
A DECENTRALIZED SELF-ADAPTATION
MECHANISM FOR SERVICE-BASED APPLICATIONS
IN THE CLOUD

by

VIVEK NALLUR

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
31st May 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/5222915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

This thesis presents a Cloud-based-Multi-Agent System (Clobmas), that uses multiple double

auctions, to enable applications to self-adapt, based on their QoS requirements and bud-

getary constraints. We design a marketplace that allows applications to select services, in a

decentralized manner. We marry the marketplace with a decentralized service evaluation-

and-selection mechanism, and a price adjustment technique to allow for QoS constraint

satisfaction.

Applications in the cloud using the Software-As-A-Service paradigm will soon be common-

place. In this context, long-lived applications will need to adapt their QoS, based on various

parameters. Current service-selection mechanisms fall short on the dimensions that service-

based applications vary on. Clobmas is shown to be an effective mechanism, to allow both

applications (service consumers) and clouds (service providers) to self-adapt to dynamically

changing QoS requirements. Furthermore, we identify the various axes on which service-

applications vary, and the median values on those axes. We measure Clobmas on all of these

axes, and then stress-test it to show that it meets all of our goals for scalability.

Acknowledgements

At the very outset, I would like to acknowledge my gratitude to my supervisor, Dr. Rami

Bahsoon. Without his patience, and guiding hand, this thesis would not be, what it is today. I

would also like to thank my RSMG committee,Prof. Xin Yao and Dr. Behzad Bordbar. Your

comments and suggestions have informed my research, in more ways than one.

One never forgets one’s first boss, and I would like to record my appreciation and admiration

for Dr. M. Sasikumar. Sasi, my introduction to research could not have come from a better

person. I hope that I shall do good work, and not lose my integrity even in the face of great

disappointment.

Daily life in Computer Science has been a pleasure, because of all the friends that I made dur-

ing the course of the PhD. The heated discussions, passionate arguments, and random conver-

sations that I’ve had with Peter Lewis, Seyyed Shah, Loretta Mancini, Benjamin Woolford-Lim,

Edward Robinson, Catherine Harris, Gurchetan Grewal, Gurpreet Grewal-Kang, and many

others have contributed to a rich, and fulfilling period of stay, in this institution.

For rich, and engrossing discussions about varied cultures, and words of encouragement

when I was down, I would like to thank Amaria Zidouk and Shiwei Xu. You guys have been

great office-mates, and it has been a pleasure to share an office with you.

If there has been one person who has been with me, quite literally, every step of the way, it

has to be my ’twin’, Christopher Staite. From procrastinating, to playing pranks, to cogitating

about research, to relaxing in Coniston, we’ve done it all together. For being there, as a person

to talk to, a support to lean on, a chum to share adventures with, and being an all-round

good egg, thank you my friend. My journey through the PhD would have been lonelier, and

tortuous, if it weren’t for your cheery countenance (which I sometimes wanted to punch). It’s

been a good ride. I wish you a fulfilling career, and all happiness in the world, as you embark

on a different journey with Becky.

Raji and Ramesh, it makes me sad that you are on the other side of the world, just when I

finish this adventure. You participated in the beginnings of it, and it would have been nice to

have you here, at this moment. Here’s hoping that we land up in the same part of the world

again, sometime.

Elder brothers usually never know how much their sibling admires them. At least mine has

never heard it from me. Deepu, you have been the epitome of cool, and someone to look

up to, ever since I could remember. For knowing just when to give me space, when to beat

things into me, and for always supporting me amidst thick and thin, thank you. You’re ace.

Devikutty, even in my imagination, I could not have conceived of a better sister-in-law. I’m so

glad that you are a part of our family.

A debt of gratitude, more than I can ever repay, is owed to Rajesh and Mala. From the very first

day that I landed in England, you guys have been there for me. You have opened your hearts,

your home, and made me feel welcome. You did not know it, but your love, affection and

warmth, have pulled me through some really difficult times. So much so, that in the School

of Computer Science, when I speak of ‘going home’, my friends know that I’m talking about

Milton Keynes. Today, if I even consider making England home, it is because of you. Many,

many, many thanks.

And finally, to the most important people in my life, Amma and Achan. Every year that I get

older, I realize just how much I owe you, and how much of what I am, is due to you. You have

been patient, indulgent and loving, to a fault. You’ve supported me through, what must’ve

seemed like, crazy dreams and ambitions. And I’m afraid that it’s probably going to continue

to be that way. Whipper-snapper isn’t ready to come home, yet. I shall not attempt to thank

you, because words will not be enough. I love you, and to you both, I dedicate this thesis.

¸ ¸ ¸ ¸ ¸

Publications arising from this Thesis

• Conference

1. V.Nallur and R.Bahsoon, Self-Adapting Applications Based on QA Requirements

in the Cloud Using Market-Based Heuristics in Proceedings of ServiceWave 2010.

Lecture Notes in Computer Science - 6481

2. V.Nallur and R.Bahsoon, Design of a Market-Based Mechanism for Quality Attribute

Tradeoff of Services in the Cloud in Proceedings of the 25th Symposium of Applied

Computing(ACM SAC 2010)

3. V.Nallur, R.Bahsoon and X.Yao, Self-Optimizing Architecture for Ensuring Quality

Attributes in the Cloud in Proceedings of 2009 IEEE/IFIP WICSA/ECSA, 281-284

• Journal

1. V.Nallur and R.Bahsoon, Market-Based Multi-Agent Systems as a Self-Adaptation

Mechanism in the Cloud in IEEE Transactions on Software Engineering. (In revision

cycle. Submitted March 2012)

2. V.Nallur, Self-Optimizing Quality Attributes in Cloud Architectures: International

Journal of Software Architecture, Vol.1, No. 1, Jul-Aug 2010

Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Problem . 3

1.1.1 The case of BizInt . 4

1.1.2 The Case of SkyCompute . 6

1.2 Solution . 6

1.3 Contributions of This Thesis . 7

1.4 Structure of the Thesis . 8

1.4.1 Publications . 9

2 Resource Allocation in the Cloud 11

2.1 Cloud Computing . 12

2.2 Resource Allocation . 14

2.3 Current Approaches . 15

2.3.1 Policy-Based Approach . 16

2.3.2 Deadline-Driven . 18

2.3.3 Machine-Learning Algorithms . 18

2.3.4 Cost-Optimization . 20

2.3.5 Market-Based Methods . 20

2.3.6 Ranking-Based Method . 21

2.4 Conclusion . 22

3 Scalability in Dynamic Service Selection 25

3.1 Introduction . 25

3.2 Dynamic Web-Service Selection . 26

3.3 The Literature Review Process . 29

3.3.1 Systematic Review . 29

3.3.2 Research Questions . 29

3.4 Research Method . 30

3.4.1 Review Protocol . 31

3.4.1.1 Data Sources . 31

3.4.1.2 Search Strategy . 32

3.4.1.3 Study Selection . 34

3.4.1.4 Justification for Exclusion Criteria 34

3.4.1.5 Data Extraction . 36

3.4.1.6 Data Synthesis . 37

3.5 Overview of Included Papers . 37

3.6 Results of Systematic Review . 41

3.6.1 Revisiting the Research Questions . 47

3.7 Discussion . 49

3.7.1 Threats to Validity . 49

3.7.2 Quality Assessment . 50

3.8 Conclusion . 51

4 Towards Self-Adaptive Architecture: A Market-Based Perspective 53

4.1 Introduction . 53

4.2 Self-Adaptive Architectures . 55

4.2.1 Choosing the right mechanism . 60

4.3 Market-Based Control . 62

4.3.1 Auctions . 62

4.4 Review of Literature using MBC . 63

4.4.1 Auction-Oriented Agent Design . 64

4.4.2 Agent-Based Computational Economics 67

4.5 Conclusion . 68

5 Mechanism Design 71

5.1 Introduction . 72

5.2 Agents in the System . 74

5.2.1 BuyerAgent . 74

5.2.2 ApplicationAgent . 74

5.2.3 SellerAgent . 75

5.2.4 MarketAgent . 76

5.3 Structure of the Auction . 76

5.3.1 Modifications to the CDA . 79

5.4 Calculation, Communication, Decision-Making 79

5.4.1 QoS Calculation . 79

5.4.2 Adaptation Using Bid Generation . 83

5.4.3 Bids Generated for Sample Scenario . 85

5.4.4 Decentralized Decision-Making Using Ask-Selection 87

5.4.4.1 Ask Selection . 87

5.4.4.2 Calculation of Preference . 88

5.4.4.3 A Worked-out Example . 89

5.5 Use of MDA for QoS adaptation . 91

5.5.1 Post-Transaction . 92

5.6 Description of ApplicationAgent and BuyerAgents’ Lifecycle 94

5.6.1 Adapting Bid and Ask Prices . 95

5.6.2 Stopping Criteria . 96

5.6.3 Re-starting Conditions . 97

5.7 Description of the SellerAgent’s Lifecycle . 97

5.8 QoS Monitoring Engine . 98

5.9 Conclusion . 99

6 Requirements and Design of Clobmas 101

6.1 Introduction . 102

6.2 Requirements . 102

6.2.1 Goal Oriented Scalability Characterization 103

6.2.1.1 Goal refinement for scalability . 105

6.3 Design . 109

6.3.1 Design Rationale . 111

6.3.2 Architectural Pattern . 111

6.3.3 Structural Modelling . 112

6.3.4 Behavioural Modelling . 115

6.3.4.1 Setup Phase . 116

6.3.4.2 The Trading Phase . 119

6.3.5 Implementing vs. Simulating a MAS . 120

6.4 Conclusion . 121

7 Evaluating Clobmas 123

7.1 Introduction . 124

7.2 Context for Evaluation . 124

7.2.1 Qualitative Criteria . 126

7.2.2 Quantitative Criteria . 127

7.3 Experimental Setup . 128

7.4 Results . 130

7.5 Evaluation from BizInt’s Perspective . 130

7.6 Evaluation from SkyCompute’s Perspective . 133

7.6.1 Market Satisfaction Rate . 133

7.6.2 Scalability . 140

7.6.3 The Cost of Decentralization . 147

7.7 Evaluating the architecture of the MAS . 151

7.7.1 Common Architectural Patterns . 152

7.7.2 Architectural Patterns Employed in Clobmas 154

7.8 Discussion of Issues and Limitations . 155

7.8.1 Threats to validity . 155

7.8.2 Identity and Reputation . 156

7.8.3 Monitoring of QoS Levels . 156

7.8.4 Marketplace Modelling . 157

7.9 Conclusion . 157

8 Conclusion and Future Work 159

8.1 Summary . 160

8.2 Thesis Contributions . 161

8.3 Future Work . 163

8.3.1 Impact of this Thesis . 164

References 165

Appendices 173

A Mechanism Design Appendices 175

A.1 A Segue into PROMETHEE . 175

B Requirements and Design Appendices 179

B.1 KAOS . 179

B.1.1 KAOS Concepts and Terminology . 179

8.1.2 KAOS-based goals for our Multi-Agent System 180

List of Tables

1.1 On-Demand Instance Pricing on Amazon EC2 . 5

2.1 Resource allocation policies. Excerpted from [69] 16

3.1 Comparison of techniques . 42

3.2 Performance of global planning using IP in a dynamic environment 43

3.3 Performance of hybrid algorithm in [58] . 45

3.4 Distributed approach with 100 CandidateServices 46

3.5 Workflow size increases with 500 CandidateServices 47

3.6 Per-flow optimization times (sliced from Table 6 in [2]) 47

3.7 Median value of variables affecting performance, reported in literature 48

4.1 Mapping mechanism characteristics to problem domain 61

5.1 Orderbook at time t0 . 77

5.2 Orderbook at time t1 . 77

5.3 Elements in a Bid . 84

5.4 QoS preferences for a BuyerAgent . 85

5.5 All the generated Bids given Equation 5.5 and the QoS preferences in Table 5.4 86

5.6 Asks returned by MarketAgent as provisional transactions 89

5.7 QoS Attribute to PROMETHEE Criterion Mapping 90

5.8 Values of π(xi , x j) . 91

5.9 Calculation of outranking values . 91

6.1 Operational range for scalability goals . 109

7.1 Operational range for scalability goals . 128

7.2 System parameters and their standard values . 129

7.3 Comparative performance of adaptation in CDA vis-a-vis Posted-Offer 133

7.4 Operational range for scalability goals . 141

7.5 Properties of MAPE Patterns . 154

List of Figures

1.1 BizInt’s Workflow constructed using composite services from the hosting cloud 4

3.1 The literature review process . 28

3.2 Selection of papers according to inclusion and exclusion criteria 36

3.3 Number of QoS used . 39

3.4 Number of ways of measuring QoS . 39

3.5 Number of AbstractServices per Workflow . 40

3.6 Number of CandidateServices per AbstractService 40

3.7 Workflow Size = 40 . 44

4.1 Self-adapting application with a centralized MAPE loop 54

4.2 Decentralized MAPE loop in an application . 55

5.1 Relationship between ApplicationAgent and corresponding BuyerAgents . . . 75

5.2 Reduction of parallel tasks(reproduced from [23]). For additive QoS, the at-

tributes are summed up, while for multiplicative QoS, the attributes are multi-

plied together . 81

5.3 Self-Adapting Application with a decentralized trading agents 93

5.4 Activity diagram for principal agents . 94

6.1 Goals for maximum possible matching and assignment to agents 108

6.2 Architecture-Driven Design lifecycle . 110

6.3 The Broker Pattern . 112

6.4 Package diagram of entities in Clobmas . 113

6.5 Component diagram of entities in Clobmas . 114

6.6 Class diagram of entities in Clobmas . 115

6.7 Setup phase for an application with two AbstractServices A & B 116

6.8 Application decomposes its constraints into local constraints 117

6.9 Application computes endowment for its BuyerAgents 117

6.10 The trading phase of buying a service . 118

6.11 Two-stage CDA protocol . 119

7.1 BizInt’s Workflow constructed using composite services from the hosting cloud 125

7.2 Utility gained by adaptation by a single application 131

7.3 Utility gained by a single application in a posted offer market 132

7.4 Efficiency of adaptation in a CDA market with Zero Intelligence 134

7.5 Efficiency of adaptation in a CDA market . 135

7.6 Efficiency of adaptation in a Posted Offer market 136

7.7 A normal distribution of QoS values amongst ConcreteServices, but skewed

distribution of QoS values amongst BuyerAgents 137

7.8 A normal distribution of QoS values demanded by the BuyerAgents, but skewed

distribution of QoS values amongst ConcreteServices available 138

7.9 A bimodal distribution of QoS values amongst both BuyerAgents and Concrete-

Services . 138

7.10 Independent probability of change in QoS Demand 139

7.11 Market shocks after every 25 rounds of trading . 140

7.12 Time taken for adaptation when CandidateServices per AbstractService increase 142

7.13 Time taken for adaptation when AbstractServices in Workflow increase 142

7.14 Both AbstractServices and CandidateServices increase 142

7.15 Time taken for adaptation when AbstractServices increase 144

7.16 Time taken for adaptation when QoS increase . 144

7.17 When both, the number of AbstractServices and QoS attributes, increase 144

7.18 Time taken for adaptation when CandidateServices increase 145

7.19 Time taken for adaptation when QoS increase . 145

7.20 Both CandidateServices and QoS increase . 146

7.21 CandidateServices increase per Market . 147

7.22 Markets increase per CandidateService . 147

7.23 Both Candidate Services and Markets increase 148

7.24 Markets increase per QoS . 149

7.25 QoS increase per Market . 150

7.26 Both QoS attributes and markets increase . 150

A.1 Six criteria defined by PROMETHEE . 177

B.1 A simple AND refinement . 180

8.2 Goals for a multi-agent system in the cloud . 181

8.3 Top-level goals from the service consumer’s perspective 181

CHAPTER 1

Introduction

In my beginning is my end

East Coker, T.S. Eliot

1

2 Introduction

In the short history of computing, there have been a few ideas that have changed the focus

of software engineering. The shift from mainframe-based computing to desktop-based

computing was one such idea. The computer began to be seen as an individual device, storing

personal data and work, rather than an exclusively workplace-tool. Programming started to

focus on user-interfaces, smaller disks, less cpu power and personalized tools for individuals,

and families. The move towards mobile-based applications is, to some extent, an extension

of the personalization idea. However, the idea of cloud computing, also known as utility-

based computing, is prompting a move back towards enterprise-scale computing. Combining

ideas of virtualization and data centers, cloud computing promises a near-infinite amount of

computing power, storage and bandwidth. All of this at costs that are within the reach of small

enterprises, and even individuals. One of the major selling-points of the cloud is the pay-

per-use model of revenue generation. In this model, much like public utilities of electricity

and water (and hence the name), customers pay for the amount of computing services

they actually use. This allows customers, especially small and medium-scale enterprises,

to cut back on capital expenditure, and focus only on operational expenditure. From the

computational perspective, a big benefit of such an infrastructure is that an application

can scale up, to serve millions of customers around the world, without significant effort on

the application’s part. On the other hand, when demand goes down, the application can

release the computational power that it no longer needs. This flexibility in cost, however,

has a downside. Although the cloud providers make available large amounts of computing

power and storage, they make no guarantees about the quality-of-service(QoS) attributes of

the services being provided by them. By QoS attributes, we refer to qualities like reliability,

availability, performance, security and other non-functional requirements which need to be

provided, maintained, evolved and monitored at runtime. These qualities are fundamental to

the user’s satisfaction with the application. In fact, even if an application performs its function

correctly, the absence of the requisite QoS can lead to significant contractual losses. Consider

a news-ticker service, that is used by banks and other financial institutions. If the news-ticker

service is required by its contract to provide updated data every 10ms, then regardless of the

1.1 Problem 3

correctness of the data, the service would be liable to pay a penalty to its customers, if it is

unable to meet its performance target.

1.1 Problem

Service-based applications have the ability to change their constituent services at runtime.

This implies that they have the ability to change both, their functionality and their QoS

attributes dynamically. In this thesis, we are concerned with the problem of self-adaptation of

cloud-based applications, with regard to changes in QoS requirements. A self-adaptive service-

based application should, in theory, be able to change one of its services for another service,

that is functionally the same, but delivers better QoS. This would lead to the application

being able to exhibit higher performance, higher throughput or lower latency, as the situation

warrants. Thus, the news-ticker application previously mentioned, could switch its current

price-extraction service (in peak times, for instance), for another that has a higher throughput

rating. It could switch back to a lower rated (and lower-priced) price-extraction service, in

non-peak times. Obviously, this kind of adaptation would entail a cost. But not meeting

customer expectation could entail a higher cost, or even loss of market-share. Therefore, an

application that is able to adapt to changing QoS demand is better, than an application that

cannot adapt. However, self-adaptation pre-supposes that the application is:

1. Able to evaluate multiple services for QoS, and

2. Able to select and use a suitable service within its budget

However, the current model of working on the cloud does not enable this. Services cannot be

flexibly utilized and released. Also, selecting from a bundle of services that are functionally

identical, but differ on QoS is a difficult problem. We now introduce a running example, that

exemplifies the problem in more detail.

4 Introduction

Association Rule Mining

Clustering

Data Filtering VisualizationJob Submission Cross-Validation

Figure 1.1: BizInt’s Workflow constructed using composite services from the hosting cloud

1.1.1 The case of BizInt

BizInt, a small startup company creates a new business intelligence mining and visualization

application. It combines off-the-shelf clustering algorithms with its proprietary outlier de-

tection and visualization algorithms, to present a unique view of a company’s customer and

competitor ecosystem. It is confident that this application would be a huge success. However,

BizInt also knows that, in order to attract and retain customers, it must offer a higher level

of performance than its competitors. In order to do this, it decides to host its application in

the cloud. Also, instead of reinventing the wheel, it uses third-party services (for clustering,

etc.) that are also hosted in the same cloud. As seen in Figure 1.1, BizInt uses composite web

services (Data Filtering, Clustering, Association Rule Mining and Cross-Validation) from the

cloud, along with its own services (Job Submission, Outlier Detection and Visualization) to

create a complete application. Soon BizInt discovers that different jobs emphasize different

QoS. Some jobs want data to be processed as fast as possible, others require a high amount of

security and reliability. In order to exhibit different QoS, BizInt needs to dynamically change

its constituent services. Although services with the required QoS are available on the cloud,

selecting the right service is a problem. The current form of service-selection is provider-

driven. That is, in all commercial clouds, the cloud provider uses a posted-offer mechanism. A

posted-offer is a form of market where the supplier posts a certain price on a take-it-or-leave-

it basis. Thus, on Amazon’s elastic cloud compute (EC2), there are several services that are

functionally identical, but priced differently. This price differentiation exists due to different

1.1 Problem 5

Linux/UNIX usage Windows usage
Standard On-Demand Instances

Small (default) $0.085 per hour $0.12 per hour
Large $0.34 per hour $0.48 per hour
Extra Large $0.68 per hour $0.96 per hour

Micro On-Demand Instances
Micro $0.02 per hour $0.03 per hour
Hi-Memory On-Demand Instances
Extra Large $0.50 per hour $0.62 per hour
Double Extra Large $1.00 per hour $1.24 per hour
Quadruple Extra Large $2.00 per hour $2.48 per hour

Table 1.1: On-Demand Instance Pricing on Amazon EC2

QoS being exhibited by these services. In Table 1.1, we show a slice of Amazon’s pricing for its

On-Demand Instances.

Depending on the type of job envisioned, customers purchase a basket of computational

power from Amazon. However, currently, there is no mechanism to automatically switch from

one kind of On-Demand Instance to another. Customers have to forecast the type of demand

for their application in advance, and appropriately chose their package from Amazon. Any

application that desires to use a particular service, has to pay the posted price. There exists no

mechanism to negotiate/bargain with Amazon, on pricing or QoS of the services being offered.

This has the very obvious effect of customers either over-provisioning or under-provisioning

for their actual demand. If an application under-provisions, then it risks losing customers

due to lack of QoS. On the other hand, if it over-provisions, it loses money due to excessive

overheads. In both cases, the customer faces a loss. To make matters worse, searching for

new services, even ones that are functionally identical, but exhibit different QoS levels, is a

difficult process. The number of available services to choose from is typically large, and the

number of parameters on which to match, adds to the complexity of choosing.

In this situation, Amazon also, is unable to get a high utilization of its services. Due to a fear of

over-provisioning or selecting the wrong service many companies, like BizInt, stay away from

a cloud and choose to use a bespoke service-provider instead. If an adaptive infrastructure

were available that allowed the application to flexibly choose different services based on its

6 Introduction

requirements, more applications would be willing to join the cloud.

1.1.2 The Case of SkyCompute

SkyCompute is a new entrant to the field of Cloud Computing. It wants to compete with

Amazon, 3Tera, Google, Microsoft and other established cloud-providers. In order to attract

cost and QoS-conscious customers, SkyCompute will have to differentiate its cloud from the

others. Instead of providing specialist infrastructural services (like Amazon) or application

framework services (like Google and Microsoft), it wants to provide a mixed-bag of generic

services. It is planning to target the Software-As-A-Service (Saas) market, with generically

useful services like indexing, clustering, sorting, etc. Like most cloud providers, it plans to

provide services with different QoS levels, so that multiple types of clients may be attracted to

use it. To differentiate itself, SkyCompute plans to provide an adaptive framework, so that

companies like BizInt can change their constituent services, dynamically. However, it wants

to ensure that there is a high level of utilization of its services. So, it is looking for a mechanism

that meets two criteria:

1. Allows customers like BizInt to create adaptive applications

2. Generates a higher utilization of services than the posted-offer model currently followed

1.2 Solution

We posit that a different type of market-based solution would allow both parties to be satisfied.

We call our solution, Clobmas (Cloud-based Multi-Agent System). Also, Clobmas being

principally designed for the cloud, should be able to scale to thousands of services. The

over-arching research questions that this thesis would investigate, via Clobmas, are:

1. In a system of systems, each of which is a self-adapting application, what kind of a

mechanism will allow satisfaction of QoS constraints?

1.3 Contributions of This Thesis 7

2. How do we systematically measure the goodness of this mechanism? Is it good for

BizInt? For SkyCompute?

3. How do we systematically measure the scalability of this mechanism?

We introduce a multi-agent based approach to tackle the problem of self-adaptation. Clobmas

is a multi-agent based market, that performs service-matching based on QoS and budget

constraints. In a nutshell, Clobmas:

1. Is targetted at service-based applications that use the cloud, from the SaaS perspective,

2. Allows for self-adaptation by such service-based applications,

3. Results in more services being used, than the current posted-offer mechanism,

4. Is scalable to thousands of services.

1.3 Contributions of This Thesis

This thesis makes the following contributions:

1. Existing Cloud Resource Allocation: We review existing work on cloud resource al-

location. The objective of the review is to draw from existing approaches, and tech-

niques, new insights that can assist the problem of QoS-aware dynamic selection for

cloud-based applications. These insights inform the design of our novel self-adapting

mechanism.

2. Systematic Literature Review of Dynamic Service Selection: The fundamental char-

acteristics that we demand of our solution, is that it should be scalable and decen-

tralized. That is, the self-managing mechanism should cater for the wide variation in

QoS attributes, and associated constraints, for a large number of applications, that are

composed of services offered by one or more clouds. A systematic literature review

was conducted to establish the evidence that existing approaches, which look at the

8 Introduction

problem of dynamic service selection, have limitations when they need to scale to the

case of the cloud. Results of the literature review identified the axes, that self-adaptive

cloud-based applications need to consider, to achieve scalability.

3. Goal-Oriented Requirements and Design: The axes identified in the previous step,

also informed the quality goals of our proposed mechanism. More specifically, these

axes have informed our reference model for systematically specifying, analyzing, and

evaluating scalability requirements, which decentralized and self-adaptive architectures

for service-based applications should consider.

4. Novel Market-Based Mechanism: This thesis views the cloud as a marketplace, and we

propose a novel, market-based mechanism to enable decentralized self-adaptation,

by service-based applications. The mechanism uses multiple double auctions, and

multiple-criteria decision-making to allow applications to acheive their required QoS,

while keeping within budgetary constraints. The use of multiple-double-auctions

introduces robustness, which is an essential characteristic while dealing with large

systems.

5. Systematic scalability testing: Using non-trivial simulations, we systematically test our

mechanism for thousands of services, along all of the axes identified previously. The

results show that our mechanism is scalable and robust. This form of testing can also be

considered for other multi-agent systems, that need to verify their scalability properties.

1.4 Structure of the Thesis

This thesis is structured in the same order as the contributions listed previously.

1. In chapter 2, we start with looking at the various techniques used by cloud-providers

to ensure that tasks are completed, while minimizing their QoS violations. These

techniques are used mainly on IaaS clouds. To the best of our knowledge, there are no

papers detailing techniques used by SaaS clouds.

1.4 Structure of the Thesis 9

2. In chapter 3, we perform a systematic literature review (SLR) of current dynamic service

selection (DSS) techniques. An SLR is an important step in mapping out the research

landscape, and identifying gaps in current research. Through the SLR, we discover

that there are no generally agreed principles on which the scalability of DSS methods

is currently evaluated. We propose four axes on which these techniques should be

measured.

3. In chapter 4, we review the literature regarding self-adaptive architectures, specifically

the use of Market-Based Control (MBC) techniques in decentralized self-adaptation.

4. In chapter 5, we explicate our mechanism (called Clobmas), which is a multi-agent

system based on multiple double auctions. We combine ideas from micro-economic

theory, management science and machine learning, to create a set of protocols for the

multiple agents to interact, and achieve our goal.

5. In chapter 6, building on work in goal-oriented-requirements-engineering, we sys-

tematically arrive at the quality goals of our mechanism. We present the candidate

architectural styles and the behavioural patterns amongst the agents, that allow us to

meet these goals.

6. In chapter 7, we test Clobmas on all the axes that are identified through the requirements

engineering process.

7. In chapter 8, we reflect on the journey of the thesis, and present concluding thoughts

about directions that this research can take, in the future.

1.4.1 Publications

On page iv, we provided a list of publications that were generated, during work on this thesis.

This thesis contains, and must be considered, the definitive reference of details and ideas,

present in those publications.

10 Introduction

Now, we begin the journey, with a foray into the current techniques used by IaaS cloud-

providers, to fulfill the QoS levels promised in their Service Level Agreements (SLA).

CHAPTER 2

Resource Allocation in the Cloud

Perhaps the central problem we face in all of

computer science is how we are to get to the

situation where we build on top of the work of

others rather than redoing so much of it in a

trivially different way. Science is supposed to be

cumulative, not almost endless duplication of the

same kind of things.

Richard Hamming

11

12 Resource Allocation in the Cloud

2.1 Cloud Computing

Advances in networking, storage and processing technologies have given us software that is

mind-boggling in size and complexity of structure. Enterprises routinely deploy applications

that span continents (e.g. through Grids, WANs, Internet), are composed of computing

elements that are heterogeneous, and connected in complex topologies. In the wake of

organizational change, economic downturn and a demand for tightening the belt on IT costs,

there is a trend toward moving large applications to the cloud [10]. Organizations such as

IBM [48] and Gartner [11] advocate cloud computing as a potential cost-saver as well as

provider of higher service quality. We use the following definition of Cloud Computing, from

[33]

A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to
external customers over the Internet

Clouds, as made available by the major players like Microsoft, Amazon, Google and 3Tera, use

the following three different types of models:

1. Infrastructure-As-A-Service (IaaS): This is the most basic form of service that is pro-

vided. Infrastructure is provided in the form of virtual machines, virtual storage and

bandwidth. Users of the cloud have to configure their virtual machines, install operating

systems and create filesystems before they can start running their programs. Users also

have to write meta-level programs to automatically increase the number of machines

available to the running programs. Payment is made by the users on the basis of (vir-

tual) CPU cycles used, (virtual) storage used and bandwidth taken or amount of data

transferred. Amazon’s Elastic Compute along with Simple Storage is the representative

example of such a service.

2. Software-As-A-Service (SaaS): In this form of the cloud, the cloud provider provides

software libraries and application frameworks into which a user plugs in her application.

The number of machines, storage, bandwidth being used is transparent to the user at

2.1 Cloud Computing 13

the time of deployment. The application framework automatically detects when the

load on a particular server reaches a threshold limit and provisions more machines,

subject to the contractual limit. Payment is made on the basis of data transferred plus a

certain amount of fixed rent.

3. Platform-As-A-Service (PaaS): Here the cloud provider makes available a particular

platform on which the user develops the application. This has the advantage that the

user is freed from the maintaining the platform and all upgrades etc. are taken care of,

by the cloud provider. Again, computational resources keep increasing to keep up with

the load being placed on the application. Microsoft’s Azure and Google’s App Engine

are representative examples of such a service. Azure provides the users with the .NET

platform, while Google provides its users with Python and Java-based platform.

. The differentiating factors between Software-As-A-Service and Platform-As-A-Service seem

very small. This is attributable to the nascent stage that the cloud industry is in, with different

companies coming up with different jargon for their offerings.

Usually, applications in the cloud are of the following types:

1. Web-applications that cater to diverse users across the Internet and demand fast re-

sponse times.

2. Enterprise applications that cater to different business units across the world and

require large amounts of secure, reliable data transfer and high availability (99.999%).

3. Scientific applications that need raw CPU or enterprises that perform batch processing.

The third type of application has the natural advantage of ‘cost associativity’ offered by the

cloud [4]. That is, on the cloud there is no difference between running a program on 10,000

machines for one hour and a program on one machine for 10,000 hours. This enables an

organization to be extremely flexible in its IT expenditure. It is with the first two categories of

applications that we are concerned with. From the perspective of these applications, cloud

computing still has to prove itself on various fronts, before it can be considered a beneficial

solution. These list of concerns include:

14 Resource Allocation in the Cloud

• Availability — When mission-critical applications are hosted in the cloud, the organi-

sation becomes critically dependant on the cloud provider not having an outage. Any

downtime will not only be embarrassing, but also possibly result in a high economic

cost.

• Security — Cloud providers are able to sustain their economies of scale by statistically

multiplexing virtual machines on physical machines. Any security hole in the virtu-

alization technology that allows co-resident virtual machines to make unauthorised

reads/writes could compromise information assets of a firm.

