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Multi-tenancy is a key pillar of cloud services. It allows different users to share computing and virtual
resources transparently, meanwhile guaranteeing substantial cost savings. Due to the tradeoff between
scalability and customization, one of the major drawbacks of multi-tenancy is limited configurability. Since
users may often have conflicting configuration preferences, offering the best user experience is an open
challenge for service providers. In addition, the users, their preferences, and the operational environment
may change during the service operation, thus jeopardizing the satisfaction of user preferences. In this
article, we present an approach to support user-centric adaptation of multi-tenant services. We describe
how to engineer the activities of the Monitoring, Analysis, Planning, Execution (MAPE) loop to support
user-centric adaptation, and we focus on adaptation analysis. Our analysis computes a service configuration
that optimizes user satisfaction, complies with infrastructural constraints, and minimizes reconfiguration
obtrusiveness when user- or service-related changes take place. To support our analysis, we model multi-
tenant services and user preferences by using feature and preference models, respectively. We illustrate our
approach by utilizing different cases of virtual desktops. Our results demonstrate the effectiveness of the
analysis in improving user preferences satisfaction in negligible time.
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1. INTRODUCTION

Multi-tenancy allows cloud providers to deliver the same service to different customers
who share physical and/or virtual resources transparently [Bezemer et al. 2010; Natis
2012]. Depending on the adopted cloud service model, users can share resources at
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different levels, from hardware resources (e.g., CPU, storage) to software applications.
Multi-tenancy can support different degrees of isolation. In particular, the lower the
degree of isolation, the bigger the resources and cost savings, but the smaller the
configurability. Limited configurability [Mietzner et al. 2009] is a major drawback,
especially when user preferences are not known in advance. Several approaches [Baresi
et al. 2012; Kumara et al. 2013; Mietzner et al. 2009; Schroeter et al. 2012a, 2012b]
have been proposed to support dynamic configuration management of multi-tenant
services. Nonetheless, these contributions consider an isolated multi-tenant model (i.e.,
each user is assigned to a different service instance) and focus on deploying different
isolated variants of a service instance at runtime.

Social adaptation [Ali et al. 2012] considers changes in the user collective judgment
as a new adaptation driver. Other approaches [Malek et al. 2012; Cardellini et al. 2012]
consider conflicting users’ preferences and limited infrastructural resources in the con-
struction of adaptive software systems. These approaches identify a system architec-
ture [Malek et al. 2012] or configure a service-oriented application that maximises QoS
preferences [Cardellini et al. 2012] when changes in the operational environment take
place. However, as far as we are aware, a user-centric approach has not been previously
proposed for the adaptation of multi-tenant services in cloud scenarios. To achieve this
aim, additional challenges have to be addressed. First, it is necessary to provide users
with high-level mechanisms to define and change their preferences on the possible
service configurations. Second, the adoption of a pay-as-you-go business model allows
users to join and leave a cloud service dynamically, which can have an impact on the
consumption of the infrastructural resources and may reduce the satisfaction of the
user preferences. Therefore, changes in the number of users and modifications of their
preferences have to be considered as a main adaptation trigger for the reconfiguration
of multi-tenant services.

In this article, we characterize the user-centric adaptation of multi-tenant services
problem, focusing on adaptation analysis. In our previous work [Garcı́a-Galán et al.
2014], we highlighted the challenges to be addressed for engineering the activities of
the Monitoring, Analysis, Planning, Execution (MAPE) loop [Kephart and Chess 2003]
necessary to support user-centric adaptation and proposed a preference-based analysis
that maximizes in a balanced way the satisfaction of user preferences expressed on the
possible service configurations. In this article, we extend our analysis by incorporat-
ing infrastructural and obtrusiveness aspects. Infrastructural aspects are necessary
to guarantee that available infrastructural resources can handle the workload gener-
ated by the selected service configuration and the tenants of the service. Obtrusiveness
aspects are taken into account to reduce the nuisance produced by a service recon-
figuration. Our adaptation analysis can be triggered when users or the operational
environment (including available service configurations and infrastructural resources)
change at runtime.

We illustrate and motivate our approach by utilizing different cases of virtualized
desktops. Compared to our previous proposal, which focused on a hosted shared Desk-
top as a Service (DaaS), this article extends the applicability of our analysis to different
DaaS delivery models and, more generally, to different multi-tenant services. We model
the available service configurations (also referred to as configuration space), the in-
frastructural resources , and the workload by using Feature Models (FMs) [Kang et al.
1990]. We represent user preferences by adopting an existing preference model [Garcı́a
et al. 2013]. Our adaptation analysis is interpreted as a multi-objective constrained op-
timization problem built on top of the Automated Analysis of Feature Models (AAFM)
[Benavides et al. 2010]. The optimization problem is solved by using metaheuristic
algorithms [Marler and Arora 2004] that have proved suitable for FM optimization in
existing work [Guo et al. 2011; Sayyad et al. 2013]. We evaluate the effectiveness of
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the analysis on simulated scenarios where different tenants—and their users—join and
leave a DaaS and change their preferences. The results obtained from our experimental
evaluation are encouraging because they demonstrate that our adaptation analysis is
able to calculate reconfigurations that improve and balance the satisfaction of users’
preferences in a few seconds.

The rest of the article is organized as follows: Section 2 provides some background on
multi-tenancy, DaaS, and feature modeling. Section 3 illustrates our DaaS case study,
and Section 4 introduces the user-centric adaptation problem and, in particular, the
adaptation analysis. Section 5 describes how multi-tenant services and preferences are
modeled to support the analysis, which in turn is presented in Section 6. Section 7
discusses our experimental results, and Section 8 points out the open issues that will
be addressed in future work. Section 9 compares our approach with relevant related
work, and, finally, Section 10 concludes.

2. BACKGROUND

This section provides some background on multi-tenancy, DaaS delivery models, and
feature models.

2.1. Multi-Tenancy

Multi-tenancy is defined as multiple customers, organizations, or processes (tenants)
sharing common physical or virtual computing resources while remaining logically in-
dependent [Natis 2012]. Typically, a tenant groups a number of users, which are the
stakeholders in the organization [Bezemer et al. 2010]. Shared resources can vary
depending on the cloud service model; each model provides resources belonging to
different levels of abstraction. The Infrastructure as a Service (IaaS) model offers
computer—physical or virtual machines—and other resources, such as raw block stor-
age, file or object storage, Virtual Local Area Networks (VLANs), IP addresses, and
firewalls. To deploy their applications, users install operating system images and their
application software on the cloud infrastructure. In the Platform as a Service (PaaS)
model, providers deliver a computing platform, typically including an operating system
and a solution stack with Database Management Systems (DBMS) and/or application
servers. Cloud users can run their software solutions without managing the underlying
hardware and software layers. In the Software as a Service (SaaS) model, users can
access applications and data. The more resources are managed by cloud providers, the
more resources are shared by multiple different users.

A Desktop as a Service (DaaS) is a specific case of SaaS providing a virtual desktop
and a set of applications as a service to a single or multiple tenants. Providers like
Citrix1, VMWare2, and Amazon3 are increasingly offering a wide range of DaaS solu-
tions. In this article, we focus on the case of multi-tenant DaaS relying on the delivery
models provided by Citrix [2013].

2.2. Desktop as a Service Delivery Models

DaaS delivery models differ depending on the specific provider. In particular, as shown
in Figure 1(a), Citrix provides two main delivery models for DaaS: Hosted Shared and
Virtual Desktop Infrastructure (VDI).

The hosted shared model consists of multiple user desktops shared among different
tenants and hosted on a single server-based operating system. Although it provides
a low-cost, high-density solution, applications must be compatible with a multi-user

1http://www.citrix.com/solutions/desktop-as-a-service/.
2http://www.vmware.com/products/desktop-virtualization.
3http://aws.amazon.com/workspaces/.
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Fig. 1. (a) DaaS delivery models. (b) Example of a FM.

