14 research outputs found

    A Review on Dynamically Changing the Quality of Service Requirements for SOA based Applications in Cloud

    Get PDF
    Service Oriented Applications have the ability to change their constituent services dynamically This implies that they have the ability to change both their functionality and their Quality of Service attributes dynamically We present a Cloud-based-Multi-Agent System Clobmas that uses multiple double auctions to enable applications to self-adapt based on their Quality of Service requirements and cost restraints Quality of Service attributes needed to provided maintained monitored at run time A double auction is a two-sided auction i e both the buyers and the sellers indicate the price that they re willing to pay and accept respectively If any application uses self adaptation mechanism then it exhibits a high Quality of Service Here we design a market mechanism that allows applications to select services in a decentralized manne

    Decentralized planning for self-adaptation in multi-cloud environment

    Get PDF
    The runtime management of Internet of Things (IoT) oriented applications deployed in multi-clouds is a complex issue due to the highly heterogeneous and dynamic execution environment. To effectively cope with such an environment, the cross-layer and multi-cloud effects should be taken into account and a decentralized self-adaptation is a promising solution to maintain and evolve the applications for quality assurance. An important issue to be tackled towards realizing this solution is the uncertainty effect of the adaptation, which may cause negative impact to the other layers or even clouds. In this paper, we tackle such an issue from the planning perspective, since an inappropriate planning strategy can fail the adaptation outcome. Therefore, we present an architectural model for decentralized self-adaptation to support the cross-layer and multi-cloud environment. We also propose a planning model and method to enable the decentralized decision making. The planning is formulated as a Reinforcement Learning problem and solved using the Q-learning algorithm. Through simulation experiments, we conduct a study to assess the effectiveness and sensitivity of the proposed planning approach. The results show that our approach can potentially reduce the negative impact on the cross-layer and multi-cloud environment

    Developing and operating time critical applications in clouds: the state of the art and the SWITCH approach

    Get PDF
    Cloud environments can provide virtualized, elastic, controllable and high quality on-demand services for supporting complex distributed applications. However, the engineering methods and software tools used for developing, deploying and executing classical time critical applications do not, as yet, account for the programmability and controllability provided by clouds, and so time critical applications cannot yet benefit from the full potential of cloud technology. This paper reviews the state of the art of technologies involved in developing time critical cloud applications, and presents the approach of a recently funded EU H2020 project: the Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications (SWITCH). SWITCH aims to improve the existing development and execution model of time critical applications by introducing a novel conceptual model—the application-infrastructure co-programming and control model—in which application QoS and QoE, together with the programmability and controllability of cloud environments, is included in the complete application lifecycle

    Self-Adaptive Software with Decentralised Control Loops

    Get PDF
    We present DECIDE, a rigorous approach to decentralising the control loops of distributed self-adaptive software used in mission-critical applications. DECIDE uses quantitative verification at runtime, first to agree individual component contributions to meeting system-level quality-of-service requirements, and then to ensure that components achieve their agreed contributions in the presence of changes and failures. All verification operations are carried out locally, using component-level models, and communication between components is infrequent. We illustrate the application of DECIDE and show its effectiveness using a case study from the unmanned underwater vehicle domain

    User-centric Adaptation Analysis of Multi-tenant Services

    Get PDF
    Multi-tenancy is a key pillar of cloud services. It allows different users to share computing and virtual resources transparently, meanwhile guaranteeing substantial cost savings. Due to the tradeoff between scalability and customization, one of the major drawbacks of multi-tenancy is limited configurability. Since users may often have conflicting configuration preferences, offering the best user experience is an open challenge for service providers. In addition, the users, their preferences, and the operational environment may change during the service operation, thus jeopardizing the satisfaction of user preferences. In this article, we present an approach to support user-centric adaptation of multi-tenant services. We describe how to engineer the activities of the Monitoring, Analysis, Planning, Execution (MAPE) loop to support user-centric adaptation, and we focus on adaptation analysis. Our analysis computes a service configuration that optimizes user satisfaction, complies with infrastructural constraints, and minimizes reconfiguration obtrusiveness when user- or service-related changes take place. To support our analysis, we model multitenant services and user preferences by using feature and preference models, respectively. We illustrate our approach by utilizing different cases of virtual desktops. Our results demonstrate the effectiveness of the analysis in improving user preferences satisfaction in negligible time.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía P12--TIC--1867Junta de Andalucía TIC-590