• Performance — Organisations that depend on a certain level of performance will need

performance guarantees of their applications in the cloud. The typical mechanism for

ensuring some kind of quality is a Service Level Agreement (SLA). An SLA is an agreement

between the service provider and the consumer, that specifies the Quality of Service

(QoS) that the service will provide.

2.2 Resource Allocation

The promise of nearly infinite computing power and concomitant bandwidth/storage, is

implemented by cloud providers using technologies like virtualization, and data centers. A

data center is a huge collection of commoditized computers, that are networked together in

one physical location. This so-called ‘warehouse’ allows the owner to benefit from economies

of scale. Thus, the owner is able to buy many thousands of computers and networking

equipment at a cheap rate, and use common power and cooling equipment to run them all.

Virtualization is a technology that allows a physical machine to run several virtual machines,

each of which is akin to a real machine, from a program’s perspective. But it can be switched

on, booted up, and turned off without affecting the physical machine. This allows cloud

providers to leverage their high-performance physical servers and lease out standardized

machine images to consumers’ applications. This form of lease-based computing enables it

2.3 Current Approaches 15

to use (say) 100 physical machines and provide (say) 300 virtual machines. It also allows the

provider to amortize the physical cost of computing, networking, power supply and cooling,

amongst many customers. From a consumer’s point of view, it is able to lease computers that

exist only virtually and therefore pay a smaller cost on a per-machine basis. It can lease more

computing power when its applications need it, and release them when they are no longer

needed. Thus, a cloud provider combines the economies of scale created by the data center,

and the flexibility created by virtualization, to provide a flexible infrastructure to its clients.

It is now fairly intuitive that a cloud provider would like to have as many of its resources

leased out to consumers, as possible. The more resources that are leased out, at any given

time, the more the cloud provider increases its revenue. On the other hand, cloud consumers

would like as much flexibility as possible in leasing out resources, since they would not like to

pay for more than what is absolutely essential. Also, if the cloud provider agrees to a certain

SLA, which specifies the QoS, and does not deliver resources according to the SLA, it would

lose customers. Thus, the cloud provider cannot overcommit its resources, since that would

leave customers unsatisfied. It cannot undercommit its resources, since that would also

result in a loss of revenue. Thus, the allocation of resources to customers is a critical part of

cloud management. We now look at various resource allocation mechanisms that have been

proposed in the context of the cloud. Although these mechanisms deal with IaaS clouds, we

review them because they provide us with a perspective on how resources are demanded and

allocated, in a cloud. A SaaS cloud will have to deal with more QoS constraints, than an IaaS

cloud.

2.3 Current Approaches

A resource allocation policy is a mechanism by which a cloud provider allocates resources

to a service request. By allocating resources, we mean that the cloud provider assures the

service consumer that the required resources will be available at the required time, for the

required duration. In addition to providing resources, the resource allocation policy must

16 Resource Allocation in the Cloud

ensure that the QoS being promised in the SLA will also be fulfilled. For example, if an SLA

specifies that encryption will be done using 1024-bit encryption, it is not enough to provide

a service that will perform 512-bit encryption. This would be a violation of the SLA and the

service provider could possibly be penalized. There are various approaches proposed towards

efficiently allocating resources in the cloud. First, we explicate the approach used by Amazon

and other open-source cloud toolkits, and then we look at other approaches proposed by

researchers.

2.3.1 Policy-Based Approach

Amazon’s Elastic Compute Cloud (EC2) is a public cloud that exposes all the computing power,

storage, bandwidth, etc. as services to its consumers. EC[49] is the canonical example of

Infrastructure-As-A-Service cloud. Nimbus[76], Eucalyptus[74] and OpenNebula[87] are open-

source cloud management toolkits. The resource allocation policies followed by these toolkits

are summarized in Table 2.1:

Cloud Toolkit Allocation Policies

Amazon (EC) Best Effort
Nimbus Immediate
Eucalyptus Immediate
OpenNebula Best Effort

Table 2.1: Resource allocation policies. Excerpted from [69]

An immediate allocation policy only accepts service requests, if it has the resources to imme-

diately deal with the request. This has the obvious drawback that even if resources become

available in the very near future, the service request will be denied, thus leading to a loss of

revenue. A best-effort allocation policy is much like an immediate allocation policy, but if

the request cannot be serviced immediately, it is put into a FIFO queue. This means that the

service provider does not guarantee that a service request will be honoured at a particular

time, or even in a particular duration. Thus, a service that is granted access to computing re-

2.3 Current Approaches 17

sources can be pre-empted at any time, and resumed whenever there are sufficient resources

available.

Haizea [75] is an open-source resource lease manager that integrates with OpenNebula, and

implements more complex allocation policies. In addition to immediate (IM) and best-effort

(BE), it supports two more allocation policies:

1. Deadline Sensitive (DS): A kind of a BE lease, but with a certain time limit. Thus,

if accepted, the resource lease manager guarantees that the task will be completed

before a deadline. The services requested are still preemptable (like BE), but it assures

consumers that their request will be completed within a time-limit.

2. Advance Reservation (AR): This is like an IM lease (non-preemptable), but deals with

resource allocation at some future time.

Swapping and Backfilling: Nathani et al. propose an improvement to Haizea[69]. The DS

policy is used for deadline sensitive tasks. However, Haizea’s current implementation of DS

tries to find a single time slot to accommodate the service request. In doing so, it resorts

to re-scheduling other leases, to create space for the new one. It displays this behaviour

because it does not consider the amount of resources demanded by the request. Rather, it

only sorts the DS leases based on the amount of slack between them and their preemptability.

To improve upon this, Nathani et al. propose that the amount of resources also be taken

into consideration. This allows Haizea to swap two leases, as long as their deadlines are

met, thus potentially freeing up resources for a new, incoming lease. They also propose

splitting up resource chunks, to enable swapping more easily. Thus, a lease that requires

10 units of resource X may not be satisfiable, but if split into two requests of 5 units each,

that lease may be accommodated. This process of splitting up a resource-lease into smaller

chunks and then allocating them, out of order (Haizea processes lease requests in order of

submission time), is called Backfilling. Implementing swapping and backfilling improves

Haizea’s acceptance rate of DS leases and also improves the system’s utilization rate. The

18 Resource Allocation in the Cloud

authors, however, do not measure how long it takes for the algorithm to run, and how this

runtime grows as the number of leases increase. Run-time complexity is a key characteristic

of cloud-based scheduling systems, and needs to be considered while looking at improved

resource-allocation algorithms.

2.3.2 Deadline-Driven

Vecchiola et al. describe Aneka, a cloud application platform that is capable of provisioning

resources from multiple sources, clusters, private and public clouds[96]. Aneka implements

a PaaS model, with an API that allows developers to create their application in a variety of

programming models (Map-Reduce, Bag-of-Tasks, Threaded, etc.). The resource provisioning

algorithm used by Aneka is a deadline-driven, best-effort algorithm. For every task that

the scheduler decides to run, the resource provisioner calculates the predicted number

of resources required by the task. It compares the predicted resource usage with current

availability to estimate whether the task’s deadline can be met. If so, the task is run, or the

provisioning service requests for more resources from clusters, private cloud and (finally)

from public clouds. When the task is complete, these resources are released. This approach

makes computing resources truly elastic, by providing middleware that abstracts away from

the origin of the resources.

2.3.3 Machine-Learning Algorithms

The machine-learning approach views resource provisioning as a demand-prediction func-

tion, and applies various machine learning algorithms to estimate how the Workflow changes,

over time. Workflow refers the set of services that an application is composed of. Sadeka et al.

use multiple linear regression and feedforward neural networks to predict resource demand

for a cloud[51]. In the context of PaaS, they enable a hosted application to make autonomic

scaling decisions using intelligent resource prediction techniques. All of these techniques,

however, require historical data to learn effectively. To simulate historical data, Sadeka et al.

2.3 Current Approaches 19

run a standard client-server benchmark application, TPC-W [28], on Amazon’s EC2 cloud.

This data is then divided into training sets and validation sets, using a variety of statistical

techniques.

Linear regression attempts to fit a curve to the given data points, while minimizing the error

between the curve and the observed data. It effectively yields a function that, when suc-

cessful, approximates the real process that gave rise to the observed data. Neural Networks

are another machine-learning technique, that approximate a real-world process. A neural

network consists of an input layer, an output layer and one or more hidden layers. Each layer

consists of neurons that have a certain value, and are connected to the next layer’s neurons

by way of synapses. These synapses initially start with random weights, but get adjusted as

training goes on. The network is trained by presenting a known input to the input layer, and

observing the output at the output layer. The difference between the output produced by the

network, and the actual output is the error. This error is fed backwards into the network, to

allow the synapses to change their weights. This is called training the network. The Sliding

Window technique [30] is a sampling technique to allow the learning algorithm to view the

same dataset from different sample perspectives.

After training, both Linear Regression and Neural Networks were evaluated using unseen

data and compared on several statistical measures. Neural Networks were found to be able

to generalize well, with the prediction of resource usage closely matching the actual data.

However, the only parameter used by the authors was the resource load placed on the cloud

provider. In reality, each resource has several attributes that are each decision parameters

in their own right. In such a scenario, it is difficult to train such machine learning methods.

Increasing the number of hidden layers in a neural network does not necessarily increase

its predictive power. Also, the need for historical data presents a problem in the case of

dynamically changing importance of QoS attributes, for any particular service.

20 Resource Allocation in the Cloud

2.3.4 Cost-Optimization

Byun et al. propose a cost-optimization method for task scheduling[17]. They attempt to find

the minimum number of resources, given a set of tasks with deadlines. Like swapping and

backfilling proposed in [69], Byun et al. attempt to move tasks that are not in the critical path

of the application Workflow, such that the total cost of the resources used for the Workflow is

minimized. Their algorithm, called Partitioned Balanced Time Scheduling (PBTS), assumes

that tasks are non-preemptable and executed on a single resource or set of resources. Based

on the minimum time charge unit of the provisioning system (say 1 hour on Amazon’s EC2),

the algorithm divides the application’s estimated work-time into time-partitions. It then

iterates over all the tasks that are yet to be executed, and estimates the next set of tasks that

can be fully scheduled in the next time-partition and their required resources. Having done

this, it schedules these tasks for execution, and repeats the cycle for the remaining tasks, until

all tasks are completed. While this results in minimum cost of resources, it does not take into

account other qualities of resources that might be required by a certain task. For instance,

a task might request 1 hour of processing on a node that has a certain kind of graphics chip

or level-1 cache. Since PBTS assumes that all resource units are homogeneous, these type of

requests cannot be accommodated.

2.3.5 Market-Based Methods

There is an increasing amount of work that champions the use of market-based methods for

resource allocation in either a cloud or a grid setting. This has been due to the realization

that all tasks are not of equal priority, and assigning economic value to tasks is a natural (and

decentralized) way to factor their relative priorities into the resource allocation procedure. Fu

et al.[35], Auyoung et al.[5], Lai et al.[61] and Irwin et al.[50] have all considered utility-based

markets for sharing computing resources. Lai et al.[61] describes an implementation of an

auction-based resource allocation, with compute resources distributed across a geographical

area. However this approach ignores the notion of QoS per resource, as well. It assumes that

2.3 Current Approaches 21

every different point on the QoS scale can be considered a different resource, and makes it

the user’s responsibility to find and bid for time, on these resources. Buyya et al. advocate

a market-oriented mechanism to allocate resources. “For Cloud computing to mature, it

is required that the services follow standard interfaces. This would enable services to be

commoditized and thus, would pave the way for the creation of a market infrastructure for

trading in services." [16].

There is little consensus however, amongst the market-based advocates, on how the market

should be structured, and what trading and contracts should be based upon? Wu et al.[104]

propose using Service Level Agreements (SLA) as the legal contract which specifies the qualities

that the service provider is expected to provide. They provide heuristics to increase the

amount of profit, made by the service provider by minimizing costs incurred in setting up

resources. This is done via minimizing the penalty associated with the response time violation,

in an SLA-based environment. Sun et al. propose using a continuous double auction (CDA)

with an algorithm to determine what the Nash Equilibrium allocation would be[90]. Nash

Equilibrium[9] is a solution concept in game theory, where given a state of the game, each

player has a strategy that maximizes his utility for that state. The player cannot unilaterally

change his strategy to get a better outcome. Sun et al. model the cloud as a game, with

the resources and tasks inside it as players. They propose an algorithm called NECDA that

continually runs a double auction, until the players’ bids and asks are in a state of Nash

Equilibrium. This however assumes that each task (while bidding for a resource) has full

knowledge of the mean reserve prices of all the other resources, and numbers of remaining

resources. Also, each resource while creating its ask, knows the maximum price it can achieve

for that resource by asking the auctioneer. These are clearly very strong assumptions and, will

not scale when the number of resources and tasks rise, in the cloud.

2.3.6 Ranking-Based Method

Machine learning methods, utility functions, etc. try to search the computational space of

resource to consumer allocation, so as to optimize some parameter or another. However, in

22 Resource Allocation in the Cloud

many cases, there are multiple criteria that a cloud provider would like to optimize. In such a

situation, searching for an optimal solution might not be computationally feasible. In such

cases, fast, but sub-optimal, solutions are better than optimal, but slow solutions. In this

scenario, Yazir et al.[108] use Distributed Multi Criteria Decision Analysis in a distributed

fashion to achieve resource allocation. The essential idea is to create an outranking method,

so that the decision-maker can choose amongst alternatives. Yazir et al. use an agent-based

method to assign each physical machine in the cloud with a Node Agent, which makes

the decision to select, retain or migrate virtual machines, based on some ranking criteria.

This ranking mechanism is based on PROMETHEE[12], which is a multi-criteria decision

analysis method. PROMETHEE aims to model each criteria in a decision problem according

to a function, that the decision-maker feels best models that criteria. It then systematically

allocates a score to each option, according to the value of each of the criterion presented by

the option. Based on these scores, the decision-maker is able to rank multiple options. Yazir

et al. use this mechanism to decide which physical machine, a particular virtual machine

should migrate to. This mechanism of transferring virtual machines amongst the physical

machines in the datacenter, allows the decision-maker to continuously ensure that the SLAs

it has committed to, are not being broken.

2.4 Conclusion

In this section, we looked at various approaches being taken towards resource allocation in

the cloud. Almost all of the approaches have looked at the cloud in terms of Infrastructure-

As-A-Service. By far, the most popular idea has been to view resources in the cloud, in terms

of simple descriptors like cost, CPU cycles, memory availability, etc. Even when viewed

through such a lens, the problem of dynamically allocating resources to applications, is a

difficult one. Additional attributes like security, reliability, throughput, etc. have not been

a part of SLAs. There have been no systematic studies on the cloud in its other avatars, viz.,

Software-As-A-Service and Platform-As-A-Service. Some approaches like [16, 104] attempt

2.4 Conclusion 23

to deal with higher-level attributes of resources in the cloud, but have not considered the

mechanism for systematically evaluating the QoS attributes, while allocating resources.

Since our research question involves service-based applications residing in the cloud, we need

to look at mechanisms used for enabling Software-As-A-Service. In the absence of literature

dealing with service-selection in the cloud, we look at the related domain of dynamic service

composition, instead. Specifically, we look at techniques in dynamic service composition,

from the point of scalability. The cloud is composed of thousands of services, and so any

technique for service selection must evaluate whether it is able to scale to the level of the

cloud. To this end, in the next chapter, we conduct a systematic literature review of scalability

in dynamic service composition literature.

24 Resource Allocation in the Cloud

CHAPTER 3

Scalability in Dynamic Service Selection

3.1 Introduction

There are a plethora of techniques to perform dynamic web-service selection, each with its

own advantages and disadvantages. Some are centralized techniques, others are decentral-

ized, some vary the size of the Workflow, some vary the number of QoS attributes, etc. In

such a scenario, it is difficult to analyse whether a particular technique is applicable to a

particular application or not? Is there a yardstick against which all techniques of dynamic

web-service composition can be measured? How do we know whether a particular approach

will scale to the levels required by a software architect? In this chapter, we compare the various

techniques proposed in literature, derive the four axes that affect these techniques’ scalability

and attempt to compare each of the salient techniques.

25

26 Scalability in Dynamic Service Selection

3.2 Dynamic Web-Service Selection

Service-Oriented Architecture has brought about a paradigm shift in the way we think about

creating an application. Instead of linking programs and libraries at compile-time, we are

now able to merely specify the functionality that the component parts should have, and

the application can be dynamically composed using web-services. A web-service[7] is a

self-describing computational entity that can be used to perform various kinds of functions.

These can be composed together, in a specific order, to deliver some functionality. A web-

service is so-called because it uses web-based standards like XML, SOAP, etc to achieve its

communication and data exchange, thus allowing the application location and platform

independence. This allows an application to search a service repository for service that it

wants, and then bind to it. This dynamic binding allows for the notion of an application

changing the QoS properties that it exhibits, at runtime. Depending on the task at hand, or the

budgetary resources or any other QoS constraints that the architect imposes, the application

can potentially pick an appropriate service and achieve its functional and non-functional

targets. Fundamental to the notion of a service-oriented architecture is the concept of a

service consumer, a service provider and a service registry.

Service Consumer: A service consumer is the entity requesting the service,

Service Provider: A service provider is the entity responsible for describing and providing an

implementation of the service.

Service Registry: The service registry provides the mechanism for publishing, finding, select-

ing and binding to a service.

These roles are independent of each other, and thus an entity can take on multiple roles

simultaneously. Working in concert, they allow an application to be composed of services

that have no prior knowledge of each other.

The service registry publishes information about the service’s interface, its conceptual de-

scription and the QoS attributes, like reliability, availability, security attributes, performance

3.2 Dynamic Web-Service Selection 27

metering, etc. A service consumer uses this information to select a particular service from

the many that are available in the registry. In this quest, it faces two problems: matching the

interface and conceptual description to its need and ensuring that the QoS advertised, are

acceptable to its own application’s needs. Dynamic service selection while optimizing the QoS

is known to be an NP-hard problem[110]. This immediately implies that any solution that tries

to find the optimal solution, would find itself confronted with an exponentially increasing

search space. Hence, most solutions focus on obtaining good solutions, that meet the QoS

constraints that an application specifies. Given this scenario, it would be reasonable to expect

that solutions proposed in literature identify how scalable they are, at least with regard to each

other. Different variables, Workflow size, number of QoS attributes, etc., affect the scalability

of a technique in different ways. However, we find that there is no such systematic comparison

amongst QoS-based approaches to dynamic service selection.

In order for our survey of literature to be useful, we perform a systematic literature review,

as outlined by Kitchenham[55]. Kitchenham’s guidelines lay out the process of performing a

literature review, with an end to ensuring that, it can be analyzed by a third party for com-

pleteness and fitness for purpose. To our mind, the question of how an application living on

the cloud, should adapt itself to varying QoS demands breaks down into two questions: how

does an application change its exhibited QoS levels dynamically, and how does a cloud effi-

ciently allocate services to applications? To that end, in this chapter we perform a systematic

literature review of dynamic web-service composition, and resource allocation in the cloud.

Based on Kitchenham’s guidelines, we chose the following process for doing the literature

review and the following sections explicate each part of the process.

28 Scalability in Dynamic Service Selection

Identify Research Questions
Cloud Provider

Architects
Application
Architects

Inclusion
Criteria

Exclusion
Criteria

Available Digital
Libraries

Papers, Articles, Reports

Relevant?Discard
No

Y
e
s

Principal
Findings

Generate Search
Strategy

Analyze, classify
Results In

Influences

Documents

Actions

Entit ies

Decision

Consistency Check
by Advisor

Figure 3.1: The literature review process

3.3 The Literature Review Process 29

3.3 The Literature Review Process

Identifying the Research Questions: The most critical research question, from our perspec-

tive, is the following:

• What is the most scalable mechanism for QoS-based dynamic service composition?

This question can be broken down into the following sub-questions:

1. What are the variables that affect dynamic service composition?

2. In testing for scalability, what ranges are typically chosen for these variables?

3.3.1 Systematic Review

We have already discussed the various mechanisms used by cloud-providers to dynamically

allocate services to applications. Although, it would seem logical that techniques used by

cloud-providers would have some overlap with answers to our current question, that is not

the case. Indeed, going by current literature, the two areas seem to have no overlap at all, and

authors of papers in both domains have no intersection. This is what makes our research

valuable.

3.3.2 Research Questions

Service Composition as a mechanism could be considered to have started from the year

2000, since SOAP (the underlying protocol for exchanging structured information about

Web-Services) was submitted to the W3C (World Wide Web Consortium) in that year. Service-

Oriented Architecture as a style, arises from the ability of a service to be dynamically found,

and bound into an application. This essentially allows an application, at runtime, to find a

service that fulfills its needs, and bind to it. This technical possibility has opened up immense

business possibilities, in that, an enterprise can now tailor-make an application to suit its

30 Scalability in Dynamic Service Selection

circumstances.

One of the opportunities is that an enterprise can now focus on improving its core strength,

while still serving its customers fully. For example, a company that specializes in providing

custom data mining algorithms can still bind, at runtime, to external storage, bandwidth,

data-filtering, indexing and graphing services to provide a full data-mining solution, whilst

concentrating on its own implementation of faster and more accurate clustering or rule-

mining algorithms. This phenomenon is what we refer to as dynamic service composition.

The key word here is, dynamic. This means, that at design-time the application merely knows

the functional characteristics of the services that it is going to bind to. The actual runtime

attributes of the application like performance, reliability, availability are all determined by the

specific service that it binds to.

There are several aspects to consider, while composing a service. First, the primary concern

of the application is the semantic match between the application’s requirement and the

service’s provision. Second, the interface expected and published must be the same as the

one that the service actually implements. Third, the qualities promised by the service, such

as performance, availability, throughput, reliability (hereinafter referred to, in this thesis, as

QoS attributes) must satisfy the application’s desire to exhibit a certain quality level. We are

concerned with the third problem, in this thesis.

3.4 Research Method

Kitchenham[56] created guidelines for the use of a systematic method for literature review

in Software Engineering. A systematic review is a powerful mechanism for establishing the

state-of-the-art in any research area. It helps to: (1) collate main ideas in existing research

(2) identify gaps in current research, and (3) map new research activities into an existing

framework. We feel that our research question is best answered by adopting this method.

According to the guidelines in [56], a systematic review consists of the following three phases:

3.4 Research Method 31

(a) planning the review (b) conducting the review (c) reporting the review.

3.4.1 Review Protocol

The review protocol is a specified plan-of-action that is created before the review is conducted.

This enables the researcher to look for flaws in the procedure and ascertain if the procedure is

capable of answering the research question. The main components of a review protocol are:

(a) specifying the data sources (b) laying down a search strategy to obtain literature (c) specify

a selection strategy to filter relevant results (d) use a specific data extraction methodology,

and (e) perform data synthesis. The importance of the review protocol lies in laying bare

the precise steps followed by the researcher, which can then be studied, criticized and/or

replicated. Now, we explicate the main components of our review protocol.

3.4.1.1 Data Sources

In determining the relevant papers for our study, we followed the following process:

1. Make a list of data sources

2. Perform a keyword search on each of these sources

3. Remove duplicates, presentations, work-in-progress

4. Divide remaining papers into: “relevant" and “not relevant"

(a) Since titles and abstracts can sometimes be misleading, read title, abstract, intro-

duction and conclusion to filter

5. For all relevant papers, read methodology, experiment design and analysis to filter

papers that address scalability

6. Analyse all papers that address scalability

In the realm of software engineering, both [56] and [39] agree that electronic sources are

sufficient in the domain of software engineering. Hence, we used the following search engines:

32 Scalability in Dynamic Service Selection

1. IEEE Explore

2. ACM Digital Library

3. Science Direct

4. Engineering Village (which searches INSPEC as well as EI Compendex)

5. ISI Web of Knowledge

6. Google Scholar

7. CiteSeer

3.4.1.2 Search Strategy

To start with the largest possible pool of papers, we searched all of the data sources for the

following keywords:

1. Quality of Service – variants: QoS, QoS-aware, QoS-enabled,

2. Web Service Composition – variants: WSC, Service Composition, Service-based, Service-

Oriented, Service-based Architecture, Service-oriented Architecture, Service-selection

3. Dynamic – variants: Adaptive, Adaptation, Self-adaptive, Self-optimizing, Self-healing,

Self-managing

A sample search string used is as follows: ((((�dynamic web service composition")

OR �automatic service selection") OR �service composition") AND QoS)

Inclusion Criteria To form the initial pool, we accepted conference papers, journal articles,

workshop papers, and technical reports.

3.4 Research Method 33

Exclusion Criteria We had to carefully craft the exclusion criteria to ensure that ideas that

were relevant were not filtered out, and yet papers that did not address our central question,

did not end up in the final pool. To this end, our exclusion criteria was as follows:

• E1: Papers that did not deal with dynamic service selection

• E2: Papers that were domain-specific

• E3: Papers that had extensions in journals

• E4: Papers that were published before the year 2000

• E5: Papers that were not published in English

• E6: Duplicate references

• E7: Papers that could not be obtained / behind paywalls / inaccessible

At this point, we also had to unify vocabulary used inside the papers. Sometimes authors use

different terms to refer to the same thing. For example, some authors use tasks, while others

use service class and yet others use abstract service to refer to the service-functionality inside

an application. The unifying terms that we used are as follows:

AbstractService: The functional specification of a certain task. This is also sometimes re-

ferred to, as a task or service class or abstract service in a Workflow.

CandidateService: An implementation of an AbstractService. Each CandidateService has a

QoS that it advertises through its SLA. This is also referred to as service candidate or

concrete service. This forms the pool of services that an architect selects from, for the

application.

Workflow: An architect composes several AbstractServices into a Workflow, to create an

application.

34 Scalability in Dynamic Service Selection

3.4.1.3 Study Selection

Relevance

• E8: Papers dealing with technical improvements to the underlying infrastructure like

SOAP, WSDL, BPEL, DAML-S, OWL-S (No particular QoS mentioned in the paper)

• E9: No mechanism for QoS evaluation mentioned

• E10: No mention of Workflow or AbstractServices in Workflow

• E11: No mention of CandidateServices for an AbstractService

Consistency Check The classification of papers into “Relevant" and “Not Relevant" is a vital

part of the review. By discarding papers that are relevant, one might miss out on novel ideas.

On the other hand, considering papers that are concerned with other topics like BPEL (for

instance) is potentially misleading. To ensure that papers were being classified correctly,

random samples were extracted from the initial pool and given to other researchers for blind

classification. If there was a disagreement in classification of a paper, as being relevant or not

relevant, that paper was discussed in person, to arrive at a consensual decision.

3.4.1.4 Justification for Exclusion Criteria

Most search-engines use keywords or categorization terms to return as many results as

possible. The creation of exclusion criteria is essential, so that only papers that are concerned

with the same topic are compared. Also, without an exclusion criteria, the number of papers

that merely match keywords is likely to be so huge as to defy sensible comparison. We believe

that the first set of exclusion criteria (E1 – E7) are self-evident. They help in filtering out

results that are returned due to mis-categorization, or are only tangentially related to the topic

of dynamic web-service composition. The second set of exclusion criteria are more subtle.

Papers that do not get filtered out through E1–E7, are mostly related to our topic. However,

3.4 Research Method 35

there are still papers amongst them that cannot be used in comparing techniques against

each other.

1. E8: Papers that discuss improvements to SOAP, WSDL, etc. are mostly related to the

problem of efficiency in service-description, and bandwidth usage in transferring ser-

vice ontologies. While advances in these technologies would definitely increase the

speed of transferring service-descriptions, they would not address the actual problem

of matching services based on their QoS. Improvements in description languages them-

selves, like DAML-S and OWL-S, could contribute to matching services. Amongst these,

we only eliminated those that did not mention QoS matching at all.

2. E9: For determining which CandidateService is a match, and then determining the best

one out of the matched set requires some mechanism of QoS evaluation. Merely using

cost as the determiner is not enough, to be applicable to the problem that we’re solving.

Therefore, papers that did not propose a mechanism to evaluate a service on the basis

of its advertised QoS, were eliminated.

3. E10: Service-based applications are composed together in a Workflow. It is the structure

of this Workflow, that gives rise to the end-to-end QoS exhibited by the application.

The same set of services, composed differently, would result in a different end-to-end

QoS. We are concerned with the QoS exhibited by the entire application, and not the

individual service. This implies that a mechanism that does not take into account,

the structure of the Workflow, will not solve our problem. Hence, papers that did not

mention any notion of a Workflow or structure of tasks in a Workflow, were removed

from consideration.

4. E11: Our problem involves choosing the right service from amongst many Candidate-

Services. The problem lies in the fact that there are many CandidateServices, and that

making the wrong choice would result in possibly either over-shooting the application’s

budget or getting the wrong QoS. Papers that did not address the issue of multiple

CandidateServices for one AbstractService, were therefore removed from the study.

36 Scalability in Dynamic Service Selection

Stage 1: Identification

of potential papers

Stage 2: Application of

inclusion/exclusion

criteria

Stage 3: Characterization

Stage 4: In-depth review

Search Engine Results

 N = 13,532

Discard papers not in top 50

 N = 13,182

Abstract, title, introduction,

conclusion screening

 N = 350

Papers excluded

 N = 283

Systematic map using

full-text screening

 N = 67

In-depth review

 N = 9

Additional exclusion

criteria added

 N = 58

Exclusion criteria

E1: 161

E2: 45

E3: 16

E4: 0

E5: 5

E6: 49

E7: 7

Exclusion criteria

E8: 20

E9: 11

E10: 9

E11: 4

E12: 14

Figure 3.2: Selection of papers according to inclusion and exclusion criteria

3.4.1.5 Data Extraction

The reference details of each of the papers selected for systematic full-text screening, after the

first stage of exclusion criteria was applied, was stored using Mendeley (www.mendeley.com).

Kitchenham and Charters[55] suggest using reciprocal translation to arrive at a summary

about similar studies, “by translating each case into each of the other cases". This allows us

to compare method descriptions across papers and arrive at common axes. For instance,

“AbstractService", “service class" and “service task", all refer to a task in an application’s

Workflow. Similarly, “Quality Attribute", “Quality of Service attribute" both refer to the same

concept. We can apply reciprocal translation to unify all of these terms. After applying

reciprocal translation, we determined that the common axes were:

1. Number and type of QoS attributes considered,

2. Technique used for QoS evaluation,

3.5 Overview of Included Papers 37

3. Size of the Workflow,

4. Number of CandidateServices per AbstractService in Workflow,

These were recorded in a spreadsheet, along with their year of publication and abstract.

3.4.1.6 Data Synthesis

After identifying the pool of papers for full-text screening, we applied an additional set of

exclusion criteria (E8 – E11), to determine whether the paper was a candidate to be considered

for evaluating scalability. There were many papers that referred to a specific case study, and

did not make an attempt to evaluate their solution with different configurations of Workflow

size, number of QoS attributes, etc. While this does not necessarily mean that their method

is unscalable, lack of any mention on the authors’ part led us to believe that this had not

been a major consideration in that paper. We must emphasize that, we are not engaged in

evaluating each solution and coming to a conclusion about its particular scalability. Rather,

we are interested in surveying the research landscape for techniques that have been used to

claim scalability of approach.

3.5 Overview of Included Papers

We now explicate on the surveyed papers and the process and rationale of applying the exclu-

sion criteria. The initial keyword search from the search engines yielded 13,532 papers. This

number would clearly be infeasible to read and digest. We arbitrarily selected the top 50 pa-

pers from each of the search engines’ results and created the initial pool. This obviously runs

the risk of missing out papers that are relevant but are positioned lower in the search results.

Then we studied whether papers appearing in the 40-50 range of results were being classified

as “Relevant" or “Not Relevant" . We observed that in only one case (with ScienceDirect) did

we actually classify a paper ranked at 41 as “Relevant". On this data source, we checked the

next 20 paper results, to ensure that no more relevant papers were missed. We also randomly

38 Scalability in Dynamic Service Selection

sampled 3 papers each, from each of the data source’s list of results, beyond the 50-paper

mark to check if we had missed a relevant paper. While the risk of missing a paper can never

totally be eliminated, we believe that our sample is fairly representative of the main ideas in

the field.

