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Abstract:  This paper presents a discrete event model-based approach for Fault Detection and Isolation of 
manufacturing systems. This approach considers a system as a set of independent plant elements. Each 
plant element is composed of a set of interrelated Parts of Plant (PoPs) modeled by a Moore automaton. 
Each PoP model is only aware of its local behavior. The degraded and faulty behaviors are added to each 
PoP model in order to obtain extended PoP ones. An extrapolation of Gaussian learning is realized to 
obtain acceptable temporal intervals between the time occurrences of correlated events. Finally based on 
the PoP extended models and the links between them, a fault candidates’ tree is established for each plant 
element. This candidates’ tree corresponds to a local on-line fault event occurrence observer, called 
diagnoser. Thus, the diagnosis decision is distributed on each plant element. An application example is 
used to illustrate the approach. 

Keywords: Discrete-Event Systems, Decentralised/Distributed Models, Diagnosis, Automata, 
Manufacturing Systems.  

 

1. INTRODUCTION 

In complex systems, such as manufacturing processes, 
unpredictable events and undesired reactions are the 
consequence of the occurrences of faults. The later reduces 
significantly the systems performances. Manufacturing 
systems can be represented as Discrete Event Systems (DES), 
i.e., dynamic systems with discrete state spaces and event-
driven transitions (Cassandra et al. 1999). Consequently, 
Boolean information is only available and its observation 
alone does not often allow to detect the fault occurrences and 
to isolate the responsible elements.  

Several approaches have been developed to solve the Fault 
Detection and Isolation (FDI) problem (Darkhovski et al. 
2003, Hadjicostis 2005, Rozé et al. 2002). FDI has become a 
crucial issue for industrial process diagnosis leading to 
increase availability, reliability and production safety. FDI 
approaches can be divided generally into knowledge-based 
and model-based ones. The knowledge-based, or model-
reasoning, approaches construct a model about the system 
behavior based on an initial human experience, e.g. expert 
systems, on a set of historical data, e.g. pattern recognition 
and signal processing methods (Duda 2001). Model-based 
FDI approaches compare a mathematical and/or graphical 
(automata, Petri nets, …) model of the normal and/or 
abnormal behaviors of the system with its real input/output 
data. These models observe the system by their events in 
order to infer the fault occurrences. Thus, they are called 
“diagnosers” (Lamperti et al. 2008, Rozé et al. 2002).  

Different structures of model-based approaches for 
diagnosing DES exist. The first structure is the centralized 

one which requires a global model of the system function as 
well as a global diagnoser (Sampath 1995). Constructing a 
global model is often intractable because of the complexity 
and the large size of the manufacturing systems. An 
alternative of the centralized structures is the component-
oriented model approaches. In these approaches, the system 
global model is described by a set of local models available 
through a library. This description is realized by 
decentralized or distributed ways. In decentralized 
approaches (Wang et al. 05), the diagnosis is performed 
based on a set of local diagnosers. However, a global model 
of the system is required to take into account the links 
between the interrelated components. In distributed 
approaches (Boel et al. 2004, Philippot et al. 2007, Cordier et 
al. 2007), no need to global model. Each local model is only 
aware of its own behavior. The links, or dependencies, 
among components are considered via components exchange 
local diagnoses using communication protocols (Genc et al. 
2003) or merging strategies (Cordier et al. 2007).     

This paper proposes a modular and distributed FDI model-
based approach for plant faults detection and isolation of 
manufacturing systems. This approach divides the plant into a 
set of Parts of Plant (PoPs). A PoP can be an actuator or a 
sensor. They are modeled by discrete models which take into 
account the technology specifications used to produce them. 
Potential degraded and faulty behaviors of each PoP are 
added to its model in order to obtain an extended PoP model. 
Faulty behavior causes the production halt while the 
degraded one disturbs or reduces the optimal production 
performances. The PoP models are grouped into subsets of 
interrelated ones. Each subset of interrelated PoP models 
defines an independent plant element. Finally, the possible 



  

candidates for a faulty or degraded behavior of each plant 
element are established based on its own extended PoP 
models and the links between them.    