    Exploring Strategies that IT Leaders Use to Adopt Cloud Computing

    Get PDF
    Information Technology (IT) leaders must leverage cloud computing to maintain competitive advantage. Evidence suggests that IT leaders who have leveraged cloud computing in small and medium sized organizations have saved an average of $1 million in IT services for their organizations. The purpose of this qualitative single case study was to explore strategies that IT leaders use to adopt cloud computing for their organizations. The target population consisted of 15 IT leaders who had experience with designing and deploying cloud computing solutions at their organization in Long Island, New York within the past 2 years. The conceptual framework of this research project was the disruptive innovation theory. Semistructured interviews were conducted and company documents were gathered. Data were inductively analyzed for emergent themes, then subjected to member checking to ensure the trustworthiness of findings. Four main themes emerged from the data: the essential elements for strategies to adopt cloud computing; most effective strategies; leadership essentials; and barriers, critical factors, and ineffective strategies affecting adoption of cloud computing. These findings may contribute to social change by providing insights to IT leaders in small and medium sized organizations to save money while gaining competitive advantage and ensure sustainable business growth that could enhance community standards of living

    Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS

    Full text link
    Structural relations established among agents influence the performance of decentralized service discovery process in multiagent systems. Moreover, distributed systems should be able to adapt their structural relations to changes in environmental conditions. In this article, we present a service-oriented multiagent systems, where agents initially self-organize their structural relations based on the similarity of their services. During the service discovery process, agents integrate a mechanism that facilitates the self-organization of their structural relations to adapt the structure of the system to the service demand. This mechanism facilitates the task of decentralized service discovery and improves its performance. Each agent has local knowledge about its direct neighbors and the queries received during discovery processes. With this information, an agent is able to analyze its structural relations and decide when it is more appropriate to modify its direct neighbors and select the most suitable acquaintances to replace them. The experimental evaluation shows how this self-organization mechanism improves the overall performance of the service discovery process in the system when the service demand changesThis work is partially supported by the Spanish Ministry of Science and Innovation through grants CSD2007-0022 (CONSOLIDER-INGENIO 2010), TIN2012-36586-C03-01, TIN2012-36586-C03-01, TIN2012-36586-C03-02, PROMETEOII/2013/019, and FPU grant AP-2008-00601 awarded to E. Del Val.Del Val Noguera, E.; Rebollo Pedruelo, M.; Vasirani, M.; Fernández, A. (2014). Utility-Based Mechanism for Structural Self-Organization in Service-Oriented MAS. ACM Transactions on Autonomous and Adaptive Systems. 9(3):1-24. https://doi.org/10.1145/2651423S12493Sherief Abdallah and Victor Lesser. 2007. Multiagent reinforcement learning and self-organization in a network of agents. In Proceedings of the 6th International Conference on Autonomous Agents and Multiagent Systems. 172--179.Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf’s law and the Internet. Glottometrics 3, 143--150.Muntasir Al-Asfoor, Brendan Neville, and Maria Fasli. 2012. Heuristic resource search in a self-organised distributed multi agent system. In Proceedings of the 6th International Workshop on Self-Organizing Systems. 84--89.Mathieu Aquin, Salman Elahi, and Enrico Motta. 2010. Personal monitoring of Web information exchange: Towards Web lifelogging. In Proceedings of the Web Science Conference.Ulrich Basters and Matthias Klusch. 2006. RS2D: Fast adaptive search for semantic Web services in unstructured p2p networks. In Proceedings of the International Semantic Web Conference. 87--100.Umesh Bellur and Roshan Kulkarni. 2007. Improved matchmaking algorithm for semantic Web services based on bipartite graph matching. In Proceedings of the International Semantic Web Conference. 86--93.Devis Bianchini, Valeria De Antonellis, and Michele Melchiori. 2009. Service-based semantic search in p2p systems. In Proceedings of the European Conference on Web Services. 