Table I. Impact of User Profiles on Required Infrastructural Resources for Different DaaS Delivery
Models [Citrix 2013]

CPU: users per core (MIPS per user) RAM per user
Profile Apps Pooled VDI Assigned VDI Shared VDI Shared
Light 1–2 office apps 15 (1,340) 13 (1,546) 21 (957) 1GB 340MB

Normal 2–10 office apps. light multimedia use 11 (1,827) 10 (2,010) 14 (1,435) 2GB 500MB
Heavy Multimedia or app development 6 (3,350) 5 (4,020) 7 (2,871) 4GB 1GB

We assume a Windows server 2012 and Windows 8 for VDI and hosted shared models, respectively, and a
processor speed of 2.7GHz and Intel Westmere processor architecture.

server-based operating system. In addition, because multiple users are sharing a single
operating system, they are prevented from performing actions that may negatively
affect other users, such as installing new applications or changing system settings.

The VDI model hosts custom desktop instances on remote servers. Each desktop
instance is associated with a different tenant and relies on a centralized master im-
age. VDI supports more customization than the hosted shared model since each tenant
uses a different desktop instance. However, the specific shared and exclusive aspects
depend on the concrete VDI implementation and its options. For example, Citrix sup-
ports pooled VDI and assigned VDI (with personal vDisk) [Citrix 2013]. A pooled VDI
provides a clean random virtual desktop each time a user accesses the service. An
assigned VDI allows the users to customize the desktop, save applied changes after
logging out, and connect to the same virtual machine at each login.

The choice of a delivery model depends on the number of users, their profiles (i.e.,
intensity of desktop usage) and diversity, the applications adopted more often, and the
available infrastructural resources. In the case of a hosted shared model, all the fea-
tures are shared among all the tenants, whereas in the case of a VDI model, the shared
aspects depend on the concrete VDI configuration. Table I shows the impact of different
user profiles on the required infrastructural resources (CPU and RAM) for different
DaaS delivery models. CPU requirements determine the maximum number of users of
a specific type that can be allocated for each core, whereas RAM requirements indicate
the amount of RAM (in MB or GB) necessary to serve the requests of each user. In the
next section, we present a DaaS case study for the aforementioned delivery models.

2.3. Feature Models

Feature Model (FMs) [Kang et al. 1990] are used to represent all the possible prod-
ucts that can be built in variability-intensive systems such as Software Product Lines
(SPLs). FMs are tree-like data structures where each node represents a product fea-
ture. Features are bound by means of hierarchical (mandatory, optional, and set) and
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Table II. Shared DaaS Configuration Options Depending on Delivery Model and Their Workload Peaks

Shared options Workload Peaks
HS PVDI AVDI DaaS configuration options Values MIPS RAM
� � � Regional Settings {UK, US, ES} - -

� � � Gadgets
Weather {On, Off} - -
Calendar - -

� � � Maintenance
Defragmenter {On, Off} 10 000 3 GB
Indexing 15 000 4 GB
Backup {Daily, Weekly, Monthly} 7 000 1 GB

� �

�

Updates

Java

{Daily, Weekly, Monthly}

3 000 0.2 GB
� Eclipse 2 000 0.1 GB
� MS-Office * 3 000 0.4 GB
� OS * 5 000 1 GB

*MS-Office updates period should be smaller than that used for OS updates.

cross-tree relationships. These relationships define how features can be combined in
a product, thus defining the configuration space of the system. Figure 1(b) shows an
example of an FM diagram that represents the variability of DaaS delivery models.
DaaS is the root feature that represents the overall functionality of the system. It has
two children, an optional feature (white circle) named vDisk, and a mandatory feature
(black circle) named Delivery Model. The latter feature is decomposed by a set rela-
tionship whose cardinality indicates the number of child features that can be chosen
at the same time. Note that in an FM, non-leaf features [Thum et al. 2011] can be used
to represent high-level decisions and group lower-level decisions. For example, the VDI
feature is used to group two possible VDI implementations (Pooled and Assigned).

FMs also represent cross-tree constraints, attributes, and complex constraints. Cross-
tree constraints are constraints between features belonging to different branches of the
model, such as the dependency between features vDisk and Assigned, indicating that
the adoption of a personal vDisk requires the selection of an assigned VDI implemen-
tation. Attributes are additional properties associated with a feature. For example,
the totalCost attribute of the DaaS feature is a real number describing the cost of a
specific DaaS configuration. Finally, complex constraints describe arithmetic, logical,
and relational constraints on features and attributes. They can be used, for example,
to bound the possible values that attributes can assume.

3. CASE STUDY

In this section, we present a Windows-based DaaS case study that we use to motivate
and illustrate our work. First, we describe the configuration space of the DaaS that can
be delivered by using a hosted shared or VDI model. Second, we illustrate how different
user profiles and DaaS configuration options impact on the infrastructure (CPU and
RAM). Finally, we show a multi-tenant scenario in which each tenant groups users
having compatible DaaS configuration preferences.

3.1. DaaS Configuration Space

We present a Windows-based DaaS example in which each instance uses different
delivery models: hosted shared (HS), pooled (PVDI), and assigned VDI (AVDI). We
assume that every DaaS instance provides several applications: (1) a LaTex compiler
and editor, (2) MS-Office, (3) a PDF reader, (4) GIMP as image editor, (5) Eclipse as
IDE, and (6) SPSS for statistical analysis. An instance setup is defined by four config-
uration options: regional settings, gadgets (desktop widgets), maintenance tasks, and
updates frequency. Tenants can indicate their preferred configuration options, and the
satisfaction of such preferences depends on the delivery model. Table II indicates the
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Table III. Tenants’ Usage Profile and Preferences; Potential Conflicting Preferences
Are Associated with the Same Number

# Users Apps Profile Preferences

Tenant 1 45 Medium

- US reg. settings (1)
- MS-Office - Office updates (3)
- GIMP - Weekly backups

- Weekly OS Updates (3)

Tenant 2 60
- Latex

Light
- No UK regional settings (1)

- MS-Office - Indexing (2)
- Defragmentation

Tenant 3 31
- Eclipse

Heavy
- Monthly office updates (3)

- MS-Office - No Indexing (2)
- PDF Reader - Calendar Gadget

configuration options that are shared in the different delivery models. If a configuration
option is shared by multiple tenants, conflicts among different preferences may arise.
For example, in a hosted shared model, different tenants may have different update
frequency preferences for Eclipse and MS-Office, whereas in an assigned VDI model,
such an option can be customized for each tenant, thus avoiding any possible conflict.

3.2. Infrastructural Constraints

In this section, we characterize the workload generated by the service users and its
configuration in order to assess whether the infrastructural resources available at the
service provider are satisfactory to provision a DaaS instance while avoiding service
outages. The workload generated by the activity of each user depends on the appli-
cations he or she executes more often. We profile users along the three categories
identified by Citrix [2013]: light, normal, and heavy. The delivery model has an impact
on the number of users per core that a DaaS is able to handle and on the required
RAM size. Table I shows an estimation of the workload generated by each user profile
depending on the DaaS delivery model and expressed in terms of Million Instructions
Per Second (MIPS) and memory size.4 In addition to the workload generated by the
users, the current service configuration also has an impact on the workload. Although
this impact is not publicly described by providers, it can be easily profiled in a system.
For the possible DaaS configuration options envisaged in our example scenario, we
assume to have the peak workloads shown in the last two columns of Table II. Note
that a peak workload represents the maximum workload that can be reached at a given
time instant.

3.3. Users, Preferences, and Conflicts

In our example scenario, we assume three different tenants sharing the same DaaS
instance. Each tenant groups a given number of similar users whose preferences, used
applications, and profiles are presented in Table III. Preferences expressed on the
same configuration options may lead to conflicts. For example, tenants 1 and 2 have
different—but equivalent—preferences for the regional settings that do not create con-
flicts. Tenants 2 and 3 have contradicting preferences for the indexing feature, making
it impossible to satisfy both preferences at the same time. Tenant 1 prefers weekly
OS updates, while tenant 3 favors monthly office updates, causing a potential conflict.