The paper is structured as follows. In section 2, the proposed 
model-based FDI approach is presented. The system model is 
described by its PoP models included in a library. The later 
contains a set of local models of PoPs commonly used in 
discrete manufacturing systems. In section 3, a manufacturing 
system is used to illustrate the approach. The last section 
concludes the paper and presents future research directions.  

2. MODEL-BASED FDI APPROACH 

2.1 Part of Plant 

Generally, plant is composed of pre-actuators, actuators and 
sensors (Fig. 1). We consider the plant as a set of independent 
plant elements PEk, { }m,..,2,1k ∈ . Each plant element is 

composed of a set of actuators and sensors. Each actuator or 
sensor is defined as a Part of Plant (PoP). A PoP can react to 
failure events by changing its state.  
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Fig. 1. Manufacturing system general structure. 

We establish detailed PoP models which take into account the 
technological specifications (Deluche 1998) used to produce 
them. The goal is to obtain realistic models and to avoid 
combinatory explosion of DES modeling (Sampath 1995, 
Wonham et al. 1987). Each model is represented by a Moore 
automaton (Cassandra et al. 1999). The later is a Finite State 
Machine (FSM) in which the outputs are determined by the 
current state. Each PoP local model receives failure and 
internal events and emits its internal events and state outputs 
to the other interrelated PoPs.   

A PoP model is represented by timed Moore automaton 
defined as a 11-tuple GPoP = (Q, q0, Σ, Λ, T, O, Q*, Ts, ∆, t, 
Ψ) where: 

• Q is a finite set of static states ; 
• q0 is the initial state belonging to Q ; 
• Σ is a finite set of input events (input alphabet) ; 
• Λ is a finite set of output events (output alphabet) ; 
• (T : Q × Σ → Q) is a transition function mapping a 

state and the input alphabet to the next state ; 
• (O : Q → Λ) is an output function mapping each 

state to the output alphabet ; 
• Q* is a finite set of dynamic states (represented in 

dotted line in Table 1) ; 

• (Ts) is a Time of stroke required for the 
displacement between two positions (transition 
between two states) ;  

• ∆ is a time variable of temporary allocation ; 
• t is a local clock measuring the elapsed time 

between 2 events ;  
• Ψ = {->, :=} is a finite set of operands. (->) and (:=) 

refer, respectively, to allocation and equality test 
operations. 

Table 1. Library of commonly used Part of Plant models 
in discrete manufacturing systems 
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a binary response 
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of rotation 
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of rotation 

 A1.B2 

B1.B2 + A1.A2 

B1.A2 B1.B2 + A1.A2 

Mstop 

q0 

M-> 

q2 

M<- 

q1 

 

Simple Acting 
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Cylinder (DAC) 
with 2 positions 
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DAC with n 
positions  
(n>2 and with 5/3-
way valve or 
equivalent 
intermediate 
position C) 

 

A.t := ∆ 

A, Ts->∆ 

B, Ts->∆ 

B, t->∆ 

A, t->∆ 

B.t := ∆ 
C 

C 

B, Tsint->∆ 
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V IN 

q1 
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VOUT 

q3 
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q*4 

Vstop 

q5 B 

A 
C 

 

q0 

 
 

The construction steps of PoP models are described in 
(Philippot et al. 2008) and can be resumed in Table 1. As an 
example, let consider the model GDAC of the Double Acting 
Cylinder (DAC) with 2 positions. The model GDAC evolves 
from its initial state q0 towards the states q1/VIN or q3/VOUT 
according, respectively, to the activation of the control 
signals B = In or A = Out. The states q1/VIN and q3/VOUT 
represent, respectively, the piston rod in home return and in 
fully extended positions indicated, respectively, by the output 
events VIN and VOUT. If the model is located in the state q1, 
the activation of the control signal A = Out leads the piston 
rod to move forward. This piston rod movement is 
represented by the dynamic state q*2/V->. The output event  
V-> indicates that the piston rod is in movement towards its 
fully extended position. The time required to reach this 
position, Ts, is assigned to the time variable ∆. In the same 
time, a local clock t is initiated to calculate the spent time 



