes the set of twin plants whose behaviour can possibly influence that of 7
(transConß)) = IJaZo Con(a: 7)) where n is the number of components in the
system. Now the approach only proceeds as long as there is a twin plant in Gout
that is connected to G. Therefore G is at most composed of the synchronisation
of all k elements in transCon(7). This is similar to our approach where we also
do not need to consider any further twin plants to check the global consistency of
critical paths in the root twin plant.

To create the jointree J with k nodes, one for each twin plant in transCon(7),
we can use the same twin plant selection heuristics as function PickTwinPlant.
Let the order in which the latter picks the twin plants be G i,. . . , G^, that is, in the
ith loop iteration G is synchronised with G*. In the same order we now also add
the corresponding nodes to J . Initially J consists only of the root Gp = G\. Now
in the ith step node G* is added by linking it to an existing node Gj E Con(1, Gß
with minimal distance to Gp-

Figure 3.13 shows the resulting tree for an example in which the four nodes
Con(1, Gf) = {G3, G4, Gg, G7} are connected to Gf - Further we have Con(2, Gf) =
{G3, G5, Gg, Gg} and Con{3, Gp) = {Gio? Gn, G12}. Now, for instance, if the node
for G5 is added it could either be linked to G2 or G3 to which it is both connected
via event k. Since the distance of G2 to Gf is smaller (1 instead of 2 for G3), the
new node is linked to G2.

However, this tree does not yet satisfy the jointree properties (see Definition 22
on page 92): we need to ensure that every path between two nodes containing
the same event a is only composed of nodes that also contain a. In our example
twin plants Gg and Gg are labelled with event r but none of the nodes on their

3.5 Relation to Previous Work 119

a,b,c,d

Figure 3.13: Tree in which the top labels of each node 1 , . . . , 12 correspond to the
twin plants G i , . . . , G i2 and the bottom labels of each node refer to the events
defined in it.

connecting path G 3 — G2 — Gi — G 4 — Gg. We therefore have to add event r to
nodes G2, G\ and G4, after which above property is satisfied. Now we can also add
the separator events to every edge between two nodes. These events are simply the
intersection of the event sets of these two nodes. Figure 3.14 illustrates the jointree
for our example.

The ClassDecent approach now amounts to a particular way of achieving con­
sistency on the constructed jointree J . Instead of verifying the consistency among
jointree nodes via message propagation, this approach synchronises all considered
twin plants G, which corresponds to a merge of jointree nodes. To merge two
jointree nodes G* and Gj, their event sets E* and Ej are added and all internal
events E*nt removed (i.e. the projection n (siUsj)\sint(<S?/nc(Gi, Gj)) is computed as
in line 5 of the Algorithm shown on page 117). The set Ein* is composed of those
events that were only labelling the former edges between the now merged nodes. For
instance, after the merging in the first iteration of nodes G1 and G2 of the jointree
shown in Figure 3.14 the event set of the new root is composed of 5, c, d, k, r. Since
event a did not appear anywhere else on the jointree it was removed. Figure 3.15
depicts the jointree after the fourth iteration of the ClassDecent algorithm, i.e.
after the twin plants Gi, G2, G3 and G4 have been synchronised and their internal
events removed (by projection).

120 Scalable Diagnosability Checking

a,b,c,d,r

a,d,k,r

Figure 3.14: Jointree for the tree shown in Figure 3.13.

Recall that our approach does not change the jointree structure during the
diagnosability verification. In particular this means that the size of the event sets
of the considered twin plants G = G\: .. . ,Gq is bounded. Thus also when using
the same jointree as the Class Decent procedure, in which every jointree node is
labelled by exactly one twin plant, we are guaranteed that every twin plant Gi has
at most w + 1 events, where w corresponds to the width of the jointree. In contrast,
the Class Decent procedure always considers a twin plant with |£ 0l U S02.. . U E0J
observable and |£ 5epiUEsep2.. .U£sePm| shared events, where Esep. are the separator
events connecting a twin plant in G with one in {Gj1, . . . , Gjm} C (Goui.

It is exactly this bound on event size that likely allows our approach to per­
form the synchronisation and projection operations more efficiently in general, even
without considering the additional features such as the reduction of message size.
This results from the complexity of searching for a critical path in a twin plant
which depends on the number of transitions and thus on the number of events and
states 0 (|£ | x |X |2). Note that due to the projection operation that is performed
in both approaches the number of events has also a direct impact on the number
of states, since only those states are retained in the resulting twin plant that are a
target state of a transition labelled by an event in the projection.

3.5 Relation to Previous Work 121

r,u,v

Figure 3.15: Jointree of Figure 3.14 after the merge of nodes 1 — 4.

We now discuss other related work. The diagnosability problem of discrete-
event systems was introduced in [Sampath et al., 1995] where the authors solved
it by considering a deterministic diagnoser for the global system and a part of
the global model. The main drawback of this method is its exponential space
complexity in the number of system states resulting from the diagnoser whose size
is exponential in the number of states in the global model (determination) and
therefore doubly exponential in the number of system components.

Jiang et al. (2001) and Yoo & Lafortune (2002) then propose new algorithms
which are only polynomial in the number of states in G and which introduce the
twin plant method. The question of efficiency is raised in [Cimatti, Pecheur. &
Cavada, 2003] where the authors propose to use symbolic model-checking to test a
restrictive diagnosability property by taking advantages of efficient model-checking
tools. But, still the diagnosability problem is seen as a test on a system whose
size is exponential in the number of components, even when encoded by means
of binary decision diagrams as in [Cimatti, Pecheur, & Cavada, 2003]. Some of
the most recent works decide either diagnosability or nondiagnosability but not
both. The work by [Rintanen & Grastien, 2007] shows how to search for critical
paths using SAT thus verifying nondiagnosability. On the other hand, our previous
decentralised approach can only verify diagnosability [Schumann & Pencole, 2007].