After collecting all the papers yielded from the data sources, we ran a duplication check and a

extension check. A lot of papers were reported in multiple sources and hence were removed.

There were also journal articles that were extended versions of papers that had appeared in

conferences (exclusion criteria E3). In these cases, we considered only the longer, journal

article since it had more details about the method used. After applying exclusion criteria E1,

E3, E4, E5, E6 and E7, we were left with 122 papers. We then read through introduction and

conclusion to apply exclusion criteria E2. This narrowed the pool down to 67 papers.

Some papers amongst the 67 selected for full-text screening did not mention QoS in the

service selection process. The distribution of papers that mentioned QoS in their service

selection process is shown in Figure 3.3. Eliminating the ones that did not mention any QoS

at all (exclusion criteria E8), left 47 papers. We then filtered those papers that mentioned

QoS attributes in the paper, but did not provide a method for evaluating a service based on

the QoS values described by a service (exclusion criteria E9). The results are shown in Figure

3.4. Application of this criteria left 36 papers. Application of exclusion criteria E10, resulted

in eliminating all the papers that did not use the idea of composition of an application as

a Workflow, with AbstractServices. This left 27 papers in the pool (Figure 3.5). Applying the

final criteria, E11, resulted in the elimination of papers that did not mention the notion of

choosing CandidateServices from a pool, for an AbstractService. This left 23 papers in the

pool, as shown in Figure 3.6.

3.5 Overview of Included Papers 39

None 1 2 3 4 5 6 7 8 9 10 11+
0

5

10

15

20

25

20

8

10

8
7

6
5

0 0
1 1 1

No. of QoS attributes considered

N
o

. o
f P

a
p

e
rs

Figure 3.3: Number of QoS used

N
ot

 s
pe

ci
fie

d
S

im
pl

e
A

dd
iti

ve
 W

ei
gh

tin
g

C
on

st
ra

in
t S

at
is

fa
ct

io
n

S
to

ch
as

tic
 W

or
kf

lo
w

 R
ed

uc
tio

n

P
et

ri-
N

et
s

S
oc

ia
l N

et
w

or
k

A
na

ly
si

s
M

ix
tu

re
 o

f S
W

R
 &

 S
A

W
M

ar
ko

v
M

od
el

s
0

10

20

30

11

28

3 1 1 1 1 1

Techniques of QoS evaluation

N
o

. o
f P

a
p

e
rs

Figure 3.4: Number of ways of measuring QoS

40 Scalability in Dynamic Service Selection

N
ot

 s
pe

ci
fie

d
U

pt
o

5
U

pt
o

10
U

pt
o

15
U

pt
o

20
U

pt
o

25
U

pt
o

30
U

pt
o

35
U

pt
o

40
U

pt
o

45
U

pt
o

50
U

pt
o

55
U

pt
o

60
U

pt
o

65
U

pt
o

70
U

pt
o

75
U

pt
o

80
U

pt
o

85
U

pt
o

90
U

pt
o

95
U

pt
o

10
0

0

1

2

3

4

5

6

7

8

9

10
9

2

9

2 2

0 0 0

1

0

4

0 0 0 0 0

2

0 0 0

5

No. of tasks in workflow

Tasks

N
o

. o
f P

a
p

e
rs

Figure 3.5: Number of AbstractServices per Workflow

N
on

e
sp

ec
ifi

ed
U

pt
o

5
U

pt
o

10
U

pt
o

20
U

pt
o

30
U

pt
o

40
U

pt
o

50
U

pt
o

60
U

pt
o

70
U

pt
o

80
U

pt
o

90
U

pt
o

10
0

U
pt

o
20

0
U

pt
o

50
0

U
pt

o
20

00

0

1

2

3

4

5
4 4

3 3

0

2

4

0 0 0 0

3

2

1 1

Candidate Services Per Abstract Service

No. of Candidate Services

N
o

. o
f P

a
p

e
rs

Figure 3.6: Number of CandidateServices per AbstractService

3.6 Results of Systematic Review 41

3.6 Results of Systematic Review

I examined aspects of scalability, but did not find a useful, rigorous definition
of it. Without such a definition, I assert that calling a system “scalable" is about
as useful as calling it “modern". I encourage the technical community to either
rigorously define scalability or stop using it to describe systems – Mark D. Hill [44]

Hill’s quote, though more than 2 decades old is still as significant as ever. In none of the

papers that we surveyed, did we find a single rigorous definition of what it would mean for a

dynamic service composition technique to be scalable. In the absence of such a definition, it

is difficult to judge whether a technique is really scalable, or worse if authors have considered

scalability at all in their analysis. This would render a review on scalability, quite open to

criticisms of capriciousness. To alleviate this, we use a definition of scalability from Duboc et

al: a quality of software systems characterized by the causal impact that scaling aspects of the

system environment and design have on certain measured system qualities as these aspects are

varied over expected operational ranges[31].

According to the definition in [31], when certain (system or environment) variables change,

they have an impact on the system’s qualities. In our case, the system quality that we want

to measure is performance, measured as the amount of time taken to select services that

meet all the cost and QoS constraints. The performance of a technique could vary, as the

variables change over some range. In the ideal case, all the techniques being compared would

have a good implementation, be measured on a comparable platform, with the same dataset.

However, this is almost never achievable in reality. The notion of complexity class allows

us to do away with implementation-dependent issues, however not all papers report the

complexity of their techniques.

In such a situation, the best we can do is compare the reported change in performance, as

the relevant variables change. Wherever possible, we also provide information about the

complexity of the technique used. To compare papers against the definition in [31], we

added another exclusion criteria (E12), which considered whether the authors had carried

out experiments testing their technique against various values of Workflow size, size of Candi-

dateService set, etc. Papers that had not considered varying any of the variables were deemed

42 Scalability in Dynamic Service Selection

not to have tested for scalability. Application of E12 reduced the set of papers for in-depth

review to 9. Note: All values are inferred from graphs published in their respective papers.

A comparison of their QoS and core ideas is shown in Table 3.1

Author QoS evaluation QoS Considered Core Idea Centralized Complexity Reported

[8] SAW Cost, Execution time,
Reputation,
Reliability, Availability

Discusses both global planning as well as
local optimization algorithm. Most cited
amongst all others for QoS evaluation.

Yes No

[36] SAW Cost, Response time, Reli-
ability,
Availability

Represent as 0-1 knapsack problem and
then solve using integer programming

Yes No

[107] SAW Execution time, Price, Re-
liability,
Availability, Reputation

Create a convex hull of multi-dimensional
QoS points; sorting the frontier segments
according to their gradients, allows one to
pick near optimal points.

Yes O(nmL+nLl g L+nLl g n)

[110] SAW Randomly generated QoS
values

Uses both MMKP and graph representa-
tion. Presents WS_HEU, an extension of
HEU

Yes O(n2(l −1)2m)

[24] SAW 2 to 5 (randomly gener-
ated QoS values)

Use a rule library to cut down on candidate
solutions; iteratively pick the best service
that does not violate constraint or decrease
utility

Yes O(n2(lr − 1)2m) where
lr < l , after using rule
library

[58] SWR-like for-
mula

Cost, Execution time,
Availability,
Reliability, Reputation,
Frequency-of-use

Use tabu search and simulated annealing
to generate candidate composition plans

Yes No

[1] SAW Only consider negative
QoS criteria,
so only upper bound con-
straints

Decompose global QoS into local values,
use mixed integer programming to select
best mapping of global constraints to local
levels

No MIP’s: O(2n·l); local util-
ity: O(l). Decision vari-
ables in MIP: n ·m ·d

[62] SAW Cost, Availability, Re-
sponse time,
Reputation, Throughput,
Transaction_support,
Fault_tolerant_support,
Encryption_support, Lo-
cation, Service_provider

Decompose global QoS into local values;
select few from distributed QoS registries;
perform central optimization at the final
stage

No Communication: 7 · e.
Data sharing cost is
n · (α + 1). Central op-
timization done using
MIP, decision variables is
n ·e · (α+1)

[2] SAW Cost, Execution time,
Reputation

Represent as a DAG; individual brokers se-
lect a concrete service for each flow; each
flow modelled as M/G/1 arrivals of service
requests; pick concrete service using non-
linear optimization

No O(max{| K | ·l g | K |
, | K | ·maxk∈K | ∨k |
·maxk∈K ,i∈∨k | J k

i |2})

Table 3.1: Comparison of techniques

Benatallah et al.[8] were amongst the early papers on dynamic web-service composition.

Their usage of Simple Additive Weighting(SAW) from Yoon et al.[109], for calculating the

utility value of each QoS attribute, has been adopted by many subsequent papers. They

represent the Workflow of the application, as a statechart (which can be unfolded to remove

3.6 Results of Systematic Review 43

loops) and compare the use of local optimization vis-a-́vis global planning using integer

programming (IP). They consider 5 QoS attributes (cost, execution time, reputation, reliability

and availability) and 1 global QoS constraint. Although, in their experiment description they

vary both the Workflow size (WS) as well as the number of CandidateServices, the graphs

shown in the paper only show figures for 10 & 40 CandidateServices. In table 3.2, we show the

figures reported for global planning using IP in a dynamic environment.

Candidates / Workflow
size

WS–
10

WS–
20

WS–
30

WS–
40

WS–
50

WS–
60

WS–
70

WS–
80

10 CandidateServices <1s 3s 6s 11s 22s 32s 54s 89s
40 CandidateServices 5s 10s 15s 30s 50s 90s 140s 190s

Table 3.2: Performance of global planning using IP in a dynamic environment

Gao et al. [36] model the dynamic web-service selection problem as a zero–one integer

programming problem and report results with 4 QoS attributes (cost, response, reliability and

availability), along with capacity and load.

Yang et al. [107] propose modelling QoS scores of each candidate web-service (along with

its resource consumption) in two-dimensional space and then construct a convex-hull to

identify a near-optimal solution to the service-selection problem. With 5 QoS attributes

(execution time, price, reliability, availability, reputation), they provide experimental data

with zero, single and multiple QoS constraints. They also identify the worst-case complexity of

their technique as O(nmL+nLl g L+nLl g n) where L = max(li) and li is a CandidateService,

n is the Workflow size and m is the number of QoS constraints.

Yang et al. [107] and Gao et al. [36] come the closest amongst all the papers, to comparable

experimental data. Although in Figure 3.7, we see that even they don’t have an exact overlap of

data points provided. Figure 3.7 is based on data provided in their respective papers, without

being normalized for dataset, memory size, computational power, etc. The figure is only

intended as an indicator of the range of variables being used.

44 Scalability in Dynamic Service Selection
comparison_experiments

Page 1

5
ca

nd
id

at
e

se
rv

ic
es

10
 c

an
di

da
te

 s
er

vi
ce

s
20

 c
an

di
da

te
 s

er
vi

ce
s

30
 c

an
di

da
te

 s
er

vi
ce

s
40

 c
an

di
da

te
 s

er
vi

ce
s

50
 c

an
di

da
te

 s
er

vi
ce

s

0
10
20
30
40
50
60

Time taken with WS = 40

Gao et al.

Yang et al.

No. of candidate services

T
im

e
 (

in
 m

se
c)

Figure 3.7: Workflow Size = 40

Yu et al.[110] model the problem in two different ways: (a) as a multichoice, multidimension

knapsack (MMKP) problem (b) as a graph (solving for a multiconstrained optimal path). The

first approach uses a branch and bound algorithm, BBLP[53], to find the optimal solution.

The second approach (WS_HEU) is an extension of HEU[54], which is a heuristic algorithm

for solving the knapsack problem. WS_HEU prunes out more infeasible services from the

candidate set, and always selects a feasible solution (if one exists), thus is faster than HEU by

about 50%. Yu et al.[110] do not provide timing data of their experiments. Instead they provide

comparative statistics vis-a-vis HEU and BBLP. While this is a quite useful way to benchmark

against existing algorithms, evaluating future techniques or newer approaches against [110]

becomes difficult. WS_HEU is identified as having a complexity of O(n2(l −1)2m)

Chen and Yao[24] also model service selection as a MMKP, and their approach is influenced

greatly by [110]. However, Chen and Yao advocate a rule-based approach. In this method,

iterative application of rules constrain services that could not possibly meet QoS constraints,

3.6 Results of Systematic Review 45

from being selected. This cuts down on the search space of CandidateServices and iterative

improvements are made to feasible set, to reach a near-optimal solution. Chen and Yao’s

approach to evaluation is the same as [110]. In fact, all of their experimental evidence is

benchmarked against WS_HEU. The authors identify the time complexity of their approach

as being O(n2(lr −1)2m) where lr < l , after using rule library, n is the Workflow size and m is

the QoS constraints.

Ko et al.[58] propose a hybrid algorithm, combining tabu search and simulated anneal-

ing techniques, to find a composition plan that does not violate any given QoS constraint.

However, they only consider constraints on individual QoS attributes and not on a global

basis. They generate an initial plan by considering reputation and frequency as the most

important of all QoS attributes, and assigning the candidate with the highest reputation score

to the abstract task. Neighbour plans are generated by sorting unsatisfied QoS constraints

and finding a candidate that can satisfy those constraints, in order of priority of constraint. In

the experimental evidence, only coarse-grained time information is given, in seconds (from

the graph published in the paper). In Table 3.3, we show the approximate timings, gleaned

from their paper.

Candidates / Workflow size WS–10 WS–50 WS–100

10 CandidateServices < 0.5s < 0.5s <1s
20 CandidateServices <0.5s < 0.5s <1s
30 CandidateServices <0.5s < 0.5s <1s
40 CandidateServices <0.5s <1s <1s
50 CandidateServices <0.5s <1s <1.5s

Table 3.3: Performance of hybrid algorithm in [58]

Alrifai and Reese[1] present a distributed approach to service selection. They first decom-

pose global QoS constraints, using mixed integer programming, into local ones, and then

perform local service selection at each of the distributed service registries, that are available.

46 Scalability in Dynamic Service Selection

Workflow
Size

Time (in msec)

WS–5 50ms
WS–10 45ms
WS–15 50ms
WS–20 70ms
WS–25 60ms

Table 3.4: Distributed approach with 100 CandidateServices

Each service broker returns the best matching service from its respective service registry, for

composition. Since each service broker performs selection for an AbstractService, indepen-

dently of other services, the Workflow size does not affect the time complexity of the search.

The time complexity of forming a composition plan is dominated by the integer programming

used to decompose the global QoS constraints into local ones. MIP’s time complexity in

constraint decomposition is O(2n·l) and the number of decision variables in MIP is n ·m ·d
where ’d’ is the levels of quality available. In Table 3.4, we report on the QWS dataset and also

chose figures from the best performing of the hybrid curves shown in the paper.

Li et al. [62] are highly influenced by [1]. One of points of departure is the calculation of

local QoS constraints. Instead of using MIP, they use non-linear programming to achieve a set

of quality bounds. These bounds are then sent to each QoS registry for local service selection.

Each registry then sends back a set of CandidateServices,that match the quality bound and

a central optimizer uses MIP to choose from the set of returned CandidateServices. Since

[1] and [62] are so close in the core idea of their technique, it would be quite insightful to

compare their performance results. However, as seen in Table 3.5, the Workflow size and

number of CandidateServices used do not match the ones reported by [1].

Ardagna and Mirandola[2] must deserve special mention for their systematic analysis of

scalability of their approach. Not only do they identify the variables that vary and the range

that they vary over, but the authors also identify [1] and [3] as the reference approaches to

3.6 Results of Systematic Review 47

Workflow Size Time (in msec)

WS–5 10ms
WS–10 20ms
WS–15 40ms
WS–20 50ms
WS–25 70ms
WS–30 80ms
WS–35 90ms
WS–40 95ms
WS–45 100ms
WS–50 110ms

Table 3.5: Workflow size increases with 500 CandidateServices

Workflow Size / Can-
didate Services

10 Candidates 20 Candidates 25 Candidates 50 Candidates

100 8.10s 9.54s 9.98s 14.30s
1000 19.60s 144.30s 149.60s 451.30s
5000 444.90s 1000.05s n.a. n.a.
10000 970.15s n.a. n.a. n.a.

Table 3.6: Per-flow optimization times (sliced from Table 6 in [2])

benchmark against. In this paper, instead of optimizing on a per–request basis, the authors

propose optimizing on a per–flow basis. In this approach (first proposed in [21]), optimization

is not triggered every time a composite service is requested. Rather, it is triggered only

when significant events like non-availability of a selected service or change in QoS exhibited

by a service, happen. Due to per–flow optimization however, the figures reported are on

different Workflows. Ardagna and Mirandola[2] allow for the concept of AbsShare, which is the

percentage of AbstractServices that are shared across different Workflows. This is a relevant

notion, but completely un-addressed by any of the other approaches.

3.6.1 Revisiting the Research Questions

From an examination of all the papers selected for full-text screening, we can infer the set

of variables that affect the scalability of each of the techniques mentioned. Each of these

variables affect each technique differently. These variables are as follows:

48 Scalability in Dynamic Service Selection

1. Number of AbstractServices in a Workflow (Workflow size)

2. Number of CandidateServices considered per AbstractService

3. Number of QoS attributes (with constraints) considered per CandidateService

4. Number of constraints considered on both: per-abstract-service (local) as well as end-

to-end basis (global)

Unfortunately, as we saw from the review, there are no commonly used scales or variable

ranges used, for reporting scalability information. In fact, most techniques do not even report

their performance numbers on all of the variables above. Even when techniques do report the

same variables, they use different scales. In such a situation, comparing techniques amongst

each other become difficult. Based on the literature surveyed, we recommend that while

reporting timing information, the variables in table 3.7 be used. Needless to say, that the

whole range of values for these variables should be reported. The upper-limits on these ranges

are the median numbers of the papers, before applying the exclusion criteria, E12. Needless to

Variable affecting performance Recommended Range

Number of AbstractServices in a Workflow 1–10
CandidateServices per AbstractService 1–20
QoS attributes (with constraints) considered per Candi-
dateService

1–3

Table 3.7: Median value of variables affecting performance, reported in literature

say, that all variables are not equally important in every situation. Each domain has a different

emphasis and differing circumstances. Depending on the the particular characteristics of

the domain, a technique’s scalability will differ. An application architect considering which

technique to adopt would do well, to look at his specific case and ponder on which variables

matter. If Workflow size is the most important variable, then the approach in [107] seems to

be the most promising approach. Since Ardagna et al.[2] take a per-flow approach, it would

be interesting to evaluate their approach against Yang et al.[107], with the same dataset. On

the other hand, if the number of CandidateServices is expected to vary hugely, the approach

3.7 Discussion 49

in [1] turns out to be quite promising. The number of QoS attributes vary across most papers,

but the mechanism of evaluating QoS seems to have settled on Simple Additive Weighting.

Stochastic Workflow Reduction proposed by Cardoso et al.[23] has also been used in a few

papers, but is not as popular.

The number of QoS constraints makes a difference to the scalability, but it has not been

systematically evaluated. It is the addition of constraints that makes a distributed solution to

the service selection problem, difficult and interesting.

3.7 Discussion

3.7.1 Threats to Validity

Like Gu and Lago[39], we use the suggestion in Perry[81] to explicitly state the threats to

validity that accompany any empirical study: (a) construct validity (b) internal validity (c)

external validity.

Construct Validity Construct validity refers to whether the model constructed can actually

answer the research question. Since our research question is intended to summarize the

existing body of work, this threat is not applicable to our study. Also, any potential misunder-

standing between the study designer and the study executor is avoided, since both roles are

being performed by the same person. An explicit definition of scalability also allows readers

to understand what we’re looking for, in a paper and how we evaluate it.

Internal Validity Internal validity refers to the accuracy of modelling of the system under

study, i.e., do the variables being studied actually affect the dependent variables? To a large

extent, the variables chosen for the study have emerged from the pool of papers themselves.

In such a situation, the selection of the pool assumes great significance, as some variables

might be over-emphasized and others de-emphasized, depending on the selection process.

50 Scalability in Dynamic Service Selection

To mitigate this cause of bias, we explicitly created a review protocol and followed it strictly.

Since the study was performed by a single person, a PhD candidate, the supervisor was used as

a third-party control. The supervisor randomly selected papers, both included and excluded

ones, to verify whether the selection decision was correct or not. The arbitrary decision to take

the first 50 papers from each search engine is admittedly difficult to justify. Any paper that

ranked lower down in a particular search engine’s ranking, but contained a scalable method

for dynamic service composition, would be lost. Also, values inferred from graphs published

in papers are approximate, due to the low resolution of such graphs. Hence, while these values

are internally consistent, they are not necessarily exact.

External Validity External validity refers to the generalisability of the study, i.e., do the

conclusions of the study hold even outside the parameters of the study? We made a conscious

decision to use only academic data sources. This automatically precludes any commercial

report or presentation, that is not indexed by these sources. Also, our exclusion criteria

excludes domain-specific papers and papers relating to improvements in SOAP, WSDL, OWL,

etc. It is entirely possible that a commercial entity that has not published academically, has

used a highly scalable technique. Or that improvements in the underlying infrastructure

enable pruning of the search space of QoS attributes, such that current techniques are able to

scale to a high level.

3.7.2 Quality Assessment

It is important to note that we have not attempted to attribute any degree of quality to any of

the approaches claiming to be scalable. We have merely defined scalability in a more rigorous

manner, than available in corresponding literature and then mapped existing approaches

onto a common scale.

3.8 Conclusion 51

3.8 Conclusion

As a result of this survey, we were able to establish that scalability of service-selection tech-

niques has not been rigourously evaluated. We then identified four variables on which the scal-

ability of dynamic service composition depends. However, since different techniques report

figures with different emphasis on each of the axes, it is difficult to draw conclusions across

techniques. Apart from [2], which explicitly considered results from two different papers, none

of the others do a systematic comparison of results from others. Even while comparing against

integer programming, each paper would have its own implementation, and therefore its own

results. Although, the notion of complexity classes provides an implementation-independent

mechanism for evaluating the time complexity of a particular algorithm, it does not seem to

be a popular metric to report. Also in this survey, we did not consider techniques that have

been cited by other papers, as being scalable. For instance, Canfora et al.[20] use a GA-based

approach and have been cited as a scalable technique. However, both [20] and [19] did not

meet our definitional requirements of discussing experimental evidence which shows the

technique being benchmarked over a range of operational values.

This survey provides an insight into variations and gaps in experimental evidence and report-

ing, that occurs in the domain of dynamic service composition. In the following chapters:

1. We review market-based methods for designing a self-adaptive mechanism,

2. We propose a market-based mechanism that remedies the unsystematic approach to

scalability presented in this chapter and,

3. We provide concrete mechanisms to evaluate a particular resource for its QoS.

52 Scalability in Dynamic Service Selection

CHAPTER 4

Towards Self-Adaptive Architecture: A Market-Based Perspective

4.1 Introduction

Self-Adaptation as a concept, has been recognized for a long time. From the domain of

biological systems[18] to human affairs[86]. Most natural systems exhibit this phenomena,

viz, the effecting of change by a system to ensure that it continues to achieve the utility that

it previously did. Different self-adaptive systems exhibit adaptivity in different ways. In

human-designed systems, the first systematic efforts to create a self-adaptive system have

been in the domain of control loop design. It has been a comparatively recent entrant in the

field of software. Regardless of the type, most systems can be differentiated on the basis on

where the locus of control for self-adaptation lies:

1. Centralized: In these type of systems, there is usually a hierarchy of components. Com-

ponents at higher levels are responsible for goal management and planning for change

[59], while those at lower levels are responsible for immediate action and feedback.

Decision-making is concentrated in one or a closely related set of components. Cen-

53

54 Towards Self-Adaptive Architecture: A Market-Based Perspective

tralized self-adaptive systems exhibit a communication pattern that is characterized

by sensory information (data) flowing from dumb components to the central decision

maker, and instructions (commands) flowing from the decision maker to the dumb

components. ‘Dumb’is used here, in the sense of a component having no awareness of

itself and its effects on the environment. Predictable and cohesive response to change

are advantages of this type of system. However, reaction times get slower and slower as

the size of the system increases.

Monitor

Analyze Plan

Execute
Knowledge Base

Centralized MAPE Loop

Data & Control Flow

Sensor

Effector

Procedure Call

API

Application Boundary

Figure 4.1: Self-adapting application with a centralized MAPE loop

2. Decentralized: On the other hand, decentralized systems do not have a hierarchy of

components. Each component acts as an individual agent with its own goals, and its

own perception of the environment. This has the advantage of quick reaction to change.

But it also has the disadvantage of being fragmented. That is, different components

may react differently to the same change stimulus. This could make the self-adaptation

inefficient or even deleterious. The challenge in building a decentralized system is to

4.2 Self-Adaptive Architectures 55

ensure that all the agents collectively move the system towards a common goal. This

is usually accomplished by agents communicating amongst themselves. However, the

lack of a centralized communication pattern means that the communication protocol

must be decentralized and environment-based.

D

A

B

C

Monitor

Analyze Plan

ExecuteMonitor

Analyze Plan

Execute

Figure 4.2: Decentralized MAPE loop in an application

In this chapter, we shall first explicate on decentralized self-adaptive architectures and then

introduce our market-based mechanism in detail. We conclude the chapter with a reflection

on the possible design alternatives for implementation of our mechanism.

4.2 Self-Adaptive Architectures

As software usage continues to grow and become increasingly pervasive in our daily lives,

major commercial entities such as IBM warn of a software complexity crisis [47]. As the

number of inter-connected devices increase, code interacts with other code in ways that

have not been anticipated by its designers. Changing environments, requirements like 24/7

availability, are putting a strain on the best of software designers. Soon increased complexity

will baffle even skilled administrators, and it will be impossible to make intelligent and timely

decisions in the wake of rapid change. Most experts believe that software must increasingly

56 Towards Self-Adaptive Architecture: A Market-Based Perspective

become autonomic in order to meet the demands being made of it. By autonomic, we mean

computer systems that can manage themselves, given high-level objectives by administrators

[77]

Autonomic computing is also frequently referred to by its characteristics, the so called self-*

properties. [78] define eight characteristics of autonomic computing:

• Self-configuration: The system should be able to configure and re-configure itself

under varying and unpredictable conditions.

• Self-optimization: The system should be able to detect sub-optimal behaviours and

optimize itself to improve its execution.

• Self-healing: The system should be able to detect and recover from potential problems

and continue to function smoothly.

• Self Awareness: An autonomic application/system ’knows itself’ and is aware of its

state and its behaviours.

• Self Protecting: An autonomic application/system should be capable of detecting and

protecting its resources from both internal and external attack and maintaining overall

system security and integrity.

• Context Aware: An autonomic application/system should be aware of its execution

environment and be able to react to changes in the environment.

• Open: An autonomic system must function in an heterogeneous world and should be

portable across multiple hardware and software architectures. Consequently it must be

built on standard and open protocols and interfaces.

• Anticipatory: An autonomic system should be able to anticipate to the extent possi-

ble, its needs and behaviours and those of its context, and be able to manage itself

proactively.

4.2 Self-Adaptive Architectures 57

Although these are listed as distinct capabilities in [78], they can be viewed as complementary

features, with each one feeding into and enabling the others. Specifically, they can be consid-

ered to be essential characteristics of long-lived applications. We refer to them collectively as

self-adaptation properties. Self-Adaptation in software can be engineered on many dimen-

sions: structural, behavioural, quality of service, etc. In this thesis, we focus on the Quality

of Service (QoS) that an application exhibits. By QoS, we mean qualities like performance,

reliability, security, maintainability, etc. These qualities are not related to the functionality of

the system. Rather, they form the intangible user-experience that is almost as important, as

the function itself. These qualities are experienced universally, be they small, student-written,

toy systems to enterprise-spanning, world-facing, production-quality systems. Some of these

qualities are measurable, like performance, while others are more difficult to quantify, like

security.

In engineering a mechanism to adapt QoS for an application, we had to decide whether we

would use a centralized adaptation mechanism or a decentralized one. The domain of the

application that we focus on, is a service-based application resident in the cloud. Since a

service-based application consists of potentially large number of, and disparate services, it

seems reasonable to follow a decentralized approach. This leads to a further decision on

communication pattern that such a decentralized system should exhibit. In literature, decen-

tralized self-adaptive systems exhibit communication/coordination patterns of the following

types[103]:

1. Gradient Fields

2. Market-Based Control

3. Digital Pheromone Paths

4. Tags

5. Tokens or key-based

58 Towards Self-Adaptive Architecture: A Market-Based Perspective

Gradient Fields: Typically used in situations involving coherent, spatial movement of agents.

It is a decentralized mechanism to achieve propagation of spatial and contextual information

amongst large groups of agents. This form of coordination takes its inspiration from physics

and biology. Particles in our physical universe, for example, adaptively move and self-organize,

on the basis of locally perceived gravitational/electro-magnetic fields. Implemented in soft-

ware systems, all agents have access to an environment, which provides the numeric value

of a GradientField. The GradientField is a data structure that contains location-dependent

contextual information. The strength of the GradientField guides the agent in the direction to

move. The environment takes the responsibility for propagation of information and this frees

up the agent from having to do any exploration, on its own. This also allows for robust and

flexible coordination in a dynamic environment.

Market-based Control: This communication pattern is typically used in efficient, decen-

tralized resource allocation. Multiple autonomous agents act in a self-interested manner, to

achieve a globally coherent goal. Taking inspiration from human-economies, each individual

agent participates as a buyer or a seller of goods. In a software setting, the goods might be

cpu-cycles, bandwidth, disk-usage or any other scarce resource. The underlying idea is that

market equilibrium represents the optimal allocation of resources, achieved through local

computations and no global coordination. This is a flexible and robust mechanism, that

reacts swiftly to changes in resource levels.

Digital Pheromone Paths: In this pattern, agents explicitly search for goals and leave trails

for other agents to follow. Depending on the number of agents that follow a particular path,

its attractiveness increases for all succeeding agents. In this manner, tasks like shortest-

path-routing can be done with relatively little overhead of computing at the level of the

individual agent. This type of communication takes its inspiration from ant colonies, where

ants quickly communicate the shortest path between a food source and the nest, by the use of

pheromones. This type of communication is robust to failure and changes in the global state.

4.2 Self-Adaptive Architectures 59

In a computational implementation, agents sense the strength of the pheromone from the

environment, and the environment is responsible for tunable parameters like evaporation

and aggregation.

Tags: Inspired by social phenomena of cooperation and specialization, this coordination

pattern rewards altruistic behaviour. Thus, even self-interested agents find that it is better to

cooperate than to exploit other agents. This is achieved through the use of tags, which are

externally settable and observable labels. Agents will tend to select other agents that share

the same tag value as themselves. In an environment where cooperative work tends to yield a

higher utility, this mechanism results in a sort of tribe formation as agents with identical tags

cooperate. Coordination emerges because agents discriminate on tags. A cooperative tribe

grows larger and larger, as more agents copy the cooperative strategy to gain a higher utility. A

selfish agent can exploit such a situation, but the tribe withers away quickly leaving the selfish

agent with other selfish agents. This process mirrors the evolution of formation, growth

and destruction of tribes. Coordination happens directly between agents, and therefore

no environmental mediation or infrastructure is required. This is a highly decentralized

and scalable model for solving problems like "tragedy of the commons" in a peer-to-peer

filesharing system.

Tokens: This communication pattern does not have a parallel metaphor in nature or human

societies. Tokens, like tags, are arbitrary pieces of information, held in a data structure.

However, unlike a token, there is only one or a limited number of tokens within a group of

agents. The agents holding a token are allowed to have access to a resource, or information,

or perform a specific role. Information on the token can be updated by the agent holding the

token. This allows for an emergent history of the path of the token through the group, which

can further be utilized in future token-passing decisions. The only infrastructural support

needed by this mechanism is the presence of some communication channel, to pass tokens.

A fully decentralized mechanism, the communication overhead does not rise with increase in

60 Towards Self-Adaptive Architecture: A Market-Based Perspective

group size and hence, is very scalable.