4Whereas the RAM and users per core calculations are provided by Citrix, the MIPS are estimated based
on the MIPS of an Intel Westmere Core i7 980X (hex-core) 3.3Ghz processor. We have to adjust the clock
frequency to the Westmere 2.7Ghz of Table I. The MIPS for a single core are 147,600∗2.7

6∗3.3 ≈ 20100.
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Indeed, the satisfaction of both preferences may cause a violation of the constraint that
requires that the office updates period must be smaller than the OS update period
(Table II). Note that the complete satisfaction of all preferences is infeasible in most
cases and therefore it is necessary to trade off conflicting preferences.

Similarly to other cloud service models, a multi-tenant DaaS satisfies the requests
of its tenants elastically. This means that the tenants may join and leave the service
or change their preferences or number of users at runtime. For example, the users in
tenant 3 work at fixed times and they therefore join and leave the DaaS almost at the
same time every workday; however, users belonging to the rest of the tenants access
the desktop at different times (including weekends), especially when project deadlines
are close. Similarly, the current service configuration may become suboptimal because
tenant preferences vary during the system lifetime. For example, users of tenant 3 may
prefer to deactivate Eclipse updates while finishing a development sprint. In all these
cases, the current users and their preferences have a direct influence on the selection
of a specific service configuration. Furthermore, modifications to the available service
configurations might lead to changes in tenant preferences. For example, if some of the
backup features are removed, the users might change their preferences with regard to
the new configuration space.

4. TOWARD USER-CENTRIC ADAPTATION OF MULTI-TENANT SERVICES

In this section, we present the foundations of our user-centric adaptation approach
for multi-tenant services. In particular, we provide a big picture of the user-centric
adaptation problem and focus on the analysis for supporting service reconfiguration.

4.1. User-Centric Adaptation Problem

We consider the user-centric adaptation as the process that reconfigures a system when
the users or the operational environment change in order to maximize user satisfac-
tion. The adaptation actions perform a system reconfiguration by changing the values
of the configuration options. We propose to perform the adaptation when any event
that may have an impact on user satisfaction is detected, such as changes in the user
preferences, in the available system configurations, or in the computational resources.
However, system adaptations can, in turn, reduce system usability. Therefore it is nec-
essary to balance the tradeoff between preferences satisfaction and the obtrusiveness
of adaptation actions.

As shown in Figure 2, the activities of the MAPE loop can support user-centric
adaptation as follows:

(a) Monitoring (M) has the objective of capturing user-related changes, modifications
of the available system configurations, and variations of computational resources.
Any of these changes can trigger a new adaptation. User-related changes include
modifications of the users’ preferences on the available system configurations or
variations in the number of users per tenant, which in turn can affect the global
preferences of a tenant. Monitoring users’ preferences can be performed, for ex-
ample, by asking for explicit user feedback [Ali et al. 2012]. Modifications of the
configuration space may be due to, for example, new applications supported by the
DaaS or system updates. Infrastructure changes are related to modifications of
allocated resources or changes of the constraints on the maximum resources that
can be allocated. Note that all these changes can have an impact on how users’
preferences are satisfied. Additionally, the monitoring also has to keep track of
the adaptation frequency, which may affect the performance of tasks performed by
users [Speier et al. 2003] and therefore preclude the execution of a reconfiguration.
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Fig. 2. User-centric adaptation Monitoring, Analysis, Planning, Execution (MAPE) loop.

(b) Analysis (A) has the objective of identifying the best system configuration(s) that
optimize a set of metrics. In particular, a reconfiguration should maximize the sat-
isfaction of user preferences by taking into account the available infrastructural
resources. As changes from one configuration to another can have a negative im-
pact on the usability of the system [Gajos et al. 2006], the reconfiguration should
also minimize the adaptation cost (a.k.a “obtrusiveness”). For example, a recon-
figuration that modifies the look and feel or the regional settings in a DaaS is
more obtrusive than another one that modifies the backup frequency. Frequent
adaptations can also increase obtrusiveness. This issue is further discussed and
parametrized in Sections 5.1 and 6.3, respectively.

(c) Planning (P) receives as input a candidate reconfiguration identified during anal-
ysis and identifies an adaptation strategy indicating how this reconfiguration
should be applied at runtime. For example, changes in the application look and
feel might not be applied until specific users terminate their interaction with the
system. A reconfiguration that modifies the backup frequency can only be applied
after the next scheduled backup.

(d) Execution (E) has the objective of applying an adaptation at runtime. For example,
in the case of a VDI DaaS, a variant of existing application instances should be
deployed dynamically, as proposed in Baresi et al. [2012] and Schroeter et al.
[2012b], whereas for a hosted shared DaaS model, the single application instance
should be modified when possible.

For our DaaS case study, depending on the chosen delivery model, the value of a
configuration option can be tenant-specific (i.e., enabling a different configuration for
each tenant) or tenant-shared (i.e., common to all tenants). However, as a multi-tenant
service, all the delivery models present a—higher or lower—number of shared config-
uration options. We propose to adapt the shared configuration options dynamically. In
this way, our approach can be applied to different delivery models by changing the op-
tions that are included in the configuration space considered during the analysis. Note
that admin aspects that are common to all the tenants, such as security configurations
(e.g., firewall, antivirus), are out of the scope of our adaptation problem. Indeed, given
their criticality, their configuration can only be performed by the admin staff at the
provider organization.
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Our user-centric adaptation approach can be applied to other multi-tenant service
models, such as SaaS, PaaS, and IaaS. An example of multi-tenant SaaS is Wordpress,5
which is an open source blogging tool and a content management system providing
different customization options and plugins. Similarly to a DaaS, Wordpress supports
multi-sites,6 which aggregate several Wordpress sites into a single installation. In
this case, the shared resources among tenants are the global configuration options,
such as the default language, the upgrading policy, and the available plugins, themes,
and blog entries. In a PaaS model, the deployment environment (e.g., DBMSs, web
servers) can be reconfigured to adequately host multiple applications—representing
the tenants in this case—having different needs. Virtualized computing instances and
storage services are examples of multi-tenant IaaS. Such services rely on the underlying
hardware resources that are shared among different tenants. For example, Amazon
offers micro instances to increase CPU capacity for a short time in order to handle
load peaks. Since micro instances do not have fixed performance requirements, in this
scenario our approach can be used to decide which micro instance receives additional
computational cycles. This choice depends on the current and changing needs of the
tenants and on the available computational capacity of the physical CPU instance
shared among the tenants.

4.2. Adaptation Analysis for Service Reconfiguration

In this article, we focus on the analysis activity of the MAPE loop. In particular, we
define the analysis problem as a tuple of the form

(C, I, T , fC, fT , (u1, . . . , un), ρ),

such that C represents the set of configurations that are available in the service;
I characterizes the infrastructural resources; T represents the set of tenants, fC :
C → I and fT : T → I are the functions that identify the impact (workload) that
each configuration and each tenant has on the required infrastructural resources,
respectively; ui : C → R are utility functions for each tenant in T defining the tenant
satisfaction for any given configuration in C; and ρ : C × C → R is a function that
quantifies the obtrusiveness that a change from one configuration to another produces.

Assuming that it is possible to define a function U : C → R that computes the global
satisfaction of all the tenants for a given configuration, a candidate reconfiguration
ct+1 ∈ C can only be enforced if it outperforms the current one (ct) (i.e., U (ct+1) ≥ U (ct) +
ρ). Note that we assume that a tenant groups different users who share compatible
preferences and the same profile. The clustering of the user preferences into different
tenants is performed during the monitoring phase and is an open issue that will be
addressed in future work.

5. MODELING

In this section, we describe how the multi-tenant service (Section 5.1) and the user
preferences (Section 5.2) are modeled to support the analysis. We use FMs to represent
the multi-tenant service including the configuration space (C), the infrastructural re-
sources (I), the workload generated by a service configuration and the users ( fC , fT ),
and the obtrusiveness of a service reconfiguration (ρ). We adopt the Semantic Ontology
of User Preferences (SOUP) preference model [Garcı́a et al. 2013] to represent user
preferences.