122 Scalable Diagnosability Checking

3.6 A ssis tin g in th e D esign o f D iag n o sab le Sys­

tem s

We have shown how we can efficiently decide diagnosability based on a jointree and
how we retrieve a critical path in case the system is nondiagnosable. However the
ultimate aim is not just to decide diagnosability, but rather to develop diagnosable
systems. If the system is not diagnosable additional sensors are required to distin­
guish the ambiguous system behaviours. Several approaches deal with the problem
of selecting sensor placements to ensure the diagnosability of a system. However,
the problem of computing an optimal sensor set with minimal size has a complexity
exponential in the number of possible sensor placements [Yoo & Lafortune, 2001].
Existing sensor placement algorithms are based on the global representation of the
system model, which may not be computable for large systems.

In this section we describe how our distributed approach can be extended to
identify those system behaviours that require modification to restore diagnosability.
Since a system may admit several possibilities to remove nondiagnosable behaviour
we use a ranking approach based on cost estimation to isolate behaviours in eas­
ily accessible components whose modification removes not only the diagnosability
problem but can also be cheaply performed. Our approach thus aims at assisting
a human system designer to restore diagnosability. Note that we do not consider
how to modify the system.

3.6 .1 C om p u ta tion o f C ritica l P a th s

The prerequisite of any such analysis is that we can compute indeed the whole
set of nondiagnosability causes, that is, all critical paths. Currently our approach
terminates as soon as a critical path is found (line 10 of Algorithm 5 on page 105).
Now the question is when can we be certain that we have found all critical paths,
not only among those in twin plants G already considered, but indeed among all
the twin plants of the entire jointree.

Surely, if we consider the whole jointree and perform the inward propagation
starting in all the leaves followed by the complete outward propagation we obtain
all critical paths. The problem with such an approach, however, is that it is not
scalable. Thus in case the memory resources are not sufficient to perform the entire
propagation we would not even be able to estimate to what extend we have covered
the nondiagnosability causes.

3.6 Assisting in the Design of Diagnosable Systems 123

In a first step it is therefore crucial to detect which paths could possibly be
critical in order to focus our computational resources on the identification of which
of these paths are indeed critical. Recall that our aim is to detect all critical paths
which is a subset of all possibly critical ones. The latter need to be determined in
all twin plants of the entire jointree. An efficient approach to detect such paths
is the one based on possibly nondiagnosable states. All other states are certainly
diagnosable.

Definition 30 (Possibly nondiagnosable states) The set of possibly nondi-
agnosable states P(Gj) of a local twin plant Gi is determined as follows.

1. P (Gi) = {x e Xi \ x is nondiagnosable} if Gi G Con(0, Gp) ft.e. Gi = Gp)

2. P(Gi) = Yi if Gi G Con(a, Gp) with a G and for all states y G Yi and
all connected twin plants Gj G Con(a— 1, Gp) there exists a state {y^xf) in
the twin plant Sync(Gi,Gj) such that Xj is possibly nondiagnosable.

3. P(Gj) = Xi if Gi transCon(Gp) (see page 118)

Possibly nondiagnosable states PNS(Gj) for a twin plant Gi G transCon(Gp)
are computed on the basis of the connected twin plants whose distance to Gp is
smaller by 1. For the example of computing these states for G5 shown in Figure 3.16
it means that they are obtained by considering twin plants Gb and G3 in sequence.
For each Gi G {G^Gb} of them we compute G^s = Sync(Gs, Gi) to obtain all
possibly nondiagnosable states x G PNS(Gs) for which there exists a state (x, y) in
G j 5 where y G PNS(Gj). A state x in G5 is only possibly nondiagnosable, iff there
exists a corresponding possibly nondiagnosable state in G2 and in G3 (i.e. there
are two states y G PN S(G 2) and z G PNS(G3) such that (x, y) is a state in Gb,5

and (x, z) is one in G3)5).

The “propagation” of possibly nondiagnosable states among connected twin
plants has some similarity with the propagation of nondiagnosable states during
the outward pass of the jointree propagation (see Section 3.3.3). However, since
now the propagation is neither performed on globally consistent twin plants, nor
on all connected twin plants at once (i.e. there is usually more than one twin plant
from which information about possibly nondiagnosable states is received), we do
not have the guarantee that these states are indeed nondiagnosable.

Due to the differences of propagating possibly nondiagnosable and nondiagnos­
able states a state x = (xq,. . . , x^i) in a uncoupled twin plant Gw is only possibly
nondiagnosable iff Vi G {1, . . . , |<x>|} we have Xj G P(Gj). This is in contrast to

124 Scalable Diagnosability Checking

PNS(Gs) = P NS (g | g) AND

P NS(g | g)

Connectivity
distance
(CD) with

respect to G1

Components that
communicate with G1

Components that
communicate with a
component of CD 1

B

Figure 3.16: Scheme for computing nondiagnosable states. PNS(Gd|Gj) denotes
the states of G i that are possibly nondiagnosable with respect to G j . PNS(Gs) are
the possibly nondiagnosable states in G5.

the definition of nondiagnosable states that only need to be composed of a single
nondiagnosable state (see page 90).

Any observable cycle with a possibly nondiagnosable state we will henceforth
refer to as possibly nondiagnosable cycle and any path with such a cycle we call a
possibly critical path. Then in order to show that all critical paths belong indeed
to the set of possibly critical ones we prove that the following Theorem holds:

Theorem 3.6.1 A state x in the GTP is nondiagnosable iff it is possibly nondi­
agnosable.

Proof:

(=>) Suppose there exists a state x = (x i,. . . , xn) in the GTP such that x is non­
diagnosable and a state x* such that x* ^ P(Gd)- Condition 3 of Definition 30
verifies that all states x^ from (x i,. . . , xn) such that Gh ^ transCon(Gp) are
possibly nondiagnosable. It follows that Gi is in transCon(Gp). State x is
nondiagnosable therefore the state Xp from Gp also contained in the n-tuple
(x i,. . . , xn) is nondiagnosable. It follows that Xp G P(Gf) (see condition 1
of def. 30), so Gi is in transCon(Gf) \ {Gf }- Therefore, there exists an a > 1
such that Gi G Con(a, Gp).

Condition 2 of Definition 30 ensures that there is a twin plant Gj G Con(a —
1, Gp) in which all states x ', for which (x',x*) is a state in Sync({Gj, G^}),
do not belong to P(Gj). Since GTP results from the synchronisation of Gj
and Gi, it means that £i ^ P(G;) implies that Xj ^ P(Gj) where Xj denotes
the state from Gj contained in x.