4.2.1 Choosing the right mechanism

Each of the communication patterns outlined have advantages and disadvantages. Choos-

ing amongst these alternatives is therefore, an exercise in making trade-offs. We look at

salient characteristics of the problem domain and map how well these patterns fit those

characteristics.

Scalability of technique: Matching service providers in the cloud to service consumers,

requires that communication overhead does not increase proportionally with the number of

agents in the environment.

Confidentiality: Since different service providers and consumers belong to different com-

mercial entities, the mechanism should not demand that agents reveal their decision criteria.

Also, it cannot expect agents to depend completely on signals from the environment.

Natural fit to problem: Some patterns encourage altruism, whereas others work in compe-

tition (self-interested agents). Given that service providers and consumers belong to different

commercial entities, it is reasonable to expect that their agents would be self-interested.

Ease of Implementation: Each pattern requires different kinds of infrastructural support.

For e.g., Gradient-Field and Digital Pheromones are dependent on a suitable middleware for

the right kind of signals. Whereas, Market-Based Control, Tags and Tokens require only a

communication channel, for agents to function.

As can be seen from table 4.1, Market-Based Control fulfils more criteria than any other

decentralized communication pattern, in the context of our problem. We now proceed to

4.2 Self-Adaptive Architectures 61

Scalability Confidentiality Natural Fit Implementation

Gradient-Field X X – –

Market-Based Control X X X X

Digital Pheromone X – – –

Tags X – – X

Tokens X – – X

Table 4.1: Mapping mechanism characteristics to problem domain

examine this mechanism in more detail.

62 Towards Self-Adaptive Architecture: A Market-Based Perspective

4.3 Market-Based Control

Market-based techniques have been used previously for solving distributed resource alloca-

tion problems. The field of computational economics is concerned with economics-inspired

techniques to guide interactions between components of a distributed system. Although

inspired by human macro-economic theories, they do not depend in any way on real macro-

economic behaviour. A key reason for this, is that agents in computational systems can be

programmed to behave in any manner, from completely selfish to completely altruistic.

Tucker et al[93] present a good survey of market-based techniques used in the software

domain. Notable examples include Clearwater’s bidding agents to control the temperature of

a building[25], Ho’s center-free resource algorithms [45] and Cheriton’s extension to operating

sytems to allow programs to bid for memory[41]. Other examples include distributed Monte-

Carlo simulations[98], distributed database design using market-methods for distributing

sub-parts of queries[89] and proportional-share resource management technique[99]

4.3.1 Auctions

Auctions, specifically Double Auctions (DA), have increasingly been studied in Computer

Science, as a mechanism of resource allocation. Daniel Friedman [34] reports on experi-

ments where traders even with imperfect information, consistently achieve highly efficient

allocations and prices. The rise of electronic commerce naturally creates a space for effi-

cient exchange of goods and services, and there has been much work on the design space

of market-institutions[105, 71], bidding strategies [26, 83], agent-based implementations of

traders[52, 42, 43, 72], etc. Gupta et al[40] argue that network management, specifically for

QoS issues, must be done using pricing and market dynamics. According to them, the flexibil-

ity offered by pricing mechanisms offers benefits of decentralization of control, dynamic load

management and effective allocation of priority to different QoS attributes.

A Double Auction is a two-sided auction, i.e., both the buyers and the sellers indicate the price

4.4 Review of Literature using MBC 63

that they’re willing to pay and accept, respectively.

4.4 Review of Literature using MBC

There has been a lot of work in applying market-based techniques to solving computational

problems. By far, the most popular one has been the use of agents in an artificially constructed

economy, designed to act in a specific manner. In economic theory, the term agent is used

to refer to an actor that makes decisions, within the constraints of a particular model[66].

Specifically, in computer science, the term agent is used in the context of multi-agent systems

(MAS) that have been used to implement market-based solutions. The creation of a multi-

agent based system is appealing, since it allows researchers to actually simulate a marketplace

and not just use it as a metaphor. Part of its appeal lies in the fact, that it gives researchers a

tool to conceptualize and reason about multi-agent behaviour, since they can now view parts

of a distributed system as autonomous agents. Wellman [100] echoes this when he says

In order to reasonably view a distributed system as a multiagent one, we must
be able to attribute to the agents particular knowledge, preferences, and abilities,
which in turn dictate their rational behavior. This rationality abstraction is shared
by Artificial Intelligence and Economics and is the common element that binds
the complementary disciplines in this context.

If we accept that Market Oriented Programming is indeed a paradigm that can be useful to

study the behaviour of multiple agents in a distributed setting, then we must ask ourselves

what the motivation for choosing this particular form of computation is. Specifically, what’re

the properties that it possesses that will render it a useful mechanism for solving our problem?

To enable an objective view of the utility of the mechanism, it is imperative that we define the

axes on which we shall measure it.

1. Results: What is the quality of the solution obtained? Market Oriented Programming,

as a paradigm, has mainly been applied to problems of resource allocation and load

balancing. Using it as a mechanism for adapting to QoS requirements in a scalable way

is a novel application.

64 Towards Self-Adaptive Architecture: A Market-Based Perspective

2. Computation: How computationally intensive is the mechanism? How much distribu-

tion of computation takes place?

As a measure of the efficiency of a distributed system, we have to quantify how much of

the computation is really distributed. In other words, does 20% of the system do 80%

of the work? This would render the system fragile, if the ‘workhorse’nodes went down.

One of the properties, we’re trying to achieve is robustness of the mechanism itself.

Although there have not been any formal results on the computational complexity of a MAS-

based solution versus a non-MAS based solution, there are many researchers who advocate

the usage of agents in precisely the kind of situation that we attempt to solve. He et al.

advocate the usage of agents[43]:

Specifically, we believe agents are most useful in the partnership formation,
brokering, and negotiation stages because these stages all involve complex issues
related to decision making, searching, and matchmaking that agents are well
suited to.

4.4.1 Auction-Oriented Agent Design

Zambonelli, Jennings and Wooldridge[111] propose the Gaia methodology for the analysis

and design of multi-agent systems. The Gaia methodology views a MAS as an abstraction of

an organization, that in the course of its functioning, solves the problem that the MAS was

intended to solve. Interactions amongst the agents of the MAS need a driver, and auctions

have been used as the primary driver in many approaches. There are many different types

of auctions based on various parameters that can be modified. Indeed Wurman et al. [106]

identify around 25 million auction types!

This thesis does not attempt to provide an overview of all of them (see [60] for a comprehensive

review). The most commonly known ones are the English auction, the Dutch auction, First-

Price Sealed Bid auction, Vickrey auction (second-price, sealed-bid) and the Double auction.

4.4 Review of Literature using MBC 65

English Auction An English auction is a single-sided auction, i.e., there is one seller and

multiple buyers. The buyers indicate their bids and the auctioneer accepts only ascending

bids, i.e., every new bid must be greater than the previous one. As the bid values rise, buyers

drop out when it exceeds their private valuation function or budget. The auction comes to an

end, when there is only one buyer left. The transaction price is the value of the last bid.

Dutch Auction A Dutch auction is also a single-sided auction; there is one seller and multiple

buyers. However, in this case, the auctioneer starts with a high price and continuously

lowers it, with every time tick. The first buyer to accept the valuation wins the auction. The

transaction price is the highest price at which a buyer stops the auctioneer.

First-Price Sealed Auction A First-Price Sealed Bid auction is an auction mechanism where

participants involved in the auction cannot observe the bidding behaviour of the others.

Each participant makes a bid, that is sealed and submitted to the auctioneer. The auctioneer

collects all the bids, and opens all the bids one by one. The bid containing the highest

valuation wins.

Vickrey Auction A Vickrey auction is a variation on the above theme. Again, none of the

auction participants are able to observe the others’ bidding behaviour and submit sealed bids.

Also, the winner is still the bidder that submits the highest bid. However, the winner does not

pay the amount that she submitted in the bid. Rather, she pays the amount bid by the second-

highest bidder. A Vickrey auction has the property that truth-telling becomes the dominant

strategy. In other words, the most rational course of action for any auction participant is to

bid whatever she thinks the correct value of the good is. Although, this property is extremely

interesting, implementing a Vickrey auction is a computationally intensive process.

66 Towards Self-Adaptive Architecture: A Market-Based Perspective

Double Auction A Double auction (DA) is a two-sided auction mechanism where, (unlike

the mechanisms discussed before) both buyers and sellers place bids. In auction terminology,

the buyer’s bid is called a bid and the seller’s bid is called an ask. The bids and asks are stored

in an orderbook. The market then matches the bids and asks to create potential transactions.

A major aspect of differentiation amongst various types of double auctions is the time-period

of the auction. In a discrete-time auction, all traders move in a single step from initial bid and

ask, to the final allocation. However, in a continuous-time auction, bids and asks are entered

into the market continuously. Transactions also, therefore, take place continuously.

A DA is very popular for its price efficiency. The continuous-time variant, called Continu-

ous Double Auction (CDA), is used in stock-markets and commodity exchanges around the

world[57]. In a CDA, the market clears continuously. That is, instead of waiting for all bids

and asks to be made, matches are made as the bids and asks come in. A new bid is evaluated

against the existing asks and the first ask that matches, is immediately paired off for a transac-

tion. Thus, high bids (a bid where the buyer is willing to pay a high price) and a low ask (where

the seller is willing to accept a low price) are favoured, in the mechanism. Also note, that at

any point, the only bids and asks present in the system are ones that do not have any match.

For e.g., if a bid enters the mechanism at time t, it is evaluated against all the asks present at

that time. If no match is found, the bid can subsequently be matched only against new asks

that enter. If no new asks enter, that bid will never be matched. The situation is symmetric

with asks. An ask is evaluated when it enters the system and if a matching bid is found, it is

immediately paired off for a transaction. Once this is done and no pairing has occurred, then

it can only match a new bid. Thus, the only bids and asks remaining on the orderbook (after a

round of matching), are ones that haven’t been matched. To prevent stale bids and asks from

remaining on the orderbook, most market institutions clear all un-matched bids and asks

after a set period of time. A CDA is known to be surprisingly, highly allocatively efficient [38],

i.e., it achieves a very high percentage of all the possible trades, between buyers and sellers.

The most important property of the work referred to above, is that a CDA’s efficiency results

from the structure of the mechanism used, rather than intelligence of the agents involved

4.4 Review of Literature using MBC 67

in trading. This is a very important result, since it provides us with an assurance about the

lower bound of efficiency of the mechanism. There has been a plethora of work done on

the structural properties of CDAs[97, 73], strategies [46], algorithms [6, 84, 85], and agent-

implementations [91, 80]

Eymann et al. [32] demur on the usage of auctions as an allocation mechanism. They

argue that most auctions detract from the principal advantage of a market-based system, i.e.,

robustness. The presence of the auctioneer results in the mechanism becoming a centralized

one, and thus the failure of the auctioneer would result in a failure of the market, as a whole.

This is a valid criticism, but it can be easily addressed by the use of multiple auctioneers. A

market that contains multiple auctioneers for each good, with BuyerAgents selecting amongst

these auctioneers, would result in a decentralized system.

4.4.2 Agent-Based Computational Economics

A key aspect of the methods discussed in the previous section, is that all of the methods

indulge in a top-down approach to building the market. That is, structural properties are

specified a priori in the form of bidding rules, clearing prices, negotiation protocols, etc. How-

ever, one of the reasons that Market-Based methods are used is because modelling these

agents and their interactions, in the form of a game is highly complex. The feedback loops and

interaction effects are difficult to analyze using game-theoretic methods. In such a situation,

developing a top-down mechanism is not necessarily the only way to fly. In the words of

Tesfatsion [92], "agents in these models have had little room to breathe".

In contrast, the field of agent-based computational economics (ACE) attempts to study economies

through evolving systems of autonomous, interacting agents. The main thrust of ACE has

been to study agents co-evolve their strategies for interaction, negotiation, trading, etc. in a

controlled environment. Keeping track of the evolution of agents, allows researchers to ascer-

tain the effect of microscopic changes on the macroscopic behaviour, and the constraints and

feedback from the macroscopic environment on the microscopic structures. Thus, the aim of

68 Towards Self-Adaptive Architecture: A Market-Based Perspective

ACE is two-fold: descriptive and normative. That is, ACE aims to both, describe the effects of

certain starting parameters on the resultant macroscopic behaviour, and prescribe necessary

conditions for the rise of desirable behaviour.

Robert Marks was one of the earliest researchers in this field [92], and his experiments on

oligopolistic markets [65] threw up a then-surprising result for economists, that of the evolu-

tion of bottom-up cooperation to result in globally optimal joint allocations. However, a more

interesting result was that chance was a big determiner of final outcomes, as did "behavioural

quirks that individual firms had evolved in response to their interaction histories"[92]. This

implied that an optimal pricing strategy created for one kind of game, would not necessarily

prove to be good in a different game. This result proved that analyzing market-economies

using game-theoretic approaches was not only difficult, but also potentially futile. In this

scenario, Nicolaisen et al. showed that creating a definite structure for agents to trade in, in

the form of a double auction, rendered attempts by agents to exercise strategic market power

ineffective[70]. Due to the symmetry of the double auction design (both buyers and sellers

can specify prices), market-efficiency was really high.

When combined with Gode and Sunder’s [38] study of Zero-Intelligence agents, it is fairly

obvious that a continuous double auction market mechanism is the most structurally suited

to our task of getting multiple-agents to choose services. In the next chapter, we explain our

market-mechanism in detail.

4.5 Conclusion

In this chapter, we took a short tour of decentralized self-adaptive communication patterns,

motivated the selection of a market-based mechanism, and took a deeper look at auctions.

Amongst auctions, we took a look at the popular structural variants in auction-design, high-

lighted the properties that we wanted, and use results from auction literature and ACE to

support our idea of using agents in double-auctions for service selection. In the next chapter,

4.5 Conclusion 69

we shall take a deeper look at the auction mechanism we propose, its structural format, and

agent decision-making strategies.

70 Towards Self-Adaptive Architecture: A Market-Based Perspective

CHAPTER 5

Mechanism Design

The whole is more than the sum of its parts

Metaphysics, Aristotle

71

72 Mechanism Design

5.1 Introduction

Mechanism-design is a sub-field of micro-economics and game theory, that considers how to

design systems and interaction rules for solving problems that involve multiple self-interested

agents[79]. The desiderata from our mechanism’s design is the following:

1. The mechanism should be highly allocatively efficient

2. The mechanism should be decentralized, so that there is no dependence on a single

entity

3. The mechanism should be scalable to hundreds of applications, simultaneously adapt-

ing

We design a marketplace that allows individual applications to select web-services, in a decen-

tralized manner. This is important from the view of robustness, and practicality. The cloud

is designed to be an ultra-large collection of applications, web-services and raw computing

power. Given this large scale, any solution that is implemented, should ideally not rely on

global knowledge, or centralized coordination.

We view an application as a composition of several web-services. A web-service corresponds

to a specific piece of functionality, along with associated QoS levels. Varying levels of QoS

require different implementations and depending on the complexity of the implementations,

will likely be either scarce or common. This leads to a differentiation in pricing based on QoS

levels. Thus, in a market for clustering web-services (for example), each seller is assumed

provide a web-service that performs clustering, but offers varying performance and depend-

ability levels. Each of these web-services contributes towards the total QoS exhibited by the

application. We now define terms that will be used throughout the thesis.

AbstractService (AS): The functional specification of a certain task. This is also sometimes

referred to simply, as a task or service class in a Workflow. An architect composes several

AbstractServices into a Workflow, to create an application.

5.1 Introduction 73

ConcreteService (COS): An implementation of an AbstractService. Each ConcreteService has

a QoS that it advertises through its SLA.

CandidateService (CAS): A ConcreteService provided by a service-provider, that is present

in a particular market, and meets the QoS requirements of a certain BuyerAgent. The

service-provider may be the cloud itself, or a third-party. The same ConcreteService may

therefore, be a CandidateService for one BuyerAgent, and not be a CandidateService for

another.

Market (M): A virtual meeting place for BuyerAgents and SellerAgents. Each Market is homo-

geneous in the sense that, all ConcreteServices in that market, are implementations of

the same AbstractService.

BuyerAgent (BA): A trading agent that Bids for, and buys a CandidateService. Typically, a

BuyerAgent is responsible for one AbstractService.

SellerAgent (SA): A trading agent that sells a CandidateService. Again, typically a SellerAgent

is responsible for only one AbstractService. The SellerAgent adjusts the price at which it

is willing to sell the CandidateService, based on demand and supply.

MarketAgent (MA): A trading agent that implements trading rounds for a Market. It accepts

Bids, and asks from BuyerAgents, and SellerAgents. It performs matching of Bids and

asks.

ApplicationAgent (AA): An agent responsible for ensuring that an application meets its QoS

requirements. It is responsible for distributing the budget, and initiating and stopping

adaptation by the BuyerAgents.

Workflow (W): The set of AbstractServices that compose an application.

74 Mechanism Design

5.2 Agents in the System

5.2.1 BuyerAgent

The BuyerAgent (BA) is a trading agent that buys a CandidateService for an ApplicationA-

gent(AA), i.e., it trades in a Market (Mx) for a specific AbstractService (ASx). Each web-service

(COSx), available in Mx , exhibits the same QoS (ω ∈QoS). The only differentiating factor is

the degree to which that is exhibited. Hence, if an application has K QoS that it is concerned

about, then the QoS that it gets for each of the ASx that it buys is:

ΩASx = 〈ωASx
1 ,ωASx

2 ,ωASx
3 , . . . ,ωASx

K 〉 (5.1)

The amount that the BuyerAgent is prepared to pay is called the bid price(BAbi d pr i ce) and

necessarily BAbi d pr i ce ≤ BAbud g et , where BAbud g et is the budget available with the BuyerA-

gent1. The combination ofΩ demanded and the bid price is called a Bid. A BuyerAgent’s Bid

is denoted as BABID. A BAx makes several Bids to explore the QoS–and–cost space (as detailed

in section 5.4.2).

5.2.2 ApplicationAgent

The Application is described as a composition of different ASx . At the agent-level, the Applica-

tionAgent communicates with each of its BA, and communicates the local QoS constraints

and a budget (B fx). The buyer then starts trading. The adaptation occurs through the revision

of Bids, that happen after each round of trading. After each round of trading, depending

on the Ω obtained by the buyer, the Application has procured a total QoS that is given by

applying Stochastic Workflow Reduction (detailed in section 5.4.1). The relationship between

the ApplicationAgent and the BuyerAgents is shown in Figure 5.1, for a random application

structure consisting of eight services.

1This is different from typical CDA literature, where BAp is used to denote the bid price

5.2 Agents in the System 75

S1
BA

S2 S3 S4

S6
BAS5

BA

S8
BA

S7
BA

S4
BAS3

BAS2
BA

ApplicationAgent

Bi-directional communication between agents

Agent responsible for AbstractService

S1

S5 S6 S7

S8

AbstractService

BuyerAgent

Figure 5.1: Relationship between ApplicationAgent and corresponding BuyerAgents

5.2.3 SellerAgent

Each SellerAgent is a trading agent, selling a particular ConcreteService (COSx) that exhibits

the QoS mentioned in (5.1). The degree to which each QoS attribute(ω) is exhibited in each

COSx being sold, is dependent on the technological and economic cost of providing it. Hence,

if the cost of providing ASx withΩ= 〈0.5,0.6〉 is low, then there will be many sellers providing

ASx with a low Ask price. Conversely, if the cost of providing ASx with Ω = 〈0.5,0.6〉 is high,

then the Ask price will be high. An individual seller’s Ask price can be higher or lower based

on other factors like number of sellers in the market, the selling strategy etc., but for the

purpose of this experiment we consider only a simple direct relationship between cost and

Ask price, where the Ask price is always greater than or equal to the cost. The combination

of Ω and Ask price is called the Ask. Every service is sold for a pre-specified n calls, i.e., a

purchase of a service entitles the buyer to make n (market specified) calls to that service.

Provenance regarding the actual usage of the service, can be easily established through the

use of authentication keys, or other mechanisms.

76 Mechanism Design

5.2.4 MarketAgent

A Market (Mx) is a set of BA and SA, all interested in the same functionality ASx . The factors

differentiating the traders are:

• Ω: The combination of 〈ω1,ω2, . . .ωk〉

• Price: Refers to the Bid price and Ask price. The BA will not pay more than their

respective bid price and the SA will not accept a transaction lower than their respective

Ask price.

An Mx is responsible for accepting Bids and Asks from BAx and SAx . It is also responsible

for conduction the auction, and creating provisional transactions (see section 5.3). When a

BAi
x (say) accepts a transaction, the Mx is responsible for setting up a final transaction, and

deleting all the other Bids that BAi
x had made.

5.3 Structure of the Auction

The mechanism of finding a matching buyer-and-seller is the continuous double auction(CDA).

A CDA works by accepting offers from both buyers and sellers. It maintains an orderbook

containing both, the Bids from the buyers and the Asks from the sellers. The Bids are held in

descending order of price, while the asks are held in ascending order, i.e., buyers willing to pay

a high price and sellers willing to accept a lower price are more likely to trade. When a new

Bid comes in, the offer is evaluated against the existing Asks in the book and a transaction is

conducted when the price demanded by the Ask is lower than or equal to the price the Bid is

willing to pay and all the QoS attributes inΩ of the Ask are greater than or equal to all the QoS

attributes in theΩ of the Bid. After a transaction, the corresponding Bid and Ask are cleared

from the orderbook. Table 5.1 shows the state of the orderbook at some time, t0. Maximizing

the number of transactions would lead to a possible set like: [B1 − S4,B2 − S3,B3 − S1].

Calculating this optimal set, however, quickly becomes infeasible as the number of Bids and

asks increase, since the number of pairwise comparisons needed increases exponentially.

5.3 Structure of the Auction 77

Bids Asks

[B1, 107, ssl=yes, framerate=24fps, latency=99ms] [S1, 97, ssl=yes, framerate=24fps, latency=99ms]

[B2, 105, ssl=yes, framerate=32fps, latency=105ms] [S2, 98, ssl=no, framerate=24fps, latency=99ms]

[B3, 98, ssl=yes, framerate=24fps, latency=99ms] [S3,103,ssl=yes,framerate=32fps,latency=105ms]

[B4, 91, ssl=yes, framerate=24fps, latency=105ms] [S4, 105, ssl=yes, framerate=24fps, latency=99ms]

[B5, 87, ssl=yes, framerate=24fps, latency=110ms] [S5, 110, ssl=no, framerate=32fps, latency=99ms]

Table 5.1: Orderbook at time t0

With a CDA, the set of transactions is: [B1−S1,B2−S3]. This is so because a CDA evaluates

Bids and asks, as they come in and the first possible match is set up as a transaction. Thus,

[B1−S1] is immediately matched and removed from the orderbook, and then [B2−S3] is

matched. Since this procedure is carried out for every offer (Bid/Ask) that enters the market,

the only Bids and asks that remain on the orderbook are those that haven’t been matched

(Table 5.2) yet. This procedure is much faster, and easily parallelizable. Although counter-

intuitive, it has been shown that even when buyers and sellers have Zero-Intelligence, the

structure of the market allows for a high degree of allocative efficiency [38]. Zero-Intelligence

refers to a strategy, where the agents involved, do not consider any historical information

about trades, and nor do they possess any learning mechanism. Thus, Zero-Intelligence

marks the lower limit of the efficiency of a CDA market.

Bids Asks

[B1, 107, ssl=yes, framerate=24fps, latency=99ms] [S1, 97, ssl=yes, framerate=24fps, latency=99ms]

[B2, 105, ssl=yes, framerate=32fps, latency=105ms] [S2, 98, ssl=no, framerate=24fps, latency=99ms]

[B3, 98, ssl=yes, framerate=24fps, latency=99ms] [S3, 103, ssl=yes, framerate=32fps, latency=105ms]

[B4, 91, ssl=yes, framerate=24fps, latency=105ms] [S4, 105, ssl=yes, framerate=24fps, latency=99ms]

[B5, 87, ssl=yes, framerate=24fps, latency=110ms] [S5, 110, ssl=no, framerate=32fps, latency=99ms]

Table 5.2: Orderbook at time t1

There are many variations on the implementation of a CDA, and each variation introduces

78 Mechanism Design

changes in the behaviour of both, markets as well as the trading agents. We now list the

structural axes of a CDA, and our position on each of those axes:

1. Shout Accepting Rule: Bids and Asks are referred to as shouts. When a shout is made

from a buyer or seller, the market evaluates it for validity. If valid, a shout is inserted in

the appropriate place, in the orderbook. The most commonly used shout accepting rule

is the NYSE rule. According to the NYSE rule, a shout is only accepted, if it makes a better

offer than that trader’s previous offer[97]. We modify this rule to accept multiple Bids

from BuyerAgents. This modification allows the BuyerAgents to explore the QoS-cost

search space in a more efficient manner (see section 5.4.2).

2. Information Revelation Rule: This refers to the market information that is available

to buyers and sellers. In our case, all market participants have access to the last k

transactions.

3. Clearing Rule: The market can either clear continuously or at periodic time intervals. A

market that clears with periodic time interval of 1 time unit is equivalent to clearing

continuously. A market that clears with a time interval of greater than one, is also

called a Clearing House. In our mechanism, as soon as an Ask meets all the QoS

constraints specified in a Bid, and the bid_price is greater than or equal to the ask_price,

a provisional transaction is identified. The transacting parties are now given the option

of accepting or rejecting the transaction. Again, this is a departure from typical CDAs,

but essential to our mechanism (see 5.4.4.1). If accepted, the shouts of the transacting

agents are deleted from the orderbook.

4. Pricing Rule: This determines the price at which a transaction takes place. The most

commonly used mechanism is k-Pricing. The value of k determines which entity makes

more profit, the BuyerAgent or the SellerAgent. We use k = 0.5 (i.e., 0.5∗bi d_pr i ce+(1−
0.5)∗Ask_pr i ce) as the transaction price, as this does not favour either the BuyerAgent

or the SellerAgent.

5.4 Calculation, Communication, Decision-Making 79

A CDA can be varied substantially by changing the strategies, for each of the rules above. In

addition, the market may impose additional costs such as registration charge, transaction

charge, additional information charge, etc. Since these costs do not structurally impact the

CDA, for the purpose of our analysis, we assume that these costs are zero.

5.3.1 Modifications to the CDA

We have made two significant modifications to the typical CDA, in the Shout Accepting Rule

and the Clearing Rule. Our Shout Accepting Rule accepts multiple Bids from a BuyerAgent.

This modification allows the BuyerAgent to explore the space of QoS attributes and cost

combinations, much more efficiently than a single-Bid-at-a-time approach. We follow a

systematic method to create multiple Bids, given a BuyerAgent’s local QoS constraints and

budget (see 5.4.2).

Also, in a traditional CDA, a buyer and seller whose shouts match, are immediately paired-off

for a transaction. However, we modify this rule to create provisional transactions. Once

paired off for a transaction, a buyer and seller have the option to transact. Since the Buy-

erAgent makes multiple Bids, it is possible that it gets multiple possible transactions. The

MarketAgent generates provisional transactions, and informs the BuyerAgent. At this point,

the BuyerAgent has to rank the various Asks in the provisional transactions, and chose the

best one. Systematically, choosing the best Ask in light of various QoS attributes is a difficult

task, and we use a multi-criteria decision making approach (see 5.4.4.1).

5.4 Calculation, Communication, Decision-Making

5.4.1 QoS Calculation

One of the critical aspects of using a multi-agent system is the distribution of constraints and

consistency checking. In the domain of service-based systems, applications usually enjoin

constraints like cost of all services <C or all services must use encryption.

80 Mechanism Design

Constraints: There are three types of constraints that we consider in our services:

1. Numeric: These constraints pertain to those QoS attributes that are either numeric

inherently (e.g., Cost) or, are easily reducible to a scale such that numeric comparisons

are possible (e.g. performance, reliability, etc.)

2. Boolean: Refers to those QoS attributes that are required to be definitely either present

or absent (e.g., secure socket layer support = yes/no)

3. Categoric: Refers to those QoS attributes that are again required to be definitively

picked out of a list, but may end up being more than one (e.g., possible values for

framerate = 16fps, 24fps, 32fps, 48fps and acceptable ones are: 32fps and 48 fps)

We also allow each constraint to be tagged as hard or soft. This allows the application to

indicate that it prefers a certain QoS attribute value, but that the value is not critical. For

example, an application might specify a boolean QoS attribute, say SSL support = yes, as a soft

constraint. This means that given a choice, it would prefer a CandidateService which has SSL

support, but it is not an essential criterion. On the other hand, an application in the banking

domain could specify it as a hard constraint, which means that a CandidateService that does

not support SSL is not acceptable, at all.

Stochastic Workflow Reduction: Depending on the pattern of the Workflow involved in the

application, the same individual services with their corresponding QoS values, might result

in differing end-to-end QoS exhibited by the application. To compute the QoS metrics for

the entire application, we employ Stochastic Workflow Reduction [22]. Using this method,

the Workflow is reduced using a series of reduction steps. Each time a reduction rule is

applied, the structure of the network changes, and the QoS metrics for the affected nodes are

aggregated. The reduction continues in an iterative manner, until only one task remains in the

Workflow. The QoS metrics aggregated for this task represents the QoS metrics corresponding

to the Workflow. In Figure 5.2, we see that a set of parallel tasks, t1, t2, t3...tn , a split task (ta)

and a join task (tb) can be reduced to a sequence of three tasks, ta , tN , tb . The incoming

5.4 Calculation, Communication, Decision-Making 81

transitions of task ta and the outgoing transitions of task tb remain the same. The reduction

for the QoS of the parallel tasks is computed as follows:

Cost (tN) = ∑
1≤i≤n

Cost (ti) (5.2)

Rel i abi l i t y(tN) = ∏
1≤i≤n

Rel i abi l i t y(ti) (5.3)

t

t

t

t

t t t t

(a)

(b)

a b

1

2

n

Na b

Figure 5.2: Reduction of parallel tasks(reproduced from [23]). For additive QoS, the attributes
are summed up, while for multiplicative QoS, the attributes are multiplied together

Thus, if the cost for each of the parallel tasks (t1...tn) is 5 units each, then the cost of tN would

be 5∗n. Likewise, if the reliability for (say) three tasks (t1...t3) is 0.9 each, then the reliability

for tN would be 0.729. Similar reduction formulae [23] are used for other types of tasks, such

as sequential tasks, loop tasks, conditional tasks, etc.

Decomposing End-to-End constraints: QoS constraints are usually specified on an application-

wide basis. That is, performance for an entire application (end-to-end) or a cost constraint

that must be met. To achieve these constraints in a decentralized manner, we decompose the

global constraints that the application imposes, into local ones (the reverse process of SWR).

Local constraints can can be handed over to individual BuyerAgents. Amongst the three type

of QoS that we consider, the last two types of constraints (boolean and categoric) do not need

82 Mechanism Design

to be decomposed at all. They are given to all agents, as is. For example, if all services

must use encryption is a constraint, then every agent can be given the constraint, without

any processing. On the other hand, constraints like cost of all services < C need to

be decomposed on a per-Agent basis. Numeric constraints are decomposed, as shown in

Algorithm 1

Data: Numeric Constraints Limit
Result: Numeric Constraints Decomposed
begin

foreach Ag ent a do
Find list of markets (M) corresponding to a fx

Choose m ∈ M
Register in m
a ←− ml ast_k_tr ansacti ons

foreach ω ∈ Numer i cConstr ai nt s do
calculate aω_m

low , aω_m
medi an , aω_m

hi g h

end
end
foreach ω ∈ Numer i cConstr ai nt s do

Apply SWR ←−〈ω f1 ,ω f2 ,ω f3 . . .〉
if constr ai nt Met then

foreach Ag ent a do
aωbi d ∝ SW Rω

end
end
Choose different m
if al l M ar ket sE xhausted then

TerminateWithFailure
end

end
end

Algorithm 1: Decomposition of Numeric Constraints

Decomposition of Numeric Constraints Numeric constraints cannot be decomposed by

simply dividing the numeric value, across all the agents. That is, if an application has a

cost constraint of C , and three BuyerAgents, it cannot simply divide C /3 and allocate it to

each agent. This is so, because depending the kind of service, each service could have vastly

different costs. Also, depending on the structure of the application, a small change in QoS

5.4 Calculation, Communication, Decision-Making 83

of one service, could drastically change the QoS exhibited by the application (as explained

in 5.4.1). Hence, the ApplicationAgent performs the following steps:

1. It asks each BuyerAgent to register in the markets available for that service.

2. Next, each BuyerAgent queries its markets for the last k transactions.

3. From these transactions, each BuyerAgent calculates the lowest, median, and highest

value of each Numeric QoS, it is concerned about.