5https://wordpress.org/.
6http://codex.wordpress.org/Create%20A%20Network.
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Fig. 3. (a) Service modeling. (b) Analysis inputs and outputs.

Fig. 4. DaaS configuration space expressed as a feature diagram, - an FM graphical notation.

5.1. Service Modeling

Service modeling usually involves multiple and interrelated configuration options. For
example, Amazon EC2 features present more than 20,000 constraints defining 16,991
different configurations [Garcı́a-Galán et al. 2013]. Our choice to use FMs to model
multi-tenant services is motivated by the fact that FMs are expressive enough to rep-
resent increasingly complex systems such as cloud services [Garcı́a-Galán et al. 2013]
and content-management frameworks [Sánchez et al. 2014]. This section leverages our
DaaS case study to describe how we use FMs to model multi-tenant services.

5.1.1. Configuration Space. Figure 4 shows an FM for the DaaS case study. Each con-
figuration option is modeled either as a feature or as an attribute. Features represent
boolean options that can be selected or removed. Attributes can assume values in an
integer, real, or enumerated domain, being suitable to represent non-boolean options.
In our case study, the main configuration options are represented by five features:
Gadgets, Regional Settings, AppUpdates, Maintenance, and OSUpdates. These features
are in turn decomposed by subfeatures representing possible configuration options. For
example, if the Gadgets feature is selected, it is necessary to specify whether the Weather
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forecast gadget, the Calendar gadget, or both are selected. Since the Maintenance fea-
ture must be selected mandatorily due to its relationship with the root feature, the
Backup feature must also be selected, whereas features Indexing and Defragmenter are
optional. For the Backup feature, a daily, weekly, or monthly backup period must be
chosen as indicated by the period attribute.

5.1.2. Infrastructure and Workload. In real-world contexts, services have limited infras-
tructural resources that should be satisfactory to handle the workload determined by
the current service configuration and users. We propose to incorporate infrastructure
and workload information into the FM by means of attributes and complex constraints.
In our example, infrastructure and workload are defined in terms of CPU speed (in
MIPS) and RAM size, although other indicators such as incoming and outgoing band-
width or storage could also be considered. Listing 1 shows an excerpt of the infrastruc-
ture and workload definition in the FM using FaMa plain-text notation [Trinidad et al.
2008]. In particular, the syntax for an attribute definition is Feature.attributeName:
Domain[range], zero-value;. This indicates the value an attribute assumes when the
corresponding feature is removed.

Available infrastructural resources are defined by attributes cores, availableCPU,
and availableMemory associated with the WindowsDaas feature. They represent the
number of CPU cores and the available CPU and memory and are assigned a fixed value
that could only be modified if the infrastructure changes. The attributes representing
the overall workload are CPUWorkload and memoryWorkload and are also associated
with the WindowsDaas feature. The value of these attributes must always be smaller
than the CPU and the RAM available; this is represented in terms of constraints in
the FM (first two constraints in Listing 1). The value of these attributes may also vary
at runtime depending on the current service configuration and on the number of users.

The overall CPU and RAM workload determined by a service configuration is ex-
pressed by the WindowsDaas feature attributes configCPUWL and configMemoryWL, re-
spectively. The value of such attributes is computed as the sum of the CPU and RAM
workload determined by each selected leaf feature. This operation is expressed by two
constraints in the feature diagram (last two constraints in Listing 1). Each leaf feature
is associated with attributes feature.configCPUWL and feature.configMemoryWL rep-
resenting its CPU and RAM workload, respectively. For example, as shown in Listing 1,
the Weather and Indexing features require 30MB and 0.5GB of RAM, respectively, when
they are selected. When a feature is removed from a configuration, it does not require
resources, and zero values in the attribute definitions are used for this purpose. The
workload values associated with each leaf feature can be obtained from real-time data
collected while the feature is selected or from estimations when the feature is currently
removed.

The CPU and RAM workload determined by the users is represented by the Win-
dowsDaas feature attributes userMemoryWL and userCPUWL, respectively. This workload
is usually variable and nonlinear and depends on the user number and profile. Ideally,
during the monitoring phase, upper bounds for userMemoryWL and userCPUWL can be
predicted. However, since the scope of the solution of this article is on the analysis
phase, we use simulated workloads for the example described in Section 6.2.

5.1.3. Obtrusiveness. To model the obtrusiveness of a service configuration, we lever-
age the conceptual framework proposed by Ju and Leifer [2008]. This framework de-
termines the obtrusiveness level of each interaction of the system with the user by
considering the attention dimension; thatis, whether an interaction takes place in
the background (the user is unaware of the interaction with the system) or in the
foreground (the user is fully conscious of the interaction). Taking inspiration from
this work, we consider user awareness about changes as a factor that affects the
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Listing 1. Excerpt of DaaS infrastructure, workload, and obtrusiveness modeling for memory using FaMa
plaintextformat.

obtrusiveness level of a reconfiguration. In our case, a change is performed when a
selected feature is removed, a removed feature is selected, or a configuration option
attribute—such as update period—changes value. In this context, the obtrusiveness
level produced by changes is the sum of the obtrusiveness level produced by each
modified feature. For this reason, we associate an obtrusiveness attribute with each
feature in the FM. The higher the user awareness about a change in a feature, the
higher the obtrusiveness of the feature. In particular, those features whose changes
affect the graphical user interface, such as Gadgets and Regional Settings, have high
obtrusiveness (3). Features that might cause a slight degradation in system perfor-
mance, such as Maintenance, have medium obtrusiveness (2). For example, Indexing is
a background task that consumes some CPU and has medium obtrusiveness. Finally,
features that are almost transparent to the users, such as AppUpdates and OSUpdates,
have low obtrusiveness (1). Listing 1 shows an example of the obtrusiveness definition
for the Gadgets and Indexing features. In Section 6.3, we explain how these values are
used to include obtrusiveness information in the adaptation analysis.

5.2. User Preferences Modeling

In FMs, users can describe their preferences in terms of hard requirements, in which
a feature must be either selected or removed and attributes must only assume one
specific value in their domains. This approach hinders the negotiation process among
different users, making it harder to find a relaxation of conflicting requirements.

Although a service cannot satisfy conflicting hard requirements, it can provide a
balance between conflicting preferences. We adapt five preference terms of the SOUP
model [Garcı́a et al. 2013] to express fuzzy user preferences on a given service. SOUP
is a highly intuitive and expressive preference model that was initially designed to
express preferences for service discovery and ranking. However, it has been adapted
to different scenarios, such as resources allocation in business processes [Cabanillas
et al. 2013]. We detail the adapted preferences as follows:
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—Favorites expresses a preference on a selected feature. For example, a user may prefer
the Indexing feature to be selected.

—Dislikes expresses a preference on a removed feature. For example, a user may dislike
the JavaUpdate feature.

—Highest expresses a preference on maximizing the value of a given attribute. For
example, a user may prefer the highest value for the OSUpdate.period attribute.

—Lowest expresses a preference on minimizing the value of a given attribute. For
example, a user may want the lowest value for the JavaUpdate.period attribute.

—Around expresses a preference on a specific attribute value. The closer the attribute
value to a target value, the higher the preference satisfaction. For example, a user
may want the OfficeUpdate.period attribute to be close to the “weekly” value.

In this way, the different users—g rouped by tenants—can employ fuzzy operators to
define their satisfaction. Initially, described preference terms were intended to define a
partial ranking between a set of services [Garcı́a et al. 2013]. In our work, we compute
the satisfaction of each tenant (i) for each configuration option ( j) as a real number
pij ∈ [0, 1]. This choice allows us to measure the preference satisfaction of each tenant
i in terms of a fitness function (ui) described in the next section.