7--16.Bartosz Biskupski, Jim Dowling, and Jan Sacha. 2007. Properties and mechanisms of self-organizing MANET and P2P systems. ACM Transactions on Autonomous and Adaptive Systems 2, 1, 1--34.Alberto Blanc, Yi-Kai Liu, and Amin Vahdat. 2005. Designing incentives for peer-to-peer routing. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies. 374--385.Michael Bowling and Manuela Veloso. 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215--250.Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N. Huhns. 2009. Agents and service-oriented computing for autonomic computing: A research agenda. IEEE Internet Computing 13, 3, 82--87.Tyson Condie, Sepandar D. Kamvar, and Hector Garcia-Molina. 2004. Adaptive peer-to-peer topologies. In Proceedings of the 4th International Conference on Peer-to-Peer Computing. 53--62.Arturo Crespo and Hector Garcia-Molina. 2002. Routing indices for peer-to-peer systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems. 23--32.Elena Del Val, Natalia Criado, Carlos Carrascosa, Vicente Julian, Miguel Rebollo, Estefania Argente, and Vicente Botti. 2010. THOMAS: A service-oriented framework for virtual organizations. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10). 1631--1632.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2011. Introducing homophily to improve semantic service search in a self-adaptive system. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. 1241--1242.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012a. Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems 28, 1, 1--30.Elena Del Val, Miguel Rebollo, and Vicente Botti. 2012b. Promoting cooperation in service-oriented MAS through social plasticity and incentives. Journal of Systems and Software 86, 2, 520--537.Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. 2005. AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications 16, 443--455.Ding Ding, Lei Liu, and Hartmut Schmeck. 2010. Service discovery in self-organizing service-oriented environments. In Proceedings of the 2010 IEEE Asia-Pacific Services Computing Conference. 717--724.Sergey N. Dorogovtsev and Jose F. F. Mendes. 2003. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2011. Self-Organizing Software: From Natural to Artificial Adaptation. Natural Computing Series.Erik Einhorn and Andreas Mitschele-Thiel. 2008. RLTE: Reinforcement learning for traffic-engineering. In Proceedings of the 2nd International Conference on Autonomous Infrastructure, Management, and Security. 120--133.Nelson Fernandez, Carlos Maldonado, and Carlos Gershenson. 2014. Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In Guided Self-Organization: Inception. Emergence, Complexity and Computation, Vol. 9. Springer, 19--51. DOI: http://dx.doi.org/10.1007/978-3-642-53734-9_2Jose Luis Fernandez-Marquez, Josep Lluis Arcos, and Giovanna Di Marzo Serugendo. 2012. A decentralized approach for detecting dynamically changing diffuse event sources in noisy WSN environments. Applied Artificial Intelligence 26, 4, 376--397. DOI: http://dx.doi.org/10.1080/08839514.2012.653659Agostino Forestiero, Carlo Mastroianni, and Michela Meo. 2009. Self-Chord: A bio-inspired algorithm for structured P2P systems. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. 44--51.Matthew E. Gaston and Marie des Jardins. 2005. Agent-organized networks for multi-agent production and exchange. In Proceedings of the 20th AAAI Conference on Artificial Intelligence. 77--82.Nathan Griffiths and Michael Luck. 2010. Changing neighbours: Improving tag-based cooperation. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. 249--256.Peter Haase, Ronny Siebes, and Frank van Harmelen. 2008. Expertise-based peer selection in peer-to-peer networks. Knowledge and Information Systems 15, 1, 75--107.Philip N. Howard, Lee Rainee, and Steve Jones. 2001. Days and nights on the Internet. American Behavioural Scientist, 383--404.Bernardo A. Huberman and Lada A. Adamic. 2000. The nature of markets in the WWW. Quarterly Journal of Electronic Commerce 1, 5--12.Michael N. Huhns et al. 2005. Research directions for service-oriented multiagent systems. IEEE Internet Computing 9, 6, 65--70.Tomoko Itao, Tatsuya Suda, Tetsuya Nakamura, Miyuki Imada, Masato Matsuo, and Tomonori Aoyama. 2001. Jack-in-the-Net: Adaptive networking architecture for service emergence. In Proceedings of the Asian-Pacific Conference on Communications. 9.Emily M. Jin, Michelle Girvan, and Mark E. J. Newman. 2001. Structure of growing social networks. Physical Review E 64, 4, 046132.Sachin Kamboj and Keith S. Decker. 