4. Each BuyerAgent then communicates these values to the ApplicationAgent.

5. The ApplicationAgent applies SWR to each value, and checks for constraint violation.

6. The ApplicationAgent allocates the first combination of numeric QoS values that meets

all its constraints, to all its BuyerAgents.

7. If no combination exists, the ApplicationAgent instructs the BuyerAgents to try a differ-

ent market.

8. If all markets are exhausted, then the ApplicationAgent terminates the process, with a

failure signal.

5.4.2 Adaptation Using Bid Generation

Bids are the mechanism by which BuyerAgents explore the search space of QoS-cost combina-

tions that are available. Depending on the Bids, potential transactional matches are identified

by the MarketAgent. Thus, there needs to be a systematic way to generate Bids, that not only

meet the application’s QoS requirements, but also explore the space of possible matches. We

therefore, recap the relevant parts that go into a Bid in table 5.3.

The most important part of deciding on a value for a QoS attribute, in a Bid is the constraint

on each attribute. If the constraint is hard, then, in each of the generated Bids, the value

inserted into the Bid will remain the same. Else, the value inserted into the Bid is varied. The

84 Mechanism Design

Category Value

Types of QoS attributes Boolean, Categoric and Numeric

Constraint on each attribute Hard, Soft

Direction on each attribute Maximize, Minimize, N.A.

Bid_Price Numeric

Table 5.3: Elements in a Bid

varied values depend on the type of QoS attribute. The rules for generating QoS values, on the

basis of type of attribute are as follows:

Boolean: In case of soft constraints, two Bids will be generated for a particular QoS attribute.

For example, for QoS attribute SSL support, one Bid is generated with the value: yes and

another with the value: no

Categoric: In case of soft constraints, the number of Bids will depend on the number of

acceptable alternatives. For example, for QoS attribute framerate, the acceptable alternatives

are: 24fps and 32fps. Therefore, two Bids will be generated.

Numeric: In case of soft constraints, the number of Bids will be three. That is, the BuyerAgent

makes one Bid at its target value, one at the median value obtained from the market, and the

last one at the mid-point between the target and the median value.

Thus, the total number of Bids that a buyer generates is given by:

Num(buyerBi d s) = 2∗Num(BooleanQoS)∗Num(Accept able Al ter nati ves)∗3∗Num(Numer i cQoS)

(5.4)

Thus, if one of the BuyerAgents of BizInt (our fictional company) has the following QoS and

preferences:

5.4 Calculation, Communication, Decision-Making 85

Name Type Median Target Direction

SSL Support Boolean No Yes/No N.A.

FrameRate Categoric 24fps 24fps, 32fps Maximize

Latency Numeric 99ms 95ms Minimize

Budget Hard Constraint (from market)80 (cannot exceed)100 N.A.

Table 5.4: QoS preferences for a BuyerAgent

The total number of Bids that it would generate would be:

Num(buyerBi d s) = 2∗Num(BooleanQoS)∗Num(Accept able Al ter nati ves)∗3∗Num(Numer i cQoS)

= 2∗Num(SSLSuppor t)∗Num(F r ameRate)∗3∗Num(Latenc y)

= 2∗2∗3

= 12

5.4.3 Bids Generated for Sample Scenario

Attribute Value

Bid-Price 80
SSL Yes
Framerate 24fps
Latency 99

Attribute Value

Bid-Price 80
SSL No
Framerate 24fps
Latency 99

Attribute Value

Bid-Price 80
SSL Yes
Framerate 32fps
Latency 99

Attribute Value

Bid-Price 80
SSL No
Framerate 32fps
Latency 99

86 Mechanism Design

Attribute Value

Bid-Price 80
SSL Yes
Framerate 24fps
Latency 97

Attribute Value

Bid-Price 80
SSL No
Framerate 24fps
Latency 97

Attribute Value

Bid-Price 80
SSL Yes
Framerate 32fps
Latency 97

Attribute Value

Bid-Price 80
SSL No
Framerate 32fps
Latency 97

Attribute Value

Bid-Price 80
SSL Yes
Framerate 24fps
Latency 95

Attribute Value

Bid-Price 80
SSL No
Framerate 24fps
Latency 95

Attribute Value

Bid-Price 80
SSL Yes
Framerate 32fps
Latency 95

Attribute Value

Bid-Price 80
SSL No
Framerate 32fps
Latency 95

Table 5.5: All the generated Bids given Equation 5.5 and the QoS preferences in Table 5.4

5.4 Calculation, Communication, Decision-Making 87

5.4.4 Decentralized Decision-Making Using Ask-Selection

5.4.4.1 Ask Selection

In any adaptation scenario, deciding quickly on which alternative to take, is a critical task.

After generating multiple possible alternatives, and once the obviously incorrect choices are

eliminated, the task of the decision-maker becomes subtle. There are three possible scenarios:

1. No feasible alternatives remain: From a decision-making perspective, this is an easy

task. New alternatives have to be generated, else adaptation will not occur.

2. One feasible alternative remains: Again, decision-making is easy. Since there is only

one feasible alternative, it must be chosen.

3. Multiple feasible alternatives exist: In this case, the obvious (and simplest) solution

is to choose the best out of the feasible alternatives. However, choosing the best is a

NP-hard problem (as discussed in section 3.2). If the search-space is high (due to the

multiple dimensions involved in service selection), the time taken to evaluate all the

alternatives and choose the optimal might not feasible. An alternative to choosing the

optimal, is to use heuristics. Heuristics are rules-of-thumb, born out of expertise, that

help in decision-making. However, heuristics are not guaranteed to always choose the

best alternative either. Between the strict rationality of optimality, and the human-

oriented heuristics method, we choose a third alternative, a systematic ranking method

for multi-criteria decision making.

According to the market mechanism that we have outlined, a BuyerAgent can make multiple

Bids. This is how it searches the space of possible services that it could get, for its stated budget.

Now, there might be multiple Asks in the market that match these multiple Bids. The market

mechanism now moves on to its second-stage, where the BuyerAgent has to select amongst

the possible transactions. Given that the mechanism for Bid generation precludes Bids that

will violate hard constraints, placed by the ApplicationAgent, it is safe to assume that none of

the possible transactions will violate the application’s hard constraints either. The task facing

88 Mechanism Design

the BuyerAgent, is to choose amongst the possible transactions, in such a way that the decision

maximizes the possible benefits, while taking care to minimize the possible downsides. We

use a multiple criteria decision making approach called PROMETHEE[12], to select between

multiple Asks that are possible transactions. More details about the PROMETHEE method

can be found in appendix A.1

5.4.4.2 Calculation of Preference

The BuyerAgent needs to rank all the CandidateServices, that have been returned by the

MarketAgent, as a potential transaction. Thus, for a transaction set (T S), the BuyerAgent

needs to select one CandidateService that it will actually transact with. Depending on the

number of QoS attributes, the preference of CandidateService A over CandidateService B

is calculated by aggregating the preferences over each QoS attribute (and its weightage).

The weightage (w) for each QoS attribute needs to be set by the application architect, since

this is domain-specific, and needs human expertise. The aggregate preference value of a

CandidateService with n QoS attributes, is calculated as:

π(A,B) =
n∑

i=1
Pi (A,B)wi (5.5)

Using this preference value, each CandidateService is ranked vis-a-vis the other CandidateSer-

vices in the possible transaction set. Ranking is done by calculating the positive outranking

flows and the negative outranking flows:

ø+(A) = ∑
x∈T S

π(A, x) (5.6)

ø−(A) = ∑
x∈T S

π(x, A) (5.7)

Finally, the net outranking flow is created to get a complete ranking of all the CandidateSer-

5.4 Calculation, Communication, Decision-Making 89

vices:

ø(A) = ø+(A)−ø−(A) (5.8)

Choice of the CandidateService is based on the following heuristic:

1. Based on the net outranking flow, choose the best CandidateService.

2. If there is a tie, choose the cheaper CandidateService out of the pool of best Candidate-

Services

3. If using cost still leads to a tie, choose randomly amongst pool of best CandidateServices

5.4.4.3 A Worked-out Example

Suppose that the 12 Bids generated in Table 5.5 were entered into a market, and the MarketA-

gent returns the following 4 Asks, as provisional transaction matches:

Attribute Value

Ask-Price 74
SSL Yes
Framerate 24fps
Latency 99

(a) CandidateService A

Attribute Value

Ask-Price 78
SSL Yes
Framerate 24fps
Latency 95

(b) CandidateService B

Attribute Value

Ask-Price 80
SSL No
Framerate 24fps
Latency 90

(c) CandidateService C

Attribute Value

Ask-Price 76
SSL Yes
Framerate 32fps
Latency 92

(d) CandidateService D

Table 5.6: Asks returned by MarketAgent as provisional transactions

Ranking amongst multiple Asks is done on a per-QoS attribute basis. That is, each Ask is

ranked on each QoS attribute. Depending on the type of QoS attribute, the criteria used from

PROMETHEE is shown in Table 5.7

90 Mechanism Design

QoS Attribute Type PROMETHEE Criterion Type

Boolean Usual Criterion
Categoric Quasi-Criterion
Numeric Criterion with Linear Preference

Table 5.7: QoS Attribute to PROMETHEE Criterion Mapping

Table 5.7 effectively means that CandidateServices will be evaluated on their QoS attributes

as follows:

1. In case of a boolean attribute, a CandidateService A will be preferred over Candidate-

Service B, if it has a desired boolean value, while the other doesn’t. Else, there is no

preference.

2. In case of a categoric attribute, a CandidateService A will be preferred over Candidate-

Service B, if the categoric value of A is better by k over the categoric value of B. Else,

there is no preference. The value of k is adjusted based on whether the attribute is

a hard constraint or a soft constraint. For hard constraints, k is taken to be zero, i.e.,

the CandidateService with the better categoric value (higher if the attribute is to be

maximized, lower otherwise) is strictly preferred over the other.

3. In case of a numeric attribute, a CandidateService A will be increasingly preferred over

CandidateService B, as the difference between their numeric value approaches some m.

After m, A is strictly preferred. Again, the value of m is adjusted based on whether the

attribute is a hard constraint or a soft constraint.

The preference functions for the three QoS attributes can be given as follows:

Pssl (x) =


0 if x = (ssl = no),

1 if x = (ssl = yes)

(5.9)

P f r amer ate (x) =


1

32 x if x < 32 f ps,

1 if x ≥ 32 f ps

(5.10)

5.5 Use of MDA for QoS adaptation 91

Pl atenc y (x) =



0 if x > 103ms,

1
2 if 103 > x > 95ms,

1 if 95 ≥ x

(5.11)

Based on the preference equations 5.9, 5.10 and 5.11, we can calculate the relative values of

the 4 CandidateServices, as given in Table 5.8 Once we have a relative per-attribute value, we

Table 5.8: Values of π(xi , x j)

A B C D

A — 0 + 0 + (-0.5) 1 + 0 + (-0.5) 0 + (-0.25) + (-0.5)

B 0 + 0 + 0.5 — 1 + 0 + 0 0 + (-0.25) + 0

C (-1) + 0 + 0.5 (-1) + 0 + 0 — (-1) + (-0.25) + 0

D 0 + 0.25 + 0.5 0 + 0.25 + 0 1 + 0.25 + 0 —

can calculate the outranking values based on Equations 5.6, 5.7 and 5.8, as shown in Table 5.9

A B C D

ø+ 0.5 1.5 0 2.25

ø− 1.25 0.25 2.75 0

ø -0.75 1.25 -2.75 2.25

Table 5.9: Calculation of outranking values

It is clear from Table 5.9 that CandidateService D is the best amongst the potential transactions

and CandidateService C is the worst. The BuyerAgent now accepts the transaction with

CandidateService D and rejects all the others.

5.5 Use of MDA for QoS adaptation

We design an economy which is a hybrid of ideas from the fields of traditional MBC and ACE.

Although both approaches recommend CDA as an effective mechanism, we are mindful of

92 Mechanism Design

Eymann’s criticism [32]. Therefore, we create multiple double auctions (MDA) for individual

applications to select web-services. This is important from the view of robustness and even

practicality. The cloud is designed to be an ultra-large collection of applications, web-services

and raw computing power. Given this large scale, any solution that is implemented, must

not rely on a single market or coordination. We view an application as a directed graph

of abstract web-services. Thus, an application can select from multiple candidate services

for each AbstractService in its Workflow. Agents for the application can trade in multiple

markets for selecting an appropriate CandidateService. An application thus creates at least

one agent per AbstractService in its Workflow. Each agent now registers with multiple markets

for trading, to procure the CandidateService corresponding to its AbstractService. The total

QoS exhibited by the application, is a function of the individual QoS exhibited by each of

the services. Each service is assumed to be traded in its own market. Thus, in a market for

clustering web-services, each seller will provide a web-service that performs clustering, but

offering varying performance and dependability levels. Varying levels of QoS require different

implementations and depending on the complexity of the implementations, will be either

scarce or common. This leads to a differentiation in pricing based on QoS levels.

We populate several markets with BuyerAgents and SellerAgents. As mentioned before, each

service (ASx) is sold in a market that is specific to ASx . All the buying agents and selling agents

in this market, trade web-services that deliver ASx . We assume that there exists a market Mx

for every ASx , that is needed.

5.5.1 Post-Transaction

The BuyerAgent reports back to the ApplicationAgent, the cost and QoS being made available

for the transaction. The ApplicationAgent then performs a SWR calculation to ensure that

the QoS of the service being bought, does not violate any of the application’s end-to-end

constraints. Note that the ApplicationAgent needs to calculate SWR for the numeric con-

straints only. The other types of constraints (boolean and categoric) are specified in the Bid

prepared by the BuyerAgent, and therefore do not need checking. This greatly reduces the

5.5 Use of MDA for QoS adaptation 93

 WebSvc - A

Trading
Agent

Sense

Effect

Plan / Analyse

 WebSvc - B

Trading
Agent

Sense

Effect

Plan / Analyse

 WebSvc - C

Trading
Agent

Sense

Effect

Plan / Analyse

 WebSvc - D

Trading
Agent

Sense

Effect

Plan / Analyse

Monitor Monitor Monitor

Distributed MAPE Loop

Application Boundary

Web Service

Trading Agent

Asynchronous
Gossip

Procedure Call

API

Data & Control
Flow of Application

Figure 5.3: Self-Adapting Application with a decentralized trading agents

computational effort required on the part of the Application agent. The best case scenario,

from a computational perspective, is when all the QoS attributes of the Application are either

boolean or categoric. The ApplicationAgent merely has to sum up the cost of all the BuyerA-

gents to ensure that the total cost is within budget. However, in the worst case scenario, all

the QoS attributes that the ApplicationAgent is interested in, could be numeric. In this case,

it has to perform an SWR calculation for each of the QoS attributes and the distribution of

computation to BuyerAgents is minimal.

In Figure 5.4, we show the various steps in the CDA as activities carried out by the principal

agents.

94 Mechanism Design

Application Buyer Market Seller

Distribute Boolean
& Categoric Constraints

Prepare Bid(s)

Get historic
data

Request
historic data

Initialized

Request
historic data

Get historic
data

Prepare Ask

Register
Bid(s)

Register
Ask

Market Data

Perform
Matching

Provisional
Transaction

[Ask-Selection]

Reject
Trans

Accept
Trans

[Not-Preferred]

[Preferred]

Provisional
Transaction

timeout

Clear
Unmatched

Shouts

Markets
Cleared

Markets
ClearedPerform

Transaction

Figure 5.4: Activity diagram for principal agents

5.6 Description of ApplicationAgent and BuyerAgents’
Lifecycle

We now describe the algorithms used by the ApplicationAgent and BuyerAgents, in the course

of adaptation. There are two distinct phases in the agents’ lifecycle :

• Initialization Phase: In this phase, the ApplicationAgent is responsible for achieving

the following goals:

1. Distribute total budget amongst BuyerAgents

2. Distribute end-to-end constraints amongst BuyerAgents

5.6 Description of ApplicationAgent and BuyerAgents’ Lifecycle 95

The BuyerAgents are responsible for achieving the following goals:

1. Register with a market that deals with their specific web-service

2. Acquire historical data regarding services sold in the market. Specifically, the

BuyerAgent must get data regarding the lowest transaction price, the highest

transaction price, the median transaction price and their corresponding QoS

values.

3. Communicate the median transaction price and corresponding QoS values to the

ApplicationAgent

• Adaptation Phase: In this phase, the ApplicationAgent is responsible for achieving the

following goals:

1. Communicate to the BuyerAgents, in the following cases:

(a) The total budget available changes

(b) The target QoS changes

The BuyerAgents are responsible for achieving the following goals:

1. Generate multiple Bids for registering in markets

2. Based on possible transaction matches, generate ranking amongst matched Asks

and conclude transaction

3. Communicate with ApplicationAgent about concluded transaction

4. Register ConcreteService with QoS Monitoring Engine

5. Monitor communication with ApplicationAgent for change in QoS

6. Monitor communication with QoS Monitoring Engine

5.6.1 Adapting Bid and Ask Prices

Bids and Asks form the core of the adaptive process of our mechanism. After an initial start,

the BuyerAgents perform the equivalent of a local search, by means of making multiple

96 Mechanism Design

Bids. Multiple values for QoS attributes in Bids can be generated by the process described

in section 5.4.2. The bid_price, on the other hand, requires a different treatment. We take

our starting price to be the median price in the market. However, since the median price

reflects past data, it will not necessarily result in a trade. We need a different algorithm to

adjust the bid_price. We use the least mean squares method (also known as Widrow-Hoff

learning rule) [102] to adapt the price. ZIP [26] implements the Widrow-Hoff learning rule to

perform a gradient descent of the current price (in the Ask or Bid) to the last transaction price,

in the market. This enables agents (both BuyerAgent and SellerAgent) to move their shout

prices, in line with the market trend. If a SellerAgent is able to trade, it increases the price it

charges, in the next Ask, using ZIP. If the seller is unable to find buyers at a higher price, it

drops back to its older price.

The buyers are constrained by their budget, for the prices that they are willing to pay. The

sellers are also constrained by their minimum support prices, below which they will not trade.

5.6.2 Stopping Criteria

Like most research on dynamic service composition, we evaluate the goodness of a particular

set of services, by means of a utility function. Given a set of services, we use their associated

QoS to calculate application’s end-to-end QoS. We use the application’s targetted end-to-

end QoS as the benchmark, against which the currently achieved QoS is measured. The

application’s target QoS is normalized and summed across all the QoS that it is interested

in. This is taken to be the ideal utility level (IUL). The achieved QoS is fed through the same

process, to attain the achieved utility level (AUL). Depending on the domain, the application

may decide to tolerate a small (ε) level of deviation from the IUL. This ε creates a satisfactory

zone. Trading by the agents (and hence adaptation) stops when the application’s AUL is within

the satisfactory zone. The level of tolerance can be made arbitrarily small, or even zero. The ε

can be different for different applications, and indeed, has no restriction whatsoever. Clearly,

if it is set injudiciously, the application may either stop adapting too quickly or may never

stop adapting. Thus, it becomes an important parameter to tune.

5.7 Description of the SellerAgent’s Lifecycle 97

5.6.3 Re-starting Conditions

Once an application reaches a satisfactory level of QoS, all its agents will withdraw from the

market. The agents will re-enter the market, only in case of an adaptation event. There are

two kinds of adaptation events:

1. Internal Event: When a QoS violation is detected at any of the CandidateService, the

ApplicationAgent informs the BuyerAgent that it needs to re-start its search for a new

CandidateService. This event is not propagated to all the BuyerAgent, but only to the

particular one responsible for that AbstractService.

2. External Event: If the application’s end-to-end QoS target, or available budget changes,

or available service calls finish, the ApplicationAgent informs all of its BuyerAgents, and

restarts the initialization phase of the BuyerAgents’ lifecycle 5.6. Else, the BuyerAgents

stay in the adaptation phase, until the stopping criteria are met.

Both these events occur at different time scales. The internal check for QoS violation is a

continuous check and concerns itself with performance of the web-service across relatively

shorter periods of time. The external event, on the other hand, typically happens when

budgets for operation change drastically or external events cause change in performance or

reliability requirements. This happens at relatively rarer intervals. Hence, typically once an

application reaches close to its desired level of QoS, the BuyerAgents stop trading.

5.7 Description of the SellerAgent’s Lifecycle

The SellerAgent represents a ConcreteService, that is being offered. Hence, it cannot change

the QoS that it advertises in its Ask. However, it changes the price at which it is willing to trade,

to ensure that it gets some price for its ConcreteService. The SellerAgent, in order to achieve

profit maximization, will continue to sell as long as the marginal price it gets, is greater than

the marginal cost of providing the service([64], pages 245-247). This is concretized for the

98 Mechanism Design

SellerAgent in the constraint that its Ask price is always greater than or equal to its cost. There

are two phases in the lifecycle of a SellerAgent:

• Initialization Phase: In this phase, the SellerAgent is responsible for achieving the

following goals:

1. Find the market that it can sell the ConcreteService in

2. Register in all the markets found

3. Request historical data about prices

4. Prepare Ask

5. Register Ask

• Adaptation Phase: In this phase, the SellerAgent is responsible for achieving the follow-

ing goals:

1. If traded, withdraw from market(s)

2. Else, adapt price using ZIP

5.8 QoS Monitoring Engine

Monitoring the actual QoS exhibited during runtime by the CandidateService, is beyond

the scope of the system. We assume that all the agents agree on the monitoring of a Candi-

dateService, by a specific monitoring mechanism. This could be market-specific or domain

specific. The monitoring mechanism needs to be neutral, since it will be used by both parties:

BuyerAgent and SellerAgent. The BuyerAgent needs to know whether the SellerAgent’s service

is providing the QoS that it promised. The SellerAgent needs to know that the BuyerAgent’s

application is not abusing the service. Zeng [112], and Michlmayer [68] are good examples of

online QoS monitoring.

Zeng et al. classify QoS metrics into three categories: (a) Provider-advertised (b) Consumer-

rated, and (c) Observable metrics. They provide an event-driven, rule-based model where

5.9 Conclusion 99

designers can define QoS metrics and their computation logic (in terms of Event-Condition-

Action rules), for observable metrics. These are then compiled into executable statecharts,

which provide execution efficiency in computing QoS metrics based on service-events that

are observed.

Michlmayer et al. provide their QoS monitoring as a service runtime environment. This service

runtime environment addresses service metadata, QoS-aware service selection, mediation of

services and complex event processing. The authors propose two mechanisms to monitor

QoS: (a) a client-side approach using statistical sampling, and (b) a server-side approach

using probes that are present on the same host as the service. The client-side approach is

non-intrusive, in terms of not needing access to the service’s host.

Both approaches, Zeng and Michlmayer, use an event-based mechanism to detect QoS values,

and SLA violations, if any. This fits in neatly with our need for a non-intrusive, third-party

based QoS Monitoring Engine. Our mechanism is agnostic to the actual QoS monitoring

mechanism, that is used.

5.9 Conclusion

This chapter introduced several decentralized multi-agent based methods for self-adaptation.

We provided a rationale for picking Market-based control and then introduced our MDA-

based mechanism in detail. We outlined the principal algorithms used for initialization

of agents, revising of Bids, and communication of attained QoS. In the next chapter, we

shall discuss the requirements, and design of the multi-agent system that we create, design

alternatives and decisions.

100 Mechanism Design

CHAPTER 6

Requirements and Design of Clobmas

The programmer, like the poet, works only slightly

removed from pure thought-stuff. He builds his

castles in the air, from air, creating by exertion of

the imagination.

Frederick Brooks Jr.

101

102 Requirements and Design of Clobmas

6.1 Introduction

In the previous chapter, we explicated our market-based mechanism, and the goals of each

agent. Now we proceed to establish the engineering foundations of the same. Designing a

multi-agent system is a complex task, with decisions to be taken regarding the computational

ability of each agent, the hierarchy of control (if any), the mechanism of communication, the

frequency of communication, etc. Each of these decisions has an impact on the properties

exhibited by the system, in terms of its flexibility, scalability, etc. These decisions once made,

are difficult to change, and therefore demand careful consideration before starting to build a

system. Therefore, in this chapter, we perform the following steps:

1. We state the quality goals that the mechanism should have,

2. Identify the important variables in the system that are likely to change,

3. Isolate target variables that are relevant to the quality goals, and

4. Isolate the operational variables, which drive the quality goals and specify their opera-

tional ranges

6.2 Requirements

Goal-Oriented Requirements Engineering (GORE) aims to systematically proceed from the

elicitation of the goals (the why issues), the operationalization of these goals into service

specifications and constraints, (the what issues) to the assignment of responsibilities for the

resulting requirements to agents (the who issues)[94]. This rigourous approach to creating

goals, specifying constraints, and assigning responsibility aims to provide software architects

with specific guidance, on how to design a particular system. Starting from the goals that the

system must achieve, GORE processes aim to create a traceable path between the needs of

the user (explicit and implicit) and the design elements that realize these needs. In our case,

the functional goals of the system were derived in the previous chapter. Our non-functional

6.2 Requirements 103

goal viz, scalability, has not been elucidated yet. In the following sections, we describe what

we mean by scalability, and how we plan to measure it.

6.2.1 Goal Oriented Scalability Characterization

Scalability is one of the most important non-functional goals of a software system, but it is

often mis-understood. Scalability is not just the ability of a system to meet its performance

goals. Rather, depending on the system’s goals, it is the ability to maintain quality levels that

are demanded by the system stakeholders, when certain characteristics vary over expected

operational ranges[31]. An underwater autonomous vehicle (UAV) must be able to navigate

to its desired target area, in spite of large number of obstacles; an air traffic control system

should maintain safe levels of aircraft separation, even in times of increased traffic. Both

these goals differ conceptually from a web-based search engine’s goal to return results within

a certain specified time, but they are all scalability goals.

We used the method outlined in [31] to uncover system characteristics in our specific case,

and the operational ranges that these characteristics are expected to vary over. Duboc et al

[31] use concepts and terminology from the KAOS framework[94], and build on it, specifically

to cover issues of scalability. More information about the KAOS framework, and the process of

goal elicitation and refinement, can be found in Appendix B.1.1. Based on the method given

in [31], we specified the quality goals of the system.

Quality Goals:

1. The proportion of applications that are able to adapt, should be high. Since our mecha-

nism is stochastic, it cannot guarantee that every application will be able to meet its

QoS requirements. This could be due to various reasons:

• An application requires QoS levels that are simply not available

• An application does not have enough budget, for its desired QoS levels

104 Requirements and Design of Clobmas

Therefore we require that, given a gaussian distribution of QoS values and appropriate

budget values, at least 80% of the applications should be able to achieve their QoS

requirements.

2. The amount of time taken to perform adaptation does not increase exponentially with

increase in trading agents. One of the big problems with service-selection is that a

deterministic selection of the optimal service, is NP-hard. Since we relax the condition

of optimality and determinism, our mechanism should be able to tolerate a high number

of applications, and by extension, trading agents.

Given these quality goals, it is possible to design a system that achieves these goals. However,

in any real-world situation, the environment that the system operates in, will always change.

To be called scalable, the system must continue to achieve the quality goals, when important

characteristics of the environment or the system itself, vary.

Identification of characteristics that are expected to vary:

1. Characteristics of the application:

(a) Number of AbstractServices per application

(b) Number of QoS attributes per application

2. Characteristics of environment:

(a) Number of ConcreteServices available (per AbstractService)

(b) Number of Markets available (per AbstractService)

We use the characteristics identified, to refine the quality goals, into more concrete goals.

Each goal is refined, until it can be operationalized, and is assigned to an agent.

6.2 Requirements 105

6.2.1.1 Goal refinement for scalability

In Figure 6.1, we see a portion of the goal refinement graph. It has a higher-level goal

which is concerned with achieving the maximum possible matching of ConcreteService

providers to service consumers. We see it refined into [Fast Price and QoS Matching]

and [All applications that need services should be matched]. These sub-goals

are restricted by the presence of obstacles. Obstacles are conditions (like properties of the

domain) that prevent a goal from being satisfied. An obstacle can be resolved through several

alternative obstruction resolution tactics [95]. As shown in Figure 6.1, we resolve the obstacles

in the following ways:

1. Refining the obstacle into sub-obstacles which are then resolved using requirements

2. Introducing expectations, which resolve the obstacle

3. Introduce a weakened goal, which avoids the condition described by the obstacle

After obstacle resolution, we see goal-weakening that results in a specific formal operational

range for a particular variable. Through this process, we arrive at specific ranges that denoted

the expected operational range, for that particular variable. Thus, to characterize a system as

being scalable, we arrive at specific, measurable sub-goals that a particular agent is responsi-

ble for achieving. If each agent is able to achieve its allocated goal, then the system is said to

be scalable. In light of this, we formulate scaling goals for Clobmas.

Scaling Goals:

1. Ratio of Time-Taken-to-Adapt to increase in ConcreteServices increases linearly or as a

low-order polynomial

2. Ratio of Time-Taken-to-Adapt to increase in Markets increases linearly or as a low-order

polynomial

3. Ratio of Time-Taken-to-Adapt to increase in QoS attributes increases linearly or as a

low-order polynomial

106 Requirements and Design of Clobmas

4. Number of applications that have adapted in all cases shall not be lower than 70% of

the market

To each of these goals, there could be a corresponding obstacle, that prevents Clobmas from

reaching its goal.

Scaling Obstacles:

1. As the number of ConcreteServices increase, the Time-Taken-to-Adapt could increase

exponentially

2. As the number of Markets increase, the Time-Taken-to-Adapt could increase exponen-

tially

3. As the number of QoS attributes increase, the Time-Taken-to-Adapt could increase

exponentially

4. In a certain market configuration, the number of applications that are able to adapt

might be less than 70%

Given that these goals and obstacles do not prescribe any specific, measurable quantities, it

is difficult to know whether Clobmas scales successfully, or not. In order to assign specific

numbers to the operational variables, we make some scaling assumptions.

Scaling Assumptions: To arrive at a specific, measurable sub-goal, we elicited expert judge-

ment. We contacted Capacitas Inc.1, which is a capacity and performance planning consul-

tancy. They advise their clients on the kinds of SLAs needed to establish a certain level of

end-to-end QoS on the Azure cloud. In conversation with Mr. Danny Quilton (from Capaci-

tas Inc.), we established the following assumptions about the range of values, taken by the

operational variables:

1www.capacitas.co.uk

6.2 Requirements 107

1. Number of AbstractServices per application goes from 2 through to 20

2. Number of ConcreteServices per AbstractService goes from 1 through to 50

3. Number of QoS attributes per application goes from 1 through 10

4. Number of Markets per AbstractService goes from 1 through 10

Note: These ranges subsume the values, we obtained from the literature review. At their upper

ends, these variables together, represent applications that do not exist today. Rather, we posit

that the upper ends of these ranges are an extreme level, which adequately stress Clobmas.

Measurable Scalability Goals: We can now formulate measurable scalability goals. The

reported complexity of decentralized mechanisms in the literature review is around O(2n),

and hence, any polynomial with low order would do, as a scalability goal. The polynomial

chosen should have a order high enough to be practical, and yet low enough to be useful.