6. ANALYSIS

The goal of our analysis is to identify a service reconfiguration that improves the sat-
isfaction of the users’ preferences compared to the current configuration. The analysis
takes as input the service model, including the configuration space, the infrastruc-
ture and workload, and the features obtrusiveness, the users’ preferences model, and
the current service configuration, as shown in Figure 3(b). The analysis problem is
interpreted as an operation of the AAFM, as described in Section 6.1. A candidate
configuration is computed by taking into account the preferences satisfaction and the
obtrusiveness determined by its application at runtime. These aspects are considered
in the preference-based optimization (Section 6.2) and the obtrusiveness-aware opti-
mization (Section 6.3), respectively.

6.1. Automated Analysis of Feature Models

AAFM is a discipline that deals with “the automated extraction of information from
FMs using automated mechanisms” [Benavides et al. 2010]. We leverage existing map-
pings from FMs to logic paradigms and off-the-shelf solvers to implement our adapta-
tion analysis. In particular, in this article, we use the optimization operation provided
by the AAFM framework to perform our adaptation analysis. This operation takes an
FM and an objective function as inpu, and returns the configuration fulfilling the cri-
teria established by the function. To optimize the value of the attributes defined in the
FMs, relative order preferences have been considered in previous work [Asadi et al.
2014]. However, as far as we are aware, no approach has considered how to optimise
fuzzy, high-level user preferences expressed similarly to those described in Section 5.2.
Therefore, we have tailored the objective function of the optimization operation of the
AAFM framework to support our preference-based optimization.

6.2. Preference-Based Optimization

We interpret our preference-based optimization as a multi-objective constrained opti-
mization problem. From all the available combinations of configuration values, only
a subset satisfies all the configuration space, infrastructure, and obtrusiveness con-
straints for a given time lapse. The set of preferences associated with each tenant is
considered as a different objective function; from that subset, it is possible to obtain a
Pareto front with solutions that are equally efficient. Table IV shows how preference
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Table IV. Preferences Satisfaction

Preference Element Satisfaction Measure Example

Favorites(f) Feature f = selected ⇒ pij = 1 Favorites(Indexing)

Dislikes(f) Feature f = removed ⇒ pij = 1 Dislikes(JavaUpdate)

Highest(att) Attribute pij = value − lowerBound
upperBound − lowerBound

Highest(OSUpdate.period)

Lowest(att) Attribute pij = upperBound − value
upperBound − lowerBound

Lowest(JavaUpdate.period)

Around(att,d) Attribute pij = inverseDistance(value, d) Around(OfficeUpdate, Weekly)

satisfaction is computed for the analysis. Each preference defines a satisfaction degree
pij comprised between 0 and 1, depending on the value of the element referred to by the
preference. The fitness function of each tenant, ui = ∑

j pij , aggregates its preferences.
Since the Pareto front may be composed of a number of equally efficient solutions, we
rank them by using a utility function that allows us to choose a single one. To iden-
tify an egalitarian solution, we take inspiration from cooperative game theory and the
concept of an impartial arbitrator: From two optimal solutions, an impartial arbitrator
chooses the most equitable one [Myerson 1991]. Our utility function corresponds to a
variation of the Nash product (

∏
i ui), the so-named Normalized Nash Product, which

compares the different solutions belonging to the Pareto front, as follows:

NNP =
∏ ui · wi

UiMAX

where wi is the number of users of tenant i, and UiMAX is the maximum possible
preference satisfaction of each tenant ui. If different configurations have the same
value of the utility function, we select the one minimizing the resources usage. The
rest of the section illustrates our analysis approach through the scenario presented in
Section 3.

We consider a hosted shared delivery model in which all resources are shared among
tenants, as shown in Figure 4. We also consider the preferences of each tenant and their
number of users for two subsequent time instants (t and t + 1) as shown in Table V. At
time t, there are three tenants and the DaaS is running configuration c1, described in
Table VI, which provides satisfaction ui for each tenant i (Table V).

In the next time instant, a new tenant is added, and the preferences and the number
of users associated with each tenant also change. Consequently, the utility value of the
current configuration (ui(c1)) changes accordingly, becoming suboptimal. Therefore,
the analysis is triggered, returning a new configuration, c2 (Table VI), which delivers
improved utility values ui(c2). The most remarkable improvements are for tenant2 and
tenant4, whose preference satisfaction increases from 2.66 to 3.66 and from 0.5 to 1.5,
respectively. The improvement of the global satisfaction is also indicated by the value
of our utility function (NNP) increasing from 2.2 to 9.1.

As described previously, the available infrastructural resources must be satis-
factory to handle the workload generated by the users at each tenant and by the
candidate reconfiguration. The workload determined by the users is not linear,
and peak MIPS and RAM workloads should be estimated based on the monitored
data. For our DaaS scenario, we generate artificial user workload by means of a
Gaussian distribution, similarly to Maurer et al. [2013]. For each tenant, we generate
a number from a Gaussian distribution, taking μC PU = wi ∗ AvgCPUWorkload
and μRAM = wi ∗ AvgRAMWorkload—where the average workloads for the CPU
and the RAM are extracted from Table I, given the profile and delivery model—and
σC PU = μC PU

4 , σRAM = μRAM
4 . The workload generated by the candidate reconfiguration
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Table V. Preferences Reconfiguration Scenario* for a Hosted Shared
Delivery Model (Changes in Bold)

t t+1
Preferences wi ui(c1) Preferences wi ui(c1) ui(c2)

t1

√
US

45 4

√
US

49 4 4
√

OfficeUpdt
√

OfficeUpdt
Backup.period ≈ Weekly Backup.period ≈ Weekly
OSUpdt.period ≈ Weekly OSUpdt.period ≈ Weekly

t2

¬ UK

60 2

¬ UK

53 2.66 3.66
√

Indexing
√

Indexing√
Defragmenter

√
Defragmenter

OfficeUpdt ≈ Monthly

t3
⇑ OfficeUpdt.period

31 2.5
⇑ OfficeUpdt.period

40 2.5 2.5¬ Indexing
√

Defragmenter√
Calendar

√
Calendar

t4 0 -

√
UK

23 0.5 1.5JavaUpdt.period ≈ Monthly
⇓ OfficeUpdt.period

NNP (105) 2.2 9.1
*Legend. ti : T enanti ,

√
: Favorites, ¬ : Dislikes, ⇑ : Highest, ⇓ : Lowest, ≈ : Around.

Table VI. Enabled Features and Attribute Values for Configurations c1 and c2

Gadgets Reg. Set. App. Updates Maintenance OS Update
c1 Calendar US OfficeUpdt.period =

Weekly
Defragmenter,
Backup.period = Weekly

OSUpdate.period =
Weekly

c2 Calendar US OfficeUpdt.period =
Weekly, JavaUpdt.period
= Monthly

Defragmenter,
Indexing,
Backup.period = Weekly

OSUpdate.period =
Weekly

Table VII. Estimation of the Workload Impact on the Infrastructure

c1 c2

Workload Workload
Tenant Profile wi MIPS RAM (MB) wi MIPS RAM (MB)

T1 Medium 45 114213 17098 49 71647 28352
T2 Light 60 74507 10127 53 33953 24303
T3 Heavy 31 84249 84249 40 154094 37511
T4 Heavy - - - 23 57136 31316

Configuration workload 25000 5520 43000 9816
Total workload 297969 72505 359830 131298

is calculated as the sum of the peak workloads (Table II) of each selected configuration
option indicated in the last row of Table VI. The total estimated workload is shown
in Table VII, as the sum of the tenants workload and the configuration workload. In
this case, we assume that the required CPU and memory can be provisioned by the
available infrastructural resources depicted in Listing 1.

6.3. Obtrusiveness-Aware Optimization

We characterize the obtrusiveness level of each service reconfiguration as

ρ(Ct+1, Ct,�t) =
∑

m∈diff(Ct+1,Ct)

ρm + max{δ0 − �t, 0}
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where Ct+1 ∈ C is the candidate configuration; Ct is the current configuration; diff
is a function that obtains the set of features whose state (selected or removed) or
attributes differ between two configurations; ρm is the obtrusiveness level assigned
for a given feature (defined through the obtrusiveness attributes in the FM); �t is the
time elapsed since the last reconfiguration; and δ0 is the minimum time interval that
must pass between two subsequent reconfigurations in order not to disrupt the service
usability. δ0 can be estimated from monitored data.