2007. Organizational self-design in semi-dynamic environments. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. 335--337.Rahamatullah Khondoker, S. M. Taslim Arif, Nathan Kerr, and Dennis Schwerdel. 2011. Self-organizing communication services in future network architectures. In Proceedings of the 5th International Workshop on Self-Organizing Systems.Matthias Klusch, Benedikt Fries, and Katia Sycara. 2009. OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S services. Web Semantics Science Services and Agents on the World Wide Web 7, 2, 121--133.Dionisis Kontominas, Paraskevi Raftopoulou, Christos Tryfonopoulos, and Euripides G. M. Petrakis. 2013. DS4: A distributed social and semantic search system. Advances in Information Retrieval 7814, 832--836.Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. 2012. Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems 7, 1, Article No. 1.Paul Lazarsfeld. 1954. Friendship as a social process: A substantive and methodological analysis. In Freedom and Control in Modern Society. Van Nostrand, New York, NY.Paulo Leito. 2013. Towards self-organized service-oriented multi-agent systems. In Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, Vol. 472. Springer, 41--56.W. Sabrina Lin, Hong Vikcy Zhao, and K. J. Ray Liu. 2009. Incentive cooperation strategies for peer-to-peer live multimedia streaming social networks. IEEE Transactions on Multimedia 11, 3, 396--412.Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. 2001. Semantic Web services. IEEE Intelligent Systems 16, 2, 46--53.Miller McPherson, Lynn Smith-Lovin, and James Cook. 2001. Birds of a feather: Homophily in social networks. Annual Review of Sociology 27, 415--444.Vivek Nallur and Rami Bahsoon. 2012. A decentralized self-adaptation mechanism for service-based applications in the cloud. IEEE Transactions on Software Engineering 99, 591--612.Aris Ouksel, Yair Babad, and Thomas Tesch. 2004. Matchmaking software agents in B2B markets. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences. 1--9.Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. 2002. Semantic matching of Web services capabilities. In Proceedings of the 1st International Semantic Web Conference. 333--347.Leonid Peshkin and Virginia Savova. 2002. Reinforcement learning for adaptive routing. In Proceedings of the 2002 International Conference on Neural Networks (IJCNN’02). 1825--1830.Paraskevi Raftopoulou and Euripides G. M. Petrakis. 2008. iCluster: A self-organizing overlay network for P2P information retrieval. In Proceedings of the 30th European Conference on Advances in Information Retrieval (ECIR’08). 65--76.Sharmila Savarimuthu, Maryam Purvis, Martin Purvis, and Bastin Tony Roy Savarimuthu. 2011. Mechanisms for the self-organization of peer groups in agent societies. In Multi-Agent-Based Simulation XI. Lecture Notes in Computer Science, Vol. 6532. Springer, 93--107.Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. 2005. Self-organization in multi-agent systems. Knowledge Engineering Review 20, 2, 165--189.Abdul Khalique Shaikh, Saadat M. Alhashmi, and Rajendran Parthiban. 2012. A semantic impact in decentralized resource discovery mechanism for grid computing environments. In Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science, Vol. 7440. Springer, 206--216.Qixiang Sun and Hector Garcia-Molina. 2004. SLIC: A selfish link-based incentive mechanism for unstructured peer-to-peer networks. In Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04). 506--515.Mirko Viroli and Franco Zambonelli. 2010. A biochemical approach to adaptive service ecosystems. Information Sciences 180, 10, 1876--1892. DOI: http://dx.doi.org/10.1016/j.ins.2009.11.021Li Wang. 2011. SoFA: An expert-driven, self-organization peer-to-peer semantic communities for network resource management. Expert Systems with Applications 38, 1, 94--105.Kevin Werbach. 2000. Syndication—the emerging model for business in the Internet era. Harvard Business Review 78, 3, 84--93, 214.Tom Wolf and Tom Holvoet. 2005. Emergence versus self-organisation: Different concepts but promising when combined. In Engineering Self-Organising Systems. Lecture Notes in Computer Science, Vol. 3464. Springer, 1--15.Haizheng Zhang, W. Bruce Croft, Brian Levine, and Victor Lesser. 2004. A multi-agent approach for peer-to-peer based information retrieval system. In Proceedings of the 3rd International Conference on Autonomous Agents and Multiagent Systems, Vol. 1. 456--463.Ming Zhong. 2006. Popularity-biased random walks for peer-to-peer search under the square-root principle. In Proceedings of the 5th International Workshop on Peer-to-Peer Systems