3.6 Assisting in the Design of Diagnosable Systems 125

The previous reasoning led from the existence of a state x,{ = ya in a twin
plant Gi — Ha E Con(a, Gp) with ya ^ P (Ha) to the existence of a state
Xj = ya-i in a twin plant Gj = Ha - 1 £ Con(a — 1, Gf) with ^Q_x ^ P(Gq_i).
By recursively applying a — 1 times the same reasoning, it follows that there
exists a twin plant H0 belonging to Con(0, Gp) and a state yo from Ho
belonging to the n-tuple (xi , . . . , xn) such that yo ^ P(Äo)- Since Gp is the
only element in Con(0, Gp) (see def. 29) it means that H0 is actually Gp
and yo = xp. It finally follows that i p £ P(Gf), which is a contradiction.

(<=) Suppose there exists a possibly nondiagnosable state x containing the local
state Xp £ Gf such that x is diagnosable. This implies that xp £ P(Gf)-
Therefore x £ P (GTP) (see def. 30) which contradicts the assumption. □

Given the set of all possibly critical paths we now describe how we can use
the available computational resources to identify those that are indeed critical.
Algorithm 8 presents this procedure. In contrast to our original Algorithm on
page 105 we now continue the computation (line 3) as long as there is sufficient
memory and

• there exists either a possibly critical path in a twin plant that has not yet
been considered, or

• there exists a critical path p in G that is not yet guaranteed to be globally
consistent (i.e. p belongs to the set CritPath(G) but not to the set T ^ ”5).

During each iteration we perform almost the same operations as before except
that we now only check for critical paths defined over events in if the first
termination criteria is not satisfied. Otherwise the detection of critical paths is
useless, since it can neither lead to a termination of the algorithm nor to a more
efficient performance of future operations.

Upon termination the algorithm returns all critical paths P^ in G and all pos­
sibly critical paths PqouI in Gout- In case the procedure did not stop due to a lack
of computational resources the latter set will be empty and the former contains
only those paths that are consistent with the whole system and indeed critical. Re­
call that Theorem 3.6.1 guarantees that P ^ s C P^ U Pfeout- Hence the algorithm
returns all critical paths.

126 Scalable Diagnosability Checking

Algorithm 8 ComputeAllCritPath(jointree: J)

0
J \ G

0

nodes in J being considered
remaining nodes

events internal to G
globally consistent critical paths

3: while (ExistPosCritPath(Gout) or Pccr̂ s C CritPath(G)) and
SufficientMemory(G) do

4: v <- PickNode(J,G)
5: UpdateSets(v,G,Gout,E int)
6: Propagate^ G)
7: if ExistPosCritPath(Gout) is false then
8 : GetAllPathsOverTiint(G)
9: Propagate(GEint)

10: P ^ s <— GetCritPath(G-£int)
11: end if
12: end while
13: return CritPath(G) U PossCritPath(Gout)

3.6 .2 D ep en d en cies am ong C ritica l P a th s

Clearly, if we would consider all critical paths in all twin plants independently and
remove them by making the required changes to the system behaviour we would
obtain a diagnosable system. However, in general, the latter can be achieved with
fewer modifications due to the dependencies among critical paths. These result
from the fact that a single change to the component behaviour can remove more
than one critical path.

We now show how we can detect dependencies among critical paths by labelling
each transition such that the contribution of individual system behaviours to the
synchronised twin plants can be obtained. Every twin plant transition is labelled
with the set of component transition identifiers T that is composed of all those
transitions whose removal would lead to the removal of the twin plant transition.
This approach requires the following steps:

1. assign to every component transition (except the fault transitions) a unique
identifier label,

2. propagate the identifier label to the corresponding interactive diagnoser Gj,

3. propagate the identifier label to the corresponding twin plant G*,

4. propagate the identifier label to the messages sent by G*, and

3.6 Assisting in the Design of Diagnosable Systems 127

5. propagate the identifier label to any twin plant Gj ^ Gi receiving above
message.

1. Fault transitions do not have a transition identifier, since they describe the
component behaviour in case of the occurrence of a fault. An example for the
assignment of transition identifiers is given in the top graph Gli b of Figure 3.17.

2. Every transition t of the interactive diagnoser is an abstraction of one or more
component transitions T[C Tj. It is labelled with the union of all identifiers in
T[. This results from the fact that changes to any of these component transitions
would remove t. Formally there is a transition (x, J7) T- a> (x \J r') in G[ab iff
there is a transition sequence x ------ > X\ • • • --------> xm -------- > x m G* with
T = Ti UT2 • • •UTm+i,{<7i,. . . ,crm} C E /.U E ^, and T ' = T G . . . , am} DE/).
Diagnoser Gl“b in Figure 3.17 shows an example with this labelling.

3. In the twin plant every shared transition corresponds to exactly one tran­
sition in the interactive diagnoser, and every observable transition refers to two
transitions (one from the left and one from the right diagnoser). For shared
transitions, the labelling is kept. For observable transitions the identifier labels
are obtained from the union of the two corresponding diagnoser transition labels.
Figure 3.17 shows the labelled twin plant Glf b. Formally, there is a transition
(.xl,x r) T {xv ,x r>) in G[ab iff there is

• either a transition x l —— x l> in G\ lab and a transition xr —— xr' in lab
with T = T l U T r and a 6 E0,

• or a transition x — x' in G\ab with o € Es.

4. Every transition t in a message corresponds to a set of transition sequences
Tse<7 = {Tf69, . . . , X£e<7} in a twin plant G (see transition definition for projections
on page 94 and Definition 25 on page 99). Now, since we require that the removal
of any component transition is sufficient to remove the twin plant transition t, the
identifier of t can only include those component transitions whose removal would
remove every transition sequence in Tseq. Let Lj denote the set of transition iden­
tifiers labelling the transition sequence T-eq. Then t is labelled by the intersection
of all these labels (label(t) = L\ Pi L2 . . . Pi L*.). Figure 3.17 depicts an example
of a labelled message. For instance, here the transition x3 — xl l corresponds
to the single transition sequence T^eq = x3 ^ Ls2> x5 °1> T61_ ^ ^ ^^1.
Therefore it is labelled with L\ = {t2, t3, t5, £6}, the union of all transition labels
of T sxeq.