In this scenario, we add the constraint ρ < ρMAX to the analysis problem in order to
ensure that the obtrusiveness of the reconfigurations from the Pareto front is below a
certain threshold. ρ is also set as an additional objective to compute the Pareto front.

For our example scenario, the diff function between c1 and c2 (Table VI) returns
the set {Indexing,JavaUpdt}. According to the model excerpt of Listing 1, ρm =
Indexing.obtrusiveness + JavaUpdt.obtrusiveness = 2 + 1 = 3. Considering δ0 = 24
hours, and ρMAX = 4 hours, at least 20 hours should pass between two subsequent
reconfigurations. If �t = 28 hours, ρ = 3 + max{−4, 0} = 3 < ρMAX, and, therefore, the
obtrusiveness of the candidate reconfiguration is below the maximum threshold.

7. EVALUATION

In this section, we illustrate the evaluation of our approach. We describe the imple-
mentation of our analysis (Section 7.1) and explain the experiments we conducted to
assess its effectiveness and performance (Section 7.2). Finally, we present and discuss
our results (Section 7.3).

7.1. Implementation

We have implemented a prototype to perform our preference-based optimization that
uses jMetal, a Java-based metaheuristics framework to solve multi-objective optimiza-
tion problems [Durillo and Nebro 2011]. jMetal provides a number of metaheuristic
algorithms to compute a Pareto front of the problem. Among all the algorithms that
jMetal provides, we chose two genetic algorithms that are widely used for the analysis
of FMs [Guo et al. 2011; Sayyad et al. 2013]. Genetic algorithms are search algorithms
that work via the process of natural selection. They begin with an initial population of
potential solutions, which then evolves through different generations via mutations and
crossovers toward a set of more optimal solutions. In particular, we employ FastPGA
[Eskandari et al. 2007] and NSGAII [Deb et al. 2002]. Although both algorithms are
elitist, NSGAII establishes different nondomination levels when ranking the—fixed
sized—population, whereas FastPGA merges and ranks the previous and current gen-
eration into a single—and adaptively sized—population. Due to their complementarity,
we decided to compare the behavior of the two algorithms for our analysis. Since the no-
tation we used to describe the configuration space (FaMa plain-text notation [Trinidad
et al. 2008]) only supports integer attributes at the moment, we model enumerated do-
mains as an integer range. For the genetic algorithms, the FMs are encoded as an array
of boolean variables to represent features selection and integer variables to represent
attributes values.

Metaheuristics are partial-search algorithms, and, for this reason, they may consider
solutions that violate some constraints of the FM. To avoid this problem, we set the
correctness of the solution as an additional objective by taking inspiration from Sayyad
et al. [2013]. We measure the violated constraints of a configuration using Choco,7
a Java CSP solver. The current configuration of the service is taken as input and
seeded among the initial population. For the first execution, we seed a random valid

7http://www.emn.fr/z-info/choco-solver/.
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Table VIII. Amount of Changes Between Two
Consecutive Snapshots

at t − 1 and t

Change t-1 t
#Tenants |T | = n |T | ∈ {n − 1, n + 1}

#Prefs |Pi | = mi |Pi | ∈ {mi − 1, mi, mi + 1}
#Users |Wi | = wi |Wi | ∈ [WMIN, WMAX]

Table IX. Characteristics of the FMs Used
for the Experimental Study

Features Atts. CTC
FM1 18 7 1
FM2 20 14 6
FM3 28 18 9
FM4 29 21 9
FM5 30 21 9

configuration of the service. The intention is twofold: Speed up the generation of valid
solutions, and generate some solutions close to the current one. The resulting Pareto
front is ranked using our utility function (Section 6). If all the returned points of the
Pareto front have a value of the utility function equal to zero (NNP = 0) due to each
ui = 0, our analysis chooses the solution that maximizes the average satisfaction of the
tenants.

7.2. Experiments

Our goal in this experimentation is to check the effectiveness of our analysis. We
compare the results obtained using FastPGA and NSGAII with those obtained using
a random search algorithm. We measure analysis effectiveness in terms of performed
reconfigurations and achieved satisfaction. Performed reconfigurations are measured
as the percentage of times the analysis finds a candidate configuration improving the
NNP value compared to the current one. Achieved satisfaction is measured as the
weighted average of the user preferences satisfaction.

For the experiments, we consider a scenario in which tenants change (i.e., they
join and leave the system), and their preferences and number of users vary between
different system snapshots, as described in Table V. We define a snapshot as the state
of the tenants and their preferences for a specific time instant (t). For every snapshot,
we run the analysis to reconfigure the service. We compare the satisfaction achieved
by each reconfiguration for the time t to the satisfaction achieved by the previous
configuration at the same time.

For our experiments, we define a set of tenants T , each associated with a set of
preferences Pi and users Wi. The number of tenants |T | is defined in the integer
range [TMIN, TMAX], the number of preferences per tenant i |Pi| is defined in the
integer range [PMIN, PMAX], and the number of users |Wi| is defined in the integer
range [WMIN, WMAX], considering also that

∑ |Wi| ≤ WTOTAL. For each snapshot (see
Table VIII), either one tenant leaves or a new tenant joins the service, but the rest of the
tenants may experience changes in their preferences. In particular, if an existing tenant
is affected by a change, this can indicate that a new preference is added or an old one
is removed. The number of users associated with each tenant (determining its weight)
may vary between WMAX and WMIN values. To simulate the changes between consecu-
tive snapshots, we implemented a random generator of tenants and preferences. Given
an FM and an integer k ∈ [PMIN, PMAX], this generator creates T different tenants,
each one with a set of different k preferences over features and attributes of the FM.
Once a preference has been defined on an element, such element is excluded for future
preferences of the same tenant to avoid contradictions. After the initial snapshot is
generated, the generator takes as input the set of current tenants and returns a new
set of tenants by adding/removing new/existing ones, as shown in Table VIII. It also
performs changes in the preferences of the tenants Pi and their number of users wi.

We consider the configuration space of five services, represented as FMs having in-
creasing complexity. The first FM represents our DaaS scenario in its hosted shared
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Table X. Results of the Preference-Based Analysis for FastPGA, NSGAII,
and Random Search (RS) Algorithms

Avg. satisfaction NNP(Ct) > NNP(Ct−1) Avg. execution time (ms)
FM FastPGA NSGAII RS FastPGA NSGAII RS FastPGA NSGAII RS

FM1 71.49% 72.15% 62.93% 64.86% 61.98% 30.06% 8254 6293 23704
FM2 56.53% 61.56% 28.01% 41.81% 49.7% 0% 13473 11150 43445
FM3 50.74% 49.3% 30.31% 25.71% 30.05% 0% 17684 15767 63238
FM4 55.01% 64.67% 30.28% 44.25% 47.05% 0% 18138 16035 65049
FM5 45.87% 56.39% 30.83% 24.55% 38.59% 0% 18822 16941 67378

version, and we have employed BeTTy [Segura et al. 2012], a well-known FM gener-
ator, to create the remaining FMs. For our evaluation, we assume that the estimated
workload can be provisioned by the available infrastructural resources. For instance,
the service provider may rely on a third-party infrastructure provider, such as Ama-
zon, which effectively handles elastic provisioning. Table IX shows the characteristics
of the generated FMs, where CTC identifies the number of cross-tree constraints (non-
hierarchical constraints) of each model. For each FM, we simulated 25 different change
scenarios. We randomized the number of snapshots per scenario n in the integer range
[5, 10]. Initial values and ranges for the remaining parameters are as follows: Tmin = 2,
Tmax = 5, Pmin = 2, Pmax = 10, WMIN = 10, and WMAX = 80. Since each different
tenant implies a new objective, we select the same upper limit (Tmax = 5) chosen
in related papers on multi-objective optimization for FMs [Sayyad et al. 2013]. We
consider WTOTAL = 200, since such value is close to the maximum number of users
supported by a single real hosted shared DaaS.8 For the FastPGA and NSGAII algo-
rithms, we rely on the default parameters suggested by jMetal: Evaluations = 25000,
PopulationSize = 100, CrossoverProbability = 0.9, and MutationProbability = 0.05.
For the Random Search algorithm provided by jMetal,9 we increased the default num-
ber of evaluations (25,000) to Evaluations = 100000. This algorithm identifies a random
configuration with no guarantee that a valid solution satisfying all the constraints is
found.