    A decentralized self-adaptation mechanism for service-based applications in the cloud

    Get PDF
    This thesis presents a Cloud-based-Multi-Agent System (Clobmas) that uses multiple double auctions, to enable applications to self-adapt, based on their QoS requirements and budgetary constraints. We design a marketplace that allows applications to select services, in a decentralized manner. We marry the marketplace with a decentralized service evaluation and- selection mechanism, and a price adjustment technique to allow for QoS constraint satisfaction. Applications in the cloud using the Software-As-A-Service paradigm will soon be commonplace. In this context, long-lived applications will need to adapt their QoS, based on various parameters. Current service-selection mechanisms fall short on the dimensions that service based applications vary on. Clobmas is shown to be an effective mechanism, to allow both applications (service consumers) and clouds (service providers) to self-adapt to dynamically changing QoS requirements. Furthermore, we identify the various axes on which service applications vary, and the median values on those axes. We measure Clobmas on all of these axes, and then stress-test it to show that it meets all of our goals for scalability

    Híper-heurísticas com aprendizagem

    Get PDF
    A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.Optimization in current decision support systems has a highly interdisciplinary nature related with the need to integrate different techniques and paradigms in solving real-world complex problems. Computing optimal solutions in many of these problems are unmanageable. Heuristic search methods are known to obtain good results in an acceptable time interval. Often, parameters need to be adjusted to allow good results. In this sense, learning strategies can enhance the performance of a system, providing it with the ability to learn, for instance, the most suitable optimization technique for solving a particular class of problems, or the most suitable parameterization of a given algorithm on a given scenario. Some of the most used optimization methods for solving real world problems resulted from the adaptation of ideas from several areas of research, especially the ones inspired by nature - Metaheuristics. The process of selecting a Metaheuristics for solving a given problem is by itself an optimization problem. The Hyper-heuristics arise in this context as efficient methodologies for selecting or generating heuristics (or Metaheuristics) to solve NP-hard optimization problems. This thesis aims to make a contribution to the problem of selection of Metaheuristics and respective parameterization. In this sense, the specification of a Hyper-heuristic is describes for the selection of techniques based in nature, in solving the problem of scheduling in manufacturing systems, based on previous experience. The developed Hyper-heuristic module uses a reinforcement learning algorithm (Q-Learning), which enables the system with the ability to autonomously select the Metaheuristics to use in optimization process as well as the respective parameters. Finally, a computational study was carried out to evaluate the influence of the Hyper-heuristics on the performance of the AutoDynAgents system. As a general conclusion, we can say from the results obtained that there is significant advantage in using the system with the Q-Learning based Hyper-heuristic
    corecore