128 Scalable Diagnosability Checking

5. Since a message M is received by a twin plant G' via synchronisation,
the label propagation is similar to case (3). Thus every transition in Sync(M , G')
corresponds to the union of the labels referring to the set of transitions it represents.
The bottom graph of Figure 3.17 shows a part of such a synchronised twin plant
where for simplicity reasons the labelling of G-$ is not taken into account.

HH3 (HI
S j t 4 | - s i (i5) -o l_

Glab it6±-sj_
{t7} -o 1(t3)-ol

{t5) -o 1

a4, { f l }a2, {f l} a5, {fl}

Qiah (reievani part)
(t_l }-_s3

f " ") {t2 }-1: s2

^ j_t4}-r:sl

x2 __ J_t4}-r:sl

{t2} -l:s2
{t3,t5}-ol -►

{t6}-r:s]^ w "• .JtöJ-lisl

x7 T i-t6h 1:Ll -► x l l - i t6h r:.§J £ xl3

M lab {,;sl r:sl} _
G1---------->G3

{t2}-ext

[TTh T4J-r:sl .
1---- <! |t2,t4}-r:sl

ex t(x O)

-•C»EC-

{t2,t3,t5,t6}J:sl __

1 {t2}-ext

Jt2,t3,t5,t6}-r:sl

{t3,t5,t6 }-r:s 1

e x t (x 3)

- - xl2 £ _ _ {t6,t7}-r:sl

__ {t6]_-l:sl_

{t6,t7 }-r:s 1

{t3,t5,t6}-l:sl

jt6,t7pi:si^<
«. {t6 }-r:sl ^

G' = Sync{M l“b {l!jl>r!,1) ^ ,G3) (part)
G i >G3

I (xO. zO) I b ' 04 H (XO. zl) p hdPnsJ ̂(x3 z5) ^ {tj.atS .töJ-rsl^ (xl2>z5) _{t6}J:sJ ̂ (X13, z7)^" {t6<t7 J.1;sl ~(xl2 .z7)

Figure 3.17: Illustration of the propagation of the component’s transition identifiers
(top) to a neighbouring twin plant (bottom).

Based on these transition labellings we can now decide whether two critical
paths are dependent.

3.6 Assisting in the Design of Diagnosable Systems 129

Theorem 3.6.2 Two paths p and p' are dependent, iff there is a component tran­
sition labelling at least one transition in both p and p'.

For instance, the critical paths in Glf b and G' shown in Figure 3.17 are depen­
dent. They all include either transition xl3 ———*• x7 or transition
(xl2, z7) (xl3,z7). Both of these are only possible, if the behaviour
represented by component transition t l is not modified.

3.6.3 O ptim al Rem oval of N ondiagnosability C auses

The dependencies among critical paths can now be exploited to obtain a diagnos­
able system by requiring fewer modifications to the behaviour of the components.
Indeed this can be achieved by removing any transition path cover.

Definition 31 (Transition path cover T(Pcrit)) A transition identifier set T is
a path cover, denoted T(Pcrj*), for a set of critical paths ¥crit iff every path in Pcrit
is labelled by at least one transition identifier in T.

An interesting problem here is to find a transition cover for a path set P with
minimal size. This problem is similar to the NP-hard Hitting Set optimisation
problem, which is defined as follows: Given a set of subsets A = A i , . . . , Am of the
universal set U = 1 , . . . , z, the goal is to determine the smallest set A' C U such
that VAj : A' Pi A* ^ 0. This problem is dual to the Set Cover problem which can
only be solved by an O (log ^-approximation algorithm [Arora & Lund, 1997].

In our case, the universal set is composed of all component transition identifiers
and each subset A* corresponds to the set of all transition identifiers labelling a
single critical path. Thus, even if the modification costs for all transitions are the
same it is very difficult to find a path cover with minimal size.

However, in practice the modification costs me can vary greatly depending on
the transitions to change. The aim is therefore not to find a transition-minimal
path cover, but one that requires the least costs. To determine such a path cover
we require a priori information on the costs associated with the modification of
each component behaviour, in particular with each component transition. In the
following, cost estimates are represented as numeric value me > 0 G MU {oc}. For
transitions that can not be changed, for example, those in inaccessible components
or behaviours determined by factors outside the scope of the system, the me is set
to oo.

130 Scalable Diagnosability Checking

Definition 32 (Optimal transition cover Topt) L etT denote the set of all tran­
sition covers for Fcrit. A transition cover Topt G T is called optimal iff for all
T 7̂ Topt in T the following holds: mc(Topt) < mc(T) where mc(T) denotes the
costs required to modify all transitions in T.

The costs for modifying a set of transitions T is obtained as the accumulated
costs of modifying all individual transitions in T. Therefore, the problem of com­
puting the optimal transition set is analogous to the Weighted Minimal Hitting
Set optimisation problem, which can be solved efficiently by the approximation
algorithm presented in [Cincotti, Cutello, & Pappalardo, 2003]. Here, weights cor­
respond to the modification costs. Using such an algorithm we can determine the
best transition cover based on any path set returned by Algorithm 8.

3.6.4 C ost-D riven C om pu ta tion of N ondiagnosability C auses

In addition to suggest possible behavioural modifications, the transition path covers
may also be used to further increase the efficiency of Algorithm 8. Now it is no
longer necessary to check whether all possibly critical paths are indeed consistent
and hence critical. Rather we determine in each iteration i the critical paths Pff£s
whose consistency can be verified based on the twin plants G considered so far (lines
8-10). For them we compute a transition cover Tl = GetTransCover(Pfffts). Now
a new node v is only added if in the outward message passed on from an element
in G to v there is at least one path to a nondiagnosable state that is not labelled
by a transition in T*. This results from the fact that otherwise every critical
path in v or one of its children would necessarily be covered by TP and hence the
consistency check for these paths is not required. Therefore we can also terminate
the search for critical paths if we cannot add a new node to G that would still
require the verification of critical paths. In general, the cost-driven computation of
nondiagnosability causes is therefore faster because the consideration of all jointree
nodes with a possibly critical path can be avoided.