  

during the forward movement. At this dynamic state, two 
cases can arise. In the first case, the value of t becomes equal 
to the one allocated to ∆. This means that the actuator has 
reached its fully extended position. Therefore, GDAC reaches 
the state q3 with the output event Vout. In the second case, 
the control signal B = In is activated. This activation forces 
the piston rod to stop moving forward in order to inverse its 
movement towards its home position. Thus, GDAC evolves 
to the dynamic state q*4 with the output event V<- indicating 
that the piston rod is in inversed movement. In this case, the 
present spent time t is assigned to ∆. Then, the local clock is 
initiated again to calculate the elapsed time in the inverse 
movement. When this time becomes equal to the one 
allocated to ∆, the piston reaches its home position indicated 
by the state q1/VIN. The same reasoning can be followed for 
the other states. 

2.2 Abnormal or faulty states 

We adopt the hypothesis that each behavior which does not 
correspond to a normal one is considered as abnormal one. 
Thus, starting from normal states of each PoP model, it is 
possible to determine the abnormal (degraded or faulty) 
states. An abnormal state is reached due to the occurrence of 
a failure event, which is unobservable event, at a normal 
state. The abnormal states are represented by a square in the 
extended PoP models. For the example of the DAC with 2 
positions, these abnormal states indicate the following faults: 

• The DAC is stuck or blocked (B) ;  

• The DAC reacts too slowly to the control signals in 
comparison with its normal behavior (D). 

However, these abnormal states require the determination of 
the intervals defining the acceptable time displacement of the 
DAC. To determine these intervals, we have established a 
learning phase about the system’s normal and abnormal 
behaviors. The goal of this learning is to obtain realistic time 
response intervals related to the system dynamic and to the 
PoP technology. These intervals are obtained by an 
extrapolation of Gaussian learning defining the probability, 
chance, of the occurrence of an event in this interval. The 
temporal constraints between the time occurrences of 
correlated events can then be represented by a template 
(Holloway et al. 1994) or a chronicle (Cordier et al. 2000). 

We use the Balemi’s interpretation. In (Balemi et al. 1993), 
the authors define controllable events Σc ⊆ Σ as controller’s 
outputs sent to actuators, and uncontrollable events Σuc ⊆ Σ 
as the controller’s inputs coming from sensors. Σo = Σc ∪ Σuc 
is the set of observable events and is included in Σ. It 
considers that a change of a variable α from 0 to 1, or from 1 
to 0 produces events characterized by either rising, ↑α, or 
falling edges, ↓α. Consequently, the observation of the 
system’s, actuators, reactivity is achieved by these sensors 
events, which are considered as uncontrollable events. The 
control events, produced by the activation of control signals, 
are considered as controllable events. The use of rising and 
falling edges facilitates the detection of permanent and 
intermittent faults.  

2.3 Plant Elements 

The plant of a system is composed by n Parts of Plant: PoPi, i 
∈ {1, 2… n}. Each local PoPi is modelled by 11-tuple GPoPi = 
(Qi, q0i, Σi, Λi, Ti, Oi, Qi* , Tsi, ∆i, ti, Ψi) as defined section 2.1. 
A plant element PEk is said to be “independent” of another 
one PEh if their models do not have common inputs and 
outputs events. Consequently, each independent plant 
element contains an independent subset of PoPs from the 

other plant elements. If { }
kPEPoP  denotes the set of PoPs 

constituting the Plant Element PEk, then plant elements 
independency can be represented by: 

{ } { } j

k h

j

PoPi PoP

i PE PE
PoPi PoP

PoP PoP , PoP PoPj

Σ Λ Φ

Λ Σ Φ

∩ =
∀ ∈ ∀ ∈ ⇒ 

∩ =

 

No need to construct a global model of a system if it is 
divided into a set of independent plant elements. The 
occurrence of a fault in a PoP belonging to a plant element 
will not be propagated to other plant elements. However, a 
plant element can possess relatively a big number of PoPs in 
order to be independent of the other plant elements. This 
depends of system and its structure. In the worst case, a 
system can be divided into one plant element if all the PoPs 
are interrelated.   