7.3. Experimental Results and Discussion

Table X shows the average satisfaction of the tenant preferences obtained for our
experiments, how often a reconfiguration (Ct) improves the NNP value of the previous
one (Ct−1), and the average execution time for FastPGA, NSGAII, and random search
algorithms. We can see that the average satisfaction achieved by the genetic algorithms
ranges between 45% and around 70%. Although such satisfaction might not seem to be
a good result, we must take into account that the preferences of the different tenants
may conflict most of the time, making it infeasible to achieve full satisfaction for such
cases. However, genetic algorithms clearly outperform the random search, especially
with regard to the achieved average satisfaction.

The percentage of improved reconfigurations—NNP(Ct) > NNP(Ct−1)—ranges be-
tween 25% and 65% for FastPGA and between 30% and 62% for NSGAII. Although at
a first glance this may seem a poor result, it is necessary to consider that this number
highly depends on changes between consecutive system snapshots. The greater the
changes, the greater the chances to decrease the satisfaction of the previous configu-
ration and the greater the chances to find an improved reconfiguration. In addition,
since we look for egalitarian solutions, our algorithms discard solutions that may have

8Using 2xE5-2470 2.3GHz processors, IBM was able to support 206 users: http://blogs.citrix.com/2013/
10/29/extreme-density-5768-hosted-shared-desktops-in-a-single-blade-chassis/.
9http://jmetal.sourceforge.net/javadoc/jmetal/metaheuristics/randomSearch/RandomSearch.html.
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Fig. 5. Average satisfaction improvement with respect to the previous configuration.

a better average satisfaction but ignore the preferences of particular tenants (i.e., one
of the tenants has 0 satisfaction, which leads to NNP = 0). Both genetic algorithms
perform better than the random search, which cannot return any improved reconfigu-
ration in most of the cases and whose execution time is about four time higher. This is
because in a constrained optimization problem we need to consider the constraints in
order to return valid solutions. Although we could add the correctness to the solution as
an additional objective for the genetic algorithms, this was not possible for the random
search. The execution time for the genetic algorithms is between 6 and 19 seconds,
suggesting that our analysis can be performed at runtime.

Figure 5 indicates the average satisfaction improvement for the successful reconfig-
urations, which range between 8% and 12% in absolute terms (i.e., the worst result
returns 0% satisfaction and the perfect result in a conflict-free scenario returns 100%
satisfaction). In general terms, NSGAII algorithm performs better than FastPGA, es-
pecially with larger models: Except for FM1, NSGAII outperforms the rate of im-
provements obtained using FastPGA. For the first FM, the random search algorithm
performs worse than the genetic algorithms but better than its own behavior for the
rest of the FMs. This is due to the fact that the configuration space of the first model
is smaller than the other FMs and allows the random search to find some acceptable
solutions.

8. OPEN ISSUES

In this article, we do not address all the challenges necessary to support user-centric
adaptation of multi-tenant services. In this section, we describe the open issues by
grouping them depending on which activities of the MAPE loop they belong.

(a) Monitoring: In this work, we assume that the monitoring phase is able to obtain
all the data required for the analysis. However, for a comprehensive approach, we
need to propose specific ways to extract user preferences, monitor the workload de-
termined by the service configurations and the users, and measure user satisfaction
and reconfiguration obtrusiveness (e.g., by means of empirical studies). Modifica-
tions in the configurations determined by system changes or updates should also
be detected and monitored.

(b) Analysis: One of the main limitations of the analysis is the simplicity of our
workload estimation. In future work, it will necessary to use monitored data to
predict resources usage determined by a specific configuration and users’ profiles;
additional aspects, such as thrashing, should also be incorporated. Moreover, we
recognise that although our assumption of uniformity within tenant groups is
simplistic, it was very useful to develop a first version of our analysis approach.
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However, in future work, we will use a more precise and updated model of user
behavior and preferences within each tenant.

(c) Planning: The reconfiguration actions of the service must be planned systemati-
cally in order to avoid inconsistent service states and user interruption.

(d) Execution: A reconfiguration engine on the specific service—a DaaS in our case—
remains to be implemented in order to execute planned configuration changes.

Furthermore, other aspects may threaten the validity of our approach:

—Malicious Users. A malicious user may intentionally express specific preferences
to achieve a desired service configuration. There are two possible ways in which this
problem can be avoided. An option could be to exclude critical features from the
adaptation process. This is why in our case study we did not allow users to express
preferences on security features such as firewall level or antivirus update frequency.
Another option is to consider a preference in the analysis only if at least a certain
number of users has expressed it.

—Preferences Aggregation Function. The NNP function we adopt to aggregate
user preferences tries to balance user satisfaction, thus avoiding configurations that
deliver a 0-valued satisfaction to any tenant. However, this may result in an unfair
adaptation when, for example, a tenant with a single user that expresses a particular
preference gets it satisfied while decreasing the satisfaction of the rest of the tenants
with multiple users. To address this issue, we can modify the NNP function by
assigning a weight to a specific preference depending on the number of users sharing
it.

9. RELATED WORK

The idea of performing adaptations to improve user satisfaction is not new. Other ap-
proaches [Malek et al. 2012; Cardellini et al. 2012] have considered conflicting users’
preferences and limited infrastructural resources in the construction of adaptive soft-
ware systems. For example, Malek et al. [2012] propose the redeployment of software
components on hardware nodes in order to optimize conflicting QoS dimensions for
changing user preferences. Cardellini et al. [2012] present a reference framework for
self-adaptation of service-oriented systems in which user satisfaction is considered as
an adaptation driver. Both approaches solve an optimization problem to reconfigure a
system architecture and a service-oriented application, respectively. The optimization
problem is solved by means of different techniques, such as integer programming or
genetic algorithms. Ali et al. [2012] propose social adaptation, which aims to dynami-
cally adapt existing software systems depending on user collective judgment expressed
on the way the system should behave. This approach treats user feedback as a primary
driver for planning and guiding adaptation. Feedback is related to the selection of a
specific system feature when more than one of them can be enabled. This work also
provides an analysis activity to select a feature configuration that fulfils user prefer-
ences. Differently from these approaches, we propose user-centric adaptation for the
reconfiguration of multi-tenant services in cloud scenarios where users can come and
go, and different service configurations and resources are shared depending on the
cloud service model. Dalpiaz et al. [2012] propose leveraging the preferences of non-
functional requirements expressed by a single user as a key driver for adaptation. The
collected preferences are used to adapt the selection of routine tasks to be performed
in a pervasive infrastructure by a user. In contast, we focus on the maximization of the
satisfaction of the global user preferences expressed on shared service configurations.
Song et al. [2013] present an approach to develop self-adaptive systems that take into
account end-users who express their preferences on the adaptation actions selected
by the system in order to better tune the adaptation results. Our work, instead, has a
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different focus since we consider changes of user preferences as one of the main triggers
for adaptation and aim to improve the global satisfaction of user preferences.

Lamparter et al. [2007] propose an ontology for representing and matching config-
urable web services. In particular, service configurations and associated preferences are
represented using function policies that allow the characterizing of service attributes
and the semantics and price of their value. The authors also propose an optimal algo-
rithm for service selection based on linear programming. Differently from this work,
we do not focus on the preferences expressed by a single user. Furthermore, we do
not explicitly represent price, but we assume that service providers can satisfy user
preferences up to a maximum amount of resources that can be allocated. A different
approach is adopted by Gallacher et al. [2013] who propose an algorithm to learn
contextual user preferences without explicitly asking for feedback in order to drive
personal adaptations. The authors try to overcome problems related to the accuracy of
the preferences even when input sources come and go and users change their behavior.
This work focuses on improving the preference satisfaction of a single user, whereas we
assume that user preferences are given and address the problem of maximizing their
global satisfaction.

