2,293 research outputs found

    Unified Lagrangian formulation for fluid and solid mechanics, fluid-structure interaction and coupled thermal problems using the PFEM

    Get PDF
    The objective of this thesis is the derivation and implementation of a unified Finite Element formulation for the solution of uid and solid mechanics, Fluid-Structure Interaction (FSI) and coupled thermal problems. The unified procedure is based on a stabilized velocity-pressure Lagrangian formulation. Each time step increment is solved using a two-step Gauss-Seidel scheme: first the linear momentum equations are solved for the velocity increments, next the continuity equation is solved for the pressure in the updated configuration. The Particle Finite Element Method (PFEM) is used for the fluid domains, while the Finite Element Method (FEM) is employed for the solid ones. As a consequence, the domain is remeshed only in the parts occupied by the fluid. Linear shape functions are used for both the velocity and the pressure fields. In order to deal with the incompressibility of the materials, the formulation has been stabilized using an updated version of the Finite Calculus (FIC) method. The procedure has been derived for quasi-incompressible Newtonian fluids. In this work, the FIC stabilization procedure has been extended also to the analysis of quasi-incompressible hypoelastic solids. Specific attention has been given to the study of free surface flow problems. In particular, the mass preservation feature of the PFEM-FIC stabilized procedure has been deeply studied with the help of several numerical examples. Furthermore, the conditioning of the problem has been analyzed in detail describing the effect of the bulk modulus on the numerical scheme. A strategy based on the use of a pseudo bulk modulus for improving the conditioning of the linear system is also presented. The unified formulation has been validated by comparing its numerical results to experimental tests and other numerical solutions for fluid and solid mechanics, and FSI problems. The convergence of the scheme has been also analyzed for most of the problems presented. The unified formulation has been coupled with the heat tranfer problem using a staggered scheme. A simple algorithm for simulating phase change problems is also described. The numerical solution of several FSI problems involving the temperature is given. The thermal coupled scheme has been used successfully for the solution of an industrial problem. The objective of study was to analyze the damage of a nuclear power plant pressure vessel induced by a high viscous fluid at high temperature, the corium. The numerical study of this industrial problem has been included in the thesis.El objectivo de la presente tesis es la derivación e implementación de una formulación unificada con elementos finitos para la solución de problemas de mecánica de fluidos y de sólidos, interacción fluido-estructura (Fluid-Structure Interaction (FSI)) y con acoplamiento térmico. El método unificado està basado en una formulación Lagrangiana estabilizada y las variables incognitas son las velocidades y la presión. Cada paso de tiempo se soluciona a través de un esquema de dos pasos de tipo Gauss-Seidel. Primero se resuelven las ecuaciones de momento lineal por los incrementos de velocidad, luego se calculan las presiones en la configuración actualizada usando la ecuación de continuidad. Para los dominios fluidos se utiliza el método de elementos finitos de partículas (Particle Finite Element Method (PFEM)) mientras que los sólidos se solucionan con el método de elementos finitos (Finite Element Method (FEM)). Por lo tanto, se ramalla sólo las partes del dominio ocupadas por el fluido. Los campos de velocidad y presión se interpolan con funciones de forma lineales. Para poder analizar materiales incompresibles, la formulación ha sido estabilizada con una nueva versión del método Finite Calculus (FIC). La técnica de estabilización ha sido derivada para fluidos Newtonianos casi-incompresibles. En este trabajo, la estabilización con FIC se usa también para el análisis de sólidos hipoelásticos casi-incompresibles. En la tesis se dedica particular atención al estudio de flujo con superficie libre. En particular, se analiza en profundidad el tema de las pérdidas de masa y se muestra con varios ejemplos numéricos la capacidad del método de garantizar la conservación de masa en problemas de flujos en supeficie libre. Además se estudia con detalle el condicionamiento del esquema numérico analizando particularmente el efecto del módulo de compresibilidad. Se presenta también una estrategia basada en el uso de un pseudo módulo de compresibilidad para mejorar el condicionamiento del problema. La formulación unificada ha sido validada comparando sus resultados numéricos con pruebas de laboratorio y resultados numéricos de otras formulaciones. En la mayoría de los ejemplos también se ha estudiado la convergencia del método. En la tesis también se describe una estrategia segregada para el acoplamiento de la formulación unificada con el problema de transmisión de calor. Además se presenta una simple estrategia para simular el cambio de fase. El esquema acoplado ha sido utilizado para resolver varios problemas de FSI donde se incluye la temperatura y su efecto. El esquema acoplado con el problema térmico ha sido utilizado con éxito para resolver un problema industrial. El objetivo del estudio era la simulación del daño y la fusión de la vasija de un reactor nuclear provocados por el contacto con un fluido altamente viscoso y a gran temperatura. En la tesis se describe con detalle el estudio numérico realizado para esta aplicación industrialPostprint (published version