We choose a biquadratic polynomial, since we want to be practical in the application of QoS

contraints. Given the scaling assumptions, and the higher-level scaling goals, we require that:

within the operational bounds specified, the polynomial describing the Time-Taken-to-Adapt:

1. As AbstractServices increase, must be biquadratic (fourth-degree) at worst. (Scalability

Goal 1)

2. As ConcreteServices increase, must be biquadratic at worst. (Scalability Goal 2)

3. As QoS attributes increase, must be biquadratic at worst. (Scalability Goal 3)

4. As Number of Markets increase, must be biquadratic at worst.(Scalability Goal 4)

More detailed goal-derivation diagrams can be seen in Appendix B. We summarize the opera-

tional ranges that our system is expected to deal with, in Table 7.1

108 Requirements and Design of Clobmas

Achieve[As many service

producers as possible should be

matched with Applications]

(Goal) mas_for_cloud

Achieve [Fast Price and QoS

Matching]

Achieve [All applications that

need services should be

matched]

Applications that do not have

budget to purchase services

cannot be matched

Unbounded number of

Applications cannot be

matched due to bounded

number of service producers

Unbounded number of

Applications slows matching

algorithm

Number of service providers is

always greater than Application

demand

Applications without adequate

budget shall not be considered

for matching

Any incoming bid from an

Application must be greater

than the lowest 'Ask' by a

service provider

Market_Agent

Matching time increases as size

of Application workflow increases

unboundedly

Matching time increases as

number of service providers per

service increases unboundedly

Matching time increases as the

number of QoS per service

increases unboundedly

Number of QoS varies from 1 to

10

Number of serviceproviders per

service varies from 1 to 50
Size of workflow varies from 5 to

100

Buyer_Agent

Application_Agent

see

Figure 6.1: Goals for maximum possible matching and assignment to agents

6.3 Design 109

Variable affecting performance From Lit. Review Target Goals

Number of AbstractServices in a Workflow 1–10 1–20

Candidate services per AbstractService 1–20 1–50

QoS attributes per CandidateService 1–3 1–10

Number of Markets per CandidateService N.A. 1–10

Table 6.1: Operational range for scalability goals

6.3 Design

There are several approaches to understanding, and describing the structure and behaviour

of a multi-agent system:

1. Gaia Methodology: This approach regards the MAS as a computational organization,

with agents performing roles, enforcing rules of communication, etc[111].

2. BDI Agents: This approach considers the autonomy of the agents to be the most signifi-

cant characteristic and therefore, documents the behaviour of an MAS as an aggregation

of the beliefs, desires, and intentions of its constituent agents[13].

3. Architecture-Driven Design of MAS: This approach places the architecture at the cen-

tre of the development activity, for an MAS. Based on the development of several

industrial-strength MAS, Weyns[101] believes that developing agent-based systems is

95% software engineering and 5% agent systems theory. Therefore, UML is extensively

to document the architecture.

We use the last approach (Architecture-Driven Design) because:

1. UML is well-known to most practitioners of object-oriented modelling and, thus easier

to communicate

2. A major part of our system’s domain is software engineering, with agents that act

autonomously and concurrently, being a small but necessary part of it. Therefore, we

philosophically agree with [101].

110 Requirements and Design of Clobmas

Architecture-Driven Design (ADD) of a system can start when the main architectural drivers,

i.e., functional and non-functional requirements of the system are known. Depending on

the utility derived from each of the functional and non-functional requirements, the main

requirements form the architectural drivers. Each architectural driver is refined in an iterative

manner, until all of the drivers are realized or in a position to be realized. In Figure 6.2, we see

that design and requirements are inter-twined, with several feedback loops.

Requirements

Engineering

Develop

Core System

Design

Software

Architecture

Document

Software

Architecture

Evaluate

Software

Architecture

Architectural Design

Figure 6.2: Architecture-Driven Design lifecycle

We followed the ADD methodology for designing Clobmas. First, each of the basic system

functionalities was mapped onto an agent of Clobmas. Then each agent was systematically

decomposed to arrive at its constituent classes, and their responsibilities.

6.3 Design 111

6.3.1 Design Rationale

The two main principles underlying the design of Clobmas are: partially decentralized con-

trol and asynchronous communication. Decentralized control means that each agent acts

autonomously, and thus local decision making informs a large part of Clobmas’ behaviour.

Although in general, agents act independent of other agents, however they will wait for in-

structions at specific stages, for example during initialization and during the 2-stage protocol

(see Figure 6.11). Thus, the mechanism is not completely decentralized. Rather, it is a hybrid

of partly centralized, and partly decentralized control. Asynchronous communication is really

a design force that acts on a decentralized system, and allows it to function effectively. Regis-

tration with markets, preparing Bids, making decisions about multiple possible transactions,

are all done in an asynchronous fashion.

6.3.2 Architectural Pattern

An architectural pattern describes the kind of components, connectors and their topology,

that are known to be useful in resolving certain problems in software design. Patterns repre-

sent the accumulated wisdom of multiple practitioners, on known ways of problem-solving.

Typically, each pattern has certain strengths, and weaknesses. It is the responsibility of the

system designers to weigh the advantages of using a certain pattern, against the liabilities it

incurs. In our case, we chose the Publish-Subscribe pattern to model the communication

and control within our system. This pattern decouples the communication between the

components, thus allowing dynamic changes in the structure of the system. Components

can dynamically change whether they want to react to changes in a certain components or

not. In a decentralized system, this capability is critical to the functioning of the system. We

instantiate the Publish-Subscribe pattern through the use of distributed events. Each agent

has a list of events that it wants to be notified of, and it registers with the appropriate agent

for this purpose.

We combine the use of Publish-Subscribe with the Broker Pattern. The Broker Pattern decou-

112 Requirements and Design of Clobmas

Client
Service

Agent

Client

Proxy

Call Methods

Return Results

Network

Service

Proxy
Service

Execute Methods

Return Results

Figure 6.3: The Broker Pattern

ples the point of request, from the point of service (Figure 6.3). That is, when the client makes

a service request from the service agent, the agent forwards this request across a network.

When computation is done by the actual service, the results are communicated back to the

client, via the service agent. This pattern insulates the client from low-level details such as

the physical location of the service, network-protocols to reach the service, etc. Therefore, if

we substitute the service with another that is functionally equivalent, the client will not be

able to tell the difference.

In the following sections, we talk about the high-level design of the system in detail. We first

model Clobmas structurally, and then we look at the behavioural aspects of Clobmas.

6.3.3 Structural Modelling

We document the system using the object-oriented paradigm for all of the internal com-

ponents of an agent. Thus, we show the static structure of the system through package,

component and class diagrams. Using these diagrams, we wish to highlight the modular

nature of Clobmas, and how easily it can be changed to accommodate new code.

High level Package Diagram: A package diagram shows the coarse-level organization of

code in a system, with the packages and sub-packages demarcating the encapsulation of

concepts in the system. In Figure 6.4, we see that all the agents, viz., buyer, seller, application,

6.3 Design 113

market are created and maintained separately from concepts like Strategy and Communica-

tion. This independence of packaging also highlights the various axes along which Clobmas

could change its behaviour. Thus, Clobmas could change its auction style from a continu-

ous double auction to a double auction with a clearing house, with no effect on the other

parts of the system. In section 5.6.1, we had explicated on the usage of ZIP to modify Bid

and Ask prices. This can be easily changed to an implementation of (say) Roth-Erev[83],

Gjerstad-Dickhaut[37] or AA[97], by simply implementing the PricingStrategy interface.

Agent

Buyer

Application

Seller

Market

Strategy

BiddingStrategy

ZI-C

ZIP

AskingStrategy

ZIP

AuctionStrategy

ClearingStrategy

ContinuousDoubleAuction

ClearingHouseDoubleAuction

PricingStrategy

k-pricingStrategy

Communication

Registration

Transaction

ProvisionalTransaction

AcceptedTransaction

Cancellation

BidCancellation

AskCancellation

TransactionCancellation

Figure 6.4: Package diagram of entities in Clobmas

Component Diagram: A component diagram illustrates how a system is structurally orga-

nized, with communication and dependencies between entities. There are several different

definitions of component. We do not attempt to provide yet another definition, but use the

114 Requirements and Design of Clobmas

common features of most definitions, that it is a unit of reuse and replacement[88]. In Figure

6.5, we see a subset of the components, and their communication links. The component

Service Registry is depicted as a separate entity, since it is a third-party component, and we

do not propose to have any control over it. The communication link shown between Seller

and Service Registry is therefore necessarily one that is likely to be different for every Service

Registry. While not explicitly enforcing a particular deployment, this architecture hints at the

distribution of components, amongst several entities.

Market<AbstractServiceA>

Seller

Application

«access»
ServiceRegistry

«register»

ServiceRegistry

Market<AbstractServiceB>

«access»

Seller

«register»

QoS Monitoring Engine

SLA
ViolationEvent

SLA
ViolationEvent

SLA
ViolationEvent

Figure 6.5: Component diagram of entities in Clobmas

Class Diagram: The class diagram shows the static relationships between the main entities

in the MAS. It drills down and provides an implementation-level design view of the system.

The Bid and Ask interfaces shown in Figure 6.6 are also shown in the component diagram (see

figure 6.5), with the Market class implementing both of them.

6.3 Design 115

«Agent»
Application::BuyerAgent

budget: Double
candidate_service_wsdl: String
curr_bid_price: Double
current_service_wsdl:String
num_calls_per_contract: Long
+calc_qos_effect()
+make_next_bid()
+comm_budget_inadequate()
+comm_accept_trans()

«Agent»
Application::ApplicationAgent

total_budget: double
num_tasks: int
num_constraints: int
qos_constraints: String
agent_info: Vector<AgentID>
+broadcast_qos_constraints()
+calc_redistribution()
+change_budget()
+decompose_qos_constraints()
+distribute_budget()

BidInterface

register_with_market
make_bid

cancel_trade
confirm_trade

get_last_trade_price
get_last_qos

unregister_from_market

«Agent»
Market::MarketAgent

-service_wsdl: String
-num_asks: int
-num_bids: int
-last_transaction: Transaction
+make_match()
+announce_prov_trans()
+announce_trans()

«Strategy»
Strategies::Bidding_Strategy

calc_next_price()

«Strategy»
Strategies::ZeroIntelligence

{Some Properties}
calc_next_price()

«Strategy»
Strategies::ZIP

{Some Properties}
calc_next_price()

AskInterface

register_with_market
make_ask

get_last_trade_price
get_last_qos

unregister_from_market

«Agent»
ServiceProvider::SellerAgent

{Some Properties}
-cost: Double
-num_calls_per_contract: Long
-curr_ask_price: Double
-curr_qos_offered:String
+make_next_ask()

«Message»
Market::Contract

{Some Properties}

«Message»
Market::Transaction

{Some Properties}

1..n
Facilitates

Figure 6.6: Class diagram of entities in Clobmas

6.3.4 Behavioural Modelling

Interaction Diagram: The most difficult part of getting all the agents in an MAS to solve

a problem, is the problem of communication. The design of the communication protocol

determines how much communication happens, at what times and how much computational

effort it takes to communicate. If the agents communicate too little, then there is a danger

of the MAS failing to solve the problem it was created for. On the other hand, if too much

communication takes place, then a lot of wastage occurs, not only in terms of bandwidth

but also in computational cycles and time. Thus, while communication is a fundamental

activity in an MAS, depicting this in UML is difficult. The standard activity diagrams in UML

are Sequence Diagrams and Collaboration Diagrams. However, the semantics in both these

diagrams assumes a single thread of control, i.e., each object that sends or receives a message

116 Requirements and Design of Clobmas

is assumed to be the only active object at that time instant. This is not true in the case of

Clobmas. To deal with these situations, the agent community has evolved AUML (Agent-UML)

which modifies the semantics of a sequence diagram, to allow for the possibilities above. We

document the communication steps of our mechanism through AUML diagrams.

6.3.4.1 Setup Phase

In the following figures, we show the communication for an application with two Abstract-

Services, A and B, and its corresponding BuyerAgents and the market agent. The Setup Phase

(Figure 6.7) is composed of two calculations done by the ApplicationAgent and, two multicast

messages to the application’s BuyerAgents. The two calculations involve decomposing the

application’s end-to-end constraints into local constraints and, computing the budget that

each BuyerAgent will receive.

Buyer_A Market_A Application Market_B Buyer_B

local_constraints local_constraints

local_endowment local_endowment

Setup Phase

ref
Decompose_Constraints

ref
Compute_Endowment

Figure 6.7: Setup phase for an application with two AbstractServices A & B

Decomposing constraints: Decomposing constraints (Figure 6.8) involves communication

between the BuyerAgents, their respective markets and the ApplicationAgent. The Applica-

tionAgent waits for the BuyerAgents to get data about previous transactions in the market,

applies SWR[22] and checks whether the combination of QoS attributes available in the mar-

ket meets its end-to-end constraints. Based on the combinations that meet the end-to-end

constraints, the ApplicationAgent creates local constraints for the individual BuyerAgents.

These are then propagated to the BuyerAgents.

6.3 Design 117

Buyer_A Market_A Application Market_B Buyer_B

get_last_k_transaction_data get_last_k_transaction_data

get_last_data

get_last_data get_last_data

last_data last_data

last_k_transaction_data last_k_transaction_data

Loop

Possible_Infeasibility

alt

Decompose_Constraints

[All_Combinations_Checked]

ref
Apply_SWR_to_Combination

ref
Save_Valid_Combination

[Valid_Combinations_Exist?]

ref
Create_local_constraints

[else]

Figure 6.8: Application decomposes its constraints into local constraints

Compute Endowment: The budget for the individual agents is split in the ratio of the trans-

action prices that are prevalent in the individual markets. Given historical price information

in a market, the prices in the next trading rounds are likely to be around the same figure.

Splitting the application’s budget evenly across the BuyerAgents could possibly result in some

agents getting excess endowment, and some agents too less. The ratio of their transaction

prices allows the agents with expensive services to get a naturally higher share of the budget.

Buyer_A Market_A Application Market_B Buyer_B

get_k_last_transaction_prices get_k_last_transaction_prices

get_last_prices get_last_prices

last_prices last_prices

last_transaction_prices last_transaction_prices

ref
Split_Budget_In_Corresponding_Ratio

Figure 6.9: Application computes endowment for its BuyerAgents

118 Requirements and Design of Clobmas

Application Buyer Market

Get_Last_Transaction_Price

Last_Transaction_Price

Reg_Bids

Transaction_Details

Accept_Transaction?

Accept_Transaction

Delete_Other_Bids

Transaction_Details

Cancel_Transaction

alt

Failed_to_Transact

Last_Transaction_Price

New_Budget

alt

Revise_Bid

alt

alt

Loop

ref
sub Market: Match_Bid_Ask

[Provisional_Transaction_Possible]

ref
sub Buyer:Ask_Selection

[Yes]

ref
sub Application:Redistribute_Budget?

[Surplus_Available?]

ref
sub Application:Raise_Error

ref
sub Buyer:Revise_Bid

Figure 6.10: The trading phase of buying a service

6.3 Design 119

Seller Market Buyer Application

Mkt_OpenMkt_Open

Reg_BidsReg_Ask

Provisional_TransactionProvisional_Transaction

Cancel_Transaction_of_lower_ranked_Asks

Delete_Bid

Accept_Transaction_of_highest_ranked_Ask

New_TransactionNew_Transaction

Delete_Bid

Exit_Mkt

Delete_Ask

alt

timeout! timeout!

alt

Loop

2-Stage CDA

Stage-1

ref
sub Match_Bid_Ask

[All_Constraints_Met]

ref
sub Buyer:Ask_Selection

Stage-2

[else]

Figure 6.11: Two-stage CDA protocol

6.3.4.2 The Trading Phase

In Figure 6.10, we show the communication that takes place during the trading phase. This

phase is essentially a loop. It periodically evaluates the Bids and Asks in the orderbook, and

tries to match them. If it is successful, the transaction moves into the second stage (see Figure

6.11). Based on whether a trade occurs or not, the application evaluates whether it needs

to re-distribute the endowments of its agents. It is possible that an agent is unable to find

any potential transactions, simply because it does not have the budget to bid high enough.

The trading proceeds in two stages. In the first stage, the MarketAgent matches the Bids and

Asks based on their individual QoS values and shout prices. After matching, a provisional

transaction is created. This provisional transaction enters the second stage. In the second

120 Requirements and Design of Clobmas

stage, the BuyerAgent compares all the Asks returned as provisional transactions (see Section

5.4.4.1). The top-ranked Ask is selected and the other Asks are rejected. The BuyerAgent

enters into a transaction with the SellerAgent of the selected Ask.

6.3.5 Implementing vs. Simulating a MAS

As Steve Phelps notes, there are many issues with implementing a MAS, specially in the

context of evaluating the MAS itself for mechanism design[82]. In many cases, it is preferable

to simulate a MAS, instead of implementing one. We now detail why we chose a simulation:

1. Reproducibility: The most important issue is, that we want to be able to reproduce the

results of an experiment exactly, given the starting conditions. Using a real MAS, this

may not be possible since it is impossible to reproduce the environment exactly. This is

particularly so, when the interaction involves human decision-making of setting QoS

targets, QoS violations by other services, etc. While simulating a MAS, all of these can

be modelled as processes that happen with a certain probability.

2. Interaction with the Environment: A real MAS has to be tailored to deal with several

conditions like varying computational power available to different agents, keeping track

of real-world time, race conditions that occur due to parallelism amongst distributed

machines. All of these are implementation issues, and serve no purpose in evaluating

the basic structural and behavioural properties of our mechanism. To concentrate on

multiple types of situations, it is handy to be able to ignore such issues, and hence

simulating a MAS is much more suitable.

3. Programmer Libraries: On a more practical level, the standard libraries used for im-

plementing randomness (for example, rand() from libc) have lower periods than are

recommended for scientific experimentation. Simulation toolkits like Repast, SimPy,

Matlab, etc. provide high-quality pseudo-random number generators (PRNGs), which

can be used for statistical validation of experiments.

6.4 Conclusion 121

In light of these reasons, we decided to simulate a MAS, with human interaction and QoS

violations being modelled by processes running with some probability. These do not change

the architecture of the MAS, only that the parallelism of the real world is modelled using a

sequential computer.

6.4 Conclusion

In this chapter, we described the process that we used to ascertain the requirements, and

elucidated the scalability requirements. We started with abstract quality goals, which were

refined into scalability goals. These goals were further refined with scaling obstacles, and

finally, after concretizing the scaling assumptions, we arrived at measurable, and specific

goals. We then described the design of Clobmas, both structurally, and behaviourally. In the

next chapter, we evaluate Clobmas for its functional, as well as scalability properties.

122 Requirements and Design of Clobmas

CHAPTER 7

Evaluating Clobmas

You can tear a poem apart to see what makes it tick.

You’re back with the mystery of having been moved

by words. The best craftsmanship always leaves

holes and gaps, so that something that is not in the

poem can creep, crawl, flash or thunder in.

Dylan Thomas

123

124 Evaluating Clobmas

7.1 Introduction

In the previous chapter, we looked at Clobmas’s architecture, and its scalability goals. In this

chapter, we look evaluating Clobmas. We evaluate Clobmas in two stages. The first stage of

evaluation is functional evaluation. This is to ensure that Clobmas meets the core objectives

that it was set up to fulfill. The second stage of evaluation is to judge whether Clobmas

possesses desirable non-functional properties. Note, we seek only that Clobmas satisfies

the functional, and scalability goals, and not that it optimizes. In this context, this thesis is

evaluated as follows:

1. We evaluate Clobmas from the perspective of BizInt (functional)

2. We evaluate Clobmas from the perspective of SkyCompute (functional)

3. We evaluate the architecture of Clobmas and reflect on the architectural choices (be-

havioural)

7.2 Context for Evaluation

In order to set the context for evaluation, we now reprise the example that we had introduced

in chapter 1 (sections 1.1.1 and 1.1.2).

BizInt, a small startup company creates a new business intelligence mining and visualiza-

tion application. It combines off-the-shelf clustering algorithms with its proprietary outlier

detection and visualization algorithms, to present a unique view of a company’s customer

and competitor ecosystem. In order to exhibit a high level of performance, it decides to host

its application in the cloud. Also, instead of reinventing the wheel, it uses third-party services

(for clustering, etc.) that are also hosted in the same cloud. As seen in Figure 7.1, BizInt

uses composite web services (Data Filtering, Clustering, Association Rule Mining and Cross-

Validation) from the cloud, along with its own services (Job Submission, Outlier Detection

7.2 Context for Evaluation 125

Association Rule Mining

Clustering

Data Filtering VisualizationJob Submission Cross-Validation

Figure 7.1: BizInt’s Workflow constructed using composite services from the hosting cloud

and Visualization) to create a complete application. Soon BizInt discovers that different jobs

emphasize different QoS. Some jobs want data to be processed as fast as possible, others

require a high amount of security and reliability. In order to exhibit different QoS, BizInt needs

to dynamically change its constituent services.

SkyCompute is a new entrant to the field of Cloud Computing. It wants to compete with

Amazon, 3Tera, Google, Microsoft and other established cloud-providers. In order to attract

cost and QoS-conscious customers, SkyCompute will have to differentiate its cloud from the

others. It plans to target the Software-As-A-Service market. Instead of providing specialist

infrastructural services (like Amazon) or application framework services (like Google and

Microsoft), it is planning to provide generically useful services like indexing, clustering,

sorting, etc. Like most cloud providers, it plans to provide services with different QoS levels,

so that multiple types of clients can be attracted to use it. To differentiate itself, SkyCompute

plans to provide an adaptive framework, so that companies like BizInt can change their

constituent services, dynamically. Depending on the QoS provided by the service, the cost of

using the service will change. SkyCompute enables this, by implementing various versions of

its indexing service (say), one which is extremely fast but does not use SSL, another which uses

SSL but has lower availability, yet another that has high availability, SSL and high performance.

However, implementing and keeping services available is a cost-burden on SkyCompute. In

126 Evaluating Clobmas

other words, regardless of the goodness of its services, any service that is not being utilized by

an application, is a drain on SkyCompute’s finances. Hence, SkyCompute would like to ensure

that any mechanism that it offers for self-adaptation results in high utilization of its services.

7.2.1 Qualitative Criteria

Thus, Clobmas must fulfill the following criteria:

1. Allows customers like BizInt to create adaptive applications that successfully adapt, and

2. Generates a higher utilization of services than the posted-offer model currently followed

(for SkyCompute)

Like most research on dynamic service composition, we evaluate the goodness of a particular

set of services, by means of a utility function. Given a set of services, we use their associ-

ated QoS to calculate application’s end-to-end QoS (see Chapter 5, Section 5.4.1). We use

the application’s targetted end-to-end QoS as the benchmark, against which the currently

achieved QoS is measured. The application’s target QoS is normalized and summed across all

the QoS that it is interested in. This is taken to be the ideal utility level. The achieved QoS is

fed through the same process, to attain the achieved utility level. The difference between the

ideal utility level and achieved utility level is called the quality gap. Each application defines a

tolerance level, that specifies the magnitude of quality gap that is acceptable. If the quality

gap is within the tolerance level, the application is said to be satisfied. Calculation of utility

is done by summing up the value(s) of QoS. Hence, if w denotes the weight for a particular

QoS, K be the set of QoS, and V (x) be the value function, then:

U ti l i t y =
K∑

k=1
wk ∗V (k) (7.1)

where

ωk ∈R1
0

In order to measure how well BizInt has adapted, we define the following variables:

7.2 Context for Evaluation 127

1. Utility Achieved: The number of trading rounds that an application is satisfied, over a

trading period

2. Time to Reach QoS: Number of trading rounds that it takes for an application to be

satisfied, after an adaptation event

We measure the goodness of Clobmas for SkyCompute by the following variables:

1. Market Satisfaction Rate (MSR): The percentage of applications, out of all applications,

that have been satisfied.

2. Time to Market Satisfaction (Time-to-MSR): The time taken to achieve a certain level

of Market Satisfaction Rate. To evaluate for scalability, we first specify a certain level of

MSR, and then measure Time-to-MSR, under varying conditions.

Note that Time-to-MSR is a concretization of Time-to-Adapt from the scalability goals

(Chapter 6, Section 6.2.1.1).

7.2.2 Quantitative Criteria

Since, SkyCompute is an ultra-large collection of services, Clobmas must be able to scale to

large numbers of applications and ConcreteServices. Since there is no public data about the

kinds of Workflows hosted on commercial clouds, and their corresponding service choices, we

made assumptions about the variables involved in dynamic service composition. We make

these assumptions based on conversations with performance consultants at Capacitas Inc.,

and numbers gleaned from the literature review. We summarize the operational ranges that

Clobmas is expected to deal with, in Table 7.1

128 Evaluating Clobmas

Variable affecting performance From Lit. Review Scalability Goals

Number of AbstractServices in a Workflow 10 1–20

CandidateServices per AbstractService 20 1–50

QoS attributes per CandidateService 3 1–10

Number of markets per CandidateService 1 1–10

Table 7.1: Operational range for scalability goals

7.3 Experimental Setup

Although open-source cloud implementations like OpenNebula1, and Eucalyptus2 are freely

available for download, they are primarily targetted at the IaaS market. Since we are concerned

with SaaS, these tools do not help us. In the same vein, using simulators such as CloudSim

would require major modifications. CloudSim is a fairly new toolkit, and does not have the

ability to explore market mechanisms in a sophisticated manner [14].

Software In this scenario, we wrote our own simulator in Python (v. 2.6.5), using a discrete-

event simulation library, SimPy3. The operating system in use, was 64-bit Scientific Linux.

Hardware All experiments were run on an Intel Dual-CPU Quad-Core 1.5Ghz workstation,

with 4MB of level-1 cache and 2GB of RAM.

Generating Randomness We use Monte Carlo sampling to draw QoS values for each of

the services in the market and for the QoS values demanded by the applications. A critical

factor in ensuring the goodness of sampling used for simulations, is the goodness of the

pseudo-random number generator (PRNG). We use the Mersenne Twister, that is known to be

1www.opennebula.org
2http://www.eucalyptus.com/
3http://simpy.sourceforge.net/

7.3 Experimental Setup 129

a generator of very high-quality pseudo-random numbers [67]. We use this generator due to

the fact it was designed with Monte Carlo and other statistical simulations in mind. 1

Reporting All simulations are reported as an average of a 100 simulations. The simplest

configuration chosen is the recommended value, from the literature review. Therefore, each

simulation reported, unless otherwise specified, was run with the following parameters given

in Table 7.2. In the section on scalability (subsection 7.6.2), we stress the mechanism by

scaling up variables on each of the axes.

System Parameter Value

AbstractServices in Workflow 10

CandidateServices per AbstractService 20

QoS attributes 3

Number of markets per CandidateService 1

Tolerance Level (for numeric QoS) 0.01

Applications simultaneously adapting 300

Table 7.2: System parameters and their standard values

External Adaptation Event: Once an application achieves its required QoS, it withdraws

from trading until an adaptation event (internal or external) occurs. A violation of the SLA

by a service counts as an External Adapation Event. We model the occurrence of this event

by a small probability, based on a study conducted by Cloud Harmony [27]. Thus, with a

small probability, the ApplicationAgent is sent an ExternalAdaptationEvent, which causes the

BuyerAgents to re-enter the market.

1For a k-bit word length, the Mersenne Twister generates an almost uniform distribution in the range

[0,2k −1]

.

130 Evaluating Clobmas

Internal Adaptation Event: A change in the QoS required, or a change in the available

budget counts as an Internal Adaptation Event. Each ApplicationAgent is sent an Internal

Adaptation Event randomly. We also test a specific case, where all ApplicationAgents get an

Internal Adaptation Agent simultaneously (as a Market shock).

7.4 Results

We simulate applications trying to achieve their desired QoS levels, within a given budget.

The budget that each application gets, acts as a constraint and the application’s constituent

trading agents (buyers) can never bid above their budgets. Each application generates a

random level of QoS that it must achieve.

An external adaptation event occurs when the application decides to change its required

QoS for any reason (say, a new job requires different QoS levels). At some random time,

every application receives a different job that requires different QoS levels. This prompts that

particular application to adapt, and therefore, approach the market again.

7.5 Evaluation from BizInt’s Perspective

BizInt is interested in the satisfaction achieved by an average application. An application is

said to be satisfied, if the quality gap achieved by its agents, is within the tolerance zone. The

tolerance zone is the range of values specified by the tolerance level, both above and below

the ideal utility level. For the purpose of our experiments, the tolerance level for each numeric

QoS was fixed at 1%. Once the quality gap is within this tolerance zone, agents stop adapting.

By this we mean that they withdraw from the market. The agents will only re-enter the market,

in case of an adaptation event. In Figure 7.2 we see an average application’s achievement

of QoS levels. The application starts off with a quality gap of minus 3, but it quickly adapts

to the QoS demanded and reaches the tolerance zone, in about 20 trading rounds. From

this point on, the application stays satisfied. The application is satisfied for 280 out of 300

7.5 Evaluation from BizInt’s Perspective 131

trading rounds. We see that the achieved utility level does not stay constant. Instead, internal

adaptation events cause the application to seek out different services. However, it stays

within the tolerance zone. In Figure 7.2, we show the adaptation occurring under conditions

of normal distribution of QoS demand amongst applications and supply in the cloud. To

compare the goodness of trading in a CDA market, we contrast its use in a posted-offer market.

Figure 7.2: Utility gained by adaptation by a single application

Posted Offer Market: This type of mechanism refers to a situation where a seller posts an

offer of a certain good at a certain price, but does not negotiate on either. That is, the buyer is

free to take-it-or-leave-it. This is the current prevailing mechanism for buying services on the

cloud. In such a scenario, the probability that an application will find services at the bid-price,

decreases.

In Figure 7.3, we see that the application is able to adapt and acquire the QoS that it requires.

132 Evaluating Clobmas

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Trading rounds

10

9

8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

8

9

A
ch

ie
v
e
m

e
n
t

o
f

re
q
u
ir

e
d
 Q

o
S

Ideal level of QoS

Tolerance Zone

Figure 7.3: Utility gained by a single application in a posted offer market

However, it is obvious from comparing the two figures, that in Figure 7.2, the application is

able to reach the tolerance zone a lot quicker than the application in Figure 7.3. In fact, in

the posted offer market, we see that the application takes 140 rounds to reach the tolerance

zone, while in the CDA market, the application is able to reach its tolerance zone in under

20 rounds of trading. This difference can be attributed to the fact that since the sellers in a

posted-offer market do not change their price, the BuyerAgents have to search a lot longer to

find sellers that they are able to trade with. In a CDA, the search process is much faster, since

both the buyers and the sellers adjust their Bids and Asks.

7.6 Evaluation from SkyCompute’s Perspective 133

CDA Posted-

Offer

Number of rounds satisfied 282 160

Time to reach QoS 18 140

Table 7.3: Comparative performance of adaptation in CDA vis-a-vis Posted-Offer

In the next section, we look at adaptation in the aggregate, i.e., from the perspective of all the

market participants. SkyCompute would like to look at market-wide measures, rather than

individual measures.

7.6 Evaluation from SkyCompute’s Perspective

SkyCompute would like to enable infrastructural support for Clobmas, only if the market-

based mechanism ensures that a high percentage of the services that it has available for use,

are used by applications. In other words, the use of Clobmas must result in a higher utilisation

of SkyCompute’s services, than with a competing mechanism. The competing mechanism, as

we discussed previously, is the one currently used by cloud providers, viz. posted-offer. Again,

intuitively, the posted-offer mechanism will result in a lesser number of trades, as compared

to a CDA mechanism.

7.6.1 Market Satisfaction Rate

We focus on the performance of the market as a whole, in enabling applications to self-adapt.

The market’s performance is measured in terms of number of applications successfully able

to achieve their target QoS. As a baseline, we first implement the Zero-Intelligence mech-

anism, as this represents the lower limit of the effectiveness of the CDA mechanism. The

Zero-Intelligence scheme consists of agents randomly making bids and asks, with no history

or learning or feedback(see Figure 7.4). As expected, it performs quite poorly, with only

134 Evaluating Clobmas

10-20% of applications managing to acquire the required QoS. Our mechanism achieves a

much higher level of applications, able to attain their desired level of QoS(see Figure 7.5).

Adaptation using our mechanism allows 85% of the applications in the market to adapt. Note,

that this figure only indicates applications that have their QoS within the tolerance zone.

There are many applications that have overshot their QoS requirements, but are unable to

find sellers of services with lower QoS values.