2.4 Fault Plant Element Candidates   

The candidates responsible of the occurrence of a fault in a 
PE can be determined based on its PoP models as well as on 
its temporal constraints represented by a set of templates or 
chronicles. The following two hypotheses are considered: 

• Only one failure event responsible of a faulty or 
degraded behavior can occur at the same time ; 

• Controller is supposed to be dependable and safety. 
Consequently, the controller cannot be responsible 
of any fault as the one of sending two opposable 
control signals. 

Now, to determine all possible candidates responsible of an 
abnormal behavior in a Plant Element, a candidates’ tree is 
constructed. It is based on a knowledge expert and on each 
control signal sent by the controller. A control signal entails 
only one Plant Element of the system to evolve. The response 
of this control signal is sensors’ events leading to change 
their outputs. Consequently, the abnormal states can be 
calculated according to these outputs. 

The number of candidates can be reduced using a progressive 
monitoring. The occurrence of new sensors events can lead to 
eliminate the improbable or inconsistent candidates with this 
new observation. The fault candidates’ tree can correspond to 
an online diagnoser which returns one or several labels 
according to the observations. Furthermore, thanks to the 
results of Gaussian learning, it is possible to achieve a 
preference, i.e., more probable candidates for the occurrence 
of a fault. This preference is considered by the order of 
labels, i.e. candidates, in each state of the candidates’ tree. 



  

3. MANUFACTURING SYSTEM EXAMPLE 

To illustrate the proposed approach, we use the example of 
pick and place station of the flexible manufacturing system 
platform Cellflex (http://meserp.free.fr/). This station realizes 
the import and the export of pieces by a gripper between two 
processes thanks to a pneumatic system on 3 axes (Fig. 2). 
The symbol “1” refers to Z axis displacement, “2” to X axis 
displacement, “3” to Y axis displacement and “4” to the 
pneumatic system gripper.  

 

Fig. 2. Pick and place station 

This station is composed of 4 actuators piloted by 6 pre-
actuators produced by different technologies. The 
information about the behavior of the station is provided by 9 
sensors (Fig. 3). These models have been constructed using 
the software Stateflow of Matlab® in order to generate their 
behavior by simulation. 
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Fig. 3. PoP of pick and place station 

 

3.1 PoP of Y axis PE 

Based on Fig. 3, we can see the interactions between PoPs 
allowing gathering them in independent Plant Elements 
(PEs). For example, the Y axis is composed of 3 PoPs (one 
actuator and 2 sensors) which communicate among them. The 
actuator is a Double Acting Cylinder (DAC) where its 
retracted and extended positions are indicated by, 
respectively, the sensors yR and yE. These 3 interrelated PoPs 
constitute the “Y axis” PE. We keep this PE for the 
explanations hereafter (Fig. 4). 

 yR yE 

Out1 Out2 

VOUT V-> V IN V<- 

 

Fig. 4. Plant Element of Y axis 

The Fig. 5 and Fig. 6 illustrate the determination of all 
possible abnormal states. For example, when the state q0 of 
the PoP sensor yR model is active, (Fig. 5), the retracted 
position sensor can be blocked (B/yR). For the the DAC model 
(Fig. 6), starting from the initial state q0 and in function of the 
inputs, the DAC model evolves towards states q1/V IN or 
q3/VOUT. At the state q1/V IN, representing the piston rod in 
completely retracted position, the cylinder can be blocked in 
forward direction BVout. At the state q3/VOUT, the cylinder can 
be blocked in backward direction BVin. All possible abnormal 
states of the “Y axis” PE is classified in Table 2. 

 

/VIN 

VIN 
yR 

q1 

/yR 
 

q0 
/VOUT 

VOUT 
yE 

q1 

/yE 
 

q0 

a) Sensor yR abnormal events b) Sensor yE abnormal events 

ByR B/yR ByE B/yE 

 

Fig. 5. Determination of sensors yR and yE abnormal states  
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Fig. 6. Determination of DAC abnormal states 

 

 



  

Table 2. Classification of abnormal events 

Type Label Description 
ByR sensor yR blocked at 1 
B/yR sensor yR blocked at 0 
ByE sensor yE blocked at 1 
B/yE sensor yE blocked at 0 
BVin DAC blocked in retracted direction 
BV-> DAC blocked during forward movement 
BVout DAC blocked in extended direction F

au
lty

 e
ve

n
ts

 