    A state of the art review of the Particle Finite Element Method (PFEM)

    Get PDF
    The particle finite element method (PFEM) is a powerful and robust numerical tool for the simulation of multi-physics problems in evolving domains. The PFEM exploits the Lagrangian framework to automatically identify and follow interfaces between different materials (e.g. fluid–fluid, fluid–solid or free surfaces). The method solves the governing equations with the standard finite element method and overcomes mesh distortion issues using a fast and efficient remeshing procedure. The flexibility and robustness of the method together with its capability for dealing with large topological variations of the computational domains, explain its success for solving a wide range of industrial and engineering problems. This paper provides an extended overview of the theory and applications of the method, giving the tools required to understand the PFEM from its basic ideas to the more advanced applications. Moreover, this work aims to confirm the flexibility and robustness of the PFEM for a broad range of engineering applications. Furthermore, presenting the advantages and disadvantages of the method, this overview can be the starting point for improvements of PFEM technology and for widening its application fields.Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (MI, Korea), Grant/Award Number: 10053121; Universiti Teknologi PETRONAS (UTP) Internal Grant, Grant/Award Number: URIF 0153AAG24Peer ReviewedPostprint (published version

    PFEM formulation for thermo-coupled FSI analysis: application to nuclear core melt accident

    Get PDF
    The aim of this paper is to present a Lagrangian formulation for thermo-coupled fluid–structure interaction (FSI) problems and to show its applicability to the simulation of hypothetical scenarios of a nuclear core melt accident. During this emergency situation, an extremely hot and radioactive lava-like material, the corium, is generated by the melting of the fuel assembly. The corium may induce collapse of the nuclear reactor devices and, in the worst case, breach the reactor containment and escape into the environment. This work shows the capabilities of the proposed formulation to reproduce the structural failure mechanisms induced by the corium that may occur during a meltdown scenario. For this purpose, a monolithic method for FSI problems, the so-called Unified formulation, is here enhanced in order to account for the thermal field and to model phase change phenomena with the Particle Finite Element Method (PFEM). Several numerical examples are presented. First, the convergence of the thermo-coupled method and phase change algorithm is shown for two academic problems. Then, two complex simulations of hypothetical nuclear meltdown situations are studied in 2D as in 3D.Peer ReviewedPostprint (author's final draft

    Dynamic modelling of the behaviour of the quarkiss earthen dam under seismic loads

    Get PDF
    The dynamic modelling of the behaviour of the Ouarkiss earthen dam under seismic loads was performed using the finite elements method (FEM), with an approach in effective stresses. The soil behaviour is described by the Mohr-Coulomb criterion. A numerical method and a procedure of analysis are presented in this work. The seismic response of an earthen dam was evaluated. Particular emphasis is placed on the calculation of stresses, displacements, deformations and interstitial overpressures recorded during the seismic solicitation. It has been shown that numerical simulation is able to highlight the fundamental aspects of the displacements and deformations processes experienced by the structure ofdam and to produce preliminary results for the evaluation of the seismic behaviour of the structure taking into account the physical non-linearity of the materials constituting the body of the dam and the effect of the rigidity of the different zones of the dam and the foundation