In Figure 7.4, we see the effects of using a Zero-Intelligence strategy. Unsurprisingly, appli-

cations using Zero-Intelligence are unable to satisfy their QoS requirements. On an average,

only about 20% of the applications in the market reach their desired QoS, which is clearly

unsatisfactory. SkyCompute would not be able to sustain a model where only 20% of its hosted

applications are satisfied with their QoS requirements.

Figure 7.4: Efficiency of adaptation in a CDA market with Zero Intelligence

On the other hand, we see (in Figure 7.5) that with adaptive bids, the number of applications

that are able to adapt rise to about 85% of the total market. This is a huge improvement with a

very small improvement in the intelligence of the agents.

7.6 Evaluation from SkyCompute’s Perspective 135

Figure 7.5: Efficiency of adaptation in a CDA market

Quite similar to the CDA, the posted-offer also performs well. In this case, the sellers never

adjust their prices, but the buyers do. For buyer-agents’ adjustment, we continue to use ZIP.

Market Conditions :

Figure 7.5 shows the adaptation of applications, when the demand and supply of QoS in

services follow a normal distribution. However, this may not always be the case. Condi-

tions like paucity of supply, has the effect of less applications being able to satisfy their QoS

requirements. Therefore, we investigate the following kinds of market conditions:

1. A normal distribution of QoS amongst the services sold, but skewed distribution

amongst buyers representing applications. This situation occurs in the case where

a particular QoS is suddenly in high demand. For example, in the wake of a high-profile

security flaw being publicized, all applications will increase their demand for services

that use a high level of encryption.

2. A normal distribution of QoS amongst services demanded by applications, but skewed

136 Evaluating Clobmas

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Trading rounds

0

10

20

30

40

50

60

70

80

90

100
P
e
rc

e
n
ta

g
e
 o

f
a
p
p
lic

a
ti

o
n
s

su
cc

e
ss

fu
lly

 a
d
a
p
te

d
Aggregate view of all applications

Figure 7.6: Efficiency of adaptation in a Posted Offer market

distribution of QoS values in services supplied by SkyCompute. Such a situation occurs

when SkyCompute mis-reads the demand for a particular QoS, and changes the supply

of services (and correspondingly their prices). The impact of this is felt in the number

of applications that are able to successfully adapt and attain their required QoS within

budget. This is the worst of all conditions, since not only are the applications unable

to attain their QoS, but there are a large number of services with SkyCompute, that are

lying idle.

3. A bimodal distribution of QoS values amongst both services provided and services

demanded by applications. This situation occurs when there is a natural grouping in

the market. Low-end consumers that are price-sensitive demand a lower QoS value,

while high-end consumers that are QoS sensitive demand a higher QoS value and are

willing to pay for it. In such a case, SkyCompute also attempts to capture both ends

of the market by providing services at both QoS levels. This situation, while still less

than optimal, is better than the previous one, since the natural schism in the market

7.6 Evaluation from SkyCompute’s Perspective 137

Figure 7.7: A normal distribution of QoS values amongst ConcreteServices, but skewed
distribution of QoS values amongst BuyerAgents

means that the number of applications in the middle of the spectrum are relatively few

in number.

Skewed Buyers and Uniform Sellers Figure 7.7 shows the state of market satisfaction, where

the buyers have a skewed preference for QoS values. Applications that are able to acquire

their preferred services hold on to them, and hence there is relatively little fluctuation in the

MSR. Although, there is a small amount of fluctuations, the actual level of market satisfaction

is lower than that shown with a uniform distribution (in Figure 7.5)

Uniform Buyers and Skewed Sellers We see in Figure 7.8, that this is a terrible situation to

be in. Market satisfaction rates rarely go above 70% and frequently fall below 60%.

138 Evaluating Clobmas

Figure 7.8: A normal distribution of QoS values demanded by the BuyerAgents, but skewed
distribution of QoS values amongst ConcreteServices available

Figure 7.9: A bimodal distribution of QoS values amongst both BuyerAgents and ConcreteSer-
vices

7.6 Evaluation from SkyCompute’s Perspective 139

Figure 7.10: Independent probability of change in QoS Demand

Skewed Buyer and Skewed Seller Figure 7.9 shows the effect on market satisfaction, when

there is a bimodal demand and supply of QoS values. We see that the market satisfaction rates

vary mainly between 60% and 70%, with some dips below 60% and some peaks higher than

70%.

Internal Adaptation Events:

In Figures 7.10 and 7.11, we compare the differences in the aggregate behaviour of all applica-

tions, in response to internal adaptation events of two kinds. In the first instance, we model

all applications having independent probabilities of changing their target QoS attributes, over

time. This means, any application could change its target QoS, at any point in time. In the

second instance, we simulate all applications changing their target QoS, every 25 rounds of

trading. Each application that succeeds in reaching its target, changes its target QoS with a

small probability. We see that in the aggregate, there’s not much change in the percentage of

applications being able to self-adapt.

In Figure 7.11, we administer a market shock in the form of an Internal Adaptation Event to

140 Evaluating Clobmas

Figure 7.11: Market shocks after every 25 rounds of trading

every ApplicationAgent. This has the effect of all BuyerAgents re-approaching the market for

new services. This makes the aggregate adaptation easier to see, since the market, as a whole,

experiences a change in demand, periodically. Predictably, the periodic external event causes

the market satisfaction rate to drop precipitously, every 25 rounds. But we see that the MSR is

able to get back to a desired level within approximately 15 rounds.

7.6.2 Scalability

Although Clobmas using a double-auction is better than Clobmas using a posted offer, Sky-

Compute would like to know if this mechanism scales well. To investigate this, we pick a level

of market satisfaction rate, that is higher than posted-offer, and measure how long it takes to

achieve this level. To this end, we choose a market satisfaction rate of 80%, and measure the

time taken to achieve this level. The adaptation process can be highly dependent on many

variables. In chapters 3.8 and 5, we elucidated on the variables that are most important to

us, and the operational ranges that they are expected to take. In this section, we tease out

7.6 Evaluation from SkyCompute’s Perspective 141

how each of these variables affect the time taken for adaptation. We reproduce the scalability

target goals in Table 7.4 below, that we introduced previously.

Variable affecting performance Scalability Goals

Number of AbstractServices in a Workflow 1–20
CandidateServices per AbstractService 1–50
QoS attributes considered per CandidateService 1–10
Number of Markets considered per CandidateService 1–10

Table 7.4: Operational range for scalability goals

In each case, we also perform a polynomial curve-fitting to find an equation that approximates

the worst-case scenario, of an axis(x) and Time-to-MSR(y) with a r esi dual o f ≤ 1 second .

This lets us know in concrete terms, whether we have achieved our scalability goals or not1.

AbstractServices Vs. CandidateServices: Arguably, these are the variables that change most

often from application to application, and from time to time. Every application has a different

Workflow and therefore, a different number of AbstractServices. As time passes, applica-

tions that have met their QoS will retire from the market, and new applications will come in.

This changes the orderbook from the demand side. Also, the number of CandidateServices

available per AbstractService is most susceptible to change. As time passes, some Candidate-

Services will no longer be available, and new ones come into the market. This changes the

orderbook from the supply side.

In the worst case, the polynomial growth of Time-to-MSR(y) when AbstractServices(x) in-

crease with regard to CandidateServces, is given by

y =−0.0361x3 +4.7619x2 −5.4985x +3.8978 (7.2)

In the worst case, the polynomial growth of Time-to-MSR (y) when CandidateServices (x)

1The data for all subsequent graphs is online at: www.cs.bham.ac.uk/~vxn851/graphdata.tar.bz2

142 Evaluating Clobmas

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

CandidateServices
per AbstractService

T
im

e
to

 a
da

pt
(in

 s
ec

on
ds

)

1 AbstractService
3 AbstractServices
5 AbstractServices
10 AbstractServices

Figure 7.12: Time taken for adaptation
when CandidateServices per AbstractService
increase

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

AbstractServices in Workflow

T
im

e
to

 a
da

pt
(in

 s
ec

on
ds

)

10 CandidateServices per AbstractService
30 CandidateServices per AbstractService
50 CandidateServices per AbstractService

Figure 7.13: Time taken for adaptation when
AbstractServices in Workflow increase

10

20

30

40

50

0

2

4

6

8

10
0

50

100

150

200

250

300

350

400

CandidateServices
per AbstractService

AbstractServices
per Workflow

T
im

e
ta

ke
n

to
 a

da
pt

(in
 s

ec
on

ds
)

Figure 7.14: Both AbstractServices and CandidateServices increase

7.6 Evaluation from SkyCompute’s Perspective 143

increase with regard to AbstractServices, is given by

y = 0.0012x3 −0.0611x2 +8.2678x −16.6664 (7.3)

From the equations (Equation 7.2 and Equation 7.3), we see that Clobmas is more sensitive to

the number of CandidateServices than to the number of AbstractServices (see Figures 7.12,

7.13 and 7.14). Although, both equations are cubic in nature, the cubic term in Equation 7.2 is

negative. This indicates that it grows slower than Equation 7.3. This makes intuitive sense,

since the increase in AbstractServices merely increase the number of BuyerAgents, which are

distributed in any case.

AbstractServices Vs. QoS attributes per Service: Another variable that applications are

most interested in, after CandidateServices, is the number of QoS attributes per service.

Clearly, since every CandidateService needs to be examined for all the QoS attributes, the time

taken for service selection increases. In the following graphs, we only show how time increases

when numeric QoS attributes are changed. For boolean and categoric QoS attributes, decision

making is much faster, since end-to-end calculations can be broken down and performed

in a decentralized manner by individual agents. As we see in Figure 7.17, the time taken for

achievement of QoS increases polynomially.

In the worst case, the polynomial equation describing the growth of Time-to-MSR (y), when

QoS attributes (x) increase with regard to AbstractServices is given by:

y =−0.0387x3 +0.7186x2 +−1.6377x +20.3967 (7.4)

In the worst case, the polynomial equation describing the growth of Time-to-MSR (y) when

AbstractServices (x) increase with regard to QoS attributes, is given by:

y = 0.0458x2 +0.9252x −0.5624 (7.5)

144 Evaluating Clobmas

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Number of AbstractServices

T
im

e−
to

−
A

da
pt

(in
 s

ec
s)

2 QoS attributes
4 QoS attributes
6 QoS attributes
8 QoS attributes
10 QoS attributes

Figure 7.15: Time taken for adaptation when
AbstractServices increase

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

QoS attributes

T
im

e−
to

−
A

da
pt

(in
 s

ec
s)

4 AbstractServices
8 AbstractServices
12 AbstractServices
16 AbstractServices
20 AbstractServices

Figure 7.16: Time taken for adaptation when
QoS increase

2
4

6
8

105

10

15

20

0

5

10

15

20

25

30

35

X: 10
Y: 20
Z: 37.1

Number of QoS attributes
per AbstractService

Number of AbstractServices
per Application

T
im

e
ta

ke
n

fo
r

ad
ap

ta
tio

n
(in

 s
ec

s)

Figure 7.17: When both, the number of AbstractServices and QoS attributes, increase

7.6 Evaluation from SkyCompute’s Perspective 145

Equations 7.4 and 7.5, show how AbstractServices and QoS attributes interact. Equation 7.5

grows slower than Equation 7.4, since it is quadratic in nature. Clobmas deals with increase in

AbstractServices better, than increase in QoS attributes. Again, this is quite intuitive, since

an increase in AbstractServices means an increase in BuyerAgents, but an increase in QoS

attributes involves increased comparisons across all Agents.

CandidateServices Vs. QoS attributes per Service: As the number of applications that use

Clobmas increase, it will have to make a decision on whether to increase the number of

CandidateServices per AbstractService, or increase the number of QoS attributes available

per AbstractService. Regardless of the business implications of each, both will have an impact

on the scalability of Clobmas.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Number of QoS attributes

T
im

e
ta

ke
n

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

5 CandidateServices
10 CandidateServices
15 CandidateServices
20 CandidateServices

Figure 7.18: Time taken for adaptation when
CandidateServices increase

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

CandidateServices per AbstractService

T
im

e
ta

ke
n

to
 a

ch
ie

ve
 a

da
pt

at
io

n
(in

 s
ec

s)

1 QoS per AbstractService
3 QoS per AbstractService
5 QoS per AbstractService
7 QoS per AbstractService
9 QoS per AbstractService

Figure 7.19: Time taken for adaptation when
QoS increase

In the worst case, the polynomial describing the growth of Time-to-MSR (y) as QoS attributes

(x) increase with regard to CandidateServices is given by

y = 0.0303x4 −0.7769x3 +6.4554x2 −14.4945x +25.7250 (7.6)

In the worst case, the polynomial describing the growth of Time-to-MSR (y) as CandidateSer-

146 Evaluating Clobmas

vices (x) increase with regard to QoS attributes is given by

y = 0.0030x2 +2.3721x +2.4722 (7.7)

Equations 7.6 and 7.7 indicate that in terms of Time-to-MSR, it is preferable to increase

CandidateServices than QoS attributes. The equation describing the increase due to QoS

attribute (Equation 7.6) is actually biquadratic. This touches on the boundary of the scalability

goal that we had set, however since its coefficient is small, and the cubic term is negative, we

consider it to be within acceptable scalability range.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

0

10

20

30

40

50

60

Number of Candidate Services per Abstract Service

QoS per Abstract Service

T
im

e
(in

 s
ec

)
fo

r
ad

ap
ta

tio
n

Figure 7.20: Both CandidateServices and QoS increase

The implications of the equations are borne out visually. We see in Figure 7.20 that the slope

of QoS axis is greater than that of CandidateServices. That is, time taken for adaptation

increases faster when QoS attributes increase, as compared to the increase in number of

CandidateServices.

7.6 Evaluation from SkyCompute’s Perspective 147

7.6.3 The Cost of Decentralization

CandidateServices Vs. Number of Markets: Does decentralization affect time taken for

adaptation or number of CandidateServices? In other words, should Clobmas increase the

number of CandidateServices available per market? Or would it be better to increase the

number of markets? Increasing the number of markets increases the robustness of the system.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Markets per CandidateService

T
im

e
ta

ke
n

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

1 CandidateService per AbstractService

3 CandidateServices per AbstractService

5 CandidateServices per AbstractService

7 CandidateServices per AbstractService

10 CandidateServices per AbstractService

Figure 7.21: CandidateServices increase per Market

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

CandidateServices per AbstractService

T
im

e
ta

ke
n

to
 a

ch
ie

ve
 Q

oS
(in

 s
ec

s)

1 market per CandidateService
3 markets per CandidateService
5 markets per CandidateService
7 markets per CandidateService
10 markets per CandidateService

Figure 7.22: Markets increase per CandidateService

148 Evaluating Clobmas

In the worst case, the polynomial describing the growth of Time-to-MSR (y), as number of

Markets increase (x) with regard to CandidateServices, is given by

y = 8.3745x +0.0800 (7.8)

In the worst case, the polynomial describing the growth of Time-to-MSR (y), as number of

CandidateServices increase (x) with regard to number of Markets, is given by

y = 7.5972x +6.8222 (7.9)

We see from Figures 7.21 and 7.22 that the slopes of the lines is linear. That is, increasing the

number of CandidateServices vis-a-vis increasing the number of markets does not make a

significant difference to the time-to-MSR. The equations (Equation 7.8 and Equation 7.9) bear

this out, as they are both linear.

0
2

4
6

8
10

0
2

4
6

8
10

0

20

40

60

80

100

Number of ConcreteServices
per AbstractService

Number of Markets
per AbstractService

T
im

e
ta

ke
n

fo
r

ad
ap

ta
tio

n
(in

 s
ec

on
ds

)

Figure 7.23: Both Candidate Services and Markets increase

Hence, the decision to increase robustness, by increasing the number of markets, does not

negatively impact the time-to-MSR exhibited by Clobmas.

7.6 Evaluation from SkyCompute’s Perspective 149

QoS attributes Vs. Number of Markets Next we look at how QoS attributes affect the time-

to-adapt vis-a-vis the number of markets.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Number of QoS

T
im

e
ta

ke
n

fo
r

A
da

pt
at

io
n

(in
 s

ec
s)

2 Markets
4 Markets
6 Markets
8 Markets
10 Markets

Figure 7.24: Markets increase per QoS

In the worst case, the polynomial describing the growth of Time-to-MSR (y) as number of

Markets (x) increase, with regard to QoS attributes, is given by

y =−0.4595x2 +65.0048x +26.6683 (7.10)

In the worst case, the polynomial describing the growth of Time-to-MSR (y) as QoS attributes

(x) increase, with regard to number of Markets, is given by

y =−0.1103x4 +2.3380x3 −14.9209x2 +42.0606x +465.6389 (7.11)

As is expected by now, the increase in QoS attributes causes Time-to-MSR rise in a biquadratic

way, as opposed to increase in number of Markets (Equation 7.10 and Equation 7.11). Again,

the biquadratic term in the equation (Equation 7.11) has a negative coefficient, so the scale of

growth is actually cubic.

150 Evaluating Clobmas

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Number of Markets

T
im

e
ta

ke
n

fo
r

A
da

pt
at

io
n

(in
 s

ec
s)

2 QoS
4 QoS
6 QoS
8 QoS
10 QoS

Figure 7.25: QoS increase per Market

0
2

4
6

8
10

0
2

4

6
8

10
0

100

200

300

400

500

600

700

Number of MarketsNumber of QoS attributes

T
im

e
ta

ke
n

fo
r

A
da

pt
at

io
n

(in
 s

ec
s)

Figure 7.26: Both QoS attributes and markets increase

7.7 Evaluating the architecture of the MAS 151

This leads us to the conclusion that, of the four variables that affect service-selection, Clobmas

is most sensitive to QoS attributes. However, it should also be noted that these are worst-case

scenarios. In all of our experiments, we used Numeric Constraints as QoS attributes, which

have to be calculated on an application-wide basis. In reality, it is more likely that some

applications will have Boolean or Categoric Constraints, which can be handled locally by the

BuyerAgents. Hence, in the general case, Clobmas is likely to perform better with increase in

QoS, with biquadratic growth being the worst case.

Meeting Scalability Goals Since none of the variables exhibited growth in Time-to-MSR,

with a fifth-degree polynomial, we can say that our scalability goals have been met. More

specifically:

1. From Equation 7.2 and Equation 7.5, we see that Scalability Goal 1 is met.

2. From Equation 7.3 and Equation 7.7, we see that Scalability Goal 2 is met.

3. From Equation 7.4 and Equation 7.6, we see that Scalability Goal 3 is met.

4. From Equation 7.8 and Equation 7.10, we see that Scalability Goal 4 is met.

7.7 Evaluating the architecture of the MAS

Don’t fight forces, use them.

R. Buckminster Fuller

The architecture of a software system is perhaps the important artefact generated during the

engineering of a system. A Software Architecture is a succint yet sufficient documentation

of a software system, that enables various stakeholders to understand and reason about

various properties of the system. It enables the client and requirements engineers to see

that the system is capable of fulfilling the tasks for which it was constructed. It enables

152 Evaluating Clobmas

designers to view the components, connectors and the constraints between them, that give

rise to the functional and non-functional properties of the system. It enables programmers to

understand the framework within which their components and connectors must live, and it

allows testers to selectively test parts of the software system.

Now we concern ourselves with the designer’s view. We elaborate on the choice of architectural

pattern used, and how they affect the properties of the system.

7.7.1 Common Architectural Patterns

According to Buschmann et al., “An architectural pattern expresses a fundamental, structural

organization schema for software systems. It provides a set of predefined subsystems, speci-

fies their responsibilities, and includes rules and guidelines for organizing the relationships

between them." [15]. As is perhaps obvious from the definition of an architectural pattern,

it represents the highest level of technical vocabulary in describing the system. To carry the

metaphor further, the creative ability of the system is heavily influenced by this vocabulary,

the elegance it provides, and the ideas that it expresses. In more prosaic terms, not only do the

specific choice of components and their connectors make a difference to the various qualities

of the system, but that their arrangement in specific ways, also influences these qualities.

For example, a set of computers connected in a ring-based network exhibit a very different

throughput from a set of computers connected in star-network. Although the computers

present in the network are the same, the specific arrangement gives rise to a different com-

munication protocol. This has implications on features like error-detection, error-correction,

latency, throughput, etc.

In the domain of self-adaptive systems, the pattern of MAPE loop (monitor-analyze-plan-

execute) interaction determines properties like speed of adaptation, scalability of system,

communication and decision bottlenecks, etc. We now briefly talk about five different, com-

monly used Control-loop patterns in self-adaptive systems [29]:

1. Hierarchical Control: The overall system is controlled in a hierarchical manner with

7.7 Evaluating the architecture of the MAS 153

complete MAPE loops at every level in the hierarchy. Generally, every level operates

at different time-scales, with lower levels at shorter time-scales, and higher levels at

longer time-scales.

2. Master/Slave: The master/slave pattern creates a hierarchical relationship between a

master, that is responsible for analysis and planning, and slaves that are responsible for

monitoring and execution. It is suitable for scenarios, where slaves are willing to share

information, and adhere to centralized planning and decision-making. In case of large

systems, this could lead to a bottleneck.

3. Regional Planner: In this pattern, instead of a single master, there are many regional

hosts. Each regional host is responsible for several local hosts. The regional host is

responsible for planning, while the local hosts monitor, analyze and execute, based on

the plan. This pattern is a possible solution to the scalability problem with master/slave.

4. Fully Decentralized: In this pattern, each host implements its own complete MAPE

loop. This leads to very flexible information sharing, as each M, A, P and E component

on a host communicates with its corresponding part on another host. While flexible,

achieving a globally consistent view, and a consensus on the next adaptation action is

difficult. Achieving optimality is also correspondingly difficult, but not impossible (TCP

adaptive flow control, for example).

5. Information Sharing: In this pattern, similar to the fully decentralized pattern, each

host owns a local M, A, P, and E component. But, only the M component communicates

with its peer components. There is no coordination on planning, analyzing or execution.

Most often used in peer-to-peer systems, this sort of system is highly scalable, but

difficult to coordinate.

We see in Table 7.5, that no single MAPE pattern meets all the criteria that we would like

a system to have. The key point to be noted is that all of the above architectural patterns

have benefits and liabilities. It is up to the application architect to balance these, with the

154 Evaluating Clobmas

Scalable Achieving Optimality Coordinated Communication Flexibility

Hierarchical — X X —
Master/Slave — X X —
Regional Planner X — X —
Fully Decentralized X — — X
Information Sharing X — — X

Table 7.5: Properties of MAPE Patterns

demands of the application and the domain. This is rendered difficult by the fact that most

big applications are usually a collection of architectural patterns, and not a single pattern.

Not only should the architect keep in mind the individual properties of each pattern, but their

interaction effects as well.

7.7.2 Architectural Patterns Employed in Clobmas

It is a fallacy to think that any of the patterns mentioned are, by themselves sufficient to

form an entire application. Typically, a complex system is a combination of architectural

patterns. Clobmas is no exception. We realize our system as a hybrid of two MAPE-loop styles:

Regional Planner and Information Sharing. Each BuyerAgent acts as a regional planner for

each AbstractService in the application. The adaptation from BizInt’s perspective is done via

the BuyerAgents, with the ApplicationAgent determining high level policies like whether to

stop adapting or to publish an adaptation event. SkyCompute, on the other hand, uses a loose

structure of Information Sharing agents, in the form of SellerAgents and MarketAgents.

On a lower level of abstraction of message-passing and interface definitions, it uses the

Publish-Subscribe and Broker patterns. Both patterns allow for dynamic addition of compo-

nents, and allow for work in a distributed fashion. Since the primary aim of Clobmas is to

enable service-oriented applications to self-adapt, it is only fitting that Clobmas should itself

embrace the service-oriented paradigm, and use the notion of services to achieve its func-

tionality. Clobmas combines Publish-Subscribe and Broker, in a Market-Based environment,

to allow applications to self-adapt. The Market-Based environment provides the stimulus,

and the enabling infrastructure, for the service providers to sell their services, and for service

7.8 Discussion of Issues and Limitations 155

consumers to buy these services at a competitive price. The Market-Based mechanism is

distributed, scalable, robust to failure of individual agents, and allows for properties like con-

fidentiality of private information amongst agents. The market metaphor also maps naturally

to the real-world business equivalents of service providers, service consumers, negotiators,

registries, etc.

7.8 Discussion of Issues and Limitations

7.8.1 Threats to validity

Current implementations of public clouds focus on providing scaled-up and scaled-down

computing power and storage. Our mechanism assumes a more sophisticated scenario, where

federated clouds with different specialized services collaborate. These collaborations can

then be leveraged, by an enterprise to construct an application that can be self-adaptive by

changing the web-service that it utilizes.

An Agile Service Network (ASN) comprises large numbers of long-running, highly
dynamic complex end-to-end service interactions reflecting asynchronous mes-
sage flows that typically transcend several organizations and span geographical
locations. The term complex end-to-end service interaction signifies a succes-
sion of automated business processes, which are involved in joint inter-company
business conversations and transactions across a federation of cooperating orga-
nizations [63].

Agile Service Networks embody the kind of structure that this mechanism would be appli-

cable in. Agile Service Networks are formed, when organizations outsource a part of their

function to other organizations. These may, in turn, outsource a part of their function to yet

other organizations. Thus, an application or a business process being instantiated by one

organization, uses the services of many organizations. This has several benefits in terms of

efficiency, agility in response to business fluctuations, etc.

Our mechanism takes the ASN to a higher level by enabling automated scaling and adaptation

based on Quality of Service attributes. However, the current state of the art in ASN is quite

156 Evaluating Clobmas

low. A high degree of standardization is required for our mechanism to be applied, usefully.

7.8.2 Identity and Reputation

Clobmas does not attempt to rate or retain reputation information about any of the services

being provided. A third-party service could advertise high levels of QoS, but fail to provide it.

In such a case, the application would typically reject that service and search for a new one.

However, it is easily conceivable that there are many such malicious agents in the marketplace,

that provide a defective service. The presence of these kinds of services, decreases the utility of

the marketplace and automated service composition. Dealing with malicious agents requires

Clobmas to maintain reputation scores for each of the service providers being hosted by it.

While this is easy when all the services are created by Clobmas itself, it becomes a lot more

difficult when third-parties start providing services. Issues of trust (should it believe the

application that complains against a service? how to deal with collusion?), identity (how does

one prevent the same service from re-appearing with different names?) and centralization

(how to keep track of services from other markets?) are all part of reputation and identity

management. This is a research area, that Clobmas does not venture into.

7.8.3 Monitoring of QoS Levels

Regardless of whether a QoS violation is malicious, accidental or a result of bad engineering,

it is essential to have indisputable evidence of the violation. For all the stakeholders to

agree on incidents of QoS violations, we propose that a third-party mechanism be used to

ensure provenance of QoS compliance or violation. There are many approaches to QoS

monitoring, but they are still a topic of research. Therefore, this thesis does not propose a

unique mechanism for monitoring, rather it assumes that a third-party will be involved in the

system.

7.9 Conclusion 157

7.8.4 Marketplace Modelling

The case study makes pessimistic estimates of the distribution of QoS attributes amongst

sellers. In the real world, a competitive market would drive out sellers that have an average

distribution of QoS with high prices. The set of services used to model the supply is deliber-

ately seeded with services that probably will not be able to transact. This is done with a view

to evaluating the mechanism’s performance in an extreme situation. In real life, these services

would be competed out of the market, with most services differing in their QoS offerings

by a marginal amount (or the price would be appropriately low, for low QoS). With a more

typical scenario, our mechanism’s performance would be much better, since the number of

applications that are able to successfully achieve their QoS would be higher than in Figure 7.5.

Also, the simulation does not model seller-side pricing strategies like loss-leader. Markets

will also evolve to occupy niches. One niche could be to have very low entry barriers to

trade in the form of zero registration and transaction fees. Another could be to only allow

services of high-quality (with high reliability and availability) and reputation to trade, with

high registration and transaction fees for the buyers.

As both sellers and markets adapt to changing market conditions, buying agents will have to

increase in sophistication to improve their market-selection and bidding strategies.

Since the self-adaptive mechanism merely attempts to satisfy the application’s QoS targets, it

does not try to achieve optimal set of ConcreteServices, even if available. This is a tradeoff

that occurs between simplicity and robustness on one hand, and optimality on the other.

7.9 Conclusion

The market mechanism does not achieve the optimum, neither from the individual perspec-

tive nor from the aggregate perspective. Given the limited computation that we demand of

our agents, we aim only to achieve a satisficing result, i.e., find a solution that satisfies the QoS

constraints of an application. Also, since the performance of the multiple-double-auction

markets is better than that of a posted-offer, we show that our mechanism is better than the

158 Evaluating Clobmas

currently used mechanism. We tested the mechanism for scalability on various axes, and find:

1. The time-cost of adaptation does not increase exponentially, in any case

2. The cost of decentralization is lesser than the cost of increasing the number of Abstract-

Services in the Workflow, and the cost of increasing the number of CandidateServices.

3. However, the cost of increasing the number of QoS attributes per Application, increases

the time-cost more than increasing the number of Markets.

An architect for BizInt should take these into consideration, when deciding on the various

parameters on which the application will self-adapt. SkyCompute’s architects should also

take these into account, while deciding on whether to adopt all of Clobmas’ adaptation axes,

or only allow adaptation on certain chosen axes.

CHAPTER 8

Conclusion and Future Work

The real voyage of discovery consists not in seeking

new landscapes, but in having new eyes

Marcel Proust

159

160 Conclusion and Future Work

As our journey ends, we now pause to reflect on the path that we took, and the road ahead.

This thesis was a result of our quest to find a self-adapting mechanism, that would enable

applications to change according to their circumstances. The scientific method consists of

asking questions, and trying to systematically work towards the answer. Therefore, in the

beginning of the thesis, we asked ourselves three questions:

1. In a society of service-based applications, each of which is self-adapting, what kind of a

mechanism will allow satisfaction of QoS constraints?

2. How do we systematically measure the goodness of this mechanism?

3. How do we systematically measure the scalability of this mechanism?

We started our search with mechanisms that are currently used by cloud-providers to allow for

applications to exhibit changing QoS. When we concluded that there weren’t any, we looked at

various mechanisms of self-adaptation that have been previously studied and, identified that

we needed a decentralized mechanism. We also realized, that to fit these mechanisms into

the context of the cloud, scalability of the mechanism needed to be an important property. To

this end, we looked at different ways of service composition and their notions of scalability.

When we were unsatisfied with the approaches taken in literature, we used requirements

engineering to systematically identify the various axes of scalability, that a good mechanism

would need to be measured against. We then proposed a multiple-auction based mechanism,

to satisfy both adaptive applications as well as cloud-providers. Finally, we evaluated it against

multiple market-conditions, tested it for scalability, and took a critical look at its architecture

and design.

8.1 Summary

We now summarize the results of the research carried out, through this thesis. The major

conclusions that we can draw from this research, are the following:

8.2 Thesis Contributions 161

1. There is a pressing need for service selection mechanisms to systematically test for

scalability

2. A market-based mechanism can be used as a pattern, for creating a decentralized,

self-adaptive mechanism for service selection in the cloud

3. The multiple double auction method proposed in this thesis performs better than the

currently-used posted-offer method for service selection.

4. Amongst the four axes on which we measured for scalability, the mechanism is most

sensitive to number of QoS. That is, increasing the number of QoS per ConcreteService,

increases the time taken to reach a satisfactory level of adaptation.

5. The mechanism is least sensitive to growth in number of CandidateService, as time

taken to adapt increases linearly with growth.

6. The sensitivity of axes (in increasing order) is:

(a) Number of CandidateServices

(b) Number of Markets

(c) Number of AbstractServices

(d) Number of QoS per ConcreteService

8.2 Thesis Contributions

In proposing our self-adaptive mechanism, we brought together ideas from economics,

requirements engineering, multiple criteria decision-making, and machine learning. We took

these ideas and coalesced them into a mechanism. That journey of gathering ideas, filtering

them for suitability, mixing, kneading and baking them, enabled a few contributions to the

state-of-the-art in software engineering. We list them below, in the order they appear in the

thesis.