BV<- DAC blocked during backward 
movement 

DV-> 
DAC too slowly acting in extended 
direction 

D
eg

ra
d

ed
 

ev
en

ts
 

DV<- 
DAC too slowly acting in retracted 
direction 

3.2 Extrapolation of Gaussian learning 

The “Y axis” PE can be represented as a block for which the 
inputs are the control signals of the controller, In and Out, 
and the outputs are the sensors’ information, yR and yE (Fig. 
7). The controller is supposed to be safety and dependable. 
Consequently, it is not possible to have the activation of In 
and Out at the same time. When the control signal Out is 
activated, the normal response is ↓yR followed by ↑yE. A 
learning of all sensors’ outputs’ events can be achieved. For 
example, Fig. 8 presents the learning of ↑yE after the 
activation of Out. Fig. 9 presents the extrapolation of 
Gaussian learning when the command Out is activated. This 
activation expects as normal response the sensors events ↓yR 
and ↑yE within, respectively, the time intervals δ1 and δ2. Any 
other response to this control signal activation will be 
considered as abnormal behavior. A tolerance interval δ3 is 
added to δ1 and δ2, in order to take into account the delay in 
events’ occurrences. This interval is subjective and represents 
about 25 per cent of δ2. In the next paragraph, the fault 
candidates’ tree is constructed for the “Y axis” PE after the 
activation of a control signal. 
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Fig. 7. Observable events of the “Y axis” PE 

3.3 Candidates for the diagnosis of the “Y axis” PE 

To define the fault candidates for a PE after the activation of 
each control signal, all the events consequences are analyzed 
based on the PoP extended models and their links. For 
example, Fig. 10 presents the fault candidates’ tree after the 
activation of Out for the “Y axis” PE. If the time delay 
occurrence of ↓yR belongs to δ1 and the one of ↑yE to δ2, then 
the behavior is considered as normal and the returned label is 
N (state q10). While if this delay time occurrence of ↓yR and 
the one of ↑yE belong, respectively, to δ1 and δ3 (state q11), 

then the behavior is degraded and the candidate is: too slowly 
acting DAC in comparison with its normal displacement 
velocity (DV->). While if the delay time occurrence of ↓yR 
belongs to δ1 and the one of /yE is greater than δ3, then the  
fault candidates are {B/yE, BV->} (state q12). However, 
Gaussian learning indicates that B/yE is more probable than 
BV->. These fault candidates are proposed to the user in 
order to facilitate his task of making decision about the 
system behavior status. The generation of the other 
candidates’ in response to the other control signals activation 
is achieved similarly. 
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Fig. 8. Learning of the interval of occurrence of the event ↑yE 
as well as its probability after the activation of Out 
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Fig. 9. Extrapolation for the sensors events occurrences 
intervals after the activation of the control signal Out 
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Fig. 10. Fault candidates’ tree for the “Y axis” PE after the 
activation of Out  



  

3.4 Remarks 

Candidates’ tree is only information on the system behaviour. 
It corresponds to a proposition to the user which is the only 
one who can take a decision. Consequently, it is used on-line 
when a command is sent and reinitialized from another 
command if the behaviour is normal or by the user for an 
abnormal behaviour. 

4. CONCLUSIONS AND FUTURE WORKS 

This paper presents a model-based Fault Detection and 
Isolation (FDI) approach for the diagnosis of discrete 
manufacturing system. The global model of the system is 
described by a set of independent plant elements. Each one of 
the later is composed of a set of interrelated parts of plant. A 
part of plant can be an actuator or a sensor. The diagnosis is 
thus distributed on each element plant.   

However, only the faults related to PoPs (actuators and 
sensors) are considered. To take into account the product 
faults, a product model is necessary. This model depends on 
the product nature and on the production objective. Thus, a 
future work is to extend this approach to include the faults 
related to products. Another perspective is to extend the PoP 
library by integrating a new family of PoPs with their pre-
actuators. The goal is to obtain more realistic plant model.  
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