3.6.5 E xtension to M ultip le Faults

As stated in Section 3.4.4 a system is only diagnosable if all its faults are diagnos-
able. Therefore we need to find a transition cover for all critical paths of not just
one fault, but all the faults. Again there are two possibilities to determine them.
We can either consider all faults individually or compute the larger twin plants that

3.6 Assisting in the Design of Diagnosable Systems 131

allow the consideration of these faults at once. The advantages and disadvantages
of these methods are the same as stated in Section 3.4.4.

3.6 .6 Sum m ary

We have shown how we can extend the diagnosability approach to compute a
subset of the nondiagnosability causes whose modification would be sufficient to
obtain a diagnosable system. This method can also be used when the costs of the
modifications need to be considered and those nondiagnosability causes need to
be returned whose modification requires the lowest costs. The extension became
only possible due to our novel scalable diagnosability approach presented in this
chapter.

132 Scalable Diagnosability Checking

C h a p te r 4

C onclusion

We now summarise the main contributions of this thesis and outline some directions
for future work. For a comparison to related work we refer the reader to sections 2.6
and 3.5.

4.1 T hesis C ontributions

Diagnosing discrete-event systems poses the problem of determining the set of all
possible faults that are consistent with a sequence of observations. When applied to
large scale working systems this task has to be done on-line in a timely manner. In
this case the diagnosis result is updated continuously when new events are observed.
Its efficiency depends on the number of diagnosis candidates and/or on the extent
to which the system description has been compiled off-line.

In this thesis we have described several contributions to increase the efficiency
of the on-line diagnosis while taking into account the different time and space
requirements of applications. The latter led us to present a spectrum of diagnosis
approaches which differ in the amount of model compilation performed off-line. The
underlying models range from the small component models that do not incorporate
any compilation, to the diagnoser model in which the diagnosis information is
compiled for the entire observable behaviour of the system.

In order to determine which diagnosis approach is best suited for a given ap­
plication with specific time and space requirements we analysed the time/space
tradeoff for all our diagnosis methods. For large applications where space is critical
the diagnosis is best based on the decentralised models. On the other hand, smaller
applications can be more efficiently diagnosed using our nondeterministic model.

133

134 Conclusion

To handle the generally large number of diagnosis candidates all our approaches
are implemented symbolically using BDDs. This allows us to perform the diagnostic
reasoning at once for the whole set of diagnosis candidates rather than considering
each consistent system state and fault individually as required in an enumerative
approach. To determine the advantage of the symbolic implementation over an
enumerative one we have implemented four of our diagnosis methods across our
spectrum also in an enumerative way.

Here only the on-line use of the symbolic diagnoser incurs a small time overhead.
In all other cases the run-time of the symbolic approach is significantly better, and
so are the space requirements of the larger models. Therefore, an enumerative
approach is mainly useful for very small applications for which the computation
and storage of the large diagnoser is feasible.

We have not only shown how we can exploit the advantages of BDDs for effi­
ciently implementing diagnosis algorithms but also how we can use their properties
for determining which computations are better performed off-line (those that are
slow and hardly increase the model size) and which ones should be performed on­
line (those that are fast and increase the model size). These considerations led us
to define four models of our spectrum where the local fault information is compiled
off-line. This decision is derived from the fact that the symbolic update of faults
is very slow but its synchronisation, to obtain the fault information for the whole
system, is very fast. Our experimental results have shown that these diagnosis
approaches led to much faster diagnosis while requiring less space (except for the
decentralised model that was larger than the component model).

Although BDDs can efficiently handle large sets of diagnosis candidates their
size still has a significant impact on the diagnosis time. This motivated us to
study how we can assist a system designer in designing systems where the diag­
nosis information can be determined (more) precisely, that is, systems that are
(more) diagnosable. We have therefore presented a new algorithm to solve the
diagnosability problem and have shown how we can extend it to assist a system
designer.

Our algorithm addresses the fundamental bottleneck of the classical diagnos-
ability approach, which requires the computation of the global twin plant method.
Instead we consider local twin plants for subsystems which we make globally con­
sistent by message passing on a jointree. We have presented a complete framework
for computing and propagating such messages based on finite state machines, and
presented new conditions for reducing message size without losing diagnosability

4.2 Directions for Future Work 135

information. Our approach is scalable in the sense that if the problem is too com­
plex to be solved with available computational resources, it can still provide an
approximate analysis of the diagnosability of the system. We have also shown how
we can extend our framework to identify all nondiagnosability causes regardless of
the available computational resources. However, in general, with more computa­
tional resources, one can detect more inconsistencies in critical paths, avoiding the
return of paths that are diagnosable. Finally we have shown how to identify com­
ponent behaviours and transitions that, if modified, render a system diagnosable,
while requiring minimal costs. This information can then be used by a systems
designer to perform the according changes and restore diagnosability.

4.2 D irections for Future W ork

The perspectives of this thesis are numerous. We now plan to extend our decen­
tralised diagnosis approach by representing subsystems not only as decentralised
diagnosis models but also as centralised and nondeterministic diagnosis models.
By defining the latter models also at the subsystem level, we aim at increasing the
on-line efficiency of diagnosis algorithms for large discrete-event systems.

It would then be very interesting to conduct an exhaustive experimental analysis
to determine the best diagnosis approach for a given application. Such a decision
might not only be based on the available computational resources but also on
the number of observations, faults, components and their interactions, since these
parameters might impact the efficiency of the diagnosis approach and thus the
computational resources required to perform it.

Importantly, our work is largely orthogonal to the state of the art, and likely to
benefit other approaches as well. It would be interesting, for example, to extend
our framework to stochastic systems and compute probability distributions on di­
agnoses, using for instance algebraic decision diagrams which are generalisation of
BDDs to real-valued functions over the booleans.

Finally, integrating diagnosis and planning for repair or reconfiguration actions
is one of the most significant challenges faced by the field of model-based diagnosis
[Console & Dressier, 1999]. Given the recent success of planning techniques based
on symbolic model-checking, we believe that our framework will prove a good basis
for addressing this challenge.