    A particle finite element method for fluid-related problems in civil engineering

    Get PDF
    The work presented in this Thesis is a set of developments focused on the Particle Finite Element Method (PFEM) and its applicability in several fields in Civil Engineering. The PFEM had already been proven to be a powerful tool for the free surface flows with large deformation and domain separation, but the application to actual engineering problems requires many more advances. The interaction between the fluid and many solids contacting with each other, the erosion of soils and the transport of small particles are some of these advances, which are main topics addressed in this document. Apart from them, other developments related with the fluid solution are included, which are intended to get deeper than ever before in the practical use of PFEM.El treball que es presenta en aquesta Tesi és un conjunt de desenvolupaments centrats en el Particle Finite Element Method (PFEM) i en la seva aplicació a diversos camps de l'enginyeria civil. El PFEM ja havia demostrat ser una eina potent pels fluxes amb superfície lliure amb grans deformacions i separació de dominis, però l'aplicació a problemes d'enginyeria reals requereix molts més avenços. La interacció entre el fluid i molts sòlids que contacten els uns amb els altres, l'erosió de sòls i el transport de partícules petites són alguns d'aquests avenços, que són els principals temes tractats en aquesta Tesi. Apart d'aquests, s'inclouen altres desenvolupaments relacionats amb la solució del fluid, que miren d'arribar més profunditat que mai abans en l'ús pràctic del PFEM i la seva implementació. Primer es presenta el PFEM, es descriuen els desenvolupaments de l'autor millorant la solució de la dinàmica de fluids i altres capacitats simples que s'hi han afegit. Després, tres capítols principals es centren en a) l'algoritme d'interacció fluid-estructura amb contacte b) l'erosió de sòls c) el transport de partícules. A continuació altres aplicacions del mètode s'expliquen, així com una llista dels projectes d'investigació amb els quals aquesta tesi ha tingut vincle.Postprint (published version

    A unified and modular coupling of particle methods with fem for civil engineering problems

    Get PDF
    In this work, a modular coupling approach for particle methods with the FEM (finite element method) is presented. The proposed coupled strategy takes advantage from the ability of particle methods of dealing with large displacements and deformations, especially when solving complex fluid–structure and solid–structure interaction problems. The coupling between the FEM and particle methods is done using a co-simulation approach implemented in the open-source Kratos Multiphysics framework. The particle methods considered in this work are the DEM (discrete element method) and the PFEM (particle finite element method). The Lagrangian description of the PFEM is well suited for modeling fluids undergoing large deformations and free-surface motions, and the DEM can be used to simulate rocks, debris and other solid objects. To accelerate the convergence of the coupled strategy, a block Gauss–Seidel algorithm with Aitken relaxation is used. Several numerical examples, with an emphasis on natural hazards, are presented to test and validate the proposed coupled method.Peer ReviewedPostprint (published version

    A hybrid Lagrangian-Eulerian particle finite element method for free-surface and fluid-structure interaction problems

    Get PDF
    The dynamics of fluid flows with free surfaces and interacting with highly deformable structures is a complex problem, attracting considerable attention. The Particle Finite Element Method (PFEM) is one of the various numerical methods recently proposed in the literature to simulate this type of problems. It is a mesh-based Lagrangian approach, particularly suited for problems with fast changes in the domain topology, since the fluid boundaries and the Fluid-Structure Interaction (FSI) interface are naturally tracked by the position of the mesh nodes. However, when nonhomogeneous boundary conditions are imposed on velocities or when there are regions where the topology varies moderately, for example, in confined portions of the fluid domain characterized by fixed boundaries, an Eulerian formulation turns out to be more convenient. To exploit the advantages of both formulations, an adaptive hybrid Lagrangian-Eulerian approach is presented in this work. According to the proposed method, nodes on the fluid free-surface and on the FSI interface are treated as Lagrangian, while the remaining nodes can be either Eulerian or Lagrangian. Furthermore, to increase the efficiency of the method, an algorithm to automatically detect runtime the transition zone between the two kinematic descriptions is devised. To validate the proposed approach, several numerical examples are developed and their results are compared to those available in the literature

    Unified Lagrangian formulation for solid and fluid mechanics and FSI problems

    Get PDF
    We present a Lagrangian monolithic strategy for solving fluid-structure interaction (FSI) problems. The formulation is called Unified because fluids and solids are solved using the same solution scheme and unknown variables. The method is based on a mixed velocity-pressure formulation. Each time step increment is solved via an iterative partitioned two-step procedure. The Particle Finite Element Method (PFEM) is used for solving the fluid parts of the domain, while for the solid ones the Finite Element Method (FEM) is employed. Both velocity and pressure fields are interpolated using linear shape functions. For quasiincompressible materials, the solution scheme is stabilized via the Finite Calculus (FIC) method. The stabilized elements for quasi-incompressible hypoelastic solids and Newtonian fluids are called VPS/S-element and VPS/F-element, respectively. Other two non-stabilized elements are derived for hypoelastic solids. One is based on a Velocity formulation (V-element) and the other on a mixed Velocity-Pressure scheme (VP-element). The algorithms for coupling the solid elements with the VPS/F fluid element are explained in detail. The Unified formulation is validated by solving benchmark FSI problems and by comparing the numerical solution to the ones published in the literature
    corecore