Cloud services analysis and adaptation has been a prolific research area during
the past years. Caton and Rana [2012] propose an approach for cloud infrastructure
provisioning through volunteered resources. It relies on autonomic fault management
techniques to adapt resource usage. In this direction, Maurer et al. [2013] also propose
an adaptive resource configuration for cloud infrastructure management. In this case,
they structure adaptation actions into levels and rely on Case-Based Reasoning and
a rule-based approach in order to counteract SLA violations. Wei et al. [2010] present
a similar idea, with the difference that they intend to reach an equilibrium among
resources allocation performed on behalf of different users. To achieve this aim, Wei
et al. use a game theoretic approach based on Nash equilibria. Pitt et al. [2012] also
propose a resource allocation method that is focused on the notion of fairness for the
agents who share a common pool of resources. The authors take inspiration from the
principles of enduring institutions [E. Ostrom 1990] to identify a resource allocation
method based on canons of distributive justice. In particular, they propose a variant of
the Linear Public Good game as an abstract representation of the resource allocation
scenarios found in ad-hoc networks, sensor networks, and smart grids. This approach
demonstrates a way to produce a better balance of utility and fairness. Differently
from us, the approaches [Caton and Rana 2012; Maurer et al. 2013; Wei et al. 2010;
Pitt et al. 2012] presented previously focus on resource allocation instead of feature
selection and maximization of global user preferences. Finally, Vankeirsbilck et al.
[2014] propose a model for identifying an optimal resource allocation in order to satisfy
virtual desktop requests based on the tradeoff between costs and revenues for the
service provider. The authors also consider the possibility of overbooking (i.e., the
probability that fewer resources are allocated for the virtual desktops than are needed).
This approach is agnostic of user preferences and takes into account only resource
allocation as a measure of SLA violations.

Other works are more focused on cloud adaptation at the application level. Inzinger
et al. [2013] propose a model-based adaptation that allows cloud application develop-
ers to specify behavior goals and adaptation rules. These models are “management
hooks” for the cloud providers who can implement an adaptation strategy by consid-
ering the preferences of multiple customers and low-level infrastructural constraints.
Marquezan et al. [2014] provide a conceptual model that characterizes all entities of the
cloud environment that are relevant for adaptation decisions, the concrete adaptation
mechanisms and actions that these entities may perform, and the mutual dependen-
cies between these entities and actions. This allows cloud developers to take informed
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decisions on which kind of adaptation mechanisms to exploit for their application. Dif-
ferently from this work, in our approach, we model user preferences expressed over the
service configurations and identify infrastructural resources required to support spe-
cific service delivery models. These models allows us to configure our user preference
analysis automatically.

Nallur and Bahsoon [2013] propose an adaptive mechanism for applications com-
posed of different cloud services. Adaptation dynamically selects the best value-for-
money services and is triggered by violations of QoS by any of the adopted concrete
services and by changes of an application target QoS. The authors propose an approach
based on Market-Based Control (MBC) to self-adaptation: Bids are the mechanism by
which the search space of QoS-cost combinations is explored. This approach is mainly
focused on service selection rather than features selection and aims to maximize the
satisfaction of a single user. Our aim instead is to maximize global user preferences and
to minimize the obtrusiveness of adaptation. A security-oriented perspective is instead
assumed by Bernabe et al. [2014] who propose an advanced authorization model that
provides conditional role-based access control. This adapts the privileges assigned to
roles depending on the groups of tenants sharing the same resources.

Research on SPLs is highly related to our article. The idea of using variability tech-
niques to model the adaptation space is not new. For example, Bencomo et al. [2008]
propose the use of variability modeling to define the runtime adaptation space. Con-
cerning multi-tenancy and SPLs, Schroeter et al. [2012a, 2012b] use variability and
SPLs techniques to assist the configuration of multi-tenant applications. The authors
identify configuration requirements and propose a configuration process using FMs
[Schroeter et al. 2012b], and they also define requirements and middleware for a vari-
able multi-tenant architecture [Schroeter et al. 2012a]. However, this work has not
considered how to reconfigure multi-tenant applications at runtime, when user prefer-
ences, available service configurations, and infrastructural constraints change.

Mietzner et al. [2009] propose the use of variability modeling techniques to man-
age the variability of SaaS applications and their requirements. Specifically, they use
variability models to configure and deploy SaaS applications for different tenants.
However, they focus on modeling the variability and deploying different variants of
an SaaS application instance. Variability of different cloud providers has also been
analyzed and modeled by Garcı́a-Galán et al. [2013] to assist the migration of an
in-house infrastructure to the cloud. However, this approach works with hard require-
ments and ignores changes of user preferences. Similarly to us, Stein et al. [2014]
consider the problem of configuring multi-tenant services in order to better satisfy
tenant preferences on average. Based on such preferences, different product configura-
tions using different strategies from the social theory are suggested. However, prefer-
ences are only expressed as hard and soft constraints, and the analysis does not take
into account infrastructural constraints that might prevent the satisfaction of users’
preferences. Furthermore, the approach is not adapted to support runtime reconfigu-
ration, and, for this reason, feasibility of the proposed analysis at runtime has not been
investigated.

Several research efforts have been made to investigate multi-objective optimization
in applications characterized by variability. Guo et al. [2011] use a genetic algorithm to
find optimal FM configurations for a single objective and user. Sayyad et al. [2013] per-
form multi-objective optimization on several large FMs using metaheuristics. However,
their objective functions are fixed (i.e., minimize errors and cost or maximize number
of features), whereas our fitness function depends on specific user preferences. Finally,
other work has explored techniques for solving conflicts in a configuration process.
White et al. [2010] propose a technique in this direction that only considers a single
user and a minimal changes criterion. Although Garcı́a-Galán et al. [2013] consider
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multiple users, after detecting the conflicts, these users have to define explicitly the
impact of every solution on their preferences satisfaction.

10. CONCLUSION AND FUTURE WORK

In this article, we present an approach to support user-centric adaptation of multi-
tenant services. We motivate our proposal using a multi-tenant DaaS case study and
explain how to engineer the activities of the MAPE loop necessary to support user-
centric adaptation. Our focus is on the analysis activity of the MAPE loop that identifies
a service reconfiguration that maximizes tenants’ preferences satisfaction. The analysis
also guarantees that the computed service reconfiguration can be provisioned by using
the infrastructural resources available at the provider side. This analysis takes as
input the model of the service and user preferences. We use FMs to model the multi-
tenant service, which, more precisely, describes the service configuration space, the
infrastructural constraints, the workload, and the obtrusiveness of the configurations.
We adopt the SOUP preference model to represent user preferences.

The analysis is interpreted as a multi-objective constrained optimization problem,
where the different objectives are defined by the preferences of the tenants. This op-
timization problem is solved using genetic algorithms (FastPGA and NSGAII) that
identify the Pareto front of potential candidate reconfigurations. Obtained experimen-
tal results demonstrate that our analysis approach (i) identifies reconfigurations that
improve user satisfaction and (ii) can be performed at runtime. FastPGA provides more
effective results for smaller FMs, whereas NSGAII is more effective when bigger FMs
have to be analyzed.

As future work, we are planning to evaluate the applicability of our approach with
practitioners by using real multi-tenant services. This will require collecting experi-
mental data related to the impact that specific service features have on the consumption
of the infrastructural resources. Regarding the whole user-centric adaptation problem,
we will integrate our analysis with other activities of the MAPE loop. In particular,
for the monitoring activity, we will leverage existing work [Gallacher et al. 2013] to
measure user preferences in a nonintrusive and precise way. For the planning and exe-
cution activities, we will adopt real multi-tenant services to identify possible strategies
to enact a service reconfiguration on the system at runtime depending on the current
configuration and the number of users. Finally, we are planning to conduct empirical
studies to estimate more precisely how adaptation obtrusiveness is perceived by real
users.
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