Concerning the diagnosability part, we aim at extending our framework to
provide optimal design recommendations not only based on the modification costs

136 Conclusion

but also based on its gain in diagnosis time. To achieve this purpose we propose
to implement this approach using BDDs and to incorporate it directly into our
symbolic diagnosis framework. Then we could automatically determine the impact
of possible modifications on the diagnosis time via simulation. A systems supervisor
can then decide for each generated modification suggestion whether he wants to
follow it given the expected gain for the on-line diagnosis. Alternatively we can also
imagine automating this process based on a formal description of the supervisor
specifying the exact conditions under which a modification is to be made. With
such a framework we aim at providing design recommendations for improving the
diagnosability of health monitoring system for aircraft maintenance [Ghelam et al.,
2006] or to provide an assistance to the design of composite Web Services [Yan et
a/., 2005].

B ibliography

[Aghasaryan et al, 1997] Aghasaryan, A.; Boubour, R.; Fabre, E.; Jard, C.; and
Benveniste, A. 1997. A petri net approach to fault detection and diagnosis in
distributed systems. Technical Report 1117, Irisa.

[Akers, 1978] Akers, S. B. 1978.x Binary decision diagrams. IEEE Transactions
on Computers C-27(6).

[Albore & Bertoli, 2006] Albore, A.; and Bertoli, P. 2006. Safe LTL assumption-
based planning. In International Conference on Planning and Scheduling
(I CAPS ’06), 193-202.

[Ardissono et al., 2005] Ardissono, L.; Console, L.; Goy, A.; Petrone, G.; Picardi,
C.; Segnan, M.; and Dupre, D. T. 2005. Enhancing web services with diagnostic
capabilities. In 3rd IEEE European Conference on Web Services (ECOWS’05).

[Arnold, 1987] Arnold, A. 1987. Transition systems and concurrent processes. In
Mathematical problems in Computation theory, volume 21. Banach Center.

[Arora & Lund, 1997] Arora, S., and Lund, C. 1997. Approximation algorithms
for NP-hard problems. PWS Publishing Co.

[Baroni et al., 1999] Baroni, P.; Lamperti, G.; Pogliano, P.; and Zanella, M. 1999.
Diagnosis of large active systems. Artificial Intelligence 110(1): 135—183.

[Benveniste et al., 2003] Benveniste, A.; Fabre, E.; Haar, S.; and Jard, C. 2003.
Diagnosis of asynchronous discrete event systems, a net unfolding approach.
IEEE Transactions on Automatic Control 48(5):714—727.

[Bertoli et al., 2001] Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observability via symbolic
model checking. In IJC A f 473-478.

137

138 Bibliography

[Bertoli et al., 2002] Bertoli, P.; Cimatti, A.; Slaney, J.; and Thiebaux, S. 2002.
Solving power supply restoration problems with planning via symbolic model­
checking. In In Proceedings of the 15th European Conference on Artificial Intel­
ligence, 576-580.

[Bryant, 1986] Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers C-35(8):677-691.

[Bryant, 199l] Bryant, R. E. 1991. On the complexity of VLSI implementations
and graph representations of boolean functions with application to integer mul­
tiplication. IEEE Transactions on Computers 40(2) :205—213.

[Burch et al., 1990] Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.;
and Hwang, L. J. 1990. Symbolic Model Checking: 1020 States and Beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
1-33. IEEE Computer Society Press.

[Cassandras & Lafortune, 1999] Cassandras, C., and Lafortune, S. 1999. Introduc­
tion to discrete event systems. Kluwer Academic Publishers.

[Champarnaud & Coulon, 2004] Champarnaud, J.-M., and Cordon, F. 2004. NFA
reduction algorithms by means of regular inequalities. Theoretical Computer
Science 327(3):241-253.

[Cimatti, Pecheur, & Cavada, 2003] Cimatti, A.; Pecheur, C.; and Cavada, R.
2003. Formal verification of diagnosability via symbolic model checking. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence
IJCAP03, 363-369.

[Cincotti, Cutello, & Pappalardo, 2003] Cincotti, A.; Cutello, V.; and Pappalardo,
F. 2003. An Ant-Algorithm for the Weighted Minimum Hitting Set Problem.
In Proceedings of the 2003 IEEE Swarm Intelligence Symposium (IEEE SIS '03),
1- 6 .

[Console & Dressier, 1999] Console, L., and Dressier, O. 1999. Model-based di­
agnosis in the real world: lessons learned and challenges remaining. In Proc.
IJCAI-99.

[Console, Picardi, & Ribaudo, 2002] Console, L.; Picardi, C.; and Ribaudo, M.
2002. Process algebras for systems diagnosis. Artificial Intelligence 142(1):19-51.

Bibliography 139

[Contant, Lafortune, & Teneketzis, 2002] Contant, O.; Lafortune, S.; and Teneket-
zis, D. 2002. Failure diagnosis of discrete event systems: The case of intermittent
faults. In 41st IEEE Conference on Decision and Control (CDC-02■), 4006-4011.

[Cordier & Dousson, 2000] Cordier, M.-O., and Dousson, C. 2000. Alarm driven
monitoring based on chronicles. In Proceedings of Safeprocess’2000, 286-291.

[Cordier h Grastien, 2007] Cordier, M.-O., and Grastien, A. 2007. Exploiting
independence in a decentralised and incremental approach of diagnosise. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI), 292-297.

[Cordier & Largouet, 2001] Cordier, M.-O., and Largouet, C. 2001. Using model­
checking techniques for diagnosing discrete-event systems. In Proceedings of the
Twelfth International Workshop on Principles of Diagnosis (DX-01), 39-46.

[Cordier, Trave-Massuyes, & Pucel, 2006] Cordier, M.-O.; Trave-Massuyes, L.;
and Pucel, X. 2006. Comparing diagnosability in continuous and discrete-event
systems. In Proceedings of the 17th International Workshop on Principles of
Diagnosis (DX-06), 55-60.

[Darwiche, 1998] Darwiche, A. 1998. Model-based diagnosis using structured sys­
tem descriptions. JAIR 8:165-222.

[de Kleer & Williams, 1987] de Kleer, J., and Williams, B. C. 1987. Diagnosing
multiple faults. Artificial Intelligence 32(1):97-130.

[Debouk, Lafortune, & Teneketzis, 2000] Debouk, R.; Lafortune, S.; and Teneket­
zis, D. 2000. Coordinated decentralized protocols for failure diagnosis of discrete
event systems. Journal of Discrete Event Dynamical Systems: Theory and Ap­
plication 10(l-2):33-86.