162 Conclusion and Future Work

1. A review of cloud-based resource allocation: We reviewed existing work on resource

allocation in IaaS clouds. The review draws from existing approaches, and provides new

insights that can assist the problem of QoS-aware dynamic selection for cloud-based

applications, while minimizing their QoS violations.

2. A systematic literature review of the current dynamic service composition mecha-

nisms: A systematic literature review (SLR) is an important step in mapping out the

research landscape, and identifying gaps in current research. Through the SLR, we dis-

covered that there are no generally agreed principles on which the scalability of dynamic

service-selection methods is currently evaluated. We also recommended variables (and

their range of values), that all dynamic service-selection methods should report on.

3. Requirements Engineering for scalability analysis: Building upon ideas from GORE,

we systematically analyzed the needs of a dynamic service-selection mechanism, and

how a multi-agent mechanism would solve it. In this way, we also identified the axes

on which the scalability of service compositions methods should be evaluated, and

scalability goals that they should aim for.

4. Design and Architecture of Clobmas: Borrowing from economics, we presented a

multi-agent system based on multiple double auctions to enable decentralized self-

adaptation. The local selection of Asks utilized ideas from multiple criteria decision

making, and allowed local BuyerAgents to make intelligent decisions without consulting

a central authority. The BuyerAgent’s ability to change its bid-price, based on the prices

in the market is based on ideas of gradient-descent in machine learning.

5. Systematic scalability testing: We tested Clobmas on all the axes that were identified

through the requirements engineering process. We showed how to systematically

evaluate a service selection mechanism in an empirical way, and objectively evaluate

whether the scalability goals have been met, or not.

The process of science is to create a metaphorical map of the world, as we discover various

paths through the forest of ignorance. The intent of science is therefore, to shine a light and

8.3 Future Work 163

understand where it is advantageous to go, and where it is not. Therefore, it is important to

not only highlight the advantages and benefits of a particular path, but also to identify the

paths not taken.

8.3 Future Work

This thesis is a description of a path in the direction of scalable, decentralized self-adaptive

systems. The path does not end with this thesis, and we can foresee several directions that

research can take.

Short-term: In the immediate future, we foresee the creation of a middleware that can work

with multiple clouds, and observe its behaviour with real-world applications. All simulations

are approximations of reality, and an exposure to real-world demands of QoS change would

be instructive.

Medium-term: Notions like reputation-management are critical to establish trust amongst

services. We foresee that trust in multi-agent systems, specially ones that participate in human

economies, will be an important aspect of such systems. How does a market ensure that

the SellerAgent actually provides the services promised? How does the market ensure that

bad services are kept out of the auction space? Also, investigation of other auction types like

package auctions will provide more insight into mechanism design. We have not modelled

complex seller-side behaviour. Specifically, actions like deliberate violation of QoS to free

up resources or mis-reporting of QoS available, are both strategies that seller agents could

indulge in.

Long-term: While it is difficult to analyze CDAs theoretically, it would still be of immense

value to model the self-adaptive process in a formal way. This would allow better predictive

164 Conclusion and Future Work

ability and a greater understanding of the strengths and limitations of the market-based

self-adaptation. Also, we have not modelled adaptation on the part of the market. Sellers that

lie about their QoS or, are generally unattractive for transactions may lower the reputation of

the marketplace. Hence, the market could take steps to ensure that it is populated, only with

sellers that are likely to be sold.

8.3.1 Impact of this Thesis

We believe that this thesis makes a novel, and important contribution to the state-of-the-art in

service selection, for the SaaS cloud. The SaaS model of the cloud is in its infancy, and research

of this kind is extremely important in helping it mature. We believe that multi-agent based

mechanisms for self-adaptation, will be used in many more domains. This thesis provides a

template for the creation of similar multi-agent systems, and their systematic evaluation.

Concluding Remarks:

Thus dear reader, we approach the end of the journey that we began many moons ago. It is

our hope that this thesis, which is a snapshot of that journey, has been able to convey the

essence of path we took, in a convincing manner.

¸ ¸ ¸ ¸ ¸

References

[1] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selec-
tion for efficient qos-aware service composition. Proceedings of the 18th international
conference on World wide web - WWW ’09, page 881, 2009. 42, 45, 46, 49

[2] Danilo Ardagna and Raffaela Mirandola. Per-flow optimal service selection for Web
services based processes. Journal of Systems and Software, 83(8):1512–1523, August
2010. xi, 42, 46, 47, 48, 51

[3] Danilo Ardagna and Barbara Pernici. Adaptive Service Composition in Flexible Pro-
cesses. IEEE Transactions on Software Engineering, 33(6):369–384, June 2007. 46

[4] Michael Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, and Others. Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009. 13

[5] A. Auyoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in federated
distributed computing infrastructures. 2004. 20

[6] Shengli Bao and Peter R. Wurman. A comparison of two algorithms for multi-unit
k-double auctions. pages 47–52, 2003. 67

[7] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu. Declarative composition and
peer-to-peer provisioning of dynamic Web services. Proceedings 18th International
Conference on Data Engineering, pages 297–308, 2002. 26

[8] B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for Web services composition. IEEE Transactions on Software Engineering,
30(5):311–327, May 2004. 42

[9] K.G. Binmore. Fun and games: a text on game theory. D.C. Heath, 1992. 21

[10] Clint Boulton. Forrester’s Advice to CFOs: Embrace Cloud Computing to Cut Costs.
eWeek.com, October 2008. 12

165

166 REFERENCES

[11] Clint Boulton. Gartner sees great saas enterprise app growth despite downturn.
eWeek.com, October 2008. 12

[12] J.P. Brans and Ph. Vincke. A preference ranking organisation method: The promethee
method for multiple criteria decision-making. Management Science, 31(6):647–656,
June 1985. 22, 88

[13] Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal rep-
resentation for BDI agent systems, pages 44–65. ProMAS’04. Springer-Verlag, Berlin,
Heidelberg, 2005. 109

[14] Ivan Breskovic, Christian Haas, Simon Caton, and Ivona Brandic. Towards self-
awareness in cloud markets: A monitoring methodology. pages 81 –88, dec. 2011.
128

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Wiley,
Chichester, UK, 1996. 152

[16] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utili-
ties. 2008 10th IEEE International Conference on High Performance Computing and
Communications, pages 5–13, September 2008. 21, 22

[17] Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, and Seungryoul Maeng. Cost optimized
provisioning of elastic resources for application workflows. Future Generation Computer
Systems, 27(8):1011 – 1026, 2011. 20

[18] Scott Camazine, Jean L. Deneubourg, Nigel R. Franks, James Sneyd, Guy Theraulaz, and
Eric Bonabeau. Self-Organization in Biological Systems. Princeton University Press,
2001. 53

[19] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
approach for QoS-aware service composition based on genetic algorithms. Proceedings
of the 2005 conference on Genetic and evolutionary computation - GECCO ’05, page 1069,
2005. 51

[20] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.
QoS-aware replanning of composite Web services. IEEE International Conference on
Web Services (ICWS’05), pages 121–129 vol.1, 2005. 51

[21] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and Raffaela Mirandola. A
Framework for Optimal Service Selection in Broker-Based Architectures with Multiple
QoS Classes. 2006 IEEE Services Computing Workshops, pages 105–112, September 2006.
47

[22] Jorge Cardoso, Amit Sheth, and John Miller. Workflow quality of service. Technical
report, University of Georgia, Athens, Georgia, USA, March 2002. 80, 116

REFERENCES 167

[23] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut. Quality of
service for workflows and web service processes. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(3):281–308, April 2004. xiii, 49, 81

[24] Zhi-yong Chen and Qing Yao. A Framework for QoS-aware Web Service Composition in
Pervasive Computing Environments. 2008 Third International Conference on Pervasive
Computing and Applications, pages 1011–1016, October 2008. 42, 44

[25] Scott H. Clearwater, Rick Costanza, Mike Dixon, and Brian Schroeder. Saving energy
using market-based control. pages 253–273, 1996. 62

[26] D Cliff. Simple bargaining agents for decentralized market-based control. HP Labora-
tories Technical Report, 1998. 62, 96

[27] CloudHarmony. Do slas really matter? 1-year Case Study.
http://blog.cloudharmony.com/2011/01/do-slas-really-matter-1-year-case-study.html.
129

[28] Transaction Processing Performance Council. Tpc, tpc-w benchmark. Online. 19

[29] Rogério deLemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Software engineer-
ing for self-adaptive systems: A second research roadmap. Workshop on Software
Engineering for Self-Adaptive Systems, Dagstuhl, May 2011. 152

[30] Thomas G. Dietterich. Machine learning for sequential data: A review. pages 15–30,
2002. 19

[31] Leticia Duboc, David Rosenblum, and Tony Wicks. A framework for characterization
and analysis of software system scalability. Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering - ESEC-FSE ’07, page 375, 2007. 41, 103

[32] Torsten Eymann, Michael Reinicke, Oscar Ardaiz, Pau Artigas, Luis Díaz de Cerio, Felix
Freitag, Roc Messeguer, Leandro Navarro, Dolors Royo, and Kana Sanjeevan. Decentral-
ized vs. centralized economic coordination of resource allocation in grids. In European
Across Grids Conference, volume 2970 of Lecture Notes in Computer Science, pages 9–16.
Springer, 2003. 67, 92

[33] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Com-
puting 360-Degree Compared. 2008 Grid Computing Environments Workshop, pages
1–10, November 2008. 12

[34] Daniel Freidman. The double auction market institution: A survey. 1993. 62

[35] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. Sharp: an
architecture for secure resource peering. SIGOPS Oper. Syst. Rev., 37:133–148, October
2003. 20

[36] Aiqiang Gao, Dongqing Yang, Shiwei Tang, and Ming Zhang. Web service composition
using integer programming-based models. IEEE International Conference on e-Business
Engineering (ICEBE’05), pages 603–606, 2005. 42, 43

168 REFERENCES

[37] S. Gjerstad and J. Dickhaut. Price formation in double auctions. E-Commerce Agents,
pages 106–134, 2001. 113

[38] Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of markets with zero-
intelligence traders: Market as a partial substitute for individual rationality. The Journal
of Political Economy, 101(1):119–137, 1993. 66, 68, 77

[39] Qing Gu and Patricia Lago. Exploring service-oriented system engineering challenges:
a systematic literature review. Service Oriented Computing and Applications, 3(3):171–
188, July 2009. 31, 49

[40] Alok Gupta and DO Stahl. The economics of network management. Communications
of the ACM, 42(9):57–63, 1999. 62

[41] Kieran Harty and David Cheriton. A market approach to operating system memory
allocation. pages 126–155, 1996. 62

[42] Minghua He and Nicholas R. Jennings. Southamptontac: An adaptive autonomous
trading agent. ACM Trans. Internet Technol., 3:218–235, August 2003. 62

[43] Minghua He, N.R. Jennings, and Ho-Fung Leung. On agent-mediated electronic com-
merce. Knowledge and Data Engineering, IEEE Transactions on, 15(4):985 – 1003,
july-aug. 2003. 62, 64

[44] M.D. Hill. What is scalability? ACM SIGARCH Computer Architecture News, 18(4):21,
1990. 41

[45] Y. C. Ho, L. Servi, and R. Suri. A class of center-free resource allocation algorithms. Large
Scale Systems, 1:51, 1980. 62

[46] Pu Huang, Alan Scheller-Wolf, and Katia Sycara. A strategy-proof multiunit double
auction mechanism. pages 166–167, 2002. 67

[47] IBM. An architectural blueprint for autonomic computing. June 2006. 55

[48] IBM. The IBM perspective on cloud computing, 2008. 12

[49] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc.,
http://aws.amazon.com/ec2/#pricing, 2008. 16

[50] David Irwin, Jeffrey Chase, Laura Grit, Aydan Yumerefendi, David Becker, and Ken-
neth G. Yocum. Sharing networked resources with brokered leases. pages 18–18, 2006.
20

[51] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation Computer Systems,
28(1):155 – 162, 2012. 18

[52] Nick Jennings. Automated haggling: building artificial negotiators. pages 1–1, 2000. 62

[53] Mohd. Shahadatullah Khan. Quality Adaptation in a Multisession Multimedia System:
Model, Algorithms and Architecture. PhD thesis, University of Victoria, 1998. 44

REFERENCES 169

[54] Shahadat Khan, K F Li, E G Manning, and M D M Akbar. Solving the knapsack problem
for adaptive multimedia systems. Stud Inform Univ, 2(1):157–178, 2002. 44

[55] Barbara A. Kitchenham and S. Charters. Guidelines for performing systematic literature
reviews in software engineering. Evidence-Based Software Engineering, 2(EBSE 2007-
001), 2007. 27, 36

[56] Barbara A. Kitchenham, T. Dyba, and M.a Jorgensen. Evidence-based software engi-
neering. Proceedings. 26th International Conference on Software Engineering, pages
273–281, 2004. 30, 31

[57] Paul Klemperer. Auction theory: A guide to the literature. JOURNAL OF ECONOMIC
SURVEYS, 13(3), 1999. 66

[58] J Ko, C Kim, and I Kwon. Quality-of-service oriented web service composition algorithm
and planning architecture. Journal of Systems and Software, 81(11):2079–2090, 2008. xi,
42, 45

[59] Jeff Kramer and Jeff Magee. A Rigorous Architectural Approach to Adaptive Software
Engineering. Journal of Computer Science and Technology, 24(2):183–188, April 2009. 53

[60] Vijay Krishna. Auction Theory. Academic Press, 1 edition, March 2002. 64

[61] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huberman. Ty-
coon: An implementation of a distributed, market-based resource allocation system.
Multiagent Grid Syst., 1:169–182, August 2005. 20

[62] Jing Li, Yongwang Zhao, Jiawen Ren, and Dianfu Ma. Towards adaptive web services
QoS prediction. In 2010 IEEE International Conference on Service-Oriented Computing
and Applications (SOCA), pages 1–8. IEEE, December 2010. 42, 46

[63] Benedikt Liegener. Agile service network, July 2011. 155

[64] Richard Lipsey. An Introduction to Positive Economics. Weidenfeld and Nicolson,
London, United Kingdom, fourth edition, 1975. 97

[65] Robert E. Marks. Breeding hybrid strategies: optimal behavior for oligopolists. Journal
of Evolutionary Economics, 2:17–38, 1992. 68

[66] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R. Green. Microeconomic
Theory. Oxford University Press, illustrated edition, 1995. 63

[67] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Com-
put. Simul., 8:3–30, January 1998. 129

[68] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Compre-
hensive qos monitoring of web services and event-based sla violation detection. pages
1–6, 2009. 98

[69] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based resource allocation
in iaas cloud. Future Generation Computer Systems, 28(1):94 – 103, 2012. xi, 16, 17, 20

170 REFERENCES

[70] J. Nicolaisen, V. Petrov, and L. Tesfatsion. Market power and efficiency in a compu-
tational electricity market with discriminatory double-auction pricing. Evolutionary
Computation, IEEE Transactions on, 5(5):504 –523, oct 2001. 68

[71] Jinzhong Niu, Kai Cai, Simon Parsons, Enrico Gerding, and Peter McBurney. Char-
acterizing effective auction mechanisms: insights from the 2007 tac market design
competition. pages 1079–1086, 2008. 62

[72] Jinzhong Niu, Kai Cai, Simon Parsons, Peter McBurney, and Enrico Gerding. What the
2007 tac market design game tells us about effective auction mechanisms. Autonomous
Agents and Multi-Agent Systems, 21:172–203, 2010. 10.1007/s10458-009-9110-0. 62

[73] Jinzhong Niu, Kai Cai, Simon Parsons, and Elizabeth Sklar. Reducing price fluctuation
in continuous double auctions through pricing policy and shout improvement. pages
1143–1150, 2006. 67

[74] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-computing system.
pages 124–131, 2009. 16

[75] University of Chicago. Haizea. http://haizea.cs.uchicago.edu/. 17

[76] University of Chicago. The Nimbus Project: An open-source EC2-compatible iaas cloud.
http://www.nimbusproject.org/. 16

[77] Peyman Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, Gregory Johnson, Nenad
Medvidovic, Alex Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based ap-
proach to self-adaptive software. Intelligent Systems and Their Applications, IEEE,
14(3):54–62, 1999. 56

[78] Manish Parashar and Salim Hariri. Autonomic computing: An overview. Unconven-
tional Programming Paradigms, pages 257–269, 2005. 56, 57

[79] David C. Parkes. Iterative combinatorial auctions: Achieving economic and computa-
tional efficiency. May 2001. 72

[80] Simon Parsons and Mark Klein. Towards robust multi-agent systems: Handling com-
munication exceptions in double auctions. pages 1482–1483, 2004. 67

[81] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of soft-
ware engineering: a roadmap. Proceedings of the conference on The future of Software
engineering ICSE 00, pages 345–355, 2000. 49

[82] S. Phelps. Evolutionary mechanism design. University of Liverpool, Diss, (July), 2007.
120

[83] Alvin E. Roth and Ido Erev. Learning in extensive-form games: Experimental data and
simple dynamic models in the intermediate term. Games and Economic Behavior,
8(1):164–212, 1995. 62, 113

REFERENCES 171

[84] Yuko Sakurai and Makoto Yokoo. An average-case budget-non-negative double auction
protocol. pages 104–111, 2002. 67

[85] Yuko Sakurai and Makoto Yokoo. A false-name-proof double auction protocol for
arbitrary evaluation values. pages 329–336, 2003. 67

[86] Adam Smith. An inquiry into the nature and causes of the wealth of nations. 1776. 53

[87] Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet Computing,
13:14–22, September 2009. 16

[88] Perdita Stevens and Rob Pooley. Using UML: Software Engineering with Objects and
Components. Object Technology Series. Addison-Wesley, second edition, 2006. 114

[89] Michael Stonebraker, Robert Devine, Marcel Kornacker, Witold Litwin, Avi Pfeffer, Adam
Sah, and Carl Staelin. An economic paradigm for query processing and data migration
in mariposa. pages 58–67, 1994. 62

[90] Dawei Sun, Guiran Chang, C Wang, Yu Xiong, and Xingwei Wang. Efficient Nash equilib-
rium based cloud resource allocation by using a continuous double auction. Computer
Design and Applications ICCDA 2010 International Conference on, 1(Iccda):V1–94, 2010.
21

[91] Gerald Tesauro and Rajarshi Das. High-performance bidding agents for the continuous
double auction. pages 206–209, 2001. 67

[92] Leigh Tesfatsion. Agent-based computational economics: Growing economies from
the bottom up. Artificial Life, 8:55–82, 2002. 67, 68

[93] Paul Tucker and Francine Berman. On market mechanisms as a software technique.
Science, pages 1–38, 1996. 62

[94] Axel van Lamsweerde. Formal Methods for Software Architectures, chapter From System
Goals to Software Architecture. Springer-Verlag, 2003. 102, 103

[95] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. IEEE Trans. Softw. Eng., 26:978–1005, October 2000. 105

[96] Christian Vecchiola, Rodrigo N. Calheiros, Dileban Karunamoorthy, and Rajkumar
Buyya. Deadline-driven provisioning of resources for scientific applications in hybrid
clouds with aneka. Future Generation Comp. Syst., 28(1):58–65, 2012. 18

[97] Perukrishnen Vytelingum. The Structure and Behaviour of the Continuous Double
Auction. PhD thesis, 2006. 67, 78, 113

[98] Carl A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stornetta. Spawn:
a distributed computational economy. Software Engineering, IEEE Transactions on,
18(2):103–117, feb. 1992. 62

[99] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: flexible proportional-
share resource management. page 1, 1994. 62

172 REFERENCES

[100] M.P. Wellman. Market-oriented programming: Some early lessons. Market-based
control: a paradigm for distributed resource allocation, pages 74–95, 1996. 63

[101] Danny Weyns. Architecture-Based Design of Multi-Agent Systems. Number XVII.
Springer, first edition, 2010. 109

[102] Bernard Widrow and Ted Hoff. Least mean squares adaptive filters. 2003. 96

[103] Tom De Wolf and Tom Holvoet. A catalogue of decentralised coordination mechanisms
for designing self-organising emergent applications. pages 40–61, 2006. 57

[104] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. SLA-Based Resource Allocation
for Software as a Service Provider (SaaS) in Cloud Computing Environments. 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages
195–204, May 2011. 21, 22

[105] Peter R. Wurman. A Parametrization of the Auction Design Space. Games and Economic
Behavior, 35(1-2):304–338, April 2001. 62

[106] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The michigan internet
auctionbot: a configurable auction server for human and software agents. pages 301–
308, 1998. 64

[107] Yan Yang, Shengqun Tang, Youwei Xu, Wentao Zhang, and Lina Fang. An Approach
to QoS-aware Service Selection in Dynamic Web Service Composition. International
Conference on Networking and Services (ICNS ’07), pages 18–18, June 2007. 42, 43, 48

[108] Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti, and Y. Coady.
Dynamic resource allocation in computing clouds using distributed multiple criteria
decision analysis. pages 91 –98, july 2010. 22

[109] Paul K. Yoon, Ching-Lai Hwang, and Kwangsun Yoon. Multiple Attribute Decision Mak-
ing: An Introduction (Quantitative Applications in the Social Sciences). Sage Publication
Inc., 1995. 42

[110] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for Web services selection
with end-to-end QoS constraints. ACM Transactions on the Web, 1(1):6–32, May 2007.
27, 42, 44, 45

[111] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multia-
gent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol., 12:317–370,
July 2003. 64, 109

[112] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the qos for web services. pages
132–144, 2007. 98

Appendices

173

APPENDIX A

Mechanism Design Appendices

A.1 A Segue into PROMETHEE

In the field of decision-making, where the alternatives have multiple dimensions, there are
three kinds of methods that aid in making a decision:

1. Aggregation Methods: These involve using utility functions, for each of the dimensions
and performing calculations on each, to choose the best. In our situation, while the
ApplicationAgent is well-placed to calculate utility from a certain set of services, the
BuyerAgent has only local knowledge. This makes the creation of utility functions
difficult. Also, utility functions suffer from the problem of having to be re-created every
time, a particular dimension changes.

2. Interactive Methods: Since our mechanism works with agents, and we wish to auto-
mate as much as possible, interactive methods of decision-making are not suitable.

3. Outranking Methods: These methods rely on the construction of an outranking relation
between attributes, and then use this to eliminate possibilities. One of the advantages
of an outranking method is that it provides a clear, easily-understood rationale for why
a particular choice is better than another.

PROMETHEE is a multiple criteria decision-making procedure that provides an outranking
mechanism to choose amongst alternatives, especially when each alternative can be com-
pared on multiple criterion. PROMETHEE performs a pairwise comparison of the options,
over each criterion. The preference for one option is formulated as a function, which takes
into account the difference between the two options, over each criterion. Each criterion
is represented as a pair (ci ,Pi (a,b)), where ci is the criterion, and Pi (a,b) represents the
preference of option a over option b. The preference function P (a,b) can be defined as:

P (a,b) =
{

0 if f (a) ≤ f (b),

p[f (a), f (b)] if f (a) > f (b)
(A.1)

175

176 Mechanism Design Appendices

Now, p(·) is chosen to be of the following type:

p[f (a), f (b)] = p[f (a)− f (b)] (A.2)

Since there might be areas in the option space, where the decision-maker is indifferent to
option a or option b, we need to denote the magnitude of the difference, between the two
options on a certain criterion, c.

x = f (a)− f (b) (A.3)

This difference can then be graphically represented using the function H(x), such that:

H(x) =
{

P (a,b), if x ≥ 0,

P (b, a) if x < 0
(A.4)

PROMETHEE defines the following six types of criteria:

1. Usual Criterion: In this case, there is indifference between a and b only when f (a) =
f (b). As soon as these values are different, the decision-maker has a definite preference
for one of the options (figure A.1a).

2. Quasi-Criterion: In this case, there is indifference between a and b so long as the
difference between f (a) and f (b) does not exceed k (figure A.1b).

3. Criterion with Linear Preference: This criterion allows the decision-maker to progres-
sively prefer option a over option b, for progressive deviations between f (a) and f (b).
The intensity of the preference increases linearly until the deviation equals m. After
this, the preference is strict (figure A.1c).

4. Level Criterion: In this case, the decision-maker is indifferent to a and b, until the
deviation between f (a) between f (b) remains less than q . When the deviation is
between q and p + q , the preference between one and the other is weak (1/2), after
which the preference becomes strict (figure A.1d).

5. Criterion with Linear Preference and Indifference Area: Here, the decision-maker is
indifferent to a and b, as long as f (a)− f (b) does not exceed s. Above s, the preference
increases progressively until s+r , beyond which there is again a strict preference (figure
A.1e).

6. Gaussian Criterion: In this case, the preference of the decision-maker grows in a gaus-
sian manner, with x (figure A.1f).

Graphically, the criteria can be shown in figure A.1

A.1 A Segue into PROMETHEE 177

0

1

H(x)

x

(a) Usual Criterion

0

1

H(x)

-k k x

(b) Quasi-Criterion

0

1

H(x)

-m +m x

(c) Criterion with Linear Preference

q

1
H(x)

-(p+q) x

1/2

(p+q)q0

(d) Level-Criterion

-s

1
H(x)

-(s+r) x(s+r)s0

(e) Criterion with Linear Preference and
Indifference Area

1

H(x)

-d
xd0

(f) Gaussian Criterion

Figure A.1: Six criteria defined by PROMETHEE

178 Mechanism Design Appendices

APPENDIX B

Requirements and Design Appendices

B.1 KAOS

B.1.1 KAOS Concepts and Terminology

Goals, agents and operations : A goal is a prescriptive statement of intent about some sys-
tem (under construction or already developed). Satisfaction of all the goals of the system is the
intent of architecting it. Satisfaction of a goal requires the cooperation of some of the agents
in the system. An agent is a human, device, legacy software or software component, that
plays a role in the system. The word system refers to the software-under-consideration and
its environment. The environment is described using domain properties. These are descrip-
tive statements, that affect the functioning of the software, generally by adding constraints.
Typically, they refer to organizational policy, physical laws, etc. An agent is responsible for
carrying out operations that affect the state of some objects in the system. An object is an
entity, association, event or another agent, that is characterized by attributes and domain
properties. An operation is thus, an input-output relation over an object. The state of a system
is the aggregation of the states of all its objects.
Realizing a goal is the responsibility of an agent. However, a goal may not be realizable by the
assigned agent for various reasons:

1. The goal is too high-level to easily judge whether it is realized or not

2. The goal refers to variables that are not monitored or controlled by the agent

To alleviate this problem, we perform goal refinement. Goal refinement refers to breaking
down higher-level strategic goals into lower-level sub-goals. This is done by identifying
sub-goals that, either independently or in coordination with other sub-goals, achieve the
higher-level goal. In KAOS, this is done using AND/OR refinement-abstraction structures. An

179

180 Requirements and Design Appendices

AND refinement links a goal to a set of sub-goals, that are together defined to be sufficient for
satisfying the higher-level goal. An OR refinement links a goal to a set of alternative sub-goals,
any of which is defined to be sufficient for satisfying the higher-level goal. In figure B.1, we
see a simple example of an AND refinement of a goal called Meeting Scheduled Correctly.
Goals are specified using semi-formal words like Achieve, Maintain, Avoid. In figure
B.1, both the sub-goals ([Participants Constraints Known] and [Meeting Notified])
must be satisfied for the higher-level goal to be achieved.

Achieve[Meeting Scheduled Correctly]

Achieve[Participants Constraints Known] Achieve[Meeting Notified]

Figure B.1: A simple AND refinement

8.1.2 KAOS-based goals for our Multi-Agent System

B.1 KAOS 181

A system for matching service

producers to Applications

Achieve[Application should

get services that meet their

end-to-end constraints]

Achieve[Applications should get

services within their budget]

Budget is maintained until

service request is either

satisfied or removed

Constraints are maintained until

service request is either satisfied

or removed

Achieve[Resouce allocating

system should meet its

non-functional requirements]

Achieve[As many service

producers as possible should be

matched with Applications]

Maintain[System should be

robust to the presence or

absence of a particular service

producer or Application]

Seller

Service Producers can indicate

cost-of-service, QoS attributes

Figure 8.2: Goals for a multi-agent system in the cloud

A system for matching service

producers to Applications

Achieve[Application should

get services that meet their

end-to-end constraints]

Achieve[Applications should get

services within their budget]

Budget is maintained until

service request is either

satisfied or removed

Constraints are maintained until

service request is either satisfied

or removed

Achieve[Resouce allocating

system should meet its

non-functional requirements]

Achieve[As many service

producers as possible should be

matched with Applications]

Maintain[System should be

robust to the presence or

absence of a particular service

producer or Application]

Service Producers can indicate

cost-of-service, QoS attributes

Maximum_Possible_Matching

(diagram)

see

No service provider or

Application occupies a special

position in the system

Figure 8.3: Top-level goals from the service consumer’s perspective

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem
	The case of BizInt
	The Case of SkyCompute

	Solution
	Contributions of This Thesis
	Structure of the Thesis
	Publications

	Resource Allocation in the Cloud
	Cloud Computing
	Resource Allocation
	Current Approaches
	Policy-Based Approach
	Deadline-Driven
	Machine-Learning Algorithms
	Cost-Optimization
	Market-Based Methods
	Ranking-Based Method

	Conclusion

	Scalability in Dynamic Service Selection
	Introduction
	Dynamic Web-Service Selection
	The Literature Review Process
	Systematic Review
	Research Questions

	Research Method
	Review Protocol
	Data Sources
	Search Strategy
	Study Selection
	Justification for Exclusion Criteria
	Data Extraction
	Data Synthesis

	Overview of Included Papers
	Results of Systematic Review
	Revisiting the Research Questions

	Discussion
	Threats to Validity
	Quality Assessment

	Conclusion

	Towards Self-Adaptive Architecture: A Market-Based Perspective
	Introduction
	Self-Adaptive Architectures
	Choosing the right mechanism

	Market-Based Control
	Auctions

	Review of Literature using MBC
	Auction-Oriented Agent Design
	Agent-Based Computational Economics

	Conclusion

	Mechanism Design
	Introduction
	Agents in the System
	BuyerAgent
	ApplicationAgent
	SellerAgent
	MarketAgent

	Structure of the Auction
	Modifications to the CDA

	Calculation, Communication, Decision-Making
	QoS Calculation
	Adaptation Using Bid Generation
	Bids Generated for Sample Scenario
	Decentralized Decision-Making Using Ask-Selection
	Ask Selection
	Calculation of Preference
	A Worked-out Example

	Use of MDA for QoS adaptation
	Post-Transaction

	Description of ApplicationAgent and BuyerAgents' Lifecycle
	Adapting Bid and Ask Prices
	Stopping Criteria
	Re-starting Conditions

	Description of the SellerAgent's Lifecycle
	QoS Monitoring Engine
	Conclusion

	Requirements and Design of Clobmas
	Introduction
	Requirements
	Goal Oriented Scalability Characterization
	Goal refinement for scalability

	Design
	Design Rationale
	Architectural Pattern
	Structural Modelling
	Behavioural Modelling
	Setup Phase
	The Trading Phase

	Implementing vs. Simulating a MAS

	Conclusion

	Evaluating Clobmas
	Introduction
	Context for Evaluation
	Qualitative Criteria
	Quantitative Criteria

	Experimental Setup
	Results
	Evaluation from BizInt's Perspective
	Evaluation from SkyCompute's Perspective
	Market Satisfaction Rate
	Scalability
	The Cost of Decentralization

	Evaluating the architecture of the MAS
	Common Architectural Patterns
	Architectural Patterns Employed in Clobmas

	Discussion of Issues and Limitations
	Threats to validity
	Identity and Reputation
	Monitoring of QoS Levels
	Marketplace Modelling

	Conclusion

	Conclusion and Future Work
	Summary
	Thesis Contributions
	Future Work
	Impact of this Thesis

	References
	Appendices
	Mechanism Design Appendices
	A Segue into PROMETHEE

	Requirements and Design Appendices
	KAOS
	KAOS Concepts and Terminology
	KAOS-based goals for our Multi-Agent System