[Dechter, 2003] Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

[Fabre, Benveniste, & Jard, 2002] Fabre, E.; Benveniste, A.; and Jard, C. 2002.
Distributed diagnosis for large discrete event dynamic systems. In Proceedings
of the IFAC world congress, 237-256.

[Fortune, Hopcroft, & Schmidt, 1978] Fortune, S.; Hopcroft, J.; and Schmidt, E.
1978. The complexity of equivalence and containment for free single variable
program schemes. In ICALP’78 - Automata Languages and Programming, vol­
ume 62, 227-240. Springer-Verlag.

140 Bibliography

[Friedman X Supowit, 1990] Friedman, S., and Supowit, K. 1990. Finding the
optimal variable ordering for binary decision diagrams. IEEE Transactions on
Computers C-39(5):710-713.

[Garcia et ai, 2005] Garcia, E.; Correcher, A.; Morant, F.; E.Quiles; and Blasco,
R. 2005. Modular fault diagnosis based on discrete event systems. In Proceedings
Discrete Event Dynamic Systems, volume 15, 237-256.

[Ghelam et al., 2006] Ghelam, S.; Simeu-Abazi, Z.; Derain, J.-P.; Feuillebois, C.;
Vallet, S.; and Glade, M. 2006. Integration of health monitoring in the avionics
maintenance systems. In 6th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, 1519-1524.

[Grastien, Cordier, & Largouet, 2004] Grastien, A.; Cordier, M.-O.; and Largouet,
C. 2004. Extending decentralized discrete-event approach to diagnose reconfig-
urable systems. In International Workshop on Principles of Diagnosis (DX-Of).

[Grastien et al., 2007] A. Grastien, Anbulagan, J. R., and Kelareva, E. 2007. Di­
agnosis of discrete-event systems using satisfiability algorithms. In American
National Conference on Artificial Intelligence (AAAI-07).

[Grosclaude, 2004] Grosclaude, I. 2004. Model-based monitoring of software com­
ponents. In International Workshop on Principles of Diagnosis (DX-Of).

[Hillston, 1996] Hillston, J. 1996. A compositional approach to performance mod­
elling. Cambridge University Press.

[Hopcroft & Ullman, 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction
to Automata Theory, Languages and Computation. Addison-Wesley.

[iwasaki, 1997] Iwasaki, Y. 1997. Real-world applications of qualitative reasoning.
IEEE Expert, 12(3): 16—21.

[Jensen & Veloso, 2000] Jensen, R., and Veloso, M. 2000. OBDD-based universal
planning for multiple synchronized agents in non-deterministic domains. In Pro­
ceedings of the 5th International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-00), 167-176. AAAI Press.

[Jiang et al., 2001] Jiang, S.; Huang, Z.; Chandra, V.; and Kumar, R. 2001. A
polynomial time algorithm for diagnosability of discrete event systems. IEEE
Transactions on Automatic Control 46(8): 1318—1321.

Bibliography 141

[Kurien & Nayak, 2000] Kurien, J., and Nayak, P. 2000. Back to the future with
consistency-based trajectory tracking. In American National Conference on Ar­
tificial Intelligence (AAAI-00).

[Lamperti & Zanella, 2003a] Lamperti, G., and Zanella, M. 2003a. Continuous di­
agnosis of discrete-event systems. In l f th International Workshop on Principles
of Diagnosis (DX-03), 105-111.

[Lamperti & Zanella, 2003b] Lamperti, G., and Zanella, M. 2003b. Diagnosis of
active systems. Kluwer Academic Publishers.

[Lamperti & Zanella, 2004] Lamperti, G., and Zanella, M. 2004. Diagnosis of
discrete-event systems by separation of concerns, knowledge compilation, and
reuse. In 16th European Conference on Artificial Intelligence (ECAI-04), 838-
842.

[Lamperti & Zanella, 2006] Lamperti, G., and Zanella, M. 2006. Flexible diagnosis
of discrete-event systems by similarity-based reasoning techniques. Artificial
Intelligence 170:232-297.

[Lee, 1959] Lee, C. Y. 1959. Representation of switching circuits by binary-decision
programs. Bell System Technical Journal 38:985-999.

[Marchand & Roze, 2002] Marchand, H., and Roze, L. 2002. Diagnostic de pannes
sur des systemes ä evenements discrets: une approche ä base de modeles sym-
boliques. In 13eme Congres AFRIF-AFIA de Reconnaissances des Formes et
Intelligence Artificielle, 191-200.

[McMillan, 1992] McMillan, K. L. 1992. Symbolic model checking : An approach
to the state explosion problem. Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh.

[Meyer & Stockmeyer, 1972] Meyer, A. R., and Stockmeyer, L. J. 1972. The equiv­
alence problem for regular expressions with squaring requires exponential space.
In Proceedings of the 13th Annual IEEE Symposium on Switching and Automata
Theory, 125-129.

[Pencole & Cordier, 2005] Pencole, Y., and Cordier, M.-O. 2005. A formal frame­
work for the decentralised diagnosis of large scale discrete event systems and its
application to telecommunication networks. Artificial Intelligence 164:121-170.

142 Bibliography

[Pencole, Cordier, & Roze, 2002] Pencole, Y.; Cordier, M. O.; and Roze, L. 2002.
A decentralized model-based diagnostic tool for complex systems. International
Journal on Artificial Intelligence Tools 11 (3):327—346.

[Pencole, 2004] Pencole, Y. 2004. Diagnosability analysis of distributed discrete
event systems. In Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI), 43-47.

[Pencole, 2005] Pencole, Y. 2005. Assistance for the design of a diagnosable
component-based system. In Proceedings of the 17th IEEE International Con­
ference on Tools with Artificial Intelligence.

[Perrow, 1984] Perrow, C. 1984. Normal Accidents: Living with High Risk Tech­
nologies. Basic Books.

[Poucet et al, 1987] Poucet, A.; Contini, S.; Petersen, K. E.; and Vestergaard,
N. K. 1987. An expert system approach to systems safety and reliability anal­
ysis. In Singh, M. G.; Hindi, K. S.; Schmidt, G.; and Tzafestas, S., eds., Fault
Detection and Reliability: Knowledge Based & Other Approaches. Pergamon
Press.

[Qiu & Kumar, 2006] Qiu, W., and Kumar, R. 2006. Decentralized failure di­
agnosis of discrete event systems. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans.

[Reiter, 1987] Reiter, R. 1987. A theory of diagnosis from hrst principles. Artificial
Intelligence 32(1):57—95.

[Rintanen & Grastien, 2007] Rintanen, J., and Grastien, A. 2007. Diagnosability
testing with satisfiability algorithms. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), 532-537.

[Robertson & Seymour, 1986] Robertson, N., and Seymour, P. D. 1986. Graph
minors II: Algorithmic aspects of treewidth. Journal of Algorithms 7:309-322.

[Roze & Cordier, 2002] Roze, L., and Cordier, M. O. 2002. Diagnosing discrete-
event systems : extending the ’’diagnoser approach” to deal with telecommu­
nication networks. Journal on Discrete-Event Dynamic Systems : Theory and
Applications 12(1) :43—81.

[Sampath et al., 1995] Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of discrete event system. IEEE
Transactions on Automatic Control 40(9):1555-1575.

Bibliography 143

[Sampath et al, 1996] Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1996. Failure diagnosis using discrete event models. IEEE
Transactions on Control Systems Technology 4(2): 105—124.

[Scarl, 1994] Scarl, E. 1994. Sensor placement for diagnosability. Journal Annals
of Mathematics and Artificial Intelligence.

[Scherer & White, 1987] Scherer, W. T., and White, C. C. 1987. A survey of
expert systems for equipment maintenance and diagnostics. In Singh, M. G.;
Hindi, K. S.; Schmidt, G.; and Tzafestas, S., eds., Fault Detection and Reliability:
Knowledge Based & Other Approaches. Pergamon Press.

[Schumann & Pencole, 2006] Schumann, A., and Pencole, Y. 2006. Efficient on­
line failure identification for discrete-event systems. In Proceedings of Safepro-
cess’2006. Beijing, P.R. China: Elsevier Press.

[Schumann & Pencole, 2007] Schumann, A., and Pencole, Y. 2007. Scalable diag-
nosability checking of event-driven systems. In Proceedings of the 20th Interna­
tional Joint Conference on Artificial Intelligence (IJCAI), 575-580.

[Shannon, 1938] Shannon, C. E. 1938. A symbolic analysis of relay and switching
circuits. Trans. A.I.E.E. 57:713-723.

[Shenoy & Shafer, 1986] Shenoy, P. P., and Shafer, G. 1986. Propagating belief
functions with local computations. IEEE Expert l(3):43-52.

[Sieling & Wegener, 1993] Sieling, D., and Wegener, I. 1993. Reduction of obdds
in linear time. Information Processing Letters 48:139-144.

[Somenzi, 2005] Somenzi, F. 2005. CUDD: CU decision diagram package release
2.4.1. In University of Colorado at Boulder.

[Struss, 1997] Struss, P. 1997. Fundamentals of model-based diagnosis of dynamic
systems. In Proc. IJCAI-97, Nagoya, Japan, 480-485.

[Su & Wonham, 2005] Su, R., and Wonham, W.M. 2005. Global and local consis­
tencies in distributed fault diagnosis for discrete-event systems. IEEE Transac­
tions on Automatic Control 50(12): 1923-1935.

[Sztipanovits & Misra, 1996] Sztipanovits, J., and Misra, A. 1996. Diagnosis of
discrete event systems using ordered binary decision diagrams. In Seventh In­
ternational Workshop on Principles of Diagnosis.

144 Bibliography

[Thiebaux et dl., 1996] Thiebaux, S.; Cordier, M.-O.; Jehl, O.; and Krivine, J.-P.
1996. Supply restoration in power distribution systems - a case study in integrat­
ing model-based diagnosis and repair planning. In Conference on Uncertainty in
Artificial Intelligence - UAI'96), 525-532.

[Torta & Torasso, 2004] Torta, G., and Torasso, P. 2004. The role of obdds in
controlling the complexity of model based diagnosis. In International Workshop
on Principles of Diagnosis (DX-Of), 9-14.

[Trave-Massuyes, Escobet, & Milne, 2001] Trave-Massuyes, L.; Escobet, T.; and
Milne, R. 2001. Model-based diagnosability and sensor placement application to
a frame 6 gas turbine subsystem. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAP01, volume 1, 551-556.

[Viswanadham & Johnson, 1988] Viswanadham, N., and Johnson, T. L. 1988.
Fault detection and diagnosis of automated manufacturing systems. In Proc.
27th IEEE Conferencce on Decision and Control, 2301-2306.

[Wang, Yoo, & Lafortune, 2004] Wang, Y.; Yoo, T.; and Lafortune, S. 2004. New
results on decentralized diagnosis of discrete event systems. Proceedings of 42nd
Annual Allerton Conference on Communication, Control, and Computing.

[Williams & Nayak, 1996] Williams, B., and Nayak, P. 1996. Immobile robots -
ai in the new mihenium. A I magazine 17(3): 17-35.

[Xue, Yan, & Zheng, 2005] Xue, F.; Yan, L.; and Zheng, D. 2005. Fault diagnosis
of distributed discrete event systems using OBDD. Informatica 16(3):431-448.

[Yan et al, 2005] Yan, Y.; Pencole, Y.; Cordier, M.-O.; and Grastien, A. 2005.
Monitoring web service networks in a model-based approach. In Proceedings of
the 3rd European Conference on Web Services (ECOWS05).

[Yan, 2004] Yan, Y. 2004. Sensor placement and diagnosability analysis at de­
sign stage. In MONET Workshop on Model-Based Systems at 16th European
Conference on Artificial Intelligence.

[Yang, 1999] Yang, B. 1999. Optimizing model checking based on BDD char­
acterization. Technical Report CMU-CS-99-129, School of Computer Science,
Carnegie Mellon University.

[Yoo & Lafortune, 2001] Yoo, T., and Lafortune, S. 2001. On the computational
complexity of some problems arising inpartially-observed discrete-event systems.
American Control Conference, volume 1:307-312.

Bibliography 145

[Yoo & Lafortune, 2002] Yoo, T., and Lafortune, S. 2002. Polynomial-time ver­
ification of diagnosability of partially-observed discrete-event systems. IEEE
Transactions on Automated Control 47(9):1491-1495.

